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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Xutao Kuang

The most studied region in the mammalian brain for multisensory integration is the deep superior
colliculus (DSC). Neurophysiological experiments have revealed many response properties of DSC
neurons, such as cross-modal enhancement (CME) and sub-additive/additive/super-additive op-
erational modes. CME occurs when the response of a multisensory neuron to stimulation in one
sensory modality is enhanced, often non-linearly, by temporally and spatially coincident stimu-
lation of a second sensory modality. Response enhancement is frequently larger for weaker input
stimuli than for stronger stimuli, a phenomenon known as inverse effectiveness. It is believed that
a non-linear, saturating response function may underlie CME associated with inverse effective-
ness. We explore this idea in more detail, showing that apart from CME, many other response
properties of DSC neurons, including the different dynamic ranges of responses to unimodal and
multimodal stimuli and the diverse operational modes, also emerge as a direct consequence of a
saturating response function such as a sigmoidal function.

We then consider the question of how the exact form of a candidate, saturating sigmoidal function
could be determined in a DSC neuron. In particular, we suggest that adaptation may deter-
mine its exact form. Adaptation to input statistics is a ubiquitous property of sensory neurons.
Defining the operating point as the output probability density function, we argue that a neuron
maintains an invariant operating point by adapting to the lowest-order moments of the input
probability distribution. Based on this notion, we propose a novel adaptation rule that permits
unisensory neurons to adapt to the lowest-order statistics of their inputs, and then extend this
rule to allow adaptation in multisensory neurons, of which DSC neurons are an example. Adap-
tation in DSC neurons is expected to change the responses of a neuron to a fixed, probe or test
stimulus. Such a neuron would therefore exhibit different CME when presented with the same
stimulus drawn from different statistical ensembles. We demonstrate that, for suitable selections
of test stimuli, adaptation to an increase in the mean, the variance or the correlation coefficient
induce consistent changes in CME. By virtue of the robustness of the results, the underlying
adaptation notion can be tested in neurophysiological experiments. Finally, it is known that
descending cortical projections from the anterior ectosylvian sulcus and the rostral aspect of the
lateral suprasylvian sulcus are indispensable for DSC neurons to exhibit CME. The structure
of our proposed adaptation rule for multisensory neurons therefore permits us to speculate that
the descending cortical inputs to multisensory DSC neurons facilitate the computation of the
correlation coefficient between different sensory channels’ activities.
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Chapter 1

Introduction

1.1 Why Multisensory Integration?

We are born with multiple senses, each of which provides us with a unique experience
of the world. The eyes, for example, receive ambient light signals, which project to the
retina of the eyes and form an “image” of the environment. The ears, on the other
hand, detect sound waves through air vibration in the eardrums. The skin is sensitive
to the external pressure on its surface. Light, sound and pressure differ significantly in
their physical properties, and provide distinct kinds of information of the environment.
Presumably, the existence of multiple senses is a result of evolutionary development
under the functional requirements of an animal in a physical niche.

Sometimes, the perception is based on a blend of multiple senses. Imagine a savoury
dish with an attractive appearance and spicy smell. The combination of the aroma, color
and taste of the dish produces a particular experience. When we hear a sudden sound,
our attention is attracted and we will unconsciously orientate to the sound source to see
what it is. These normal phenomena exhibit the interaction between different senses.
Although cross-modal interaction seems natural, the underlying mechanisms remain
unclear since multisensory processing in the brain is complicated.

Sensory information from different sensory modalities are all encoded in electric signals
in the brain. Light signals are converted into electric signals by the photoreceptors in the
retina and are passed through the subsequent neural pathway. Sound waves vibrate the
basilar membrane in the cochlea where the hair cells attached to the basilar membrane
produce the neural signals. Cutaneous receptors respond to the pressure on the skin to
generate somatosensory signals. Accordingly, the information encoded in these signals
corresponds to the traits of light, sound and pressure and varies significantly. For visual
signals, information such as the color of an object is encoded, leading to a perception
of the appearance; for auditory signals, the tone and the magnitude of the sound are

1
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encoded; for somatosensory signals, qualities such as the roughness and vibration are
recorded. Different sensory signals carry disparate information content.

The detection ranges of the sensors are also diverse, dependent on the mode of signal
transmission in the medium and the structure of the sensors. Due to the rectilinear
propagation of the light, the detectable areas are those in front of the eyes. Sound prop-
agates as a wave in the air, therefore the ears can receive omnidirectional sound signals
surrounding them. For the skin, the detection range is constrained to body surfaces.
Moreover, spatial coding in individual sensory systems is also different. The retinas
receive spatially ordered light signals from the environment and maintain this spatial
representation in subsequent transmission. Similarly, the skin also directly inherits the
spatial information from the touched surfaces. However, for the ears, the spatial infor-
mation of a sound source is not explicitly encoded in the ear. The representations of
auditory spatial locations require later neural processing to compare the arrival time of
the sound signals between the two ears (interaural time difference).

Despite the great disparity between different sensory modalities, the advantages of in-
tegrating cross-modal sensor information in biological systems are straightforward. A
single sensory system only processes a limited portion of the environmental information,
which is sometimes uncertain and ambiguous. For example, when the environment is
dark, the visual information becomes ambiguous and the performance of visual sensors
degrades. Moreover, sensory information in the environment is always coupled with
noise, and will be further deteriorated by the inherent noise in the nervous system.
Combining multiple sensory information not only enriches the information, but also
tends to reduce uncertainty and noise through the interaction between disparate sensor
information. To this end, it is beneficial to represent the diverse sensory information in
some common areas where this information is comparable and where they can enhance
or complement each other. For example, a common area for the integration of the au-
ditory and visual spatial information could realize an effective combination where the
omnidirectional auditory field complements the visual field and where the high resolu-
tion of the visual field enhances that of the auditory field. Consequently, the resultant
multisensory spatial representation has an omnidirectional range as well as a high res-
olution in the front area. In biological systems, the brain areas to receive convergent
cross-modal inputs are the main focus of the research on multisensory integration.

1.2 Multisensory Integration in the Brain

The presence of interactions between different sensory modalities have long been indi-
cated by perceptual phenomena such as the synesthesia (Critchley, 1977) and the ventril-
oquism effect (Bertelson, 1999). Traditional neurophysiological experiments, however,
are constrained by experimental techniques and only focus on individual sensory chan-
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nels. The shift of emphasis towards an integrative view of sensory processing was due
to the developments in experimental techniques, such as positron emission tomogra-
phy (PET), functional magnetic resonance imaging (fMRI) and electroencephalography
(EEG), by which the function of the whole brain can be investigated. This, on the one
hand, deepens our understanding of separate sensory systems, and, on the other hand,
enables us to study how these sensory systems interact. As a result, multisensory inte-
gration was discovered in a large number of animals ranging from insects such as bees
and ants (Gronenberg and López-Riquelme, 2004), non-mammalian vertebrates such as
owls (Knudsen, 1982) and snakes (Newman and Hartline, 1981), to mammals such as
cats (Meredith et al., 1992), monkeys (Wallace et al., 1996) and humans (Calvert and
Thesen, 2004). Integrating sensory stimuli across different sensory channels appears to
be a general strategy adopted by many biological systems, enabling an animal to speed
up sensory processing and enhance the detection of weak signals, and also increasing its
competence to live in a complex environment. However, multisensory processes in the
brain are very complicated, occurring at various stages of sensory processing, playing
different functional roles and exhibiting disparate phenomena. Currently, the under-
standing of the mechanisms underlying multisensory integration is still at an initial
stage.

1.2.1 Behavioural Studies

Behavioural study, concentrating on the perceptual phenomena, is one of the most pop-
ular approaches to investigate multisensory integration. Many behavioural results have
demonstrated the existence of multisensory integration in the brain. For example, two
identical visual targets moving across each other can be perceived as bouncing off or
passing through. If a brief sound is presented at the moment the two targets meet, how-
ever, our percept will be biased towards bouncing off (Sekuler et al., 1997). This suggests
that our perception of an event is based on a combination of multimodal information.
In the experiments of sonogenic synesthesia, music induces intense visual experiences
or cutaneous paresthesias (Critchley, 1977), indicating the existence of correlations be-
tween the sensory systems. These all show that cross-modal sensory processing does
interact with each other in the brain.

In addition, behavioural studies also give a hint on the principles and the mechanisms un-
derlying multimodal perception. Several factors that influence multisensory integration
have been revealed by behavioural studies. For example, when two or more cross-modal
stimuli occur at the same time and at the same location, the reaction time of orientation
to the cross-modal stimuli is much shorter than when a single stimulus is present. As
the discrepancies in time and space increase, however, the reaction time becomes longer
and orientation performance is degraded (Stein et al., 1989). In another experiment, the
sensitivity to visual stimuli below response threshold is increased by the simultaneous
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presence of an auditory stimulus at the same spatial location. Similarly, this effect is
reduced or eliminated when the visual and auditory stimuli are further separated in
space or time (Frassinetti et al., 2002). Temporal synchrony and spatial correspondence
thus appear to be important factors in target localization. In some other tasks such
as cross-modal speech recognition, however, semantic congruence of different sensor in-
formation is instead the most influential factor. An example is the McGurk effect, in
which an audible syllable “BA” coupled with a videotape of a speaker’s mouth show-
ing “GA” is actually perceived as “DA” (McGurk and MacDonald, 1976). Although
semantic discrepancy disrupts our perception, the visual image and the sound do not
necessarily originate from the same location. It is therefore reasonable to infer that the
most influential factors of cross-modal perception depend on the functional roles of the
integration.

One of the main concerns about the principles of multisensory integration is how the
brain weights information from different sensory channels. Does the integration process
bias towards a certain sense? If it does, what is the underlying principle? In the ven-
triloquism effect, synchronous auditory and visual stimuli presented in slightly different
spacial locations give the illusion that the sound is coming from the position of the vi-
sual stimulus (Bertelson, 1999). In this case, auditory perception is significantly biased
by the visual signal. In the freezing phenomenon, when some rapidly changing visual
display is presented, an abrupt sound could “freeze” a display synchronized with the
sound so that this “frozen” visual display was perceived brighter and sustaining for a
longer time (Vroomen and de Gelder, 2000). In this experiment, sound instead alters
the visual perception. Therefore, it appears that the brain would dynamically weight
cross-modal sensory information based on different situations. It is possible that multi-
sensory integration weights a sensory modality according to its reliability in a particular
context (Welch and Warren, 1980). As in the above examples, for localization, visual
information predominates in the perception because it has a higher spatial resolution;
in the freezing effect, auditory signals influence the visual perception because they have
a higher temporal resolution. There is evidence showing that, in a task to discriminate
the widths of bimodal visual-haptic bars, the nervous system actually weights visual and
haptic information according to the variances of the sensory information (Ernst et al.,
2002).

Cross-modal plasticity to sensory modification or loss has also been investigated in be-
havioural studies. It has been shown that the performance of sound localization task is
better in cats that were visually deprived from birth than sighted cats (Rauschecker and
Kniepert, 1994). Moreover, identical results have also been found in visually deprived
ferrets (King and Parsons, 1999) and blind humans (Muchnik et al., 1991). This indi-
cates the occurrence of some plastic processes to enhance the capability of the remaining
senses that belong to a different modality from the deprived sensors. Furthermore, in
contrast to congenitally blind people, the performance of late blind and sighted partic-
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ipants are equally affected by crossing the hands in the task of judging the temporal
order of two tactile stimuli applied to either hand (Roder and Neville, 2003). Accord-
ingly, there appears to be a “critical period” for this adaptive re-arrangement to take
place. The performance of partially blind people in sound localization tasks, however, is
worse than normally sighted people, indicating that compensatory plasticity in partial
sensory loss might induce a conflict between vision and hearing (Lessard et al., 1998). In
contrast to cats, ferrets and humans, blind-reared barn owls perform worse than normal
owls in sound localization behaviour (Knudsen et al., 1991). For barn owl, visual experi-
ence seems to be necessary for normal development of auditory processing. This implies
that either the principles of cross-modal plasticity are not the same for different species
or the neural structures that exert influence on a sound localization task are different
between mammalian and non-mammalian vertebrates.

1.2.2 Neurophysiological Studies

With the help of experimental techniques such as electrophysiological techniques, fMRI
and EEG, our knowledge of the neural processing underlying multisensory integration
has greatly increased. Complementary to behavioural studies that investigate the brain
at the perceptual level, neurophysiological studies provide substantial results on the
reactions of the brain from the single cell level, to neural population, and to the whole
brain level.

Neuroanatomy

Traditionally, sensory processing in the brain has been considered to conform to a hier-
archical organization, starting from the primary sensory-specific cortices, through sec-
ondary sensory cortices, sometimes even to tertiary sensory cortices, and then converging
to multimodal association areas (Pandya and Kuypers, 1969; Jones and Powell, 1970).
In this organization, multisensory integration occurs at a relatively “late” stage. During
that traditional period, research emphasized the role of multimodal areas as the final
stage in sensory information processing that are responsible for high-level activities such
as language and cognition. However, with the development of more powerful exper-
imental techniques, later research has provided evidence for a parallel and divergent
organization, showing that some interactions between different sensory channels occur
at an early stage of processing. For example, there are projections from the auditory
parabelt, a part of the auditory cortex, to the primary visual cortex (V1) (Rockland and
Ojima, 2001; Falchier et al., 2002). Although these projections from auditory cortex to
visual cortex are sparse and might not have a significant impact on information pro-
cessing in V1, they might modulate visual responses (Felleman and Van Essen, 1991).
Moreover, in visual cortex, neural responses to a visual stimulus can be enhanced by a
tactile cue (Macaluso et al., 2000). These results suggest that either there are feedback
influences from the multisensory areas to these unimodal areas or that these unimodal
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areas are able to access each other directly. Multisensory integration in the brain is
therefore very complex, occurring at various levels (“early” and “late”) of the infor-
mation processing pathway and is mediated by feedforward, feedback and reciprocal
connections with other areas.

Neuronal Responses

Neurons are the basic units of the brain which generate perceptions and produces signals
to execute behaviours. The response properties of a single neuron might therefore to a
certain extent contribute to the features exhibited by behavioural studies. As we will
find out, some characteristics of neuronal responses described below do correlate with
experimental results at the behavioural level. For example, when two or more sensory
cues occur in temporal and spatial proximity, the firing rate of superior colliculus (SC)
multisensory neurons can greatly exceed the maximum of those evoked by individual
sensor stimuli (Meredith and Stein, 1986), corresponding to the improvement of orienta-
tion behaviour towards cross-modal stimuli (Stein et al., 1989). Moreover, this response
enhancement is often maximal when the unimodal responses are weakest, a phenomenon
called inverse effectiveness. On the other hand, enhancement in the firing rate of the SC
neurons is greatly reduced, even eliminated when the spatial or temporal discrepancy of
the cross-modal stimuli increases (Meredith et al., 1987; Meredith and Stein, 1996). Neu-
rons in the superior temporal sulcus (STS), however, are not so constrained by precise
spatial coincidence as superior colliculus neurons, but are mainly influenced by semantic
congruency as well as temporal synchrony. They exhibit stronger responses to matching
audiovisual speech and weaker responses to conflicting audiovisual speech, compared
with the sum of their unimodal responses (Ojanen, 2005). Some studies suggest that
inverse effectiveness could also be shown by neurons in STS (Callan et al., 2003), that
is, weaker bimodal stimuli result in larger response enhancement. Since STS has been
identified in tasks such as object identification and speech recognition (Beauchamp et al.,
2004; van Atteveldt et al., 2004), where the sematic matching between the signals is more
important than their spatial coincidence, the principles of multisensory integration are
presumably a direct outcome of the functional requirements.

Development of Multisensory Integration

Concerning the development of multisensory processing in the brain, there are tradition-
ally two radically different views (Lewkowicz, 1994). One view suggests that initially
different sensory channels are completely separate without interactions, and that multi-
sensory neurons appear later during postnatal experience. The other view suggests that
sensory neurons are initially multisensory and then develop to be modality-specific with
the maturation of the nervous system. Neurophysiological experiments on the devel-
opment of neural responses in SC for cats show that SC neurons in kittens exclusively
respond to somatosensory stimuli for the first several days after birth, and SC neurons
that respond to cross-modal stimuli appear later during postnatal development (Wallace
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and Stein, 1997). Moreover, the integrative ability to induce multisensory enhancement
is not concomitant with the appearance of multisensory neurons, but is acquired at
a later stage. Experiments on SC of rhesus monkeys, however, show that multisen-
sory neurons in SC can be observed at birth, although with a percentage much lower
than adult (Wallace and Stein, 2001). Again, these multisensory neurons only exhibit
enhanced responses to cross-modal stimuli at a later stage. One possible cause of the
different development chronologies of multisensory neurons between cats and monkeys is
the specific functional needs and behavioural requirements at birth. The developmental
processes of multisensory integration vary across different species.

Cross-modal Plasticity

Connection patterns in multisensory processing pathways are able to undergo rearrange-
ment to accommodate the changes in the sensors. For example, neurons in the optic
tectum (OT) are arranged in a topographic organization in which neighbouring neu-
rons respond to cross-modal stimuli in adjacent spatial locations, and accordingly form
aligned cross-modal spatial representations (Knudsen and Brainard, 1995). Prism glasses
that shift the visual field in newborn barn owls thus induce a conflict between the visual
and auditory topographic representations in optic tectum. Electrophysiological exper-
iments have shown that this conflict is compensated by rewiring projections from the
central nuclei to the external nuclei of inferior colliculus along the auditory pathway,
which re-align the visual and auditory spatial maps in the OT (Feldman and Knudsen,
1997). In addition, the finding that brain areas initially dominated by visual stimuli are
activated when blind participants read Braille suggests that neurons that exclusively
respond to visual stimulation can be stimulated by other sensory modalities when vi-
sion is deprived (Eimer, 2004). Therefore, when one sensory input is permanently lost,
frequent usage of other intact sensory modalities triggers neural re-arrangements that
result in the recruitment of the deprived sensory areas by the intact sensors. A recent
study showing that multimodal brain regions in the congenitally blind exhibit stronger
responses than normally sighted people in an auditory localization task also indicates the
existence of cross-modal plasticity (Wessinger et al., 1999). For blind-reared barn owls,
however, the auditory spatial representation in OT is degraded compared with normally
sighted owls, resulting in much less precise sound localization (Knudsen et al., 1991).
This performance is in contrast to mammals such as cats and monkeys (Rauschecker and
Kniepert, 1994; King and Parsons, 1999). One possible reason for this difference might
be that, for mammals, the changes in subcortical areas such as SC as a result of sen-
sory loss can be tamed by their highly-plastic neocortex, whereas, for non-mammalian
vertebrates such as the barn owls, disruption in the development of OT could not be
properly compensated (Rauschecker, 2004).
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1.3 Thesis Outline

As discussed in previous sections, both behavioural and neurophysiological studies in-
dicate that multisensory processes in the brain are complicated, and the mechanisms
underlying these processes remain unclear. This thesis aims to contribute to the un-
derstanding of multisensory integration based on theoretical studies inspired by existing
experimental results. Among the various multisensory areas in the brain, we narrow
our focus to the superior colliculus (SC), a subcortical area that receives visual, au-
ditory and somatosensory inputs and assists in orientation behaviour, particularly its
basic neuronal response properties. We choose SC for three reasons. Firstly, SC is the
most studied multisensory area in the brain, and thus offers a rich source of information
(Stein and Meredith, 1993). The extensive experimental results on SC can provide the
most detailed information not only to inspire theoretical studies but also to validate the
resulting model. Secondly, information processing in SC is relatively low-level and it
thus appears to be a suitable choice with which to start. Moreover, it has been reported
that the response properties of SC neurons correspond well to the performance of orien-
tation behaviour (Stein et al., 1989). Investigating the neuronal responses of SC might
therefore contribute to the understanding of multisensory integration at the behavioural
level. Thirdly, multisensory integration in SC exhibits some properties that also apply
to other multisensory processes in the brain. For example, in addition to SC, multisen-
sory enhancement associated with inverse effectiveness has also been observed in STS
for audiovisual speech stimuli (Ojanen, 2005) and in the integration of taste and smell
(Dalton et al., 2000). The study of SC might therefore contribute to the exploration of
other multisensory processes in the brain.

In Chapter 2, we review the experimental results on SC, in particular the response
properties of neurons in the deep layers of SC (DSC), which receive convergent input
from different sensory modalities. For example, DSC neurons exhibit response properties
such as cross-modal enhancement (CME), multisensory depression and modality-specific
suppression (MSS). Moreover, multisensory responses of DSC neurons are significantly
influenced by afferents from cortical areas such as anterior ectosylvian sulcus (AES) and
the rostral aspect of the lateral suprasylvian (rLS) area. We also review findings on the
development of the response properties of DSC neurons.

As we will propose an adaptation rule for DSC neurons, we also review in Chapter 3 ex-
perimental studies on the adaptation of unimodal sensory neurons to their input statis-
tics. We discuss statistical properties of natural signals, such as natural images and
natural sounds, followed by a discussion of the adaptation of sensory neurons to the
input mean, variance and other statistical properties. We finally review the proposed
information principles underlying these adaptations.

To account for multisensory processes in DSC, computational and mathematical models
have been proposed. We introduce several representative models in this area in Chap-
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ter 4, and briefly discuss their advantages and disadvantages. We suggest that these
theoretical studies on DSC neurons are questionable.

As an example, we analyse the model proposed by Patton and Anastasio (2003) to
explain the CME and MSS properties of DSC neurons (Chapter 5). This model is
constructed based on Bayes’ theorem, and it exhibits MSS if the covariance between
two sensory inputs approaches the variances when firing spontaneously. However, our
numerical and mathematical studies of the model reveal that the MSS property is in fact
produced by particular choices of parameters and inputs. This suggests that the model
is not an appropriate one to account for the mechanisms underlying all DSC neuronal
responses.

We discuss in Chapter 6 that, in fact, many response properties naturally emerge if we
model the responses of DSC neurons under a non-linear, saturating function, such as
the sigmoidal function, extending the notion of Stanford et al. (2005). For example, the
sigmoidal transfer function contributes to a simple interpretation of the CME property
associated with inverse effectiveness, the sub-additive/additive/super-additive responses
and the four different operational modes in DSC neurons.

We then propose an adaptation rule in Chapter 7 for a sensory neuron, both unimodal
and multimodal, responding under a sigmoidal transfer function. Defining the probabil-
ity density function of a neuronal response as the operating point, we provide mathe-
matical analysis showing that a sensory neuron maintains an exactly or approximately
invariant operating point under our adaptation rule when the input statistics change.
We also present several examples of adaptation to input distributions for both unimodal
and bimodal neurons.

Based on the adaptation rule for multimodal inputs, we derive predictions about the
impact of adaptation to different statistical parameters, including the mean, the variance
and the correlation coefficient, on the CME property of DSC neurons (Chapter 8). Our
results show that, with suitable choices of bimodal test stimuli, consistent changes in the
CME measure could be observed when the statistical parameters increase. According
to these predictions, neurophysiological experiments could be conducted to verify the
adaptation notion.

Finally, we discuss in Chapter 9 several issues surrounding our adaptation model. We
first give a brief summary of the work we have done and suggest extensions and appli-
cations of our model. We then discuss issues such as the interpretation of multisensory
responses in DSC neurons, the implication of our model for neuronal computation and
model predictions for experimental tests. We also reflect on the current status of exper-
imental and theoretical studies.



Chapter 2

Superior Colliculus

2.1 General Introduction

Superior colliculus (SC) is a subcortical area in the mammalian brain that, together
with inferior colliculus, comprises the tectum (Fig. 2.1). It receives convergent inputs
from the visual, auditory and somatosensory channels and is considered to integrate
these sensory inputs. Based on cross-modal information, SC assists the orientation
behaviours of an animal such as saccades, head and limb movements. In non-mammalian
vertebrates, there is a comparable structure called optic tectum (OT) that subserves the
same functional role as SC. Compared with other multisensory areas in the brain, SC/OT
has received the most attention, and a large number of experiments, both behavioural
and neurophysiological, have been carried out to study them.

Figure 2.1: The tectum. From Purves et al. (2004).

SC is divided into seven layers, with the top three layers generally referred to as the
superficial layers and the bottom four layers referred to as the deep layers (Kanaseki
and Sprague, 1974). This conventional division differentiates the layers according to
their neuronal properties and physiological characteristics. The superficial layers of SC
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(SSC) receive projections from the retina and the visual cortex, and neurons in these
layers respond exclusively to visual stimuli. In contrast, neurons in the deep layers of
SC (DSC) respond to visual, auditory and somatosensory stimuli (Stein and Meredith,
1993). Our focus is therefore on DSC, which is considered as the region in SC where
multisensory integration occurs. Although multisensory neurons in SC are located in its
deep layers, there are also unisensory neurons in DSC. For example, electrophysiological
experiments in cats have investigated the composition of DSC based on the sensory
inputs to which DSC neurons respond (Kadunce et al., 1997). The results show that
about 42% of DSC sensory neurons are unisensory, responding exclusively to one of the
three sensory modalities, and the other 58% could be triggered by cross-modal stimuli
(Fig. 2.2). Among the multisensory neurons, the largest portion of neurons respond
to bimodal visuoauditory stimuli, with a percentage up to about 35%. This is intuitive
since visual and auditory sensors in cats receive a large amount of stimuli. There are also
trimodal neurons, occupying about 8% of DSC neurons. Although a similar distribution
of multisensory and unisensory neurons could probably be observed in other animals, the
actual modalities that DSC neurons respond to certainly vary across different species.
Rattlesnake, for example, extensively utilizes its heat sensor to localize a prey, and the
majority of its multisensory neurons are visual-infrared neurons (Stein and Meredith,
1993).

Figure 2.2: The composition of DSC neurons of a cat. From Kadunce et al. (1997).

2.2 Anatomical Organization

DSC is connected with a large range of brain structures, receiving ascending afferents
from sub-cortical areas and sensory organs, descending afferents from cerebral cortex,
and sending efferents to other regions of the brain. Varying in function and structure,
these regions form a complex connection pattern together with DSC (see Table 2.1).
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Ascending Descending

Retina Posterior & lateral suprasylvian cortex
Visual Pretectum Anterior ectosylvian sulcus

Ventral lateral geniculate n. Orbital cortex

Exterior n. inferior colliculus
N. brachium inferior colliculus

Auditory N. sagulum Field AES (anterior ectosylvian sulcus)
Dorsomedial periolivary n.
N. trapezoid body

Sensory trigeminal complex SIV (anterior ectosylvian sulcus)
Somatosensory Dorsal column n. Para SIV (anterior ectosylvian sulcus)

Lateral cervical n. Rostral lateral suprasylvian cortex
Spinal cord, dorsal horn

Substantia nigra
Entopeduncular n.

Motor Medial, interposed, and lateral n. Frontal eye fields
of deep cerebellum
Perihypoglossal n.
Zona incerta

Table 2.1: Afferents to the deep layers of the cat superior colliculus. From Stein and
Meredith (1993).

In comparison to SSC, DSC receives relatively sparse projections from the retina. The
majority of visual projections to DSC originates from cerebral cortex such as the visual
area of anterior ectosylvian sulcus (AES) (Mucke et al., 1982) and lateral suprasylvian
cortex (Baleydier et al., 1983). Although there are also connections between SSC and
DSC (Behan and Appell, 1992; Moschovakis and Karabelas, 1985), the function of these
connections is still unclear. Descending auditory projections to DSC comes exclusively
from the auditory area in AES (Meredith and Clemo, 1989), while the ascending affer-
ents originate from several sources, including the external nucleus of inferior colliculus
(ICx). Since IC neurons are topographically organized to form a map of auditory space
(Knudsen and Konishi, 1978), the projections from ICx to DSC are considered to con-
tribute to the formation of the auditory receptive field of DSC neurons. Somatosensory
corticotectal inputs to DSC mainly arise from the somatosensory area in AES (McHaffie
et al., 1988). Other descending somatosensory projections include the rostral lateral
suprasylvian (rLS) area (Stein and Gaither, 1983). There are also a number of ascend-
ing somatosensory afferents from areas such as sensory trigeminal complex and dorsal
column nuclei (Edwards et al., 1979). In addition to sensory afferents, motor afferents
to DSC also exist. For example, the frontal eye fields are the most well-known motor
projection to DSC in cat and primate (Kawamura and Konno, 1979; Leichnetz et al.,
1981). Other oculomotor-related areas that project to DSC include the basal ganglia
(Moschovakis and Karabelas, 1985), zona incerta, thalamic reticular nucleus and nucleus
of the posterior commissure (Stein and Meredith, 1993).

DSC efferents are conventionally considered to project in four pathways: ascending, com-
missural, crossed and uncrossed descending pathways. The ascending outputs project
to thalamus and presumably alert higher-level processing to the changes in the func-
tional condition of DSC neurons; the commissural projection connects with the opposite
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SC and coordinates the operations between them; both the crossed and uncrossed de-
scending efferents project to brain stem and spinal cord, and are generally involved in
initializing behaviours such as eye, head and limb movement (Stein and Meredith, 1993).

2.3 Spatial Maps

2.3.1 Sensory Maps

Each DSC neuron responds to stimuli in a specific spatial region called the “receptive
field” (RF) of the neuron. Since DSC neurons are organized in a way that neighbouring
neurons have adjacent RF for visual stimuli, a population of DSC neurons represent a
continuous visual spatial map. In addition, DSC neurons also form an auditory spatial
map, although each with a larger RF and thus lower “resolution” compared to the
visual spatial map. The somatosensory RF of a DSC neuron refers to the region of body
surface on which a stimulus induces the neuron’s response. Analogously, neighbouring
DSC neurons have adjacent somatosensory RF, resulting in a somatosensory map of the
body surface. Although not in exact alignment, these sensory spatial maps align with
each other to form a coherent multisensory map (see Fig. 2.3). Accordingly, a stimulus
in a specific spatial location, no matter whether it is visual, auditory or somatosensory,
triggers the same DSC neuron.

A B

Figure 2.3: Receptive filed of DSC neurons in monkey. The shaded area represents
the receptive field for (A) a visual-auditory neuron and (B) a visual-somatosensory

neuron. From Wallace and Stein (2001).

Research on spatial maps has studied issues such as the development of spatial maps,
compensation to sensor modification and dynamic mapping between different modalities.
During the development of spatial maps, a rough map in OT firstly appears through
the establishment of afferent projections under genetic mechanisms, after which the
spatial maps are refined and aligned under activity-dependent mechanisms (Knudsen
and Brainard, 1995). This developmental process in DSC has been reported to be highly
plastic and the way cross-modal spatial maps align depends on the correlation between
cross-modal stimuli in the environment (Wallace and Stein, 2007). When the cross-modal
spatial maps are disrupted by, for example, sensor modification, re-alignment processes
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occur to compensate for this. For example, shifting the visual field of juvenile barn
owls by a prism results in a misalignment between the visual and auditory map in OT.
This is later compensated by a re-arrangement of connections from the central nucleus
to the external nucleus of the inferior colliculus in the auditory pathway (Brainard and
Knudsen, 1993). Furthermore, since different sensors appear to have different reference
frames, for example, visual information is eye-centred while auditory information is
head-centred, conflict in the multisensory map induced by movement of the eye or the
head needs to be reconciled dynamically. Knudsen and Brainard (1995) suggested that
the reference transformation from eye-centred to head-centred is accomplished within
the OT through an intermediate transformation.

2.3.2 Motor Maps

The primary functional role of SC is to translate the sensory signals into motor signals
to orientate the sensory organs towards the stimulus. Some DSC neurons have been
reported to be involved in the generation of these motor movements. For example, there
are oculomotor DSC neurons that send signals to trigger saccadic eye movement. Acti-
vation of oculomotor DSC neurons determines how the eye should move: the frequency
of spikes is related to the velocity of the movement (Berthoz et al., 1986), and the acti-
vated neuron determines a particular direction and amplitude. Analogous to the sensory
spatial representations in DSC, experiments in cat SC reveal an eye movement map rep-
resented by these neurons (McIlwain, 1990), in which neighbouring neurons induce eye
movements to foveate adjacent spatial locations. In addition to oculomotor neurons,
there are neurons in DSC that evoke ear movements towards a sound via polysynaptic
connections to the pinna muscles. A well-ordered ear movement map has also been
revealed in cat (Stein and Clamann, 1981).

In analogy to the alignment of cross-modal sensory spatial maps, some studies have
shown that motor maps for different sensory organs are aligned with each other. For
example, the eye movement map and the ear movement map are in register so that
microstimulation at one point of DSC evokes both eye and ear movements towards
approximately the same spatial location (Stein and Clamann, 1981). This multimotor
map in the DSC neurons could induce coordinated movements of the eyes and ears.
Furthermore, according to the study by McIlwain (1990), the reported eye movement
map is in general register with the visual sensory map, indicating that sensory and motor
representations might comply with a uniform topographical scheme. The formation
of an integrated multisensory-multimotor map is presumably the simplest and most
economical way to translate cross-modal sensory signals into motor signals to induce
appropriate motor responses (Stein and Clamann, 1981).
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2.4 Neuronal Response Properties

There has been a large amount of work to study the response properties of DSC neu-
rons. Research has found that DSC neuronal responses exhibit some properties distinct
from those of unimodal neurons. In the following sections, we introduce these reported
response properties of DSC multisensory neurons.

2.4.1 Enhancement and Depression

Compared with unimodal neurons, multisensory neurons in DSC receive convergent
input from different sensory modalities. The responses of DSC multisensory neurons
therefore exhibit some properties different from unimodal neurons when there are cross-
modal stimuli (Stein and Meredith, 1993; Stein et al., 2004).

One important response property of DSC neurons is multisensory enhancement, or cross-
modal enhancement (CME), in which the response of a DSC neuron to multimodal
stimuli is much larger than its response to unimodal stimuli (Figs. 2.4B and 2.4C).
Furthermore, it has been demonstrated that a large enhancement is achieved with weak
stimuli, a property called inverse effectiveness (Fig. 2.4D). CME is robustly observed
and prevails in the majority of multisensory neurons. This enhancement phenomenon
is advantageous in the sense that the probability of detecting a weak stimulus can be
enhanced by the presentation of another stimulus from a different sensory modality.
Behavioural studies in cat have shown that the performance of orientation behaviour to
a weak visual stimulus is indeed improved with the presentation of an auditory stimulus
(Stein et al., 1989).

To characterize the properties of multisensory integration, several metrics have been
proposed. One commonly used metric is the interactive index, or the cross-modal en-
hancement (CME) index as we will call it, generally defined as the difference between
the response of a DSC neuron evoked by cross-modal stimuli and its response evoked by
the most effective unimodal stimulus (Meredith and Stein, 1983). Consider the case of
a DSC bimodal neuron receiving visual and auditory inputs. The CME index is then
defined by

%CME =
Bi−max{V, A}

max{V, A} × 100%, (2.1)

where Bi represents the bimodal response, V is the visual response and A is the au-
ditory response. The CME index characterizes whether a bimodal response exhibits
enhancement (CME> 0) or depression (CME< 0).

Another popular metric is the additivity index, which is calculated by the difference
between multisensory response and the sum of unimodal responses (King and Palmer,
1985). In this definition, however, the sum of unimodal responses V and A double the
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Figure 2.4: Multisensory enhancement associated with inverse effectiveness for spa-
tially coincident stimuli. Each of the concentric circles in the figures represents 10o, N
represents nasal and T represents temporal. (A) Visual and auditory receptive fields
(shaded areas) of the neuron. The icons labeled V and A represent the locations of
visual and auditory stimuli. (B) Ramp wave for visual stimulus and square wave for
auditory stimulus are above rasters and peristimulus time histograms. In the four sets
of stimuli, the intensity of visual stimuli is increased (V1-V4). Responses to bimodal
stimuli (For example, V1A1) are also shown in the third column. (C) Response curves
for the four sets of unimodal visual stimuli, unimodal auditory stimuli, the sum of vi-
sual and auditory stimuli and bimodal stimuli. (D) The CME index calculated under

Eq. (2.1) for the four sets of stimuli. From Jiang et al. (2006).
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influence from spontaneous activities. To overcome this problem, the effect of sponta-
neous activities should be eliminated from the stimulus-evoked activity (Stanford et al.,
2005). A modified version of the additivity index can thus be defined as

%ADD =
|Bi| − |V | − |A|

|V |+ |A| × 100%, (2.2)

where the bars represents the neuronal responses from which the spontaneous activities
have been eliminated. According to the additivity index, a bimodal response can be
characterized as super-additive (ADD> 0), additive (ADD≈ 0), or sub-additive (ADD<

0).

From Eq. (2.1), we can see that the minimum value of the CME index is −100%,
whereas the maximum CME could theoretically go to infinity. To have a symmetric
index describing CME and also eliminate the influences of spontaneous actitivies, a
normalized form of the CME index is proposed (Avillac et al., 2007),

%CMEn =
|Bi| −max{|V |, |A|}
|Bi|+ max{|V |, |A|} × 100%, (2.3)

which is within the range from −100% to 100%. A normalized form of the additivity
index is also proposed (Avillac et al., 2007),

%ADDn =
|Bi| − |V | − |A|
|Bi|+ |V |+ |A| × 100%. (2.4)

An experiment to study multisensory integration in the ventral intraparietal (VIP) area
shows that, calculated from the responses of VIP neurons, normalized forms of the CME
index and the additivity index are closely related in a way that a depression is always
associated with sub-additive interactions (Avillac et al., 2007). However, as we will
discuss in Chapter 6, these two indices are in fact inherently correlated such that they
always exhibit the reported association, even for random choices of Bi, V and A.

One of the requirements for DSC neurons to exhibit enhancement is spatial proximity
(Stein and Meredith, 1993; Meredith and Stein, 1996). As introduced in the previous
sections, DSC neurons are topographically organized, forming a spatial map for each
sensory modality. Moreover, cross-modal spatial maps are in register with each other.
Therefore, spatially coincident cross-modal stimuli trigger the same DSC neuron and
induce enhancement. When the spatial discrepancy between these two stimuli increases,
however, there is no enhancement. Further separation of the cross-modal stimuli induces
multisensory depression (Kadunce et al., 1997), a phenomenon in which the response of
a DSC neuron to multisensory stimuli is weaker than its unimodal responses (Fig. 2.5).
The transition from enhancement to depression for large spatial discrepancy is intuitive
in the sense that the closer two stimuli are, the more likely that they originate from
the same object or event. On the other hand, spatially separated sensory stimuli are
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Figure 2.5: Multisensory depression for spatially disparate stimuli. The conventions
are the same as in Fig. 2.4. From Kadunce et al. (1997).

more likely to originate from different objects, therefore there is no need to integrate
them. The neural mechanism behind multisensory enhancement and depression can be
explained in terms of the excitatory and inhibitory regions of DSC neurons (Stein and
Meredith, 1993). When cross-modal stimuli occur in spatial proximity, they are located
in the RF of the same DSC neuron and coactivate the DSC neuron to produce CME.
However, if one stimulus is in the RF of a DSC neuron while the other falls outside, there
would be no interaction, and thus no enhancement. Furthermore, if one stimulus is in
the inhibitory region of the DSC neuron, it suppresses the neuronal response to another
stimulus within the RF, leading to response depression. Neurophysiologically, multi-
sensory depression, or the inhibitory regions, might be mediated by lateral inhibitions
between DSC neurons.

In addition, temporal proximity between cross-modal stimuli also affects the integration
of these sensory stimuli (Meredith et al., 1987; Stein and Meredith, 1993). The occur-
rence of cross-modal stimuli needs to be close in time to induce interaction. When the
onset time between two stimuli is larger than the “temporal window” of a multisensory
neuron, which denotes the longest interval for cross-modal stimuli to interact, a DSC
neuron would consider them as two separate events. The temporal window is important
because the speeds of signal transmission are not the same for different sensory channels.
For example, the time for a light signal to reach our eyes is much shorter than the time
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Figure 2.6: Multisensory enhancement is converted to multisensory depression by
varying the temporal interval between stimuli. As the convention in Fig. 2.4, the waves
for bimodal stimuli are shown above the rasters and histograms. The text under the
histogram represents the time interval between the onset of two stimuli. For example,
A200V represents that the auditory stimulus was presented 200 ms before the visual
stimulus. The rightmost figure shows the enhancement curve for the stimuli with vary-

ing time interval. From Meredith et al. (1987).

for a sound signal to reach our ears, resulting in a temporal latency. Moreover, the relay
time for cross-modal sensory signals varies because they are transmitted via different
pathways to DSC neurons. For example, an auditory stimulus near the ear takes about
13 ms to reach a DSC neuron, whereas a visual stimulus near the eye takes 65-100 ms
to reach the same neuron (Stein and Meredith, 1993). It is therefore also natural to
observe that the maximum levels of multisensory interactions do not necessarily require
exact matching between the onset of cross-modal stimuli, but occur for an overlapping of
their peak activity periods (Meredith et al., 1987). On the other hand, analogous to the
spatial inhibitory region, experiments have also revealed the presence of postexcitatory
inhibitory periods in some DSC neurons, so that varying the temporal interval between
two stimuli would convert an enhancement to a depression (Fig. 2.6). However, chang-
ing the temporal interval does not convert a depression induced by spatially disparate
stimuli to an enhancement.

Neurophysiological experiments have reported within-modality suppression, or modality-
specific suppression (MSS), in which the response of a neuron to a sensory stimulus
within its RF is suppressed by the presence of another stimulus of the same sensory
modality outside the RF. MSS has been observed more often than multisensory de-
pression. Specifically, when multisensory depression is demonstrated, MSS could also
be observed. However, when a neuron exhibit MSS, it does not necessarily exhibit
multisensory depression (Kadunce et al., 1997). Therefore, the mechanisms underlying
multisensory depression and MSS might be different. As suggested by Kadunce et al.
(1997), it might be possible that MSS is mediated by the inhibitory region at the pre-
vious unisensory level, whereas multisensory depression, which requires the convergence
of cross-modal inputs, depends on the internal circuitry of DSC. In this case, MSS ex-
hibited by DSC neurons is inherited from modality-specific channels, and it thus can
not influence multisensory depression.
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2.4.2 Operations Underlying Multisensory Integration

Traditionally, the most popular metric to characterize the operations underlying multi-
sensory interaction is the CME index (Meredith and Stein, 1983; Stein and Meredith,
1993; Stein et al., 2004). Although a majority of DSC neurons robustly exhibit response
enhancement, the underlying operations for multisensory integration might not be suffi-
ciently characterized by the CME index. In fact, operational rules to combine multiple
inputs in unisensory areas that cannot be properly captured by the CME index have
been reported. For example, a neuron in the inferior colliculus of owl multiplies its tun-
ing function for the interaural time difference and interaural level difference (Pena and
Konishi, 2001). Binaural neurons in the superior olivary complex, however, implement a
linear operation (Yin and Chan, 1990). In consideration of this, experiments have been
designed to investigate the underlying operations in DSC neurons.

To investigate the operations of DSC neurons, the additivity index is introduced. Per-
rault et al. (2005) adopted a mean multisensory contrast measure, which is essentially
an average version of the additivity index in Eq. (2.2) without being divided by |V |+|A|,
and showed that four apparently different operational modes, namely, super-additive,
super-additive/sub-additive, sub-additive and additive/sub-additive operations, are in-
volved in the responses of DSC neurons (Fig. 2.7). For example, neurons with the
super-additive/sub-additive operation mode refer to those exhibiting a transition in
their operations from super-additivity to sub-additivity when the effectiveness of the
sensory stimulus is increased. However, since the division is based on the additivity
index, the capacity of which to characterize multisensory integration has not been fully
justified, it is not necessarily an appropriate categorization. In fact, an examination
of Fig. 2.7 reveals a general principle in the four operation modes that super-additive
operation occurs only for weak neuronal responses while sub-additive operation occurs
only for strong responses. The proposed categorization fails to capture this relation. It
might therefore be helpful to interpret the data in another way to account coherently
for the different operations. In addition, Perrault et al. (2005) have also shown that
the dynamic range (DR), defined as the difference between the neuron’s response at
threshold and saturation, of the bimodal response of a DSC neuron is larger than its
unimodal visual or auditory response (Fig. 2.8). Intuitively, this result indicates that a
DSC neuron dynamically enlarges its DR to accommodate bimodal inputs. However, it
is also possible that, instead of dynamically adjusting the DR, prior saturation in the
unimodal neurons that project to the DSC neurons contributes to the different DRs. In
this case, the smaller DR of DSC neurons for unimodal stimuli is the result of saturated
inputs they receive from those unimodal neurons. We will discuss this in more detail in
Chapter 6.

A recent study has systematically explored the responses of a population of DSC neurons
to sensory stimuli with different intensities. Stanford et al. (2005) recorded the responses



Chapter 2 Superior Colliculus 21

Figure 2.7: Multisensory neurons are divided into four categories based on their un-
derlying operations. Multisensory contrast, which compares the bimodal response with
the sum of the two unimodal responses and is comparable to the additivity index, is plot-
ted as a function of the effectiveness of a unimodal stimulus over the neuron’s dynamic
range. In addition, the CME index is produced for three selected stimulus combina-
tions in the insets. Top left: a super-additive neuron. Top right: a super-additive/sub-
additive neuron. Its operation changes from super-additivity to sub-additivity as the
auditory effectiveness increases. Bottom right: an additive/sub-additive neuron, the op-
eration of which changes from additivity to sub-additivity. Bottom left: a sub-additive
neuron. The central pie graph shows the percentage of the four categories in the whole

multisensory neurons. Taken from Perrault et al. (2005).

of a DSC neuron to a fixed visual, auditory or visual-auditory stimuli 30 times and then
produced a set containing the sum of the complete 900 combinations of the observed
visual and auditory responses. To form a distribution of predicted neuronal responses,
they then produced 10,000 datum points, each of which was an average of 30 samples
randomly selected from the set. The z-score of the observed bimodal response with
respect to this predicted response distribution was then calculated. For a DSC neuron,
they calculated 36 z-scores corresponding to a complete combination of 3 visual stimuli
(weak, medium and high), 3 auditory stimuli (weak, medium and high) under 4 inter-
stimulus time configurations. In total, 41 neurons were tested, most of which subject to
36 different stimuli combinations, resulting in 1482 z scores. According to convention,
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Figure 2.8: The dynamic ranges of a DSC neuron to visual (¤), auditory (♦) and
visual-auditory (•) stimuli. For visual and auditory stimuli, twelve intensity levels are
presented, in which the first three intensity indexes determine the threshold and the
last three intensity indexes determine the saturation. A bimodal stimulus is composed
of visual and auditory unimodal stimuli at the same intensity level. Note that the
dynamic range for bimodal response is larger than the two unimodal responses. From

Perrault et al. (2005).

a significance level of 0.05 (when z = ±1.96) was adopted to decide whether a response
was sub-additive (z < −1.96), additive (−1.96 < z < 1.96) or super-additive (z > 1.96).
Fig. 2.9 shows the distribution of these z-scores, in which we can see that DSC multi-
sensory neurons exhibit super-additive, additive and sub-additive responses. Moreover,
Stanford et al. (2005) also showed that the probability of exhibiting super-additivity is
the highest for near-threshold stimuli and it decreases when stimulus intensity increases.
This corresponds well to the principle implicit in Perrault’s results (Fig. 2.7). Among
these three operations, additive responses are mostly observed, occupying 69.4% of the
test cases. Since a majority of neurons yield multisensory responses consistent with a lin-
ear summation of the modality-specific responses, Stanford et al. (2005) suggested that
an additive operator is a relatively good estimator for multisensory integration. However,
the percentage of super-additivity and sub-additivity in the test cases is not negligible.
A more natural way to interpret the results is to consider that a DSC neuron responds
in a non-linear and saturating way. In this case, the reason that super-additivity and
sub-additivity are less common than additivity is simply that these two operations occur
on the tails of the response function, that is, the near-threshold region and the satura-
tion region, respectively. The middle portion of the response function can be considered
as approximately linear, or additive. Moreover, it should also be pointed out that the
way Stanford et al. (2005) proposed to characterize additive responses is not statistically
plausible. This will be discussed in more detail in Chapter 6.
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Figure 2.9: Cumulative density functions for all stimulus combinations with (filled
squares) or without (open circles) spontaneous activity. The z score relates the actual
multisensory responses to the distribution of a predicted sum of unimodal responses for
1482 stimulus combinations from 41 neurons. For the detailed procedure of evaluating
this z score, please refer to Stanford et al. (2005). Vertical dotted lines indicate the
transitions of operation modes from sub-additivity to additivity based on z score value
of -1.96, and from additivity to additivity to super-additivity based on z score value of
1.96. The percentages of sub-additivity, additivity and super-additivity in the whole
combinations are 24.6%, 56.4% and 19% respectively without correcting spontaneous
activity. In the results for corrected spontaneous activity, the percentages of sub-
additivity, additivity and super-additivity are 6.8%, 69.4% and 23.8%, respectively.

From Stanford et al. (2005).

2.4.3 Cortical Influences

DSC neurons receive both ascending inputs from subcortical areas and descending inputs
from cortical areas. This raises an interesting question of whether the descending and
ascending projections play the same functional role in the response of DSC neurons. For
this purpose, two cortical areas, the anterior ectosylvian sulcus (AES) and the rostral
aspect of the lateral suprasylvian sulcus (rLS), have been particularly studied, since they
provide the dominant descending projections to DSC (Wallace et al., 1993).

AES is perhaps the most studied multisensory cortical region. It is located in the fringe
between the frontal, parietal and temporal lobes and is composed of three unimodal
subregions, a visual region called AEV (Mucke et al., 1982), an auditory region called
Field AES (or FAES) (Clarey and Irvine, 1986) and a somatosensory area SIV (Clemo
and Stein, 1982). In contrast to SC, AEV and FAES neurons are not topographically
organized, and only SIV neurons are well-organized to represent a map of the body
(Clemo and Stein, 1982). Multisensory neurons are also found in AES, located between
the borders of the unisensory regions (Clemo et al., 1991; Wallace et al., 1992). Similar
to DSC multisensory neurons, these neurons are spatially registered for different sensory
modalities. Furthermore, they also exhibit enhanced responses to bimodal stimuli com-
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pared to unimodal stimuli (Wallace et al., 1992). Despite the existence of multisensory
neurons in AES, projections from AES to SC are found to originate from its unisensory
regions (Wallace et al., 1993). For example, visual afferents to DSC largely come from
AEV. Although studies on rLS are less detailed than AES, it has been reported that the
anatomy of rLS bears a resemblance to AES, containing a mixture of unisensory and
multisensory neurons (Thompson et al., 1963; Toldi and Feher, 1984).

Electrophysiological experiments have studied the effect of AES/rLS deactivation on
the responses of DSC multisensory neurons. Jiang et al. (2001) accomplished AES
or/and rLS deactivation by inserted cooling coils placed between the sulcal walls and
showed that DSC neuronal responses to bimodal stimuli become indistinguishable from
unimodal responses after cortical deactivation (Jiang et al., 2001). Since multisensory
enhancement is considered to characterize multisensory integration, DSC multisensory
neurons that do not exhibit CME are considered as lacking the integrative capacity.
Moreover, it has been shown that some DSC neurons lost their integrative capacity only
after AES deactivation but not rLS deactivation, some only after rLS deactivation, and
some are subject to both AES and rLS. In Fig. 2.10, enhancement disappears after the
deactivation of AES, but is retained if rLS is instead deactivated; after reactivating AES
by rewarming the area through the coils, multisensory response enhancement is recov-
ered. Analogous disrupting effects in multisensory integration after cortical deactivation
have also been demonstrated in behavioural studies. In the normal case, the orientation
performance to a weak visual stimulus is enhanced by the presentation of a neutral au-
ditory stimulus. After removing the influences of AES/rLS, orientation performance to
visual-auditory stimulus reduces to be comparable to that with the visual stimulus alone
(Jiang et al., 2002). It can therefore be concluded that AES and rLS are indispensable
for multisensory integration.

Multisensory depression and MSS observed in DSC neurons are also considered to char-
acterize multisensory integration (Kadunce et al., 1997). However, as shown by the
experiments, multisensory depression and MSS exhibit dependencies on cortical influ-
ences different from CME, indicating that these three response properties are mediated
by diverse circuits under different mechanisms. Jiang and Stein (2003) showed that
deactivation of AES and rLS by cooling coils results in a decrease in multisensory de-
pression for half the neurons. Fig. 2.11 shows that the depression of a DSC neuron
is reduced when AES and rLS are deactivated. In this case, multisensory responses
are disinhibited after cortical deactivation. For modality-specific suppression (MSS), al-
though cortical deactivation reduces sensory responses of DSC neurons, the underlying
computation remains relatively the same (Alvarado et al., 2007). As shown in Fig. 2.12,
a sub-additive neuron remains sub-additive to the two visual stimuli after cortical de-
activation. These are in contrast to multisensory enhancement which depends critically
on cortical influences.

To demonstrate that AES and rLS are particularly involved in the integration of cross-
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Figure 2.10: Influences from AES/rLS on multisensory enhancement. Deactivation
of AES and/or rLS is indicated by shaded area in the schematic of the cortex. The

conventions are the same as in Fig. 2.4. From Jiang et al. (2001).

modal inputs, cortical influences on DSC unimodal neurons have been studied. Alvarado
et al. (2007) showed that AES and rLS deactivation has little effect on the responses
of unimodal visual neurons both to a single visual stimulus and to two visual stimuli
within their RFs. This demonstrated that AES and rLS do not affect unimodal neurons
and play a role specifically in the responses of multisensory neurons.

Electrophysiological experiments have studied the morphology and postsynaptic distri-
bution of both the brainstem and cortical somatosensory afferents, showing that trigem-
inal terminals from brainstem are relatively small and make synapses on distal dendrites
of neurons in the intermediate layer of SC, and that corticotectal terminals are large and
make multiple synaptic contacts with proximal dendrites (Harting et al., 1997). Based
on this result, Harting et al. (1997) suggested that trigeminotectal projections endow SC
neurons with the RF properties, and corticotectal inputs are involved in multisensory
integration. Fig. 2.13 shows a proposed architecture that suggests a dialogue for AES
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Figure 2.11: Influences from AES/rLS on multisensory depression. The conventions
are the same as in Fig. 2.4. Taken from Jiang and Stein (2003).

and rLS to facilitate multisensory integration in SC neurons (Harting et al., 1997).

2.4.4 Development of Multisensory Integration

The development of multisensory processes in DSC is another important issue that
gives hints of the mechanisms underlying multisensory integration. Neurophysiological
experiments show that DSC neurons in cat are completely unisensory at birth (Wallace
and Stein, 1997). The only stimuli DSC neurons respond to in the first several days
after birth are tactile, and responses to sounds are found nearly at the end of the first
postnatal week. As the prevalence of these two types of neurons gradually increases,
auditory-somatosensory multisensory neurons appear. The first neurons responsive to
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Figure 2.12: Influences from AES/rLS on modality-specific suppression. The conven-
tions are the same as in Fig. 2.4. The calculation of z score is analogous to Fig. 2.9.

From Alvarado et al. (2007).

Figure 2.13: Schematic diagram of a proposed architecture of ascending and descend-
ing projections on a DSC neuron (medium gray). The corticotectal projections from
AES include the somatosensory area (SIV), the auditory area (FAES) and the visual
area (AEV). The terminals of these projections (black) are presynaptic to proximal
dendrites of the neuron and are usually associated with pale vesicle-filled profiles (light
gray). Terminals distributed distal to the AES cortical projections arise from trigem-
inal complex (T), the inferior colliculus (IC) and the lateral suprasylvian cortex (LS)

and are suggested to bestow RF properties. From Harting et al. (1997).
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Figure 2.14: Development of multisensory neurons in DSC of cat. (A) The percentage
of multisensory neurons in DSC. (B) The percentage of multisensory neurons exhibiting

integrative capacity in multisensory population. From Wallace and Stein (1997).

visual stimuli appear in the third postnatal week, followed by the appearance of visually
responsive multisensory neurons. Around 2 to 3 months, the percentage of multisensory
neurons in DSC neurons reaches adult level, up to approximately 60%-70% of the whole
population (Fig. 2.14A). Although the development of DSC neurons in monkey has
not been studied as systematically as those in cats, some results indicate that DSC
multisensory neurons in monkeys follow a developmental chronology different from cats.
For example, in newborn monkeys, some DSC neurons are already responsive to visual,
auditory and somatosensory stimuli, although with a lower percentage than adult level
(Wallace and Stein, 2001).

Despite the existence of sensory-responsive neurons in newborn animals, their response
characteristics are quite different from those in adult. Early unisensory neurons tend
to have larger RF and longer response latency, and they do not exhibit the response
selectivity observed in adult. As postnatal development progresses, these properties
gradually develop to adult level (Wallace, 2004). For example, in cat, auditory response
latencies are around 120 ms at 3 postnatal weeks, which then decrease to about 20 ms
by 8-10 postnatal weeks. For visual processing, DSC neurons gradually acquire the
selectivity to direction and speed. The size of DSC neurons’ RFs show a steep decline
and then consolidates to the adult level during development.

Intriguingly, in early developmental stages, the response properties of DSC multisensory
neurons are different from those in adult. Wallace and Stein (1997, 2001) have shown
that the responses of these early DSC multisensory neurons to cross-modal stimuli are
indistinguishable from their unimodal responses, in dramatic contrast to multisensory
enhancement exhibited by multisensory neurons in adult (Stein et al., 2004). Several
weeks after the appearance of these early multisensory neurons, the capacity of multi-
sensory integration is acquired within one or two days (Wallace and Stein, 1997). This
abrupt transition from a non-integrative to an integrative state might occur as a conse-
quence of the rapid opening of a biological gate (Wallace, 2004). Although having a much
smaller temporal window, the response properties of these new integrative multisensory
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neurons become quite similar to adult level. For example, they exhibit multisensory
enhancement associated with inverse effectiveness, and multisensory depression with a
magnitude comparable to the adult (Wallace and Stein, 1997). The percentage of inte-
grative multisensory neurons in the population of multisensory neurons increases during
development (Fig. 2.14B). Furthermore, Wallace and Stein (1997) showed that neurons
with RFs similar in size to the adult level have a higher probability of being integra-
tive. The consolidation of RFs thus appears to be correlated with the acquisition of
integrative capacity.

As introduced previously, cortical areas AES and rLS play an important part in the
integrative capacity of DSC multisensory neurons. Deactivation of these two areas by
cooling coils largely eliminates the enhanced responses to bimodal stimuli compared to
unimodal responses (Jiang et al., 2001). Since these non-enhanced responses accord
with DSC multisensory neurons in newborn animals, it is interesting to see whether
the gating effect in the acquisition of integrative capacity is related with AES and rLS
influences. Wallace and Stein (2000) demonstrated that early multisensory neurons
without the integrative capacity do not show obvious differences in their unimodal or
bimodal responses before and after cortical deactivation. Fig. 2.15A shows that the
responses and operation of a non-integrative multisensory neuron are not quite influenced
by AES deactivation. As shown in Fig. 2.15B, however, for a neuron that just acquires
the integrative capacity at 28 days postnatal, AES deactivation reduces its bimodal
response, making it indistinguishable from unimodal responses. These newly developed
integrative neurons, as in the adult, lose the integrative capacity. After reactivating
the AES by rewarming, the same neuron recovers its capacity to integrate multisensory
stimuli (Fig. 2.15B). On the other hand, Jiang et al. (2006) conducted neonatal ablation
on animals at 3 weeks postnatal through subpial aspiration and studied the response
properties of multisensory neurons when the animals were matured. The results showed
that neonatal ablation of AES and rLS disrupted multisensory enhancement, whereas
multisensory depression was preserved in some DSC neurons. These results strongly
suggest that the lack of integrative capacity in DSC neurons in newborn animals might
be the result of an absence of functional corticotectal afferents (Wallace, 2004).

In addition to the loss of integrative capacity, neonatal ablation of both AES and rLS also
results in the misalignment of RFs for different sensory modalities (Jiang et al., 2006).
This result further indicates that there is a link between the capability of multisensory
integration, cortical influences and the refinement of RFs. For example, it may be
possible that cortical influences are indispensable for the normal function of integration
and the consolidation of RF. Interestingly, Jiang et al. (2006) showed that neonatal
ablation of either AES or rLS does not result in large RF misalignment in the adult.
It seems that, during early development, AES and rLS are able to compensate for the
function of each other. This is also supported by the finding that early ablation of AES
or rLS but not both has little effect on the development of multisensory processes (Stein,
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Figure 2.15: Cortical influences on multisensory non-integrative and integrative neu-
rons. (A) multisensory non-integrative neuron. The unimodal responses and bimodal
response of this neuron is not affected by the deactivation of AES, and CME remains
relatively the same (see the “% Interaction”). (B) multisensory integrative neuron. The
bimodal response becomes indistinguishable from the unimodal response after AES de-
activation, and CME significantly reduces (see the “% Interaction”). The conventions

are the same as in Fig. 2.4. From Wallace and Stein (2000).

2005).

Since AES and rLS are indispensable in the multisensory integration of DSC neurons, it
is important to explore also whether the integrative capacity of DSC neurons is inher-
ited from AES and rLS. Studies on the development of cortical multisensory integration
provide strong evidence to answer this question. Recent experiments on cat suggest that
multisensory neurons in AES follow the same developmental chronology as SC, devel-
oping from the unisensory to the multisensory state, and then acquiring the integrative
capacity (Wallace et al., 2006). However, there is a delay between the chronology of SC
and AES such that multisensory neurons in AES become integrative later than neurons
in SC. Therefore, the integrative capacity in DSC neurons cannot be inherited from
AES multisensory neurons. This also corresponds to the finding that projections from
AES to DSC neurons originate from its unisensory regions (Wallace et al., 1993). The
abrupt acquisition of integrative capacity might therefore be contributed by the unisen-
sory neurons in AES. Moreover, since the maturation of corticotectal influences in DSC
corresponds well with the peak period of cortical plasticity, Wallace and Stein (2000)
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suggested that corticotectal projections for multisensory integration start to function
only after the cortex is able to exert experience-dependent influences on SC. Wallace
et al. (2004) showed that DSC neurons of dark-reared cats have abnormally large RFs
and are not able to synthesize cross-modal information, indicating that visual experience
is in fact important for multisensory integration. Similar influences on RFs have been
observed in Syrian hamster (Carrasco et al., 2005). It might be possible that deprivation
of visual experience affects the maturation of neurons in both SC and AES, which then
exert a direct influence on multisensory integration.

2.5 Summary

Superior colliculus (SC) is a subcortical area in the midbrain that receives convergent
visual, auditory and somatosensory inputs from both cortical and subcortical areas and
mediates the orientation behaviour, such as saccade and head movements. It is the most
studied multisensory area in the brain.

Since SC neurons are arranged in a way that neighbouring neurons have adjacent re-
ceptive fields, a population of SC neurons correspond to a sensory map of the space.
With respect to different sensory modalities, SC neurons represent the corresponding
visual, auditory and somatosensory spatial maps that align with each other to produce a
coherent multisensory spatial map (Stein and Meredith, 1993). One consequence of the
multisensory map in SC is that spatially coincident cross-modal sensory stimuli trigger
the same SC neuron, producing responses different from those evoked by a single sensory
stimulus. For example, when cross-modal stimuli are presented in time synchrony and
space proximity, the response of a SC neuron is enhanced compared with its response to
a unimodal stimulus, a property called cross-modal enhancement (CME) (Meredith and
Stein, 1986). When the cross-modal stimuli are further apart in space, this enhanced
response gradually changes to a suppressed one (“multisensory depression”). Compared
with cross-modal stimuli, within-modality stimuli more often result in suppressed re-
sponses (Kadunce et al., 1997). To unravel the operation underlying DSC neuronal
responses, systematic studies have been carried out with electrophysiological methods,
showing that although most of the operations can be considered as an approximately
linear summation of the unimodal effects, the occurrence of super-additive and sub-
additive operations is not negligible (Stanford et al., 2005). It was also reported that
DSC neurons might employ different operational modes to process cross-modal stimuli
(Perrault et al., 2005). Furthermore, both neurophysiological and behavioural experi-
ments have indicated that cortical influences from AES and rLS are indispensable for
the normal function of multisensory integration such as cross-modal enhancement and
multisensory depression (Jiang et al., 2001, 2002; Jiang and Stein, 2003). The develop-
ment of multisensory processes in DSC has also been studied, revealing that different
animals might follow a different developmental chronology (Wallace and Stein, 1997,
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2001). Nevertheless, the CME response property is generally acquired at a later stage
in the animals and would be disrupted by deactivating the AES and rLS (Jiang et al.,
2006).

Despite the large number of studies, the mechanisms underlying multisensory integration
in SC remain unclear. In this study, we propose an adaptive model that accounts for
many reported operations underlying DSC neuronal responses, as will be discussed in
later chapters.



Chapter 3

Neuronal Adaptation to Natural

Statistics

Animals receive sensory signals from the surrounding and process these signals to form
a perception of the environment. To understand the principles underlying this sensory
processing, it is beneficial to study the statistics of natural signals as well as the response
properties of sensory neurons. A large amount of research has explored the statistical
properties of natural signals, studied the responses of neurons in unisensory systems
to natural statistics and proposed information-theoretic principles to account for the
underlying mechanisms. Although the results are from unisensory systems, it is not
unnatural to assume that analogous properties and principles also exist in multisensory
system. In the following, our discussion is broadly divided into three parts: natural signal
statistics; adaptation of neuronal responses to input statistics; and potential information
principles underlying these processes.

3.1 Natural Signal Statistics

The natural signals that an animal receives are diverse, originating from different sources
in the environment and activating different sensory organs. Because of the complexity
of the environment, natural signal statistics also appear to be very complicated, and it is
a difficult task to understand their properties. Currently, there has been a large amount
of research to investigate the statistics of signals in different sensory channels. Among
various sensory stimuli, visual and auditory signals have received the most attention
since they are experimentally accessible. In the following, we introduce natural image
statistics and natural sound statistics.

33
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3.1.1 Natural Image Statistics

Images are generally expressed as elements, for example, pixels, in a high-dimensional
vector space. Within the space of all possible images, natural images occupy a rather
small and restricted subset. It is possible that there are some general principles dom-
inating this subspace. Research exploring the statistical properties of natural images
has indicated some of these principles, which might help us to interpret the way sensory
neurons process visual information.

Low-order Image Statistics

A traditional way to investigate the properties of natural images is to decompose them
into different components and then focus on the low-order statistics of these components
individually (Srivastava et al., 2003). For example, one popular method is principal com-
ponent analysis (PCA), which considers only the second-order statistics of the signals
from images and produces a set of orthogonal components corresponding to the eigen-
vectors of the covariance matrix (Hancock et al., 1992). If the image data are distributed
according to multivariate Gaussian distribution, the resulting components are statisti-
cally independent.

Second-order statistics are very important properties in natural images, and have been
suggested to be closely correlated with image categories and scene scales (Torralba and
Oliva, 2003). It is also easy to see that the intensities at neighbouring spatial locations
in a natural image are closely related. Generally, studies on natural images assume
that their underlying processes are translation invariant, that is, the correlation of the
intensities of two locations in an image is determined only by their relative position,
but not the absolute positions. Consider an autocorrelation function, C(x), where x

is a two dimensional vector denoting the relative position between two locations of an
image. According to Wiener-Khinchin theorem, the power spectrum P (w) of the image
is then given by P (w) =

∫
R2 C(x)e−iw·xdx, where w represents the 2-dimensional spatial

frequency. Many studies have shown that the power spectrum P (w) decays according to
a power law, that is, 1/|w|p, where |w| is the magnitude of w and p is a constant (Field,
1987; Burton and Moorhead, 1987). Although the value of p changes for different types
of images, it is typically near 2. As shown in Fig. 3.1, the power spectrum of a natural
image averaged over all orientations is quite close to the curve for 1/f2, where f is the
spatial frequency. The generality of the existence of power law spectra indicates that
second-order statistics are very important properties in natural images.

Another property of image statistics is scale invariance, which refers to the invariance
of image statistics when an image is scaled up or down (Burton et al., 1986; Field,
1987). Ruderman (1994) showed that the probability distribution of pixels from an
image ensemble of woods environments at different scales has the same shape, and later
explained it by a physical model (Ruderman, 1997). Studies on the histogram of wavelet
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Figure 3.1: Power spectrum of a natural image (solid line) averaged over all orienta-
tions and the curve for 1/f2 (dashed line). From Simoncelli and Schwartz (1999).

decomposition of images also showed its invariance to image scaling (Zhu and Mumford,
1997). It should be pointed out that scale invariance is a property for a large ensemble
of images, and the statistics of individual images do change for different scales. It
is commonly believed that the power law spectrum is indeed the result of this scale
invariance property. Spatially scaling the coordinate of an image by a factor of α leads
to the scaling of its Fourier domain by a factor of 1/α. Under this scaling, only a power
spectrum that conforms to a power law will retain the shape (Simoncelli and Olshausen,
2001).

Higher-order Image Statistics

Classical methods such as PCA work under the assumption that the natural images are
second-order processes, and they fail for input distributions with significant higher-order
statistics. Later research found that the statistics of natural images do not follow Gaus-
sian distributions and contain higher-order statistics. Daugman (1989) showed that the
response distributions of Gabor filters on natural images are quite non-Gaussian, with a
sharp peak in the middle and long tails at two ends (kurtotic shape). Since a Gaussian-
distributed image after the filters should produce Gaussian responses, the distribution of
the original natural image is non-Gaussian. Mallat (1989) showed that the coefficients
generated by decomposing natural images with multiscale, orthonormal wavelets can
be described by a generalized Laplacian density, which is again non-Gaussian. More-
over, since whitening can decorrelate a Gaussian-distributed image to yield independent
Gaussian responses, the whitened image should lose its structures, such as lines and
edges. However, it turns out that a natural image after the whitening process retains
some patterns (see Fig. 3.2), indicating that there is other information contained in the
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original image, which thus can not be Gaussian-distributed. Furthermore, if the density
of an image was Gaussian, its projections onto even- and odd- symmetric Gabor filters
would be independent. However, Wegmann and Zetzsche (1990) found that the joint re-
sponse distribution exhibits highly kurtotic margins. Buccigrossi and Simoncelli (1999)
also showed that pairs of bandpass filters that eliminate the second-order correlations
do not remove the dependencies in the response amplitudes for an image. These results
indicate the existence of higher-order statistics in natural images.

Figure 3.2: A whitened natural image. From Simoncelli and Olshausen (2001).

The non-Gaussian properties of natural images have motivated the application of some
analyzing methods. For example, Huang (2000) showed that when an image is filtered by
some random zero-mean filters, the response distribution exhibits kurtotic shape, sug-
gesting that a maximization of the fourth-order statistics might facilitate the generation
of independent components. This property inspired the implementation of independent
component analysis (ICA), which, although not explicitly optimizing the independence,
maximizes higher-order moments such as the kurtosis (Hyvärinen and Oja, 2000). Al-
though ICA does not produce independent components in all cases, it achieves a good
performance for natural images (Simoncelli and Olshausen, 2001). Field (1987) showed
that the receptive fields of simple cells in the visual cortex are comparable to Gabor
functions, leading to the application of Gabor filters, which have also been extensively
used to decompose images both in space and frequency.

3.1.2 Natural Sound Statistics

The statistical properties of natural sound have also been explored. Interestingly, some
of the identified properties bear a resemblance to those of natural images. As in the
case of natural images, an investigation of natural sound could also contribute to our
understanding of how the nervous system deals with sound signals since it is natural
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to consider that the brain is configured according to the statistics of input signals to
achieve efficient processing.

Low-order Sound Statistics

Temporal low-order statistics of natural sound have been studied as a first step to ex-
plore the statistical structures. In the study by Attias and Schreiner (1997), different
sound ensembles containing 15 min sound, such as bird songs, pop music and speech,
were passed through a bandpass filter. Both the amplitude probability distribution
and the amplitude power spectrum of the filter responses in different frequency bands
were then examined. Results showed that the histograms of the response amplitude
remain approximately the same for different temporal resolutions from 0.75 ms to 150
ms, exhibiting analogous scale invariance property in natural images. Furthermore, the
amplitude power spectrum Pv(w) in a frequency band v exhibits a modified power law
form, Pv(w) ∝ 1/(w2

0 + w2)α/2 (Fig. 3.3), where α ∈ [1, 2.5] and w0 ∈ [10−4, 1]. This
property is also analogous to the power law form of power spectrum in natural images,
suggesting the presence of long-range temporal correlations in the amplitude. Similar
power law spectra for natural sounds have also been shown by Voss and Clarke (1975).
As indicated by these results, the amplitude statistics, or the low-order statistics, might
be expressed as a function of simple parameters. This suggests that natural sounds
occupy a small subspace within the space of all sounds and are highly redundant. It is
therefore natural for auditory neurons in the nervous system to adapt to natural sound
statistics in some way to process this redundant sound information more efficiently. Fur-
thermore, since frequency bands correspond to different spatial locations on the basilar
membrane (Pickles, 1988), identical distributions and power spectrum for different fre-
quency bands also suggest the presence of translation invariance in auditory processing,
analogous to that in natural images.

Higher-order Sound Statistics

Iordanov and Penev (1999) showed that, after applying PCA to sound ensembles, the
resulting statistics exhibit non-Gaussian structure. For example, the marginal distribu-
tions of the PCA coefficients can be approximated by a general Laplacian distribution
(Iordanov and Penev, 1999). Natural sounds thus also contain higher-order statistics.
As in natural images, correlation-based methods again cannot deal with higher-order
statistics of natural sounds. In fact, second-order statistics only provide information
about the amplitude spectrum since the power spectrum is the square of the amplitude
spectrum. It has been suggested that the power spectrum, or equivalently, the ampli-
tude information is not the most informative part of natural signals (Bell and Sejnowski,
1996). This is illustrated by the example that if the amplitude information is removed,
we can still recognize the signal although it is distorted. Instead, phase information
appears to be more informative because the signal will appear as noise if its phase in-
formation is removed. In order to analyze phase information, algorithms sensitive to
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Figure 3.3: Amplitude power spectrum in different frequency bands for four sound
ensembles, including (A) symphonic music, (B) speech, (C) cat vocalization and (D)

environmental sounds. From Attias and Schreiner (1997).

higher-order statistics are required. To this end, Bell and Sejnowski (1996) proposed an
algorithm based on ICA to yield independent basis functions. This algorithm produced
results reflecting both the phase and frequency information, and it was suggested to
be suitable to analyze the higher-order structure of natural sounds. However, since the
algorithm is linear, it does not guarantee the production of independent components for
the highly complex natural sound signals. To take a step further, Schwartz and Simon-
celli (2000) showed that this dependence could be significantly reduced by a “divisive
normalization” operation, in which the response of a filter is divided by a weighted sum
of other rectified filter responses. Furthermore, their model with weights chosen to max-
imize the independence of filter responses accounts for non-linear response properties of
auditory nerve.

3.2 Neuronal Adaptation to Input Statistics

Adaptation of sensory neurons to accommodate input statistics is crucial for sensory
information processing in the brain. In natural environments, there are diverse signals
that can activate different sensory organs. The magnitudes of some natural signals span
a wide range. For example, the magnitude of ambient light varies over nine orders from
day to night (Rushton, 1965). In contrast, the response range of a sensory neuron is
limited and sometimes is far below the range of natural signals. The firing rates of optic
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nerve fibres, for example, span less than two orders (Barlow, 1981). To cope with the
wide range of natural signals with a limited operational range, sensory neurons must
adapt their sensitivities and responses in order to have a good representation of the
inputs. Currently, a large number of adaptation mechanisms have been discovered in
sensory systems, under which sensory neurons adapt to different statistical properties
or adapt to one statistical property in different manners and on different timescales.
Since adaptation in the visual pathway is the most studied one in sensory systems, the
following mainly focuses on visual adaptation.

3.2.1 Adaptation to the Mean

Light adaptation is one of the most studied forms of mean adaptation in the sensory
systems. It refers to the adaptation of neuronal responses to the mean level of illumina-
tion. This adaptation typically centres the limited response range of a visual neuron, for
example, a retinal ganglion cell, around the mean stimulus level (Shapley and Enroth-
Cugell, 1984). If the response of a sensory neuron is modelled as a saturating transfer
function, the effect of adaptation can to a first approximation be considered as the
changes in semi-saturation constant of the transfer function according to the mean level
of illumination. Graphically, changes in the semi-saturation constant correspond to the
shifting of the input-output curve (Normann and Werblin, 1974). This “curve-shifting”
effect has been reported in cat retinal ganglion cell (Sakmann and Creutzeeldt, 1969).
Fig. 3.4 shows the response curves of a cat’s retinal ganglion cell as a function of test spot
luminance for different background luminances, in which, as the background luminance
increases, the response curve shifts rightwards. In auditory processing, similar shifting
effects have also been demonstrated in neurons in the inferior colliculus (IC) of guinea
pigs for different mean sound levels (Dean et al., 2005).

Adaptation to the mean luminance can be contributed by the photoreceptor cells (Kouta-
los and Yau, 1996) and other mechanisms in the subsequent cells in the retina (Walraven
et al., 1990). A number of important phenomena have been reported to associate with
light adaptation. Battaglia et al. (2003) showed that, in photoreceptor cells, the pres-
ence of background illumination reduces the sensitivity of the neurons and speeds the
time-to-peak in their responses. Matthews et al. (1988) demonstrated that when the in-
ternal Ca2+ concentration ([Ca2+]i) is maintained near its resting level, light-dependent
changes in sensitivity of the responses of amphibian photoreceptor cells are abolished,
indicating the important role of [Ca2+]i in light adaptation. Around the same time,
Nakatani and Yau (1988) also showed that amphibian rod and cone cells function over a
very restricted range of intensities when the movement of Ca2+ is prevented. Despite the
reports of these phenomena, the mechanisms underlying light adaptation have not yet
been understood. In photoreceptor cells, at least eight distinct molecular mechanisms
have been identified to be involved in light adaptation (Pugh et al., 1999). In the past,
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Figure 3.4: “Curve-shifting” effect in cat retinal ganglion cell to the changes of back-
ground luminances. The six curves correspond to the peak response of a cat retinal
ganglion cell as a function of test spot luminance at six different background lumi-
nances. The number to the left of each curve is the background luminance in units of
log cdm−2. Each point on the curve is the average of twenty responses. From Sakmann

and Creutzeeldt (1969).

it was assumed that any one of these mechanisms might regulate all the aspects of light
adaptation. However, as Pugh et al. (1999) suggested, only one of them exhibits all the
properties expected for a light adaptation mechanism, such as predicted effects in the
operating range and the sensitivity, and the dependence on [Ca2+]i. The contributions of
each of these eight mechanisms are not entirely clear, not to mention other mechanisms
that may yet to be identified.

3.2.2 Adaptation to the Variance

In addition to adapting to the mean, sensory neurons also adapt their responses to the
variance, which describes the fluctuation of the signals around the mean. For example,
adaptation to the variance has been observed in the auditory system, such as IC neurons
(Dean et al., 2005). Among the reported cases of variance adaptation, a representative
example is adaptation to the input contrast in visual neurons, under which the neuron
could increase its sensitivity to improve the signal-to-noise ratio at low contrast and
reduce its sensitivity to avoid response saturation at high contrast (Demb, 2002; Baccus
and Meister, 2004).

Traditionally, experimental results showed that cells in visual system adapt to the
changes in stimulus contrast on a timescale of tens to hundreds of milliseconds. This
is generally referred to as “contrast gain control” (Shapley and Enroth-Cugell, 1984;
Victor, 1987). Contrast gain control has been widely reported in retina ganglion cells of
cats (Shapley and Victor, 1978, 1981) and salamanders (Baccus and Meister, 2002), and
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also in cortical neurons of cat (Ohzawa et al., 1985) and monkey (Carandini et al., 1998).
However, physiological studies found no contrast gain control in the lateral geniculate
nucleus (LGN) of cat (Maffei et al., 1973; Movshon and Lennie, 1979; Ohzawa et al.,
1985) or monkey (Derrington and Lennie, 1984). Later studies have identified a slower
form of neuronal adaptation to contrast that occurs with a time course of tens of sec-
onds. To differentiate this from the fast form, it is generally referred to as “contrast
adaptation”. Contrast adaptation has not been found in photoreceptor cells, and Rieke
(2001) suggested that the first site of contrast adaptation is in the bipolar cells. Further-
more, contrast adaptation has been reported in the retinal ganglion cells of salamander
(Smirnakis et al., 1997; Kim and Rieke, 2001), rabbit (Baccus and Meister, 2002) and
macaque (Chander and Chichilnisky, 2001). In addition to the retina, contrast adapta-
tion has also been reported in cortical neurons such as V1 neurons (Ohzawa et al., 1985;
Carandini et al., 1998).

Despite the discovery of two forms of neuronal adaptation to contrast, the measure of
contrast in visual system is not clear. One commonly used measure of contrast is the
root-mean-square contrast, given by the standard deviation of light intensity divided by
the mean (Shapley and Victor, 1981; Bonin et al., 2005),

C =

√
〈(LS − Lmean)2〉

Lmean
, (3.1)

where LS is the luminance of the stimulus, Lmean is the mean of luminance and 〈〉
represents the expected value. Another natural definition of contrast is the Weber con-
trast (Shapley and Enroth-Cugell, 1984), which is generally adopted in experiments with
aperiodic stimuli such as uniform disks or bars on a background, given by

CW =
LS − LB

LB
, (3.2)

where LB is the luminance of the background. Rayleigh contrast has also been implicitly
used by Rayleigh (1889) and is defined as

CR =
Lmax − Lmin

Lmax + Lmin
, (3.3)

where Lmax is the maximum luminance and Lmin is the minimum luminance. Rayleigh
contrast is generally used in experiments using periodic spatial patterns such as sinu-
soidal gratings. In the above three measures, the Weber and the Rayleigh contrasts are
defined specifically for spatial contrast, while the root-mean-square contrast is applica-
ble to both spatial contrast and temporal contrast. In fact, in visual system, adaptation
to both spatial and temporal contrasts has been widely reported.

Adaptation to spatial contrast has been revealed in many neurophysiological studies.
For example, Shapley and Victor (1978) showed that cat retinal ganglion cells exhibit
contrast gain control to standing sinusoidal gratings of adjustable spatial phase and spa-
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tial frequency. Truchard et al. (2000) presented drifting sinusoidal gratings to binocular
simple cells in V1 and fitted an adjustable simple cell model to the recorded neuronal
responses, based on which they suggested that contrast gain control occurs primarily at
a monocular site. In a recent study, Bonin et al. (2006) displayed white noise textures to
anesthetized, paralyzed cats and found that the response gain of LGN neurons strongly
depends on the standard deviation of the stimuli. This result also suggests that sensory
neurons adopt the root-mean-square contrast as the measure for contrast gain control.

Adaptation to the temporal contrast has also been reported. For example, Rieke (2001)
employed a light-emitting-diode as the stimulus and controlled the temporal contrast
by adding a Gaussian fluctuation to the stimulus, and showed that salamander ON and
OFF bipolar cells adapt to this stimulus. Baccus and Meister (2002) demonstrated
both fast and slow form of adaptation to temporal contrast in bipolar, amacrine and the
ganglion cells in salamander retina, using a rapidly flickering uniform filed with intensity
conforming to Gaussian distribution. Smirnakis et al. (1997) showed that the response of
salamander retinal ganglion cells to a step increase in the contrast of a spatially uniform
flicker stimulation increases abruptly and then decays slowly to a lower value (Fig. 3.5).
On the other hand, a step decrease in the stimulation results in an abrupt decrease in
neuronal response which then gradually recovers (Fig. 3.5).

Figure 3.5: Responses of a salamander ganglion cell to temporally alternating con-
trast. Contrast is defined as the standard deviation of the stimulus divided by its mean.
(A) The stimulus is a spatially uniform flickering light, alternating every 100 seconds
between contrast values of 0.09 and 0.35. C represents the alternating contrast and I
represents the intensity of the stimulus. (B) Neuronal responses are measured in the
firing rate computed in 5 second time bin and averaged over 100 trials. Continuous
lines are exponential fits of the data with decay time τ . The first segment and the last

segment are periodic repetitions of the data. From Smirnakis et al. (1997).

Although adaptations to mean and contrast exist in sensory systems, Mante et al. (2005)
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showed that in LGN neurons light adaptation exhibits the same effect for different con-
trasts, and contrast gain control exhibits the same effect for different mean luminances.
Adaptations to the mean luminance and contrast therefore appear to be mediated by
independent mechanisms. Neurophysiological experiments have studied the mechanisms
underlying adaptation to the contrast, which, unlike mean adaptation, do not operate
in the photoreceptors and have been reported in subsequent cells in the retina, thala-
mus and visual cortex (Smirnakis et al., 1997; Rieke, 2001). To study contrast gain
control, Beaudoin et al. (2007) made extracellular and whole-cell recordings of guinea
pig Y-type ganglion cells in vitro and suggested that the adaptation originates in the
presynaptic bipolar cells. Shu et al. (2003) studied layer 5 pyramidal cells in prefrontal
and visual cortical slices in vitro, and showed that background synaptic activity de-
creases the slope of the input-output curve. This suggested that gain control might
be mediated by balanced barrages of excitatory and inhibitory synaptic activity. Fur-
thermore, Sanchez-Vives et al. (2000a) showed that slow contrast adaptation occurs as
a result of an intrinsic property of some cortical neurons, in which the afterhyperpo-
larization that recovers slowly over seconds suppresses the responses to stimuli. Since
spiking can activate sodium influx that modulates potassium conductance to produce
cortical afterhyperpolarization, spiking is sufficient to drive adaptation for a cortical cell
(Sanchez-Vives et al., 2000a). However, slow adaptation in ganglion cells does not pri-
marily result from an intrinsic property of the cell but from reduced glutamate release
from presynaptic bipolar cells (Manookin and Demb, 2006). Currently, the mechanisms
underlying adaptation to the contrast remain unclear.

3.2.3 Adaptation to Other Statistics

Sensory systems also adapt to input statistical properties other than the mean and
the variance. Studies on LGN neurons showed that an increase in the correlation of the
visual stimulus leads to decreases in both the gain and response selectivity (Lesica et al.,
2007), indicating that LGN neurons also adapt to the correlations by gain control. Gain
control based on correlation is thus comparable to that based on contrast in the sense
that an increase in either correlation or contrast leads to decreased gain and selectivity.
Although no evidence for sensory adaptation to correlation between cross-modal stimuli
has been shown, it is not unnatural to assume that an analogous gain control based on
cross-modal correlation could also be observed.

Bonin et al. (2006) showed that LGN neurons in cat only adapt to standard deviation,
but not higher-order statistics, such as kurtosis or skewness. However, Sharpee et al.
(2006) found that V1 neurons in cats adapt to stimulus statistics beyond the mean and
variance with much longer timescales than that of contrast gain control, ranging from 40s
to many minutes. Furthermore, Kvale and Schreiner (2004) demonstrated that neurons
in IC of cat show adaptation not only to auditory stimuli with different variances of
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their modulation depth distribution, but also to other higher moment statistics, such as
kurtosis of the modulation envelope. Therefore, there are at least some sensory neurons
that adapt to higher-order statistics.

3.3 Information Principles underlying Adaptation

3.3.1 Efficient Coding

Natural signals are inherently redundant. This redundancy partly comes from the au-
tocorrelation of natural signals in time and space. The intensity at one location in a
natural image is generally close to its surrounding intensities except in some special con-
ditions such as when it is on an edge, and there is thus redundant information between
neighbouring locations. Since neurons are physical devices with limited processing and
computational capability, it is natural to consider that, in order to process enormously
complicated natural signals more efficiently, they eliminate the redundancy in natural
signals. This interpretation of sensory processing has led to a popular notion of a com-
putational strategy known as “efficient coding” (Attneave, 1954; Barlow, 1961), which
is proposed based on information theory.

Consider a message ensemble M with N messages m, each of which consists of l symbols
s1, s2, ..., sl from an alphabet with Ns symbols. The quantity “redundancy” is defined
based on information theory (Shannon and Weaver, 1949),

R = 1− H(M)
C

=
1
C

[C − Σl
j=1H(sj)] +

1
C

[Σl
j=1H(sj)−H(M)], (3.4)

where C is the capacity of a channel given by C = l log2 Ns and corresponds to the
maximum information that l symbols from an alphabet with Ns symbols could possibly
carry, H(M) is the entropy of the message ensemble M and H(sj) is the entropy of a
symbol sj . R is called the Shannon redundancy. From this definition, we can see that the
entropy H(M) needs to be close to the capacity C in order to achieve low redundancy,
or equivalently, high efficiency. Shannon redundancy R quantifies the performance of
an efficient coding. A code that minimizes R is therefore called a minimum redundancy
code. Moreover, to achieve Σl

j=1H(sj) = H(M), the symbols have to be statistically
independent, in which case the joint probability P (s1, ..., sj , ..., sl) can be factorized to
a product of P (sj) terms. Therefore, if a code merely minimizes the part Σl

j=1H(sj)−
H(M), it is called a factorial code. For a more detailed introduction, refer to Atick
(1992).

It has been suggested that sensory neurons adapt to eliminate the redundancy contained
in the inputs (Barlow, 1961). Since factorial coding can be considered as a first step
towards minimizing Shannon redundancy R, it has been extensively studied in neural
systems, especially for neurons in early sensory processing stages, such as in the retina.
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For example, Srinivasan et al. (1982) theoretically computed the inhibition required
for neighbouring photoreceptors to cancel out the correlations in the natural images.
This theoretical result matches well with the measurement from the interneurons in the
compound eyes of a fly, indicating that there is a decorrelation process involved in these
visual neurons. Moreover, Dan et al. (1996) have shown that the power spectrum of LGN
neuronal responses are approximately white and therefore signals from LGN to visual
cortex are decorrelated. In addition to neurons in the early visual pathway, efficient
coding has also been used to account for direction-selective property of receptive field in
cortical neurons such as V1 neurons (van Hateren and van der Schaaf, 1998). Simoncelli
and Schwartz (1999) suggested a divisive normalization approach to account for the way
cortical neurons deal with non-Gaussian statistics. In this divisive normalization, linear
response of a basis function to image signals is rectified and divided by a weighted sum
of these rectified signals in the neighbouring neurons. Maximizing the independence of
the resulting responses produce results that matched well with the neurophysiological
data about the suppression effect on the neuronal response by non-optimized stimuli. In
the auditory system, the non-linearities in the response characteristics and several basic
tuning properties of auditory nerve fibers can also be accounted for by efficient coding
(Schwartz and Simoncelli, 2000; Lewicki, 2002). Efficient coding therefore appears to be
widely implemented by neurons in early sensory pathway.

In addition to factorial coding, some neurons could also minimize the redundancy in the
inputs by an equal use of their response levels. Under this condition, information carried
by the response, or the response entropy, is maximized. Provided that the response is
noiseless, this minimum redundancy coding can be achieved when the response function
of a neuron corresponds to the cumulative density function (CDF) of the input (Laughlin,
1981). In other words, a neuron should implement gain control in a way that the
sensitivity of the cell, defined as dr/di where r is the response and i is the input, is
simply the probability density function P (i) of the input to attain an optimal coding.
Laughlin (1981) showed that large monopolar cells in insect compound eyes respond in a
way that agrees well with the CDF of the input (Fig. 3.6), suggesting that those neurons
maximize response entropy and achieve an optimal coding.

3.3.2 Other Principles

Although efficient coding successfully accounts for many physiological properties of sen-
sory neurons, such as photoreceptor cells, LGN neurons and V1 neurons, this principle
does not take into account the noisiness of the nervous system. In such a noisy system,
redundancy will be required when the signal-to-noise ratio is low in order to remove the
effect of noise and convey the meaningful information.

Physiological studies on visual system have suggested some information optimization
principles for neuronal adaptation. For example, Wainwright (1999) proposed an opti-
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Figure 3.6: A comparison between the normalized contrast-response measured by
Laughlin (1981) and the cumulative probability of input contrast for a large monopolar

cell in the blowfly compound eye. From Atick (1992).

mal information transmission principle, in which the neurons adapt their responses to
input statistics to maximize information transmission. This information-theoretic model
is supported by its success in accounting for several psychophysical phenomena in visual
neurons such as changes in contrast threshold, the tilt effect and changes in orientation
discrimination thresholds. Brenner et al. (2000) tested the responses of H1 neurons of
the blowfly, which are sensitive to the horizontal motion across the visual field, to an
ensemble of horizontal velocity stimulus drawn from a distribution of zero mean and dif-
ferent standard deviations, and studied the principle of information transmission in these
H1 neurons. As shown in Fig. 3.7A, the gain of neuronal responses decreases when the
standard deviation is increased from σ1 = 2.3◦/s to σ2 = 4.6◦/s. Interestingly, normal-
izing the response rate by its time-average value and stimulus velocity by the standard
deviation aligns the two response curves (Fig 3.7B). These results not only indicate that
the root-mean-square contrast is the measure for variation about the mean in neurons,
but also suggest that standard deviation might exert a divisive effect in the responses
through gain control. Brenner et al. (2000) also demonstrated that the input/output
relation rescales to the changes of input statistics in such a way that the information
transmission is maximized. As shown in Fig. 3.8, maximal information transmission is
achieved when the stretch factor λ = 1, which corresponds to the measured data from
the H1 neuron. On the other hand, Baddeley et al. (1997) showed that the response dis-
tributions of visual neurons in V1 and inferior temporal area are exponential. Given that
the average firing rate is fixed, the response distribution of a neuron that maximizes the
entropy is exponential. The responses of V1 neurons and those in the inferior temporal
area might therefore reflect optimal information processing under some constraints.

In addition to optimal information principles, there are physiological studies suggesting
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Figure 3.7: Responses of H1 neurons in the visual system of a blowfly to two stimulus
ensembles, σ1 = 2.3◦/s (closed circles) and σ2 = 4.6◦/s (open circles). (A) Response as
a function of stimulus velocity. (B) Normalized response as a function of a normalized
stimulus velocity. The response firing rate is normalized by the time-averaged firing
rate, and the stimulus velocity is normalized by the standard deviation. From Brenner

et al. (2000).

Figure 3.8: Information transmission as a function of the stretch factor λ for a H1
neuron in the blowfly. The three panels on top illustrate the effect of stretch factor λ
on the input/output relation. When λ = 1, the response function corresponds to the
measured data in the experiments. The bottom panel shows the calculated information

transmission curve as a function of the stretch factor. From Brenner et al. (2000).
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that in some areas in the brain, neurons actually function under a different principle. For
example, Maravall et al. (2007) showed that neurons in the rat primary somatosensory
“barrel” cortex adapt to repetitive whisker stimulation to maintain a constant infor-
mation transmission. They suggested that the reason for information maintenance in
barrel cortex might be that, in contrast to the many orders of magnitude in visual stim-
uli, whisker stimuli themselves have a constrained dynamic range, and somatosensory
neurons thus do not need to adjust their responses in the same way as some visual neu-
rons. Ringach and Malone (2007) studied V1 neurons and proposed that cortical cells
translate and rescale the generator potential to adjust their operating point dynamically,
which is defined by the mean and standard deviation of the generator signal, so that the
neurons only respond when the generator potential is much larger than its mean value.
This again appears to be distinct from the optimal information principle.

As introduced before, there are different information principles underlying neuronal pro-
cessing along the sensory pathways. As information is transmitted from early sensory
processing stage to a later stage, the functional requirements might vary, for example,
from elementary pixel-to-pixel processing in the retina, to high-level feature-based pro-
cessing in visual cortex. Furthermore, along different sensory channels, the range and
content of the stimuli are also diverse. It is therefore natural to observe different prin-
ciples underlying the processing of these stimuli. The proposed information principles,
such as efficient coding and maximum information transmission, merely correspond to
sensory processing at different stages in the brain, and none of them can act as a general
principle. In Chapter 7, we will suggest another interpretation of the computational
strategies of sensory neurons.

3.4 Summary

Many results show evidence that adaptation to input statistics is prevalent in unimodal
neurons in the sensory systems. To explore this adaptation, it is beneficial to study the
statistical properties of natural stimuli. Natural image statistics has been under intensive
study, showing the existence of some general properties. For example, it has been found
that the power spectra of natural images comply with a power law form (Field, 1987;
Burton and Moorhead, 1987) and natural images exhibit the scale invariance property
(Burton et al., 1986). Furthermore, studies on natural images showed that higher-
order statistics exist (Field, 1987; Mallat, 1989). Analogous to natural images, natural
sound statistics also exhibit a power law form of its amplitude power spectra (Voss and
Clarke, 1975; Attias and Schreiner, 1997), and contain higher-order statistics (Bell and
Sejnowski, 1996; Iordanov and Penev, 1999).

Receiving natural stimuli, sensory neurons adapt their responses according to the input
statistics. In light adaptation, for example, visual neurons adapt to the mean level of
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luminance, centring their response ranges around this mean level (Normann and Werblin,
1974; Shapley and Enroth-Cugell, 1984). Moreover, sensory neurons also adapt to the
variance of the stimuli. For example, visual neurons exhibit both “contrast gain control”
(Shapley and Enroth-Cugell, 1984) and “contrast adaptation” (Smirnakis et al., 1997;
Kim and Rieke, 2001). In addition to neuronal adaptation to the mean and the variance,
it has been found that sensory neurons also adapt to the correlation of the stimulus
(Lesica et al., 2007) and to higher-order statistics (Kvale and Schreiner, 2004; Sharpee
et al., 2006).

Many studies have proposed possible principles underlying these adaptations based on
information theory. Efficient coding, for example, suggests that the redundancy in
natural signals is removed in sensory neurons (Attneave, 1954; Barlow, 1961), which is
supported by finding that interneurons in the compound eye of a fly appear to decorrelate
the input stimuli (Srinivasan et al., 1982). Moreover, large monopolar cells in insect
compound eyes respond in a way to maximize response entropy (Laughlin, 1981) and
achieve an optimal coding. Other information principles have also been proposed, such as
maximizing information transmission (Brenner et al., 2000) and maintaining a constant
information transmission (Maravall et al., 2007).



Chapter 4

Neural Models for Multisensory

Integration

Multisensory integration in the brain, or particularly in the superior colliculus (SC) or
the optic tectum (OT), has been widely studied by neurophysiological and behavioural
experiments that, as a consequence, produce many significant results. Based on these
experimental results, mathematical and computational models have been proposed to
reproduce the reported properties of multisensory neurons and to account for the un-
derlying mechanisms. In this chapter, we will first discuss neural models of the response
properties of neurons in the deep layers of superior colliculus (DSC), and then introduce
models that focus on other aspects of multisensory integration.

4.1 Models on Neuronal Responses

4.1.1 Patton and Anastasio’s Model (2003)

As discussed in Chapter 2, neurophysiological experiments have revealed that DSC neu-
rons exhibit both cross-modal enhancement (CME) (Meredith and Stein, 1983) and
modality-specific suppression (MSS) (Kadunce et al., 1997). Neuronal mechanisms un-
derlying these two contradictory response properties remain unknown. Patton and Anas-
tasio (2003) proposed that DSC neurons, which are postulated to receive stochastic
inputs from multiple sensory channels, compute the posterior probability of a target
using Bayes’ rule. They implemented Bayes’ rule in an augmented perceptron model
and showed that, by proper adjustment of the parameters, the perceptron model is able
to perform a Bayesian computation. Furthermore, simulation results showed that the
model is able to exhibit both CME and MSS, indicating that the Bayes’ rule model
might account for the mechanisms underlying DSC neurons responses.

50
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Denote a target by a binary random variable T . T = 0 represents that the target is
absent and T = 1 represents that the target is present. The prior probability of T being
absent or present is thus P (T = 0) or P (T = 1), respectively. Inputs from a sensory
modality i are labeled as a random variable Mi(i = 1, 2, ..., k), which has a non-negative
value mi representing the firing rate. As Patton and Anastasio (2003) proposed, a neuron
computes the probability of T = 1 given a certain input vector m = (m1, ..., mk)T where
T for transpose, that is, the posterior probability P (T = 1|m). According to Bayes’
rule,

P (T = 1|m) =
P (m|T = 1)P (T = 1)

P (m)

=
P (m|T = 1)P (T = 1)

P (T = 1)P (m|T = 1) + P (T = 0)P (m|T = 0)
, (4.1)

where P (m|T = 0) is the probability of inputs with the absence of the target (the
“spontaneous” inputs), and P (m|T = 1) is the probability of inputs in the presence of
the target (the “driven” inputs). In addition, in an augmented perceptron model that
has product units or pi nodes, the weighted sum of the input u is computed as

u = b +
k∑

i=1

wimi +
k∑

i=1

k∑

j=i

ρij(mimj), (4.2)

where b is the bias, wi is the synaptic weight for input mi and ρij is the weight for a pi
node. The weighted sum u is then passed through a sigmoidal function,

f(u) =
1

1 + e−u
, (4.3)

to evoke neuronal responses. A neuron that performs the Bayesian computation will
then have f(u) = P (T = 1|m), and u is accordingly written as

u = ln
[
P (m|T = 1)
P (m|T = 0)

]
+ ln

[
P (T = 1)
P (T = 0)

]
, (4.4)

based on which the weights and the bias in Eq. (4.2) can be expressed in terms of the
prior probabilities and the spontaneous and driven input statistics.

According to the classical central limit theorem, the distribution of a combination of
many independent and identically-distributed signals will be gaussian (Fristedt and
Gray, 1997). Since each DSC neuron receives inputs from a large number of differ-
ent neurons, Patton and Anastasio (2003) assumed that the input to a DSC neuron is
approximately gaussian, given by

P (m|T = t) =
1

(2π)k/2|Σt|1/2
exp

[
−1

2
(m− µt)

TΣ−1
t (m− µt)

]
, (4.5)

where µt is a vector of the mean of each input when T = t (t = 0, 1), and Σt is a k
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by k covariance matrix of the input channels. In the case of bivariate Gaussian inputs,
a two-channel augmented perceptron model was studied (Fig. 4.1). Fig. 4.2 shows the
CME produced by the perceptron model as a function of the sensory inputs, in which
maximum enhancement occurs at relatively weak input and the enhancement gradually
decreases when input increases, corresponding well to CME with inverse effectiveness.

Figure 4.1: A two-channel augmented-perceptron model. From Patton and Anastasio
(2003).

Furthermore, to illustrate the ability of the model to produce both CME and MSS,
the two-channel augmented perceptron model was extended to three sensory channels.
Fig. 4.3 shows this augmented perceptron, in which V and X are two visual channels
and A represents the auditory channel. Patton and Anastasio (2003) assumed that the
paired modality-specific stimuli to V and X channels activate separate but overlapping
sets of visual neurons. This leads to receptive fields overlap in V and X channels,
which then covary under driven conditions. Furthermore, as Patton and Anastasio
(2003) suggested, the spontaneous activities of those overlapping visual neurons will
cause V and X channels to covary under spontaneous conditions. Consequently, their
spontaneous covariance σ2

vx0 and driven covariance σ2
vx1 are larger than those between

V and A (σ2
va0 and σ2

va1) or between X and A (σ2
xa0 and σ2

xa1). In the model, therefore,
within-modality covariances are set as σ2

vx0 = 1.6 and σ2
vx1 = 3.6, larger than the cross-

Figure 4.2: CME produced by an intact two-channel augmented-perceptron model
(stars) or one that without the pi nodes (asterisks). Inputs V and A are set to be
equal and varied from 0 to 25. CME is calculated under Eq. (2.1). From Patton and

Anastasio (2003).
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modality covariances set as σ2
va0 = σ2

xa0 = 0.1 and σ2
va1 = σ2

xa1 = 2.8. As shown in
Fig. 4.4, V and A channels exhibit enhancement, whereas V and X channels exhibit
response depression.

Figure 4.3: A three-channel augmented-perceptron model. From Patton and Anas-
tasio (2003).

Patton and Anastasio (2003) have shown that suppression becomes evident when the
spontaneous covariance σ2

vx0 approaches the spontaneous variance σ2
v0 or σ2

x0 (σ2
v0 = σ2

x0

in their simulation), given that the driven variances are greater than the spontaneous
variances. Based on these results, they suggested that suppression in DSC neurons
occurs when these two conditions are satisfied, and the reason why DSC multisensory
neurons exhibit MSS is that within-modality sensory channels are more likely to meet the
two conditions. In addition, Patton and Anastasio (2003) suggested that the function
of the pi nodes in the model might be implemented by N-methyl-D-aspartate (NMDA)
receptors in DSC neurons. Binns and Salt (1996) applied NMDA receptor antagonist
2-amino-5-phosphonopentanoate (AP5) to multisensory DSC neurons in the cat and
found that AP5 resulted in a greater percentage reduction in multisensory responses
than unisensory responses, and thus a reduction in CME. This is comparable to the
performance of the model after removing the pi nodes (Fig. 4.2).

This augmented perceptron model appears to unify the contradictory phenomena of
CME and MSS under Bayes’ rule. However, some studies have shown that multisensory
responses and unisensory responses might involve different mechanisms. Kadunce et al.
(1997) showed that MSS exhibit properties different from multisensory depression, indi-
cating that MSS might be mediated at a different circuit from multisensory responses.
Moreover, removal of cortical influences eliminates multisensory enhancement in DSC
neurons, whereas the neurons still exhibit MSS (Jiang et al., 2001; Alvarado et al., 2007).
It is therefore possible that CME and MSS are not the product of a unified mechanism
as suggested by Patton and Anastasio (2003). In addition, as shown in the model,
the spontaneous covariance σ2

vx0 needs to be large enough for the model to exhibit MSS.
However, whether modality-specific sensory channels strongly covary under spontaneous
conditions to result in large σ2

vx0 is unclear and requires further justification. To test
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Figure 4.4: CME produced by the three-channel augmented-perceptron model. Both
V and X are visual channels and A represents auditory channel. Within-modality
covariances are set as σ2

vx0 = 1.6 (spontaneous case) and σ2
vx1 = 3.6 (driven case) and

the cross-modality covariances are set as σ2
va0 = σ2

xa0 = 0.1 (spontaneous case) and
σ2

va1 = σ2
xa1 = 2.8 (driven case). For cross-modal inputs (V and A), inputs in the X

channel are fixed at their spontaneous rate 2, while V and A inputs are set to be equal
and varied from 0 to 15 (abscissa). For within-modality inputs (V and X), inputs in
the A channel are fixed at their spontaneous rate 2, while V and X are set to be equal

and varied from 0 to 15. From Patton and Anastasio (2003).

whether their model plausibly accounts for DSC responses, we performed both numeri-
cal and analytical studies on the model, particularly focussing on the robustness of the
model to different parameters and the role of σ2

vx0 in inducing MSS. In Chapter 5, we
will present a detailed discussion of our analysis.

4.1.2 Anastasio and Patton’s Model (2003)

Despite the fact that multisensory integration has been observed in DSC, not all DSC
neurons are multisensory. For example, in cat, only about one-half of DSC neurons
are multisensory; in monkey, only about a quarter are multisensory (Wallace and Stein,
1996). The reason why there is a mixture of unisensory and multisensory neurons in DSC
remains unclear. On the other hand, descending projections from cortical areas AES/rLS
to DSC appear to be an indispensable component for CME. Eliminating the effects of
AES/rLS, CME disappears (Alvarado et al., 2007). The role of these cortical projections
in DSC neuronal responses also remains unanswered. To provide possible answers to
these two open questions, Anastasio and Patton (2003) proposed a corticotectal network
model that develops according to a two-stage, unsupervised learning algorithm.

The network model consists of 100 DSC neurons arranged in a square 10×10 grid, each of
which receives both primary ascending inputs Xj (j = 1, 2, 3) from visual (V), auditory
(A) and somatosensory (S) systems and modulatory descending inputs Yk (k = 1, 2, 3)
from unimodal visual, auditory and somatosensory cortical areas (Fig. 4.5). A tar-
get T in the environment provides V, A, S sensory stimuli to DSC neurons. Con-
sequently, the target has eight states, corresponding to a complete combination of
the three types of sensory stimuli being absent or present. The target T being ab-
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Figure 4.5: Schematic diagram for the corticotectal model of a DSC neuron. After
stage-one training, a primary inputs might be modulated by V, A, S inputs from cortical
areas (solid and dash lines). After stage-two training, the primary connections only re-
ceive modulatory inputs conforming to the “modality-matching” and “cross-modality”

constraint (solid lines). From Anastasio and Patton (2003).

sent is represented by the state (V = 0, A = 0, S = 0) with a probability arbitrarily
set as P (T = 0) = 1/2. The remaining seven states correspond to T = 1 and are
divided into two categories for clarity, one for unisensory target with probability ps

[(V=1,A=0,S=0),(V=0,A=1,S=0) and (V=0,A=0,S=1)], and the other for multisen-
sory target with probability pc [(V=1,A=1,S=0),(V=1,A=0,S=1),(V=0,A=1,S=1) and
(V=1,A=1,S=1)], where we have ps +pc = 1/2. The instances of Xj and Yk are denoted
as xj and yk conforming to a binomial distribution b(n, p), where n is for simplicity set
as 20 and p is either the spontaneous probability or the driven probability depending
on whether T is absent or present. In the driven case, p takes px1 for primary inputs
and takes py1 for modulatory inputs; in the spontaneous case, p takes px0 and py0 for
primary and modulatory inputs respectively. A weighted sum of the primary inputs is
passed through a sigmoidal function to activate a DSC neuron with a response zi,

zi =
1

1 + exp[−γ(
∑

j wijxj − θ)]
, (4.6)

where θ is called the threshold and set as θ = 10, γ is the gain adjusting the sensitivities
of the response function and set as γ = 1/5, and wij represents the weight of connections
between a primary input xj and a DSC unit zi. The weight wij is adjusted according to

wij = uij +
∑

k

vijkyk, (4.7)

where uij represents the weight of the connection from the primary input j that is not
modulated by cortical inputs, and vijk represents the weight of the projection from a
modulatory input yk.
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Learning in the network model is composed of two stages, in which the primary weights
and modulatory weights are adjusted respectively. In the first stage, the modulatory
weights vijk are set to 0, so wij = uij , and the primary weights uij are initially set to
random values uniformly distributed between 0 and 0.1 and are then adjusted with a self-
organizing map algorithm (Kohonen, 1982). Stimulations to the model are generated
according to the probability of the eight states of target T, after which the primary
inputs are determined by the binomial distribution b(n, p), where p = px1 when T is
present (T = 1) and p = px0 when T is absent (T = 0). The activation of DSC units
zi is then determined by the primary inputs according to Eq. (4.6). The neuron with
maximum zi is identified as the winner and a neighbourhood h of a 5× 5 square centred
on the winner is determined, in which the winning DSC unit has activity 1, the nearest
eight have activity 0.3 and the other 16 have activity 0.1. For DSC neurons in the subset
h, the primary weights are adjusted according to their activities,

uhj = uhj + αzhxj , (4.8)

where α is the learning rate and decreases from 0.1 to 0.01 during training to produce
stable results. The primary weights to a DSC unit are normalized so that

√∑
j(uhj)2 =

1. The training contains 5000 iterations, after which a pruning process occurs so that if
uij < θu = 0.4, then uij = 0. A re-normalization of the weights is applied afterwards.

In the second stage, the primary weights uij are fixed, and the modulatory weights vijk

are initially set to zero and then trained based on the correlation and anti-correlation be-
tween modulatory inputs, primary inputs and the responses of DSC units. The learning
algorithm for the second stage is inspired by two findings in neurophysiological results.
One is that the sensory modalities of inputs from the AES/rLS to a DSC neuron match
with the modalities the neuron receives from other sources (Wallace et al., 1993), in-
dicating a property of “modality-matching” (Fig. 4.5); the other is the evidence that
descending AES/rLS cortical inputs are from unimodal areas and have significant influ-
ences only on cross-modal responses (Jiang et al., 2001), based on which Anastasio and
Patton (2003) suggested a “cross-modality” constraint in which cortical inputs are mod-
ulatory and only affect primary inputs of a different modality (Fig. 4.5). To determine
whether the inputs or the DSC units are active, thresholds θx and θy are defined for
primary and modulatory inputs respectively according to the intersection point of the
corresponding spontaneous and driven binomial distribution, and θz is determined em-
pirically for DSC units. The second-stage learning algorithm is accomplished by means
of dummy variables dijk:

dijk = dijk + β, if yk > θy & zi > θz & xj ≤ θx, (4.9)

dijk = dijk − β, if yk > θy & zi > θz & xj > θx, (4.10)

dijk = dijk − 2β, if yk > θy & zi ≤ θz, (4.11)

dijk = dijk, if yk ≤ θy. (4.12)
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Eqs. (4.9) and (4.10) ensure the cross-modality constraint by increasing modulation
for inactive primary inputs and decreasing modulation for active primary inputs when
both the modulatory inputs and DSC units are active. According to Eq. (4.11), the
modulation is decreased if a modulatory input is active but a DSC unit is not, ensuring
the modality-matching constraint. The modulatory weight vijk is set to dijk only when
dijk > 0 and with no change otherwise. During the training, the modulatory weights
are constrained to be positive with an upper limit of one.

After stage-one training, a mixture of unimodal and multisensory DSC units emerges.
The percentage of multisensory units is influenced by several factors. As shown in
Fig. 4.6, an increase in θu, which is adopted in the pruning process for primary in-
puts, decreases the percentage of multisensory units. This is presumably because more
weights are pruned and thus fewer neurons respond to stimuli from different modalities.
Moreover, the proportion of modality-specific to cross-modal targets, which is deter-
mined by the probability of unisensory targets ps, also affects the composition. Fig. 4.6
shows that a decrease in ps increases the percentage of multisensory neurons, indicating
that more neurons develop responses to multisensory stimuli in the presentation of more
cross-modal targets during the training.

Figure 4.6: The percentage of multisensory neurons after stage-one training as a
function of primary weight threshold θu and the probability of a unimodal target ps.
For each value of ps, 10 networks are trained. Each of the 10 networks are thresholded at
each value of the primary input threshold θu. The percentage of multisensory neurons

is an average of the 10 networks. From Anastasio and Patton (2003).

Training in the second stage does not influence the percentage of multisensory neurons
but results in significant multisensory enhancement. Figs. 4.7A-D shows that remov-
ing the modulatory connections in the model significantly reduced CME. Unimodal re-
sponses were also slightly reduced, because the removal of modulatory connections also
eliminated the influence of spontaneous activities in modulatory inputs. These proper-
ties comply with the experimental results on the role of AES/rLS descending inputs in
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DSC neuronal responses (Jiang et al., 2001). Furthermore, as shown in Figs. 4.7E-H,
decreasing the spontaneous activity of primary inputs by reducing px0 resulted in larger
amount of CME, indicating that the spontaneous activities of sensory inputs also influ-
ence CME. Although experiments on anesthetized animals revealed large CME, Populin
and Yin (2002) have shown that experiments on behaving cats failed to exhibit CME.
Anastasio and Patton (2003) suggested the reason may be that spontaneous activities in
DSC neurons were reduced by anesthesia which, as a consequence, induces larger CME.

Figure 4.7: Multisensory enhancement (MSE) in the corticotectal model. MSE, or
equally CME, is calculated under Eq. (2.1). The primary inputs that produced the
maximum MSE is chosen. In the first row, the spontaneous activation probability for
primary inputs is set as px0 = 0.1. Responses and the CME for the intact model (A), the
model without visual modulatory input (B), the model without auditory modulatory
input (C) and the model without both visual and auditory modulatory inputs (D) are
shown. In the second row, px0 = 0 and (E)-(H) show the responses corresponding to
(A)-(D). The modulatory weights have been increased by seven times (v large) compared

with those in the first row (v normal). From Anastasio and Patton (2003).

The two-stage algorithm suggests possible answers to two important questions in the
response properties of DSC neurons, that is, the existence of a mixture of unisensory
and multisensory neurons in DSC and the role of unimodal cortical descending inputs
in CME. In contrast to the model in Patton and Anastasio (2003) (Section 4.1.1), the
learning algorithm does not endow DSC neurons with the capability to estimate target
probabilities. To reconcile these two ideas, Anastasio and Patton (2003) suggested
that some mechanisms like the two-stage algorithm might set up a coarse corticotectal
circuitry, which is then tuned under some supervised learning algorithm to compute the
target probabilities. However, the selections of some parameters in the model have not
been justified, such as n in the input binomial distribution b(n, p), the threshold θ and
the gain γ in neuronal response function. Their influences on the performance of the
model require further exploration. Furthermore, since enhancement in DSC neurons can
also be naturally accounted for with a non-linear saturating response function, as will
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be discussed in Chapter 6, the idea that cortical afferents act as modulatory inputs is
not necessarily the only possibility. In fact, after removing the modulatory connections
in the model, CME can still be observed since the model employs a sigmoidal response
function (Fig. 4.7). It is therefore possible that cortical inputs affect DSC neurons in
another way. We will discuss another interpretation of the impact of cortical influences
on CME in Chapter 9.

4.1.3 Schauer and Gross’s Model (2004)

Schauer and Gross (2004) proposed a computational model inspired by the response
properties of DSC neurons to realize a robust integration of visual and auditory infor-
mation. The general idea is to design a network model for visual-auditory integration
and then determine the parameters in the model according to some biologically-inspired
criteria. Stimuli are generated from a database containing recordings of sound and visual
scenes that can be assembled to simulate reasonable cross-modal stimuli, which can be
analyzed offline. With this model, they try to achieve low-level integration where visual
neurons respond to changes in signal intensities and where auditory neurons process
basic interaural time difference (ITD) information of auditory signals.

This computational model consists of both the visual and auditory sensory systems
(Fig. 4.8). The visual system simply contains a model of the superficial layers of SC
that codes the intensity differences for scene motion. The auditory system calculates ITD
of the binaural signals for localization, and includes models of several principal neural
structures, such as a cochlea model using an all-pole gammatone filter to simulate the
mechanical properties of the basilar membrane (Slaney, 1988), a coincidence model for
medial superior olive to cross-correlate the left and right signals (Jeffress, 1948), and a
model of the external inferior colliculus (ICx) to produce a nontonotopic representation
of the azimuthal locations based on ITD. Visual and auditory signals are then integrated
in a model of DSC using a winner-take-all network with global inhibition. Specifically,
a dynamic neural field of Amari type is adopted to integrate visual and auditory inputs
(Amari, 1977),

τ
d

dt
z(r, t) = −z(r, t) + cAxA(r, t) + cV xV (r, t)

−ci

∫
y(z(r, t))dr + cn

∫
w(r − r′)y(z(r′, t))dr′, (4.13)

where z(r, t) is the state of a neuron at a position r and at a time step t, cAxA(r, t) +
cV xV (r, t) is the weighted sum of auditory input xA and visual input xV , ci

∫
y(z(r, t))dr

is a global inhibition from the whole network and cn

∫
w(r−r′)y(z(r′, t))dr′ is the lateral

feedback from neurons at neighbouring position r′. The output of a neuron is then
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determined by a sigmoidal function,

y(z(r, t)) =
1

1 + exp[−σ · z(r, t)]
. (4.14)

Figure 4.8: Schematic diagram of the auditory-visual integration model by Schauer
and Gross (2004). From Schauer and Gross (2004).

This winner-take-all structure has a high-dimensional parameter space, which can be
reduced under some constraints. For example, the time constant τ of the neural field
was selected as 250 ms depending on the time-window in which interaction between
cross-modal stimuli should occur in the experiments. Some other parameters, such as
the weights of inputs, lateral feedbacks and global inhibition remain to be determined.
To this end, Schauer and Gross (2004) proposed several evaluation criteria inspired by
the response properties of DSC neurons, such as the maximum enhancement criterion
that provides an upper limit for CME, the mean enhancement criterion that constraints
the mean of all CME values and the single modality criterion that provides a lower
bound for the sum of unisensory responses. Based on a search under these criteria, the
suitable parameter sets could be obtained. For example, if the mean response enhance-
ment criterion is taken as the final optimization criterion, the other criteria can be used
to determine a subspace of the parameters before applying the mean criterion to get
the final optimal parameter set. The neural model with parameters obtained through
the optimization process exhibits many multimodal properties that correspond to neu-
rophysiological results on DSC neurons (Fig. 4.9), such as response enhancement for
spatially-coincident stimuli, inverse effectiveness, and response depression for spatially-
disparate stimuli (Stein and Meredith, 1993). Schauer and Gross (2004) claimed that
the methods can also be applied to other network types besides the Amari-type.

Although some parts of the model are comparable to the model by Rucci et al. (1997)
(Section 4.2.1), the focus is not on the adaptation of multimodal representations but to
design a neural model to perform a robust multimodal attention-mechanism for artificial
systems. This is also in contrast to many mathematical and computational models
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Figure 4.9: CME for 300 repetitive multimodal experiments with different temporal
and spatial parameters. From Schauer and Gross (2004).

that aim to reveal the mechanisms underlying biological multisensory processes, such as
Patton and Anastasio (2003), Anastasio and Patton (2003) and Cuppini et al. (2007).
However, since the model exhibits comparable features to multimodal processing in DSC,
some parts of the model might still reflect the mechanisms of multisensory integration
in DSC neurons, such as the sigmoidal response function for multisensory enhancement
and the lateral inhibition for multisensory depression.

4.1.4 Cuppini et al.’s Model (2007)

In the process of writing this thesis, we became aware of a neural network model that
was proposed by Cuppini et al. (2007) to reproduce the response properties of DSC
neurons, including CME, multisensory depression and MSS.

The neural network model consists of three layers, of which two represent visual and
auditory unimodal areas and the other represents a multisensory area receiving inputs
from the unimodal areas (Fig. 4.10).

In the unimodal areas, neurons have receptive fields determined by a Gaussian function
and spanning approximately 10-15 deg and 20-25 deg in diameter for visual neurons and
auditory neurons, respectively. These unimodal neurons also receive lateral connections,
which are arranged according to a “Mexican hat” pattern (short-range excitatory and
long-range inhibitory connections), from other neurons in the same area. Moreover, each
neuron receives a one-to-one feedback from a DSC neuron according to the registration
of cross-modal spatial maps in DSC neurons (Kadunce et al., 1997). The input u to a
unimodal neuron indexed as ij is then written as

uij(t) = rij(t) + lij(t) + fij(t), (4.15)

where rij represents the inputs aroused by a sensory stimulus, lij lateral inputs from
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Figure 4.10: The general structure of the network model by Cuppini et al. (2007).
V for visual area, A for auditory area and SC area for multisensory area consisting of

DSC neurons. From Cuppini et al. (2007).

other neurons in the same area and fij the feedback from a DSC neuron. The activity
xij of the neuron is then computed as

τ
d

dt
xij(t) = −xij(t) + ϕ(uij(t)), (4.16)

where τ determines the speed of responses to the stimulus, and ϕ represents a sigmoidal
transfer function given by

ϕ(u(t)) =
1

1 + e−γ(u(t)−θ)
(4.17)

with the threshold θ and the gain γ.

Each neuron in the multisensory area receives one-to-one inputs from each of the uni-
modal areas, according to the spatial registration of visual and auditory RFs in DSC
neurons. Moreover, DSC neurons receive lateral connections from other DSC neurons.
In contrast to neurons in the unimodal layer, a DSC neuron only receives inhibitory con-
nections from distant DSC neurons in order to comply with experimental data suggesting
multisensory depression for distant cross-modal stimuli and the absence of enhancement
for proximal, within-modality stimuli. Accordingly, the overall input u to a DSC neuron
is composed of two parts: inputs from the unimodal areas and lateral inhibitions from
distant DSC neurons. The activity x of a DSC neuron is then computed in the same
form as Eqs. (4.16) and (4.17).

Cuppini et al. (2007) showed that the model exhibits CME associated with IE, which
changes to multisensory depression when the distance between the two stimuli increases.
The property of MSS can also be produced in the model. Moreover, they demonstrated
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that a DSC neuron in the model exhibits different dynamic ranges (the difference between
neuronal activities at saturation and at threshold) for unimodal and bimodal stimuli,
corresponding to the results shown by Perrault et al. (2005). The mechanisms underly-
ing these properties have also been discussed based on the neural network model. For
example, Cuppini et al. (2007) suggested that the non-linearity of neuronal response con-
tributes to both the IE property of CME and the sub-additive/additive/super-additive
responses in DSC neurons. They also indicated that the different dynamic ranges in DSC
neurons for unimodal and bimodal stimuli are due to prior saturation in the unimodal
neurons.

The neural network model explicitly or implicitly conveys several ideas on the operations
underlying the responses of DSC neurons that are similar to our interpretation (see
Chapter 6). For example, in the model, the mechanisms underlying CME, multisensory
depression and MSS are different, where CME is mainly produced by the non-linearity of
the response function, multisensory depression is contributed by lateral inhibitions in the
multisensory layer and MSS is mediated in the unimodal layers. Moreover, the different
dynamic ranges for unimodal and bimodal stimuli are generated by prior saturation in
unimodal neurons, exactly the same as that which we will discuss in Chapter 6. However,
although the structure of the model is sensible, the integration of cross-modal stimuli
in the model is essentially a sum of the inputs from visual and auditory layers, which
has probably oversimplified the operation of DSC neurons. Furthermore, Cuppini et al.
(2007) only provided a brief discussion on the non-linearity of the response function
to produce CME and additivity response properties. We will present in Chapter 6 a
detailed and thorough discussion of the same issue. Cuppini et al. (2007) do not provide
many parameters, such as those for lateral connections in the unimodal and multisensory
layers and the threshold θ and the gain γ in the sigmoidal response function, of the neural
network model, so a further exploration of the properties of the model is not possible.

4.2 Other Models

4.2.1 Rucci et al.’s Model (1997)

In the OT of barn owl, visual and auditory spatial representations closely align with each
other. Experiments have revealed a high degree of plasticity in the external nucleus of
the inferior colliculus (ICx) when this spatial map alignment is disrupted (Brainard
and Knudsen, 1993; Knudsen, 1994). However, the mechanisms by which multisensory
spatial map is constructed and maintained remain unclear. Rucci et al. (1997) proposed
a model of the principal neuronal structures involved in the spatial localization and
orientation behaviour of a barn owl to visual and auditory stimulation.

In the barn owl, visual signals are transmitted through direct retinotectal projections
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to OT. The pathway for auditory azimuth localization involves several neural structures
starting from the magnocellular cochlear nuclei, to nucleus laminaris (NL), the central
nucleus of the inferior colliculus (ICc) and to the external nucleus of the inferior col-
liculus (ICx), and finally to OT (Konishi et al., 1988). Receiving inputs from both the
left and right monaural structure magnocellular nuclei, neurons in NL are sensitive to
specific frequency bands and respond maximally to specific values of ITD in binaural
stimuli (Konishi, 1993). In the model, the outputs of NL neurons are simulated as the
ITD corresponding to a given stimulus position. Driven by outputs from NL, ICc neu-
rons have narrow sensitivities to both the frequency and ITD of the signals and are
tonotopically arranged according to the frequency along one direction and according
to ITD along another perpendicular direction (Wagner et al., 1987). Auditory signals
across different frequency bands from ICc are then combined in ICx to form an auditory
representation of the space (Knudsen et al., 1977), after which the auditory information
is integrated with the visual information in the optic tectum. The architecture of the
system is shown in Fig. 4.11.

Figure 4.11: Schematic diagram of the components of the neural model by Rucci
et al. (1997). From Rucci et al. (1997).

The main focus of the model is on the emergence and plasticity of the multisensory
spatial representation in the OT. It has been suggested that the main site of plasticity
in spatial map realignment is the ICx (Brainard and Knudsen, 1993). Although the
mechanism remains unclear, Rucci et al. (1997) proposed that this plasticity is mediated
by a learning strategy called “value-dependent learning”, in which the synaptic changes
are modulated by the saliency of sensorimotor event through modulatory systems such
as the monoaminergic and cholinergic systems (Hasselmo, 1995; Mirenowicz and Schultz,
1996). Based on this notion, they implemented the modulatory system as a single value
unit v that receives inputs from both the foveation area Fv and the two motor neurons
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Mk (k = 1, 2):

V (t) = F


 ∑

k∈Fv

ρkRk +
∑

k=1,2

χkMk + δV V (t− 1) + nv


 , (4.18)

where V (t) is the activation of the value unit, Rk is the input from the receptors of the
retina, ρk is the weight of the projections from the retina, χk is the weight of afferents
from the motor neurons, nv represents the noise contribution and δV is a time constant.
F (x) is a piecewise linear approximation of a sigmoidal function with an offset 0, slope
1 and saturation at x = 1 (Fig. 4.12).
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Figure 4.12: A piecewise linear approximation of a sigmoidal function with an offset
0, slope 1 and saturation 1.

From Eq. (4.18), the value unit tends to fire when a stimulus is in the foveation area
and the motor neurons are activated, and then modulates the connections between ICc
and ICx through diffuse projections λk. At each time step t, the weight wijk of the
connection between a ICc neuron uij and a ICx neuron ak is modified according to

wijk(t + 1) = wijk(t) + ΦL(Ep). (4.19)

In Eq. (4.19), ΦL(x) is a piecewise linear approximation of the plasticity function pro-
posed by Artola and Singer (1993) and is characterized by two thresholds θLTD and
θLTP (Fig. 4.13),

ΦL(x) =





0, if x < θLTD,

−k1(x− θLTD), if x ∈ [θLTD, θ′),
+k2(x− θLTP ), if x ∈ [θ′, θLTP ),
+k3(x− θLTP ), if x ≥ θLTP ,

(4.20)

where θ′ = (k2θLTP − k1θLTD)/(k1 + k2), and k1, k2 and k3 are positive real numbers
determining the slope of the piecewise lines. Ep is calculated based on two parts, one
is a local factor depending on the activation of pre- and postsynaptic neurons, and the
other is a global factor shared by all the synapses depending on the activation of the
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value system:
Ep = ε1H (Uij , Ak) + ε2λkV, (4.21)

where H can be a product of Uij and Ak (the classical Hebbian term) or a sum of
them, and ε1 and ε2 are constants that determine the relative contributions of the two
factors. According to ΦL(x), the weight wijk can remain unchanged, potentiate or
depress depending on Ep. The thresholds θLTD, θLTP were selected in a way that
potentiation occurs when the correlation between pre- and postsynaptic activities and
the activation of the value system are high [x > θLTP in ΦL(x)], corresponding to the
case of a successful orientation to bring the stimulus into the fovea. In contrast, wijk

undergoes depression for highly correlated units when the orientation fails to bring the
stimulus into the fovea [θLTD < x < θLTP in ΦL(x)].

Figure 4.13: A piecewise linear approximation of the curve proposed by Artola and
Singer (1993) for the modification of synaptic weights. From Rucci et al. (1997).

Based on this learning rule, Rucci et al. (1997) has simulated a neural system both
under normal sensory experience and under altered visual experience. There is a bias in
the initial connections between ICc and ICx so that the afferents received by ICx from
a corresponding ICc area follows a probability that decreases with the distance from
the area. This initial connection pattern forms a coarsely topographical organization.
Trained with normal sensory experience, the development of a system composed of
320 × 50 units in ICc and 100 units in all of the other maps is observed. As shown in
Fig. 4.14A, after the presentation of 15,000 audio-visual stimuli, the auditory and visual
receptive fields are aligned precisely. The foveation error also decreases significantly both
in the mean values and the standard deviation (Fig. 4.14B). If a constant shift is applied
to the visual field by 20◦ at the initial stage, the same system also develops precisely
registered spatial maps and exhibits decreased foveation error after the presentation of
15,000 stimuli. In addition, plasticity of the system towards altered visual experience has
also been shown, in which normal visual stimulation is applied to a system well-adapted
to a 20◦ shift visual field. As shown in Fig. 4.15A, immediately after the removal of
visual shift, the auditory and visual maps in OT are misaligned with a displacement
approximate to the visual shift. After an exposure to 20,000 visual-auditory stimuli, the
two spatial maps return to good alignment (Fig. 4.15A). The foveation error after the
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learning is significantly reduced compared with its value right after the removal of visual
shift (Fig. 4.15B).

Figure 4.14: Performance of the system after the presentation of 15,000 audiovisual
stimuli. (A) Relative alignment of the visual and auditory receptive fields. (B) Mean
values of the foveation error for all the spatial locations of the stimuli. From Rucci

et al. (1997).

Figure 4.15: Performance recovery of the system after the removal of the 20◦ visual
shift. (A) Relative alignment of the visual and auditory receptive fields right after the
removal of the visual shift (open circles) and after an additional presentation of 20,000
stimuli (filled circles). (B) Mean values of the foveation error immediately after the
removal of the visual shift (open circles) and after an additional presentation of 20,000

stimuli (filled circles). From Rucci et al. (1997).

The model nicely reproduces a number of experimental findings on the emergence and
plasticity of multimodal spatial representation in OT both under normal sensory experi-
ence and under altered sensory experience. The results support the notion that auditory
and visual spatial map alignment in OT is mediated through value-dependent learning.
Furthermore, the model has been applied in a robotic system to control its orientating
behaviour (Rucci et al., 1999). Under the model, the robotic system not only exhibits
accurate orientation in normal sensory and motor conditions, but also recovers good
performance with alteration in sensory inputs or motor outputs. However, the main
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focuss of the study is adaptation in multisensory spatial maps in OT, and the response
properties of multisensory neurons have not been explored. An obvious way to extend
the work is therefore to include properties reported in DSC neurons, such as multisen-
sory enhancement associated with inverse effectiveness, to achieve robust orientating
behaviour for weak or noisy sensory stimuli.

4.2.2 Deneve and Pouget’s Model (2004)

One problem concerning multisensory integration is to reconcile the different reference
frames of the sensory modalities. For example, visual information is represented by
neurons with receptive field on retina and is eye-centred, whereas auditory information
is represented by neurons with receptive field around the head and is head-centred.
Consequently, a movement of the eye induces a change in the reference frame of visual
information, while the reference frame of auditory information remains unchanged. To
combine cross-modal information consistently, the brain thus needs to accommodate the
changes of the reference frames for different sensory modalities dynamically. Deneve and
Pouget (2004) suggested that a Bayesian framework provides an optimal solution to this
issue and proposed a basis function neural network with multidimensional attractors that
implements cross-modal links and performs optimal Bayesian multisensory integration.

Consider an object at a position x that provides both visual and auditory stimulation.
Since neural responses in the visual channel rv, a vector representing the firing rate of
a large population of visual neurons, is noisy, a strategy to estimate the position x is
to compute the posterior probability P (x|rv). According to Bayes’ rule, P (x|rv) can be
computed from the response distribution P (rv|x), prior knowledge of the object position
P (x) and prior knowledge of neural response P (rv),

P (x|rv) =
P (rv|x)P (x)

P (rv)
. (4.22)

Since P (rv) is independent of x which is the focus of the study, it is ignored. Furthermore,
the prior probability P (x) is assumed to be a constant for simplicity. Accordingly, this
leads to

P (x|rv) ∝ P (rv|x). (4.23)

Similarly, in the auditory channel, we also have

P (x|ra) ∝ P (ra|x), (4.24)

where ra is the vector representing the firing rate of a population of auditory neurons
to the object at a position x. This proportional relation can also be extended to the
bimodal case, so that P (x|rv, ra) ∝ P (rv, ra|x). Under the assumption that the noise in
the visual channel is independent of that in the auditory channel, we have P (rv, ra|x) =
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P (rv|x)P (ra|x). This leads to

P (x|rv, ra) ∝ P (rv|x)P (ra|x), (4.25)

which, combined with Eqs. (4.23) and (4.24), gives

P (x|rv, ra) ∝ P (x|rv)P (x|ra). (4.26)

Therefore, the bimodal posterior distribution can be obtained from a product of the
two unimodal posterior distributions. The estimation of object position given bimodal
inputs x̂b can be acquired with a maximum likelihood approach,

x̂b = arg max
x

P (x|rv, ra). (4.27)

If P (x|rv) and P (x|ra) are Gaussian distributions, the bimodal estimation x̂b can be
calculated as

x̂b =
1/σ2

v

1/σ2
v + 1/σ2

a

x̂v +
1/σ2

a

1/σ2
v + 1/σ2

a

x̂a, (4.28)

where σ2
v and σ2

a are the variance of P (x|rv) and P (x|ra) respectively, and x̂v and x̂a

are the maximum likelihood estimations in the unimodal case.

The basics function network model was introduced based on a linear computation be-
tween the eye-centred position of an object, xr, and the head-centred position of the
same object, xa, through the eye position, xe, where we have xa = xr +xe. As shown in
Fig. 4.16, the network for this additive computation consists of three one-dimensional
input layers, corresponding to three populations of neurons to encode the information of
xa, xr and xe respectively, and an intermediate two-dimensional layer of basis function
units. In the model, connections between the intermediate layer and the other three
layers are reciprocal. Deneve et al. (2001) have demonstrated that this model is able
to implement two types of tasks. One is “function approximation”, in which given the
noisy population codes for xr and xe, the model need to recover xa; the other is “cue
integration”, in which the noisy neural responses of xa, xr and xe are all provided and
the model needs to combine these information to produce an optimal estimation x̂r, x̂e

and x̂a.

To test the performance of the model, Deneve et al. (2001) performed 100,000 trials, each
of which contains three iterations to reach the stable states of the recurrent network,
and compared the mean and the standard deviation of the results to those obtained
from a maximum likelihood estimator based on Bayes’ theorem. The results showed
that the performance of the basis function network in function approximation and cue
integration is comparable to the maximum likelihood estimator, and the model thus
performs Bayesian multisensory integration. Moreover, the model was applied to esti-
mate the results of Ernst et al.’s experiments, in which a human observer was required
to discriminate the widths of visual bars, haptic bars or visual-haptic bars (Ernst et al.,
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Figure 4.16: Architecture of the iterative basic function network. For function
approximation task, there is no sensory input for the head-centred position xa, while
the task of cue integration provides noisy neural codes for xa. For both the tasks, the
network receiving noisy sensory inputs at t = 0 converges to a stable state at t = ∞.
The position of the peak activity of the stable hills corresponds to the estimation of

the network for x̂r, x̂e, x̂a. From Deneve et al. (2001).

2002). It turned out that the basis function network produces estimations that match
well with both the experimental data and the predictions based on optimal Bayesian
integration (Fig. 4.17).

Figure 4.17: Application of the iterative basis function network to a visual-haptic
integration task. (A) The weight of visual information in the width estimation task for
a visual-haptic bar from experimental measurements by Ernst et al. (2002) (diamonds),
predictions from the Bayesian model (dashed line) and from the iterative basis function
network (squares). (B) Discrimination threshold for the width of visual bars (circles),
haptic bars (dotted line), visual-haptic bars (diamond), predictions from the Bayesian
model (dashed line) and from the iterative basis function network (squares). From

Deneve and Pouget (2004).

This network model is designed to implement a spatial link between modalities and per-
form optimal estimation. Deneve and Pouget (2004) suggested that a suitable threshold
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under which sensory input fails to drive the network is necessary to avoid the amplifi-
cation of noise through reciprocal connections. This threshold, as suggested by Deneve
and Pouget (2004), is sufficient to account for multisensory enhancement and the in-
verse effectiveness observed in DSC neurons. The reason is that bimodal inputs reach
the threshold more easily than unimodal inputs, and enhancement thus occurs. How-
ever, this enhancement disappears when both unimodal and bimodal inputs exceed the
threshold, corresponding to the inverse effectiveness property. Furthermore, Deneve and
Pouget (2004) observed that the units in the intermediate layer have eye-centred recep-
tive fields that exhibit partially shifting when the position of the eyes changes. For
example, when the eyes move, the peak position in the response of an intermediate unit
shifts in the same direction as a head-centred unit, but with only half the amplitude.
These partially shifting receptive fields have also been reported in SC (Jay and Sparks,
1987; Peck et al., 1993). It might therefore be possible that the model to a certain extent
accounts for some properties of DSC neurons.

4.3 Summary

We have reviewed several mathematical and computational models of multisensory in-
tegration in the brain, covering several important properties such as the alignment of
multisensory maps (Rucci et al., 1997) and cross-modal spatial links (Deneve and Pouget,
2004). In particular, we focussed on those models dealing with neuronal responses in
DSC neurons. For example, Patton and Anastasio (2003) proposed a perceptron model
to simulate cross-modal enhancement based on a Bayesian approach; to account for the
mixture of unisensory and multisensory neurons and the functional roles of cortical in-
puts in DSC neurons, Anastasio and Patton (2003) designed a two-stage unsupervised
learning algorithm to construct a corticotectal model; Schauer and Gross (2004) built
a computational model of a Amari-type competitive neural field to realize biologically-
comparable multisensory enhancement through neuronally inspired criteria; Cuppini
et al. (2007) proposed a three-layered neural network model to reproduce properties
such as CME, multisensory depression and MSS. In spite of the ability of these models
to reproduce some properties of DSC neurons, they either are not biologically plausible
or still require further rigorous justification. It is thus possible that the principles un-
derlying these models do not correspond to those underlying multisensory processes in
DSC neurons. In the next chapter, we will discuss the model proposed by Patton and
Anastasio (2003) in more detail since our main focus is the basic response properties of
DSC neurons.



Chapter 5

The Patton and Anastasio Model

of DSC Neuronal Responses

A representative model of the response properties of DSC neurons was proposed by
Patton and Anastasio (2003) based on Bayes’ rule. Although the model exhibits both
CME and MSS, these response properties are sensitive to the parameters. In this chapter,
we explore the parameters critical to the performance of the model using both numerical
and analytical studies. The results show that the model does not plausibly account
for the response properties of DSC neurons. Another interpretation of the mechanism
underlying multisensory integration is thus required. The material presented in this
chapter was briefly discussed in “On Natural Statistics in Multisensory Integration”
(Elliott et al., 2008c).

5.1 Introduction

For completeness, we re-introduce the Patton and Anastasio model, so some of the
materials coincide with that in section 4.1.1. The central assumption of the model is
that a neuron computes the posterior probability of a target being present based on
Bayes’ rule. Patton and Anastasio (2003) also proposed a neuronal implementation of
this rule using a perceptron model. Denote the target as T = t, where t = 0 corresponds
to the absence of the target and t = 1 corresponds to the presence of the target, and
the inputs as m = (m1,m2, . . . . , mk)T , where mi represents an input from a sensory
modality labeled as i and k is the number of sensory channels. According to Bayes’
rule, the posterior probability of a target being present given input m P (T = 1|m) is
computed as

P (T = 1|m) =
P (m|T = 1)P (T = 1)

P (m)
, (5.1)

72
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and we have the law of total probability

P (m) = P (m|T = 1)P (T = 1) + P (m|T = 0)P (T = 0), (5.2)

where P (T = 1) and P (T = 0) are prior probabilities, P (m|T = 1) represents the input
distribution when the target is present (the “driven” condition) and P (m|T = 0) rep-
resents the input distribution when the target is absent (the “spontaneous” condition).
Substituting Eq. (5.2) into Eq. (5.1), we obtain

P (T = 1|m) =
[
1 +

P (T = 0)P (m|T = 0)
P (T = 1)P (m|T = 1)

]−1

. (5.3)

A sigmoidal function is adopted to describe the response of a neuron to a combined
input u,

f(u) =
1

1 + e−u
. (5.4)

Assuming the neuron computes the posterior probability P (T = 1|m), Patton and Anas-
tasio (2003) suggested that f(u) = P (T = 1|m). Comparing Eq. (5.3) and Eq. (5.4),
the expression of u is obtained,

u = ln
[
P (m|T = 1)
P (m|T = 0)

]
+ ln

[
P (T = 1)
P (T = 0)

]
. (5.5)

To implement a Bayes’ computation, therefore, a neuron should be able to compute u

as shown in Eq. (5.5).

When the input mi are modelled as independent Poisson distributions, a perceptron is
able to implement the computation in Eq. (5.5) if u is modeled as a weighted sum of
the inputs,

u = b +
k∑

i=1

wimj , (5.6)

where b is the bias and wi is the weight. This is because when we substitute the Poisson
distributions into Eq. (5.5), the exponential terms in the distributions can be cancelled
by the logarithm in Eq. (5.5), resulting in a linear combination of the inputs mj . Patton
and Anastasio (2003) have provided results showing that this perceptron model exhibits
CME. However, as will be discussed in Chapter 6, a neuronal model with a non-linear,
saturating response function is already capable of exhibiting CME. Since the perceptron
model uses a sigmoidal response function [Eq. (5.4)], it is not surprising that it produces
CME. Furthermore, independent Poisson distributed inputs in neurons are quite unlikely.
Therefore, we do not consider this case.

According to the classical central limit theorem, the distribution of a combination of
many identically-distributed and independent signals will be gaussian (Fristedt and
Gray, 1997). Since inputs to a DSC neuron are derived by combining signals from
a large number of neurons, Patton and Anastasio (2003) suggested that a more general
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case is to consider the input as following a multivariate gaussian distribution, given by

P (m|T = t) =
1

(2π)k/2|Σt|1/2
exp

[
−1

2
(m− µt)

TΣ−1
t (m− µt)

]
, (5.7)

where Σt is the covariance matrix and µt is a vector containing the means for differ-
ent sensory channels (t = 0 for the spontaneous case and t = 1 for the driven case).
Substituting Eq. (5.7) into Eq. (5.5), we have

u =
1
2
[mT (Σ−1

0 −Σ−1
1 )m + 2mT (Σ−1

1 µ1 −Σ−1
0 µ0)

−µT
1 Σ−1

1 µ1 + µT
0 Σ−1

0 µ0] + ln

(
|Σ0|1/2P (T = 1)
|Σ1|1/2P (T = 0)

)
, (5.8)

in which the exponential term in Gaussian distribution, as in the Poisson case, is can-
celled by the logarithm in Eq. (5.5), leaving the quadratic and multiplicative terms of
the inputs. It is clear from Eq. (5.8) that a single perceptron [Eq. (5.6)] is insufficient
to compute u for multivariate gaussian inputs. An augmented perceptron model with pi
nodes is therefore required (see Figs. 5.1A for two-input case and 5.2A for three-input
case), in which

u = b +
k∑

i=1

wimi +
k∑

i=1

k∑

j=i

ρij(mimj), (5.9)

where ρij is the weight for the pi nodes. Comparing this with Eq. (5.8), we can then
determine the weights wi, ρij and the bias b, under which the neuron computes the
posterior probability P (T = 1|m). To demonstrate the performance of the model,
a two-channel augmented perceptron that receives bimodal gaussian inputs from the
visual (V) and auditory (A) channels (Fig. 5.1A) has been considered. The results of the
model with parameters set as Table 5.1 are shown in Fig. 5.1B, in which we can observe
that the maximum CME occurs for weak sensory stimuli and then decreases when the
input increases, corresponding to the inverse effectiveness property of CME (Stein and
Meredith, 1993; Stein et al., 2004). Furthermore, when the pi nodes are removed, CME
still exists although with a smaller magnitude. Binns and Salt (1996) have reported that,
after applying 2-amino-5-phosphonopentanoate (AP5) to block N-methyl-D-aspartate
(NMDA) receptors of DSC neurons, the decrease in bimodal response is larger than that
of unimodal responses, resulting in a decrease in the CME index. Patton and Anastasio
(2003) proposed that this is comparable to the effect of removing pi nodes from the
model (Fig. 5.1B), and the functional role of NMDA receptors in the responses of DSC
neurons may be described by the pi nodes. However, blockade of NMDA receptors will
reduce the overall activities of a neuron anyway, and it is not clear that NMDA receptors
implement the same multiplicative operations as the pi nodes.

To demonstrate that the model is able to produce both CME and MSS, a three-channel
augmented perceptron is also considered (see Fig. 5.2A), in which the V and X channels
represent two visual channels and A represents the auditory channel. In this case, the
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A B

Figure 5.1: Performance of a two-channel augmented-perceptron model. (A) An
augmented-perceptron model for visual (V) and auditory (A) sensory channels. (B)
The CME curves produced by an intact augmented-perceptron model (stars) and by
the same model without the pi nodes (asterisks). CME is calculated as the percentage
enhancement of bimodal response to the most effective unimodal response (see Eq. (2.1)
in Chapter 2). The parameters are set as shown in Table 5.1. Inputs from V and A
sensory channels are set to be equal and change from 0 to 25 in the number of spikes

per 0.25s. From Patton and Anastasio (2003).

µ0 µ1 σ2
0 σ2

1 σ2
V A0 σ2

V A1 P(T=1) P(T=0)
V 2 6 5 6

0.1 2.8 0.1 0.9
A 2 6 5 6

Table 5.1: Parameters for a two-input augmented perceptron as in Patton and Anas-
tasio (2003). V stands for the visual channel and A stands for the auditory channel.
µ0 is the spontaneous mean, µ1 is the driven mean, σ2

0 is the spontaneous variance, σ2
1

is the driven variance and σ2
va0 and σ2

va1 stand for spontaneous and driven covariance
respectively.

covariance matrix Σt (t = 0, 1) is a 3×3 matrix given by

Σt =




σ2
V t σ2

V Xt σ2
V At

σ2
V Xt σ2

Xt σ2
XAt

σ2
V At σ2

XAt σ2
At


 .

Patton and Anastasio (2003) assumed that the inputs from V and X channels to each
DSC neuron derive from separate but overlapping visual neurons. Overlapping visual
neurons result in an overlapping of the RFs of a DSC neuron for V and X channels. Un-
der driven cases, therefore, inputs from V and X channels covary. Moreover, Patton and
Anastasio (2003) argued that, under spontaneous conditions, these overlapping visual
neurons, no matter whether they are silent or spontaneously active, lead to covariation
in V and X. Based on this interpretation, Patton and Anastasio (2003) proposed that
within-modality covariances are larger than cross-modality covariances, for example,
σ2

V X0 > σ2
V A0 and σ2

V X1 > σ2
V A1. Fig. 5.2B shows the results produced with the param-

eters in Table 5.2, in which the spontaneous and driven means and variances of the three
sensory channels are set the same. We can observe that when both V and A are active
and X stays at its spontaneous mean µX0, CME occurs; on the other hand, when both
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V and X channels are active and A is spontaneously active, MSS occurs. The model
thus appears to simulate both CME and MSS observed in DSC neurons. Furthermore,
Patton and Anastasio (2003) showed that, in order to exhibit MSS, the spontaneous
covariance σ2

V X0 needs to approach the value of spontaneous variances σ2
V 0 = σ2

X0, and
the driven variances need to be larger than the spontaneous variances. In Fig. 5.2B,
for example, σ2

V X0 = 1.6 is close to σ2
V 0 = σ2

X0 = 2. They also suggested that when
the variances for different sensory modalities are different, similar relationships could be
observed, although no evidence or results were given. In fact, the mean and variances for
the three sensory channels are set the same in the sample they showed (see Tabel 5.2),
which is a very special choice not likely to exist in the biological system. More important,
the value of within-modality spontaneous covariance (σ2

V X0 = 1.6), which is critical to
produce MSS, has not been clearly justified. Our analysis will focus on this aspect.

A B

Figure 5.2: Performance of a three-channel augmented-perceptron model. (A) An
augmented-perceptron model for two visual channels (V and X) and one auditory (A)
channel. (B) Cross-modality and within-modality CME curves produced by the three-
channel augmented-perceptron model. The parameters are set as Table 5.2. For the
cross-modality CME curve, inputs in the X channel are fixed at its spontaneous rate
µX0 = 2, whereas the firing rates from V and A channels are set to be equal and change
from 0 to 15. The CME curve is plotted as a function of the V and A impulses (stars).
For the within-modality CME curve, inputs in the A channel are instead fixed at its
spontaneous rate µA0 = 2, whereas the firing rates from the V and X visual channels
are set to be equal and change from 0 to 15. The CME curve is plotted as a function

of the V and X impulses (squares). From Patton and Anastasio (2003).

µ0 µ1 σ2
0 σ2

1 σ2
V A0, σ2

XA0 σ2
V A1, σ2

XA1 σ2
V X0 σ2

V X1 P(T=1) P(T=0)
V 2 6 2 6

0.1 2.8 1.6 3.6 0.1 0.9X 2 6 2 6
A 2 6 2 6

Table 5.2: Parameters for three-input augmented perceptron as in Patton and Anas-
tasio (2003). V, X stand for two visual channels and A stands for the auditory channel.
The meaning of the other parameters follows the same convention as in Table 5.1. From

Patton and Anastasio (2003).
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5.2 Numerical Analysis

Patton and Anastasio (2003) have presented results for a two-channel Bayes’ model for
V and A inputs, and a three-channel model for V, X and A inputs. Comparing Table 5.1
and Table 5.2, we can find that, although the parameters for V and A channels between
the two-channel and three-channel cases are generally the same, their spontaneous vari-
ances (σ2

V 0 and σ2
A0) are set to be different without providing a sound explanation. To

investigate whether this difference influences the performance of the model, we set the
spontaneous variances in the two-channel augmented perceptron to the values in the
three-channel case, that is, σ2

V 0 = σ2
A0 = 2, with all the other parameters unchanged.

With these new parameters, we reproduced the responses and the CME indices of the
intact model and of the model removing the pi nodes (Fig. 5.3). For the intact model,
the bimodal responses are still larger than the unimodal responses (Fig. 5.3A), and
the model exhibits CME with inverse effectiveness (Fig. 5.3B). On the other hand, for
the model without the pi nodes, both the bimodal and unimodal responses decrease to
nearly zero (Fig. 5.3A), indicating that the pi nodes dominate these two responses. In
this case, some CME indices even reduce to negative values (Fig. 5.3B). The finding
that removal of pi nodes from the model exhibits reduction but not an elimination of
the CME is therefore merely induced by a specific choice of the parameters.
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Figure 5.3: Response and CME curves for the two-channel augmented-perceptron
with σ2

V 0 = σ2
X0 = 2. Other parameters are set as Table 5.1. Conventions are the

same as in Fig. 5.1(B). (A) The response curves as a function of the input for both-
driven (squares), spontaneous (asterisks), both-driven without pi nodes (diamonds) and
spontaneous without pi nodes (triangles) cases. (B) The CME curves as a function of
the input for the intact model (squares) and the model without the pi nodes (diamonds).
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As Patton and Anastasio (2003) have suggested, the value of spontaneous covariance
σ2

V X0 is critical for the model to exhibit MSS. However, further study reveals that the
spontaneous covariance σ2

V X0 = 1.6 in the model is actually a rather specific choice.
Fig. 5.4A shows the unimodal responses where the X and A channels are at their spon-
taneous means and input from the V channel changes from 0 to 15 (V-alone case). When
σ2

V X0 increases from 1.6 to 1.9, the V-alone response of the model to input v = 0 in-
creases from nearly 0 to around 0.9. Obviously, this increase in neuronal response for zero
input in the V sensory channel contradicts the neurophysiological data. Furthermore,
we also calculate the CME indices when σ2

V X0 is decreased from 1.6 to 1.3 (Fig. 5.4B).
For σ2

V X0 = 1.6, the model exhibits suppression and no evident enhancement can be
observed. When σ2

V X0 is decreased to 1.3, however, we can observe response enhance-
ment up to nearly 20% when the input v is around 3. This again is not consistent with
the neurophysiological findings on MSS (Kadunce et al., 1997). Altogether, the model
exhibits conflicting properties with what would be expected in a neuron when σ2

V X0 is
either larger or smaller than 1.6. Therefore, σ2

V X0 = 1.6 is a specific selection to guar-
antee both no response for zero input in the V-alone case and no obvious enhancement
to be observed in modality-specific interaction.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
−100

−80

−60

−40

−20

0

20

Number of impulses

%
E

nh
an

ce
m

en
t

 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0.2

0.4

0.6

0.8

1

Number of impulses

R
es

po
ns

e

 

 

σ
VX0
2 =1.6

σ
VX0
2 =1.7

σ
VX0
2 =1.8

σ
VX0
2 =1.9

σ
VX0
2 =1.6

σ
VX0
2 =1.5

σ
VX0
2 =1.4

σ
VX0
2 =1.3

A

B

Figure 5.4: Response and CME curves for the three-channel augmented-perceptron
with different values of σ2

V X0. Other parameters are set as Table 5.2. Conventions are
the same as in Fig. 5.1(B). (A) The unimodal response curves to the V-alone case for
σ2

V X0 = 1.6 (diamonds), σ2
V X0 = 1.7 (squares), σ2

V X0 = 1.8 (triangles) and σ2
V X0 = 1.9

(asterisks). (B) The CME curves as a function of the input for σ2
V X0 = 1.6 (diamonds),

σ2
V X0 = 1.5 (squares), σ2

V X0 = 1.4 (triangles) and σ2
V X0 = 1.3 (asterisks).
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5.3 Mathematical Analysis

The Bayesian model has been shown to exhibit both CME and MSS (Patton and Anas-
tasio, 2003). As we will discuss in Chapter 6, neurons with a sigmoidal response function
are already capable of exhibiting CME. Since Patton and Anastasio (2003) also adopted
a sigmoidal response function in the neuronal implementation of the Bayes’ model, it is
natural that CME can be observed. In the following mathematical analysis, therefore,
we will not consider the CME property of the Bayes’ model, but instead concentrate on
how the model produces MSS, particularly on how the value of spontaneous covariance
σ2

V X0, or the spontaneous correlation coefficient ρV X0, contributes to MSS.

5.3.1 Spontaneous Covariance Matrix

As Patton and Anastasio (2003) suggested, the spontaneous covariance σ2
V X0 needs to

approach the spontaneous variances σ2
V 0 = σ2

X0 to induce MSS in the model. Since the
correlation coefficient is defined as

ρV X0 =
σ2

V X0

σV 0σX0
, (5.10)

when σ2
V X0 approaches σ2

V 0 = σ2
X0, the spontaneous correlation coefficient ρV X0 ap-

proaches 1 and V and X channels become less and less distinguishable. In the extreme
case that ρV X0 = 1, V and X could be considered as the same channel under the sponta-
neous condition. In terms of the three-channel model, the spontaneous trivariate input
distribution should therefore naturally reduce to a bivariate one when the spontaneous
correlation coefficient ρV X0 → 1. However, when this happens, we have σ2

V 0 = σ2
X0,

σ2
V A0 = σ2

XA0 and the spontaneous correlation coefficient ρV X0 → 1, in which case the
covariance matrix

Σ0 =




σ2
V 0 σ2

V X0 σ2
V A0

σ2
V X0 σ2

X0 σ2
XA0

σ2
V A0 σ2

XA0 σ2
A0




becomes singular since its determinant |Σ0| → 0. In this case, the inverse of the matrix
Σ−1

0 does not exist. A trivariate Gaussian distribution for the inputs [Eq. (5.7)] is thus
undefined and does not reduce to a bivariate one. As evident in Eq. (5.8), the combined
input u also becomes undefined. This indicates that it is the near singularity of Σ0 that
contributes to the response suppression in the model.

To investigate how this matrix singularity leads to MSS, we first analyze the performance
of the model with bivariate Gaussian inputs when the spontaneous correlation coefficient
ρV X0 approaches 1, and then extend our analysis for inputs following bivariate Poisson
distribution and Cowan exponential distribution (Cowan, 1987). The results suggest
that, with the parameters chosen in the same way as Patton and Anastasio (2003),
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the condition that ρV X0 → 1 always leads to MSS for two sensory inputs of equal
magnitudes. Finally, we confirm this notion by providing a general proof.

5.3.2 Gaussian Distribution

In this section, we mathematically analyze the properties of the Bayesian model for
Gaussian inputs [Eq. (5.7)] when the spontaneous correlation coefficient ρ0 approaches
1. Since we are only considering MSS, a model dealing with only two sensory channels
V and X is sufficient. The CME index is defined as

%CME =
fV X −max{fV , fX}

max{fV , fX} × 100%, (5.11)

where fV X represents bimodal response, fV and fX represents unimodal responses.
Therefore, the ratio fV X/max{fV , fX} < 1 corresponds to the occurrence of suppres-
sion. The general idea is to derive the formulae for fV X , fV and fX , and study how the
spontaneous correlation coefficient ρ0 → 1 results in MSS.

In the following, we will firstly derive a general expression for the response f = P (T =
1|m) for any inputs m, and then substitute m = (m1,m2) into f for bimodal response
fV X , and m = (m1, µ0)T and m = (µ0,m2)T for unimodal responses fV and fX respec-
tively (µ0 = µV 0 = µX0 represents the spontaneous means of V and X channels). Since
the variances are set to be equal (Patton and Anastasio, 2003), we denote σ2

V t = σ2
Xt = σ2

t

and the correlation coefficient ρt = σ2
V Xt/σ2

t (t = 0 represents the spontaneous case and
t = 1 represents the driven case). We then rewrite the 2× 2 covariance matrix as

Σt =

[
σ2

V t σ2
V Xt

σ2
V Xt σ2

Xt

]
= σ2

t

[
1 ρt

ρt 1

]
, (5.12)

from which we can derive the matrix inverse

Σ−1
t =

1
σ2

t (1− ρ2
t )

[
1 −ρt

−ρt 1

]
, (5.13)

and the determinant of Σt

|Σt| = σ4
t (1− ρ2

t ). (5.14)

Substituting Eqs. (5.13) and (5.14) into Eq. (5.7), we have

P (m|T = 0) =
1

2πσ2
0

√
1− ρ2

0

exp
[
−(m1 − µ0)2 − 2ρ0(m1 − µ0)(m2 − µ0) + (m2 − µ0)2

2σ2
0(1− ρ2

0)

]
.

(5.15)
Similarly, we can obtain the expression for the driven input probability P (m|T = 1).
Substituting the expressions for the spontaneous input probability P (m|T = 0) and the
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driven input probability P (m|T = 1) into Eq. (5.3), we derive the formula for f ,

f = P (T = 1|m) =

[
1 +

P (T = 0)
P (T = 1)

σ2
1

σ2
0

√
1− ρ2

1

1− ρ2
0

exp(C)

]−1

, (5.16)

where

C = −
[
(m1 − µ0)2 − 2ρ0(m1 − µ0)(m2 − µ0) + (m2 − µ0)2

2σ2
0(1− ρ2

0)

]

+
[
(m1 − µ1)2 − 2ρ1(m1 − µ1)(m2 − µ1) + (m2 − µ1)2

2σ2
1(1− ρ2

1)

]
. (5.17)

We can then obtain the expressions for the bimodal response fV X and unimodal re-
sponses fV and fX according to Eq. (5.16).

To calculate the neuronal response to bimodal VX inputs, we rewrite the input m =
(m1,m2)T as

m = m+n + m−e, (5.18)

where m+ = 1
2(m1+m2), m− = 1

2(m1−m2), n = (1, 1)T and e = (1,−1)T . In the imple-
mentation of the model, Patton and Anastasio (2003) adopted equal-valued inputs. By
writing m as Eq. (5.18), we can clearly observe whether and how the difference between
m1 and m2, represented by the m−, influences the results. According to Eq. (5.18), we
have m1 = m+ + m− and m2 = m+ −m−. Substituting this into Eq. (5.16), we obtain
the expression of the bimodal response fV X ,

fV X =

[
1 +

P (T = 0)
P (T = 1)

σ2
1

σ2
0

√
1− ρ2

1

1− ρ2
0

exp(CV X)

]−1

, (5.19)

where

CV X = −
[
(m+ − µ0)2

σ2
0(1 + ρ0)

+
m2−

σ2
0(1− ρ0)

]
+

[
(m+ − µ1)2

σ2
1(1 + ρ1)

+
m2−

σ2
1(1− ρ1)

]
. (5.20)

If m− 6= 0, when the spontaneous correlation coefficient ρ0 → 1, both the terms√
(1− ρ2

1)/(1− ρ2
0) and m2−/σ2

0(1− ρ0) go to infinity. However, since m2−/σ2
0(1− ρ0) is

in the exponent CV X , it dominates the change in fV X . When m2−/σ2
0(1− ρ0) →∞ (or

CV X goes to infinity), the exponential term in Eq. (5.19) goes to zero, driving the bi-
modal VX response fV X to one. On the other hand, if m− = 0, the term m2−/σ2

0(1−ρ0)
disappears. In this case,

√
(1− ρ2

1)/(1− ρ2
0) dominates the change of fV X when ρ0 → 1,

driving the bimodal response fV X to zero. That is,

fV X →
{

0, if m− = 0,

1, if m− 6= 0,
(5.21)

when the spontaneous correlation coefficient ρ0 → 1.
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In the one-driven case, there are two possible inputs: mV = (m1, µ0)T (m1 > µ0) or
mX = (µ0,m2)T (m2 > µ0), where µ0 is the spontaneous mean of the input. To analyze
CME, we need to calculate both fV and fX . Substituting mV and mX into Eq. (5.16),
we obtain the expressions for fV and fX ,

fV =

[
1 +

P (T = 0)
P (T = 1)

σ2
1

σ2
0

√
1− ρ2

1

1− ρ2
0

exp(CV )

]−1

, (5.22)

where

CV = − (m1 − µ0)2

2σ2
0(1− ρ2

0)
+

(m1 − µ1)2 + 2ρ1(µ1 − µ0)(m1 − µ1) + (µ1 − µ0)2

2σ2
1(1− ρ2

1)
, (5.23)

and

fX =

[
1 +

P (T = 0)
P (T = 1)

σ2
1

σ2
0

√
1− ρ2

1

1− ρ2
0

exp(CX)

]−1

, (5.24)

where

CX = − (m2 − µ0)2

2σ2
0(1− ρ2

0)
+

(m2 − µ1)2 + 2ρ1(µ1 − µ0)(m2 − µ1) + (µ1 − µ0)2

2σ2
1(1− ρ2

1)
. (5.25)

For fV , the term (m1 − µ0)2/2σ2
0(1− ρ2

0) dominates the value of the unimodal response
fV when the spontaneous correlation coefficient ρ0 → 1, since it is in the exponent CV .
Therefore, when ρ0 → 1, the exponential term exp(CV ) → 0, driving the unimodal
response to one. Similarly, we also have the unimodal response fX → 1 when the
spontaneous correlation coefficient ρ0 approaches 1. Combining this limit of unimodal
responses with Eq. (5.21), we have

fV X

max{fV , fX} →
{

0, if m− = 0,

1, if m− 6= 0,
(5.26)

when ρ0 → 1. According to Eq. (5.26), if m− = 0, the ratio fV X/max{fV , fX} goes
to zero, indicating that the condition ρ0 → 1 leads to suppression. This corresponds to
the way Patton and Anastasio (2003) chose the inputs m = (m1,m2)T where m1 = m2.
When m− 6= 0, however, the limit of the ratio fV X/max{fV , fX} goes to one, in which
case neither enhancement nor suppression occurs.

The same results apply to the three-channel model described in Section 5.1, in which
the input from auditory channel A is always set as its spontaneous mean µA0 and the
CME for V and X channels is considered. Similar to the bivariate case, the unimodal
responses fV and fX have a limit of one when the spontaneous correlation coefficient
approaches one. Moreover, for the VX driven bimodal response fV X , the exponential
term in fV X also contains the term m2−/σ2

0(1− ρ0) as in the bivariate case [Eq. (5.21)],
which drives the response fV X to zero when V and X inputs are different (m1 6= m2).
On the other hand, if m1 = m2, the response fV X goes to one. In this case, the ratio
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fV X/max{fV , fX} approaches 0 when ρ0 → 1, again leading to suppression, whereas
neither enhancement nor suppression could be produced if m1 6= m2. The conclusions
are exactly the same as for the two-input model. As an example, we take the inputs to
induce bimodal response fV X as m = (m+5,m)T instead of m = (m, m)T , and produce
the CME curve based on this non-equal inputs in Fig. 5.5. We can observe that for input
a ≥ 2 the model indeed exhibits neither enhancement nor suppression. This confirms
that the condition ρ0 → 1 only guarantees response suppression for equal-valued input
stimuli. Therefore, the equal-valued inputs in Patton and Anastasio (2003) are merely
special choices to induce suppression under the selected statistical parameters.
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Figure 5.5: The CME curves for non-equal V and X inputs (diamonds) and for equal
V and X inputs (crosses) in the three-channel augmented-perceptron model. In the case
of equal V and X inputs, the parameters are set according to Table 5.2. Conventions
are the same as in Fig. 5.1(B). In the case of non-equal V and X inputs, the parameters
are also set according to Table 5.2, but the inputs v is set as v = a + 5. The abscissa

in this case corresponds to input in the A channel.

A more general analysis of the model should consider different statistical parameters for
the sensory channels V and X, for example, µV 0 6= µX0 and σ2

V 0 6= σ2
X0. It is obvious

that these asymmetric parameters will influence the limit of the ratio fV X/max{fV , fX}
for equal-valued VX inputs when ρ0 → 1, because the term 1 − ρ0 is then unlikely to
be removed from the exponential term for m1 = m2. For example, Fig. 5.6 shows the
CME surfaces for V and X channels when they have equal means and equal variances
(Fig. 5.6A), unequal means and equal variances (Fig. 5.6B), equal means and unequal
variances (Fig. 5.6C) and unequal means and unequal variances (Fig. 5.6D), with the
same spontaneous correlation coefficient ρ0 = 0.8. As expected, we can observe from
Fig. 5.6 that when the means or/and the variances of the V and X channels are unequal,
equal-valued inputs do not guarantee the production of evident suppression in the model
(see the diagonals in the figures). We will not further explore this case since it is now
clear that MSS produced by the model does not naturally emerge from the Bayesian
framework, but critically relies on the choices of statistical parameters. Furthermore,
even provided equal means and variances for different sensory channels, the spontaneous
covariance approaching variances only leads to MSS when the bimodal Gaussian inputs
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are equal.
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Figure 5.6: The CME surfaces on the v-x input plane for the two-channel percep-
tron model with different combinations of means and variances when ρ0 = 0.8. The
statistical parameters are (A) µV 0 = µX0 = 2 and σ2

V 0 = σ2
X0 = 2; (B) µV 0 = 1, µX0=4

and σ2
V 0 = σ2

X0 = 2; (C) µV 0 = µX0 = 2, σ2
V 0 = 1 and σ2

X0 = 4; (D) µV 0 = 1, µX0=4,
σ2

V 0 = 1 and σ2
X0 = 4. The other parameters are set as those of V and X channels in

Table 5.2. The dashed lines represent the diagonal in the v-x input plane.

To test whether the forms of input distribution affect this result, we further study the
case when the inputs follow a Poisson distribution or a Cowan exponential distribution.
We select the Poisson distribution and the Cowan exponential distribution for two rea-
sons. Firstly, they have a relatively simple expression to analyze, and secondly, their
correlation coefficients range from 0 to 1.
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5.3.3 Poisson Distribution

We firstly construct a bivariate Poisson distribution P (v, x), where v and x are instances
of two Poisson processes V and X:

V = ZV + Z,X = ZX + Z, (5.27)

where ZV , ZX and Z are independent Poisson processes with rates λV , λX and λ re-
spectively. Accordingly, the marginal means µV for V and µX for X are

µV = λV + λ,

µX = λX + λ,

(5.28)

the variances σ2
V and σ2

X are

σ2
V = λV + λ,

σ2
X = λX + λ,

(5.29)

and the correlation coefficient ρ is given by

ρ =
λ√

(λV + λ)(λX + λ)
. (5.30)

A bivariate Poisson distribution P (v, x) is then defined as:

P [V = v & X = x] = P [ZV + Z = v & ZX + Z = x]

= exp[−(λV + λX + λ)]
min(v,x)∑

z=0

λv−z
v

(v − z)!
λx−z

x

(x− z)!
λz

z!
. (5.31)

According to the Bayes’ model (Patton and Anastasio, 2003), two input distributions are
required, one for the spontaneous condition and the other for the driven condition. We
denote the spontaneous input distribution as a bivariate Poisson distribution P0(v, x)
with parameters λV 0, λX0, λ0 and ρ0, and represent the driven input distribution as
P1(v, x) with parameters λV 1, λX1, λ1 and ρ1. Moreover, to comply with Patton and
Anastasio (2003)’s selection of statistical parameters, we assume that µV t = µXt and
σ2

V t = σ2
Xt, where t = 0 corresponds to the spontaneous condition and t = 1 corresponds

to the driven condition, and we thus have λV t = λXt. Consequently, Eq. (5.30) can be
reduced to

ρt =
λt

λV t + λt
, (5.32)
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which gives us

λV t =
(

1− ρt

ρt

)
λt. (5.33)

Substituting λV t = λXt and Eq. (5.33) into Eq. (5.31), we can rewrite the bivariate
Poisson distribution as

Pt(v, x) = exp
[
2− ρt

ρt
λt

] min(v,x)∑

z=0

(
1− ρt

ρt

)v+x−2z λv+x−z
t

(v − z)!(x− z)!z!
. (5.34)

According to Eq. (5.3), the neuronal response f = P (T = 1|m) where m = (v, x)T is
then

f =
{

1 +
P (T = 0)
P (T = 1)

exp
[
−

(
2− ρ0

ρ0

)
λ0 +

(
2− ρ1

ρ1

)
λ1

]
C0

C1

}−1

, (5.35)

where

C0 =
min(v,x)∑

z=0

(
1− ρ0

ρ0

)v+x−2z λv+x−z
0

(v − z)!(x− z)!z!
, (5.36)

and

C1 =
min(v,x)∑

z=0

(
1− ρ1

ρ1

)v+x−2z λv+x−z
1

(v − z)!(x− z)!z!
. (5.37)

To analyze the CME index, we need to calculate bimodal response fV X and unimodal
responses fV and fX . In the both-driven case, we only consider the case when V and
X inputs are equal, as in Patton and Anastasio (2003), and denote the inputs as m =
(m,m)T . Substituting m into Eq. (5.35), we obtain

fV X =
{

1 +
P (T = 0)
P (T = 1)

exp
[
−

(
2− ρ0

ρ0

)
λ0 +

(
2− ρ1

ρ1

)
λ1

]
CV X

0

CV X
1

}−1

, (5.38)

where

CV X
0 =

m∑

z=0

(
1− ρ0

ρ0

)2(m−z) λ2m−z
0

(m− z)!(m− z)!z!
, (5.39)

and

CV X
1 =

m∑

z=0

(
1− ρ1

ρ1

)2(m−z) λ2m−z
1

(m− z)!(m− z)!z!
. (5.40)

We can rewrite the expression of CV X
0 as

CV X
0 =

λm
0

m!
+

m−1∑

z=0

(
1− ρ0

ρ0

)2(m−z) λ2m−z
0

(m− z)!(m− z)!z!
, (5.41)

from which it is clear that as the spontaneous correlation coefficient ρ0 → 1, CV X
0 →



Chapter 5 The Patton and Anastasio Model of DSC Neuronal Responses 87

λm
0 /m!. With this limit, we can acquire the limit of bimodal response fV X ,

fV X →
{

1 +
P (T = 0)
P (T = 1)

exp
[
−λ0 +

(
2− ρ1

ρ1

)
λ1

]
λm

0

CV X
1 m!

}−1

. (5.42)

Since the denominator of fV X is larger than one, we know that the limit of fV X is less
than one.

In the one-driven case, we denote the unimodal V response as mV = (m,µ0)T , where
m > µ0 and µ0 = λ0/ρ0 represents the spontaneous mean for X channel. Substituting
mV into Eq. (5.35), we obtain unimodal response fV ,

fV =
{

1 +
P (T = 0)
P (T = 1)

exp
[(

2− ρ1

ρ1

)
λ1 −

(
2− ρ0

ρ0

)
λ0

]
CV

0

CV
1

}−1

, (5.43)

where

CV
0 =

µ0∑

z=0

(
1− ρ0

ρ0

)µ0+m−2z λµ0+m−z
0

(m− z)!(µ0 − z)!z!
, (5.44)

and

CV
1 =

µ0∑

z=0

(
1− ρ1

ρ1

)µ0+m−2z λµ0+m−z
1

(m− z)!(µ0 − z)!z!
. (5.45)

Since m > µ0 and z ≤ µ0, we have µ0 + m − 2z ≥ m − µ0 > 0. It is then obvious
that when the spontaneous correlation coefficient ρ0 → 1, we have CV

0 → 0. According
to this limit, we can observe that fV approaches one [Eq. (5.43)]. Moreover, since the
means and variances for V and X channels are the same, this analysis also applies to
the unimodal response fX , that is, fX also approaches one. Combining these unimodal
limits with that of the bimodal response fV X [Eq. (5.21)], we know that the limit of
the ratio fV X/max{fV , fX} is less than one when ρ0 → 1. Consequently, the condition
that ρ0 → 1 again leads to response suppression under the Bayesian model for bivariate
Poisson distributed inputs with equal values.

5.3.4 Cowan Exponential Distribution

A bivariate Cowan exponential distribution for V and X sensory channels is defined as
(Cowan, 1987)

P (v, x) =
λ(1− η)

2s3

{
4ηvx + λs

[
v2 + x2 + s(v + x) + 2vx(1− η)

]}

exp
[
−1

2
λ(v + x + s)

]
, (5.46)
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where s2 = v2 + x2 − 2vx cos a and η = (1 + cos a)/2. The correlation coefficient ρ

between v and x can be expressed as:

ρ =





1 if a = 0,

−1 +
4

1 + cos a

{
1− 1− cos a

1 + cos a
log

(
2

1− cos a

)}
if 0 < a < π,

0 if a = π.

(5.47)

When a → 0, 1 − cos a goes to zero. According to Eq. (5.47), we can see that the
term (1 − cos a)/(1 + cos a) dominates the logarithm term, so 1−cos a

1+cos a log( 2
1−cos a) goes

to zero and ρ → 1. The marginal means are E(V ) = E(X) = 1/λ. Similarly to
the previous analysis, two Cowan exponential distributions are considered, one for the
spontaneous condition P0(v, x) with parameters a0, λ0, s0 and ρ0, and the other for the
driven condition P1(v, x) with parameters a1, λ1, s1 and ρ1. Substituting P0(v, x) and
P1(v, x) [Eq. (5.46)] into Eq. (5.3), we acquire the expression of neuronal response,

f =
{

1 +
P (T = 0)
P (T = 1)

λ0(1− η0)s3
1

λ1(1− η1)s3
0

C0

C1
exp(C)

}−1

, (5.48)

where
C0 = 4η0vx + λ0s0[v2 + x2 + s0(v + x) + 2vx(1− η0)], (5.49)

C1 = 4η1vx + λ1s1[v2 + x2 + s1(v + x) + 2vx(1− η1)], (5.50)

and
C = −1

2
[λ0(v + x + s0) + λ1(v + x + s1)]. (5.51)

In the both-driven case, the inputs from the V and X channels are taken the same value,
following Patton and Anastasio (2003), and are expressed as m = (m,m)T . Substituting
m into Eq. (5.48) and, after some transformations, we have

fV X =
{

1 + P

√
1− cos a1

1− cos a0

λ0

λ1

CV X
0

CV X
1

exp(CV X)
}−1

, (5.52)

where

CV X
0 = 2(1 + cos a0)m2 + 2

√
2(1− cos a0)λ0m

3 + 4m3(1− cos a0)λ0, (5.53)

CV X
1 = 2(1 + cos a1)m2 + 2

√
2(1− cos a1)λ1m

3 + 4m3(1− cos a1)λ1, (5.54)

and

CV X = −1
2
λ0[2m + m

√
2(1− cos a0)] +

1
2
λ1[2m + m

√
2(1− cos a1)]. (5.55)

Eq. (5.52) contains the term
√

(1− cos a1)/(1− cos a0) that goes to infinity as a0 → 0
(or ρ0 → 1), and therefore the bimodal VX response fV X → 0.
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For fV , substituting the unimodal input m = (m, 1/λ0)T into Eq. (5.48), we acquire

fV =
[
1 + P

(1− cos a0)λ0s
3
1

(1− cos a1)λ1s3
0

CV
0

CV
1

exp{CV }
]−1

, (5.56)

where

CV
0 =

2(1 + cos a0)m
λ0

+ λ0s0

[
1
λ2

0

+ m2 + s0(m +
1
λ0

) +
m(1− cos a0)

λ0

]
, (5.57)

CV
1 =

2(1 + cos a1)m
λ0

+ λ1s1

[
1
λ2

0

+ m2 + s1(m +
1
λ0

) +
m(1− cos a1)

λ0

]
, (5.58)

and
CV = −1

2
λ0(m +

1
λ0

+ s0) +
1
2
λ0(m +

1
λ0

+ s1). (5.59)

When a0 → 0, or equally ρ0 → 1, we have s0 → |(m− 1)/λ0|, in which case CV
0 /CV

1 and
the exponential term in Eq. (5.56) are finite. It is then clear from Eq. (5.56) that the term
1−cos a0 will drive the unimodal response fV to one. Moreover, because of the symmetric
means and variances in V and X, we also have the unimodal response fX → 1 when the
spontaneous correlation coefficient ρ0 → 1. With both the limits for bimodal response
and unimodal responses, we now know that the ratio fV X/max{fV , fX} approaches 0
as ρ0 → 1, again leading to suppression.

5.3.5 Bivariate Distribution

At this stage, we have shown that, when the spontaneous correlation coefficient ρ0

between the two channels is close to 1, the Bayesian model exhibits suppression for
equal-valued bimodal inputs, no matter whether they are Gaussian, Poisson or Cowan
exponential distributed. In the following, we will prove that the same result applies to
any bivariate distribution when the means and the variances of the two sensory channels
are the same.

Consider a bivariate probability distribution P (v, x), where the means of v and x are
labeled as µV and µX , and the variances as σ2

V and σ2
X respectively. We have

E[(V −X)2] = E[V 2 − 2V X + X2]

= E[(V − µV )2] + E[(X − µX)2] + E[2µV V + 2µXX − µ2
V − µ2

X − 2V X]

= σ2
V + σ2

X + µ2
V + µ2

X − 2E[V X]. (5.60)

If the means of V and X are equal, that is, µV = µX = µ, Eq. (5.60) can be transformed
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as

E[(V −X)2] = σ2
V + σ2

X − 2(E[V X]− µ2)

= σ2
V + σ2

X − 2cov(V, X)

= σ2
V + σ2

X − 2σV σXρ. (5.61)

Furthermore, if σV = σX = σ, Eq. (5.61) can be rewritten as

E[(V −X)2] = 2σ2(1− ρ). (5.62)

According to Chebyshev’s inequality, we have

P [|V −X| ≥ ε] ≤ E[(V −X)2]
ε2

. (5.63)

Substituting Eq. (5.62) into Eq. (5.63), we obtain

P [|V −X| ≥ ε] ≤ 2σ2

ε2
(1− ρ), (5.64)

which shows that the probability of V and X being different approaches 0 when ρ ap-
proaches 1. Graphically, the probability P (v, x) is a surface spanning the two-dimensional
V-X plane. Eq. (5.64) indicates that the surface converges to the line v = x as the corre-
lation coefficient ρ → 1. As an example, we produced the figures for bivariate Gaussian,
Poisson and Cowan exponential distributions for ρ0 = 0.1 and ρ0 = 0.95 (Fig. 5.7). We
can see that the surfaces of these three probability distributions indeed converge to the
diagonal when ρ0 is increased to 0.95. In the extreme case that the correlation coefficient
ρ = 1, we have E[(V −X)2] = 0 according to Eq. (5.62). Consequently, for the bivariate
distribution P (v, x), we have

P (v, x) =

{
0, if v 6= x,

> 0, if v = x,
(5.65)

when ρ = 1.

Consider a bimodal response fV X to equal-valued inputs m = (m,m)T . According to
Eq. (5.3), we have

fV X =
1

1 +
P (T = 0)
P (T = 1)

P ((m,m)T |T = 0)
P ((m,m)T |T = 1)

,
(5.66)

According to Eq. (5.65), we have P ((m,m)T |T = 0) > 0 when the spontaneous corre-
lation coefficient ρ0 → 1. Accordingly, the bimodal response fV X < 1. On the other
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Figure 5.7: Probability distributions P (m|T = 0) when ρ0 = 0.1 and ρ0 = 0.95
for two sensory channels V and X. Two Gaussian distributions are shown in (A) for
ρ0 = 0.1 and (B) for ρ0 = 0.95. In (A), σ2

V X0 = 0.2, and in (B) σ2
V X0 = 1.9. The

other statistical parameters are set as those of V and X channels in Table 5.2. Two
Poisson distributions are shown in (C) for ρ0 = 0.1 and (D) for ρ0 = 0.95. In (C),
λV = λX = 1.8 and λ = 0.2; In (D), λV = λX = 0.1 and λ = 1.9. For the meaning of
the parameters, refer to Section 5.3.3. Two Cowan exponential distributions are shown
in (E) for ρ0 = 0.1 and (F) for ρ0 = 0.95. In (E), a = 2.07 and λ = 0.5; In (D),

a = 0.155 and λ = 0.5. See Section 5.3.4 for the meaning of the parameters.
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hand, the unimodal response fV to the input represented by m = (m,µ0)T is

fV =
1

1 +
P (T = 0)
P (T = 1)

P ((m,µ0)T |T = 0)
P ((m,µ0)T |T = 1)

. (5.67)

In this case, according to Eq. (5.65), we have P ((m,µ0)T |T = 0) → 0 when the spon-
taneous correlation coefficient ρ0 → 1. The unimodal response fV thus approaches one.
This also applies to fX since the mean and variance of X and V are the same. As a
result, we know that the ratio fV X/max{fV , fX} is less than 1, and thus the model
exhibits suppression. Fig. 5.8 shows the surface of neuronal response to V and X inputs.
When ρ0 = 0.1, a bimodal response fV X to m = (m,m)T is larger than a unimodal
response, for example, fV to m = (m,µ0)T (Fig. 5.8A). However, when ρ0 = 0.95, we
can see that a bimodal response fV X to m = (m,m)T is always smaller than a unimodal
response such as fV to m = (m, µ0)T (Fig. 5.8B), in which case suppression is observed.
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Figure 5.8: Neuronal response (P (T = 1|m)) for Gaussian inputs when ρ0 = 0.1 and
ρ0 = 0.95. The other parameters are set as the V and X channels in Table 5.2.

As proven above, given that the means and the variances are the same for two sensory
channels, the Bayesian model in fact produces MSS when the spontaneous correlation
coefficient ρ0 → 1 independent of the specific form of input probability distribution.
However, this only works for bimodal inputs with equal values. For an input m =
(m1,m2)T where (m1 6= m2), for example, both the bimodal response fV X and the
unimodal responses fV and fX approach 1 as the spontaneous correlation coefficient
ρ0 → 1. The extreme of the ratio fV X/ max{fV , fX} in this case will be 1, corresponding
to the situation that neither enhancement nor suppression is produced (also see Fig. 5.5).
In fact, the Bayesian model proposed by Patton and Anastasio (2003) makes use of this
very special properties of a bivariate distribution to produce the phenomenon of MSS,
and it is thus not surprising to find that the model is very sensitive to the statistical
parameters.

To sum up, the capability of Patton and Anastasio (2003)’s model to produce MSS
critically depends on the choices of statistical parameters as well as the equality of
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the inputs. It is therefore not a plausible model of the multisensory responses of DSC
neurons. The hypothesis that each DSC neuron carries out a Bayesian computation
is thus also questionable, and we need to interpret the mechanisms underlying DSC
neuronal responses in another way.

5.4 Summary

The Patton model is a representative model to account for the response properties, such
as CME and MSS, of a DSC neuron. We showed in this chapter, however, that the
capability of the model to exhibit MSS critically depends on the parameters. Patton
and Anastasio (2003) suggested that a large enough spontaneous correlation coefficient
is crucial for the model to exhibit MSS. In numerical studies, we demonstrated that such
a spontaneous correlation coefficient leads to some properties that conflict with those
of a neuron. To further explore this, we mathematically analyzed the behaviours of the
model when the inputs follow a Gaussian, Poisson or Cowan exponential distribution.
Our results indicate that the MSS property of the model is produced by special choices
of the statistical parameters as well as the inputs. This is further supported by a general
proof for inputs following arbitrary distribution.

Our studies suggest that the Patton model is not an appropriate model for DSC neuronal
responses. In the following chapters, we propose a new interpretation of the mechanisms
underlying multisensory integration in DSC neurons based on a sigmoidal response func-
tion adapted according to the input statistics.



Chapter 6

Sigmoidal Response Function for

Multisensory Integration

In the previous chapter, we have shown that Patton and Anastasio (2003)’s Bayesian
model does not plausibly account for the response properties of DSC neurons. In this
chapter, we instead focus on the role of a non-linear, saturating response function,
such as the sigmoidal function, in reproducing the experimental results, such as the
CME associated with the inverse effectiveness and the additive operations. We will
discuss how the sigmoidal response function could account for these response properties,
based on which we propose a simple interpretation for the mechanisms underlying the
complicated experimental data.

6.1 Introduction

Neuronal responses are generally measured as the spiking rate of neurons. Subject to
physical constraints, such as the refractory period lasting for around 2 ms, the spiking
rate of a neuron has an upper limit of about 100 to 200 Hz. When neuronal responses
reach this upper limit, an increase in the input will not induce a stronger response. Ac-
cordingly, neuronal responses are sometimes modeled by a saturating function. Popular
choices of response function in the literature include the hyperbolic ratio function,

r(x) = s
x4γθ/s

θ4γθ/s + x4γθ/s
, (6.1)

where s represents the bound of responses, θ determines the point of semi-saturation,
r(θ) = s/2, and γ the gain at semi-saturation. For example, the hyperbolic ratio function
has been widely adopted to model neuronal response for contrast gain control in visual
system (Naka and Rushton, 1966; Albrecht et al., 1984; Wilson and Humanski, 1993).
Although not a saturating function, a linear model with rectification is a good model of

94



Chapter 6 Sigmoidal Response Function for Multisensory Integration 95

0 5 10 15 20 25
0

0.25

0.5

0.75

1

x

r(
x)

Figure 6.1: A sigmoidal function with γ = 0.1, θ = 10 and s = 1.

V1 neuronal responses,
r(x) = γ[x− θ]+, (6.2)

where []+ denotes the positive part, θ is here the threshold for response onset, and γ the
gain. It is popular in the modelling of contrast adaptation in retinal circuitry (Chander
and Chichilnisky, 2001; Kim and Rieke, 2001; Zaghloul et al., 2005). However, we will
instead use the sigmoidal response function,

r(x) =
s

1 + exp
[
−4γ

s
(x− θ)

] , (6.3)

where θ and γ are, as for the hyperbolic ratio function, the semi-saturation constant
and the gain, respectively. For γ large, θ determines the transition from no response to
saturated response, so we refer to it as the threshold. The sigmoidal function can also
be written in a hyperbolic form,

r(x) =
s

2

[
1 + tanh

2γ

s
(x− θ)

]
. (6.4)

Fig. 6.1 shows a sigmoidal function with γ = 0.1, θ = 10 and s = 1. We employ the
sigmoidal response function because it is defined for x < 0 (unlike the hyperbolic ratio
function for most values of γ) and everywhere differentiable (unlike the linear rectified
response).

Although the sigmoidal function in Eq. (6.3) or Eq. (6.4) is only for one sensory input
x, it can be extended to deal with multimodal inputs. For example, in terms of a DSC
neuron receiving bimodal inputs x1 and x2, we model the neuronal responses as

r(x1, x2) =
s

1 + exp
[
−4

s
(γ1x1 + γ2x2 − θ)

] , (6.5)
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Figure 6.2: A bimodal sigmoidal function with γ1 = 0.1, γ2 = 0.05, θ = 1 and s = 1.

or equally, in the hyperbolic form,

r(x1, x2) =
s

2

[
1 + tanh

2
s
(γ1x1 + γ2x2 − θ)

]
, (6.6)

where γ1 and γ2 represent the gains for x1 and x2 respectively, and θ represents the
threshold for the neuron. With gains γ1 = 0.1, γ2 = 0.05, the threshold θ = 1 and
s = 1, Fig. 6.2 shows the surface of a bimodal sigmoidal function. Stanford et al. (2005)
indicated that a saturating response function is sufficient to account for the inverse
effectiveness principle. We will extend this notion and show in the following sections
that a neuron responding under the sigmoidal function is capable of exhibiting many
observed response properties of DSC neurons, including the CME property and the ad-
ditive responses. Moreover, we suggests a clear interpretation of the diverse operational
modes reported by Perrault et al. (2005). For simplicity, we only consider the bimodal
sigmoidal function in our discussion.

6.2 The CME Property

It has been widely reported that DSC neurons exhibit the property of CME quantified
by Eq. (2.1) when bimodal visual and auditory stimuli are presented (Stein and Mered-
ith, 1993; Stein et al., 2004). Moreover, the largest CME in DSC neurons is achieved
with weak visual and auditory stimuli, a property called inverse effectiveness (IE). Pre-
sumably, this response property could improve the ability of an animal to detect weak
signals.
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Figure 6.3: CME contours in the x1−x2 input plane when γ1 = 0.1, γ2 = 0.05, θ = 1
and s = 1.

The occurrence of CME associated with IE in a neuron responding under a sigmoidal
function is straightforward. The presence of a cross-modal stimulus x2 in addition to
a stimulus x1 increases the combined input γ1x1 + γ2x2. According to Eq. (6.5), the
resulting bimodal response r(x1, x2) is thus larger than either r(x1, 0) or r(0, x2), leading
to enhancement. Furthermore, since the sigmoidal function is a saturating function, a
strong input stimulus x1 could arouse a saturated response. For such a sensory stim-
ulus x1, the presence of a cross-modal sensory stimulus x2 will not induce a stronger
response. The enhancement is therefore approximately zero for strong sensory inputs.
This indicates that the maximum CME occurs for weaker stimuli, corresponding to the
IE property. To illustrate this, we produce the CME contours in the bimodal x1 − x2

input plane. In Fig. 6.3, the parameters for the sigmoidal function are arbitrarily set as
γ1 = 0.1, γ2 = 0.05, θ = 1 and s = 1. We can observe that all the points in the x1 − x2

input plane exhibit CME. Moreover, the maximum CME occurs at around x1 = 5,
x2 = 10. As x1 and x2 increase, the CME gradually decreases to zero (IE). The “kinks”
in the contours are the result of a switching between the larger of the two unimodal
responses in the definition of the CME index [see Eq. (2.1)].

As a characteristic property of CME, IE indicates that the maximum CME occurs for
weak stimuli. To study how the sigmoidal function produce IE, we mathematically
analyze the bimodal sigmoidal response function given in Eq. (6.5) for its maximum
CME. In the calculation of the CME index, we consider the bimodal response r(x1, x2)
and the two unimodal responses r(x1, 0) and r(0, x2). Here we do not include sponta-
neous inputs in the unimodal responses, for example, using r(x1, x

0
2) where x0

2 represents
spontaneous x2 input, since it does not bring any qualitative difference to the results.
Without loss of generality, we further assume that r(x1, 0) ≥ r(0, x2), from which we
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have γ1x1 ≥ γ2x2 according to Eq. (6.5). The enhancement E(x1, x2) given in Eq. (2.1)
can then be written as

E(x1, x2) =
r(x1, x2)− r(x1, 0)

r(x1, 0)
=

r(x1, x2)
r(x1, 0)

− 1. (6.7)

To maximize E(x1, x2) for a fixed x1, we therefore need to maximize r(x1, x2), which
increases monotonically with the increase in x2 [see Eq. (6.5)]. We have assumed that
γ1x1 ≥ γ2x2, so the maximum r(x1, x2) is achieved when x2 = γ1x1/γ2. We denote

E(x1) =
r(x1, γ1x1/γ2)

r(x1, 0)
=

1 + exp
[
−4

s
(γ1x1 − θ)

]

1 + exp
[
−4

s
(2γ1x1 − θ)

] . (6.8)

It is obvious that maximizing E(x1, x2) is equivalent to maximizing E(x1). To determine
the input x1 that produces the maximum CME, we then solve dE(x1)/dx1 = 0 for x1.
Substituting Eq. (6.8) into dE(x1)/dx1 = 0 and after some transformations, we obtain

e−
4(2γ1x1−θ)

s + 2e−
4γ1x1

s − 1 = 0. (6.9)

Solving Eq. (6.9) for x1, we have

x1 = −
s ln

[q
1+exp( 4θ

s
)−1

exp( 4θ
s

)

]

4γ1
, (6.10)

for which input the CME is maximal. Although the expression for x1 appears compli-

cated, in the case that exp(
4θ

s
) À 1, Eq. (6.10) can be approximated as

x1 ≈ θ/(2γ1). (6.11)

Since γ1x1 = γ2x2, we also have
x2 ≈ θ/(2γ2). (6.12)

Accordingly, maximum CME can be observed at around x1 = θ/(2γ1), x2 = θ/(2γ2) in
the x1 − x2 input plane, above which CME gradually decreases to zero. For the CME
contours in Fig. 6.3, we have γ1 = 0.1, γ2 = 0.05 and θ = 1. According to Eqs. (6.11)
and (6.12), the bimodal input for the maximum CME are x1 ≈ 5 and x2 ≈ 10, consistent
with Fig. 6.3. However, this approximate point for maximum CME works if exp(4θ

s ) À 1
is satisfied, so, for example, when s is large, Eqs. (6.11) and (6.12) do not give us a good
approximation.
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6.3 The ADD Property

The ADD index has also been adopted in the literature to analyze the response property
of DSC neurons, according to which the responses of neurons could be characterized as
sub-additive (ADD< 0), additive (ADD≈ 0) and super-additive (ADD> 0) (Perrault
et al., 2005; Avillac et al., 2007). Here we analyze how a neuron with the sigmoidal
response function exhibits the additive responses defined by the ADD index in Eq. (2.2).

In a sigmoidal response function [Eq. (6.3)], when an input x is around the inflection
point, or x = θ, we can observe an approximately linear property since the second-
order derivation of the sigmoidal function f ′′(x) at x = θ is zero. According to Taylor’s
theorem, we have

f(θ + δx) ≈ f(θ) + δx f ′(θ) +
1
2

δx2 f ′′(θ) = f(θ) + δx f ′(θ), (6.13)

Intuitively, this linear property of the sigmoidal function contributes to the additive
responses of the neurons, so that sensory inputs in the region around θ induce additive
responses, inputs on the left tail of the sigmoidal curve induce super-additive responses
and those on the right tail sub-additive responses. We thus refer to the left tail of the
sigmoidal function as the super-additive region, the area around the inflection point as
the additive region and the right tail as the sub-additive region (see Fig. 6.4).
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Figure 6.4: The super-additive, additive and sub-additive regions for a sigmoidal
response function with γ1 = 0.1, γ2 = 0.05, θ = 1 and s = 1.

Consider the hyperbolic form of a bimodal sigmoidal response function in Eq. (6.6).
According to the definition of the ADD index [Eq. (2.2)], the sign of

A(x1, x2) = r(x1, x2) + r(0, 0)− r(x1, 0)− r(0, x2) (6.14)

determines whether a response is super-additive [A(x1, x2) > 0], additive [A(x1, x2) ≈ 0]
or sub-additive [A(x1, x2) < 0]. Substituting the expression for the sigmoidal response
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Figure 6.5: ADD contours in the x1−x2 input plane when γ1 = 0.1, γ2 = 0.05, θ = 1
and s = 1.

function into Eq. (6.14), we obtain

A(x1, x2) =
s

2
[tanh

2
s
(γ1x1 + γ2x2 − θ) + tanh

2
s
(−θ)

− tanh
2
s
(γ1x1 − θ)− tanh

2
s
(γ2x2 − θ)]. (6.15)

For a hyperbolic tangent function, we have

tanhx + tanh y = tanh(x + y)(1 + tanhx tanh y), (6.16)

so Eq. (6.15) can be transformed to

A(x1, x2) =
s

2
tanh

2
s
(γ1x1 + γ2x2 − 2θ)[tanh

2
s
(γ1x1 + γ2x2 − θ) tanh

2
s
(−θ)

− tanh
2
s
(γ1x1 − θ) tanh

2
s
(γ2x2 − θ)], (6.17)

from which we see that A(x1, x2) = 0 is satisfied when

tanh
2
s
(γ1x1 + γ2x2 − 2θ) = 0, (6.18)

which gives us
γ1x1 + γ2x2 − 2θ = 0. (6.19)

Therefore, in terms of the contours of the ADD index in the x1 − x2 input plane,
we would expect to find the zero contour on the line γ1x1 + γ2x2 − 2θ = 0. This
is demonstrated in Fig. 6.5, in which the contours of the ADD index are shown for
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γ1 = 0.1, γ2 = 0.05, θ = 1 and s = 1. The zero contour is a line 2x1 + x2 − 40 = 0 on
the x1 − x2 input plane, complying with Eq. (6.19). Moreover, the area above the line
2x1 + x2 − 40 = 0 corresponds to the sub-additive region where ADD< 0, and the area
below 2x1 + x2 − 40 = 0 corresponds to the super-additive region where ADD> 0.

6.4 Analysis of Stanford et al. (2005)’s Results

Stanford et al. (2005) have systematically explored the integration operations of DSC
neurons. They designed an experimental protocol to analyze the data according to
their statistical properties, based on which they showed that although DSC neurons
exhibit sub-additive, additive and super-additive responses, the additive responses are
most often observed. In the experiment, Stanford et al. (2005) recorded the responses
of a DSC neuron to each fixed visual, auditory and bimodal visual-auditory stimulus
30 times. The general idea is to construct a distribution of expected additive responses
based on the two recorded unimodal responses, and calculate the z-score of an observed
bimodal responses based on the recorded bimodal responses for this distribution. The
value of the z-score determines the additive properties of the responses. To construct the
distribution of the expected additive responses, Stanford et al. (2005) firstly produced a
set of 900 elements E = {xE

1 , . . . , xE
900} by a complete combination of the unimodal visual

responses and auditory responses, with each of the element xE
i , where i ∈ {1, . . . , 900},

being a sum of the two unimodal responses. They then randomly selected nt = 30
trials XE

j (j = 1, . . . , nt) (with replacement) from the set E and averaged these trials to
produce a sample XL so that

XL =
1
nt

nt∑

j=1

XE
j . (6.20)

Under the same procedure, they generated nl = 10000 samples to form a sample set
L = {XL

1 , ..., XL
nl
}, and consider it to represent a distribution of the expected additive

responses for the DSC neuron. According to the central limit theorem, the 10,000 sam-
ples follow an approximately normal distribution since each sample XL

k (k = 1, . . . , nl)
in the set L is an average of 30 trials. The sample mean

X̄L =
1
nl

nl∑

k=1

XL
k (6.21)

and the unbiased estimator of the standard deviation

SL =

√√√√ 1
nl − 1

nl∑

k=1

(XL
k − X̄L)2 (6.22)

of the set L are then calculated. In addition, the observed bimodal response xobs is
acquired by averaging the previously-recorded 30 bimodal responses. The z-score of xobs
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based on the sample set L is defined as

z =
xobs − X̄L

SL
(6.23)

to characterize the response properties of a neuron. According to convention, a signifi-
cance level 5% for a standard normal distribution, which corresponds to z = ±1.96, is
adopted to decide whether the observed response xobs is significantly different from the
expected additive responses represented by the sample set L: when z < −1.96, the re-
sponse is considered as sub-additive; when −1.96 < z < 1.96, the response is considered
as additive; z > 1.96 characterizes a super-additive response.

However, we find that the z-score defined in Eq. (6.23) depends on the trial size nt = 30 in
their approach. Consider the trials XE

1 , XE
2 , . . . , XE

nt
drawn from the set E with standard

deviation denoted as σE . Since an expected response sample XL = 1
nt

∑nt
j=1 XE

j , the
standard deviation σL of the random sample XL should in theory conform to

σL =
σE√
nt

. (6.24)

From Eq. (6.24), we can see that the larger the trial size nt, the smaller the standard
deviation σL, which results in a smaller sample standard deviation SL for the set L.
According to Eq. (6.23), a smaller sample standard deviation SL leads to larger z-score.
In the extreme case that nt = 900, for example, we will have SL = 0, and the z-score
goes to infinity. This shows that the z-score proposed by Stanford et al. (2005) depends
on the trial size nt and it thus fails to characterize the intrinsic response properties of
DSC neurons.

A better way to process the experimental data would be to use Welch’s t test (Welch,
1947) to compare the mean of the set R containing the recorded bimodal responses and
that of the set E containing the sum of the unimodal responses. Welch’s t test is given
by

t =
X̄R − X̄E√

(S2
R/nr) + (S2

E/ne)
, (6.25)

where X̄R and X̄E are the sample means of the sets R and E respectively, SR and
SE are the unbiased estimators of their standard deviations, and nr and ne are the
sizes of the two sets. To use this test, it is required that the sample sizes nr and ne

should be large enough to ensure that the distribution of the difference X̄R − X̄E is
approximately normal. In practice, nr and ne generally need to be no less than 30. The
experimental data recorded by Stanford et al. (2005) satisfy this requirement since they
have nr = 30 and ne = 900. The advantages of Welch’s t test are obvious. On one hand,
it is applicable regardless of the form of distribution in set R and E, and on the other
hand, it takes into account the variances of both sets and avoids the dependence on nt,
in contrast to Stanford et al. (2005)’s approach. However, we have not re-analysed the
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data since they are not available.

6.5 Correlation between the CME and ADD indices

We have shown that the sigmoidal response function can account for many response
properties based on the CME index and the ADD index, both of which were proposed
to characterize different aspects of multisensory integration (Meredith and Stein, 1983;
King and Palmer, 1985; Avillac et al., 2007). The CME index differentiates responses
between response depression (CME< 0) and response enhancement (CME> 0), whereas
the ADD index categorises multisensory responses into sub-additive (ADD< 0), additive
(ADD≈ 0) and super-additive (ADD> 0) responses. To combine the benefits of the two
indices, some studies have employed both of them to analyze the experimental data on
multisensory responses (Perrault et al., 2003; Avillac et al., 2007). However, we find
that the two indices are inherently correlated, and a combination of them does not
provide much more information about the characteristics of the response function, or
the response properties of multisensory neurons, than using one of them.

Traditionally, the CME index and the ADD index are defined to have asymmetric nega-
tive and positive ranges from −100% to infinity [see Eqs. (2.1) and (2.2)]. Consequently,
for example, a −50% and a 50% index under these definitions represent different degrees
of change in the responses. To overcome this asymmetric range, Avillac et al. (2007)
has adapted the traditional definitions of the CME and the ADD indices to normalized
forms that ranges between −100% and 100% [see Eqs. (2.3) and (2.4)]. In their study,
Avillac et al. (2007) recorded the responses of multisensory neurons in the ventral in-
troparietal (VIP) area in two behaving monkeys to both visual and tactile stimuli, and
they calculated the normalized CME and ADD indices for each set of responses. Plot-
ting the ADD index as a function of the CME index, they showed that these two indices
are closely related (Fig. 6.6). For example, we can see that the data points in Fig. 6.6
are confined to a small region and most of the multisensory neurons exhibit both a
depression and a sub-additive response. Furthermore, Fig. 6.6 shows that depression is
more commonly observed than enhancement, and sub-additivity appears more common
than super-additivity or additivity. These results are in contrast to experimental data
suggesting that the enhancement and the additivity are most often observed in DSC
neurons (Meredith and Stein, 1983; Perrault et al., 2003; Stanford et al., 2005). Avillac
et al. (2007) suggested that these differences might be induced by the application of
anesthesia in those experiments on DSC neurons.

In fact, the CME and ADD indices are inherently correlated. The correlations between
the two indices observed by Avillac et al. (2007) are therefore not determined by the
response properties of multisensory neurons in VIP. Consider the expressions for the
CME and ADD indices in Eqs. (2.3) and (2.4). Assume that the unimodal response |V |
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Figure 6.6: Distribution of the CME index and the ADD index calculated from the
responses of 150 VIP neurons. The “Amplification factor” in the abscissa is equivalent
to the CME index and the “Additivity factor” in the ordinate the ADD index. Black
triangles represent bimodal neurons (n=87) and grey circles represent unimodal neurons
(n=63). On the top and on the right of the plot show the distribution for each the index.

From Avillac et al. (2007).

is larger than |A| and let |A| = a|V | where 0 ≤ a ≤ 1. Relabeling the CME index as E,
we can transform Eq. (2.3) to express the bimodal response |Bi| by E and |V |,

|Bi| = |V |1 + (E/100)
1− (E/100)

. (6.26)

Substituting Eq. (6.26) and |A| = a|V | into Eq. (2.4), we rewrite the ADD index A as
a function of E and a,

A =
[

2(E/100) + 2
(1− E/100)a + 2

− 1
]
× 100. (6.27)

It is obvious from Eq. (6.27) that A decreases monotonically when a increases. There-
fore, for a given E, we have minimum A when a = 1 and maximum A when a = 0.
Substituting a = 1 and a = 0 into Eq. (6.27), we then obtain

Amin =
[
3(E/100)− 1
3− (E/100)

]
× 100,

Amax = E. (6.28)

Accordingly, the additivity index as a function of the CME index is constrained by two
curves, one defined by Amin as the lower bound and the other defined by Amax as the
upper bound. In particular, we consider three conditions: |Bi| < |A|, |A| < |Bi| < |V |
and |Bi| > |V |. When |Bi| < |A|, according to Eq. (6.26) and |A| = a|V |, we directly
have 1+(E/100)

1−(E/100) < a < 1. Therefore, for the unimodal and bimodal responses satisfying
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|Bi| < |A|, the ADD index as a function of the CME index is in a region I confined by

AI
min =

[
3(E/100)− 1
3− (E/100)

]
× 100,

AI
max =

[
(E/100)− 1
(E/100) + 3

]
× 100. (6.29)

When |A| < |Bi| < |V |, we obtain a < 1+(E/100)
1−(E/100) and E < 0, and the region II corre-

sponding to this condition is given by

AII
min =

[
(E/100)− 1
(E/100) + 3

]
× 100,

AII
max = E, (6.30)

and E < 0. In the last case that |Bi| > |V |, we have E > 0, and the corresponding
region III is defined by AIII

min and AIII
max which are the same as Eq. (6.28),

AIII
min =

[
3(E/100)− 1
3− (E/100)

]
× 100,

AIII
max = E, (6.31)

for E > 0.

To illustrate this property, we produced 1000 sets of responses, each of which contains
|Bi|, |V | and |A| that are randomly selected between 0 and 1, and calculated the CME
and the ADD indices for each set. The resulting ADD index plotted as a function
of the CME index is shown in Fig. 6.7, in which the data points are all confined in
the sector determined by Amin and Amax, demonstrating the existence of an implicit
correlation. Fig. 6.7 also shows the three regions I, II and III confined by Eqs. (6.29),
(6.30) and (6.31) respectively. We can see that the correlation between the two indices
for VIP neurons (Fig. 6.6) could be perfectly reproduced by using randomly-selected
unimodal and bimodal responses (Fig. 6.7). For example, in Fig. 6.7, the depression and
the sub-additivity are also more often observed, comparable to Fig. 6.6. Moreover, the
sparse data points for CME> 0 and ADD> 0 in Fig. 6.7 merely reflect the statistical rule
that it is less probable for one random variable |Bi| to exceed the value of the larger or
the sum of two other random variables |V | and |A|. It is thus likely that those analogous
properties observed in Fig. 6.6 for VIP neurons also reflect this same statistical rule,
and are not caused by the absence of anesthesia.

To sum up, the CME and ADD indices are inherently correlated, and a combination
of them to analyze multisensory responses will therefore not be much more informative
than using only one of them.
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Figure 6.7: Distribution of the CME index and the ADD index calculated from 1000
sets of randomly-generated unimodal responses and bimodal response. The I, II and
III regions correspond to the cases when |Bi| < |A|, |A| < |Bi| < |V | and |Bi| > |V |

respectively.

6.6 Different Operational Modes

Perrault et al. (2005) have shown that there appears to be substantial differences in the
operations adopted by DSC neurons to integrate cross-modal sensory inputs. In addition
to the CME index, they applied the multisensory contrast, which is essentially similar
to the ADD index, to study the response properties of DSC neurons, based on which
four categories of neurons are identified according to their operational modes. The four
categories include the super-additive neurons, the super-additive/sub-additive neurons,
the sub-additive neurons and the additive/sub-additive neurons (Fig. 2.7). Although
these four operational modes appear to be significantly different from each other, we
will show in the following that they can be coherently accounted for by modelling DSC
responses as sigmoidal functions.

To show how the sigmoidal response function explains the contrasting operational modes,
we first demonstrate the role of a sigmoidal response function in generating the different
response ranges between the unimodal and the bimodal cases. Perrault et al. (2005)
defined the dynamic range of a neuronal response as the difference between the response
threshold and saturation, and showed that the dynamic range of a DSC neuron to bi-
modal visual-auditory stimuli is larger than to either visual or auditory stimuli (Fig. 2.8).
This finding, at first sight, appears to challenge the notion that the CME associated with
IE can be explained by the ceiling effect, or equally the saturating responses, of DSC
neurons (Perrault et al., 2005). These seemingly contradictory phenomena, however, can
be naturally explained by saturated neuronal responses if we take into account response
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Figure 6.8: Different dynamic ranges for unimodal and bimodal responses in a DSC
neuron by simulating the inputs to the DSC neuron as saturated outputs from ear-
lier unimodal neurons. The “Input” in the abscissa represents the input x1 or x2 to
unimodal neurons of which the outputs are the inputs of the DSC neuron, and the “Re-
sponse” represents the response of the DSC neuron. In sensory channel 1 for x1, the
input to the DSC neuron is generated by a sigmoidal response function with γ1i = 0.6,
θ1i = 15 and s1i = 15; In sensory channel 2 for x2, the input to the DSC neuron is
produced under a sigmoidal response function with γ2i = 0.9, θ2i = 20 and s2i = 30.
The bimodal DSC neuron responds under a bimodal sigmoidal response function with

γ1 = 0.1, γ2 = 0.05, θ = 1, and s = 1.

saturation in the unimodal neurons earlier along the sensory pathway. In this case, since
the inputs to the DSC neurons are the outputs of earlier unimodal sensory neurons, it
is possible that the inputs to DSC neurons have already been saturated, in which case
the responses of DSC neurons appear to be at their saturation levels. However, the
presence of a cross-modal input could augment the responses in DSC neurons, provided
that the DSC neurons have not actually reached their saturation level. Consequently,
we can observe different dynamic ranges for unimodal and bimodal responses. This
can be shown in Fig. 6.8, in which input x1 is passed through a saturated sigmoidal
function with γ1i = 0.6, θ1i = 15 and s1i = 15 and input x2 with γ2i = 0.9, θ2i = 20
and s2i = 30. The response of the bimodal DSC neuron is modeled under a bimodal
sigmoidal function with γ1 = 0.1, γ2 = 0.05, θ = 1, and s = 1. Fig. 6.8 shows that the
maximal bimodal response is larger than the maximal unimodal responses, comparable
to the experimental results in Fig. 2.8.

The four operational modes reported by Perrault et al. (2003) for DSC neurons can also
be explained by earlier saturations in the responses of unimodal neurons and response
saturations in the DSC neurons. In the four types of neurons, super-additive neurons
are those that only exhibit super-additive responses. In terms of the sigmoidal response
function, this could be possible when all the inputs situate in the super-additive region
of the response function. The constrained range in the inputs could be contributed by
previous saturation in the unimdal neurons. As a result, cross-modal stimuli always
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Figure 6.9: Illustration for super-additive neurons. (A) The inputs x1 and x2 are
saturated at S1 and S2 respectively and are all in the super-additive region of the
response function. (B) The ADD index as a function of x1 for a super-additive neuron.
Input x1 is passed through a sigmoidal response function with γ1i = 0.6, θ1i = 15 and
s1i = 15. Input x2 is kept at x2 = 20 and is passed through one with γ2i = 0.9, θ2i = 20
and s2i = 30. The super-additive neuron receives saturated x1 and x2, and responds

based on a bimodal sigmoidal function with γ1 = 0.1, γ2 = 0.05, θ = 2.5 and s = 1.

augment the response in a super-additive way. For demonstration purpose, we only
consider the bimodal sigmoidal response function in Eq. (6.5) for γ1 = γ2 = γ. In this
case, we have γ1x1 + γ2x2 = γ(x1 + x2), and we can thus reduce the bimodal sigmoidal
function to a unimodal one for a combined input x = x1+x2. In Fig. 6.9A, inputs x1 and
x2 saturate at S1 and S2 that are in the super-additive region of the sigmoidal response
function. Consequently, the combined input x = x1 + x2 always exhibit super-additive
response. Analogous analysis also applies to the bimodal case when γ1 6= γ2. Moreover,
an example of the super-additive neuron is given in Fig. 6.9B to plot the ADD index
[Eq. (2.2)] as a function of x1 when x2 is set constant at 20, and we can see that all the
responses are super-additive.

The super-additive/sub-additive neurons exhibit super-additive responses when the ef-
fectiveness of the stimulus is weak, and respond in a sub-additive way when the effec-
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Figure 6.10: Illustration for a super-additive/sub-additive neuron. (A) The inputs x1

and x2 are saturated at S1 and S2 respectively, which span across the super-additive,
additive and the sub-additive regions. (B) The ADD index as a function of x1 for a
super-additive/sub-additive neuron. The parameters in this simulation are the same as

in Fig. 6.9(B) except that θ = 0.8.

tiveness of the stimulus is strong (Fig. 2.7). In this case, it could be that the inputs
can reach both the super-additive and sub-additive regions of the response function of
a DSC neuron. Similar to the super-additive case, in Fig. 6.10A, we assume γ1 = γ2 to
consider only the unimodal sigmoidal function, and we can see that the saturations S1

and S2 span across the super-additive, the additive and the sub-additive regions of the
response function. Therefore, depending on the strength of the inputs, the DSC neuron
could exhibit different types of additive responses. In Fig. 6.10B, we show an example
of a simulated super-additive/sub-additive neuron that exhibits both super-additive and
sub-additive responses under our model.

In the additive/sub-additive neurons, a transition from the additive to the sub-additive
responses is seen when the input increases. To achieve this, their response function
might be in a form that the inputs situate in the additive and sub-additive regions. In
a unimodal sigmoidal response function, this could be achieved by shifting the response
curve leftwards [decreasing θ in Eq. (6.3)]. For example, as shown in Fig. 6.11A, the
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Figure 6.11: Illustration for a additive/subadditive neuron. (A) The inputs x1 and
x2 are saturated at S1 and S2 respectively, which span across both the additive and the
sub-additive regions. (B) The ADD index as a function of x1 for a additive/sub-additive
neuron. The parameters in this simulation are the same as in Fig. 6.9(B) except that

θ = 0.4.

sigmoidal function only leave the additive and sub-additive regions for positive inputs
x1 and x2 that saturated at S1 and S2 respectively. Accordingly, the neuron exhibits
either additive or sub-additive responses depending on the magnitudes of inputs. A
additive/sub-additive neuron is simulated in Fig. 6.11B, in which the ADD index is
plotted as a function of x1, showing both the additive and sub-additive responses.

Similarly, in the sub-additive neurons, as we can see from Fig. 2.7, relatively weak
sensory stimuli induce very strong responses and the neurons always exhibit sub-additive
responses. This can be achieved when the sigmoidal response function of the DSC neuron
is adjusted in a way that all the inputs situate in its saturation region. Compared
with the additive/sub-additive neurons, the sigmoidal response curve need to be shifted
further leftwards. Fig. 6.12A shows an illustration of the idea, and we can see that
positive inputs x1 and x2 always situate in the sub-additive region of the response
function. Therefore, the inputs x1 and x2 only arouse sub-additive responses. As an
example, Fig. 6.12B shows a sub-additive neuron that only exhibit sub-additive responses
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Figure 6.12: Illustration for a sub-additive neuron. (A) The inputs x1 and x2 are
saturated at S1 and S2 respectively, which situate in the sub-additive region. (B) The
ADD index as a function of x1 for a sub-additive neuron. The parameters in this

simulation are the same as in Fig. 6.9(B) except that θ = −0.1.

for any input x1.

As shown above, when we model the responses of DSC neurons as sigmoidal functions
and take into account possible prior saturation in unimodal neurons earlier along the
sensory pathway, the four apparently diverse operational modes naturally emerge. This
simple interpretation captures all the dynamics in the four operational modes, sug-
gesting that the complicated response phenomena observed in DSC neurons are direct
consequences of the non-linear, saturating response function. We can also see that cate-
gorizing DSC neuronal responses to the four operational modes based on the ADD index
is not appropriate since they might be produced by a coherent mechanism.
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6.7 Summary

Experimental results on DSC neurons have indicated that the mechanisms underlying
their responses are complicated. To characterize these mechanisms, some measures such
as the CME index and the ADD index have been proposed. There has been considerable
evidence showing that these two measures capture the response properties of most DSC
neurons. Moreover, different DSC neurons are found to exhibit different operational
modes characterized by the ADD index. We argued in this chapter, however, that
all these diverse response properties can be accounted for by a non-linear, saturating
response function, extending the notion of Stanford et al. (2005). We adopted a sigmoidal
response function to show how such a response function can reproduce the reported
response properties and unify the different operations observed in DSC neurons.



Chapter 7

Adaptation in Sensory Neurons

for Maintaining the Operating

Point

In the previous Chapter, we showed that a multisensory neuron under a sigmoidal re-
sponse function is capable of exhibiting a wide range of response properties observed in
DSC neurons. One remaining question is how the parameters in the sigmoidal function,
such as the gain and the threshold, are determined. Inspired by experimental results on
threshold adaptation and gain control in unimodal neurons, we propose an adaptation
rule for unimodal neurons, and extend the rule for multimodal neurons receiving inputs
from cross-modal sensory channels. This chapter is based mainly on our paper “An
Invariance Principle for Maintaining the Operating Point of a Neuron” (Elliott et al.,
2008b).

7.1 Introduction

We have described in Chapter 3 how neurons early in sensory pathways are believed to
adapt their responses to the statistics of their inputs in order to maximise their coding
efficiency, output entropy, or information rate (Attneave, 1954; Barlow, 1961; Laughlin,
1981; Atick, 1992; van Hatteren, 1992; DeWeese, 1996; Dan et al., 1996; Baddeley et al.,
1997; Smirnakis et al., 1997; Wainwright, 1999; Brenner et al., 2000; Fairhall et al., 2001;
Maravall et al., 2007). Other adaptive strategies have also been proposed for neurons
later in sensory pathways (see, e.g., Carandini and Ferster (2000); Pena and Konishi
(2002); Ringach and Malone (2007)). Despite the diversity of functional roles of neurons,
and however their preferred operating points may be established over evolutionary or
developmental timescales, it is possible that there exist adaptive principles, based on

113
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input statistics, that enable neurons to maintain their preferred operating points without
explicit reference to their functional roles.

We suggest one such principle. We define the operating point of a neuron by the cumu-
lative distribution function (CDF) or probability density function (PDF) of its output
spike rate. The operating point therefore embodies information about both the input-
output transfer function of the neuron and the statistics of the environment from which
the input is drawn. The operating point is not simply the transfer function, nor simply
the environment, but both, united in the PDF of the neuron’s output spike rate. We
propose, in particular, the adaptive principle that a neuron adapts its transfer function
in order to keep its output PDF invariant, or as invariant as possible, under changes in
its input statistics. Such invariance would ensure that a neuron remains at its preferred
operating point, regardless of how that point is set. One consequence of this view is
that when a neuron’s operating point is set by a principle such as maximum information
rate, if a neuron can maintain an invariant output PDF, then it automatically remains
at the point determined by that principle.

In this chapter, we develop a model of neuronal adaptation in which adaptation en-
sures that a neuron’s output PDF remains invariant, or approximately invariant, under
changes in its input statistics. We consider only sigmoidal transfer functions since it can
reproduce most of the response properties in DSC neurons (see Chapter 6). We initially
consider a unimodal neuron with input from a single sensory channel, and derive rules
for threshold adaptation and gain control that seek to maintain an invariant output
PDF. These rules are independent of how the preferred operating point of the neuron
is set, but we also consider how the operating point may be set by a maximum entropy
principle. The structure of our model permits generalisation to multimodal neurons
receiving input from multiple, distinct sensory channels, and we extend our rules to
this multimodal case. This extension necessitates the introduction of separate gains for
each modality. Having developed the underlying approach to adaptation, we present
several examples of a model neuron functioning at different preferred operating points
and adapting to changing input statistics, both unimodal and bimodal.

7.2 An Invariance Principle for Adaptation

We first consider a neuron with an input from only a single sensory channel. Then we
extend our approach to a neuron with inputs from multiple, distinct sensory channels.

7.2.1 Unimodal Inputs

Suppose that a neuron’s unimodal input is determined by the (univariate) random vari-
able X with PDF fX(x) and CDF FX(x), where X, without loss of generality, also may
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absorb any input noise processes. Under the assumption of certain regularity condi-
tions, X is uniquely determined by its moments, so that its moment generating function,
MX(t), exists and its characteristic function, φX(t), is analytic on the real line (Feller,
1971).1 We denote the moments of X by mi, with mean µ = m1, and the central mo-
ments by µi, with variance σ2 = µ2. We denote the transfer or output function of the
neuron by r = r(x) for input x drawn from the distribution X. The output is then a
random variable, denoted by R, and its CDF and PDF are given by

FR(r) = FX(x(r)), (7.1)

fR(r) =
dx(r)

dr
fX(x(r)), (7.2)

respectively, where x(r) is the inverse of r(x), i.e. x(r(x′)) = x′, and conforms to mono-
tonicity. If the response is bounded, so that r ∈ [0, s], and if r(x) = sFX(x), then
fR(r) = 1/s, so that R is uniform on [0, s], and hence has maximum entropy, corre-
sponding to Laughlin’s result (Laughlin, 1981).

To model the neuronal responses, we use the sigmoidal response function,

r(x) =
s

2

[
1 + tanh

2γ

s
(x− θ)

]
, (7.3)

as given in Chapter 6. We shall regard the saturation value s as fixed, since it is deter-
mined by the maximum firing rate of a neuron, which is limited by a neuron’s refractory
period. The sigmoidal response function thus endows a neuron with two parameters,
the threshold and the gain, that it can change in an attempt to keep a neuron’s out-
put PDF invariant, or as invariant as possible. Clearly, then, for an arbitrary input
distribution X, perfect adaptation is in general impossible, since a sigmoidal response
r(x) lacks the potentially infinite number of degrees of freedom required to adapt to the
potentially infinite number of independent degrees of freedom in all the moments, mi, of
X. Furthermore, R cannot adopt the uniform, maximum entropy distribution, given the
upper bound s on the response, except in the particular case that X obeys the logistic
distribution, with CDF FX(x) = 1

2

[
1 + tanh 2γ

s (x− θ)
]
, satisfying Laughlin’s condition,

r(x) = sFX(x). The choice of a two-parameter response function thus imposes limita-
tions on the extent to which a model neuron can adapt to its input statistics. Although
this may appear unsatisfactory, of course any finite-parameter response function will be
so limited. Unless we hold to the view that a neuron’s response function may be set ar-
bitrarily, which seems unlikely, then such limitations are unavoidable. We could improve
the adaptability of a model neuron by considering more complicated, multi-parameter
response functions, but we have selected the two-parameter, sigmoidal function pre-
cisely because of its simplicity, so that the underlying approach, of adaptation to input

1Carleman’s condition on the moments is sufficient to ensure uniqueness (Feller, 1971). The classic
counter-examples to this condition are the Cauchy distribution, which has no moments, and the log-
normal distribution, for which MX(t) does not exist despite all the moments existing.
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statistics, is not obscured by unnecessary complexity.

Suppose that a neuron’s initial response is defined by the parameter set {θ, γ}, giving
rise to the random output variable R with PDF fR(r) for the initial random input
variable X. Suppose that the input statistics then change, giving a new input random
variable X ′, inducing a new response parameter set {θ′, γ′} and output random variable
R′ with PDF fR′(r). Since we wish to make the output PDF as invariant as possible
under the change X → X ′, an obvious strategy would be to define a functional metric
or distance D and explicitly find θ′ and γ′ such that D(fR, fR′) is minimised. A popular
candidate for D would be the relative entropy or Kullback-Leibler divergence between
fR and fR′ . Although explicit minimisation of D(fR, fR′) is, mathematically speaking,
a natural approach, it is potentially very expensive, computationally speaking. We
prefer, therefore, to seek an alternative approach to determining θ′ and γ′, one that may
be computationally simpler for a neuron to implement, but accept that it may not be
statistically optimal under all circumstances.

Since our model neuron possesses only two degrees of freedom in θ and γ, it is reasonable
to assume that these two parameters are modified in order to accommodate the most
significant variations in X. Defining the Z-score as usual by Z = (X − µ)/σ, the
Chebyshev inequality,

P [|Z| ≥ k] ≤ 1
k2

, (7.4)

where k is any positive number, reveals a general property of the Z-score independent of
X. That is, despite the distribution of X, its transformation into the Z-score based on
the mean and standard deviation will nonetheless convert X to a category of distribution
specified by Eq. (7.4). This suggests that, potentially, the lowest two moments are the
most influential among all the moments of X. For an adaptive strategy that is applicable
to an arbitrary distribution of X, they accordingly represent good targets for adaptive
processes. We therefore propose that the parameters θ and γ should thus be adapted
to accommodate changes in the mean, µ (Barlow and Mollon, 1982) and the standard
deviation, σ (Meister and Berry, 1999; Smirnakis et al., 1997; Brenner et al., 2000;
Fairhall et al., 2001), with the higher-order moments m3, . . . playing second fiddle to
m1 and m2 (Bonin et al. (2006); but see Kvale and Schreiner (2004)). More degrees of
freedom in the response function would allow adaptation to moments higher than the
second.

Consider an input PDF of the particular form

fX(x) =
1
σ

g

(
x− µ

σ

)
, (7.5)

where, by this, we mean that the dependence of fX on µ and σ appears only through
the combination (x−µ)/σ in fX , together with the overall scale factor of 1/σ, and that
g does not depend on any other parameters. The normal distribution is an example of
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such a PDF. Since
x(r) = θ − s

4γ
log

(
s− r

r

)
, (7.6)

and
dx(r)

dr
=

1
4γ

s2

r(s− r)
, (7.7)

we then have

fR(r) =
1

4γσ

s2

r(s− r)
g

(
θ − µ

σ
− s

4γσ
log

(
s− r

r

))
. (7.8)

We see immediately that fR(r) = fR′(r) ∀r ∈ [0, s], and hence D(fR, fR′) ≡ 0 for any
metric D, provided that

θ − µ

σ
=

θ′ − µ′

σ′
, (7.9)

γσ = γ′σ′. (7.10)

Eq. (7.9) implies that a neuron adjusts the threshold θ to keep the z-score of θ invari-
ant with respect to the input statistics. This ensures that a neuron’s mean output is
independent of its mean input, where this mean output is determined by a neuron’s
preferred operating point. Intuitively, Eq. (7.9) shifts the response function according
to the average intensity of the inputs, so that a wide range of input signals can be ef-
fectively represented by the limited response range of a neuron. Eq. (7.10) then sets
the output gain in inverse proportion to the input standard deviation, so that larger
(smaller) standard deviations correspond to smaller (larger) gains. This ensures that
the dynamic range of a neuron’s input is mapped onto an invariant dynamic range of its
output, where this output dynamic range is again set by a neuron’s preferred operating
point, keeping the output dynamic range constant. As the gain is inversely proportional
to the standard deviation, the sensitivity of a neuron is increased to improve the contrast
for inputs with small variations and decreased to avoid response saturation for inputs
with large variations. This relationship between the gain of a neuron and the standard
deviation of the input is a well-established experimental observation (see, e.g., Kvale and
Schreiner (2004); Bonin et al. (2006); Maravall et al. (2007); and references therein), and
is in effect analogous to the histogram equalization method for contrast adjustment.

Many standard distributions may be written in the form defined by Eq. (7.5), including
the normal distribution, the exponential, Laplace, and doubly exponential distributions,
and the logistic distribution, and in general an infinity of forms for the function g is
available. For this class of input distributions, if a neuron sets θ and γ according to

θ = µ + Θσ, (7.11)

γ = Γ
s

σ
, (7.12)

where the constants Θ and Γ determine the preferred operating point of a neuron, then
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a neuron remains at this operating point, with fR(r) exactly invariant in response to
changes in the mean and variance of the input distribution X. We have made explicit a
factor of s in Eq. (7.12) since scaling the response range s will scale the response gain γ

by the same factor. With s made explicit, Γ will then be independent of s and scale-free.

For a completely general form of input distribution fX(x), Eqs. (7.11) and (7.12) will
not suffice to maintain response PDF invariance. However, we propose that a neu-
ron nonetheless sets θ and γ according to Eqs. (7.11) and (7.12). First, these rules
are simple to implement. Second, they result in exact invariance for a large class of
input distributions including the normal distribution. Third, they ensure adaptation
to the lowest-order moments, µ and σ, of a distribution, albeit at the price of possible
non-invariance due to the higher-order moments of completely general distributions. We
might expect, in any event, that a neuron should not adapt perfectly to higher-order mo-
ments (but see Kvale and Schreiner (2004)), since such moments contain information of
importance to learning algorithms such as independent component analysis (Hyvärinen
et al., 2001).

The confounding influence of the higher-order moments m3, . . . on the invariance of fR(r)
in the presence of a general input distribution fX(x) can be confirmed by transforming
to the Z variable,

fR(r) =
dz(r)
dr

fZ(z(r))

=
1

4γσ

s2

r(s− r)
fZ

(
θ − µ

σ
− s

4γσ
log

(
s− r

r

))
. (7.13)

Of course, Eq. (7.13) is identical to Eq. (7.8), with the PDF of the Z-transformed input
fZ replacing g. However, for a general form of fZ , Eq. (7.13) is not invariant under
Eqs. (7.11) and (7.12) because the higher-order moments of Z are not invariant under
changes in µ and σ. To see this, we write fZ(z) to exhibit explicitly all its moments,

fZ(z) = fZ(z; 0, 1, m̃3, m̃4, . . .), (7.14)

where 0 and 1 are the first and second moments of Z, by definition, and the ith moment
of Z, m̃i, is just the ith central moment of X divided by σi, m̃i = µi/σi. Making explicit
the dependence of fR on θ and γ, we then may write

fR(r; θ, γ) =
1

4γσ

s2

r(s− r)
fZ

(
θ − µ

σ
− s

4γσ
log

(
s− r

r

)
; 0, 1, m̃3, . . .

)
, (7.15)

and under a change of statistics, µ → µ′, σ → σ′, m̃i → m̃′
i and adaptive changes θ → θ′,

γ → γ′, we have

fR′(r; θ′, γ′) =
1

4γ′σ′
s2

r(s− r)
fZ

(
θ′ − µ′

σ′
− s

4γ′σ′
log

(
s− r

r

)
; 0, 1, m̃′

3, . . .

)
. (7.16)
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Now, if a neuron implements Eqs. (7.11) and (7.12) in an attempt to maintain an
invariant output PDF, we have

fR(r; θ, γ) =
1
4Γ

s

r(s− r)
fZ

(
Θ− 1

4Γ
log

(
s− r

r

)
; 0, 1, m̃3, . . .

)
, (7.17)

fR′(r; θ′, γ′) =
1
4Γ

s

r(s− r)
fZ

(
Θ− 1

4Γ
log

(
s− r

r

)
; 0, 1, m̃′

3, . . .

)
, (7.18)

where Θ and Γ are, as above, constants, so that

fR(r; θ, γ)− fR′(r; θ′, γ′)

=
1
4Γ

s

r(s− r)

∞∑

i=3

(
m̃i − m̃′

i

) ∂fZ

∂m̃i

(
Θ− 1

4Γ
log

(
s− r

r

)
; 0, 1, ξ3, ξ4, . . .

)
,

(7.19)

for some values of ξi ∈ (m̃i, m̃
′
i). Hence, the attempt to maintain the invariance of fR is

contaminated by the possible changes in the higher-order moments of the Z-transformed
input distribution.

This contamination may arise from a number of sources. For a general distribution fZ ,
the higher-order moments m̃3, . . . will in general change when µ and σ are changed. Al-
though Eqs. (7.11) and (7.12) attempt to accommodate changes in µ and σ, these changes
will leak into the higher-order moments. However, for the specific form of distribution
fZ(z) = g(z) discussed above, the higher-order moments m̃3, . . . are independent of µ

and σ and hence are constants. Thus, for the form fZ = g, the invariance of fR is
exact precisely because the higher-order moments are, by construction, also invariant.
Another source of “contamination” could arise from distributions in which some of the
higher-order moments are independent degrees of freedom that may be freely changed
in an attempt to probe a neuron’s ability to adapt to higher-order moments (Kvale and
Schreiner, 2004; Bonin et al., 2006). In this case, of course, the non-invariance of fR is
explicit and direct, rather than implicit and indirect.

Despite the breakdown in exact invariance of fR(r) in the case of a completely general
input distribution fX(x), we see from Eq. (7.19) that the magnitude of the change in the
output PDF is controlled by the magnitude of the change in the higher-order moments.
Unless an input distribution exhibits a high degree of sensitivity to its higher-order
moments, we would thus not expect the non-invariance of fR to be too severe. Of course,
it is always possible to construct counter-examples to such arguments, but we might
expect naturally-occurring input statistics to be reasonably well-behaved (Simoncelli
and Olshausen, 2001).

So far, we have been concerned with how a neuron maintains its preferred operating
point in the face of changing input statistics by adapting its threshold θ and gain γ so
as to keep its output PDF fR invariant, or approximately invariant. In our approach,
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the operating point of a neuron is set by the two constants Θ and Γ in Eqs. (7.11)
and (7.12). We have thus not been concerned with how Θ and Γ are set by a neuron.
We now consider the possibility that Θ and Γ are set so as to maximise the entropy of
the output distribution R, given the sigmoidal transfer function in Eq. (7.3).

The output entropy S[R] is defined by

S[R] = −
∫

drfR(r) log fR(r), (7.20)

from which we have

S[R] = −
∫

dxfX(x) log
[

dx

dr(x)
fX(x)

]
. (7.21)

Writing

γ(x) =
dr(x)
dx

, (7.22)

the instantaneous gain of the neuronal response r(x) for input x, with γ(θ) ≡ γ at
semi-saturation, we then have

S[R] = S[X] + 〈log γ(x)〉X , (7.23)

where S[X] is the entropy of the input distribution and 〈〉X means an average over
the distribution X. If the response function is characterised by a set of adjustable
parameters pi, so that r(x) = r(x; pi), then we maximise the entropy S[R] with respect
to these parameters by evaluating the derivatives

∂S[R]
∂pi

=
〈

1
γ(x)

∂γ

∂pi
(x; pj)

〉

X

(7.24)

and setting them to zero. The derivative ∂γ(x; pj)/∂pi is the sensitivity of the instanta-
neous gain of the response function to the parameter pi. For the sigmoidal function in
Eq. (7.3), we have

γ(x) = γ sech2 2γ

s
(x− θ), (7.25)

depending on the two parameters θ and γ, from which we obtain the two conditions

∂S[R]
∂θ

=
4γ

s

∫
dxfX(x) tanh

2γ

s
(x− θ) = 0, (7.26)

∂S[R]
∂γ

=
1
γ
− 4

s

∫
dxx fX(x) tanh

2γ

s
(x− θ) = 0, (7.27)

and hence values of θ and γ that maximise S[R]. For the given values of µ and σ asso-
ciated with input X, we can then fix Θ and Γ from Eqs. (7.11) and (7.12). Of course, in
principle adaptation could take the form of determining θ and γ directly from Eqs. (7.26)
and (7.27), and thus of always being optimal, in the sense of achieving maximum output
entropy. However, if Θ and Γ are fixed once, perhaps over evolutionary or developmen-
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tal timescales, Eqs. (7.11) and (7.12) then afford an arguably computationally easier
method of remaining at, or near, maximum output entropy.

In the foregoing, we have allowed the possibility that X may contain noise from the
environment, from signal transduction processes, and from neuronal transmission, but
we have not considered the possibility that the output PDF could be contaminated by
noise. In fact, under a simple additive model of output noise, in which the actual output
distribution R is the sum of the noiseless output R0 and a noise source N , R = R0 +N ,
so that

fR(r) =
∫

dr0fR0(r0)fN (r − r0)

=
∫

dxfX(x)fN (r − r(x)), (7.28)

where fN is the PDF of the noise process, it is a simple matter to show that the rules
in Eqs. (7.11) and (7.12) follow directly after some transformations under the integral
sign. For example, if the input PDF fX(x) has the particular form in Eq. (7.5), we will
have fR0(r0) following Eq. (7.8). Substituting the expression of fR0(r0) into Eq. (7.28),
we can write fR(r) as

fR(r) =
∫

dr0
1

4γσ

s2

r0(s− r0)
g

(
θ − µ

σ
− s

4γσ
log

(
s− r0

r0

))
fN (r − r0), (7.29)

from which it is obvious that the same rules in Eqs. (7.11) and (7.12) will maintain
invariant fR(r). In the case of a general input distribution fX(x), we can write the PDF
of noiseless output as fR0(r0; θ, γ) and transform it to the Z variable [see Eq. (7.15)]. If
a neuron implements the rules in Eqs. (7.11) and (7.12), we have fR0(r0; θ, γ) following
Eq. (7.17), and thus

fR(r; θ, γ) =
∫

dr0
1
4Γ

s

r0(s− r0)
fZ

(
Θ− 1

4Γ
log

(
s− r0

r0

)
; 0, 1, m̃3, . . .

)
fN (r − r0),

(7.30)
where Θ and Γ are constants. Under a change in the statistics, µ → µ′, σ → σ′,
m̃i → m̃′

i, the neuron adapts the threshold and gamma θ → θ′, γ → γ′ to maintain an
(approximately) invariant output PDF,

fR′(r; θ′, γ′) =
∫

dr0
1
4Γ

s

r0(s− r0)
fZ

(
Θ− 1

4Γ
log

(
s− r0

r0

)
; 0, 1, m̃′

3, . . .

)
fN (r − r0).

(7.31)
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Accordingly, we have

fR(r; θ, γ)− fR′(r; θ′, γ′)

=
∫

dr0
1
4Γ

s

r0(s− r0)
∞∑

i=3

(
m̃i − m̃′

i

) ∂fZ

∂m̃i

(
Θ− 1

4Γ
log

(
s− r0

r0

)
; 0, 1, ξ3, ξ4, . . .

)
fN (r − r0),

(7.32)

for some values of ξi ∈ (m̃i, m̃
′
i), analogous to the noiseless case. On condition that

the input distribution are not highly sensitive to the higher-order moments, the neuron
would maintain an approximately invariant operating point. The adaptation rules in
Eqs. (7.11) and (7.12) are therefore also valid under the assumption of additive output
noise.

This additive model is a very simplified form of noisy response process. In general, other
forms are possible. For example, the noise term N might be a function of the mean of
the noiseless output R0. We have not considered these more general forms of noisy
responses.

7.2.2 Multimodal Inputs

Many neurons, both subcortical and cortical, receive input not from just one sensory
modality, but often from two or three distinct sensory modalities. For example, neurons
in the deep layers of the superior colliculus can receive and integrate visual, auditory and
somatosensory input. Each modality will be associated with its own intrinsic statistical
parameters, and these may vary independently of those in other modalities. Moreover,
different input sources may exhibit time-dependent correlations. A multimodal neuron
may therefore be expected to exhibit adaptation to all its various input sources. It is
natural, then, to consider extending the principles of adaptation in unimodal neurons
to multimodal neurons.

We therefore now turn to the case in which a neuron receives input from at least two
different sensory channels. For simplicity, we restrict to bimodal neurons, but our re-
sults generalise to the full, multimodal case. We therefore consider two input channel
distributions, X1 and X2 with PDFs fX1(x1) and fX2(x2) and means µ1 and µ2 and
variances σ2

1 and σ2
2, respectively. The correlation coefficient between the two channels

X1 and X2 is defined to be ρ. In general, of course, a joint PDF fX1X2(x1, x2) defines
the joint input distribution, with fX1(x1) and fX2(x2) being the marginal distributions.

For a unimodal input, we defined the response function in Eq. (7.3) so that the argument
of the tanh function is, up to factors, just γ(x− θ). We then derived rules for adapting
θ and γ to the input statistics based on the invariance of the output PDF fR(r). We
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have not discussed how a neuron instantiates its threshold θ and gain γ, and we have
also not discussed the implementation mechanism leading to adaptive changes in θ and
γ. Many mechanisms are implicated in adaptation to input statistics, both at the single
neuron level and the circuit level (Sanchez-Vives et al., 2000b; Rieke, 2001; Baccus and
Meister, 2002; Chance et al., 2002; Kim and Rieke, 2003; Shu et al., 2003; Dean et al.,
2005; Ingham and McAlpine, 2005; Arganda et al., 2007). If adaptation occurs at the
single neuron level, then information about the stimulus mean and standard deviation
must be available locally. If adaptation to stimulus statistics occurs for a neuron with
multimodal inputs, then locality demands that the statistics pertaining to a single input
channel are available only at that channel’s synapses onto the neuron, or at least at the
local dendritic level, rather than the whole neuron level, at which presumably all the
separate statistics for the individual input channels become merged and therefore lost.

Since we now wish to discuss the possibility of adaptation of a multimodal neuron to
the separate statistics of its different input channels, we will therefore write the response
function r(x1, x2), for a bimodal neuron, in the form

r(x1, x2) =
s

2

{
1 + tanh

2
s

[γ1(x1 − θ1) + γ2(x2 − θ2)]
}

, (7.33)

where the “thresholds” θ1 and θ2 and the “gains” γ1 and γ2 are now specific to each
input distribution X1 and X2 and permit adaptation according to only locally-available
information about each input. Of course, the θi and γi are no longer neuronal thresholds
and gains in the conventional, unimodal sense, but we retain this nomenclature because
of the clear analogy with the unimodal case.

Writing U = γ1X1 + γ2X2, γU ≡ 1 and θU = γ1θ1 + γ2θ2, the bimodal response function
in Eq. (7.33) can be reduced to an effective unimodal response function,

r(u) =
s

2

[
1 + tanh

2γU

s
(u− θU )

]
, (7.34)

where the effective neuronal input u takes values from the effective input distribution
U . The mean and variance of U are given by

µU = γ1µ1 + γ2µ2, (7.35)

σ2
U = γ2

1σ2
1 + γ2

2σ2
2 + 2γ1σ1γ2σ2ρ, (7.36)

respectively, where the correlation coefficient ρ appears in the expression for σ2
U . The

output PDF fR(r) is therefore given by

fR(r) =
du(r)

dr
fU (u(r)), (7.37)

where u(r) is the inverse function of r(u), given by an equation analogous to Eq. (7.6)
under the replacements θ → θU and γ → γU , and fU (u) is the PDF of the effective
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unimodal input U , determined from the joint PDF fX1X2(x1, x2). Since γU ≡ 1, fR(r)
can be written simply as

fR(r) =
s2

4r(s− r)
fU

(
θU − s

4
log

s− r

r

)
. (7.38)

This reduction allows us to write down, by analogy, the rules according to which the
separate channel thresholds and gains should be set to ensure the (perhaps approximate)
invariance of fR(r).

Adapting to the effective, unimodal input distribution U , and hence to the actual,
bimodal input distributions X1 and X2 is then achieved, according to our earlier rules
in Eqs. (7.11) and (7.12), by setting

θU = µU + ΘσU , (7.39)

γU = Γ
s

σU
, (7.40)

where the constants Θ and Γ determine, as usual, the preferred operating point of a
neuron. We therefore have

γ1(θ1 − µ1) + γ2(θ2 − µ2) = ΘΓs, (7.41)

γ2
1σ2

1 + γ2
2σ2

2 + 2γ1σ1γ2σ2ρ = Γ2s2. (7.42)

Eq. (7.42) defines, in general, an ellipse (or ellipsoid for the multimodal case) on which
solutions γ1 and γ2 of this equation exist. The semi-major and semi-minor axes of this
ellipse are set by σ1 and σ2, as well as by ρ. Thus, a general point on the ellipse will
be influenced by both σ1 and σ2, and hence the solution for γ1, say, will be influenced
by σ2. However, we have argued that information about the σi should only be available
locally, at or near the site of the synapses associated with the inputs Xi. Hence, the
gain associated with, say, input X1, γ1, should not be influenced, non-locally, by the
statistics of X2. We can achieve this by insisting that

γiσi = Γis, (7.43)

where the Γi are constants and, as usual, an overall scale is made explicit. In order
to ensure that each modality is mapped onto the same output dynamic range, we set
all these constants equal, so that Γi = Γ′, ∀i. Then, from Eq. (7.42), we have Γ′ =
Γ/

√
2(1 + ρ). Thus, the separate channel gains should be set according to

γi =
Γ√

2(1 + ρ)
s

σi
, (7.44)

providing solutions of Eq. (7.42) satisfying the principle of locality. The channel-specific
gains γi are therefore fixed locally, by the factor of 1/σi, but the overall scaling also
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depends on the correlation coefficient ρ. For the possible influence of correlations on
gain control, although not in a multimodal context, see Sharpee et al. (2006) and Lesica
et al. (2007). For the general, multimodal case, with n distinct channels, a sum of all
1
2n(n− 1) separate correlation coefficients between all distinct pairs of channels appears
in the denominator in Eq. (7.44). The overall scaling is a global factor affecting all gains
equally, and this global modification of the local gains could be achieved at the whole
neuron level, rather than at the local input level. Nonetheless, Eq. (7.44) does require
knowledge of the correlation coefficients. We shall discuss this in Chapter 9.

Turning to Eq. (7.41), since θU ≡ γ1θ1 + γ2θ2, we have

θU = γ1µ1 + γ2µ2 + ΘΓs. (7.45)

This equation defines the combined threshold θU and not θ1 and θ2 separately. However,
we defined the θi separately only for convenience, for the analogy to the unimodal case.
We see from Eq. (7.33) that only the combination θU is real, with θ1 and θ2 having
no independent meaning. θU may be regarded as the actual threshold of the neuron,
although in the multimodal case it does not specify the semi-saturation point, and
Eq. (7.45) sets this threshold uniquely.

In summary, in the bimodal case, the response function of the neuron is given by

r(x1, x2) =
s

2

[
1 + tanh

2
s

(γ1x1 + γ2x2 − θU )
]

, (7.46)

and if the separate channel gains γi are adapted locally according to Eq. (7.44) and
the pseudo-threshold θU is adapted according to Eq. (7.45), then the output PDF fR(r)
remains invariant, or approximately so. Thus, Eqs. (7.44) and (7.45) provide a means for
a bimodal neuron to adapt to the changing input statistics of two distinct input channels,
when these channels’ statistics vary either separately or simultaneously. Furthermore,
these results generalise directly to a multimodal neuron with more than two separate
input channels. Consider multiple input channel distributions, X1, ..., Xn with means
µ1, ..., µn and variances σ2

1, ..., σ
2
n, respectively, where n is the number of input channels.

The correlation coefficient between sensory channels Xj and Xk is denoted as ρjk. We
can then write the response function r(x1, ..., xn) for a multimodal neuron as

r(x1, ..., xn) =
s

2

[
1 + tanh

2
s

(
n∑

i=1

γixi − θU

)]
, (7.47)

where
γi =

Γ√
n + 2

∑
j>k ρjk

s

σi
, (7.48)

θU =
n∑

i=1

γiµi + ΘΓs . (7.49)
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Accordingly, a multisensory neuron adapting its response function under Eqs. (7.48)
and (7.49) maintains invariant or approximately invariant output PDF when the multi-
modal input statistics vary.

7.3 Examples of Adaptation in Model Neurons

First we consider the application of our adaptation rules to the case of a purely unimodal
neuron and show examples of adaptation, both perfect and imperfect, to changes in the
input mean and standard deviation. We then consider a bimodal neuron, and discuss in
particular adaptation to changes in the correlation coefficient, which is not an available
form of adaptation in the unimodal case.

7.3.1 Unimodal Inputs

We demonstrate the ability of the adaptation rules in Eqs. (7.11) and (7.12) to accom-
modate changes in the input statistics under noiseless condition. We consider a variety
of different input distributions, one demonstrating only approximate invariance of fR(r).

7.3.1.1 Logistic Distribution

We first consider the logistic or sech-squared distribution, defined by the PDF

fX(x) =
π

4σ
√

3
sech2 π

2
√

3

(
x− µ

σ

)
, (7.50)

where µ and σ2 are its mean and variance, respectively. Clearly fX(x) has a form for
which fZ(z) = g(z), with g(z) = π

4
√

3
sech2 π

2
√

3
z, so perfect adaptation of θ and γ to

changing µ and σ is possible. We consider the logistic distribution for two reasons.
First, it is frequently employed as an alternative to the normal distribution, in order to
simplify analysis (Johnson et al., 1995). Second, as mentioned above, it is the only input
distribution for which it is possible, in the presence of the sigmoidal response function
in Eq. (7.3), to generate an output distribution R that is uniform on [0, s], and hence
has the maximum entropy distribution, given the saturation constraint.

Since fR(r) = 1/s has maximum entropy on the bounded interval [0, s], we deduce that
Eqs. (7.26) and (7.27) are satisfied when

θ = µ, (7.51)

γ =
π

4
√

3
s

σ
, (7.52)
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from which we see that the constants Θ and Γ satisfy Θ = 0 and Γ = π
4
√

3
≈ 0.4534. The

scaling of the gain γ with the range of the response s was anticipated earlier, giving rise
to the scale-free definition of the constant Γ. This can be seen directly from Eqs. (7.26)
and (7.27).

In Fig. 7.1A, we set Θ = 0 and Γ = π
4
√

3
, corresponding to the maximum entropy

operating point. For µ = 10 and σ = 2, Eqs. (7.11) and (7.12) then induce a threshold
θ = 10 and gain γ = sΓ/2, and we set s = 10 without loss of generality. For these values
of the threshold and gain and fixed µ = 10, we plot the output PDF fR(r) corresponding
to three different values of σ: σ = 2, being the value to which θ and γ are adapted
according to Eqs. (7.11) and (7.12); and σ = 1 and σ = 3, to which the selected values of
θ and γ are not optimally adapted. For σ = 2, we see, as expected, that the output PDF
is uniform, which is the maximum entropy distribution on a bounded interval. Changing
σ away from σ = 2 without concomitant changes in θ and γ according to Eqs. (7.11)
and (7.12) moves the neuron away from its preferred operating point, resulting in output
PDFs that are non-uniform. We also set Θ = −0.5 and Γ = 0.4 in order to compare
adaptation and non-adaption for a preferred operating point away from the maximum
entropy point. For the same input mean µ = 10 and standard deviation σ = 2, the
induced values of the threshold and gain at the preferred operating point are now given
by θ = 9 and γ = 2. With these values of θ and γ, in Fig. 7.1B we again plot the output
PDF for the three values of σ, σ = 1, σ = 2 and σ = 3. The σ = 2 curve is, given Θ
and Γ, again the preferred operating point of the neuron. Of course, this PDF is now
no longer uniform. Without adapting θ and γ to accommodate the changes in σ, the
σ = 1 and σ = 3 curves show how the PDF drifts away from the preferred operating
point corresponding to the σ = 2 curve. Setting θ and γ appropriately would return the
PDFs to the curve for σ = 2.

In Fig. 7.2, we therefore show how adaptation of θ and γ according to Eqs. (7.11)
and (7.12) returns the output PDFs back to the two preferred operating points consid-
ered in Fig. 7.1. The two preferred operating points are shown, with thresholds and
gains set appropriately for σ = 2. When σ changes to σ = 1, the PDFs change. To
return the PDFs back to the preferred operating points, we must set θ and γ according
to Eqs. (7.11) and (7.12). Incrementing θ and γ from their initial values at σ = 2 to their
target values at σ = 1 shows how the output PDFs return to the preferred operating
points. We see that adaptation is in this case perfect, and does not depend on the details
of how the preferred operating point is set. In particular, when the preferred operating
point is initially set according to a maximum entropy principle, as shown in Fig. 7.2A,
adaptation restores the output PDF to the maximum entropy distribution in precisely
the same manner that it returns the output PDF to a non-optimal preferred operating
point, as shown in Fig. 7.2B. The use of Eqs. (7.11) and (7.12) thus avoids an explicit
recomputation of the maximum entropy point following a change in the input statistics.
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Figure 7.1: Output PDFs for a unimodal neuron in the presence of an input with a
logistic distribution. (A) The preferred operating point of the neuron is set by Θ ≡ 0
and Γ = π

4
√

3
, corresponding to a maximum entropy distribution. For µ = 10 and

σ = 2, the induced threshold and gain at the preferred operating point are θ = 10
and γ ≈ 2.27. The output PDFs are shown with these values of θ and γ for σ = 2
(PDF a, optimal), σ = 1 (PDF b, non-optimal) and σ = 3 (PDF c, non-optimal). (B)
The preferred operating point of the neuron is now set by Θ = −0.5 and Γ = 0.4,
corresponding to a preferred operating point away from maximum entropy. For µ = 10
and σ = 2, the induced threshold and gain at the preferred operating point are θ = 9
and γ = 2. PDFs a, b and c then show the resulting PDFs for the same values of σ in

part A, with σ = 2 again being the desired adapted case.
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Figure 7.2: Adaptation of a unimodal neuron back to its preferred operated point
following a change in its input variance, for an input with a logistic distribution. (A)
For the maximum entropy operating point shown in Fig. 7.1A, the neuron adjust its
gain to restore the PDF to the preferred distribution after σ changes from σ = 2 to
σ = 1. Because Θ ≡ 0 for this operating point, the threshold remains unchanged. PDF
a shows the original, preferred PDF with σ = 2, θ = 10 and γ ≈ 2.27. PDFs b–e have
σ = 1. The values of γ are: γ = 2.27 (PDF b); γ = 2.83 (PDF c); γ = 3.40 (PDF d);
γ = 3.97 (PDF e). The PDF for γ ≈ 4.53, the target value for σ = 1, is not shown,
since it is identical to PDF a. (B) The operating point in now that shown in Fig. 7.1B,
under the same change in σ as shown in part A. For this case, both the threshold and
the gain change in order to return the neuron to its preferred operating point. PDF a
shows the original, preferred PDF with σ = 2, θ = 9 and γ = 2. PDFs b–e have σ = 1.
The values of θ and γ are: θ = 9, γ = 2 (PDF b); θ = 9.125, γ = 2.5 (PDF c); θ = 9.25,
γ = 3 (PDF d); θ = 9.375, γ = 3.5 (PDF e). The PDF for θ = 9.5, γ = 4, the target

values for σ = 1, is again not shown.
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7.3.1.2 Normal Distribution

We now turn to the normal distribution, defined by the standard PDF

fX(x) =
1

σ
√

2π
exp

[
−1

2

(
x− µ

σ

)2
]

, (7.53)

again with mean µ and variance σ2, respectively. As with the logistic distribution, the
normal distribution can clearly be written in the form fZ(z) = g(z), permitting perfect
adaptation. Unlike the logistic distribution, the maximum entropy output distribution
R, given the sigmoidal response function in Eq. (7.3), must be determined explicitly
from the evaluation of the integrals in Eqs. (7.26) and (7.27). For the first integral, we
have that

∂S[R]
∂θ

=
1√
2π

4γ

s

∫ ∞

−∞
dz e−

1
2
z2

tanh
2γσ

s

(
z − θ − µ

σ

)
. (7.54)

Since exp(−z2/2) is even around z = 0, the integral can be made to vanish when we
choose the argument of the tanh function so that the tanh function is odd around z = 0.
This is possible only if θ = µ. Indeed, it is clear that for any input distribution that
is symmetric about its mean, we must set θ = µ in order to satisfy Eq. (7.26), which
implies that Θ ≡ 0. With Eq. (7.26) satisfied, Eq. (7.27) reduces to

Γ
∫ ∞

−∞
dz z e−

1
2
z2

tanh 2Γz =
√

π

8
, (7.55)

from which we must determine the solution for Γ numerically, resulting in Γ ≈ 0.4372
for the maximum entropy output PDF. Notice the similarity between this value of Γ
for the normal distribution and the value Γ = π

4
√

3
≈ 0.4534 for the logistic distribution,

confirming the utility of replacing a normal distribution by a logistic distribution for the
purposes of analytical tractability (Johnson et al., 1995).

Corresponding to the results in Fig. 7.1 for the logistic distribution, in Fig. 7.3 we exhibit
the preferred operating point of a neuron under the two choices, Θ = 0, Γ = 0.4372,
corresponding to the maximum entropy point (Fig. 7.3A), and Θ = −0.5, Γ = 0.4,
corresponding to an operating point away from maximum entropy (Fig. 7.3B). We also
show, as before, deviations from the preferred operating points as σ is changed without
corresponding adaptations in θ and γ. Fig. 7.4 shows the return of the output PDFs to
the two preferred operating points under adaptive changes in θ and γ. These results for
the normal distribution are qualitatively and in fact quantitatively very similar to those
for the logistic distribution, as expected from the similarity of these two distributions
(Johnson et al., 1995). The closeness of the σ = 2 curve in Fig. 7.3A, corresponding to
the maximum entropy distribution, to uniformity is remarkable.
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Figure 7.3: Output PDFs for a unimodal neuron in the presence of an input with a
normal distribution. (A) The preferred operating point of the neuron is set by Θ ≡ 0
and Γ ≈ 0.4372, corresponding to a maximum entropy distribution. For µ = 10 and
σ = 2, the induced threshold and gain at the preferred operating point are θ = 10 and
γ ≈ 2.19. The output PDFs shown are otherwise identical to those in Fig. 7.1A. The
format and parameters in (B) are identical to those in Fig. 7.1B, except that the normal

distribution replaces the logistic distribution.

7.3.1.3 Convolved Exponential Distribution

In considering a neuron with multimodal inputs below, it will be convenient to consider
the distribution defined by the PDF

fX(x) =
exp(−x/λ+)− exp(−x/λ−)

λ+ − λ−
, x ≥ 0, (7.56)

which is the distribution of a variable X defined as the sum of two independent, exponen-
tially-distributed variables X± with means λ±, respectively, so that X = X+ + X− and
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Figure 7.4: Adaptation of a unimodal neuron back to its preferred operated point
following a change in its input variance, for an input with a normal distribution. (A)
For the maximum entropy operating point shown in Fig. 7.3A, the neuron adjusts its
gain to restore the PDF to the preferred distribution after σ changes from σ = 2 to
σ = 1. PDF a shows the original, preferred PDF with σ = 2, θ = 10 and γ ≈ 2.19.
PDFs b–e have σ = 1. The values of γ are: γ = 2.19 (PDF b); γ = 2.73 (PDF c);
γ = 3.28 (PDF d); γ = 3.83 (PDF e). The format and parameters in (B) are identical to
those in Fig. 7.1B, except that the normal distribution replaces the logistic distribution.

its PDF is obtained from the convolution of the two exponential PDFs,

fX(x) =
∫ x

0
dy fX+(y)fX−(x− y). (7.57)

The mean and variance of X are given by µ = λ+ + λ− and σ2 = λ2
+ + λ2−, respectively.

Regarding µ and σ as the fundamental parameters, we can invert these relations to
obtain

λ± =
1
2

(
µ±

√
2σ2 − µ2

)
. (7.58)
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For this distribution to exist, we must have σ < µ <
√

2σ, so that the mean can only
take values defined in a range set by the standard deviation, and vice versa. Writing
q = µ/σ, so that 1 < q <

√
2, and transforming to the Z variable, we have

fZ(z) =
exp

[
−2(z+q)

q+
√

2−q2

]
− exp

[
−2(z+q)

q−
√

2−q2

]

√
2− q2

. (7.59)

We see that fZ(z) does not take the form g(z) considered earlier, because the ratio q,
depending on µ and σ, appears in fZ(z). Calculating directly the moments, we find, for
example, that although m̃1 = 0 and m̃2 = 1 (by construction), we have

m̃3 = q(3− q2), (7.60)

which is not invariant under independent changes in µ and σ. Considering the bounds on
q, m̃3 exists in the range [

√
2, 2]. Given this non-invariance, adapting θ and γ according

to Eqs. (7.11) and (7.12) will not, in general, result in an invariant output PDF fR(r).
However, if µ and σ are varied in such a way that their ratio q is constant, then we
do have invariance. Despite this general non-invariance, we will show, nonetheless, that
adapting θ and γ according to Eqs. (7.11) and (7.12) results in only a mild breakdown
in exact invariance.

We set µ = 10 and take a value σ = 8.5 [approximately midway in the allowed range
of σ of (5

√
2, 10)] and use Eqs. (7.26) and (7.27) to determine the values of θ and

γ corresponding to the maximum entropy output PDF for the convolved exponential
input PDF. For this input distribution, Eqs. (7.26) and (7.27) produce an assortment of
hypergeometric functions, 2F1 and 3F2, so we perform direct numerical searches for the
values of θ and γ that induce the maximum entropy output distribution for given input
mean and standard deviation. For µ = 10 and σ = 8.5, we find θ ≈ 8.68 and γ ≈ 0.60,
corresponding to values Θ ≈ −0.16 and Γ ≈ 0.51.

In Fig. 7.5A, we thus set Θ = −0.16 and Γ = 0.51, and for a fixed µ = 10, plot the
output PDF fR(r) for three different values of σ, σ = 8.5, giving the maximum entropy
distribution and defining the preferred operating point of the neuron, and σ = 7.5 and
σ = 9.5, moving the distribution away from the preferred operating point. Clearly, for
the convolved exponential distribution, the output PDF is very far from uniform on
[0, s]. Furthermore, we see that the full output range is not employed by the neuron.
This is a consequence of the semi-bounded nature of the input distribution, for which
we must have x ≥ 0. Hence, the output response can never fall below r(0), or

s

2

[
1− tanh

2γ

s
θ

]
. (7.61)

As the threshold and gain change, this lower limit changes, with this limit determined
by the product γθ. In Fig. 7.5B, we define a preferred operating point for the neuron
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away from the maximum entropy distribution by setting Θ = −0.5 and Γ = 0.4 as
usual. With threshold θ = 5.75 and gain γ = 8/17 ≈ 0.47, an input mean of µ = 10
and standard deviation σ = 8.5 again ensures that the neuron functions at its preferred
operating point. Shown is the output PDF corresponding to this preferred operating
point, together with the output PDFs corresponding to σ = 7.5 and σ = 9.5, for the
same, unadapted values of θ and γ. Because the product γθ is larger in Fig. 7.5A than
in Fig. 7.5B, we see that the output PDF is non-zero over a larger range of values in the
former case compared to the latter.

In Fig. 7.6, we show how adaptation of θ and γ according to Eqs. (7.11) and (7.12)
returns, or attempts to return the neuron to its preferred operating point when the
input statistics change. For the convolved exponential distribution, we know that when
the ratio q = µ/σ is held constant, perfect adaptation back to the preferred operating
point is possible. This is demonstrated in Fig. 7.6A, where the preferred operating point
is set by Θ = −0.5, Γ = 0.4 with θ = 5.75 and γ = 0.47 ensuring the preferred output
PDF when µ = 10 and σ = 8.5. Changing σ to σ = 7.5 with a concomitant change
in µ to µ = 8.8 to keep the ratio q constant then induces a threshold and gain set
by θ = 5.05 and γ = 0.53. Fig. 7.6A shows how the output PDF returns back to its
preferred operating point as θ and γ are changed from their initial values at µ = 10 and
σ = 8.5 to their target values at µ = 8.8 and σ = 7.5. As expected, exact restoration of
the PDF is possible for fixed q. In Fig. 7.6B, however, we change σ to σ = 7.5 but hold
µ fixed, so that the ratio q is not constant. Adaptation back to the preferred operating
point should now be compromised by the non-invariance of the higher-order moments
of the convolved exponential distribution. Under Eqs. (7.11) and Eq. (7.12), the target
values for θ and γ with µ = 10 and σ = 7.5 are θ = 6.25 and γ = 0.53. We see, however,
that adapting θ and γ to their target values defined by Eqs. (7.11) and (7.12) does not
return the output PDF to the neuron’s preferred operating point.

Despite this expected, general non-invariance of the output PDF fR(r) for convolved
exponential input, it is natural to wonder whether adaptation according to Eqs. (7.11)
and (7.12) is better than not adapting θ and γ at all. To this end, we determine the
extent to which adaptation according to Eqs. (7.11) and (7.12) is able to track the
maximum entropy distribution governed by the solutions of Eqs. (7.26) and (7.27), and
compare this to the deviation induced in the absence of adaptation of θ and γ to changes
in µ and σ. Thus, here, we regard the maximum entropy distribution as the preferred
operating point of a neuron, and determine the deviations from this preferred operating
point when either θ and γ are imperfectly adapted according to Eqs. (7.11) and (7.12)
or θ and γ are not adapted at all. For µ = 10 and σ = 7.2, the maximum entropy
operating point, from the solution of Eqs. (7.26) and (7.27) is set by θ ≈ 9.10 and
γ ≈ 0.66, inducing values Θ ≈ −0.13 and Γ ≈ 0.48. We increase σ up to its upper limit
of µ = 10 and for each value of σ, we compute three different output entropies. First,
we determine the new, maximum output entropy values of θ and γ from Eqs. (7.26)
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Figure 7.5: Output PDFs for a unimodal neuron in the presence of an input with a
convolved exponential distribution. (A) The preferred operating point of the neuron is
set by Θ = −0.16 and Γ = 0.51, corresponding approximately to a maximum entropy
distribution. For µ = 10 and σ = 8.5, the induced threshold and gain at the preferred
operating point are θ = 8.68 and γ = 0.60. The output PDFs are shown with these
values of θ and γ for σ = 7.5 (PDF a, non-optimal), σ = 8.5 (PDF b, optimal) and
σ = 9.5 (PDF c, non-optimal). (B) The preferred operating point of the neuron is now
set by Θ = −0.5 and Γ = 0.4, corresponding to a preferred operating point away from
maximum entropy. For µ = 10 and σ = 8.5, the induced threshold and gain at the
preferred operating point are θ = 5.75 and γ = 0.47. PDFs a, b and c then show the
resulting PDFs for the same values of σ in part A, with σ = 8.5 again being optimal.
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Figure 7.6: Examples of perfect and imperfect adaptation of a unimodal neuron in
the presence of an input with a convolved exponential distribution. The operating point
of the neuron is set as in Fig. 7.5B. (A) If the ratio µ/σ is held constant, then perfect
adaptation is possible. For µ = 10 and σ = 8.5, the induced values of the threshold
and gain are θ = 5.75 and γ = 0.47, corresponding to PDF a. With µ = 8.8 and
σ = 7.5, but θ and γ held constant, the PDF moves to b. If θ and γ are moved towards
their target values for µ = 8.8 and σ = 7.5, the PDF returns to that in a: θ = 5.575,
γ = 0.485 (PDF c); θ = 5.4, γ = 0.5 (PDF d); θ = 5.225, γ = 0.515 (PDF e). (B) If µ
is instead held fixed at µ = 10, while σ moves to σ = 7.5, then exact invariance of the
output PDF is not possible. PDF a again shows the preferred operating point, with
θ = 5.75 and γ = 0.47. With θ and γ held constant, setting σ = 7.5 produces PDF b.
Moving θ and γ to their target values for σ = 7.5 does not return the PDF to PDF a:
θ = 5.875, γ = 0.485 (PDF c); θ = 6.0, γ = 0.5 (PDF d); θ = 6.125, γ = 0.515 (PDF e).
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Figure 7.7: Tracking the maximum entropy output PDF by adaptation according to
Eqs. (7.11) and (7.12), as σ varies, for a unimodal neuron with input drawn from a
convolved exponential distribution. Here the preferred operating point of the neuron
is defined functionally, as the maximum entropy output PDF. Adaptation according
to Eqs. (7.11) and (7.12) in this case is imperfect, but tracks the maximum entropy
distribution closely. In contrast, not adapting the output PDF quickly shifts the output

PDF away from the preferred, maximum entropy operating point.

and (7.27), and the associated value of Smax[R]. In this case, Θ and Γ are not fixed,
but determined functionally. Second, we determine the entropy, Sadapt[R], of the output
PDF when θ and γ are instead adapted according to Eqs. (7.11) and (7.12), so that Θ
and Γ are held constant. Finally, we calculate the output PDF entropy, Sno[R] when
θ and γ are held constant, so that there is no adaptation to the changing standard
deviation. The results are shown in Fig. 7.7. We see that adapting θ and γ according to
Eqs. (7.11) and (7.12), although not perfect, tracks the maximum entropy distribution
very closely, while the non-adapted distribution deviates from the target distribution to
a greater extent. It is worthwhile commenting that the maximum output entropy is here
not constant precisely because the output distribution cannot be made exactly invariant.
Were we to display a similar graph to this for the logistic distribution, however, Smax[R]
would remain constant as σ is varied, and the perfect adaptation present in that case
would ensure that Sadapt[R] = Smax[R] for all values of σ provided that equality is
established for any one value of σ.

7.3.2 Multimodal Inputs

We have seen that the multimodal input case can be reduced, mathematically-speaking,
to the unimodal input case by considering the effective input U = γ1X1+γ2X2 and adapt-
ing the channel-specific gains γi and the pseudo-threshold θU according to Eqs. (7.44)
and (7.45), respectively. Our presentation of the above results for the unimodal case
therefore in general completely characterises the multimodal results too. We thus discuss
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only briefly examples of the invariance of fR(r) in the presence of multimodal inputs for
illustrative purposes. Novel to the multimodal case is the possibility of adaptation to the
correlation coefficients between different modalities, so we focus on this case specifically.

7.3.2.1 Bivariate Normal Distribution

As perhaps the simplest, non-trivial example of a bivariate distribution, we suppose that
the two channel inputs are drawn from a bivariate normal distribution with joint PDF
fX1X2(x1, x2) given by

fX1X2(x1, x2) =
1
2π

1√
det Σ

exp
[
−1

2
(x− µ)T Σ−1(x− µ)

]
, (7.62)

where xT = (x1, x2), the superscript T denoting the transpose, µT = (µ1, µ2) and Σ is
the covariance matrix,

Σ =

(
σ2

1 σ1σ2ρ

σ1σ2ρ σ2
2

)
, (7.63)

where det Σ is its determinant. It is easy to see that the distribution of the effective,
unimodal input U is normal, with mean and variance given by Eqs. (7.35) and (7.36),
respectively. In order to determine the operating point corresponding to the maximum
entropy output distribution in the presence of a bivariate normal input distribution, we
must calculate the values of Θ and Γ determining this point for a univariate normal
input distribution.

The examination of the unimodal, univariate normal input case in Section 7.3.1.2 suffices
to understand the bimodal, bivariate normal input case. In the bimodal case, adaptation
of γ1 and γ2 according to Eq. (7.44) and θU according to Eq. (7.45) leads to the exact
invariance of fR(r) under changes in all the bivariate input statistics, including the
correlation coefficient ρ. Since the correlation coefficient does not appear in the unimodal
case studied earlier, we examine, in particular, adaptation to changes in ρ only, with the
means µ1 and µ2 and the variances σ2

1 and σ2
2 held constant.

In Fig. 7.8, we as usual consider two different operating points, the first (Fig. 7.8A)
corresponding to the maximum entropy distribution, with Θ ≡ 0 and Γ ≈ 0.4372 for
a univariate normal distribution, and the second (Fig. 7.8B) defined by Θ = −0.5 and
Γ = 0.4. We fix µ1 = 10, σ1 = 2, as for the univariate normal above, and then fix
µ2 = 8 and σ2 = 4 as representative values. We select an initial correlation coefficient of
ρ = −0.5. The preferred operating points then determine γ1, γ2 and θU via Eqs. (7.44)
and (7.45). We then decrease ρ to ρ = −0.9. Without adaptive changes in the γi and θU ,
the output PDFs moves away from the preferred operating points. As the γi and θU are
restored to their induced values according to Eqs. (7.44) and (7.45), the output PDFs
fR(r) return to the preferred operating points. Adaptation to changes in the correlation
coefficient in this bivariate normal input case is perfect.



Chapter 7 Adaptation in Sensory Neurons for Maintaining the Operating Point 139

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  2  4  6  8  10

f R
(r

)

r

A a
b
c
d
e

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  2  4  6  8  10

f R
(r

)

r

B a
b
c
d
e

Figure 7.8: Adaptation of a bimodal neuron to changes in the correlation coefficient
for inputs drawn from a bivariate normal distribution. (A) The preferred operating
point is set by Θ ≡ 0 and Γ = 0.4372, corresponding to a maximum entropy distribution.
For an initial correlation coefficient ρ = −0.5, the induced pseudo-threshold and gains
are set as θU = 30.60, γ1 = 2.19, γ2 = 1.09 (PDF a), defining the preferred PDF.
Changing the correlation coefficient to ρ = −0.9 while keeping the pseudo-threshold and
gains constant shifts the neuron from its preferred PDF (PDF b). Moving the pseudo-
threshold and gains to their target values for ρ = −0.9 restores the neuron’s output
PDF to its preferred point: θU = 40.07, γ1 = 2.86, γ2 = 1.43 (PDF c); θU = 49.52,
γ1 = 3.54, γ2 = 1.77 (PDF d); θU = 58.98, γ1 = 4.21, γ2 = 2.11 (PDF e). (B)
The preferred operating point of the neuron is set by Θ = −0.5 and Γ = 0.4, moving
the neuron away from a maximum entropy distribution. For an initial correlation
coefficient ρ = −0.5, the induced pseudo-threshold and gains are set as θU = 26, γ1 = 2,
γ2 = 1 (PDF a), defining the preferred PDF. Changing the correlation coefficient to
ρ = −0.9 while keeping the pseudo-threshold and gains constant shifts the neuron
from its preferred PDF (PDF b). Moving the pseudo-threshold and gains to their
target values for ρ = −0.9 restores the neuron’s output PDF to its preferred point:
θU = 34.65, γ1 = 2.62, γ2 = 1.31 (PDF c); θU = 43.31, γ1 = 3.24, γ2 = 1.62 (PDF d);

θU = 51.96, γ1 = 3.85, γ2 = 1.93 (PDF e).
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For the general multivariate normal input case with n inputs, there are n means, n

variances, and 1
2n(n−1) correlation coefficients. Adaptation to all n first-order moments

is accomplished through just one parameter, the pseudo-threshold θU . The n gains
γi permit adaptation to the variances of the n inputs. Although it is an immediate
consequence of the form of Eq. (7.44) in the general case, in which a sum of all the
correlation coefficients appears in the denominator, it is nonetheless remarkable that
adaptation to all 1

2n(n+1) second-order moments, consisting of n variances and 1
2n(n−1)

correlation coefficients, is possible with just n gain parameters.

7.3.2.2 Bivariate Exponential Distribution

As a final example of a bivariate input distribution to a bimodal neuron, consider a
bivariate exponential distribution, such as the Cowan distribution (Cowan, 1987). The
CDF of U is given by

FU (u) =
∫ u/γ1

0
dx1

∫ (u−γ1x1)/γ2

0
dx2 fX1X2(x1, x2), (7.64)

where fX1X2 is now the Cowan bivariate exponential PDF, and the PDF of U is

fU (u) =
1
γ2

∫ u/γ1

0
dx1 fX1X2

(
x1,

u− γ1x1

γ2

)
. (7.65)

If the separate input channels X1 and X2 have means λ1 and λ2, then we have µU =
γ1λ1 + γ2λ2 and σ2

U = γ2
1λ2

1 + γ2
2λ2

2 + 2γ1λ1γ2λ2ρ. It is therefore clear that µU 6= σU

unless ρ ≡ 1. Hence, with a bivariate exponential input, the effective unimodal input
U is not itself exponentially-distributed, except for the very particular choice ρ = 1.
This contrasts with the bivariate normal case considered above, for which U is always a
univariate normal distribution.

In order to determine fU (u), for simplicity we set ρ = 0, so that fX1X2(x1, x2) =
fX1(x1)fX2(x2), with X1 and X2 independent, exponentially-distributed inputs with
parameters λ1 and λ2. From Eq. (7.65), we then obtain

fU (u) =
exp[−u/(γ1λ1)]− exp[−u/(γ2λ2)]

γ1λ1 − γ2λ2
. (7.66)

We recognise this as the PDF of the convolved exponential distribution, with parameters
λ+ = γ1λ1 and λ− = γ2λ2, considered earlier. Hence, perfect adaptation is not possible
for a bimodal neuron receiving uncorrelated, exponentially-distributed inputs, despite
the fact that perfect adaptation is possible for a unimodal neuron receiving a single,
exponentially-distributed input. In general, of course, the distribution of the effective
input U will be very complicated, and fU will not take the form g discussed above for
perfect adaptation.
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7.4 Summary

Sensory neurons adapt to changes in the natural statistics of the environment through
processes such as gain control and firing threshold adjustment. It has been argued that
neurons early in sensory pathways adapt according to information-theoretic criteria,
perhaps maximising their coding efficiency or information rate. In this chapter, we
drew a distinction between how a neuron’s preferred operating point is determined and
how its preferred operating point is maintained through adaptation. We proposed that
a neuron’s preferred operating point can be characterised by the probability density
function (PDF) of its output spike rate, and that adaptation maintains an invariant
output PDF, regardless of how this output PDF is initially set. Considering a sigmoidal
transfer function, we derived simple adaptation rules for a neuron with one sensory input
that permit adaptation to the lower-order statistics of the input, independent of how the
preferred operating point of the neuron is set. Thus, if the preferred operating point is, in
fact, set according to information-theoretic criteria, then these rules maintain a neuron
at that point. Our approach generalises from the unimodal case to the multimodal
case, for a neuron with inputs from distinct sensory channels. We also presented several
examples of input distributions for a neuron functioning at different preferred operating
points, both unimodal and bimodal.



Chapter 8

Impact of Adaptation on

Multisensory Integration

We have proposed in Chapter 7 an adaptation rule for both unimodal and multimodal
neurons. Based on this rule, we discuss in this chapter the possible influences of multi-
modal input statistics, including the mean, the variance and the correlation coefficient,
on the responses of an adapted multisensory neuron. This chapter is based on our paper
“Adaptation in Multisensory Neurons: Impact on Cross-Modal Enhancement” (Elliott
et al., 2008a).

8.1 Introduction

We have described in Chapter 2 how superior colliculus integrates visual, auditory and
somatosensory information. Most neurons in the deep layers of superior colliculus (DSC)
are multisensory, robustly exhibiting cross-modal enhancement (CME). In CME, the re-
sponse to a stimulus from one sensory modality is augmented by the presence of a
spatially coincident stimulus from another modality (Meredith et al., 1987; Stein and
Meredith, 1993; Meredith and Stein, 1996). Larger CME is generated by weaker stim-
uli, a property called inverse effectiveness (IE). It has been shown that deactivating the
anterior ectosylvian sulcus (AES) and the rostral lateral/ suprasylvian (rLS) areas by
cooling eliminates CME in DSC neurons (Jiang et al., 2001), indicating that these two
areas are indispensable for the integrative responses of DSC neurons. Moreover, DSC
neurons also exhibit modality-specific suppression (MSS), in which a response to a stim-
ulus is suppressed by another stimulus from the same sensory channel (Kadunce et al.,
1997).

The mechanisms underlying multisensory integration in DSC neurons remain unclear. In
Chapter 6, we have shown that a thresholded, saturating response function is sufficient to

142
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account for the generation of CME associated with IE and the additive response proper-
ties in DSC neurons. In a theoretical study, a model based on a Bayesian approach has
been proposed to account for multisensory integration (Patton and Anastasio, 2003).
However, the model explicitly employs a saturating, sigmoidal response function and
this, by itself, is enough to account for CME. Furthermore, although the model is able
to exhibit MSS, we have shown that the MSS property is quite sensitive to the statis-
tical parameters and in fact derives from the invertibility of the covariance matrix (see
Chapter 5). The Bayesian model therefore does not sufficiently and plausibly explain
the multisensory responses of DSC neurons.

We proposed in Chapter 7 an adaptation rule for multimodal neurons to adjust their
responses according to input statistics. Under this adaptation rule, a DSC neuron main-
tains an operating point precisely or approximately invariant in spite of the changes in
input statistics. Based on the adaptation rule, we present in this chapter results show-
ing the influences of prior adaptation to the input statistics, specifically, the mean, the
standard deviation and the correlation coefficient, on multisensory enhancement. For
the impact of adaptation to the mean, an increase of the mean is always associated
with an increasing CME for any input stimulus. For the standard deviation, we show
that the CME produced under a suitable selection of the input stimulus exhibits robust
decreases when the standard deviation is increased. For the coefficient correlation, we
demonstrate that the CME of a selected bimodal input decreases consistently when the
coefficient correlation becomes larger. Due to the robustness of these results, the under-
lying adaptation notion can be naturally verified by neurophysiological experiments.

8.2 The Role of Adaptation in Multisensory Responses

As indicated by our adaptation rule, the response of a neuron is a function of its adaptive
history, and therefore a neuron will respond differently to the same, given stimulus, for
different statistical histories. As a result, CME is influenced by the prior input statistics
to which a neuron has adapted. We now explore the impact of adaptation to prior input
statistics on the CME exhibited by a bimodal neuron.

8.2.1 The CME Measure

In order to quantify the extent of enhancement in a bimodal neuron, we employ the
standard CME index defined in Eq. (2.1),

%CME =
r(x1, x2)−max{r(x1, 0), r(0, x2)}

max{r(x1, 0), r(0, x2)} × 100%, (8.1)

where r(x1, x2) represents the bimodal response, and r(x1, 0) and r(0, x2) represent
the two unimodal responses, respectively. Here the spontaneous firing rates of the two
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sensory channels are not considered because they do not cause any qualitative difference
to the properties of the measure. Although other measures have been proposed and
employed (Populin and Yin, 2002; Laurienti et al., 2005; Stanford et al., 2005; Perrault
et al., 2005), most are very closely related and none presents real advantages over the
others (see Chapter 6).

Assuming that input X1 evokes the same or a larger response than input X2, i.e. r(x1, 0) ≥
r(0, x2), then we must have that γ1x1 ≥ γ2x2, or, equally, σ2x1 ≥ σ1x2 according to
Eq. (7.46). Since we have max{r(x1, 0), r(0, x2)} ≡ r(x1, 0), the CME index becomes

%CME =
r(x1, x2)− r(x1, 0)

r(x1, 0)
× 100%. (8.2)

In order to maximize the enhancement for a fixed value of x1, we therefore need to
make x2 as large as possible, subject to the constraint σ2x1 ≥ σ1x2. Maximum CME is
therefore achieved on the line x1σ2 = x2σ1. The same conclusion is drawn if we instead
assume that X2 evokes a larger response. This observation is required to understand
many of the results presented later.

To analyze how the CME index changes under the variation of the statistical param-
eters, such as the mean, the variance and the correlation coefficient, we differentiate
the expression of the CME index with respect to these parameters. For this, we firstly
rewrite Eq. (7.46) as

r(x1, x2) =
s

2
[1 + tanh 2Γ(z −Θ)], (8.3)

where
z =

1√
2(1 + ρ)

(
x1 − µ1

σ1
+

x2 − µ2

σ2

)
. (8.4)

Denote p ∈ {µi, σi, ρ} where i = 1, 2, we have

∂r

∂p
= sΓ sech22Γ(z −Θ)

∂z

∂p
. (8.5)

Since we have

s2

4
sech2θ =

[s

2
(1 + tanh θ)

] [s

2
(1− tanh θ)

]

=
[s

2
(1 + tanh θ)

] [
s− s

2
(1 + tanh θ)

]
, (8.6)

Eq. (8.5) can be transformed into

∂r

∂p
=

4Γ
s

r(s− r)
∂z

∂p
. (8.7)

We also denote bimodal response B = r(x1, x2), unimodal responses U1 = r(x1, 0) and
U2 = r(0, x2) with

zB =
1√

2(1 + ρ)
(
x1 − µ1

σ1
+

x2 − µ2

σ2
), (8.8)
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z1 =
1√

2(1 + ρ)
(
x1 − µ1

σ1
− µ2

σ2
), (8.9)

and
z2 =

1√
2(1 + ρ)

(−µ1

σ1
+

x2 − µ2

σ2
) (8.10)

respectively. According to Eq. (8.7), we then obtain

∂B

∂p
=

4Γ
s

B(s−B)
∂zB

∂p
, (8.11)

∂U1

∂p
=

4Γ
s

U1(s− U1)
∂z1

∂p
(8.12)

and
∂U2

∂p
=

4Γ
s

U2(s− U2)
∂z2

∂p
, (8.13)

where p ∈ {µi, σi, ρ}.

To study the two CME indices for U1 ≥ U2 and U1 < U2, we consider C1 = B
U1

and
C2 = B

U2
respectively. Since we are concerned with how the CME index changes with

respect to the statistical parameters, we differentiate C1 and C2 with respect to p and
obtain

∂C1

∂p
=

U1
∂B
∂p −B ∂U1

∂p

U2
1

(8.14)

and
∂C2

∂p
=

U2
∂B
∂p −B ∂U2

∂p

U2
2

. (8.15)

Accordingly, the signs of

N1 = U1
∂B

∂p
−B

∂U1

∂p
(8.16)

and
N2 = U2

∂B

∂p
−B

∂U2

∂p
(8.17)

determine whether the CME indices increase or decrease. In the following sections, we
thus consider N1 and N2 when p refers to the mean µ1, the standard deviation σ1 and
the correlation coefficient ρ.

8.2.2 General Properties of CME under the Adaptation Rule

We have shown in Chapter 6 that a sigmoidal function is capable of producing CME
associated with the property of IE. We here demonstrate the same properties when the
sigmoidal response function of a neuron is adjusted under our adaptation rule. According
to Eqs. (7.46), (7.44) and (7.45), changes in the constant Θ shift the response threshold
and changes in the constant Γ affect the slope. Since the choice of these two constants
does not qualitatively influence the results, we set them as Θ = 0.5 and Γ = 0.4 for
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Figure 8.1: The neuronal response and CME as a function of the bimodal input
stimulus for x1 = x2. The preferred operating point of the neuron is set to Θ = 0.5 and
Γ = 0.4. The input means are set by µ1 = 15 and µ2 = 10, the standard deviations
by σ1 = 4 and σ2 = 6, and the correlation coefficient by ρ = 0.2. (A) The neuronal

response curve. (B) The CME curve.

concreteness. In addition, because the results are also robust to the setting of the
statistical parameters, we choose some typical values and set the means as µ1 = 15 and
µ2 = 10, the standard deviations as σ1 = 4 and σ2 = 6, and the correlation coefficient as
ρ = 0.2. The scale s is set without loss of generality as s = 1. According to Eqs. (7.44)
and (7.45), we then have γ1 ≈ 0.0645, γ2 ≈ 0.0430, θU ≈ 1.5986. In Figs. 8.1A and 8.1B,
we plot the curves of the response as well as the CME index with respect to equivalent
inputs x1 = x2. As shown in Fig. 8.1B, the CME index for x1 = x2 reaches its maximum
at around x1 = x2 = 14 and then gradually decreases as the magnitudes of x1 and x2

increase, in accordance with the property of IE observed in DSC neurons.

The changes in the CME index are complicated when several statistical parameters
are varied at the same time. To demonstrate this, contours of the CME index in the
x1 − x2 bimodal input plane are produced under the same parameters as Fig. 8.1. In
Fig. 8.2A, we see a core of strongly enhancing input values, with the contours skewed
by the relative difference in the standard deviations of the two inputs. It is evident from
the contours that the point of maximum enhancement lies on the line x1σ2 = x2σ1. The
“kinks” in the contours are due to the definition of the CME index switching between the
larger of the two unimodal responses, leading to discontinuities in the first derivatives.
Fig. 8.2B shows a new set of CME index contours produced with different statistical
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Figure 8.2: Two CME contour sets in the bimodal x1 − x2 input plane for differing
statistical parameters. The preferred operating point of the neuron is set to Θ = 0.5
and Γ = 0.4. (A) CME contours with the same statistical parameters as in Fig. 8.1. (B)
CME contours with input means µ1 = 15, µ2 = 5, standard deviations σ1 = 8, σ2 = 4

and correlation coefficient ρ = −0.4.

parameters where the input means are set as µ1 = 15, µ2 = 5, the standard deviations
are set as σ1 = 8, σ2 = 4 and the correlation coefficient is set as ρ = −0.4. Comparing
Fig. 8.2A with Fig. 8.2B, we can see that, although the discontinuities are still along the
maximum enhancement line x1σ2 = x2σ1, the position and appearance of the contours
have changed dramatically and it is not easy to deduce the impact of input statistics
on CME in this case. For clarity, therefore, we instead adopt the strategy of changing
each of the input statistical parameters in turn (µ1, σ1 and ρ without loss of generality)
and explore their individual influences on CME. Furthermore, in order to avoid clutter
in figures, we specifically select a characteristic CME contour, for example, the 100%
CME contour, and only examine the changes in this contour according to the variation
of input statistics.
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8.2.3 Impact of Adaptation to Mean on CME

Electrophysiological results have shown that retinal adaptation is regulated based on the
mean level of illumination (Shapley and Enroth-Cugell, 1984). Similarly, in Eqs. (7.44)
and (7.45), we can see that a neuron adapts its threshold according to the inputs’
means. As a result, the two input means affect both the neuron’s unimodal and bimodal
responses, and consequently the CME measure as well. Here we present explicit results
to demonstrate this effect.

Consider Eqs. (8.16) and (8.17) when p = µ1. To calculate Nµ
1 for Eq. (8.16), we first

obtain
∂zB

∂µ1
=

∂z1

∂µ1
=

∂z2

∂µ1
= − 1

σ1

√
2(1 + ρ)

. (8.18)

Substituting Eqs. (8.11) and (8.12) for p = µ1 into Eq. (8.16), we get

Nµ
1 =

4Γ
s

[
U1B(s−B)

∂zB

∂µ1
− U1B(s− U1)

∂zB

∂µ1

]

= − 4Γ
sσ1

√
2(1 + ρ)

U1B(s−B − s + U1)

=
4Γ

sσ1

√
2(1 + ρ)

U1B(B − U1). (8.19)

Similarly, we can obtain the formula for Nµ
2 ,

Nµ
2 =

4Γ
sσ2

√
2(1 + ρ)

U2B(B − U2). (8.20)

Since B ≥ U1 and B ≥ U2, we have Nµ
1 ≥ 0 and Nµ

2 ≥ 0. Therefore, CME always
increases when µ1 increases.

Since the choices of statistical parameters do not qualitatively influence the results below
for adaptation to the mean µ1, we set the other parameters as earlier in Fig. 8.1. In
Fig. 8.3, we show three contours representing a CME index of 100% generated for three
values of µ1 corresponding to µ1 = 10, 15 and 20. From the figure, we can see an
expanding contour as µ1 increases. As shown in Fig. 8.2, the closer a point in the
x1 − x2 input plane is to the centre of the core of the contours, the larger the CME
index it induces. An expanding contour therefore indicates that every point in the
x1 − x2 input plane has an increasing CME index as µ1 increases. This corresponds
to the above analysis. According to Eq. (7.46), in which the mean µ1 affects only the
threshold θU , as µ1 increases, a fixed bimodal input stimulus is moved into the inverse
effectiveness region of the sigmoidal function where larger enhancement is induced and
thus the enhancement increases. Consequently, the contour representing the same value
of the CME index expands.

We now show how adaptation to the mean µ1 affects CME in a bimodal neuron for
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Figure 8.3: Contours representing a CME index of 100% in the bimodal input plane
x1 − x2 for µ1 = 10, 15 and 20. The other parameters are set the same as in Fig. 8.1.

a given input stimulus. We first show how the CME index changes when a bimodal
neuron has adapted to different µ1 for an arbitrarily selected input stimulus. As shown
in Fig. 8.4, we see that the CME index consistently increases as µ1 increases from 0 to
25 for a bimodal stimulus x1 = 25, x2 = 12. To demonstrate that the same changes
in the CME index are observed for other bimodal stimuli in the x1 − x2 input plane,
we select four typical points corresponding to fixed values of the input stimuli x1 and
x2, and produce the corresponding CME curves as µ1 is increased. These four points
are selected based on a comparison with the initial means to which the neuron has
adapted (in this case, the initial means are µ1 = 15 and µ2 = 10). They represent
four bimodal stimuli, one where x1 is comparable to the initial mean µ1 = 15 and x2 is
comparable to the initial mean µ2 = 10 (a “mean-mean” bimodal stimulus); where x1

is small compared with µ1 and x2 is large compared with µ2 (a “small-large” bimodal
stimulus); where both x1 is large compared with µ1 and x2 is large compared with
µ2 (a “large-large” bimodal stimulus); where x1 is large compared with µ1 and x2 is
small compared with µ2 (a “large-small” bimodal stimulus). We consider a mean-mean
bimodal stimulus instead of a “small-small” bimodal stimulus because it is clear that
when the magnitude of an input stimulus is much lower than the mean (x1 ¿ µ1 = 15
and x2 ¿ µ2 = 10), both the unimodal and bimodal responses to this stimulus vanish
and are therefore experimentally undetectable. As shown in Fig. 8.5, all four bimodal
input stimuli have an increasing CME when µ1 is increased, demonstrating that this
dependence of CME on adaptation is robust and independent of the input stimulus.
Among the four typical examples of bimodal stimuli shown in Fig. 8.5, the mean-mean
bimodal stimulus is preferable in an experiment because it produces evident CME for
every µ1 and the changes in CME are significant (Fig. 8.5A).
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Figure 8.4: CME as a function of µ1 for an arbitrarily selected bimodal stimulus given
by x1 = 25, x2 = 12. The other parameters are set the same as in Fig. 8.1.
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Figure 8.5: CME as a function of µ1 for four typical bimodal stimuli. The other
parameters are set as Fig. 8.1. The four bimodal stimuli are: (A) a mean-mean bimodal
stimulus, x1 = 16, x2 = 12; (B) a small-large bimodal stimulus, x1 = 5, x2 = 35; (C) a
large-small bimodal stimulus, x1 = 30, x2 = 5; (D) a large-large stimulus, x1 = 30, x2 =
35. Here “large” and “small” refer to a comparison with the initial means µ1 = 15 and
µ2 = 10 for inputs x1 and x2, respectively. A mean-mean bimodal stimulus refers to

one with magnitudes comparable to the initial means µ1 = 15 and µ2 = 10.
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8.2.4 Impact of Adaptation to Standard Deviation on CME

Contrast gain control, demonstrating adaptation to the stimulus standard deviation,
has been widely observed in the visual system (Truchard et al., 2000; Chander and
Chichilnisky, 2001; Baccus and Meister, 2002; Solomon et al., 2004; Bonin et al., 2006).
Here, we suggest that multisensory neurons adapt their modality-specific gains based
on multimodal input statistics including the standard deviation of the sensory channels
[Eqs. (7.44) and (7.45)]. We thus now explore the potential role that adaptation to the
stimuli’s standard deviations plays in multisensory integration of DSC neurons.

Consider Eqs. (8.16) and (8.17) when p = σ1. Similar to the case of adaptation to the
mean, we first derive

∂zB

∂σ1
=

∂z1

∂σ1
= − x1 − µ1

σ2
1

√
2(1 + ρ)

(8.21)

and
∂z2

∂σ1
=

µ1

σ2
1

√
2(1 + ρ)

. (8.22)

We then consider the sign of Nσ
1 when U1 ≥ U2, or equally, x2 ≤ σ2

σ1
x1. Substituting

Eqs. (8.11) and (8.12) for p = σ1 into Eq. (8.16), we have

Nσ
1 =

4Γ
s

U1B

[
(s−B)

∂zB

∂σ1
− (s− U1)

∂z1

∂σ1

]

= U1B
4Γ

sσ2
1

√
2(1 + ρ)

(B − U1)(x1 − µ1). (8.23)

It is obvious that the sign of Nσ
1 depends on x1 − µ1. If x1 < µ1, we have Nσ

1 < 0
and CME decreases, and if x1 ≥ µ1, we have Nσ

1 > 0 and CME increases, subject to
x2 ≤ σ2

σ1
x1. On the other hand, if U1 < U2, or when x2 exceeds σ2

σ1
x1, we need to consider

Nσ
2 . Substituting Eqs. (8.11) and (8.13) into Eq. (8.17), we obtain

Nσ
2 =

4Γ
s

U2B

[
(s−B)

∂zB

∂σ1
− (s− U2)

∂z2

∂σ1

]

=
4Γ

sσ2
1

√
2(1 + ρ)

U2B [−(s−B)(x1 − µ1)− (s− U2)µ1]

=
4Γ

sσ2
1

√
2(1 + ρ)

U2B [(B − s)x1 − (B − U2)µ1] . (8.24)

According to Eq. (8.24), the sign of Nσ
2 depends on the linear function f(x1) = (B −

s)x1 − (B − U2)µ1. When x1 = 0, we have f(0) = −(B − U2)µ1 ≤ 0. Moreover, since
we have the slope B − s ≤ 0, f(x1) decreases monotonically when x1 increases. We
therefore know that the linear function f(x1) ≤ 0 for x1 ≥ 0. Accordingly, we have
Nσ

2 ≤ 0, indicating that the CME index decreases when x2 ≥ σ2
σ1

x1. As a result, we can
characterize the dynamics of the changes in CME with respect to σ1 into three regions.
Fig. 8.6 shows these three regions I, II and III separated by the two lines x2 = σ2

σ1
x1 and

x1 = µ1 with x2 ≤ σ2
σ1

x1.
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Figure 8.7: Contours representing a CME index of 100% in the bimodal input plane
x1 − x2 for σ1 = 4, 6 and 8. The other parameters are set the same as in Fig. 8.1.

We now show three contours representing a CME index of 100% for standard deviation
σ1 = 4, 6 and 8 in Fig. 8.7, with other parameters set as earlier in Fig. 8.1. The
contour corresponding to 100% CME index rotates clockwise with the increase in σ1.
This property can be understood from the position of the line x1σ2 = x2σ1 on which
maximum CME occurs. As σ1 increases, the slope σ2/σ1 of the line decreases, and thus
the maximum CME line rotates clockwise, corresponding to the rotation of the contour.
Furthermore, we can see that there are crossings between the three contours, indicating
that the changes in the CME index due to adaptation to the standard deviation are
not consistent over the whole x1 − x2 input plane, in comparison to the contours for
adaptation to the means in Fig. 8.3. These properties correspond to the three regions
in Fig. 8.6.
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Figure 8.8: CME as a function of σ1 for four typical bimodal stimuli. The other
parameters are set as in Fig. 8.1. The four bimodal stimuli are: (A) a mean-mean
bimodal stimulus, x1 = 16, x2 = 12; (B) a small-large bimodal stimulus, x1 = 5, x2 =
30; (C) a large-small bimodal stimulus, x1 = 25, x2 = 5; (D) a large-large bimodal
stimulus, x1 = 25, x2 = 30. The meanings of these four bimodal stimuli are the same

as indicated in the caption of Fig. 8.5.

To show the dynamics of the changes in CME induced by an increase in the standard
deviation σ1, we again produce the CME curves as a function of σ1 for four typical points
in the x1 − x2 input plane including a mean-mean bimodal stimulus (x1 = 16, x2 = 12);
a small-large bimodal stimulus (x1 = 5, x2 = 30); a large-large bimodal stimulus (x1 =
25, x2 = 30); a large-small bimodal stimulus (x1 = 25, x2 = 5), where the means are
µ1 = 15, µ2 = 10. As shown in Fig. 8.8, the dynamics of CME appear to be complicated.
It is therefore necessary to decide which of these stimuli would be suitable as probes
to study the impact of adaptation to standard deviation on CME in neurophysiological
experiments. Here the suitability of a test stimulus is determined by its ability to produce
a consistent increase or decrease in CME as σ1 is varied, as well as the robustness of the
results to changes in other parameters, leading to a set of reliable predictions relatively
insensitive to parameter choices.

In Fig. 8.8A, we can see that the dependence of CME on σ1 for the mean-mean bimodal
stimulus is not monotonic. CME first increases, reaching its maximum at σ1 = 8, and
then decreases afterwards. For this mean-mean bimodal stimulus, we have x1 = 16 >

µ1 = 15. However, according to Fig. 8.6, we can see that the changes in the CME
index with respect to σ1 depends on where the bimodal stimulus is in the input plane.
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When the bimodal stimulus (x1, x2) is in region I or III, increases in σ1 always result in
the decreases in CME. However, changes in CME might be non-monotonic if (x1, x2) is
in region II. This is because an increase in σ1 rotates the maximum line x1σ2 = x2σ1

clockwise, after which (x1, x2) might be in region I where the CME index decreases. In
fact, Fig. 8.8A corresponds to this case. Furthermore, the CME curve for the large-large
bimodal stimulus reaches its maximum point at σ1 = 5 (Fig. 8.8D), also exhibiting non-
monotonic changes. Similar to the mean-mean bimodal stimulus, this is because the
bimodal stimulus x1 = 25, x2 = 30 is initially in region II. Of course, for a large-large
bimodal stimulus that initially in region I, we would only observe decreases in the CME
index when σ1 increases (see Fig. 8.6). As a result, the non-monotonic dependence
of CME on σ1 renders the mean-mean bimodal stimulus and the large-large bimodal
stimulus unsuitable as test stimuli, as no consistent trend in CME is observed in these
cases.

In contrast, for the small-large bimodal stimulus, CME consistently decreases when σ1

increases (Fig. 8.8B). As we have discussed earlier, the maximum CME line x1σ2 = x2σ1

rotates clockwise when we increase σ1. However, it is obvious from Fig. 8.6 that a
small-large bimodal stimulus will always be in region I, where the CME index always
decreases, independent of the rotation of the maximum line. Therefore, for the points in
the region corresponding to small-large stimuli, we would expect a consistent decrease
in the CME index. Conversely, we see that, for a large-small bimodal stimulus, the
CME curve exhibits a robust increase with increasing standard deviation σ1 (Fig. 8.8C).
This is also obvious from Fig. 8.6 since a large-small bimodal stimulus is in region II
where the CME index increases. However, when the increase in σ1 is large enough, a
large-small bimodal stimulus can possibly be moved into region I, in which the CME
index decreases, resulting in non-monotonic changes in CME. Moreover, the changes
in the CME index for a large-small bimodal stimulus are relatively small (Fig. 8.8C).
Therefore, the appropriate test stimulus to produce robust and evident experimental
results is a small-large bimodal stimulus. Analogously, if the standard deviation σ2 is
increased instead of σ1, then the suitable test stimulus would be a large-small bimodal
stimulus. In the case that σ1 or σ2 is decreased rather than increased, we should still
select a small-large test stimulus for σ1 and a large-small test stimulus for σ2 to observe,
in this case, a robustly increasing rather than decreasing CME.

8.2.5 Impact of Adaptation to Correlation Coefficient on CME

Recent results indicate that correlations in natural visual scenes can play a role in the
adaptation of neurons in the visual pathway (Sharpee et al., 2006; Lesica et al., 2007). We
suggest that this phenomenon also applies to multisensory neurons, where gain control
is regulated by the correlation coefficient between two sensory channels. Accordingly,
multisensory integration in multisensory neurons is affected by the correlation coefficient,
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and we now study its influence on CME in bimodal DSC neurons based on the adaptation
rules given in Eqs. (7.44) and (7.45).

We now consider Eqs. (8.16) and (8.17) when p = ρ. We also obtain

∂zi

∂ρ
= − 1

2(1 + ρ)
zi, (8.25)

where i ∈ {B, 1, 2}. Substituting Eqs. (8.11) and (8.12) for p = ρ into Eq. (8.16), we
obtain
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subject to U1 ≥ U2, or x2 ≤ σ2
σ1

x1. To find the contour for ∆CME = 0, we set Nρ
1 = 0,

which gives us

(B − U1)
(

x1 − µ1

σ1
+

x2 − µ2

σ2

)
− (s− U1)

x2

σ2
= 0. (8.27)

The characterization of the dynamics for ∆CME with respect to ρ is not as clear as
the cases of adaptation to the mean and variance. However, as an approximation,
we consider when x1 and x2 are large enough so that B ≈ s. Substituting this into
Eq. (8.27), we can derive

x1 ≈ µ1 +
σ1

σ2
µ2 (8.28)

for x2 ≤ σ2
σ1

x1. When U1 ≤ U2, or x1 ≤ σ1
σ2

x2, we can derive Nρ
2 in an analogous way

and get
x2 ≈ µ2 +

σ2

σ1
µ1, (8.29)

subject to x1 ≤ σ1
σ2

x2 for ∆CME = 0. According to Eqs. (8.28) and (8.29), we can
obtain a quadrilateral-shaped region in which CME decreases and outside of which
CME increases after an increase in ρ (see Fig. 8.9).

To show the impact of adaptation to ρ on CME, we again set the other parameters
as earlier in Fig. 8.1. Fig. 8.10 shows the three contours representing a CME index of
100% when ρ is set to −0.3, 0.2 and 0.7. We can see that there are crossings between
the three 100% CME contours, in comparison to the case of adaptation to the mean.
As in the investigation of adaptation to the mean and the standard deviation, we again
study in the x1 − x2 input plane four typical probe stimuli representing a mean-mean
bimodal stimulus, a small-large bimodal stimulus, a large-large bimodal stimulus and a
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Figure 8.10: Contours representing a CME index of 100% in the bimodal input plane
x1−x2 for ρ = −0.3, 0.2 and 0.7. The other parameters are set the same as in Fig. 8.1.

large-small bimodal stimulus.

In the case of a small-large bimodal stimulus, the changes in CME are not consistent.
We select here two small-large bimodal stimuli x1 = 5, x2 = 25 and x1 = 8, x2 = 40 and
present the CME curves as a function of ρ (Fig. 8.11). For x1 = 5, x2 = 25, we observe a
significant decrease in CME (Fig. 8.11A). However, for x1 = 8, x2 = 40, CME increases,
although only slightly, when ρ becomes larger (Fig. 8.11B). As shown in Fig. 8.9, a
small-large bimodal stimulus can be either in the region I or the region II, in which the
changes in the CME index are different.

For a large-small bimodal stimulus, we would expect inconsistent changes in CME be-
cause it can also be in region I or region II (see Fig. 8.9). We select two large-small
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Figure 8.11: CME as a function of ρ for two small-large bimodal stimuli. The other
parameters are set the same as in Fig. 8.1. Note the differences in CME scales. The two
bimodal stimuli are given by: (A) x1 = 5, x2 = 25; (B) x1 = 8, x2 = 40. The meaning
of the “small-large” bimodal stimuli is the same as indicated in the caption of Fig. 8.5.

bimodal stimuli x1 = 21, x2 = 5 and x1 = 28, x2 = 6 and produce the corresponding
CME curves as a function of ρ in Fig. 8.12. For x1 = 21, x2 = 5, CME decreases when ρ

is increased (Fig. 8.12A). For x1 = 28, x2 = 6, however, we observe an increasing CME
(Fig. 8.12B). The trends in CME for these two stimuli are different, as expected.

Consider now the case for large-large bimodal stimuli. The CME curves as a function
of ρ for two large-large bimodal stimuli x1 = 21, x2 = 25 and x1 = 25, x2 = 30 are
shown in Fig. 8.13. In Fig. 8.13A, we see decreasing CME for the bimodal stimulus
x1 = 21, x2 = 25. In Fig. 8.13B, however, we observe slightly increasing CME for
x1 = 25, x2 = 30. This is again obvious from Fig. 8.9 since the bimodal stimulus
x1 = 21, x2 = 25 is in region II and the bimodal stimulus x1 = 25, x2 = 30 is in region I.

The small-large, large-small and large-large bimodal stimuli are likely to produce incon-
sistent results and are thus not suitable as test stimuli. In contrast, mean-mean bimodal
stimuli produce robust results. As an example, we choose two fixed, bimodal test stim-
uli, x1 = 14, x2 = 10 and x1 = 17, x2 = 12, and show their CME curves with respect
to the changes of ρ. We can see that the CME index consistently decreases for these
two stimuli (Fig. 8.14). This is because a mean-mean bimodal stimulus is guaranteed to
be in region II, in which the CME index always decreases. In an experiment to study
the influence of adaptation to the correlation coefficient on CME, we should therefore
choose a mean-mean bimodal test stimulus.
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Figure 8.12: CME as a function of ρ for two large-small bimodal stimuli. The other
parameters are set the same as in Fig. 8.1. Note the differences in CME scales. The two
bimodal stimuli are given by: (A) x1 = 21, x2 = 5; (B) x1 = 28, x2 = 6. The meaning
of the “large-small” bimodal stimuli is the same as indicated in the caption of Fig. 8.5.
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Figure 8.13: CME as a function of ρ for two large-large bimodal stimuli. The other
parameters are set the same as in Fig. 8.1. Note the differences in CME scales. The
two bimodal stimuli are given by: (A) x1 = 21, x2 = 25; (B) x1 = 25, x2 = 30. The
meaning of the “large-large” bimodal stimuli is the same as indicated in the caption of

Fig. 8.5.
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Figure 8.14: CME as a function of ρ for two mean-mean bimodal stimuli. The other
parameters are set the same as in Fig. 8.1. Note the differences in CME scales. The
two bimodal stimuli are given by: (A) x1 = 14, x2 = 10; (B) x1 = 17, x2 = 12. The
meaning of the “mean-mean” bimodal stimuli is the same as indicated in the caption

of Fig. 8.5.

8.3 Summary

Multisensory neurons in the deep layers of superior colliculus (DSC) integrate inputs
from different sensory modalities. The response of a DSC multisensory neuron to a
stimulus from a sensory channel is augmented in the presence of a stimulus from another
sensory channel. We have suggested in Chapter 7 that DSC multisensory neurons adapt
their responses according to the statistical properties of the multimodal inputs through
processes such as gain control and firing threshold adjustment. Based on the simple
adaptation rule proposed in Chapter 7 for the responses of DSC multisensory neurons,
we showed in this chapter how multisensory enhancement is affected by changes in the
input statistics to which a DSC neuron has adapted. We demonstrated, for example,
that an increase in the correlation coefficient robustly leads to a decrease in multisensory
enhancement for a suitable fixed, bimodal stimulus.



Chapter 9

Discussion

9.1 A Model of Multisensory Integration and its Extension

In this thesis, we have concentrated on the theoretical study of multisensory integra-
tion in DSC neurons. A large number of experiments have been conducted to explore
the responses of DSC neurons, discovering properties such as cross-modal enhancement
(CME), multisensory depression and modality-specific suppression (MSS) (Stein and
Meredith, 1993; Stein et al., 2004). In order to account for these reported response
properties, computational and mathematical models have also been proposed (Patton
and Anastasio, 2003; Anastasio and Patton, 2003; Schauer and Gross, 2004; Cuppini
et al., 2007). Despite extensive experimental and theoretical studies, the mechanisms
underlying multisensory integration remain unclear.

We started by analyzing a representative model proposed by Patton and Anastasio
(2003) to explain the CME and MSS properties of the responses of DSC neurons. The
central assumption of their model is that a DSC neuron computes the posterior prob-
ability of a target being present based on Bayes’ rule. A neural implementation of the
model has also been proposed based on an augmented perceptron for cross-modal inputs
following multimodal Gaussian distribution. In the augmented perceptron, the weights
and bias are determined by the statistics of the inputs, and the perceptron is shown
to exhibit CME. Patton and Anastasio (2003) argued that the covariances for within-
modality inputs are larger than those for cross-modal inputs, both when a target is
absent (the spontaneous case) and present (the driven case). Moreover, they suggested
that this larger spontaneous covariance for within-modality inputs contributes to the
occurrence of MSS, in which case no evident CME is exhibited. However, we found that
the model is sensitive to the choice of parameters. For example, our numerical studies
showed that the model evidently exhibits both CME and MSS for inputs with different
magnitudes when the spontaneous covariance is slightly less than the selected value (see
Chapter 5). In order to explore this result, we carried out a mathematical analysis and

160
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found that the MSS property is produced by the near-non-invertibility of the sponta-
neous covariance matrix when the spontaneous covariance approaches the variances, or
equally, the spontaneous correlation coefficient approaches one. Furthermore, we man-
aged to show that spontaneous correlation coefficient approaching one induces MSS for
bimodal inputs following any distribution, under equal spontaneous means, variances
and equal-valued inputs for different sensory channels, consistent with the selections in
Patton and Anastasio (2003). If the inputs or the statistical parameters are set to be
different, however, we can not observe MSS. It is clear that the model is sensitive to the
choice of parameters and inputs and is therefore not a biologically plausible model for
DSC neurons.

A new interpretation of multisensory responses of DSC neurons is thus required. There
have been many neurophysiological experiments indicating that the underlying opera-
tions of DSC neurons are complicated. For example, most of the neurons are found to
exhibit the CME property associated with IE, and their bimodal responses could be
sub-additive, additive or super-additive, compared to their unimodal responses (Stein
et al., 2004). It has also been shown that the response range for a bimodal stimulus is
larger than the corresponding unimodal stimuli for the same DSC neuron, and there are
four operational modes in different DSC neurons (Perrault et al., 2005). Despite this
diversity, we showed in Chapter 6 that a non-linear, saturating transfer function, such
as a sigmoidal function, is capable of exhibiting all these response properties, extending
the notion of Stanford et al. (2005). The CME property associated with IE, for example,
could be produced by the saturating property of the sigmoidal function, and the additive
properties are exhibited by the approximately linear response region around the inflec-
tion point of the function. Furthermore, the different dynamic ranges between unimodal
and bimodal stimuli or the four operational modes observed in DSC neurons could be
a direct consequence of prior saturation in the unimodal neurons earlier in the sensory
pathway (see Chapter 6). Accordingly, we adopted a sigmoidal response function in our
model for DSC neurons.

After confirming the importance of a sigmoidal response function in a DSC neuron to
reproduce their response properties, our next question was how the parameters of the
response function are determined. Inspired by the well-established experimental results
that unimodal sensory neurons adapt to the statistics of the inputs (see Chapter 3),
we proposed that the response function of a DSC neuron is also adjusted according
to the input statistics. We have suggested an adaptation rule for both unimodal and
multimodal neurons, under which a sensory neuron adapts its response to accommodate
only the mean and standard deviation of the input statistics and neglects the higher-
order moments. Defining the operating point as the output spike rate probability density
function, we showed that our adaptation rule maintains an invariant operating point for
a large class of input distributions, including the normal distribution, the exponential
distribution and the logistic distribution. For other distributions, an approximately
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invariant operating point can be achieved. One consequence of this idea is that, if a
neuron is, for example, originally at an operating point with maximum entropy, then by
adapting according to our adaptation rule, the neuron will stay precisely at or close to
the maximum entropy operating point, even if the input statistics change. We presented
several examples of input distributions for a neuron functioning at different operating
points, in which case their operating points are exactly or approximately maintained
under our adaptation rule.

With the adaptation rule, we were then able to investigate the impact of adaptation
to input statistics on multisensory integration in DSC neurons. For simplicity, we only
considered the bimodal case. We presented a mathematical analysis of the influences
of adaptation to different statistical parameters, including the mean, the variance and
the correlation coefficient, on the CME index, dividing the two dimensional input plane
into regions in which the CME index undergoes robust increases or decreases when the
corresponding statistical parameter increases. This indicates that, with a suitable choice
of input stimuli, we would expect to observe consistent changes in the CME index when
we manipulate the statistical properties of the stimuli. For example, we showed that an
increase in the correlation coefficient leads to a decrease in the CME index for a suitable
fixed bimodal stimulus. Because of the robustness of these results, they can be used to
verify our adaptation notion in neurophysiological experiments.

An implicit assumption of our adaptation rule is that the neuron is capable of estimating
the statistical parameters such as the means, the variances and the correlation coefficient
of the input stimuli. We have not explored how this estimation can be performed in a
sensory neuron. Analogous estimation problems have been considered in other fields such
as signal processing for time series analysis. For example, Papoulis (1991) introduced
a method to obtain an optimal estimation of the non-stationary mean by minimizing
the mean-square error. Implementation of this estimation, however, requires the whole
history of the signals and very complex computations at each time step. This is likely
to exceed the computational capability of a single neuron. Moreover, Dean et al. (2008)
have shown that auditory neurons in midbrain adapt faster to an increase in the mean
sound level than to a decrease, indicating the existence of an asymmetric adaptation to
the mean. It is thus desirable for a biologically plausible mechanism to reproduce this
adaptation property. In terms of adaptation to the variance, Smirnakis et al. (1997)
also showed that the adaptation time to an increased contrast is shorter than that to
a decreased contrast. To account for this asymmetric dynamics in contrast adaptation,
DeWeese and Zador (1998) proposed an optimal Bayesian estimator. In this estimator,
the probability P (σi|sj≤i) of the variance σi given the previous signals sj≤i is obtained
based on Bayes’ theorem, and the estimation of σi can then be computed under strategies
such as computing the mean of σi or selecting the σi with the maximum probability
according to P (σi|sj≤i). However, this estimator requires a neuron to adapt to several
probability distributions, such as P (si|sj<i, σi) and P (si|sj<i), in a short timescale in
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order to calculate P (σi|sj≤i). This is again probably not realistic for a neuron with
limited computational capability. On the other hand, “Brown’s exponential smoothing”
method only requires the instantaneous input rate and is applicable to the estimation
of all the moments (Brown and Meyer, 1961). Despite this simplicity, there are no
studies showing its ability to reproduce the adaptation properties in neurons, such as
the asymmetric dynamics in contrast adaptation. To study the way neurons estimate
the statistical parameters, more work is required.

To account for multisensory depression and MSS in DSC neurons, our adaptation rule
for the response function of a single neuron is not sufficient. We can take the lat-
eral interactions between DSC neurons into consideration and extend the model to a
population level. By modelling the responses of each neuron in the population with a
sigmoidal response function adjusted under our proposed adaptation rule, we can ex-
pect to observe both CME and multisensory depression in the model. Moreover, such a
population model can be further extended to a multi-level one to include the unisensory
input layers, in which the responses of unimodal neurons follow an adaptive sigmoidal
function. In this multi-level model, MSS is mediated on the unisensory layers, and we
suggest that the responses of unimodal neurons are also saturated so that DSC neurons
exhibit different dynamic ranges for unimodal and bimodal stimuli, in agreement with
the experimental results by Perrault et al. (2005). The structure of such a multi-level
population model would be similar to the neural network model proposed by Cuppini
et al. (2007).

Our adaptation model is also applicable to engineering implementations. One applica-
tion is to assist the orientation behaviour of a robot towards visual and auditory stimuli.
In contrast to the experiments by Rucci et al. (1999), in which the neural model main-
tains a consistent spatial mapping between different sensory modalities under altered
sensory experience, the focus of our model would be the robust performance of the
robot when the statistics of the inputs change. For example, when the noise in the
visual signals increase, the robot could still integrate the visual and auditory signals in
a sensible way so as to maintain a good orientation performance. This is also different
from the model proposed by Schauer and Gross (2004), in which the statistical prop-
erties of the inputs are not considered. Another possible application of our model is
image fusion, which refers to the process of combining several images to generate a new
one that is more informative than any of the original sources. Since our model weights
the inputs according to their statistical properties in the integration [see Eqs. (7.44)
and (7.45)], it is probably a sensible choice to fuse source images with different dynamic
ranges. These applications could reveal the advantages as well as the disadvantages of
the model and provide feedbacks to biological multisensory integration.
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9.2 Interpretation of Multisensory Responses

CME has been suggested to characterize multisensory integration in many experiments.
To model a DSC neuron that shows CME responses, we discussed in Chapter 6 that
nothing more complicated than a sigmoidal response function is required. A neuron
under a sigmoidal response function is capable of exhibiting CME associated with IE,
which naturally emerge from the intrinsic properties of the response function, comparable
to the notion of Stanford et al. (2005). For example, a stronger input stimulus is closer
to the saturating region of the response function than a weaker stimulus. The increase
in the response induced by the presence of another stimulus for the stronger input would
therefore be less than that for the weaker input.

Additivity properties in multisensory responses of DSC neurons have also been explored.
Systematic studies by Stanford et al. (2005) showed that a majority of DSC neurons ex-
hibit additive responses, that is, their responses to cross-modal stimuli are approximately
the sum of their responses to individual unimodal stimulus. As discussed in Chapter 6,
the method Stanford et al. (2005) adopted to characterize the additive properties is
not statistically sound. Nevertheless, their results indicated that the responses of DSC
neurons could be sub-additive, additive or super-additive. In addition to the CME prop-
erties, a neuron responding under a sigmoidal response function is also able to exhibit
these three kinds of responses. Since the second derivative of a sigmoidal response func-
tion at the inflection point x = θ is zero [see Eq. (6.3)], the changes in the slope around
x = θ is approximately zero. Inputs that are close to x = θ thus evoke an approximately
linear response, that is, the response f(θ + δx) ≈ f(θ) + γδx, where γ = f ′(θ) and is
the gain at semi-saturation. This region could be considered as the additive response
region. For x below the additive region, the slope of the response curve increases when x

increases, and the responses evoked by stimuli in this region are therefore super-additive.
On the other hand, for x above the additive region, the slope of the curve decreases to
zero when x increases, and the responses are thus sub-additive. In fact, we have shown
in Chapter 6 that the CME and the ADD measures are inherently correlated. It is
therefore not surprising that the sigmoidal response function can naturally account for
both the CME and additivity response properties.

Neurophysiological experiments by Perrault et al. (2005) showed that in DSC neurons
the dynamic ranges of responses to multimodal stimuli are larger than those to unimodal
stimuli. This result seems to contradict the notion that the responses of DSC neurons
could be modelled by a consistent saturating response function since there appears to
be dynamic modulations in the saturation level of a DSC neuron for unimodal and
multimodal stimuli. In fact, if we take into account possible prior saturation in the
unisensory neurons, whose outputs are the inputs to DSC neurons, the smaller response
range for unimodal stimuli might be the result of the saturated inputs DSC neurons
receive from those unimodal sensory neurons, in which case the DSC neurons themselves
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have not reached the saturation level. This interpretation could also be applied to
interpret the four seemingly diverse operational modes in DSC neurons, as proposed by
Perrault et al. (2005), according to which neurons are categorized into super-additive
neurons, super-additive/sub-additive neurons, sub-additive neurons and additive/sub-
additive neurons. These diverse response properties could be induced by prior saturation
in the unimodal sensory neurons that constrains the inputs to DSC neurons within
certain operational regions of the response function (see Chapter 6). For example, if a
unisensory neuron has a very small response range, the DSC neuron that receives inputs
from it will only respond in the super-additive region, in which case neither additive nor
sub-additive responses could be observed.

Although the sigmoidal response function itself is sufficient to account for most of the
reported CME and additivity properties in the responses of DSC neurons, some phe-
nomena such as multisensory depression and MSS cannot be explained only with a
sigmoidal response function. As discussed before, multisensory depression occurs when
cross-modal stimuli are spatially disparate, for example, when one stimulus is within the
receptive field (RF) of a neuron and the other is outside the RF (Kadunce et al., 1997).
The dependence on the spatial relation between cross-modal stimuli in the response
properties can be explained by the excitatory and inhibitory regions of the RFs of DSC
neurons. When both the stimuli are within the excitatory region of a DSC neuron, CME
occurs. However, if one stimulus is within the excitatory region while the other is in the
inhibitory region, multisensory depression occurs. Neurophysiologically, the excitatory
and inhibitory regions are determined by the lateral connections between DSC neurons.
For example, lateral connections between a neuron and its neighbouring neurons are ex-
citatory, while those between this neuron and neurons further away are inhibitory. This
short-range excitatory and long-range inhibitory form of lateral connections is typical
in neural models of the cortex. In such a structure, we can see that the mechanisms un-
derlying CME and multisensory depression are different: CME is mainly determined by
the saturating response function of a neuron, and multisensory depression is mediated
by lateral inhibitions within a population of neurons. This difference in the mechanisms
is also supported by the experiments exploring cortical influences from anterior ectosyl-
vian sulcus (AES) and the rostral aspect of the lateral suprasylvian sulcus (rLS) on DSC
responses, in which CME and multisensory depression exhibit different dependences on
AES and rLS: deactivation of AES/rLS results in the elimination of CME, but only
reduces multisensory depression (Jiang et al., 2001; Jiang and Stein, 2003).

Some experiments have also indicated that modality-specific suppression (MSS) and mul-
tisensory depression are again mediated by different mechanisms. For example, Kadunce
et al. (1997) found that MSS is more often observed than multisensory depression. They
observed that DSC neurons that exhibit multisensory depression also exhibit MSS. How-
ever, DSC neurons that exhibit MSS do not necessarily show multisensory depression.
Moreover, experiments on AES/rLS afferents to DSC neurons also indicate that the
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mechanisms underlying multisensory depression and MSS are different. Although influ-
enced by cortical deactivation, computation in DSC neurons for MSS remains relatively
the same (Alvarado et al., 2007), in contrast to the reduction in multisensory depres-
sion (Jiang and Stein, 2003). As suggested by Kadunce et al. (1997), one possibility
is that MSS is mediated at the unisensory level, from which DSC neurons inherit the
MSS property, while multisensory depression is, as discussed previously, mediated at
the multisensory level by lateral inhibitory connections between DSC neurons. Cuppini
et al. (2007) has proposed a neural network model as a first attempt to implement an
analogous idea.

In conclusion, a sigmoidal response function naturally accounts for many properties
relating to CME. However, to consider other properties such as multisensory depression
and MSS exhibited by DSC neurons, we need to extend the model from the single cell
level to the population level.

9.3 Implications for Neuronal Computation

In our adaptation rule, we have considered adaption only to the input mean and variance
because the sigmoidal response function employed here provides us with two degrees of
response freedom, making changes in the input mean and variance suitable targets for
adaptive changes in those two parameters (see Chapters 7). Evidence from neurons in
the inferior colliculus suggests that neurons may be able to adapt to moments higher
than the second (Kvale and Schreiner, 2004), although evidence from neurons in the
lateral geniculate nucleus suggests that contrast gain control is sensitive only to the input
mean and variance (Bonin et al., 2006). In order to admit adaptation to higher-order
moments in our approach, it would be necessary to consider a more general response
function characterised by more parameters. Of course, to allow perfect adaptation to
the potentially infinite number of independent moments of a completely general input
distribution, it would be necessary to consider an essentially arbitrary response function.

The extent to which a neuron can modify the functional relationship between its input
spike rate and its output spike rate is, however, unclear. A neuron can modify its thresh-
old and gain, but the input-output mapping is presumably not arbitrarily modifiable. It
is therefore unrealistic to assume, in a moment-orientated approach to adaptation, that
adaptation to more than a few moments is possible. The same issues, however, apply to
information-theoretic approaches. Assuming, for example, that the output response is
bounded, so that maximum output entropy is achieved with a uniform output probabil-
ity distribution, optimal adaptation is achieved by setting a neuron’s response function
proportional to the CDF of the input distribution (Laughlin, 1981). Over evolutionary
time, it is possible that such a mapping has been acquired by neurons in the presence
of natural stimuli. But can such neurons adapt to a rapid, dramatic change in their
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input distributions? An affirmative answer requires identical assumptions, in terms of
the freedoms assumed to be available in the response function characterisation, as a
moment-based view.

A view of adaptation based on moments of course requires that a neuron, or a circuit, can
estimate the moments of its input distribution. We have not discussed how that could
be achieved, nor the timescales on which changes in moments would affect a neuron’s, or
a circuit’s, estimates of them. It is a simple matter to build a model based on running
estimates of moments requiring access only to the instantaneous input rate, and we will
pursue this in future work. The higher the moment, however, the more complicated the
form for the running estimate, so it is probably unrealistic to assume that a neuron can
estimate more than a handful of the lowest-order moments. Equally, however, in the
above information-theoretic considerations, estimation of the input CDF will be tightly
constrained by the computational resources available to a neuron, or a circuit.

We have therefore restricted to a consideration of adaptation to the lowest-order mo-
ments, and in particular to the mean and variance, of an input distribution, in order
to maintain an invariant output distribution. Compared to the complexity of the full
problem, requiring all the moments and an essentially arbitrary response function, re-
stricting to the two lowest-order moments produces results, in terms of adapting the
neuronal threshold and gain via Eqs. (7.11) and (7.12), that are easy to derive and
simple to implement. Despite the fact that these rules ensure only approximate output
PDF invariance for general input distributions, and although some functional properties
of neurons may then escape our analysis (e.g. large deviation detection, for which the
higher-order moments are clearly critical), we regard this simplicity as a virtue. Under
the assumption that a neuron can indeed estimate the mean and variance of its input,
Eqs. (7.11) and (7.12) provide an adaptive strategy that does not require a neuron to
perform elaborate computations in order to adapt to changes in its input statistics. If
we regard neurons not as perfect optimisers but rather as devices of extremely limited
computational ability and resources, then adaptation according to Eqs. (7.11) and (7.12)
may very well represent a solution for suboptimal, resource-constrained computation.

For multisensory neurons in general and DSC neurons in particular, we have extended
the adaptation rule in Eqs. (7.11) and (7.12) to multimodal inputs and have written down
a simple model of gain control and firing threshold adjustment [Eqs. (7.44) and (7.45)].
In the derivation of Eqs. (7.44) and (7.45), we require that each sensory channel has a
separate gain. Each gain is influenced by both a local contribution, based on its chan-
nel’s standard deviation, and a global contribution, based on the correlation coefficients
between pairs of cross-modal sensory inputs. The local contributions to the gains arising
from the modality-specific standard deviations likely cannot be accommodated by whole-
neuron level processes, since such processes would presumably affect all gains equally.
Such local contributions therefore probably require circuit-level processes involving the
sensory afferents themselves. Whole-neuron level processes could in principle accommo-
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date the global, common contribution to the gains due to the correlation coefficients.
However, the estimation of correlation coefficients must be a non-local process, because
they require a computation of pairwise activities between differing sensory channels.
Thus, it is probable that both the local and global contributions to the gains require
circuit level processes.

What might these circuits be? Data indicate that descending cortical projections from
the AES and rLS are critically involved in multisensory integration in DSC neurons. In
particular, when these two cortical areas are deactivated by cooling, CME is reversibly
eliminated while unimodal responses, although perhaps somewhat attenuated, remain
largely intact (Wallace and Stein, 2000; Jiang et al., 2001; Stein, 2005; Jiang et al., 2006;
Alvarado et al., 2007). Furthermore, electron microscope studies suggest that there is
a close juxtaposition of the descending, cortical projections with the ascending, sensory
inputs on the dendrites of DSC neurons (Harting et al., 1997). Such a juxtaposition
could underlie the computation of the correlation coefficients between different sensory
channels’ activities. Based on these data, we therefore speculate that the anatomical
architecture of converging ascending and descending pathways on DSC neurons is or-
ganised so as to control the gains of the distinct, sensory pathways, and that cortical
areas may participate in gain control in DSC neurons.

9.4 Model Predictions for Experimental Tests

We have examined in Chapter 8 the possible impact of adaptation to the input statistics
on multisensory integration of DSC neurons under a simple adaptation rule. According
to the adaptation rule, the response of a DSC neuron is affected by the input statistics
to which the neuron has adapted. If we then consider probing a DSC neuron with a fixed
and invariant stimulus to obtain a CME measure, then that measure can be systemati-
cally changed by prior adaptation of the neuron to different multimodal input statistics.
For simplicity, we have considered in Chapter 8 separate adaptations to the stimulus
means, the stimulus standard deviations, and the stimulus correlation coefficients.

Adaptation to the means is perhaps the simplest form of adaptation. Changes in the
means affect the threshold and thus shift the response function. In an experiment to
study adaptation to the mean in a DSC neuron, a fixed, probe stimulus can be moved
between the neuron’s different functional regimes, from super-additive to additive to
sub-additive (Stanford et al., 2005; Avillac et al., 2007), depending on changes in the
neuron’s threshold induced by adaptation. Our results indicate that when an input’s
mean is increased, the corresponding CME always increases, independent of the other
parameters and the test stimulus. Despite the robust changes in CME for arbitrary test
stimuli, however, a suitable choice is a bimodal probe stimulus with strength comparable
to the initial mean of the prior input statistics before being changed (a mean-mean
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type bimodal stimulus). This type of bimodal stimulus guarantees the generation of
detectable responses and evident CME.

Adaptation to the stimulus variances is also possible, although in this case the impact
on CME is rather more complicated than that of the means. Despite these complex
dynamics, we observe that bimodal stimuli given by input x1 small compared to the mean
µ1, and input x2 large compared to the mean µ2 (a small-large type bimodal stimulus)
exhibit consistent and clear decreases in the CME index when σ1 is increased. According
to the adaptation rule, the maximum CME index lies on the line x1σ2 = x2σ1. The
x1−x2 input plane can be divided by this maximum CME line and the line x1 = µ1 with
x2 < σ2

σ1
x1 into three regions, in which the CME index changes consistently. A small-

large bimodal stimulus is guaranteed to be in the region where CME decreases under an
increase in σ1, and it therefore results in a robust change in the CME index. Conversely,
if σ2 is instead increased, then the preferred test stimulus producing consistent and
evident changes in the CME index is a large-small type bimodal stimulus.

It is possible that adaptation to the stimulus means and variances is not, in fact, ob-
served in DSC neurons, if neurons earlier in the multiple sensory pathways have already
adapted to these statistics. Perhaps, therefore, the most intriguing and robust form
of adaptation is adaptation to changes in the correlation coefficient between a pair of
sensory modalities, with all other statistics held constant. In this case, prior adaptation
is unlikely, since the superior colliculus is one of the first sensory areas in which multi-
modal neurons exist. An experimental exploration of the possibility of adaptations to
the various possible correlation coefficients therefore affords an opportunity for robust
testing of our proposals without the possibility of contamination by prior adaptation in
earlier sensory centres.

As with the stimulus variances, adaptation to the correlation coefficient has a compli-
cated influence on CME. However, for a mean-mean type bimodal stimulus, increasing
the correlation coefficient robustly decreases the CME exhibited by a multisensory neu-
ron. This may initially seem counter-intuitive, but it is important not to confuse the
(near-)simultaneity of presentation of two stimuli in different modalities, which evokes
CME, with the statistical parameter that measures how often, on average, such bimodal
stimuli are presented simultaneously. When the correlation coefficient is high (close
to ρ = 1, say), two stimuli are nearly always presented simultaneously. In this case,
one of the two channels is essentially redundant, from an information-theoretic perspec-
tive. Although CME still occurs in this case, we predict that the extent of CME is
lower in well-correlated, and therefore more redundant sensory channels than in less
well-correlated, and therefore less redundant sensory channels.

The predications obtained here for the possible role of adaptation to the input statistics
on multisensory integration can be tested naturally in experiments. In such experiments,
we would firstly let an animal adapt to a certain statistical context by providing appro-
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priate stimulation. After that, fixed and invariant unimodal and bimodal test stimuli
are presented in the receptive field of a DSC neuron, and unimodal and bimodal re-
sponses of this DSC neuron are recorded to produce the CME measure. To allow the
animal to adapt to a new statistical context, another stimulation is provided. After
sufficiently long period for the animal to finish adaptation, the same test stimuli are
presented and the corresponding CME measure for the same DSC neuron is calculated.
The same procedure can be iterated for several times, after which the changes of CME
with respect to the changes of the statistics could be obtained. During the course of
such an experiment on a single neuron, in which its multimodal receptive field is being
probed with test stimuli, the neuron may adapt to these test stimuli, producing CME
measures at the end of the experiment that differ from those at the beginning. Although
we have not committed ourselves to a view about the timescale for adaptation in DSC
neurons, it seems reasonable to assume that it is of the order of seconds to minutes, as
in other sensory systems (Smirnakis et al., 1997). Such timescales are well within the
periods for which single neurons may be held during electrode penetrations, and DSC
neurons could thus easily adapt to different stimulation protocols several times during
an experiment. Careful control of the protocols is therefore required in order to avoid
any unwanted adaptation effects during experiments that seek to determine the mech-
anisms underlying multisensory integration. Equally, in order to observe adaptation in
DSC neurons, carefully controlling especially the various possible correlation coefficients
is critical.

9.5 Reflections on Experimental and Theoretical Studies

We have proposed in this study an adaptation rule for a sigmoidal transfer function to
account for multisensory responses of DSC neurons. We have shown that, although sim-
ple, our model is capable of explaining many observed multisensory response properties
in a natural way. This simple interpretation of the mechanisms underlying multisen-
sory integration is in contrast to many experimental studies stating that complicated
mechanisms and operations are involved.

It therefore appears to us that, although some experiments on the responses of DSC
neurons have been set up and carried out in a sensible way to obtain valuable data
on DSC neurons, these data are often not processed or interpreted in an appropriate
way. For example, Stanford et al. (2005) have conducted a systematic recording of the
responses of DSC neurons. However, their statistical method to process the data pro-
duces results that are critically dependent on one of the procedures (see Chapter 6).
Consequently, their conclusion does not hold. This is due to insufficient understanding
of the underlying statistical principles. In Perrault et al. (2005)’s studies, they observed
different dynamic ranges for unimodal and bimodal responses in DSC neurons, based on
which they directly suggested that the response ranges of DSC neurons might be under
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a dynamic modulation for unimodal and bimodal stimuli. This seemingly straightfor-
ward interpretation indicates the existence of new and complicated operations in DSC
neurons compared to other sensory neurons, which, although not impossible, might not
be appropriate. In fact, with a careful consideration, we find that, to explain the same
phenomenon, no elaborate mechanisms are required for DSC neurons. We only need to
take into account possible prior saturation in the responses of unimodal neurons that
project to the DSC neurons. In this case, the different dynamic ranges between the
unimodal case and the bimodal case are a direct consequence of the saturated inputs
that DSC neurons receive. This interpretation requires nothing more than traditional
knowledge of the response properties of neurons, and thus appears to be more prefer-
able than the idea of dynamic modulation in the response range. Moreover, Perrault
et al. (2005) observed four different operational modes in DSC neurons and suggested
that the DSC neurons can be categorized based on these operational modes into the
super-additive neurons, the super-additive/sub-additive neurons, the sub-additive neu-
rons and the additive/sub-additive neurons. Again, at first glance, these results indicate
the existence of some intricate mechanisms in the responses of DSC neurons. Neverthe-
less, we find that these diverse operations can also be naturally explained by the typical
and well-established response properties of neurons – prior saturation in the unimodal
neurons that project to DSC neurons responding in a non-linear, saturating manner.
Another example is the CME index and the ADD index, which have been proposed
to characterize the response properties of DSC neurons. Certainly, these two indices
capture some important properties in DSC neurons, as indicated by many experimental
results (Stein et al., 2004). As we have discussed in Chapter 6 and earlier sections,
however, nothing more complicated than a sigmoidal response function is required to
explain all the related properties, such as the IE of CME, the super-additive, additive
and sub-additive responses. Furthermore, we have shown that the two indices are in-
herently correlated, so that adopting a combination of the two in fact does not provide
much more information than using only one. The reason that these somewhat redundant
indices are proposed and well-accepted in the field is a lack of theoretical insight.

This is why theoretical studies are so important in this experimental field. Theoretical
studies could provide novel aspects to interpret the experimental data, which, due to
rigorous derivations and proofs, are potentially significant. Of course, sometimes theo-
retical studies may turn out to misinterpret the experimental data. For example, we have
discussed in Chapter 5 that Patton and Anastasio (2003)’s model is an inappropriate ex-
planation of the responses of DSC neurons. Although their model is based on a Bayesian
approach, which is often adopted to explain neural processes, its ability to reproduce the
response properties is merely a coincidence based on careful choices of parameters. A
reliance on well-known theorems could lead to a negligent examination of the parameter
regions and result in models that are misleading. One may therefore ask, what kinds
of theoretical studies are valuable? In our opinion, a valuable theoretical model should
firstly be constructed on sound theoretical bases and provide insightful ideas. Secondly,
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it should reproduce solid experimental results while not too sensitive to the choices of
parameters. Thirdly, a theoretical model should not place too much computational bur-
den on a single cell. A neuron is a simple device with limited computational power. It
is therefore unrealistic to expect it to carry out complicated computations. However,
this aspect is commonly overlooked by many theoretical studies. For example, the max-
imum response entropy idea proposed by Laughlin (1981) requires a sensory neuron to
adapt its response to the cumulative density function (CDF) of the inputs. Although
theoretically interesting, this requirement probably exceeds the computational ability of
a single neuron. Last but not least, it would be desirable if a theoretical model is able
to produce some experimentally testable predictions so that the underlying notions can
be verified.

In the course of our studies, we notice that a careful and clear interpretation of the
existing experimental data in the field of multisensory integration in DSC neurons is
still missing. To achieve this, both experimental and theoretical studies are required,
since on one hand, experimental data offer the necessary material to inspire theoretical
studies, and on the other hand, theoretical studies provide feedback to guide experimen-
tal studies. During this reciprocal process, a pivotal issue is to carefully consider the
experimental data and interpret them in a natural and simple way. Having kept this
in mind, we hope that the theoretical study presented in this thesis will act as valuable
feedback to the experimental field of multisensory integration.
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Boston.
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