Quantitative 3-dimensional profiling of channel networks within transparent 'lab-on-a-chip' microreactors using a digital imaging method

Broadwell, Ian, Fletcher, Paul D.I., Haswell, Stephen J., McCreedy, T. and Zhang, Xunli (2001) Quantitative 3-dimensional profiling of channel networks within transparent 'lab-on-a-chip' microreactors using a digital imaging method. Lab on a Chip, 1, (1), 66-71. (doi:10.1039/b103280c).

This is the latest version of this item.


[img] PDF - Version of Record
Restricted to Registered users only

Download (450Kb) | Request a copy
Original Publication URL: http://dx.doi.org/10.1039/b103280c


We have developed a method for the quantitative 3-dimensional profiling of micron sized channel networks within optically transparent lab-on-a-chip microreactor devices. The method involves capturing digitised microscope images of the channel network filled with an optically absorbing dye. The microscope is operated in transmission mode using light filtered through a narrow bandpass filter with a maximum transmission wavelength matching the wavelength of the absorbance maximum of the dye solution. Digitised images of a chip filled with solvent and dye solution are analysed pixel by pixel to yield a spatially resolved array of absorbance values. This array is then converted to optical path length values using the Beer–Lambert law, thereby providing the 3D profile of the channel network. The method is capable of measuring channel depths from 10 to 500 µm (and probably even smaller depths) with an accuracy of a few percent. Lateral spatial resolution of less than 1 µm is achievable. It has been established that distortion of the measured profiles resulting from a mismatch in refractive index between the dye solution and the glass of the microreactors is insignificant. The method has been successfully used here to investigate the effects of thermal bonding and etch time on channel profiles. The technique provides a convenient, accurate and non-destructive method required to determine channel profiles; information which is essential to enable optimisation of the operating characteristics of microreactor devices for particular applications.

Item Type: Article
Digital Object Identifier (DOI): doi:10.1039/b103280c
ISSNs: 1473-0197 (print)
Related URLs:
Subjects: T Technology > TP Chemical technology
Q Science > QD Chemistry
Divisions : University Structure - Pre August 2011 > School of Engineering Sciences > Bioengineering Sciences
ePrint ID: 64834
Accepted Date and Publication Date:
Date Deposited: 16 Jan 2009
Last Modified: 31 Mar 2016 12:49
URI: http://eprints.soton.ac.uk/id/eprint/64834

Available Versions of this Item

Actions (login required)

View Item View Item

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics