Microstructure and strength modelling in Al-Cu-Mg alloys during non-isothermal treatments: Part 2 - Welds


Khan, I.N., Starink, M.J., Sinclair, I. and Wang, S.C. (2008) Microstructure and strength modelling in Al-Cu-Mg alloys during non-isothermal treatments: Part 2 - Welds. Materials Science and Technology, 24, 1411-1418. (doi:10.1179/174328408X317048).

Download

[img] PDF
Download (568Kb)
Original Publication URL: http://dx.doi.org/10.1179/174328408X317048

Description/Abstract

The present work applies a model for microstructural evolution in the solid state and Al-Cu-Mg alloys and expands it in a computationally efficient way to include solid-liquid reactions in fusion welds. The model is used to predict local strength and hardness of the welds, using a formulation that incorporates hardening due to two types of precipitates, i.e. Cu-Mg co-clusters and the S phase precipitates. The model predictions are compared with hardness, differential scanning calorimetry and transmission electron microscopy data for a fusion welded 2024-T351 aluminium alloy. The model predicts solid state reactions and solid-liquid reactions including co-cluster dissolution, S phase formation, growth, coarsening and dissolution, co-cluster reformation on cooling, and solute partitioning on resolidification. The model predictions are in good agreement with the experimental results and illustrate the dominant role that (sub-)nanoscale co-clusters play in strengthening of welds. The yield strength of as welded material tested normal to the weld is mainly due to the co-clusters.

Item Type: Article
ISSNs: 0267-0836 (print)
Related URLs:
Keywords: microstructure and strength modelling, Al-Cu-Mg alloys, non-isothermal treatments, welds
Subjects: T Technology > TN Mining engineering. Metallurgy
T Technology > TA Engineering (General). Civil engineering (General)
Divisions: University Structure - Pre August 2011 > School of Engineering Sciences
ePrint ID: 64935
Date Deposited: 12 Feb 2009
Last Modified: 27 Mar 2014 18:46
URI: http://eprints.soton.ac.uk/id/eprint/64935

Actions (login required)

View Item View Item