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Abstract

A Brain-computer interface (BCI) is a direct communication system between a brain
and an external device in which messages or commands sent by an individual do not
pass through the brain’s normal output pathways but is detected through brain signals.
Some severe motor impairments, such as Amyothrophic Lateral Sclerosis, head
trauma, spinal injuries and other diseases may cause the patients to lose their muscle
control and become unable to communicate with the outside environment. Currently
no effective cure or treatment has yet been found for these diseases. Therefore using a
BCI system to rebuild the communication pathway becomes a possible alternative
solution. Among different types of BCls, an electroencephalogram (EEG) based BCI
is becoming a popular system due to EEG’s fine temporal resolution, ease of use,
portability and low set-up cost. However EEG’s susceptibility to noise is a major
issue to develop a robust BCI. Signal processing techniques such as coherent
averaging, filtering, FFT and AR modelling, etc. are used to reduce the noise and
extract components of interest. However these methods process the data on the
observed mixture domain which mixes components of interest and noise. Such a
limitation means that extracted EEG signals possibly still contain the noise residue or

coarsely that the removed noise also contains part of EEG signals embedded.

Independent Component Analysis (ICA), a Blind Source Separation (BSS)
technique, is able to extract relevant information within noisy signals and separate the
fundamental sources into the independent components (ICs). The most common
assumption of ICA method is that the source signals are unknown and statistically
independent. Through this assumption, ICA is able to recover the source signals.
Since the ICA concepts appeared in the fields of neural networks and signal
processing in the 1980s, many ICA applications in telecommunications, biomedical

data analysis, feature extraction, speech separation, time-series analysis and data



mining have been reported in the literature. In this thesis several ICA techniques are
proposed to optimize two major issues for BCI applications: reducing the recording
time needed in order to speed up the signal processing and reducing the number of
recording channels whilst improving the final classification performance or at least
with it remaining the same as the current performance. These will make BCI a more

practical prospect for everyday use.

This thesis first defines BCI and the diverse BCI models based on different
control patterns. After the general idea of ICA is introduced along with some
modifications to ICA, several new ICA approaches are proposed. The practical work
in this thesis starts with the preliminary analyses on the Southampton BCI pilot
datasets starting with basic and then advanced signal processing techniques. The
proposed ICA techniques are then presented using a multi-channel event related
potential (ERP) based BCI. Next, the ICA algorithm is applied to a multi-channel
spontaneous activity based BCI. The final ICA approach aims to examine the
possibility of using ICA based on just one or a few channel recordings on an ERP

based BCI.

The novel ICA approaches for BCI systems presented in this thesis show that ICA
is able to accurately and repeatedly extract the relevant information buried within
noisy signals and the signal quality is enhanced so that even a simple classifier can
achieve good classification accuracy. In the ERP based BCI application, after multi-
channel ICA the data just applied to eight averages/epochs can achieve 83.9%
classification accuracy whilst the data by coherent averaging can reach only 32.3%
accuracy. In the spontaneous activity based BCI, the use of the multi-channel ICA
algorithm can effectively extract discriminatory information from two types of single-
trial EEG data. The classification accuracy is improved by about 25%, on average,
compared to the performance on the unpreprocessed data. The single channel ICA
technique on the ERP based BCI produces much better results than results using the
lowpass filter. Whereas the appropriate number of averages improves the signal to
noise rate of P300 activities which helps to achieve a better classification. These
advantages will lead to a reliable and practical BCI for use outside of the clinical

laboratory.
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CHAPTER 1

Introduction

1.1 Background

Many different disorders, such as Amyotrophic lateral sclerosis (ALS), brainstem
stroke, brain or spinal cord injury and numerous other diseases can disrupt the
neuromuscular channels through which the brain controls and communicates with its
environment. These kinds of severe diseases may cause people to lose verbal and
nonverbal communication. ‘Locked-in’ usually refers to a situation where individuals
are conscious and aware, but unable to control their muscles so that they cannot
present their needs, wishes, and emotions. In short, the healthy brain is locked into a
paralysed body. However the current knowledge about these disorders is rather
limited. There are no effective treatments which can provide a ‘cure’ or even a

significant recovery.

In the absence of methods for repairing the damage caused by these diseases, there
is an option that we believe can provide an individual with a new, non-muscular
communication — a brain-computer interface (BCI) for conveying messages and

commands to use some devices such as assistive applications, computers etc. This
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type of direct-brain interface would increase an individual’s independence and

improve his/her quality of life.

In theory, many measurements through monitoring brain activity might serve as a
BCI. At present, the electroencephalogram (EEG) and related measurements can be
applied to form a possible non-muscular BCI, for the EEG can function in most
environments and requires relatively simple and inexpensive equipment. Regardless
of the technology used in BCI, some specific features must be extracted from the raw
signals in order to form a meaningful BCI. The kinds of signal patterns include
visually evoked potentials (VEP), slow cortical potentials (SCP), P300, x« rhythms and
cortical neuron activity. All of these methods have been shown to be useful for

implementing practical working BCI systems [1].

The traditional VEP based word speller allows the user to select a letter on a
virtual keyboard by looking directly at it. The system determines the target by
detecting the VEP amplitude difference of the response or different frequency of the
response in the EEG recordings. SCP BCI system allows the user to move a cursor
horizontally or vertically on a computer screen by generating negative or positive
potential shifts during the procedure. This SCP BCI gives locked-in patients with
motor disability a chance to communicate to the outside since SCP potential is easy to
handle and apply. In P300 based BCI, especially the famous P300 word speller uses a
characteristic called the ‘oddball paradigm’ which involves frequent and in-frequent
stimuli and the positive potentials are evoked by rare events. This word speller is
examined as a training-free and processing-fast system. The idea behind spontaneous
rhythmic activity based BCI is that people can learn to modify the amplitude of a
particular rhythmic band (say u band) after training. The difference of amplitude can
be compared and translated into cursor movement. This BCI requires fewer electrodes
and simple classification. Unlike the above signal patterns used in BCls, cortical
neuron activity is a different signal pattern which is recorded from implanted

electrodes located in the motor cortex in BCI system [2]. The neuronal activity is
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much clearer and clean and can be recorded by implanted electrodes. Studies have
found the capacity of people to learn to control neuronal firing rate and more rapid
and accurate control can be achieved. But the argument is that whether implanted
methods are safe and whether they can provide significant improvement compared to

non-implanted methods.

However, the task of developing a BCI is extremely difficult, since a number of
large problems concerning EEG recordings must be overcome. Moreover, artifacts
(such as movement artifacts, eyeblinks, etc) change the raw EEG and render the
recording virtually unusable. In general, signal processing techniques such as coherent
averaging, filtering, FFT and AR modelling, etc. are used to reduce the noise and
extract components of interest. However these methods can only deal with the data
processing on the observed mixture domain which mixes components of interest and
noise. Such a limitation dictates that extracted EEG signals possibly still contain the
noise residue or the removed noise contains embedded part of EEG signals. Blind
Source Separation (BSS) techniques such as Independent Component Analysis (ICA)
extract the relevant information buried within noisy signals and allow the separation
of measured signals into their fundamental underlying (independent) components. The
ultimate aim in applying ICA is to accurately and repeatedly extract the relevant
information buried within noisy signals, so that the BCI system is more reliable and
robust — especially for use outside of the clinical laboratory. This body of work will
examine the use of existing and newly developed BSS techniques in conjunction with

other relevant signal processing methods.

1.2 Overview of the thesis

The rest of this thesis is divided into seven chapters. Chapter 2 provides an

introduction to the human brain, the EEG, the technique of BCI and signal processing



Chapter 1 Introduction

techniques for BCI, giving an overview of the discovery of the EEG, recording

techniques, the definition and structure of BCI and the goal of this thesis.

Chapter 3 introduces the concept of ICA and ICA techniques. Following a brief
historical overview of its development, it presents the generic technique of ICA and
the fundamental assumptions based on which the algorithm works. The different
possible algorithms in the ICA literature are discussed, as well as the existing ICA

applications in biomedical signal processing field.

The rest of the chapters are about proposed ICA techniques on specific BCI
applications. These ICA techniques are able to improve the performance of BCI
applications and help develop more practical BCI systems based on the use of
automated independent source selection methods. Chapter 4 presents preliminary
analyses for a Southampton BCI pilot study. It is the first study performed within this
BCI research group in which it followed the paradigms in the literature and examined
the possibility of using evoked potentials and spontaneous activity within the
Southampton BCI program. Chapter 5 reviews the P300 potential detection problem
in a P300 word speller application. Several ICA techniques based on spatial constraint
and templates are then proposed to enhance the performance. Chapter 6 presents
another important BCI application which uses spontaneous rhythmic activity as the
control feature. An ICA method based on time structure together with temporal
constraints is proposed to deal with the problem of inefficiently detecting power
changes generated by spontaneous rhythmic activities. The final performances are
compared and discussed. Essentially, all the above ICA techniques are built upon
multi-channel data recordings. But in the real world not so many circumstances allow
us to use multiple channels, for example, multi-channel recording devices are not
available or only a few (or even only one) channel of all recordings from the
multi-channel data is of good quality. Chapter 7 examines the possibility of using ICA

which is only based on one or a few channel recordings on the above same P300 word
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speller application. The results are assessed and compared with the performance

achieved in the multi-channel version.

The thesis then concludes with a discussion on the proposed ICA techniques and
the improvement in their applications. Also areas which could benefit from future

work are discussed.

1.3 Publications

During the period of my doctoral study, the following papers and abstracts have been

accepted for publication.

Journal Papers

S. Wang, and C. J. James, “Extracting rhythmic brain activity for brain-computer

interfacing through constrained independent component analysis”, Computational

Intelligence and Neuroscience, 2007(1D41468), 9pp, 2007.

Conference Papers
C. J. James and S. Wang, “Single Channel ICA on P300 based BCI”, Proceedings of

the IET Medical Signal and Information Processing Conference MEDSIP 2008, Italy,
14-16 July, CD-ROM, 2008

M. Davies, C. J. James and S. Wang, “Space-Time ICA and EM Brain Signals”,
Proceeding of 7" International Conference, ICA 2007, 577-584, 2007.

S. Wang, and C. J. James, “On the independent component analysis of evoked
potentials through single or few recording channels”, 29th International Conference
of IEEE Engineering in Medicine and Biology Society (EMBC2007), Lyon, France,
23-26 August 2007, 5433-5436, 2007.
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C. J. James and S. Wang, “Blind source separation in single-channel EEG analysis:
An application to BCI”, Proceedings 28th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, New York, USA, 31 August - 2
September 2006, CD-ROM, 2006,

S. Wang, and C. J. James, “Enhancing evoked responses for BCI through advanced
ICA techniques”, Proceedings of the IET Medical Signal and Information Processing
Conference MEDSIP 2006, Glasgow, Scotland, 17 - 19 July 2006, CD-ROM, 2006.

Conference Abstracts
S. Wang, C. J. James and M. Stokes, “The Southampton BCI Research Programme”,

Abstract book of Satellite symposium of IEEE EMBS 27" Annual Conference, Beijing,
China, 2005.

S. Wang, and C. J. James, “Preprocessing the P300 word speller with ICA for
Brain-Computer Interfacing”, Abstract book of ICA Research Network Workshop on
Applied Blind Source Separation and Independent Component Analysis, Southampton,
2005.



CHAPTER 2

Electroencephalography and

Brain-computer Interfacing

2.1 Introduction

An electroencephalogram (EEG) is a recording of the brain’s electrical activity.
Nowadays, EEG recording has become a routine clinical procedure as well as a useful
tool to investigate many disorders such as epilepsy in particular. A BCI system is a
direct communication pathway between the brain and an external device. In BCI
applications, the EEG has shown the most potential to record the signal input, mainly

due to its fine temporal resolution, ease of use, portability and low set-up costs.

This chapter first gives a brief introduction of brain anatomy and an overview of
the history and origin of the EEG. The constitution of the EEG is introduced and
discussed next along with the technology’s susceptibility to noise. Next the chapter
introduces the BCI concept in general, including the definition, history, structure and
present day techniques. Finally the chapter gives a short summary of BCI systems in

use today and introduces the goal of the BCI studies in this thesis.
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2.2 Brain Anatomy

The brain is the most complex part of the human body. It controls thought, memory,
emotion, touch, motor skills, vision, respirations, temperature, hunger, and every
process that regulates our body. The brain can be divided into the cerebrum, brainstem,

and cerebellum [3] (Figure 2.1):

2.2.1 Brainstem

The brainstem is located at the bottom of the brain and connects the cerebrum to the
spinal cord. Functions of this area include: movement of the eyes and mouth, relaying
sensory messages (hot, pain, loud, etc.), hunger, respirations, consciousness, cardiac
function, body temperature, involuntary muscle movements, sneezing, coughing,

vomiting, and swallowing.

2.2.2 Cerebellum

The cerebellum is located at the lower back of the head and is connected to the brain
stem. It is the second largest structure of the brain and is made up of two hemispheres.
The cerebellum controls complex motor functions such as walking, balance, posture,

and general motor coordination.

2.2.3 Cerebrum

The cerebrum is the largest part of the brain and is composed of the right and left
hemispheres. Functions of the cerebrum include: initiation of movement, coordination
of movement, temperature, touch, vision, hearing, judgment, reasoning, problem
solving, emotions, and learning. More specifically four lobes make up the cerebrum,

the frontal, temporal, parietal, and occipital.
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1) Frontal lobe: the frontal lobe is the largest section of the brain located in the
front of the head. It controls attention, behavior, abstract thinking, problem
solving, creative thought, emotion, intellect, initiative, judgment, coordinated

movements, muscle movements, smell, physical reactions, and personality.

2) Parietal lobe: the parietal lobe is the middle part of the brain, the parietal lobe
helps a person to identify objects and understand spatial relationships between the
person and objects around him/her. The parietal lobe is also involved in

interpreting pain and touch in the body.

3) Occipital lobe: the occipital lobe is the back part of the brain and controls

vision.

4) Temporal lobes: the temporal lobes are sited on both sides of the brain, these
temporal lobes are involved in auditory and visual memories, language, some

hearing and speech, language, plus some behavior.

Parietal Lobe

Figure 2.1: The three main components of the brain -- the cerebrum, the cerebellum, and
the brainstem. The cerebrum is the largest and most developmentally advanced part of the

human brain. It includes the frontal, temporal, parietal, and occipital lobes [3].
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2.3 The electroencephalogram

2.3.1 EEG history and origin

EEG is a recording, through electrodes attached to the scalp, of electrical activity
produced by the brain. The first EEG recording of the human brain was made by the
German psychiatrist Hans Berger in 1924 (Figure 2.2), and his publication of this
recording appeared in the Archives of Psychiatry, 1929 [4]. Nowadays, EEG plays
one of the most important roles to evaluate neurological disorders in the clinic. Most
commonly it is used to show the type and location of the activity in the brain during a
seizure in epilepsy [5], [6]. It is also used to investigate those having problems

associated with brain functions in the laboratory [7], [8].

AAAASAAAAARLNAAAARAAAARAANAN

Figure 2.2: The first EEG recording by Hans Berger [4].

The EEG represents the averaged activity of many neurons (Figure 2.3 shows a
simple schematic example of neurons [9]) in the brain. However the origin of the
neuronal activity is not completely understood, it is generally accepted that the nerve
cells communicate with each other by producing and sending action potentials
through neighbouring axons. To let action potentials pass across the chemical junction
interfaces — synapses between axons, a chemical substance called a neurotransmitter
is released to bridge synapses and activity receptors which send a flow of ions into or
out of the dendrite. This results in compensatory currents in the extracellular space.
After passing through layers of fat, bone and cerebrospinal fluid these extracellular

currents are summed and contribute to the generation of EEG potentials [10].

10
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Figure 2.3: 4 simple schematic of neurons [9].

2.3.2 Types of electrodes and the 10/20 system

The recording of these activities is obtained by placing electrodes on the scalp,
usually after preparing the scalp area by light abrasion and application of a conductive
gel to reduce impedance [11]. To record good EEG signals, one of the keys is to select
the appropriate type of electrodes for the measurement. Electrodes that make the best
contact with a subject’s scalp and contain materials (conductive gel) that most readily
conduct EEG signals provide the best EEG recordings. Generally there are four types

of EEG electrodes available to the related applications (Figure 2.4):

1) Reusable disks: These electrodes can be placed close to the scalp, even in a
region with hair. A small amount of conductive gel is needed to be applied under
each disk. Disks normally are made either from tin, silver, and gold. Since these
electrodes can be repeatedly used for years, the overall cost is low.

2) EEG Caps with disks: EEG caps are used to hold the electrodes in place to the

subject’s head. They are available with different numbers and types of electrodes.

11
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The conductive gel is injected under each disk through a hole in the back of the
disk. This EEG accessory offers a quick and easy way to place multi-electrodes in
precise locations.

3) Adhesive Gel Electrodes: These are the disposable silver/silver chloride
electrodes for recording from regions of the scalp without hair. Since the size of
these electrodes is large, they cannot be placed close enough to the scalp or in
regions with hair.

4) Subdermal Needles: These electrodes normally are single-use needles that are
placed under the skin. However due to the potential risk of a needle stick injury
(for example, skin infection), in some situations, permission is needed before

needle electrodes are used.

The standard method for scalp electrode localization is the International 10/20
electrode system [12]. The “10” and “20” represent the actual distances between
neighbouring electrodes are either 10% or 20% of the total front-back or right-left
distance of the skull. The positions are determined by the following two reference
points: nasion, which is the point between the forehead and the nose, level with the
eyes; and inion, which is the bony prominence at the base of the skull on the midline
at the back of the head. From these points, the skull perimeters are measured in the
transverse and median planes [13]. The electrode positions are showed in Figure 2.5.
Each location uses a letter to identify the lobe and a number to identify the
hemisphere location. The letters F, T, C, P and O stand for Frontal, Temporal, Central,
Parietal and Occipital respectively. A "z" refers to an electrode placed on the midline.
Even numbers refer to electrode positions on the right hemisphere, whereas odd

numbers refer to those on the left hemisphere.

12
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Figure 2.4 Four types of EEG electrodes: a) Reusable disks; b) EEG Caps with disks; c)
Adhesive Gel Electrodes; d) Subdermal Needles.

For the recording, each electrode and a system reference electrode are connected
to a differential amplifier as two inputs. This amplifier amplifies the voltage between
the measurement and the reference electrodes. In an analog EEG system, the signal is
plotted on paper for investigation by specialists. Nowadays most EEG systems are
able to digitize the amplified analog signal through an analog-to-digital (A/D)
converter. The typical analog-to-digital sampling rate is within the range of 240Hz to
512Hz in clinical scalp EEG. The digital signal then can be displayed on a computer
screen or stored electronically for later use. The amplitude of a normal adult EEG is

about 10~100 uV when measured on the scalp.
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Figure 2.5: The International 10-20 system seen from left (a) and above the head (b). A
= Ear lobe, C = central, Pg = nasopharyngeal, P = parietal, F = frontal, Fp =

frontal polar, O = occipital, T=temporal.[12]

2.3.3 Rhythmic activity

Historically EEG is often divided into four major types of continuous rhythmic
sinusoidal waves (a, £, 0 and ) based on a series of frequency ranges. There is no

precise agreement on the frequency ranges for each type:

1) 0 (delta) is in the frequency range: < 4 Hz. The shape is observed as
the highest in amplitude and the slowest waves. It is often seen
frontally in adults during deep sleep and also seen posteriorly in babies.
It may occur focally with subcortical lesions and in general

distribution with diffuse lesions and certain encephalopathies.

2) 0 (theta) is in the frequency range: 4 Hz — 8 Hz. It is associated
with drowsiness, childhood, adolescence and young adulthood. This
EEG frequency can sometimes be produced by hyperventilation.

waves can be seen during hypnagogic states such as trances, hypnosis,

14
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deep day dreams, lucid dreaming and light sleep and the preconscious

state just upon waking, and just before falling asleep.

3) a (alpha) is in the frequency range: 8 Hz — 12 Hz. 1t is
characteristic of a relaxed, alert state of consciousness and is present
by the age of two. & rhythms can be best detected with the eyes closed
whilst it attenuates with drowsiness and open eyes. It can be seen on
both sides in the posterior area and higher amplitude on the dominant
side. An a-like normal variant called g rhythm is sometimes seen over
the motor cortex (central scalp). g rhythm attenuates with movement

of limbs, or mental imagery of movement.

4) p (beta) is in the frequency range: 13 Hz — 30 Hz. It is seen in low
amplitude with multiple and varying frequencies symmetrically on
both sides in the frontal area. It is often associated with active, busy or
anxious thinking and active concentration. f rhythm with a dominant
set of frequencies is associated with various pathologies and drug

effects.

2.3.4 Artifacts and other effects

Although the EEG records brain activity, it also records electrical activity arising from
sites other than the brain. Recorded activity that does not originate in the brain is
referred to as an artefact. Artifacts can be divided into physiologic and
extraphysiologic artifacts. While physiologic artifacts are generated by the subject,
they arise from sources other than the brain (i.e. the body, e.g. muscles, heart etc).
Extraphysiologic artifacts arise from outside the body (i.e. equipment, environment)

[14].
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The major physiologic artifacts, eye movement and blinks, produce electrical
potentials and electo-magnetic fields that are often much larger than those deriving
from brain sources. They can cause big errors in peak measurement or source
localization. Attempts to control this artifact by instructing subjects to fixate their
gaze on a point or not to blink are often ineffective, particularly if the subject is
psychotic or cognitively impaired [15]. Other artifacts, such as muscle activity, line
noise, body movements etc can also generate potentials that may even mimic cerebral

activity [16].

Many methods have been proposed to remove artifacts (such as eye movement
and blinks) from EEG recordings including: trial rejection and regression based
methods [17], [18]. However, simply rejecting contaminated EEG epochs results in a
considerable loss of collected information. Regression is performed in the time or
frequency domain on EEG recordings to derive parameters characterizing the
appearance and spread of electrooculography (EOG) artifacts in the EEG channels.
But EOG records also contain brain signals, so the regression method inevitably
involves subtracting a portion of the relevant EEG signal from each recording as well,

which is not desirable.

2.3.5 Further EEG application

Over time, people have also speculated that the EEG could have further applications,
that it could be used to decipher thoughts, or intent, so that a person could
communicate with others or control devices directly by means of brain activity,
without using the normal channels of peripheral nerves and muscles. This is where the

concept of brain-computer interfacing (BCI) first appears [19].
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2.4 Brain computer Interfacing

2.4.1 Severe physical disability through brain damage

Amyotrophic Lateral Sclerosis (ALS) is a rare progressive and ultimately fatal
neurological disease in which the degeneration of specific motor neurons causes
muscles to stop receiving movement command [20] [21] [22]. People with ALS will
ultimately lose the ability to control their muscles, to communicate and eventually to
breathe. However, ALS commonly does not affect a person’s ability to think, their
intelligence or memory. Therefore a healthy brain is “locked in” a paralysed body
[23]. The cause of ALS is still unknown, and there are no effective treatments which
can provide a ‘cure’ or even a significant recovery. Brainstem stroke, brain or spinal
cord injury and numerous other diseases produce similar severe disability where
neuromuscular channels between a brain and its environment are broken. Therefore,
maintaining the basic communication and control capabilities so that these individuals
can express their desires to caregivers or even operate word processing programs or

neuroprostheses has become a very important clinical issue.

2.4.2 The definition and a brief history of BCI

BCI is primarily a communication system in which messages or commands that an
individual sends to the external world do not pass through the brain’s normal output
pathways of peripheral nerves and muscles, but rather pass through a computer based

system.

Early BCI research was started in the 1970’s. Professor Jacques J. Vidal first
introduced the idea of direct brain computer communication in 1973 [19]. In his BCI
Laboratory at the University of California Los Angeles, a successful project

demonstrated that a computer-generated visual stimulation is able to evoke people to
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produce a certain response which could provide a communication channel between
the subject and a computer. In that decade, several scientists and organizations also
tended to develop similar communication systems driven by the recorded brain
activity. For example, the Advanced Research Projects Agency (ARPA) in the
Defence Department of the USA planned to develop an interaction application
between a human brain and a computer for use in military applications [24]. This
project was proposed to improve the performance of military personnel especially in
tasks involving heavy mental loads. The research produced valuable insights, but

made minimal progress toward its goals due to limitations in the techniques used.

Over the past decades, BCI research has grown rapidly and become a very popular
research topic around the world. Several leading BCI research groups, such as the
Berlin BCI group [25], University of Tiibingen [26], Germany; Wadsworth Center,
US [27] and Graz BCI research, Austria [28] have already made contributions in this
area. For the most part, developing a possible augmentative communication option for
people with severe motor disabilities has become the most important objective in BCI

research.

2.4.3 BCI structure

Like any communication system, a BCI system contains several units: BCI input,
feature extraction, translation algorithm and BCI output. Figure 2.6 shows these
elements and their principal interaction [29], each component is discussed in more

detail next.

(1) BCl input

In theory, any brain activity has the potential to be used as the basis of a BCI. The

most common one is the recording of electrical activity. Other technologies such as
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magnetoencephalography (MEG) [30], near-infrared spectroscopy (NIRS) [31], and
functional magnetic resonance imaging (fMRI) [32] are used as well but MEG and
fMRI equipment are currently too large and expensive, for the practical application.
NIRS is small and affordable, but it is based on hemodynamic responses [33], and
thus the time constants involved are relatively long. As a result, most BCI research
groups are focused on bioelectrical brain signals recorded by EEG and
electrocorticogram (ECoG) [34] [35]. The electrocorticogram (ECoG) is the recording
of brain activity by using epidural or subdural electrode arrays from the cerebral
cortex. Because a craniotomy is required for implantation of the electrodes, ECoG is
an invasive procedure. That is to say that it is not possible to use ECoG for recording
outside of clinical laboratory. Since EEG is recorded from multiple electrodes placed
on the scalp, which normally does not involve an invasive procedure. EEG has
become a popular measure of brain activity and is used for the most part as the BCI
input. The raw EEG sequences come out of an A/D converter and are digitized at a
sampling rate of several hundreds Hz per recording channel as input data. The
detailed EEG acquisition method has been introduced in the early EEG section of this

chapter.

. Feature Translation
_[ BCl input HextractionH algorithm HBCI output}"

Figure 2.6: The basic design and operation of a BCI system.
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(2) Feature extraction

The BCI system receives commands sent by the user in the form of EEG patterns.
Feature extraction procedures, such as spatial filtering, voltage amplitude
measurements and spectral analysis etc., extract the signal features that encode the
user’s messages or commands. BCI can use signal features that are in the time domain
(such as evoked potential amplitudes or neuronal firing rates) or the frequency domain
(such as g or f rhythm amplitudes). A BCI may also use both time-domain and
frequency-domain signal features together to improve performance. The knowledge of
elements such as the location, size, and function of the cortical area generating a
rhythm or an evoked potential can indicate how the signal should be recorded, how
users might best learn to control its amplitude, and how to recognize and eliminate the

effects of physiologic artifacts.

(3) Translation algorithm

Before the next step — the translation algorithm — begins, several important factors
much be taken care of. First, when a new user is first introduced to a BCI system the
algorithm must adapt to that user’s signal features. For example, if the signal feature
is the amplitude of rhythmic activity, the algorithm should adjust to the user’s specific
frequency band as well as the power spectra; if the feature is a particular waveform in
time, it adjusts to the user’s own feature characteristics. Since this is a basic
requirement, all BCI processing should reach this level of adaptation. It assumes that
the user’s performance remains stable and never changes again. However, EEG and
other electrophysiological signals display variations linked to time of day, hormonal
levels, immediate environment, recent events, fatigue, illness, and other factors. Thus,
effective and advanced BClIs need to deal with this higher level of adaptation through
periodic online adjustments to reduce the impact of such spontaneous variations. A

good algorithm will adjust to these variations so as to match as closely as possible the
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user’s current range of signal feature values to the available range of device command
values. This is even more critical in subjects with neuron degenerative disorders,

where BCI paradigms may even have to be changed over time.

In order to find out what the user wants, a BCI system has to classify the
processed data after the previous operations. This means that the system does not
attempt to understand the user’s intentions, but it compares the data symbolizing a
segment to representatives of a limited number of classes and selects a class which is
best fitted to the classification criteria. This translation process might use linear
classification methods or nonlinear classification methods. All the methods change
independent variables (signal features) into dependent variables (e.g. the word in the
P300 word speller which is going to introduce in Section 2.5, the direction in a control

panel. etc).

a. Linear classification methods

The goal of a linear classifier is to group real vectors into classes by making a
classification decision based on the value of the linear combination of the features.
Normally a linear classifier has a function that maps a high-dimensional input into a
two-dimensional space (two-class problem) by using a hyperplane: all points on one
side of the hyperplane are classified as the first class, while the others are classified as
the second class. The most popular linear methods, for example, include: simple
threshold method [36], linear discriminant analysis (LDA) [37] and linear support
vector machine (SVM) [38].

A simple threshold method finds a suitable threshold from a set of fully labeled
data called a training data set, then maps all unlabeled values in a testing set which are
above the threshold to the first class and all other values to the second class. LDA
maximizes the ratio of between-class variance to the within-class variance and finds a

inear transformation (“‘discriminant function’) which can transforms values into their
1 t 1t t “d t function”) which t f | to th
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own classes. An SVM constructs a separating hyperplane in a high dimensional space.
In order to achieve maximum separation, a margin between the data belonging to two
classes is maximum so that the distance from the hyperplane to the nearest data point
is maximized. Such a hyperplane is known as the maximum-margin hyperplane and

can separate more complex data element into certain classes.

A linear classifier is often used in situations where the speed of classification is an
issue, since it is often the fastest classifier, also, linear classifiers often work very well

when the number of dimensions in the input space is large.

b. Nonlinear classification methods

If a classification problem exists and it cannot be solved linearly. The classification
may be solved by using nonlinear methods. One of popular nonlinear methods, the
artificial neural network (ANN) often called a "neural network" (NN) [39], is a
mathematical model or computational model based on biological neural networks.
The ANN works like a “black box” which takes the input vector and generates an
output vector. The processing between the input and output is typically associated
with an adjustable set of weights which are computed during the training phase. The
weighted sum of the input will be transformed into an output value telling which of

classes the input vector belongs to.

Another well-considered nonlinear method, the nonlinear SVM classifier, applies
a kernel function to maximum margin hyperplanes [40]. Since linear SVM is not
adequate for cases when complex relationships exist between input parameters and the
class of a pattern, the SVM model can be fitted with nonlinear functions to provide
efficient classifiers for hard-to-separate classes of patterns. The nonlinear SVM is
formally similar to a linear SVM, except for a non-linear kernel function. An

advantage of SVMs is that whilst ANNs can suffer from multiple local minima, the
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solution to an SVM is global and unique. The computational complexity of SVMs

does not depend on the dimensionality of the input space [41].

Compared to linear methods, nonlinear methods can achieve more accurate
classification performance in complex classification problems, however several
drawbacks in practice are that the computation complexity of nonlinear methods is

expensive and normally the speed of training is slow.

(4) BCl output

Most BCI output devices are a computer screen. The output is the selection of targets,
letters, or icons representing the commands. In addition to being the intended product
of BCI operation, some output, such as cursor movement toward the item prior to its
selection, acts as feedback that the brain can use to maintain and improve the accuracy
and speed of communication. Some studies are exploring BCI control of a
neuroprosthesis or orthosis that provides hand closure to people with cervical spinal
cord injuries [42] [43] [44]. In such specific BCI application, the output device is the
user’s own hand. A few studies have also used monkeys with implanted electrodes

allowing the animals to control a robotic arm [45] [46].

2.4.4 BCI categorisation

BCI systems fall into one of two classes: dependent and independent BCI systems. A
dependent BCI minimally requires a partially intact neuron muscular communication
pathway. For example, one dependent BCI could be a matrix of letters that are
flashing on a computer screen one at a time at different frequencies, and the user
chooses a specific letter by fixating upon at it. In this case, the brain’s way of
communication in this example is EEG, but the flashing letter at different frequency

activates extraocular muscles and the cranial nerves to generate the EEG signal. The
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EEG activity with a certain frequency is detected to match a flashing letter with a
different frequency as a way of the letter selection. Because such a dependent BCI
select a target of interest by simply staring at it and it does not involve higher brain
cognitive process. Therefore a dependent BCI system does not give the brain a new

communication channel that is independent of conventional channels [47].

An independent BCI works with signals that are independent of muscle activity.
Moreover the generation of the EEG signal relies mainly on the user’s intent. For
example, one independent BCI presents the user with a matrix of letters that flash one
at a time, and the user selects a specific letter not by gazing but by “thinking” which
produces certain electrical patterns, e.g. a P300 evoked potential (EP) [48] (this will
be explained in more detail in Section 2.5.3). Therefore independent BCIs need a
higher level brain cognitive process. Because of this higher cognitive process,
independent BCIs provide the brain with wholly new output pathways, for people
with the most severe neuromuscular disabilities, who may lack all normal output

channels, independent BCIs are likely to be the most useful.

2.5 Current BCI techniques in the literature

Present-day BCIs can be divided into five groups based on the electrophysiological
signal patterns they use rather than the terminology of dependence and independence
explained above. The types of patterns that have been employed for this purpose
include: 1) visual evoked potentials (which form the only dependent BCI in
literature), 2) slow cortical potentials, 3) P300 evoked potentials, 4) spontaneous

rhythmic activity and 5) cortical neuron activity, which form independent BCls.
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2.5.1 Visual evoked potential

The visual evoked potential (VEP) is the electrical response of the brain’s primary
visual cortex to a visual stimulus [49]. Figure 2.7 shows an example of VEP activities
for use in VEP based BCI. Jacques Vidal first used the term ‘brain-computer
interface’, in his work, he developed a system that satisfied the above definition of a
dependent BCI [19]. The work used the VEP recorded from the scalp over the visual
cortex to determine the direction of eye gazes and then to determine the direction in

which the user wished to move a cursor.

Sutter introduced a new term — ‘Brain response interface’ [50] and developed a
system based on VEP patterns. The scheme uses the VEPs produced by brief visual
stimuli and recorded from the scalp over the visual cortex. The user faces a screen
displaying 64 symbols in an 8§x8 matrix and looks at the symbol he or she wants to
select. Subgroups of these 64 symbols undergo a red/green flashing alternation or a
red/green check pattern alternation 40—70 times/s. Each symbol is included in several
subgroups, and the entire set of subgroups is presented several times. Each subgroup’s
VEP amplitude about 100 ms after the stimulus is computed and compared to a VEP
template already established for the user. Then the system determines with high
accuracy the symbol that the user is looking at. Normal volunteers can use such a

word processing program at 10-12 words/min.

In [51], Middendorf et al. described another method for using VEPs in order to
determine gaze direction. Several virtual buttons appear on a screen and flash at
different frequencies. The user looks at a button and the system determines the
frequency of the photic driving response over the visual cortex. When this frequency
matches that of a button, the system concludes that the user wants to select it. In [52],
Xiaorong Gao et al. applied a similar method in an environmental controller for a
motion disabled user. Multiple targets are placed on a visual panel and flicker with

different frequencies. The system then detects the fundamental frequency of the VEPs
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matching the same frequency of the flickering target. Results have shown that this
system can distinguish between at least 48 targets and provide an information transfer
rate up to 70bits/min. They also found that a lower stimulus frequency gave higher
accuracy but a slower speed; with the stimulus frequency in the a range (8-12Hz), the

average speed of selection was high.
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Figure 2.7: Visual-evoked potentials (VEP) based BCI, it shows VEP activities for
responding to different types of stimulation. The shades are the overlapped VEP
signals and bold lines indicate the averaged VEPs. [49]

Several efforts have been established to modify the model design to speed up the
experiment at time for VEP based BCls. For example in [53] the original framework
includes Feature Extractor, Feature Translator and Control Interface. After
investigation on the actual performance, the original three functional models were
found incompatible. A new plan of optimization for the VEP based BCI framework
design was proposed and tested in [54]. The proposed algorithms separate the
simulator from the Control Interface. The Stimulator and the associated Stimulus

Mechanism along with all the other components between the user and the Control
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Interface can be treated as a conceptual BCI Transducer. The advantage of this
functional delineation is that different BCI Transducer technologies can be connected
to the same Control interface. It can represent a range of system configurations,

including multi-modal designs, and supports any type of device.

In summary, The VEP is a naturally occurring response and more dependent on
the stimulus presentation than subject attentiveness. VEP based BCI requires little or
even no training for the subjects. The transfer rate of this dependent BCI is often

faster than that of independent BCI.

2.5.2 Slow cortical potentials

Negative or positive potential shifts in the EEG lasting over 0.5-10.0s over the cortex
are called slow cortical potentials (SCPs). SCP activity has been applied to control
movement of an object on a computer screen and to choose a letter by using a series
of two-choice selections in a word speller [55]. Figure 2.8 shows SCP activity for use
in SCP based BCI. Basically, EEG is recorded from electrodes over the vertex area.
SCPs are extracted by appropriate filtering and the different level of amplitude of
SCPs is used to control a cursor to choose a target either at the top or at the bottom. In
SCP based BCI studies [56] [57] [58], the investigators have shown that after training,
people are able to learn to control SCPs and thereby control movement of an object
and word speller on the computer. It also has been tested in locked-in patients and has
proved able to supply basic communication capability. After sufficient practice,
normally several months, the system can achieve high classification accuracy
(70%~80%). However the process of this SCP based BCI is slow, requiring more than
an hour for patients to write 100 characters with the cursor, while training often took
many months. For this reason, the range of possible application of this method is quite

limited.
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Figure 2.8: Slow cortical potential (SCP) based BCI. Users learn to control SCPs to
move a cursor toward a target by generating more positive SCPs (at the bottom) or more
negative SCPs (top) on a computer screen [57].

2.5.3 P300 evoked potentials

An event-related potential (ERP) or (evoked response (EP)) is any
electrophysiological response to an internal or external “event” [59]. This event may
be a sensory stimulus (such as a visual flash or an auditory sound), a mental event
(such as recognition of a specified target stimulus), or the omission of a stimulus
(such as an increased time gap between stimuli). More simply, it is any measured

brain response that is directly the result of a thought or perception.

The well-known ERP response known as the P300 EP is a late positive wave that
occurs over the parietal cortex at about 300 milliseconds after the onset of a
meaningful stimuli and the principal frequency is below 10 Hz. The P300 response is
able to occur regardless of the stimulus presented: visual, tactile, auditory, etc,
because of this general invariance in regard to stimulus type, this ERP has been
widely used in cognitive tasks. It forms a well known ‘oddball paradigm’ which

involves frequent and infrequent external stimuli, the latter is able to elicit P300 EP
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around 300-450 ms. A word speller based on this paradigm is one of the most
important BCI applications to date, to detect real-time P300 waveforms and translate
them into letters (and then words), this idea was introduced in [48]. Figure 2.9
illustrates the modality of the P300 for use in this type BCI. The advantages of the
P300 are that the response occurs regardless of the stimulus presented: visual, tactile,
auditory, etc and it requires no initial user training. Because of the general invariance,
this ERP has become a popular research topic in BCI studies. A study has explored
the relationship between speller matrix size and target detection accuracy [60]. The
results show the speller matrix size has no significant effect on P300 latency but has
an effect on P300 amplitude, and that a larger matrix produced larger differences in
amplitude values which might decrease the difficulty of recognition [61]. Other
studies also examined the application of advanced EEG preprocessing methods (e.g.
Independent Component Analysis) together with newer classification methods (e.g.
SVM) in these ERP based BCIs [62] [63] [64]. The results demonstrated that with
appropriate methods, it is possible to increase the detection accuracy and

simultaneously reduce the processing time.
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Figure 2.9: P300 based BCI in which a matrix of possible choices is presented on a
screen and these choices flash in succession. Only the choice desired by the user evokes a
large P300 potential [48].

2.5.4 Spontaneous rhythmic activity

In BCI studies, an emerging popular function is that which allows users to control the
amplitude of their x (8 — 12Hz) or S (18 — 22 Hz) brain rhythmic activity over the
sensorimotor cortices. This is caused by Motor Imagery (MI) [65], (i.e. imagining
hand or foot movement). For MI, the users are instructed to imagine a specific motor
action without any related motor output. The imagination of different movements is
followed by the different power of the EEG or an effect known as event-related
(de)/synchronization (ERD/ERS) [66] on the sensorimotor cortex. When an ERD is
present, it is relatively detectable and can be used as a feedback signal to control
specially designed electrical devices, for instance, to control the movement of a cursor

on a computer screen or to drive/ steer a wheelchair. In addition, humans can learn to
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modify the amplitude of the x rhythm after training. The analysis suggests that u
rhythms could be good signal features for EEG-based communication [67]. The
classification can be very simple - just compare power in the frequency range of
interest. Of more importance is that the accuracy is relatively high, at up to 95% [68].
Figure 2.10 shows the x rhythmic activity in a x# rhythm based BCI. Because this type
of BCI requires training and a proper training session could determine the quality of
the experiments, a study has explored and examined the ways of designing efficient
training sessions [69]. This study showed that with longer and better training, more
accurate performance can be achieved. Some other studies carried out modifications
to improve the classification. These include the use of parameters derived by
autoregressive (AR) frequency analysis [70], and use of alternative spatial filters (e.g.

PCA, ICA) [71] [72].

Many signal processing techniques have been developed and used in these BCI
studies, such as AR modelling [73], and common spatial patterns (CSP) [74]. These
methods tend to find a spatial filter to maximally improve the signal to noise ratio
(SNR). For example CSP derives weights that are applied to each channel in order to
emphasise or de-emphasise activity with a specific focus (or focii). Each set of
weights can be derived and referred to as a spatial filter because when these are
applied to multi-channel EEG they have the effect of selectively attenuating activity
disparate spatial regions. Each spatial filter can then be attributed to one or more
neurophysiological source or artefact. In the case of an artefact, a spatial filter which
de-emphasises, say, ocular activity, will strongly attenuate the EEG amplitude around
the frontal region whilst leaving other areas relatively unattenuated. Other spatial
filters would work on other sources in a similar manner. In order to reach an optimal
performance, some additional processing methods are required as pre-processing steps
before the application of, for example, band-pass filtering, common average reference
and/or manual artifact rejection. A combination of pre-processing methods can

improve the performance, but also results in a less flexible and robust BCI system.
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Moreover the application of additional processing methods brings with it the problem

of increased computation time.

Several pilot studies have investigated the possibility of using certain brain

activities during performing different types of non-motor imagery tasks such as the

imagery of spatial navigation (around a favourite place), auditory (of familiar music)

to drive BCI systems [75]. Stronger responses should be observed over the temporal

cortical area for the spatial task while over the parietal cortical area for the auditory

task. As the outcome from pilot studies, these non-motor imagery tasks achieved

better classification results than those using motor imagery [76].

The non-motor

imagery tasks can be an alternative option for the subjects who are not suitable to

perform the motor imagery. For example, some paralyzed subjects especially since

birth may not be able to access motor imagery tasks.
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Figure 2.10: 1 rhythm activity based BCI. Users control the amplitude of an 8—12 Hz
rhythm to move a cursor to a target may at the top of the screen or at the bottom.

Frequency spectra for top and bottom targets show that control is clearly focused in the

H-rhythm frequency band [58].
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2.5.5 Cortical neuron Activity

Unlike the patterns described in previous sections, the cortical neuron activity benefits
from implanted electrodes. These devices are very small and normally placed as an
electrode array  [77] (for example, BrainGate™ is a brain implant system developed
by the bio-tech company Cyberkinetics in 2003 in which individual electrode
products are 1 mm long, several um wide in 10x10 grid). The electrode array is
implanted about 5 mm deep into the cortex around the motor areas. The ensemble
activity of multiple neurons are then detected and translated into motor commands

and typically, a computer is needed to translate these commands into useful outputs.

A few studies [78] [79] [80] have shown the application of action potentials of
single neurons from animal subjects — monkeys in particular. The monkeys have
shown the capacity to control neuronal firing/spiking rate which is detected by the
implanted electrodes to move a cursor on the computer screen or a robotic arm. For
example, monkeys could learn to control the discharge of single neurons in the motor
cortex. The classification processor compares different patterns and translates them
into commands. The results show that the firing rates of a set of cortical neurons can

reveal the direction and nature of movement [81].

The use of implanted electrodes on human subjects appeared in the latest studies
[82]. Matthew Nagle, a 25-year-old quadriplegic was linked to the computer by
BrainGate™ which was implanted into the motor cortex of his brain in June 2004.
During the experiments he imagined limb motions to modulate the neural firing. By
detecting the certain neural response evoked by imagined actions (imagined hand or
distal arm actions), the firing patterns are transformed into a two-dimensional output
signal displayed as a cursor position on a screen. From the results Nagle used this BCI
to turn on lights, change TV channel, read Email and even draw something with a

painting programme, all by moving the cursor through his cognitive actions. The
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results also show that in a specially designed letter input system, the transfer rate is

possible to reach up to 6.5 bits/s, or about 15 words/min.

2.6 Non-implanted vs implanted methods

Implanted methods require electrodes which have to be implanted into the cortex
during surgery, and then brain tissue grows around the electrodes to secure them
against any movement [83]. However it takes about three/four months to stabilize the
signals following implantation. Because of the lack of knowledge to access accurately
the location of neurons into the motor cortex area, a number of electrodes will fail to
acquire the brain activity. Therefore careful selection of active electrodes with certain
neural evoked responses postsurgery becomes important. Apart from these, the
performance results have shown that a simple signal processing method (e.g. a
threshold method) is enough to achieve good performance [84]. It is believed by some

that the use of implants will increase the clinical viability of BCIs in humans.

However others believe that is not necessary to literally tap into the brain [85].
Non-implanted methods are based on traditional brain surface electrodes. Unlike the
implanted electrodes and wires exposed at the scalp which carry risks of infection and
other complications, surface electrodes are more convenient to place and to vary the
position and number of electrodes. However for scalp electrodes the acquired data
contain many kinds of noise, or artifacts, which are both electrical and biological in
nature (as discussed previously in Section 2.3.4). In scalp recording the major
challenge is to extract meaningful brain activity from the background signals in the

presence of this noise.

2.7 Signal processing techniques used in BCI in the literature
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The main task of a BCI is to recognize patterns by interpreting sequences of signals.
In a multi-channel BCI, 64 channels or more may be used, then the system has to deal
with up to 10000 values per second at a suitable sampling rate. Moreover the raw data
may be contaminated by all sorts of artifacts. Therefore it could be very difficult to
find useful signals without applying advanced signal processing to the data. The
signal processing could reduce the artifacts and improve the signal SNR ratio so that
the extracted signal is clear and easily detected by the translation algorithm. The
major signal processing methods in the literature include: coherent averaging, filtering,

the Fast Fourier Transform (FFT) and blind source separation (BSS).

2.7.1 Coherent averaging

One of the standard ways to minimize the noise and enhance the signal quality in
clinical data is through the process of coherent averaging [86]. In the averaging
process, it is important to ensure that the time locking of the signal for the averaging
process is accurate. When this requirement is met, the signal of interest will be
averaged over many epochs. The noise is assumed to be random and different to the
signals and so during the process the noise will be averaged out and reduced in

amplitude.

Normally ERPs benefit from signal averaging to enhance their SNR [87]. A
stimulus or other synchronizing event defines the time epoch of interest within the
signal. The event is repeated, and a time-locked signal average (or coherent average)
is calculated across trial epochs for each time point of the epoch. Coherent averaging
reduces the variance of the noise, while preserving the amplitude of signals that are
synchronous with the beginning of the stimulus. If x;, is the electrical potential

(voltage) or magnetic field strength at some electrode or sensor location at time ¢ and

trial j, the signal average X, is defined as:
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_ 1 <
X, = —Z X0 (2.1)
J =

where J is the number of signal trials for the coherent averaging. With coherent
averaging, the SNR ratio of a noisy signal can be improved. It is widely accepted that
under the conditions of (a) noise stationary, (b) physiological invariability, and (c) no
correlation between signal and noise, through coherent averaging the SNR can be
increased by a factor of s [86]. In reality, although these conditions cannot be said
to be entirely met, nevertheless coherent averaging results in a useful increase in SNR
and furthermore it is simple and easy to apply. With the key assumption of coherent
averaging that the signal needs to be invariant across trials. However in the real world
the ERP brain activity is not precisely time locked. For example P300 for the same
subject could experience a varying time delay over the duration of a trial. Therefore in
order to extract the true amplitude of the signal, the data acquisition needs to be long
enough such that a good number of trial data is captured enabling a good average to
be obtained. In practice, this could slow down the speed of processing or even cause
habituation [88] which is a decrease in response to a stimulus after too many repeated
presentations. For example, during the habituation the signal amplitude might
decrease and the peak latency might increase. Therefore the more averaging that is

applied will not necessarily achieve a better extraction result.

In the BCI literature, some work has already used coherent averaging to extract
ERP activities [89] [90]. However, in order to achieve good performance studies

sometime also require a method, for example filtering, to preprocess the data

2.7.2 Filtering

One of the most common signal processing approaches in the time or space domain is

to enhance the input signal through a method called filtering. Filtering generally
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consists of some transformation of a number of surrounding samples around the
current sample of the input or output signal. Filtering generally works by accepting an
input signal, blocking prespecified frequency components, and passing the original

signal minus unwanted frequency components to the output.

The above filtering functions can be implemented by various types of methods. In
the literature the most popular type of techniques are: finite impulse response (FIR)

filtering method, infinite impulse response (IIR) method.

(1) FIR filter

A filter that has an impulse response which reaches zero in a finite number of sample
intervals is called FIR filter. An N order FIR filter has a response to an impulse that
is N+1 samples in duration. It can be described by the following difference equation

which defines how the input signal is related to the output signal.

y[n] = byx[n]+b,x[n—1]+-+byx[n—N] (2.2)

where x[n] is the input signal, y[#] is the output signal and b; are the filter coefficients.
N is known as the filter order or the filter length. An N' "_order filter has (N + 1) terms
on the right-hand side. The goal of filter design is to select the filter's length and

coefficients such that it achieves the desired filtering functions.
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(2) lIR filter

An IIR filter is another type of digital signal filter, in which the output is the weighted
sum of the current and past samples of input. The definition of IIR filter is given by

the following difference equation.

ylnl=bx[n]+bx[n—1]+---+bx[n—Pl-ayyln—1]-a,y[n-2]—---—a,y[n-0] (2.3)

where P is the feedforward filter order; b; are the feedforward filter coefficients; Q is
the feedback filter order; a; are the feedback filter coefficients; x[#] is the input signal

and y[#] is the output signal. The order of an IIR filter is the largest of P and Q.

Compared to the FIR filter, the IIR filter can achieve a given filtering
characteristic using less memory and calculations than a similar FIR filter. However
the IIR filter is more susceptible to problems of finite-length arithmetic so that a direct
consequence of feedback occurs when the output isn't computed perfectly and is fed

back, the imperfections can become compounded.

The overall advantage of using filtering is its simplicity that unwanted frequency
components can be easily removed. However this method fails when the neurological
phenomenon of interest overlap or lie in the same frequency band [91]. In BCI
applications, some noise or artifacts have a frequency range that overlaps the EEG
signal. As a result, a simple filtering approach cannot remove, for example, EMG or
EOG artifacts without removing any unique neurological phenomenon. More
specifically, since EOG artifacts generally consist of low frequency components,
using a high-pass filter will remove most of the artifacts. However, for BCI systems
that depend on low frequency neurological phenomena (such as ERP activities), these

methods are not desirable, since these neurological phenomena may lie in the same
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frequency range as that of the EOG artifacts. In the case of removing EMG artifacts
from EEG signals, filtering specific frequency bands of the EEG can be used to
reduce the EMG activity. Since artifacts generated by EMG activity generally consist
of high-frequency components (most EMG exists in a frequency range between 20
and 200 Hz), using a low-pass filter may remove most of these artifacts. But they
cannot be effective for BCI systems that use a neurological phenomenon with

high-frequency content (such as g, f rhythms).

2.7.3 AR model

An autoregressive (AR) model is an IR filter with some additional interpretation
placed on it. It is one of a group of linear prediction formulas that attempt to predict
an output of a system based on the previous inputs or outputs. Specifically a model
which depends only on the previous outputs of the system is called an AR model,
while a model which depends only on the inputs to the system is called a moving
average model (MA), and a model based on both inputs and outputs is an

autoregressive-moving-average model (ARMA).

The notation of P" order AR model can be written:
P
ylnl=Y pyln—i] (2.4)
i=1

where ¢, are the parameters of the AR model and y[#] is the output signal.

The notation of Q’h order MA model can be written:

0
yln]= Zé’jX[n—j] (2.5)
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where the 6, are the parameters of the MA model and x[#] is the input signal.

The notation P+Q order ARMA refers to the model with P AR terms and Q MA

terms. This model contains the AR and MA models:
P 0
ylnl=> oyln—il+> 0, x[n- j] (2.6)
i=1 =0

AR models have been applied to EEG signals over many years now. The first
applications of AR modeling on EEG are described in [92] [93], where the models
were used to simulate artifacts. Other EEG applications include spectral analysis [94],
segmentation [95] [96] and feature extraction [97]. In order to use AR modeling
methods, a careful selected model order becomes a major issue. Normally the order
selection can be achieved manually based on the prior knowledge of the application or
automatically by techniques such as the Akaike Information Criterion [98] and
Bayesian information criterion [99]. However, in general these automatic order
selection criteria are of limited use since sometimes inappropriate model orders are

estimated [100].

In BCI applications, AR modeling can be applied to remove EOG artifacts from
EEG signals [101]. The process starts to calculate the AR parameters for EOG signals
in a training data set so that the specific character of EOG for a particular subject can
be caught. Those parameters then are used to separate the EOG artifacts in the
subsequent data and the separated EOG signals are subtracted from the original EEG
data to generate the non-contaminated EEG. One problem in using the AR model is
that the EOG signal to be subtracted from the EEG signal is also contaminated with
the EEG signal, so subtracting the EOG signal may also remove part of the EEG

signal.
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The reduction of EMG artifacts through AR modeling methods is more difficult
since EMG has a more random presentation in time which means there is no reference

to assist AR in calculating the appropriate parameters [102].

2.7.4FFT

Sometimes, in order to analyse the data signals for their frequency content, data have
to be converted from the time domain into the frequency domain. This is
accomplished by the Fourier transform (FT) [103] [104]. The discrete Fourier
transform (DFT) [105] is one of the specific forms of FT. An FFT allows the DFT to
be obtained rapidly and efficiently [106] [107]. The definition of a DFT can be written

as the following:
N1 —Enk
Z[k1=Y zlnle ¥ k=0, .., N-1 2.7)
n=0

where z[n]are input signals, N is the length of data. In the case of N-sample signal,

the total number of steps in the computation of the DFT is thus N>. A FFT algorithm
(for example Radix-2 algorithm [108]) requires the number of samples in the signal be
a power of 2. The computing time for the radix-2 FFT is proportional to N(log, N).
So for example a transform on 1024 points using the FFT runs about 100 times faster
than using the DFT. In addition, the term of window is to generate a smoother and

more reliable estimate of the distribution of power. This is achieved by averaging

neighbouring periodogram intensities across frequencies.

The process of determining the amplitudes of frequency components of a signal is

called the spectrum analysis [109]. The spectrum analysis separates the signal into its

41



Chapter 2 Electroencephalography and Brain-computer Interfacing

specific sinusoidal and cosine waveforms. The resultant frequencies can be used to
calculate signal power spectrum which shows a distribution of power values as a
function of frequency. In the frequency domain, the power is the square of FFT’s

amplitude.

In EEG applications, the spectral analysis separates the relative contribution of the
different frequencies in the signal. The analysis is able to reduce the noise which is
achieved by selecting and discarding the noise’s troublesome frequency component(s)
from the signal [110] [111], then the result can be represented either as the power or
as the energy within the particular frequency band. Moreover in BCI applications as
the rhythmic activities (for example g, f rhythms) are generally the components of
interest, spectral analysis based on FFT is able to straightforward compute the power
spectrum of components [112]. However this task becomes more difficult in the case
that the frequencies of noise and components of interest are overlapped and fall in the

same frequency band [113].

2.7.5BSS

Multi-channel EEG signals represent a mixture of a large number of individual brain
sources. This is due to two reasons. First, one single action potential cannot be
recorded in isolation from the scalp, so any potential change contained in the EEG
recording is the effect of thousands of neurons firing simultaneously. Second, and
more importantly, the recordings from each electrode are influenced by multiple
(perhaps independent) sources in the brain, e.g. activity in the auditory cortex not only
affects the electrodes directly above this brain area, but all other recording sites as
well. Moreover, severe contamination of EEG activity by EOG, EMG, heart and line

noise lead to a more serious problem for EEG interpretation and analysis.

42



Chapter 2 Electroencephalography and Brain-computer Interfacing

Source separation problems in signal processing are those in which several signals
have been mixed together and the objective is to find out what the original signals
were. BSS is a technique to separate a set of source signals from a set of mixed
signals, without the aid of information about the source signals or the mixing process
[114]. BSS relies on the assumption that, for example, the signals may be mutually
statistically independent or decorrelated [115]. It thus separates a set of mixed signals

into a set of underling source signals.

One of the key methods of BSS in recent years — Independent Component
Analysis [116] — has the ability to extract the relevant information buried within noisy
signals and allows the separation of measured signals into their fundamental
underlying independent components (ICs). It has been widely applied to remove
artifacts from EEG signals [117] [118] [119]. Studies in BCI applications have also
shown that ICA is able to extract the signal based on morphology (in the time

domain) [120] as well as the signal based on the spectrum (rhythmic activities) [121].

Techniques such as coherent averaging, filtering and AR modelling, etc. can only
process the data on the observed mixture domain which mixes sources of interest
along with aritfacts. Such a limitation ensures that the extracted EEG activities
possibly still contain the noise residue or the removed noise contains embedded
within it part of EEG signals [122]. Unlike those techniques, BSS has the ability to
separate the mixture of components of interest, artifacts and other components into
their fundamental sources. By this means, ICA can extract the components of interest
and reduce the noise at the same time. It is then possible to apply further processing
only to a limited number of those isolated signals. This certainly promises the ability

to achieve a better extraction performance than other traditional methods [123] [124].

However it is worth noting that in the BCI literature ICA has been mainly used as
a preprocessing step on the data [125] [126] — using ICA just to remove the artifacts,

so not many studies focus on its applications beyond artefact removal. This thesis
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explores the further functional ability of the ICA for the applications to BCI and
extends BSS concepts by developing more advanced ICA techniques. The goal of
applying BSS 1is to isolate the independent source signals so that the follow-on
processes are able to achieve a much better classification performance even by using
simple and easy techniques. Various methods for accomplishing this task will be

discussed in more detail in Chapter 3.

2.8 General discussion on the use of BCI

In Summary, it has been shown that the EEG is a recording of the electrical activity in
the brain, which is generally recorded at the scalp. It provides information pertinent to
the diagnosis of a number of brain disorders and is now widely used in BCI. At
present, the main aim in the development of BCI systems is to enable people with
severe neuromuscular disabilities to drive computers directly by their brain activity
rather than by physical means. An EEG based BCI system links the brain and a
computer or other electrical devices together by using the ongoing EEG. By these
means it helps the user to communicate with his/her environment and to provide them

with additional assistance for a better quality of life.

The circadian rthythm [127] is an approximately 24-hour cycle in the biochemical,
physiological or behavioural processes. More specifically, humans have a wake-sleep
cycle which is associated with different levels of alertness (i.e., the state of paying
close and continuous attention). Generally speaking, the alertness increases during the
daytime and drops during the night. Moreover in term of quantitative measures, in the
EEG recordings, the power in the frequency bands of brain activities can be observed

to cycle based on this circadian rhythm.
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In the BCI literature, there is a lack of studies on the impact on EEG based BCI
diurnal variations since no studies have actually involved running a BCI system for 24
hours. However it is known that the key of a good BCI system, requires a high level
of attention from users. That is to say, different levels of alertness in a wake-sleep
cycle may affect the BCI performance. For example, because of the lack of alertness
during the evening/night, users may even not be able to effectively concentrate their
attention on the BCI tasks. Moreover if BCI runs over a long period and the brain
activities used are related to rhythmic frequency band, since the spectral information
varies over time then it may be that a re-calibration of the BCI classification criteria
during the task will need to take place (for example, to update the threshold value
which determines the classification decision point). From the BCI literature, since
BCI experiments run over a relatively short period of time and the assumption is made
that the alertness level and the spectral information remain the same during this time,

therefore the performance of BCls in this context should be stable.

BCI development, in order to succeed, requires a close interdisciplinary
collaboration amongst the engineering, neuroscience, psychology, computer science
and rehabilitation communities. The research needs to discern the nature of
electrophysiological phenomena through psychological processes, seek appropriate
BCI paradigms using various control patterns and develop processing methods to
efficiently translate control patterns into final outputs. Further development of BCI
technology will depend on basic neuroscientific research as well as applied signal
processing techniques. However the essential neuroscientific and psychological
foundations of the field are not sufficiently developed. As a result, most current BCI’s
have been developed primarily by engineers and other technically oriented groups
with limited expertise in behavioural principles and methods. High-level intellectual
and cognitive functional patterns are not able to benefit from the current BCI usage as

yet.
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In the BCI literature, five different EEG activities form five types of BCI
paradigms. Current BCI systems are able to be used in basic environmental control,
for example, a binary choice system for answering yes/no questions, and word
spelling. They can even be used to operate assistance devices, for example, a
wheelchair. Due to the different fundamental signals that are used as the control
feature, and due to the fact that each are used in different applications, there is not a
unique quantity that could be reliably used to measure the performance of BCI
systems. However, a fair comparison in several aspects, such as: speed and accuracy,
training time, actual trial length and experiment accessibility, can help researchers
select the most suitable method for specific applications. The key measure of BCI
performance depends on speed and accuracy. For example, VEP based BClIs could
operate a word processing program at a high rate of 10~12 words/min with a
maximum accuracy up to 90% [50] [51]. SCP based word spelling BCIs can write
about 0.15~3 letters/min with an accuracy of 65~90% [55]. P300 based word spelling
BCI can type up to 5 letters/min with about 70~90% accuracy [48]. Spontaneous
activity based BCI performing a binary selection (for example, yes/no questions) can
achieve 10-15 bits/min with a maximum accuracy up to 95% [68]. A cortical neuron

activity based speller can reach 15 words/min [82].

However, another important measure to take into account is how long a training
time is required. Basically VEPs and P300s are such natural brain activities that they
therefore normally do not involve a training session. SCPs are, as their name suggests,
very slow. SCP based BCls require a long training time (several months in fact) so
that users can learn to generate SCP activities. Spontaneous activity BCIs minimally
need a few hours as a training session. Cortical neuron activity BCIs involve a
specially designed training session so that users can learn how to control particular

neuronal firing for specific applications.
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The actual trial length of EEG recordings for BCI systems is also an important
factor; that the longer such a segment is, the more time is needed to complete its
processing. For example, VEP based BCIs detect signals of interest in the frequency
domain and a trial lasting around 2.0 — 4.0s is able to provide sufficient spectral
information for the processing. The duration of natural SCP potentials lasts 0.5 —
10.0s which indicates the actual trial length of such BCI systems needs to be long
enough to capture the potentials. In theory P300 waveforms peak at 300ms, the length
of these trials should thus be long enough to cover this P300 peak. The actual word
speller paradigm [48] in P300 based BCI applies a faster stimulus representation so
that 15 repetitions of a stimulus only needs 2.5 — 3.5s. Spontaneous activity based
BCls also process the signal in the frequency space. The actual trial length is around
4.0 — 6.0s. The trial length of cortical neuron activity based BClIs is short, around

several tens to hundreds of millisecond.

Experimental accessibility can determine how easily users can access the BCI
systems. Generally speaking, the preparation for VEP, SCP, P300 and spontaneous
activity based BCls are similar. They all use scalp EEG recordings, commonly using
scalp electrodes following the 10/20 placement system, a computer program based
instruction and stimulus presentation and output devices, such as a computer and
wheelchair etc. Moreover the electrodes are easy to don/ remove. Cortical neuron
activity based BCI requires extensive surgery to implant electrodes into the cortex.
The whole process needs to be done by professionals and is very expensive and may
have potential risks of brain infection and other such injury. Because of these reasons,

cortical neuron activity based BCIs cannot be broadly applied at this stage.

From the above factors, one paradigm suitable for all application and all possible
BCI users does NOT exist. Matching the user’s need is essential so that BCIs can be
broadly applied to assist users with different disabilities. From four existing BCI

methodologies based on non-implanted recordings, if the text based communication is
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the user’s need, then VEP and P300 based BClIs appear the best choice based on a
summary of their performance factors. If users want to control the computer cursor to
select/click buttons on screen or even drive a wheelchair, then spontaneous activity
based BCls are most suitable. A BCI system that can combine various activities and
can achieve different functions would provide more flexible and practical option for

different users and tasks.

However from BCI literature, the signal processing for BCI is made more difficult
by the fact that EEG recording is easily affected by artifacts. The BCI study in this
thesis is undertaken with an aim to develop and examine advanced BCI techniques,
mainly in the signal processing field. In traditional BCI applications, signal
processing techniques such as coherent averaging, filtering, AR modelling and FFT
were used to reduce the artifacts and improve signal SNR. However due to their
functional limitation, those techniques do not extract the components of interest well.
Therefore a number of additional processing steps have to be used to solve such

problems.

A simple step is to apply a number of reinforcements in the data recording stage.
The idea of applying the reinforcement ensures that enough temporal signal
information gathering for the further processing, for example, for the use of the
averaging and the majority vote technique. However, as a result, the experimental
processing time has to be prolonged. Another step is to increase the number of
recording electrodes so that the enough multi-channel signals are collected to find the
best spatial electrode positions, which also will make the experiment time

unnecessarily longer by electrode placement and processing very large data input.

As the BSS, especially ICA, separation technique has the unique ability to isolate

the mixed signals into their underlying sources which can maximally extract the

components of interest and reduce the artefacts, it has been widely applied to many
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biomedical applications as well as to BCI systems. However in most study cases, [CA
acts as a preprocessing step to clear the signals, then a number of further complex
techniques take on the role to deal with feature extraction and final classification
problems. This thesis proposes to apply and develop advanced ICA techniques so as
to exert the advantages of ICA to this field. Therefore ICA plays the role of a
combination of the signal preprocessing and feature extraction steps and at the same
time simplifies the complexity of the classification process so that even a simple

linear classifier can achieve a very good performance.

The proposed ICA techniques mainly work towards optimising two major issues:
reducing the amount of reinforcement needed (i.e. reducing the recording time needed)
and reducing the number of recording channels so that the total experimental time can
be reduced. Moreover this work is in the context of increasing classification accuracy
or at least with it remaining the same as the current final classification accuracy. The
proposed techniques are demonstrated on two popular BCI systems in three aspects,
multi-channel ICA algorithms for ERP based BCI; multi-channel ICA algorithms for
spontaneous EEG based BCI; and, single channel ICA algorithms for ERP based BCI.
As the time scale for this BCI study is limited, there is not a schedule to explore an

application of single channel ICA on spontaneous EEG based BCI.

The next chapter introduces the standard and goes in some depth into the ICA

concept, history, different types of implementations and applications. It also explores

at a higher level, more advanced ICA techniques.
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CHAPTER 3

Independent Component Analysis

3.1 Introduction

Blind source separation (BSS) refers to the problem of recovering signals from
several observed linear blind mixtures. The attraction of the BSS model in signal
processing is that only mutual statistical independence between the source signals is
assumed and no a priori information: such as the characteristics of the source signals,
the mixing matrix or the arrangement of the sensors is needed. Several simultaneously
active signal sources at different spatial locations can then be separated by exploiting
mutual independence of the sources. Nowadays, BSS methods such as Independent
Component Analysis (ICA) are increasingly being used in biomedical signal

processing and analysis.

This chapter first gives an introduction about the background to ICA, ICA theories
followed by a detailed explanation of popular ICA algorithms which show the various
architectures to achieve the goal of source separation. The chapter also introduces
major processing steps to implement ICA algorithms. Moreover several advanced
ICA algorithms with constraints and novel concepts of ICA applications on single

channel or a few channels are highlighted and reviewed. Finally the chapter ends with
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a summary of the existing ICA applications in the literature and a summary of this

chapter.

3.2 ICA background

In the biomedical signal processing field, a major task is to extract information of
interest from a set of observed measurements. The recorded biomedical signals,
especially brain electromagnetic (EM) signals, contain a finite set of activities which
are overlapped both in space and in time. These activities are generated by the body or
are artifactual in nature. So basically the information of interest is seldom recorded in
isolation but generally mixed with other background activities, for example artifacts
from physiological and environmental origins, and the recorded data are nearly
always contaminated by such ‘background’ noise. For this reason, the SNR of the
desired signal is generally quite poor. From the point of view of the signal processing,
it would be ideal to unmix and separate the sources of interest from a set of noisy

biomedical signal measurements.

Within the above context, ICA, one type decomposition technique, has the ability
to correct or remove signal contaminates. ICA is a statistical and computational
technique for revealing hidden sources/components that underlie sets of random
variables, measurements, or signals [128]. This technique attempts to unmix the
observed signals into some number of underlying components and usually allow

remixing those sources that would result in a clear version of the measured data.

An early ICA algorithm which made a linear source separation possible was
proposed by Jeanny Herault & Christian Jutten in 1986 [129] and then the phrase
‘independent component analysis’ first appeared in their publication [130] in 1991,
Further work to develop the ICA technique and for the first time explain it from the

statistical point of view was written by Pierre Comon in his work [131]. There are a
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large number of papers in the literature utilizing ICA for many applications. More
details about the applications appear later in this chapter. A common application of
the ICA separation problem is to solve the so called “cocktail party” problem where a
number of people talking simultaneously are recorded in a party. The objective of this
problem is to find out what the original individuals’ voice signals were. Although this
is a common example of ICA, it is actually a challenging problem due to the

non-instantaneous mixing of the sources.

In order to use ICA algorithms successfully there are a few strong general
assumptions that must be made about the sources themselves and the source mixing
conditions before these can be applied to the measured data and any proper sense
made of the results. A more common assumption of the ICA separation problem is
made that the unknown underlying sources, which are independent of each other are
linearly combined to form a mixed signal. When this independence assumption is
correct, ICA can separate these mixed signals and returns the independent

components (ICs).

For example, source signal vectors at time instant ¢ s(£)=[s;(¢), $2(¢), ..., sa(£)]" are
mixed and formed as vectors X(£)=[x(?), X2(£), ..., Xm(f)]" Which are the observed (or
mixed) signals, and the mixing matrix A with the dimension m xn describes the linear

combination of sources s:
x(9)=As(?), (3.1)
m stands for the number of mixed signals, » indicates the number of sources and both

of them have the same number of samples. Generally, it is assumed that the number of

sources is less than or equal to the number of measured data channels (n<m).
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For example, we have four independent sources on the left in Figure 3.1, and these
get mixed by a random mixing matrix A. The signals on the right in Figure 3.1 are the

observed (mixed) signals.
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Figure 3.1: Four independent sources are mixed by a random mixing matrix. The sources
shown on the left and observed signals on the right.

The task of ICA 1is to recover the original sources s(f) from the mixed signals x(7)
through finding an unmixing matrix W, and obtain the independent component simply

by:

5()=Wx(?), (3.2)

Where unmixing matrix W is equal to the inverse of the mixing matrix A, and §(¢) are

the resulting estimates of the underlying sources s(¢). Figure 3.2 shows the process to

find the estimated sources by ICA from the observed signal which is mixed in Figure

3.1.
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Figure 3.2: The mixed signals (on the left) are recovered by ICA into the independent
sources (right).

3.2.1 ICA generative models

In actual fact equation 3.1 is a basic and simplified mixing model. A more general
mathematical model which has no assumptions on the data signal (other than

instantaneously mixing) can be summarized as the following,

x(1)=f{s(f)} + n(7) (3.3)

where f indicates any unknown function and n(¢) is the additive random noise vector.
Now in equation 3.3 the ICA problem becomes, to obtain an unmixing matrix by
inverting f and to map the observed signal to the source space without knowing

information neither of f, s or n.

Based on assumptions of linear mixing, ICA can fall into two apparent models:

linear ICA and nonlinear ICA.
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3.2.2 Linear noisy ICA

The assumption of linear mixing of source data simplifies equation 3.3 to

x(H)=As(t)+n(?), 3.4)

where A is the linear mixing matrix as the same as in equation 3.1. The linear ICA
technique is simple and works efficiently in linear mixing environments. In brain EM
signal processing applications, a reasonable assumption can be made that the
underlying sources are mixed by using an instantaneous linear superposition of them
at the measurement channels. Data signals based on such an assumption are, for

example, fMRI and EM brain signals.

3.2.3 Linear noiseless ICA

A linear noiseless ICA is based on the assumption that the mixed observation data
signals x(f) are noiseless or the noise n(¢) is small enough to be ignored, then equation

3.4 reduced to equation 3.1.

x(H)=As(?), (3.1)

Obviously this assumption reduces the complexity of the mixing model, but it also
makes the mixing probably less realistic. However this noise-free model may be thus
considered a tractable approximation of the more realistic noisy model since the noise
here during the data recording can be regarded a source of its own in nature. In this

regard, this approximation of using the simpler model seems to work.
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3.2.4 Nonlinear ICA

In a nonlinear ICA model, the assumption is made that the mixing of the sources does
not need to be linear. The nonlinear mixing theory is proposed due to the basic linear
model often being too simple for describing the observed data adequately. In this
aspect, nonlinear ICA would be suitable for the applications of nonlinear mixtures.
However in general this nonlinear ICA is often intractable and difficult to apply, since
the indeterminacies in the separating solutions are much more severe than in the linear
case. [132] [133] [134] [135]. Therefore the separation of the nonlinear ICA problem
is usually highly non unique and generally the separating processing requires addition

prior information.

This study mainly concentrates on the linear noiseless ICA model for the reasons
that the recording data are EM brain signals (especially EEG signals) which are
assumed to be instantaneously and linearly mixed by underlying brain sources; the
noise added to the observation can be assumed to special underlying “sources”
participating in the mixture; most outputs of existing ICA research are based on this

simplified ICA model and work well for certain linear mixed real data.

3.2.5 ICA for convolutive mixing problems

Many ICA algorithms have been proposed to solve BSS supposing that the
observations are instantaneous mixtures of the sources. However sometimes the
mixing is known as convolutive mixing. This is normally due to the fact that the
source signals have different time delays in each observed signal due to the finite
propagation speed in the medium. Moreover, each observed signal may contain
time-delayed versions of the same source due to multipath propagation caused
typically by reverberation. That is to say observations are the convoluted mixtures of

the sources and not instantaneous mixtures.
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The convoluted mixing problem can be solved by extending ICA algorithms
developed for instantaneous mixtures. Basically the convolutive BSS problem can be
solved by two types of approaches. One approach is to work in the time domain [136],
however working in the time domain has the disadvantage of being rather
computationally expensive, because of the need to calculate many convolutions. More
commonly the other approach works in the frequency domain and transform the
convolution in the time-domain into multiplication in the frequency domain and then
to apply ICA methods for instantaneous mixtures [137], [138], [139]. Some
applications using the convoluted mixing model for particular areas (such as the

enhancement of mixed speech signals) have been published elsewhere [140], [141].

3.3 ICA estimation principles

In order to estimate statistical independence, some basic definitions and terminology

are needed to introduce a more formal understanding of ICA estimation.

3.3.1 Cumulative distribution function

In statistics, the cumulative distribution function (CDF), also known as the probability
distribution function or just distribution function [142], represents the probability
distribution of a real-valued random variable. Probability distributions are typically
defined in terms of the probability density function (PDF). For a continuous random
variable, a PDF represents a probability distribution. The definition of the probability

that the variable x is less than or equal to x0 is:

P(x)= p(x <x0)= J.:j_w p.(x)dx, (3.5)
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where P(x) represents the CDF of a given random variable x, and p,(x) is the PDF of x.
For example, Figure 3.3 shows that the calculation of P(x) is also equivalent to

finding the shaded area underneath the PDF curve.
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Figure 3:3 A PDF function with a Gaussian distribution. The calculation of P(x) is
equivalent to finding the shaded area underneath the PDF curve.

3.3.2 Moments

The concept of moments in mathematics initially comes from physics [143]. A

general definition in mathematics for n-th moment of a real variable is
E[x"] = f‘”x" p.(x)dx, (3.6)

where E indicates the expectation operator, p.(x) is the PDF. In statistics some lower

order moments represent the measurement of particular properties.
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(1) First moment

The first moment corresponds to the mean value (normally represented by p ) of a
random variable x which is also known as the expected value of variable x. It can be

defined as:
Elx) = [ . (x)dx. (3.7)

The mean determines the centre of probability distribution of variable x.

In some cases it is convenient to consider an alternative form of moment: the

central moment. In general, the n-th central moment of a variable can be written as:

El(x-w)"1= [ (x=" p,(x)dx, (3.8)

(2) Second moment

The second moment E[x?] of variable x can be formed as,

E[x*]= J.j:xsz (x)dx, (3.9)

The above can also be shown as

E[x*]=E[x]" + E[(x - )], (3.10)
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where E[(x—p)’] is the variance of the variable x (it is normally represented as o°).

Variance is a measure of the averaged squared distance of its possible values from the
mean. For example, assume there is real-valued random variable x which has a
Gaussian/normal distribution with mean x =0 and variance o> =1. Figure 3.4 visually

indicates the mean and variance of the given distribution.
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Figure 3.4: An illustration of mean and variance of a given Gaussian/normal distribution.

(3) Third moment

The third moment E[x’] of variable x can be defined as

E[x*] = f:x3 p.(x)dx, (3.11)
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The third central moment of variable x is known as the skewness of x. Skewness is a

measure of the “lopsidedness” of the distribution.

(4) Fourth moment

The fourth moment E[x"] of variable x can be defined as

E[x*]= f:x“ p.(x)dx, (3.12)

The fourth moment is commonly expressed through its Kurtosis [144], which for a

zero mean process is defined as:
Kurt(x) =E[x*]-3E[x’]*, (3.13)

Kurtosis is a measure of whether the distribution is “tall and skinny” or “short and
squat” of the probability distribution of variable (more details given in Section 3.5.1).
For example, Kurtosis is zero for a Gaussian random variable. Kurtosis can also be
positive or negative. A random variable with a super-Gaussian distribution has a
‘spiky’ PDF and a positive Kurtosis. Whilst a random variable with a sub-Gaussian
distribution has a ‘flat’ shaped PDF, then Kurtosis is negative. Figure 3.5 illustrates

examples of Gaussian, super-Gaussian and sub-Gaussian distributions.
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Figure 3.5: An illustration of the shape of Gaussian, super-Gaussian and
sub-Gaussian distributions.

3.3.3 Cumulants

The terms, cumulants [145] of a distribution are closely related to the moments of the
distribution. For n = 1, the n-th cumulant is just the expected value or mean; for n =
either 2 or 3, the n-th cumulant is just the n-th central moment; for n >4, the nth
cumulant is an n-th-degree monic polynomial in the first » moments (about zero), and
is also a (simpler) n-th-degree polynomial in the first » central moments. For example

Kurtosis is the fourth-order cumulant.

3.3.4 Independence and correlation

Correlation [146] is one of the most common statistics which describes whether and
how pairs of variables are related. Correlation is often measured as a correlation

coefficient
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b= E[x—p JE[y—n,]
Y B ) R -1,

(3.14)

where p,  indicates the correlation coefficient between two random variables x and

y. u, and p represent the mean values for x and y.

From the above definition, when the correlation coefficient is close to 1, this
indicates a strong correlation between this pair of variables, -1 means a strong
negative correlation and values in between denote a certain degree of linear
relationship between the variables. If the correlation coefficient is close to 0, then it
indicates no correlation (uncorrelatedness) or a weak correlation between pair of

variables.

If the variables are independent then the correlation is 0, but the converse is not
true. For independence, two random variables x and y must meet the condition that

if and only if the following exists

E[x, y] = E[x]E[y], (3.15)

then the two are independent. As equivalent, if x and y have PDF p.(x) and p,(y), then

independence between x and y is equivalent to [147]

DPry(x,y)= p(X) py(y), (3.16)

where p. ,(x,y) is the joint probability density function of x and y.
Intuitively independence is in general a much stronger requirement than

uncorrelatedness: it is interpreted as a stricter condition than the condition of

uncorrelatedness.
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3.3.5 Obtaining a measure of independence

The key assumption for the ICA to be successful is that the source signals need to be
non-Gaussian. ICA uses non-Gaussianity to measure the independence of the signals.
Given a set of mixtures, ICA finds each source signal by finding that unmixing vector
which extracts the most non-Gaussian source signal for the set of mixtures. Therefore
the measurement of non-Gaussianity is defined as a separation strategy of the signals.
For example, considering a simple example, assume there are two random sources s,
and s, with uniform distributions (non-Gaussian) and that they are mixed linearly to

form observed signals x; and x; by the following mixing matrix
0.5 0.8
Amix = s
04 0.2

By plotting the amplitude of one signal at each time point against the corresponding
amplitude of the other signal, Figure 3.6 shows the joint distribution of the two
random sources §; and s, with uniform distribution. Figure 3.7 illustrates the joint
distribution of the mixed signals x; and x,. To make ICA work, a first step called
whitening (more details in section 3.4.2) is applied as a preprocessing to the data. The
whitening process is simply a linear change of coordinates of the mixed data. This
means that any correlations are removed in the data. For the same example, Figure 3.8
shows the effect of whitening on the mixed data. The square as seen in the graph
indicates that the distribution of the mixed data after whitening clearly is a rotated
version of the original square. After whitening, ICA then further rotates the whitened
signals to try to identify the original measurements by finding the unmixing matrix
that maximizes the non-Gaussianity. Obviously the assumption of non-Gaussian
sources is an important factor in the ICA estimation. This begs the question: what if’

the sources all have Gaussian distributions? Assume that two random sources s; and
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s> with uniform distribution are linearly mixed by the above same mixing matrix.
Figure 3.9 shows the joint distribution of the two random sources s; and s, with
Gaussian distributions and Figure 3.10 presents the joint distribution of the mixed
signals x; and x,. After the whitening step, the distribution shown in Figure 3.11
appears nearly symmetric. This indicates that there is insufficient directional
information to help ICA rotate the signal back to the original measurement. Therefore
if there is more than one Gaussian source underlying the measured/mixed data, then
ICA can not separate the signals into their underlying sources. In the case of only one
Gaussian source in the signals, after the non-Gaussian sources are extracted, the
residual is the Gaussian source. That is to say ICA still works as long as there is only

one source with a Gaussian distribution.

To use the non-Gaussianity as a metric, the ICA model needs to define a quantitative

measure of non-Gaussianity of a random variable, for example, Kurtosis and

Negentropy (more details in Section 3.5.2).
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Figure 3.6: The joint distribution (variables) of sources s; and s, with uniform

distributions. s; is in the horizontal axis and s, is in the vertical axis.

[={0] T T

60 -

40+

20t

Figure 3.7: The joint distribution
and x; in the vertical axis.

of these two mixed signals, x; is in the horizontal axis
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Figure 3.10: The joint distribution of these two mixed signals, x; is in the horizontal axis
and x; in the vertical axis.

Figure 3.11: The joint distribution of the two whitened data mixtures. X, is in the

horizontal axis and X, in the vertical axis.
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3.4 ICA Preprocessing

In order to simplify and reduce the complexity of the problem for the actual iterative
algorithm, generally two common steps of preprocessing are applied before the ICA

algorithm: centering and whitening.

3.4.1 Centering

The most basic and necessary preprocessing step is to center the observed signal x
[148], for example, to subtract the mean vector so that signal x becomes a zero-mean
variable. Obviously source s is zero-mean too after this centering process. This
preprocessing can simplify the ICA algorithms. However it does not indicate that the
mean could not be counted in the processing. After estimating the mixing matrix A

with centered data, the mean vector is added back to the centered estimates of's.

3.4.2 Whitening

Another important step is to whiten (or sphere) the data [148]. In a mathematical
model, the observed data x can be linearly transformed to be a new dataset X which

is white by performing a linear transformation V, for example, X = Vx so that
covariance matrix of %, E{XX'}=1I. This can be easily accomplished by setting V =
C'"?, where C = E{xx'} is the correlation matrix of the data x. It is easy to check
E{x%"} is now transformed to E{Xk'} = E{Vxx'V'} = C'"’C C'? = I. After

whitening, the components of X are uncorrelated and their variances have equal

unity.
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Figure 3.3 — 3.5 show a simple example of whitening process on the data. In ICA

literature, there are a number of different techniques to extract independent sources.

3.5 ICA algorithms

Here the most popular algorithms for ICA are separated into different groups: the first
group relies on batch computations minimizing or maximizing some relevant criterion
functions and the second uses adaptive algorithms based on stochastic gradient
methods which is often implemented in neural networks. The algorithm based on the

time structure of the sources [148] is considered as a separate case.

3.5.1 FastICA

FastICA [149] is one of the more popular and referenced ICA techniques in the
literature. It attempts to separate underlying sources from the mixed data set based on
their ‘non-Gaussianity’. A classical measure of non-Gaussianity is kurtosis or the

fourth-order cumulant. The kurtosis of x is classically defined by

kurt(x) = E{x*} — 3(E{x*})*, (3.13)

where x is a zero-mean random variable. For a Gaussian x, the fourth moment E {x*}
equals 4(E {Xz})z. Thus, kurtosis is zero for a Gaussian random variable. For most
non-Gaussian random variables, kurtosis is nonzero. Typically non-Gaussianity is
measured by the absolute value of kurtosis. The square of kurtosis can also be used.
These are zero for a Gaussian variable, and greater than zero for most non-Gaussian
random variables. There are non-Gaussian random variables that have zero kurtosis,

but they can be considered as very rare.
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Kurtosis, or rather its absolute value, has been widely used as a measure of
non-Gaussianity in ICA and related fields. The main reason for this is its simplicity,
both computational and theoretical. Computationally, kurtosis can be estimated
simply by using the fourth moment of the sample data. Theoretical analysis is
simplified because of the following linearity property: If x; and x, are two

independent random variables, it holds that

kurt(x,+ x,) = kurt(x, ) + kurt(x,) (3.17)

and

kurt(ax,) = a*kurt(x,) (3.18)

where a is a scalar. FastICA is to use a fast fixed-point iterative algorithm (to compute
the iterated function, for example, the second step of the below FastICA algorithm in
the sequence of given points) to find the local extrema of the kurtosis of the linear
observed variables. In other words, as kurtosis is equal to zero for Gaussian
distributed signals, the algorithm aims to maximize the magnitude of the kurtosis to

make the estimated sources as non-Gaussian (independent) as possible.

The fixed-point algorithm of FastICA can be described as the following steps:

1. Set a random initial vector w(0) of norm 1 and 4=1;

2. Let w(k)=E {x(w(k-1)"x)*}-3w(k-1). The expectation can be estimated using a large
sample of x vectors;

3. Divide w(k) by its norm.

4. If |w(k)'w(k-1)| is not close enough to 1, let &=k+1 and go to step 2. Otherwise,

output the vector w(k).
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The final output of vector w(k) equals one of the columns of unmixing matrix. The
corresponding non-Gaussian source signal can be obtained through w(k)'x(¢), =1,

2, ... To estimate n independent components, we need to run this algorithm # times.

In the downloadable FastICA toolbox [150], the fixed-point parameter is set as
1000 points. From the experiments, a remarkable property of FastICA 1is that only a
small number of iterations usually 5-10, is usually enough to obtain the maximal

accuracy allowed by the data set.

3.5.2 Infomax ICA

Another method of measuring non-Gaussianity is through negentropy. Negentropy is
based on the information-theoretic quantity of differential entropy which is the basic
concept of information theory [143] [151]. The entropy of a random variable can be
interpreted as the degree of information that the observation of the variable gives. The

entropy H of a random variable x with density p,(x) is defined as
H(x) = -.[ p.(x)logp, (x)dx (3.19)

For random variables of equal variance, Gaussian random variables have the
largest entropy which means least information. Entropy is small for distributions that
are clearly concentrated on certain values, for example, if the PDF is very spiky
(non-Gaussian). This indicates that entropy could be used as a measure of
non-Gaussianity. In practise, it more likely uses a measure of non-Gaussianity which
is zero for a Gaussian variable and always nonnegative for a non-Gaussian variable.
Furthermore, differential entropy — or Negentropy — is defined as the difference
between the entropy of a Gaussian random variable with the same variance as the
observed random variable, and the entropy of the observed variable [152]. Negentropy

J is given as follows
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J(X) = H(xgauss ) - H(xohserved) > (320)

where Xgauss 1S @ Gaussian random variable of the same covariance matrix as Xopgerved-
Negentropy is always non-negative. It is zero when x has a Gaussian distribution and

positive when x has a non-Gaussian distribution.

Infomax ICA [153] is such an algorithm that measures the non-gaussianity of
sources by using negentropy. It works based on a neural network gradient-based
algorithm whose learning rule is based on the principle of information maximization
(so called Infomax), and it maximizes the output entropy of a neural network with
nonlinear outputs. By doing that, ICA is able to recover the original sources which are
statistically independent. However the main problem with Infomax ICA is that it
involves a gradient training algorithm so that the speed of the convergence is varied
and the convergence depends crucially on the correct choice of the learning

parameters.

3.5.3 Temporal Decorrelation based ICA

Unlike the above two ICA techniques, a totally different technique to perform ICA is
to consider the time structure of the sources. The idea behind this approach is to
capture the dependency structure of the observed signals using a set of square
matrices (or a stack of matrices) and then find the unmixing matrix [154]. One of the
practical methods based on this time structure can be achieved through temporal
decorrelation (TD) [155] [156]. For sources with stationary waveforms and unique
power spectra, the time structure is adequately captured by temporal
cross-covariances [157] [158]. The decorrelation operation in time structure ICA
methods involves the joint diagonalization of a set of symmetric matrices which

reflect the spatio-temporal covariance structure of the source mixture.
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E{x(z,r)xT(z,r)} —C'=ACA", (3.21)

7 indicates the time delay, normally 7 are a set of delays, for example, 1, 2,3, .... T
denotes matrix transpose C’ is the signal cross-covariance matrix and C is the

source cross-covariance matrix. The TD approaches is defined based on the statistical
independence of the sources. Furthermore, algorithms have recently been developed
for non-orthogonal joint diagonalisation that process signal covariances directly with
no need for pre-whitening, one such algorithm is used here and is called LSDIAGtp

[159].
C: =WCW', (3.22)

The coefficients of the unmixing matrix W is optimized in such a way to transform
the signal covariances matrix stack into the source covariances matrix stack as
diagonal as possible since diagonal is assumed as independence. Figure 3.12 indicates
the transformation between two covariance matrix stacks. Once W is estimated, each

of the independent sources can then be separated by s=Wx.

Due to the specific assumptions, TD based ICA works fine on the stationary
source waveforms with unique power spectra. However, the applications of the
long-term biomedical signals recordings are unlikely to remain stationary. However if
the assumption is made that the auto-correlation function of the source is slowly
varying in time, so that the sources are basically stationary over short time windows,
then the TD approach can be adapted to process non-stationary signals by using such
short time windows and further applied to estimate the mixing matrix in the usual way
[154]. Another issue worth noticing in this technique is the appropriate choice of the
number of time lags which are used to describe the spatio-temporal covariance of the

data. There could be an automatic method to select the average number of time lags of

74



Chapter 3 Independent Component Analysis

the data by using statistical the selection model, but it may cost a huge computation
time in practice [154]. Most of the present work prefers to set the number manually,
based on experience and knowledge of the application domain (this may amount to

trail and error) [160] [161].

Cs =WC*W’

| C* = ACSAT

Figure 3.12: The transformation between two covariance matrix stacks of C’andC}. The

mixing matrix A transforms the covariance stack of the sources to the covariance
stack of the observations and vice versa with the unmixing matrix W.

3.5.4 Dimensionality reduction

Mostly it is true that the data are represented in a high dimensional form but the actual
number of sources could be low dimensional. Especially when the number of
channels exceeds the number of sources, the ICA approach applied on such a high
dimensional space could waste much effort in dealing with irrelevant features.
Therefore it is usually advantageous to reduce the high dimensional data into lower
dimensional space as a first step. Singular value decomposition (SVD) [162] or
principal component analysis (PCA) [163] are popular techniques for the dimensional

reduction problem.
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The SVD approach for dimensionality reduction condenses most of the
information in a dataset to a few dimensions using eigenvectors of the transformed

space. The equation for SVD of X (m x n matrix) is the following:

X=USV", (3.23)

where U is an m x n orthogonal matrix, S is an n x n diagonal matrix with positive or
zero elements, and V' is a transpose of the n x n orthogonal matrix. The diagonal
elements of matrix S are necessarily equal to the singular values of X. The columns of
U and V are, respectively, left- and right-singular vectors for the corresponding
singular values. The dimension reduction process through SVD is to keep its first £
(k<m) singular values. These k singular values are ordered in decreasing order along
the diagonal of S and this ordering is preserved when constructing U and V",
therefore keeping the first k& singular values is equivalent to keeping the first k£ rows of
S and V" and the first k£ columns of U. after this, Equation 3.12 is reduced to Equation
3.13

X=USV", (3.24)

A

U is an m X k matrix, S isakx kmatrix and V isan x k matrix. Then X is the

dimension reduced version of X.

There is a direct relation between PCA and SVD in the case where principal
components are calculated from the covariance matrix. Performing PCA is similar to
performing SVD on the covariance matrix of the data. Given a set of data, PCA finds
the linear lower-dimensional representation of the data such that the variance of the
reconstructed data is preserved. When we project our data onto such a

low-dimensional hyperplane, the variance of our data is changed as little as possible.
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For the PCA algorithm, let X,,' represent a data matrix with zero mean. The
covariance matrix (X) of X, is then calculated and the eigenvectors and eigenvalues
of X are found. The basis of the data and the application could help us to select a
number of first k eigenvectors with largest eigenvaules which would decide the

dimensions of projected hyperplane.

As the techniques don’t have a fixed number to decide the basic vectors.
Therefore the dimensionality reduction is somewhat of an arbitrary process. A
carelessly selected value of k to truncate the data could lead to the so-called

“dimensionality reduction curse” [164] which could affect the performance.

3.5.5 Source selection

With the nature of the BSS problem and the techniques used in ICA, one assumption
is that the number of observed mixtures must be at least as large as the number of
estimated components, but the exact number of underlying sources is unknown.
Therefore correct determination of the number of sources becomes a major problem.
Generally the most common methods to select the number of sources are based on
cumulative and relative variance thresholds. However these methods don’t offer the

help to select the source(s) of interest after implementing ICA algorithms at all.

In the literature [165] [166], the source selection can be done as a subjective
process by the authors. The selection usually follows some subjective criterion related
to the expected outcomes of the analysis. Especially in biomedical applications we
may possibly have certain knowledge about the nature of some of the source signals
which could be extracted from the recorded data in mind, for example, many
physiological signal patterns (heart beat waveform and rhythmic brain activity) have

particular temporal, spectral or time—frequency characteristics. In some multi-channel
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applications, the scalp topography which tells the components' physiological origins
forms another common method on source selection, such as eye blinks, saccades and
bursts of muscle activity. However all of the above methods to choose sources of

interest remain highly subjective.

In a previous study a solution was proposed for source selection, which is to use
prior information in the ICA model [167]. The idea behind it is to use only minor
modifications of the estimation procedures, essentially by introducing constraints on
the model, which can act on the spatial projections, or work on the temporal dynamics
of the source waveforms. By adding prior knowledge into the model and letting ICA
estimate the unknown parts, these modifications are presumed to guide the ICA
solution to find an expected outcome. This may certainly help interpret the results
meaningfully, although it is recognised that this may lead to sub-optimal results in

some instances.

3. 6 Constrained ICA

Once a set of sources is determined through ICA, the ICs of interest must be identified.
This is made difficult as the nature of the square mixing matrix means that a great
many more sources will be identified over the expected (smaller) number of sources
underlying the measurement set. In most specified signal processing applications, it is
very often the case that the source signals which are aimed to extract are known to the
applicants. Many expected signals or patterns have certain temporal, spectral or
time—frequency characteristics. A practical way to extract only the sources of interest
automatically is to use such prior knowledge or additional constraints on the source
model — constrained ICA (cICA). Such prior information/knowledge is desirable and
possible to add into the ICA model by only minor changes of the estimation
procedures. These modifications can be achieved by imposing constraints on the

model, for example to work on the spatial projections, or on the temporal dynamics of
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the source waveforms. Such constraints are expected to guide the ICA solution to
extract the ICs of the observations (if they are there). Some constraint selection
techniques, for example, have been presented in a free ICA toolbox — ICALab [168].
Basically constrained ICA algorithms can be separated into two stages: the first stage
is to apply an ICA algorithm to extract the suitable references signals; the second
stage is to use some selected components as references signals in the constrained ICA
applications. In order to extract more physiologically meaningful components, the
selected references are better to give better signals for example the responses

corresponding to pre-designed stimulus or events.

3.6.1 Spatially-constrained ICA

One example is to apply the spatial constraint on the mixing matrix which relies on
specific prior knowledge regarding the spatial topography of some source sensor
projections. This forms an advanced ICA algorithm called spatially-constrained ICA
[154]. The idea of using spatial constraints in BSS was initially proposed in
automated artifact removal in EEG. For example, the spatial topographies for
eye-blink and eye movement can be included as an initial guess in the first two

columns of the mixing matrix.

The spatial constraint operates on initializing columns for mixing matrix A. A set
of predetermined constraint sensor projections forms as reference columns denoted by
A.. Thus, the spatially constrained mixing matrix comprises two types of columns

A=[A, Al (3.25)

where A, = A, are columns subject to the constraint, and A, where are otherwise

unconstrained columns (random values).
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Depending on the application, the predetermined sensor projections forming the
spatial constraint may be obtained from a source decomposition of a previous data
segment using conventional BSS (ICA) methods [169]. Moreover in the algorithm, it
is possible to choose one of three types of spatial constraint, namely hard, soft and
weak spatial constraints which reflect the degree of certainty about the accuracy of
predetermined source sensor projections. The columns of a hard constraint remains
fixed, whereas the weak constraint only provides a starting guess for unconstrained
subsequent estimation. Soft constraints limit the divergence between the constrained
columns and their corresponding reference topographies [170]. Whilst column
selection of the mixing matrix does not guarantee to offer good performance in the
solution, it can help to separate the sources when they are present in the data. More

information on the use of constraints can be found in [167] and [171].

3.6.2 Temporally-constrained ICA

Theoretically the ICA algorithm first converges to a single source with the largest
negentropy of all the underlying ICs. However the algorithm is not guaranteed to
converge to the global maximum due to random initialization of the ICA algorithm
and other factors. The idea of using a temporal constraint is to guide the ICA
algorithm to obtain a source output which is statistically independent of other sources
and 1s closest to some reference signal [172]. This constraint (reference signal) does
not have to be perfect, but it should be at least good enough to point the algorithm in
the direction of a particular IC spanning the measurement space. The closeness

constraint can be written as

g(w)=¢e(w)-5<0, (3.26)

where w indicates a single unmixing weight vector, such that y=w'x; &(w) denotes
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the closeness between the estimated output y and the reference signal r, and £ some

closeness threshold. The measure of closeness can be achieved by the methods such
as mean-square-error or correlation, etc. For example using the correlation as a

measure of closeness one can rewrite equation 3.15 as:

g(w) = E{r(w"x)} - <0, (3.27)

where & becomes the threshold that defines the lower bound of the optimum

correlation. The temporally-constrained ICA is now modelled as the following:

Maximize: f(w)= p[E{G(W"X)} - E{G(V)\T, (3.28)

Subject to: g(w)<0,i(w)=E{y’}-1 and E{r’}-1=0, (3.29)

where f(w) denotes the contrast function; o is a positive constant; v is a zero mean,

unit variance Gaussian; G(.) can be any nonquadratic function; g(w) is the closeness
constraint; 4(w) constrains the output y to have unit variance; and the reference signal

r is also constrained to have unit variance [172].

3.6.3 Spectrally-constrained ICA

In some applications, rhythmic EEG signals within the EEG recordings (specifically u
rhythm activity) are of interest, a predefined spectral reference is proposed to use as
the constraint. This spectral constraint then allows only those source activities with
the same power spectrum to be extracted via the cICA algorithm. In [160] a reference

channel was added as an extra row to the measurement matrix x(¢), such that a new

matrix X(¢) is created with
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X(1) = LX((?J , (3.30)

where ¢(¢) is a suitable reference vector. In order to observe changes in rhythmic
activity in specific frequency bands, a filtered white noise with a particular power
spectrum is often used as this reference vector. The ICA problem is now such that the
extra row in the measurement space due to the reference vector results in an extra row
in the IC space after the ICA step (as well as a corresponding extra column in the

mixing matrix). For an n-channel system, the first #» elements of the extra mixing

n+l n+l n+l

matrix column [a/" ,a}" ,...,a]" ] depict the spatial distribution (topography) of the

new IC given by the row vector s,:(¢). Furthermore, each of the elements of the
(n+1)th row of the mixing matrix reflects a weighting of each corresponding IC. This
row vector, a,+1, can in fact be used to depict the contribution of each topography
described by the columns of the mixing matrix, due to the reference channel ¢(¢). In
this way ICA now provides the desired convenient spanning basis, and can also be
used to obtain the topography of interest (extracted by summing the weighted
contribution of each column of the mixing matrix). Furthermore, the weighting value
of each IC provides us with a spectrum of values that can be interpreted to gain some
insight into the complexity for a given reference. The above technique can be readily
extended to more than one reference. The extraction of rhythmic EEG signal
components (such as epileptic seizures) by this spectrally-constrained ICA method

have been shown in [173].

3.7 Single channel ICA

In traditional multi-channel ICA analysis, the observation data must fulfil the
following two primary conditions: 1) the underlying sources must be statistically

independent, with static distributions; 2) the number of observations must be greater
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than (or equal to) the number of sources expected to be extracted. From previous
sections, the multi-channel ICA algorithms and applications are all based on these
requirements. However since the data available for the analysis changes from
multi-channel to single channel, the second condition no longer exists. One way to
overcome this problem is to reform the single-channel into a multi dimensional
representation via the method of delays [174] (also known as dynamical embedding
[175]). Such an ICA algorithm on multi-dimensional data representation is called

single-channel ICA (SC-ICA)

3.7.1 The matrix of delays

Dynamical embedding (DE) was firstly introduced by Takens [175]. It assumes
that due to the non-linear interaction of just a few degrees of freedom, with additive
noise, the measured signal exists as an unobservable deterministic generator of the
observed data. This allows reforming the unknown dynamical system by constructing

a new state space based on successive observations of the time series.

The basic idea of DE is to structure an m-dimensional embedding matrix for an

n-valued scalar data set. Assuming a single data channel with n elements: {x,}_ ,,
then delayed vectors in the constructed matrix are given as v, ={X;, X1, Xs\ (1) ) -

The delay matrixvis formed by obtaining v, for successive values of k, and

combining these to form

xt xt+r xt+Nr
t+1 X4z Xit(m+)z
L= .
, (3.31)
_‘xt+(m—l)r xt+(m)r ‘xt+(m+N—1)r ]
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where 7 is the lag term, m is the number of lags (or the dimension of the matrix of
delays) and N is the length of the matrix. After construction with these delay vectors,
the matrix of delays is able to provide a topologically consistent representation of the
underlying system so that the second primary condition is feasible. Therefore popular
ICA algorithms can now be applied to the reformatted single channel data. Those
techniques include FastICA, infomax ICA and other types of ICA algorithms

described in the earlier sections of this chapter.

In order to construct the matrix of delays or DE system, the parameters such as m
and 7 need to be set to appropriate values. Obviously the choice of these parameters
1s an optimization process. In Takens’ theorem, if the number of degrees of freedom
of the underlying system is given by D, then the Euclidean embedding matrix

dimension m must be at least as large as D, but in practice must be such that,
m>2D+1, (3.32)

Since in the real world, the value of D is unknown, another alternative method [176]
is more practical in the studies. This method sets up the minimum size of m based on

the sampling rate and the lowest frequency of interest as,

7
> == 3.33
"7 -39

where £, denotes the sampling frequency, and £, the lowest frequency of interest in

the measured signal. Depending on different applications, there could be a variety of
methods to try to estimate the value of 7, in the literature on similar studies, the

popular value was set to 1 [176].
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3.7.2 Projection of the ICs

After constructing a delay matrix, ICA is then applied which decomposes the delay
matrix into a series of statistically independent components just as the multi-channel

ICA application on multi-channel data does.

Normally the number of ICs is the same as the dimension of the delay matrix m.
As the delay matrix is simply composed of time-shifted versions of the original time
series, each individual IC is hard to interpret in the source space. In this study in order
to assess the significance of each IC neurophysiologically, it must be projected back

to the measurement space in isolation such that
Y =au/, (3.34)

where u; is the ith IC (i = 1, 2, ..., m), a; the corresponding column of the mixing
matrix A and Y' the resulting ‘matrix of delay vectors’. From Y' it now becomes
possible to extract the projected time series, y,(f), by performing an average of the

adjusted rows of the matrix Yi, in order to recover the time series, i.c.,
1 m ;
Y, (1) = _ZYk,(Hk—l), (3.35)
m -

where ¢ is equal to 1, 2, ..., N, and Y} ,,, , refers to the element of Y' indexed by row &

and column ¢+ k£ — 1.

3.7.3 Selection of the ICs

Whereas in multi-channel ICA the columns of the mixing matrix A are interpreted as

spatial distributions of their respective ICs, in SC-ICA these are interpreted as shifted
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versions of the mixing filters (i.e. no spatial information but rather temporal
information). As the independence of components is used as the important notion in
multi-channel ICA applications, and it is not generally possible to linearly decompose
a single time series into independent components. This study has to relax the notion of
component-wise independence and turn to find and group the components of interest.
Depending on different applications, specific signals such as particular epileptic

activity or event-related evoked potential can be used for the purpose of grouping.

Recent studies [177] [178] have applied SC-ICA to extracting such activities. The
basic idea is to apply ICA to the matrix of delays, then project each resulting IC back
to the measurement space. The selection of the most relevant ICs was based on the
subjective analysis of wave morphology and on derived spectrograms of each
projected IC. Results demonstrated that single channel analysis can extract

meaningful information and achieve good signal resolution [179].

However the subjective selection of relevant ICs has disadvantages. Obviously it
is a slow process and cannot form an automatic robust system since it involves
manual work. An approximate method [174] was introduced which intends to avoid
the IC selection or the clustering step. The idea is to begin with a deflationary ICA
algorithm on the delayed vector matrix. Followed by a step that forms a separation
filter by using just a single basis vector from the unmixing matrix, one of the sources
can be separated by applying this filter to the first extracted component. Depending on
the data and the application, the algorithm can be repeated on the remaining signals to
extract further related sources. From the results it is believed that this method
performs efficiently, especially when there are only a small number of independent
processes to be extracted. The algorithm mentioned in [174] is summarised as:

a) create the delayed vector matrix from the selected data set, temporally whiten

the signal and reduce the dimension by PCA;

b) apply a deflationary ICA algorithm to learn the mixing matrix A,
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c) create the separation filter f;(¢1)=a,(-)*w () i€y, y, is the selected

subset of basis vectors; where a,(¢) is the column vector of A, wi(¢) is the row
vector of W and * is defined as convolution;

d) calculate the scaling parameter a, to adjust and rescale the filtered signal, a,, is
given as: a, :<rp 0, f: @) *r, (t)> / <rp (0,1, (t)>, where <,> is the usual vector
inner product and initially r,(¢) =x(¢) ; a,f, *r,(¢) is the extracted source

component;

e) if further sources are needed to extract, calculate the residual

r,@)=r, ()=a,f *r,,(t) and go back to Step (b).

3.8 Space-time ICA

When the input data is formed from a delay vector of samples, x(¢) = [x(?); x(¢-1), ...,
x(t-N +1)]", source separation is still possible and the resulting SC-ICA can be seen as
a special instance of multi-channel ICA. However this model carries a rather
restrictive separability requirement. [174] introduces the notion of space-time ICA
(ST-ICA) to relax this requirement. The data structure is treated in the same manner
as the SC-ICA. Moreover the dimension of the observation is augmented by including
a number of delayed copies of observations. The definition of the O x T - dimensional

space-time vector X (f) is as:
X0 =[x@t), x(t-1),...x@-T+1]" (3.36)
where N is the number of copies in the delay vector. This can now be treated as an O

x T dimensional multi-channel ICA application. In this way the problem is now

translated and performed to be an example of a standard ICA algorithm applying on
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this multi-dimensional matrix. This is called ST-ICA, and can also use the same

component projection and selection techniques as in SC-ICA.

3.9 Applications of ICA in the literature

The data analyzed by ICA could originate from many different kinds of application
fields, including digital images and document databases, as well as economic
indicators and psychometric measurements. In many cases, the measurements are
given as a set of parallel signals or time series; typical examples are mixtures of
simultaneous speech signals that have been picked up by several microphones, brain
waves recorded by multiple sensors, interfering radio signals arriving at a mobile

phone, or parallel time series obtained from some industrial process.

One of ICA decomposition example is to use ICA to find filters for natural images
and, removing noise from images corrupted with additive Gaussian noise [180].
Another emerging application area is telecommunications. A good example of a
real-world communications application where ICA techniques are useful is the
separation of the user’s own signal from other interfering signals in CDMA mobile
communications. In the field of communication networks a phenomenon called
multipath [181] is the propagation that results in signals’ reaching the receiving
antenna by two or more paths. Affected by the multipath, the observed signal is a
convolutive mixture of the source signals which have different time delays due to the
finite propagation speed in the medium. In order to solve this convoluted mixing
problem and separate independent sources, some publications [182] have shown that
the ICA algorithm is able to effectively decompose the received signals into the
independent paths and noise term and hence provides information about the delay

estimate of these paths.

88



Chapter 3 Independent Component Analysis

Not very long after the appearance of ICA, it has been broadly applied to
biomedical signal and image processing, such as the analysis of electrocardiography
(ECG) [183] [184], EEG [185], MEG [119], and fMRI [186]. When using an
electromagnetic record as a research or clinical tool, the investigator may face a
problem of extracting the essential features of the neuromagnetic signals in the
presence of artifacts. The amplitude of the disturbances may be higher than that of the
brain signals, and the artifacts may resemble pathological signals in shape. ICA
techniques can separate the underlying activities from noisy signal. Moreover
advanced constrained ICA has been used in the artifactual waveform identification
[173] as well as the EEG rhythmic activity separation such as to extract alpha
activities or epileptic seizures [160]. Single-channel ICA techniques have also showed

the ability to extract particular epileptic activities [178] [187].

Moreover the application of EOG artefact removal has been embedded into
several commercial devices, for example, EEG acquisition systems (g.tec” acquisition
system [188] and the BIOPAC® system [189]) so that EOG artifact can be
automatically removed from the recordings just by clicking the button. A commercial
piece of software called Curry® [190] is used for brain source analysis and display,
through EEG/MEG source localization packages. One of its features is to use ICA to
visualize the spatio-temporal features of EEG and MEG data for the purpose of
obtaining the maximum accuracy of electrical source analysis (this is manually
performed and the ICA decomposition and subsequent analysis is left in the hands of

the user of the software).

3.10 Summary

This chapter introduces the concept of ICA which is a method for performing BSS on

time series. ICA techniques make two important assumptions — one is based on the

&9



Chapter 3 Independent Component Analysis

type of mixing of the independent sources and the other on how the statistical
independence of those sources is measured. Of the many possible algorithms towards
solving the BSS problem, ICA is popularly solved through the use of higher order
statistic techniques which basically try to separate statistically independent sources
based on their non-Gaussianity. Another ICA technique is based on using
spatio-temporal and spatial-time frequency information. The main difference between
these two techniques is that the latter technique uses the information inherent in the
time-sequence of the measured data, but the former doesn’t. This chapter shows that
adding prior knowledge and letting the ICA estimate the unknown portions which
makes the source selection process much easier. This can be interpreted that ICA
would generally be more useful if some more assumptions are made within the BSS
model. This chapter also introduces the concept of using ICA on a single channel
recording or on a few channels. Such applications of ICA are called single-channel
ICA and space-time ICA. To make it work, a single channel or a few channel
recordings need to be reformed to a multi-channel data representation by the method
of delays. Such techniques bring the opportunity to use ICA in applications with the
channel restriction. In the literature, many ICA applications can be found in the

biomedical signal processing field as this very popular application domain.
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CHAPTER 4

A BCI pilot study: preliminary analyses

4.1 Background

The  Southampton  Brain-Computer  Interfacing  Research ~ Programme
(http://www.bci.soton.ac.uk/) plans to examine the effect of spoken and written
language on brain activities. The research programme brings together biomedical
engineering and the clinical sciences within the life sciences interfaces and
neuroscience initiatives in the University of Southampton. However, before such
hypothesis-driven clinical work can be undertaken, a pilot study was proposed on
normal subjects. It aimed to a) conduct P300 ERP paradigms to establish feasibility
and baseline data for the Southampton BCI research laboratory; b) repeat protocols
from previous BCI research [76], involving spontaneous EEG recordings during
cognitive tasks, using both motor and non-motor imagery tasks and c) explore
preliminary signal processing techniques to analyse the obtained signals produced by
experiments conducted for the first two aims above, improving accuracy and
reliability of previously used methods. The pilot study included both ERP (P300)
paradigm and cognitive tasks (motor imagery and non-motor imagery tests). The
interests here are to examine basic and advanced signal processing techniques on the

data from the pilot study so that the necessary knowledge may be accumulated and
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contribute towards follow-on studies. The final overall goal is to build user-friendly

BCI systems to widen accessibility and compliance for use in rehabilitation.

This chapter first introduces details of the pilot study regarding the choice of
proposed tests, with a full description of the proposed test paradigms. The chapter
then develops and demonstrates several proposed signal processing techniques related
to different tests which include: averaging either in time or in the frequency spectrum;
traditional ICA and spatially constrained ICA, and event related
desynchronization/synchronization (ERD/ERS) mapping. Conclusions are then made

after the proposed methods are compared and discussed.

4.2 Methods

4.2.1 Subjects

Seven healthy subjects aged 20-60 years were involved in this pilot study (three
males). They were recruited from the staff and students at the University of
Southampton. None of the subjects had attended any experiment similar to our
proposed tasks before. Subjects were given an information sheet (Appendix A) and
written, informed consent was obtained by each subject signing a consent form
(Appendix B). The studies were approved by the School of Health Professions and

Rehabilitation Sciences Ethics Committee.

4.2.2 Data acquisition

The non-invasive technique of surface EEG was used to record signals from the brain
during different test paradigms. The electrodes were the silver plated adhesive disk
type. The EEG recordings were acquired by NeuroScan EEG apparatus in the EEG
Laboratory in the School of Psychology. The recordings were digitized at 250Hz from
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24 scalp electrodes (VEOG _1, VEOG_S, HEOG L, HEOG R, Al, A2, FP1, FP2, F3,
Fz, F4, FT7, FT8, T3, C3, Cz, C4, T4, TP7, TPS8, P3, Pz, P4, Oz all based on the
International 10/20 system). A1 and A2 were used as the reference electrodes. From
24 channels, 18 channels were selected (FP1, FP2, F3, Fz, F4, FT7, FT8, T3, C3, Cz,
C4, T4, TP7, TP8, P3, Pz, P4, Oz) as those electrodes cover the active area of brain
signals in this study. The discarded channels are EOG channels which contain mainly
EOG noise. The visual stimulus programs are coded by the Presentation ™ software

[191].

4.2.3 Experimental paradigms

Six types of experimental paradigms or protocols were explained and the standard
instructions were given to subjects for each test. During the testing session, subjects
sat still in a chair. Baseline EEG recordings were made during two 2-minute periods

when the subject sat resting, first with eyes open and then with eyes closed.

Test 1: Auditory oddball task (approximately 2 minutes)

This experiment was a simple auditory ERP task which is expected to detect P300
responses [59]. Auditory stimuli of high frequency and low frequency tones were
delivered randomly through external speakers and the interval between stimuli was
approximately Is. Subjects were instructed to click a button on a computer mouse
when noting the infrequent high frequency tone. During the procedure approximately
50 high frequency tones out of 120 tones in total were presented. Subjects were asked

to fixate on a cross in the middle of the screen during the test.

Test 2: N400 sentence semantic congruent test
The N400, another component with potential clinical use, is a negative going
deflection that can be obtained in language tasks [192]. A typical situation for the

reliable elicitation of the N400 entails the presentation of words that either match or
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do not match a preceding context. This test can be done either in a sentence or a pair
of words. For example, a sentence using context matching could be like the following:
“I drink my coffee with cream and sugar/mud”; a pair of words context matching is
like the following: “boat, ship/crater”. In the examples, “cream”, “boat” serve as
previous context and the following word “sugar” or “mud”, “ship” or “crater” are the
candidate words to match/un-match the previous context. Words that do not match the
context give rise to a more negative waveform starting approximately 250ms after
stimulus onset and peaking at about 400ms (Figure 4.1). The effect is widespread,

normally having a maximal amplitude in the centroparietal area.

For the test in this pilot study, several auditory sentences were presented, some of
which terminated with a semantically congruent one-syllable word and others with a
semantically incongruent one-syllable word. The onset of the final word served as the
stimulus (with an investigator pressing the button immediately when the last word
was presented). The N400 ERP component evoked by the incongruent end word is
expected to have a longer latency than one in a word matching experiment. For
example, the latency may be spread in the range from 400ms to 800ms. The test
presented ten pairs of congruent/incongruent sentences while several seconds were
used as the inter stimulus interval. The total duration of the test lasted about four

minutes.
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Figure 4.1: Discourse-semantic N400 effect. Average ERP at Pz, elicited by a stimulus
(critical word) that is matched (solid line) or mismatched (dotted line).[192].

Test 3 & Test 4: Motor Imagery-left/right hand (approximately three minutes)

The subjects were asked to imagine the movement of grasping and releasing right or
left hand without actually moving [193]. Before recordings began, subjects were
asked to practice actually grasping and releasing right/left hand a few times and notice
how this felt. They were then asked to imagine doing this, while making sure that
their hand did not actually move. They were instructed by words on the screen to
“start” and they imagined the movement for 15 seconds until they were instructed by
the word “rest”, when they stopped and rested for 5 seconds. There were 10

repetitions for each hand imagery test, following the protocol published in [76].

Test 5: Imagery-Spatial Navigation (approximately three minutes)

Subjects were asked to imagine being in the familiar surroundings of their own home,
moving from room to room [194]. They were asked to imagine scanning the rooms,
rather than think about actually walking around, to avoid motor activity. The protocol
consisted of the subject following the instructions on the screen to start imagery (15

seconds) and then to stop and rest (5 seconds), involving 10 repetitions [76].

Test 6: Imagery-Music (approximately three minutes)

Subjects were asked to think of a favourite song or a familiar tune they enjoyed [194].
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They were instructed to ‘listen’ to it in their head, without mouthing the words or

moving any part of their body. This section had 10 repetitions.

4.2.4 The data quality

Despite standardised instructions being given to each subject and them remaining as
still as possible while performing the tasks, there were some unexpected problems,
including: presentation software crashed during the recording so that some trigger
information was not captured; electrodes occasionally became detached from the skin
and fell off; some electrodes produced high resistance and may have been faulty.
These made some of the recordings impossible to assess and were discarded. The
above means that the proposed analysis was only carried on the data which were

practically available to us (Table 4.1).

Table 4.1: The actual available dataset in this pilot data. v indicates the data
practically available to us and ¥ means the unuseable data.

1) (2) 3) (4) ©) (6)
Subjects ' Motor . Motor

D P300 N400 imagery | imagery | Imagery Imagery
right left hand music | navigation
hand

1 v v v v v v

2 v x v v v v

3 x x v v v v

4 x x v v v v

5 x x v v v v

6 v x v v v v

7 x x v v v v
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4.3 Signal analysis

To analyse the data from different tasks and show them into a meaningful
presentation, appropriate processing techniques were proposed. For auditory ERP
tests, the analysis used was the coherent averaging method and ICA techniques to
enhance the SNR and enhance the P300 relative to the background noise. Coherent
averaging and an improved averaging technique (see Section 4.3.2) were used to
analyse the N400 data. For motor imagery data, the averaged power spectra and
ERD/ERS maps were calculated to compare the power changes over the motor cortex.
Averaged power spectra of imagination trials were compared for the two different

non-motor imagery tests.

4.3.1 The analysis on ERP data
(1) Coherent averaging

As a traditional signal processing technique, coherent averaging is able to enhance
ERPs’ SNR since the technique assumes the actual EEG activities such as the P300s
are invariant across data trails and background EEG noise is random noise and not
time locked. The detailed coherent averaging method has been introduced in Chapter
2. This study applied the coherent averaging at Cz which is most active site for P300
activities. To examine the coherent averaging performance, different times of

averaging are applied to the data.

(2) ‘Standard’ ICA

To extract P300 activity, the study also proposes to apply an ICA algorithm to the
data. There are a number of algorithms available for the implementation of ICA. For

this study, the FastICA algorithm which uses a practical approximation of negentropy
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together with a fixed-point algorithm is applied on P300 data set. The details about

the FastICA algorithm have been presented in the Chapter 3.

a. Component selection

After ICA decomposition, the underlying sources are separated into separate ICs. As
we are interested in the extraction of P300’s, those ICs with relatively larger
amplitude in the latency range of the P300 should be considered. The columns of the
W' matrix are denoted as the scalp topography of the components which provides
evidence for the components’ (spatial) physiological origins. According to the a priori
physiological knowledge, the P300 appears at the vertex region (Fz, C3, Cz, C4, Pz),
normally maximised at Cz. Therefore a manual selection of one P300 component
based on viewing the topography map of the components and the IC itself is used in

the study.

b. Component projection

The activity of the selected component needs to be projected back to the observed
measurement space since the component in the source space is ‘unit-less’. The
detailed projection process is introduced in Chapter 3. After this projection, clearer

P300 activities can be visually extracted from noisy EEG data.

(3) Spatially constrained ICA

The idea of spatially constrained ICA is already explained in the Chapter 3. If a priori
knowledge about the spatial location of some of the sources is known, then it can be
applied to the ICA algorithm by constraining the column(s) of the mixing matrix. As
the typical P300 spatial distribution is known, such knowledge of P300 scalp
topography can be used as a spatial constraint in the first column of the mixing

matrix.
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To construct this spatial constraint in the data all trials with potential P300
activities are manually selected and joined together in series to a new data set. The
modification is expected to lead to the P300 relative projection strengths being
enhanced. A normal ICA decomposes this data into ICs, and after viewing the time
course and the corresponding spatial scalp topography of each IC, the scalp
topographies associated with P300 components (corresponding column of the
estimated mixing matrix) can be chosen as the selected spatial constraints. To

simplify the problem a single constraint was considered in the study.

This single spatial constraint was used to initialize the first column of the mixing
matrix A and set random values for the rest column for the spatially constrained ICA
algorithm. After spatially constrained ICA on the original P300 data, the
corresponding component was projected to the measurement space. The coherent

averaging method was then applied on the extracted data at Cz.

(4) Correlation with a template

In order to assess the performance of ICA applications, we compared the correlation
with a predefined template before and after applying ICA. The template was obtained

from a 1.5s averaged P300 activity selected from averaging the above P300 trials.

4.3.2 Analysis on N400 data

Two simple methods were proposed: a normal coherent averaging method on the data
and the averaging with a few samples shifted while the number of shifting steps was
calculated from the maximum cross correlation values between one random selected
epoch as a reference and the other epochs. The assumption made to apply the shifted
averaging is based on the fact that the recorded stimulus marks for response activities

in this data are not automatically set by the presentation program but manually by
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clicking a button and the time delay between the actual stimulus start and the recorded
one is going to be approximate (to within about one second). Therefore, shifting the
response epochs a few samples to match the maximum cross correlation values
between an individual epoch and a given reference in a range of one second recording

will tune and find a best position to coherently average the data trials.

4.3.3 Analysis on imagery data

(1) Averaged power spectra

The exact nature of the manifestation in the brain of mental imagery is still uncertain.
At this stage, there still lacks a clear solution to decide what exact EEG characteristics
are most suitable to apply in the BCI field. One assumption is that different mental
imagery tasks may lead to power changes over the active regions. A basic and

efficient technique was applied to calculate the power spectra in frequency space.

The power is normally defined to be the average of the square of the signal’s
amplitude while in the frequency domain it is equivalent to the square of FFT's
magnitude [195]. Power spectra indicate the quantity of power at particular
frequencies. Practically it can be computed through the power spectral density which
presents power per Hz vs frequency. In this study, a 1024-point FFT was applied on
ten 15-second response trials for each task. Depending on the different active
locations, the averaged power spectra over ten repetition trials were compared for the
position at T3, T4, P3 and P4 for non-motor imagery tasks and at C3 and C4 for

motor imagery tasks.
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(2) Event related desynchronization/synchronization (ERD/ERS)

In addition, different to non-motor imagery, motor imagery of (for example) hand
movements is accompanied by the suppression of alpha-range activity on the
contralateral hemisphere and with enhancement on the corresponding hemisphere.
This phenomenon 1is called event related desynchronization/synchronization
(ERD/ERS). Therefore this study applied the ERD/ERS mapping on hand grasping

tasks as an extra analysis.

The calculation of ERD/ERS time courses can be performed in different ways. A
standard ERD/ERS calculation [196] was performed by bandpass filtering of the data
of each trial, squaring of samples and subsequent averaging over trials and over
sample points. The ERD/ERS is then defined as the proportional power decrease
(ERD) or power increase (ERS) in relation to a specific reference interval which is

usually placed several seconds before trigger onset. The procedure is performed as

follows:
yU:(xy'_J_C_j)z’ (41)
Ly
A =—y (4.2)
J N—l = y
1 ro+k
R=r 34, (43)
ERD, = fR , (4.4)

where N is the total number of trials - (equal to ten in this study), x; is the ;™ sample

of the i trial of the bandpass filtered (cutoff frequency is between 8~15Hz) data, and

x; 1is the mean of the j™ sample averaged over all bandpass filtered trials. R is the
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average power in the reference interval [ry, r9+k]. The length of the interval was five

seconds.

4.4 Results

4.4.1 Results on P300 data

The proposed techniques were applied to three available sets of data from Subject 1, 2

and 6 as shown in Table 4.1.

Figure 4.2 shows the two selected topographic maps on the data from Subject 1,
which correspond to two selected components after running a standard ICA. Figure
4.3 plots the averaged P300 activities against the number of coherent averaging on
raw data and extracted data after normal ICA. A total of ten pairs of averaged results
are shown. For each plot, the upper signal shows the averaged activity on the raw data
and the lower one shows the averaged activity with the same averages as the upper
signal but on the ICA extracted data. The first vertical dashed line represents the
auditory stimulus onset and the second vertical dashed line marks 300ms where the
P300 activities should occur. After ICA extraction and the coherent averaging, some
noise - especially eye blinks - were reduced whilst P300 peaks were enhanced. Most
extracted P300 signal trials are easy to identify visually. However the indentifiation of
P300 ICs based on visual observation is limited. Here a simple measurement based on
the calculation of the correlation between a trial and a P300 template is employed to

assess the performance.
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Figure 4.2: The two selected topographic maps from the data of Subject 1 after the normal
ICA. Each map is corresponding to an independent component. Therefore there are two
selected components projected to the original measurement space.

Figure 4.4 shows the template used to compute the correlation coefficient which
was obtained from averaged selected P300 trials. These P300 segments were
subjectively selected based on wave morphology from the raw data. Figure 4.5
shows the performance based on the correlation between the P300 template and the
averaged P300 activities before and after standard ICA. The height of these two
colour bars represents how well the raw and extracted signals are correlated with the
predefined template. The results after the standard ICA showed a higher correlation
than on raw data to the averaged P300 template. Moreover results also indicated that

more averages did not necessarily achieve better correlation.
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Figure 4.3: The averaged P300 activities vs the number of random averaging on raw data
and extracted data for Subject 1 after normal independent component analysis (ICA). For

each plot, the upper signal shows the averaged activity on raw data, and the bottom one
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Figure 4.4: The template used to compute the correlation coefficient with the averaged
P300 activities. The template was an average of selected P300 epochs.
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Figure 4.5: The performance of the correlation between the P300 template and the
averaged P300 activities before and after normal ICA. There were a total of 10 pairs of
random averages of P300 activities.

Figure 4.6 shows a single constraint for the proposed spatially constrained ICA on
the data from Subject 1. This constraint was a selected column of the mixing matrix
after a standard ICA on a selected data portion which includes all the selected P300
epochs. This recomposition of the data reinforced the existing P300s in the data so

that ICA is able to maximally extract components of interests.

Figure 4.7 plots the randomly selected averaged P300 activities against the

number of averages on raw data and extracted data after spatially constrained ICA.
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Figure 4.8 shows the performance based on the correlation between the P300 template
and the averaged P300 activities before and after the spatially constrained ICA.
Similar to the results as the standard ICA show previously, some noise was reduced
and the P300 response was clearly enhanced. The extracted signal showed a clear
version of its raw signal. In terms of correlation performance, results after spatially

constrained ICA showed higher correlation than their raw data counterpart.

Figure 4.6: The constraint topographic map for Subject 1. This constraint was a selected
column of the mixing matrix after a normal ICA on a special data portion which includes
all the selected P300 epochs

Results of the P300 data analysis on the other two subjects in whom recordings
were obtained using the same methods (Subjects 2 & 6) are shown in Appendix C.
After the analysis on these three available sets of P300 data, the results indicated that
both standard ICA and spatially constrained ICA techniques are able to improve the
SNR. However the standard ICA involves a manual component selection which is
dependent on user’s knowledge and cannot form an automated signal processing
system. Although there is the requirement of a priori knowledge to initialise the
mixing matrix for the proposed spatially constrained ICA, the technique is rather
straightforward, and the correct component is projected back to the measurement
space each time. The performance from both techniques on these three datasets is
almost identical. In comparison with the correlation measurement between the raw
data and their enhanced version; a better performance was shown by the averaging on

the extracted data than by the averaging on the raw data.
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Figure 4.7: The averaged P300 activities vs the number of random averaging on raw data
and extracted data for Subject 1 after spatially constrained ICA. For each plot, the upper
signal shows the averaged activity on raw data, and the bottom one plots the same
average but on the extracted data.
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Figure 4.8: The performance of the correlation between the P300 template and the
averaged P300 activities before and after the spatially constrained ICA on the data from
Subject 1.

4.4.2 Results on N400 data

From the literature, a negative peak should occur around 400ms from the
centroparietal area for averaged activities from (two-word pair) incongruent word
matching; and a decay to the negative (not necessary a peak) should be delayed
around 800ms in the case of sentence incongruent matching [197]. The present

findings are only for the one subject in recordings from Pz.

Figure 4.9 shows the averaged activity for the sentence congruence/incongruence
test after a coherent averaging on the data from Subject 1. The dashed wave was
presented as the averaged activity for the sentence correct matching and the bold wave
was for the sentence incorrect matching. The stimuli occurred at time ‘zero’. However
from the results the averaged response for incongruent words did not show changes to
the negative from 400ms to 800ms in time. A possible reason for this may be because
the stimulus marks manually set for the data were not exactly time-locked to the
actual stimulus onset. Based on an assumption that the time between the estimated
and the actual value may be delayed within one second, an averaging method with a

few samples shifted was proposed on this N400 data. Therefore the process of
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averaging is extended to individual components being shifted forward/backward
within 250 samples (one second recording) to match the best cross-correlated with a
reference activity. In Figure 4.10, the plots show the averaged activities after a few
steps shifted. The number of shifting samples were found in the range of 250 samples
(within one second of recording) to match the maximum cross correlation value
between each response activity and a random selected reference. Since the reference
can be any activity from the data, Figure 4.11 shows another possible plot of averaged
activities obtained by comparing the cross correlation to another randomly selected
activity as a reference. The results after the proposed averaging indicated that the
amplitude has a trend to change to the negative from 400ms to 800 ms for the

averaged activities of the incorrect matching test.
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Figure 4.9: The averaged activity for the sentence congruence/incongruence test after a
normal averaging on the data from Subject 1.

109



Chapter 4 A BCI pilot study: preliminary analyses
Averaging with a few sample shifted on Pz
15 T . . - .
weeeseees gyeraged response for correct matche
averaged response for incorrect matchgp

10 1
= -
2
— 5
€D
=
=2
=4
£
<

-10 ! !
0 0.2 04

selected reference.

Amplitude  (AD unit)

0.6 0.8 1 1.2
time (s)
Figure 4.10: The averaged activities after a few steps shifted. The number of shifting
samples were found in the range of 250 samples (within one second recording) to match

the maximum cross correlation value between each response activity and a random
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Figure 4.11: Another possible plot of averaged activities was obtained by comparing the
cross correlation to another randomly selected activity as a reference.
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4.4.3 Results on motor imagery data

Results of comparing the averaged power spectra between the response activity and
the baseline signal on the contralateral hemisphere (C3 and C4) and ERD/ERS maps

for right/left hand grasping imagination are presented below and discussed.

(1) Power spectra

Figure 4.12 shows the averaged power spectra over ten trials for right hand grasping
task together with the averaged power spectra of baseline signal on C3 and C4 in
frequency domain on the data from Subject 7. The bold line presents the power
spectra at C3, the bold dashed line is for the power spectra at C4, the thin line is for
the power spectra of baseline signal at C3 and the thin dashed line is for baseline at
C4. Baseline signals on C3 and C4 aims to represent brain activities when subjects
think of nothing and the averaged power spectra of these two recordings was almost
identical and stayed in the lower amplitude. Once the thoughts of motor imagery are
involved, the output is such that a higher power than baseline signal is presented.
Similarly Figure 4.13 shows the averaged power spectra for left hand grasping task
from the same subject. However nothing different is shown for averaged power
spectra of the baseline signal and left hand imagery across the frequency space. Figure
4.14 shows the above averaged power spectra for right/left hand imagination in one
graph. Results using the same measurement for the data from the other six subjects are
attached in Appendix C. From the results it is not possible to see a clear difference
between these two hand imagery tasks which may suggest the measurement of power
spectra on its own is not good enough to assess the performance of motor imagery. As
an alternative approach, a mean power spectra within a certain range was proposed to
measure the performance. The comparison of mean power spectra in the range from
8Hz to 35Hz over ten trials for all seven subjects together with the standard deviation

of the averaged power spectra is shown in Figure 4.15. Ideally the power differences
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should be observed on the same location for different hand grasping imagery tasks.
However the results did not show much difference between the two different motor
imageries. In addition, standard deviation values of power spectra variables for ten
repetition trials might indicate that the mean power between 8 Hz to 35 Hz from the
individual trial is far from the mean power. This may indicate that the power

measurement also is not good enough in the motor imagery tasks.
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Figure 4.12: The averaged power spectra over ten trials for right hand grasping task

together with the averaged power spectra of baseline signal on C3 and C4 in frequency
domain on the data from Subject 7.
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Figure 4.13: The averaged power spectra over ten trials for left hand grasping task
together with the averaged power spectra of baseline signal on C3 and C4 in frequency

domain on the data from Subject 7.
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Figure 4.15: The comparison of mean power spectra in the range from 8Hz to 35Hz over ten
trials for all seven subjects together with the standard deviation of the averaged power spectra.

(2) Event related desynchonisation/synchronisation (ERD/ERS)

As another measurement of motor imagery tasks, ERD/ERS maps may be a good
choice to present the changes between two different tasks. Figure 4.16 shows the
ERD/ERS maps for right hand grasping imagery on the data from the same Subject 7.
The solid line presented the ERD/ERS for the right hand grasping imagination at C4.
The dashed line indicated the ERD/ERS for the right hand grasping imagination at
C3. The dashed vertical line indicated the stimulus started. For example, right hand
imagery would restrain the alpha-range activity on the left hemisphere, as a result, a
dashed declined curve after the stimulus was showed to confirm this phenomenon.
Figure 4.17 shows the ERD/ERS maps for left hand grasping imagery for Subject 7
too. The results show the distinct ERD curve for about 2~3 seconds after stimulus
when the subject imagined the right hand grasping on C3 and an ERS curve presented
at the same time at C4; a similar ERD curve occurs in the left hand grasping

imagination at C4 and an ERS curve achieved at C3. Results using the same
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ERD/ERS measurement for the data from the other six subjects are attached in
Appendix C. A summary of the actual ERD/ERS presentations for all the available
data was shown in Table 4.2. However from the table, ERD/ERS occurred on both
hand imagery tests only in the data for Subject 7. ERD/ERS either on right or on left
hand imagery alone were present in four dataset from Subjects 1, 3, 4 and 6. The rest

of the signals from Subject 2 and 5 did not show anything useful at all.

ERDYERS maps for right hand imagery

100 . . . T r
. IMG right hand on C4
sok M.~ S e IMG right hand on C3 | _
5 ‘S\‘_'.J 1'1"\ Ao N f1 'z
[ ﬂ : u'r‘l " A 1 N |"‘~".l-
! III’I t r “11 : |I (M |',_1‘ { . | \ .I [ N : /!
0 J-j'f i E lltl‘ k\ i L AW f-l‘f’i HlL ﬂ_ || ". 'H Ifl \ A ’:’}
5 'Ill l .ll :J"I "j " !"Ill 'lr | .I L\-_ n'.-r :I : I'l'./ >"I £
. 1 IL; iy :r ! vob | 7 | f.' v bond II|I
50} 1 v \S J AT IR I A
o IRV I R
:I i |I1 :l l,\ r: ': ’_.\"J Ji III'J : ]
s -100F ¥ v b S
1 i I| l: JIr |" |'I I:
150} TR -
o0k ¥ :: : i
250} : i :
_300 ] 1 [l [l
0 1 2 3 4 5 &
time (s)

Figure 4.16: The ERD/ERS maps for right hand grasping imagery on the data from the
same Subject 7. The dashed vertical line represented the stimulus onset.
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ERDVERS maps for left hand imagery
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Figure 4.17: The ERD/ERS maps for left hand grasping imagery on the data from the

same Subject 7. The dashed vertical line represented the stimulus onset.

Table 4.2: A summary of the actual ERD/ERS presentations for all the available

data.
Subjects ERD pres.ents in Motor imagery |ERD presents in Motor imagery
right hand task left hand task
1 v x
2 x x
3 v x
4 x v
5 x x
6 x v
7 v v
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4.4.4 Results on non-motor imagery data

In the literature, spatial imagery and auditory imagery tasks caused people to generate
the response at the tempero-parietal area [76]. For the spatial navigation imagery, the
stronger responses are expected to occur at the temporal area (T3 and T4) while
stronger responses can be viewed at the parietal area (P3 and P4) for the music
imagery. Results of the averaged power spectra for the navigation imagery and music

imagery tasks on the focus area are compared and discussed next.

Figure 4.18 shows the averaged power spectra over ten trials for the spatial
navigation imagery and music imagery at the temporal area on the data from Subject
1. Especially for frequencies greater than 8Hz, four power spectra for the navigation
imagery and music imagery on sites of T3 and T4 were shown as separable. Figure
4.19 shows the averaged power spectra on the same data but over the parietal area.
Similar to results on Figure 4.18, the power spectra can be seen to be different from
each other. Results using the same measurement for the remaining six datasets are
included in Appendix C. In order to estimate differences in the power spectra, Figure
4.20 and Figure 4.21 compared the mean power spectra in the range from 8Hz to
35Hz over ten trials for all seven subjects together with the standard deviation of these

power spectra over the temporal area and over the parietal area respectively.
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Figure 4.18: The averaged power spectra over ten trials for the spatial navigation
imagery and music imagery at the temporal area on the data from Subject 1.
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Figure 4.19: The averaged power spectra over ten trials for the spatial navigation
imagery and music imagery at the parietal area on the data from Subject 1.

From results in all seven datasets, distinct mean power changes where a stronger
mean power either occurred in the navigation or in the music task at T3 of the
temporal area were observed. In addition, the standard deviation values in Figures
4.20 and Figure 4.21 indicate that how close the band of power from a single trial is to

the mean power.
This finding is not as expected as the stronger mean powers should be observed at

the parietal area for music imagery task, but the actual mean powers measured

showed a distinct magnitude over the temporal area.
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Figure 4.20: The comparison of the mean power spectra for both music and spatial
navigation (nav) tasks in the range from 8 Hz to 35 Hz over ten trials for all seven

subjects together with the standard deviation of these power spectra on the temporal area.
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Figure 4.21: The comparison of the mean power spectra for both music and spatial
navigation (nav) tasks in the range from 8 Hz to 35 Hz over ten trials for all seven
subjects together with the standard deviation of these power spectra on the parietal area.
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4.5 Discussion

The current findings from this pilot study have demonstrated an ability to run ERP
experiments. The tasks in the pilot study include: auditory P300 test, motor imagery
tests, non motor imagery tests and N400 test. Seven normal subjects volunteered and
contributed several datasets for this study. Depending on the type of task, several

signal processing techniques were proposed to analyse the available data.

In the literature, the P300 has become a common choice for psychological tests for
clinical and scientific researchers since it is a natural and training free activity for
most people [198]. The analysis started on the P300 oddball paradigm where four
datasets were available. The signal to noise ratio was significantly enhanced and some
artifacts, such as eye movement and blink, were removed after the proposed standard
ICA and spatial constrained ICA methods were used through all the available data.
However clear and distinct P300 responses could not be detected by proposed
methods in the data except for the data from Subject 1. After comparing three datasets,
unexpectedly strong noise and possibly imprecise stimulus marks were found in those
two unsuccessful data which might be the major reason to cause the P300 detection
failures. Furthermore other problems, for example, in the ratio between the number of
infrequent and frequent stimulus used in this study was set imprecisely at about 42%,
which was much higher than the normal settings (at most 30%) in the P300 literature
[199]; the sound hearing level of the auditory stimuli might also not be calibrated
within a suitable range and so could also influence the subject’s attention to generate

related activities.

A normal coherent averaging and an improved averaging technique were proposed
and applied on the only available N400 data contributed by Subject 1 for the language
(sentence) congruence/incongruence test. The averaged responses for the sentence

incongruence test are supposed to show changes to the negative around 400ms to

122



Chapter 4 A BClI pilot study: preliminary analyses

800ms in the time scale. However due to the fact that the stimulus marks were set
manually and therefore not set synchronously to the actual stimulus, the results after
the normal coherent averaging did not show distinct changes as expected. After
assuming the time delay of setting marks caused by human reaction is possibly around
one second, the improved averaging applies averaging with a few samples shifted to
match the best cross correlation value to a selected reference activity. Results after the
proposed averaging with a few samples shifted (within 250 samples) show a better
tendency to the negative from 400ms to 800ms in time. Compared to the results in the
literature which show a good negative decay in a similar sentence incongruence test
[197], the number of the averages applied in that study was about fifty times whilst in
our case the number was ten times. However the disadvantage of this proposed
averaging method should be noted that this “peak to peak” matching is to find a best
averaging point of the data trial which is maximally cross correlated to a selected
reference signal. For example a poor randomly selected reference could mislead to a

completely wrong decision in the final averaged activity.

In the literature, cognitive tasks, such as motor imagery have been applied in BCI
applications [65] [66] [68]. They can produce a natural response in EEG signals when
a movement planned and the response can be detected relatively straightforwardly.
The measurement of power spectra and ERD/ERS mapping method were proposed on
seven available motor imagery (left/right hand grasping tasks) datasets. Results after
calculating the mean power in a particular frequency band showed obscure changes at
the same location for two different imagery tasks. However the standard deviation
values of power in certain frequency bands for single trials between two different
tasks at the same location indicated the pairs of power did not change consistently but
variably. Therefore the power spectra alone were not good enough to classify the
responses of single trials. After applying ERD/ERS mapping method on the data,

results still did not show significant ERD/ERS change for two different tasks. Only
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one subject presented the ERD/ERS on both tasks. Two subjects presented ERD/ERS

on right hand imagery task while two subjects showed ERD/ERS on left hand task.

The other types of cognitive task, using non-motor imagery, such as spatial
navigation imagery and auditory music imagery have been included in this pilot study.
The same power spectra measurement was applied on the seven available datasets. In
the physiological study, significant changes for the spatial navigation imagery should
occur over the temporal area and strong changes for the auditory music imagery
should present over the parietal area [200]. Results of mean power in a particular
frequency band did show stronger changes in the navigation imagery task rather than
in the music imagery task over the temporal area. However in the case of the music
imagery there were no significant changes over the parietal area. Despite the fact that
the results did not follow the expected physiological hypothesis, significant changes
especially at T3, the left temporal area between two different tasks were still
encouraging. The standard deviation values of power for a particular frequency band
for single trials between two different tasks at T3 indicated each individual power
component was tight and close to its mean power. That is to say that even from the
power of single trials it is possible to decide their classification. Moreover, results
may suggest that it is possible to use power from just one single recording channel

(for example at T3) to decide the binary classification for a BCI application.

As a performance comparison between motor and non-motor imagery tasks, this
study showed the spatial navigation and auditory music imagery tasks were
significantly better discriminated than left/hand grasping tasks. Perhaps the reason is
that different ways of performing the cognitive tasks employ different mental
processes which make it easier for people to generate the related responses. Poor
results of motor imagery tasks may be because left/hand grasping tasks were not
functional. More functional motor tests (for example “steer wheel to the left or right”)

could perhaps provide more reliable results.
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4.6 Conclusion

This pilot study followed the paradigms in the literature to examine the possibility of
using evoked potential and spontaneous activity within the Southampton BCI
program. The study demonstrated that ICA techniques are able to reduce noise and
reconstruct the enhanced P300 components to obtain a clean version of the original
signal. Although P300 evoked potential experiments did not succeed in providing
good quality data, several P300’s advantages, such as, less training and easy
processing, are of great benefit for use in BCI system. This study also suggests that
the proposed cognitive tasks may be used to drive the BCI system. However the
effectiveness of processing may depend on individual subjects and in different
applications, for example, one would like to type words at a certain speed or want to
control a cursor, say, to turn on/off a TV. Such variability has already determined that
a universal BCI system for everyone does not exist. To design a practically working
BCI system for the use outside of clinical laboratory, a broader range of reliable tasks
should be considered and made available to different subjects to choose for different
applications. To achieve this target, more work of enhancing the performance of
cognitive tasks in current BCI systems and developing new signal processing

techniques to improve current BCls is required.

This was the first study performed within the BCI research program and served to

allow us to get started applying various BCI paradigms as list in the literature.
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CHAPTER 5

Multi-channel ICA algorithms for ERP based BCI

5.1 Introduction

The use of ERPs in BCI, especially P300 based word spellers, has become one of the
most popular systems in BCI. However due to the difficulty of enhancing the SNR of
these recordings, the performance for such systems is lacking. As shown in the
previous chapter, ICA has the ability to extract the relevant information within noisy
signals quite accurately. Applications of these ICA techniques on P300 based systems

provide the opportunity of increased performance.

This chapter proposes three slightly different ICA approaches to solve this
problem: (i) ‘standard’ ICA, (ii) ICA assisted by a posteriori template matching and
(111) spatially-constrained ICA. These methods are then applied to the datasets being
used and the results are then analysed and discussed. These ICA approaches are able
to enhance the SNR such as to improve the final character identification accuracy
which is an indicator of how well the system can translate the brain activities.
Furthermore, the results indicate that it is possible to reduce the number of epochs
required to perform stimulus locked averages, whilst still maintaining good

performance measures. This has the potential of speeding up the word speller and has
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further implications for use on similar ERP based systems both within BCI and

elsewhere.

5.2 The BCI Dataset

To validate and improve signal processing and classification methods for BCIs, some
world leading BCI groups organized an online BCI data bank — known as the BCI
competition data sets [201]. These data sets are obtained from several popular BCI
systems such as SCP based BCI, spontaneous activity based BCI and P300 based BCI.
Each data set consists of continuous single-trials of EEG activity, one part labeled
(training data) and another part unlabeled (test data). Initially for the purposes of the
competition, the labels for test data were not available. After the competition, the
labels for testing sets were released and the data sets became available for developing
new methods towards improving BCI studies. This chapter uses the BCI competitions

2003 IIb dataset which are recorded from a P300/ERP based BCI word speller [202].

As shown previously in Chapter 2, the ERP has already played an important role
and is widely used in cognitive tasks in psychology as well as in BCI research. Within
BCI, P300 potentials can provide a means of detecting a user’s intentions concerning
the choice of objects. Basically a subject is shown a character matrix, the rows and
columns of which flash randomly at high speed. Large P300 waves are observed in

response only to the flashing of the chosen character.

In this P300 based BCI, the user was presented with a 6x6 character matrix with
36 symbols on a screen. The user then focuses attention on letters of an expected
word, one by one. The rows and columns of the matrix are successively and randomly
flashed. For each letter of the word, there are 12 illuminations (6 rows and 6 columns)
which provide the visual stimulus. Two (one row and one column) out of the twelve

intensifications decide a desired character. Figure 5.1 depicts the steps taken in
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recognising a character. Each small vertical notch represents each of 12 stimuli.
Suppose the user is focusing on the character ‘C’, then the P300 responses are
expected to be evoked by the stimuli 3 and 7 respectively. It is expected that the
evoked waveforms are different from those recorded where the stimuli that did not

contain the desired character, i.e. a P300 is expected only for stimuli 3 and 7.

Signals are sampled at 240Hz and collected from one subject in three sessions
(two labeled sessions and one unlabeled session). Each session consisted of a number
of runs. Each run is stored in one Matlab file. In each run, the subject focused
attention on a series of characters (Table 5.1). For each character, the word matrix was
displayed for a 2.5 s period, and during this time each character was shown blank.
Subsequently, each row and column in the matrix was randomly illuminated for
100ms and 6 rows and 6 columns’ illuminations resulted in 12 different stimuli. After
illumination of a row/column, the matrix was blank for 75ms. Sets of 12 illuminations
were repeated 15 times for each character. Thus there were 180 total illuminations for
each character. Each sequence of 15 sets of intensifications was followed by a 2.5 s
period, and during this time the matrix was blank. This period informed the user that
this character was completed and to focus on the next character in the word that was

displayed on the top of the screen.

The goal of this study is to use the labeled data in the training data sessions to
learn a certain subject oriented information to be used to predict the words in the
testing session. This testing session was unlabeled for the purpose of the competition
and after this BCI competition unlabeled words were released so that all data are fully
labeled for the use by other BCI research group. A series of target characters in the

testing data sessions are shown in Table 5.2.

The data was originally recorded from 64 scalp electrodes. The number of

channels was manually reduced to simplify the analysis and also decrease the
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computational complexity. 19 channels were selected based on the placement of
standard International 10/20 System which include Channel C3, Cz, C4, Fpl, Fp2, F7,
F3, Fz, F4, F8, T3, T4, TS5, P3, Pz, P4, P6, O1 and O2. The reason to select such an
electrode placement is that 10/20 system is one of the most common electrode setup
methods and the selection adequately covers the central and parietal sites in particular
which are the P300’s active fields [59]. The dataset is not subjected to any additional
preprocessing and after analysis the results are lowpass-filtered for visualisation

purposes only.

1 2 3 4 5 8
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Figure 5.1: 4 sketch of character ‘C’ recognition in the P300 based word speller. (a)
Suppose the user is focusing on the character ‘C’ which is located in Column 3 and Row
7. Flashing Columns and rows form Stimuli. (b) Two responses evoked by stimuli 3 & 7

point to this character and 15 trials would reinforce this decision.
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Table 5.1: The target word for each run in labeled (training) Session 10 and 11.

Session Run Target character
10 1 CAT
10 2 DOG
10 3 FISH
10 4 WATER
10 5 BOWL
11 1 HAT
11 2 HAT
11 3 GLOVE
11 4 SHOES
11 5 FISH
11 6 RAT

Table 5.2: The target word for each run in unlabeled (testing) Session 12.

Session Run Target character
12 1 FOOD
12 2 MOOT
12 3 HAM
12 4 PIE
12 5 CAKE
12 6 TUNA
12 7 ZYGOT
12 8 4567

5.3 Signal enhancement methodologies

This section contrasts a basic signal enhancement technique, coherent averaging, with

three new ICA based algorithms.
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5.3.1 Coherent averaging

As already introduced in Chapter 2, coherent averaging is a classic signal
enhancement method especially for time-locked signals [86]. The random flashing of
each row and column for the word matrix in this P300 based BCI is considered as a
time-locked stimulus, the information about when exactly the stimulus appeared is
stored in the recorder data. The number of different stimuli is twelve, therefore there
will be the potential of twelve evoked responses to these twelve stimuli. This set of
twelve stimuli is repeated fifteen times in random order. Based on the assumption that
the background noise is random and incoherent across data trials, through coherent
averaging the brain responses for the same stimulus, it is possible to reduce the noise
and enhance the SNR of the data. Here the coherent averaging is applied at Cz which

is the most active site for P300 activities [59].

5.3.2 Standard implementation of ICA

A standard implementation of ICA is first applied to the data. The details about this
ICA algorithm have been presented earlier in Chapter 3. The FastICA algorithm and
an online downloadable toolbox are used in this experiment [150]. In the literature
FastICA is one of the most popular ICA techniques since it has fewer parameters to
choose and has a fast rate of convergence. The process of this standard ICA can be
separated into three steps: component selection, component projection and character

detection.

(1) Component selection

After ICA decomposition, the underlying sources are separated into separate ICs.
Based on the knowledge from the scalp topography (the columns of the W™ matrix)

of the components and the knowledge of the P300’s physiological origins in which
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the P300 appears at the vertex region (Fz, C3, Cz, C4, Pz), normally maximised at Cz,
one component containing the P300 pattern is manually chosen based on the

topographic maps and the IC morphology itself.

(2) Component projection

The selected source activity needs to be projected back to the observed measurement
space and the projection process brings the selected source back to the original data
space and ensures that it is back to the correct scale. The detailed projection process is
introduced in Chapter 3. After this projection, clearer P300 activities can be seen over

the noisy EEG data.

(3) Character detection

There are many ways to detect the P300 potential in the ‘de-noised” EEG and predict
the characters in this P300 speller. In order to evaluate the ICA performance, a very
simple linear detector within a window from 300 ms to 360 ms on Channel Cz is
considered (Figure 5.2), in which two peaks with the maximum amplitude values out

of twelve waveforms are selected as candidate P300’s.
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Figure 5.2 An illustration of detection of target P300 activities over twelve evoked brain
activities, the orange area represents the window used to detect the target activities. Two
peaks with the maximum amplitude in the window are selected as candidate P300’s.

5.3.3 ICA with template assisted component selection

The method of Section 5.3.2 is proposed to select and project one related component
only. However it is an ideal assumption that ICA can completely separate the different
relevant information into the different independent sources. In practice relevant
information can be distributed into one or several ICs, i.e. the ICA processing is not
perfect, resulting in least dependent components. In this section a new algorithm is
introduced to automatically select one or more related least dependent components.
There are two main steps to achieve this algorithm: creating a template and computing

the correlation.
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(1) Creating a template

Since the columns of W™ describe the topographical information of the each
independent component, where the spatial information can help to identify related
underlying sources, the template used here is a column selected from W™ which is
obtained from running ICA on a balanced data set. As two training datasets are
available fully labelled, the target/non-target ratio is balanced by replacing non-target
epochs with target epochs and so increasing the original ratio of target to non-target
from 1:5 to 1:1 (20 epochs of P300 response signals and 20 epochs of non-P300
signals). This modification leads to the P300 relative projection strengths being
enhanced. After running ICA on this data, a topography which presents maximal
signal intensity at the vertex region is selected manually as the template among the

scalp topographies.

(2) Computing the correlation

After applying ICA to the original testing data and the inverse unmixing matrix W™ is
obtained, the correlation values between the template obtained from the first step and
each column of W™ is used to assist in choosing the related P300 components. After
computing the correlations, the set of correlation values which describe the degree of
spatial relationship between the template and each IC are found and rank ordered. The
first three highly ranked components are automatically selected and projected into the
measurement space. The fixed number three was tuned and found empirically in the
training data sessions. The enhanced data is here classified by using the same simple

linear character detection method described above.
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5.3.4 Spatially-constrained ICA

As discussed in Chapter 3, if a priori knowledge about the spatial location of some of
the sources is known, then it can be applied to the ICA algorithm by constraining the
column(s) of the mixing matrix. The concept of spatially-constrained ICA which uses
this idea has already been explained in Chapter 3. Here, as the P300 is used and its
typical spatial distribution is known, and then P300 scalp topography information
could be applied as a spatial constraint to initialise a column of the mixing matrix for

spatially-constrained ICA algorithm.

As is known from the spatially-constrained ICA algorithm, the spatial constraint
may be obtained from a source decomposition of previous data by using standard ICA
methods or any other suitable method. In this case, the template obtained in section
5.3.3 is used as a single spatial constraint to initialize the first column of the mixing
matrix A and set random values for the rest of columns. After spatially-constrained
ICA, the corresponding component is projected to the measurement space and the

same simple linear character detection is applied to the enhanced data.

5.4 Results

Denoising and decomposition by ICA and the final classification were all processed
on the raw (unfiltered) data. The results presented in this section are averaged for 15
times. Moreover purely for visualization purposes (i.e. after all processing is complete)
the results are also presented after the application of a low-pass FIR filtered (cutoff at
10Hz) version. In order to evaluate the different performances fairly, all the examples
in the following figures are shown on the same character. Figure 5.3 shows 12
response activities corresponding to the 12 stimuli (coherently averaged). The two
thick red lines represent the targets and the other blue lines represent non-target

responses. It is clear that it is difficult to distinguish P300 targets directly from this
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data. The distinct P300 waveforms after extraction using the manual component
selection method are shown in Figure 5.4, the two target waveforms clearly show
P300 responses such that the two targets can be identified clearly from the other ten
responses. Figure 5.5 illustrates the performance of ICA with the template assisted
selection method; the three topographic maps are most likely correlated to the
(automatically selected) P300 template components. Figure 5.6 depicts the
performance of ICA using the fixed spatial constraint. As can be seen from the figures,

the three types of ICA implementation extract the related responses very effectively.

Due to the fact that ICA is able to reduce the noise and extract the components of
interest from the signal at the same time, this means ICA has also optimized the
feature extraction stage. A very simple classification method on the extracted data set
was used. Using these techniques a maximum accuracy of 96.8% (30 out of 31
characters) was achieved on the test set. The classification accuracy is defined as the
percentage of the number of correct classified characters over the total number of
characters. It is also equivalent to the sensitivity statistical measures [203]. One of the
winners for this BCI competition dataset achieved 100% accuracy by using an
advanced classifier based on SVM [204] technique. The method uses a new formed
training dataset to train the proposed SVM classifier. This dataset is manually selected
two P300 target response signals and two non-P300 signals of every character in
provided training datasets (in total 168 epochs). Moreover in order to obtain a good
performance, it has to carefully select parameters for this SVM classifier based on the
knowledge about the application and the SVM classifier itself. Whilst the standard
ICA does not need the training data, it is straightforwardly applied on the testing
datasets. As for the template assisted ICA and spatially constrained ICA, the selected
training dataset only has just 40 epochs and the step of P300 topography (template
and constraint) selection is very simple (visually choose one with a strong activation
over the P300 physiological origin). Therefore ICA techniques are comparable in

speed and efficiency with the SVM methods. Moreover on looking into the
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misclassified character after the experiment, a misclassification appears to identify the
target character of ‘E’ to ‘C’. In the speller matrix, these two characters are placed at
the same row (the seventh) but at different columns (‘E’ for the fifth and ‘C’ for the
third). Therefore the averaged evoked response for Stimulus 3 appeared to be the one
of the target activity with high amplitude. Since the proposed simple classifier
straightforwardly determines two activities with highest amplitude within a window,

so the classifier detected the correct row activity but missed the correct column one.

The performance was also examined when reducing the number of averaging trials
before detection takes place. Figure 5.7 and Table 5.3 summarize and compare the
performance of the three different ICA-based methods with those obtained by using
simple coherent-averaging whilst varying the number of epochs used in the averaging

Pprocess.

In the experiments, signal enhancement based on ICA plays a very important role.
After ICA, a simple linear classifier is used to classify target and nontarget responses.
A time window around the 300ms is applied and simply detected two maximum
responses to estimate a character. Three proposed ICA methods achieved the source
separation goal well. In BCI applications, especially for an online system, manual
selection of the P300 component trial by trial obviously is not possible. With the
assistance of a template obtained from the training data, the P300 related components
can be automatically selected by estimating the correlation as shown in Section 5.3.3.
Spatially-constrained ICA uses the template previously obtained as the constraint to
initialize the mixing matrix which will increase the rate of convergence of the
algorithm to the related sources. After Spatially-constrained ICA, the component(s)
containing P300 patterns are separated and placed in the first position directly by the
algorithm. It offers a more practical method to implement an online BCI system and

shows the same high accuracy as all of the ICA based methods.
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Figure 5.3: The above plot is the 15-epoch averaged response curves on Cz on raw data.

The two thick lines (red) are the targets. The bottom plot is the lowpass filtered version.

They are difficult to distinguish directly from the data.
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Figure 5.4: The above plot is the 15-epoch averaged response curves on the extracted
data after ICA. The bottom plot is the lowpass filtered version and the topographic map
(above left) represents the single project component. Two targets can be identified from

the other ten responses.
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Figure 5.5: The above plot is the 15-epoch averaged response curves on the extracted
data after ICA with template method. The bottom plot is the lowpass filtered version and
the inset three topographic maps represent the three projected components. These three
form a superimposed map which shows the P300 patterns in this combination making
them clearer to see.
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Figure 5.7: Comparison of classification accuracy with different averages by using
averages (Non-ICA) and three proposed ICA methods. The blue line shows the
classification performance by standard ICA, the green line represents the performance by
ICA plus a template assisted, the red line indicates the classification accuracy by spatially
constrained ICA and the black line is for the non-1CA.

Table 5.3: Comparison of classification accuracy (%) with different averages by using averages (Non-1CA) and three

proposed ICA methods.

#,

Lo,
N %,%% 1|2 |3 | 4|5 |6 |7 |89 |10|11 |12 | 13| 14 | 15
Methods N
non-ICA 3.23 9.68 | 16.13 | 16.13 | 19.35 | 29.03 | 29.03 | 32.26 | 51.61 | 38.71 | 38.71 | 41.94 | 51.61 | 45.16 | 38.71
Std-ICA 2258 | 2258 | 35.48 | 35.48 | 48.39 | 58.06 | 67.74 | 74.19 | 74.19 | 77.42 | 77.42 | 83.87 | 83.87 | 83.87 | 87.10
Spatially C-ICA 19.35 | 25.81 | 41.94 | 45.16 | 61.29 | 70.97 | 80.65 | 83.87 | 87.10 | 74.19 | 80.65 | 83.87 | 93.55 | 96.77 | 96.77
ICA+Temp 19.35 | 22.58 | 41.94 | 45.16 | 51.61 | 48.39 | 74.19 | 70.97 | 80.65 | 90.32 | 87.10 | 93.55 | 96.77 | 96.77 | 96.77
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5.5 Summary

This chapter introduces the use of ICA in P300 (ERP) based multi-channel BCI
systems. The results clearly show a significant improvement after ICA when
compared with the classification results obtained from the raw coherent averaged data,
even a very simple classifier can achieve very good classification accuracy. The
results also show that even for fewer averages the ICA based techniques still exhibit
quite good performance — this, coupled with the ability to use a simple linear classifier,
means that this has the great potential for speeding up the word speller paradigm and
has further implications for use on after ERP based systems — both within BCI and for

other clinical use.

The next chapter introduces an ICA application on spontaneous activity based
BCI. This BCI system uses spontaneous rhythmic activity rather than time locked
evoked responses as the control features. However due to artefacts and other problems
within the EEG recordings, the performance of such a BCI system is usually quite

mediocre. A novel ICA method is proposed to work towards solving these problems.
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CHAPTER 6

A multi-channel ICA algorithm for

spontaneous EEG based BCI

6.1 The BCI paradigm

As discussed in Chapter 2, spontaneous activity based BCI has shown great potential.
It uses more natural rhythmic brain activities evoked by imagining (say) limb
movement which is believed to be easy to learn and understand during the training
sessions. The power changes within a specific rhythmic band can be used as the
control features, for example, where the user generates these patterns to control the
movement of a cursor on a computer screen. In this way the system offers the user at
least two or even four degrees of freedom to move a cursor on a screen. The features
can also be extended and applied to other assistive systems such as to drive a powered
wheelchair or a robot arm etc. However, as has already been said, the EEG is recorded
from surface electrodes, and artifacts contaminate the raw EEG recordings and render
the unprocessed recording virtually unusable. Moreover, as the prediction of imagery
is dependent on the individual’s ability to generate a good ERD, such a BCI will

mutually exhibit variable performance.
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The studies shown so far have applied ICA to BCI applications [205] [206] [207],
for example, ERP based BCI and spontaneous activity based BCI. The results indicate
that ICA performed well in extracting time-locked ERPs. However since spontaneous
activity based BCI does not use time-locked activity but rather relies on rhythmic
activities as features, applications of ICA are unable to track the changes in power
spectra among the different sources. However using time structure based source
decomposition methods, the sources with stationary waveforms and unique power
spectra can be isolated. Furthermore, when the power spectrum of the particular
source activity is known, the spatial extent of the sources can be extracted by

constrained ICA.

This chapter proposes to apply a time structure based spectrally-constrained ICA
algorithm to a x rhythm based BCI system (this type of BCI has been introduced in
Chapter 2) and to describe the selection of power features from the provided data sets
and the overall classification system used. The study then presents the results obtained
and discusses the performance enhancements to be had from the use of this algorithm

in this way.

6.2 The Data

This chapter uses two data sets: BCI Competition Data Data Set Ila and Data set ['Va.
Although these two experiments were designed in different ways, they both use the
property of the ERD power spectrum adjusted by different specific activations as

shown in Chapter 2.

6.2.1 BCI Competition Data Set lla

The BCI Competition Data Set Ila (self-regulation of z~ and/or central S-rhythm) was

provided by the Wadsworth Center [201]. The idea is that the subjects either increase
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or decrease their ¢ or #rhythm amplitude power to control a cursor’s vertical position
aiming to the correct target through visual feedback. This data set contains a whole
record of an actual BCI system from 3 trained subjects in 10 sessions (about 30
minutes per session) each. EEG was recorded from 64 scalp electrodes (10/20 system)
sampled at 160 Hz and each electrode was referred to an electrode on the right ear.
For this BCI to work, after a one second resting period during which the screen stays
blank, a target appears at one of four possible positions on the right-hand side of the
screen. One second later, a cursor appears at the middle of the left of the screen and
starts moving at constant speed across the screen from left to right. When the cursor
reaches the right-hand side, the screen is cleared and the next trial begins. The
experiment includes visual feedback whereby the vertical position of the cursor on the
screen is determined through brain activity. Three data subsets marked as AA, BB and
CC are supplied. Each session consisted of 192 trials (48 trials for one of four targets:
‘top’, ‘upper middle ’, ‘lower middle’ or ‘bottom’). The first six sessions are labelled
as training sets. The remaining four sessions are fest sets. This study only selects trials
with the target position code: ‘top’ (Target 1) and ‘bottom’ (Target 2) to examine the

proposed method.

6.2.2 BCl competition data set IVa

The BCI competition III data set [Va (motor imagery, small training sets) is from the
Berlin BCI group [208]. For this BCI to work, the subjects imagine either right hand
or right foot movements indicated by a visual cue on screen without feedback. The
power in a particular frequency band is used to control the cursor movement. This
data set contains 118 multi-channel (extended 10/20 system) EEG signals recorded
from five healthy subjects (labelled ‘aa’, ‘al’, ‘av’, ‘aw’ and ‘ay’ respectively) at a
sampling rate of 100 Hz. During the experiments, subjects were prompted by a
displayed letter (R/right hand, or F/right foot) to imagine for 3.5 s either right hand

(Target A) or right foot movements (Target B) without feedback. Each type of MI was
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recorded 140 times, thus in total there are 280 trials for each subject. Between the
trials, there was a random period of time (1.75 to 2.25 seconds) in which the subject
could relax. This data set also brings with it a challenge in that only a small amount of
training data are available, this allows one to examine the influence of using small
training sets in order to reduce the overall training time. The task is to classify the

type of the imagined movement for each trial in an offline fashion.

The data were originally recorded from 64 scalp electrodes for Data Set Ila and
118 electrodes for Data Set IVa. Since the activity in the motor cortex is the interest in
this study, so the electrodes around the sensorimotor cortex were chosen manually,
these included: C5, C3, Cl1, C2, C4, C6, CP5, CP3, Cpl, Cp2, Cp4, Cp6, P5, P3, P1,
P2, P4 and P6. A small segment of EEG data is used for training in the proposed
algorithm: for Data Set Ila, the data between 0.5-2 s of each trial is used after the
cursor is displayed on the screen; for Data Set IVa, the data between 0.5-2.5 s is
considered after the instruction is displayed on the screen. There are two main reasons
to select such a short time segment for the data. One reason is to satisfy the
assumption of the proposed time structure based ICA technique (the details is given in
the following methodology section). The other reason is that the subjects generate
strong responses only in a short time period after stimulus. The parameters of the

short window are selected after examining the available training sets manually.

6.3 Methodology

6.3.1 Temporal Decorrelation based spectrally-constrained ICA

In this chapter it is proposed to use the spectrally-constrained ICA technique based on
temporal decorrelation and a specific algorithm LSDIAGrp is selected to capture the
dependency structure of the observed signals. The detailed TD based ICA algorithm
has been introduced in Chapter 3. One basic assumption with this method is that the

source waveforms should be stationary and have unique power spectra. Obviously this
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method is not suitable to use for long-term EEG recording. In order to use TD based
ICA, the assumption needs to be made that the signals are stationary over short time
windows. In this chapter, since the imagery epochs last just a few seconds (about 4
seconds long), the auto-correlation function of the source activity is assumed slowly
varying in time. The temporal correlations over short time windows can be computed

and then the mixing matrix is estimated in the usual way [154].

The TD based ICA algorithm used in the study is called the LSDIAGyp technique
[159], where

C: =WCW", (3.11)

C? is the signal cross-covariance matrix and C’ is the source cross-covariance

matrix. W is the unmixing matrix. The algorithm aims to transform the signal
covariances matrix stack into the source covariances matrix stack as diagonal as
possible since diagonal is assumed to represent independence. After TD based ICA W

is then estimated so that each of the independent sources can be separated by s=Wx.

Another issue of TD based ICA is to decide the number of time lags as shown in
Chapter 3. Here, since the data are separated into two parts: a training session and a
testing session, the number of time lags of use is tuned and found from the training

session. It turns out that the use of 5 lags is able to achieve the best performance.

6.3.2 The Reference Channel

In this spectrally constrained model, prior knowledge of the spectral content of the
sources can be introduced into the model by means of reference channels. If the power
spectrum of a particular source activity is known, such reference(s) would consist of

filtered noise with the desired power spectrum. This chapter applies the method using
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just a single (x rhythm) reference. To observe changes in rhythmic activity in specific
frequency bands, band-pass filtered white noise are used to derive a reference signal.
Particularly an 8™ order Butterworth BP filter with lower and upper corner
frequencies set appropriately is used to set the desired constraint. Since the phase
information of this added reference channel is meaningless (i.e. the study is not
expecting the phase of the reference signal to be connected in any way to that of the
desired brain response), the problem of matching the phase of the reference channel
with that of the desired activity in the recordings can be overcomed through
calculating the lagged covariance matrices that LSDIAGp requires via the FFT and
then removing the phase information of the signal in the frequency domain. Recall

that the convolution of two functions f{#) and g(¢) can be obtained by

h(t)* g(t) = F {H{f}-G{f}} (6.1)

. 1 . .
where * denotes convolution, F~* denotes the inverse Fourier Transform, H{f} and

G{f} the Fourier Transform of /(¢) and g(#) respectively.

6.4 The Proposed Algorithm

The flowchart of this work includes four parts: 1) spatial filter generation, 2) spatial
filtering, 3) power feature extraction, and 4) classification. This is depicted in

diagrammatic form in Figure 6.1.
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Spatial filter generation

- Trial data from training set[> LSDIAG,

i
! Power feature
Jr- extraction (- Classification —

Figure 6.1: A diagram depicting the proposed algorithm. It includes four parts: spatial
filter generation, spatial filtering, power feature extraction and classification.

6.4.1 Spatial filter generation

The power spectrum of each data trial is calculated and averaged across the frequency
domain. For display purposes, the averaged trial power spectrum on C3 towards to
two targets is shown in Figure 6.2. This confirms that two kinds of activities have
different power amplitude at the x band around 8Hz~13Hz which can be used as the

control features. For the analysis, a number of data trials of two different targets in the
training data set were used to estimate the lagged covariance matrix stack C; the
stack of matrices are treated as arising from two-part averaged lagged covariance
matrix stacks C", C* in which each part is obtained from trial data

corresponding to one of two targets. The reason to construct such stacks of matrices is
that the stack of covariance matrices needs to capture as much information as possible
so that for this two-target system the covariance matrix should be constructed from

the data of both two targets.

c: =[c, ¢ 62)
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X, €XT;

1 1
cx {; ZXTcgk,...,— ZC?} (6.3)

cx- =[l chk,...,l Zka} (6.4)

Ny, exr, Ny, exr,

where 7 =[0,...,/] depicts the range of lags (here /=5 as determined in previous work

[209] ). xx€ [XT;, XT;] denotes that trial data are from training set corresponding to
the labels: Target 1/A and Target 2/B. The number of trials in each data set for XT,
and XT, are m and n respectively. Here the value of m equal to 7 is set to balance the
proportion of trials for both targets. Once the unmixing matrix W is estimated from
the training datasets, it then works as a simple spatial filter straightforward on the

testing datasets.

The spectrum, P(i) is defined as a trial spectrum in the i/ channel by the sum of

the ordinates of the frequency bins (h, ) within the proposed frequency band, i.e.

P(i) = ihd : (6.5)

where D denotes the number of frequency bins. After spectrally-constrained ICA
decomposition, the EEG data are extracted into the ICs. Thus the power spectrum
after spectrally-constrained ICA is defined as the sum of the weighted spectra of
sources (ICs) within the & band. So, for given source epochs, the power feature

reflected in an individual channel is defined as
k
fp @)= Zak+l,jPic (j)ai,j (6.6)
j=1

where k& denotes the number of sources. As this implementation of

151



Chapter 6 A multi-channel ICA algorithm for spontaneous EEG based BCI

spectrally-constrained ICA assumes a square mixing matrix, then the number of
sources is the same as the number of measurement channels, and a, ; is an element
in the mixing matrix A. a,,, . is a particular element in the last row of A. P.())

denotes a trial spectrum in the /™ IC source.

6.4.2 Feature selection

In order to find discriminative power bands for each subject, here the study uses a
technique called — the /* measure, also called the coefficient of determination [210],
which is able to interpret the proportion of variability in a data set. A definition of the

* measure is as following:

DX =Y
S [ I (6.7)
> -7y

where Y; represents an individual data point of Target 1 in the frequency domain, Y;’
represents an individual data point of Target 2 in the frequency domain and Y
represents the average of the Y; values. /° values range from 0 to 1, with 1
representing that the covariates can predict the outcome perfectly in the model, and 0
representing a complete lack of predictability of the outcome. The power spectra of
two targets are calculated in these two data sets, and then combined the variables on
each individual channel into 7 values. By comparing to the averaged power spectra
corresponding to two targets, this describes the relationship between power intensity
and target labels. These parameters were slightly different due to differences in each
individual recording. Figure 6.3 shows two discriminative power bands roughly
around 10-15 Hz (x band) and 23-28 Hz (B band) in Data set Ila. The reason that there

exist two power bands is because both movement and imagery are associated with u
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and g rhythm together. Depending on which rhythm is used as the control pattern, in
this work we choose 10-15 Hz as the working band. Increased power is taken to
correspond to Target 1 which raises the cursor in Subjects AA and CC while it makes
the cursor go down in Subject BB (Figure 6.4). In Data set IVa, the sub-band
approximately around 8-15 Hz is selected to calculate power (Figure 6.5). Increased
power is related to Target 2 which is the right foot imagination (Figure 6.6) in all

subjects.

6.4.3 Classification

In order to evaluate the performance of the proposed algorithm, a simple
one-dimensional linear classifier based on thresholding the power feature(s) is
considered in the chosen frequency band for the final classification. The threshold
value is selected by minimizing the number of trials misclassified in both classes from
the training set for individual subjects, for example the threshold value for Subject CC
is between 7.842x10° ~ 8.031x10’ in arbitrary units. In addition, as a comparison for
the classification performance, a more complex classifier, a SVM based classifier is
also applied. The study uses a downloadable SVM toolbox [211]. The main
parameters are set as the following: the power of 40 data trials on three channels C3,
CP1 and CP5 for both targets is used as the SVM classifier’s training input; the kernel

function is set to be linear.

The next procedure is to decide which power feature will be suitable to use for the
classification. Based on the distribution of / values across the topography spectrum
in the previous section, a number of channels (between 1 and 3) around the left
sensorimotor cortex were selected. The power on C3 was used in the threshold
classifier and the power on C3, CP1 and CPS5 for the SVM classifier as the use of

these power features was found to give better classification accuracy in this study.
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Averaged power value

Target 1
Target 2

Figure 6.2: The averaged trial power spectrum on Channel C3 towards to two targets in

a training set for Subject CC.
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Figure 6.3: /” values across the spectrum on Channel C3 for Target 1 & 2 (Subject CC).
The shadowed frequency band was chosen here. Inset is the topography of the 1 values at
13.75 Hz across all channels.
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Figure 6.4: Averaged power spectra of data trials corresponding to Target 1 & 2 (Subject

CC). In this experiment, greater power in 10~15Hz (Target 1) implies the cursor going up

and vice versa.
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Figure 6.5: 1 values across the spectrum on Channel C3 for Target A & B (Subject ‘ay’).
The shadowed frequency band was chosen in this work. Inset is the topography of the 1’

values at 12.25 Hz across all channels.
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Figure 6.6: Averaged power spectra of trials corresponding to Target A & B (Subject

‘ay’). The averaged power for imagined foot movement (Target A) is greater than the

power for hand movement imagination (Target B).
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6.5 Results

The proposed TD based ICA method generates the spatial filter from the training data
for each individual subject. The spatial filter is then applied to the unlabeled test
dataset. It can capture the relevant dynamics of the subject’s brain state more robustly.
Furthermore, the resulting time series will have optimised the spectra resulting in
better discrimination between two different brain states. The results show that
following this pre-processing, even a simple linear classifier can achieve very good

classification accuracy.

To make the proposed ICA system work, a segment of bandpass filtered white
noise is used as the reference signal (constraint). Moreover this reference needs to be
modulated to match each individual’s particular EEG frequency band. The sub-plot in
Figure 6.7 illustrates the original white noise with arbitrary units used for Subject CC;
the middle sub-plot shows the bandpass (10 ~ 15 Hz) filtered white noise modulated
with the mean power of the signal recordings; the bottom sub-plot represents the same

signal (in the middle sub-plot) in the frequency domain.

Figures 6.8 and 6.9 depict the power features related to different targets before and
after the processing for channel C3. Figure 6.8 plots the power features of Testing
session 10 for Subject CC in Data set Ila. Ideally, the higher power feature represents
Target 1 and the lower power for Target 2 (Figure 6.3). However, without spatial
filtering, the power features between the two targets from the original data appear
overlapped, and a classifier based on either a simple linear method or a potentially
complicated advanced method is hardly able to separate these patterns efficiently.
After the spectrally constrained ICA processing, the weighted power values for two
different targets are better separated than the power features from the unprocessed

data. Figure 6.9 shows the power features of Subject ‘ay’ from Data set IVa. The
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power related to the right hand movement imagination is marked as Target A and the
power for right foot movement imagination marked as Target B. As shown in Figure
6.5, the averaged power for imagined foot movement is larger than the power for hand
movement imagination, but powers correlated to two different targets do not show
much different in the raw data. After processing, the power features are maximally
separated into the different levels, which further demonstrate the improved separation
achieved by using this spatial filter. The above examples suggest that the use of this

spatial filter can help to extract different brain activities within a particular # rhythmic

band.

Table 6.1 lists the classification results on the test sets (most sessions have 52
trials for each target, several have 51 trials) in Data set Ila. For each subject, 80
randomly chosen trials in total (40 for each target) are used to calculate the spatial
filter. The results are shown as three columns for each individual subject. The first
column shows the results using the unprocessed data. The results of using a threshold
based linear classifier with one power feature on C3 are shown in the second column.
The third column is for the results from an advanced SVM based classifier using three
power features on C3, CP1 and CP5. Table 6.2 shows the classification performance
on the testing data in Data set IVa. There are five subjects contributing to individual
sub-sets with different sizes of training and testing sessions. The numbers of available
trial data for training/testing sessions are shown in the first column. To construct the
spatial filter, the total number of training trials is selected from 28 and 80 (average of
65 trials was used) due to the different size of training sets. As before, one power
feature on C3 is used for the final classification based on a threshold and a linear
classifier. Moreover, three features on Channel C3, CP1 and CP5 were also applied to
examine the performance of a SVM classifier. In addition, as a comparison, the last
column lists the classification results from previous published work [212] which
proposes a method based on dynamical system (DS) features together with a SVM
classifier. The overall classification accuracy is about 85% by this DS+SVM method.

From the two tables, we can see that spectrally constrained ICA implementation
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extracts the related rhythmic information very effectively. After processing, the
classification accuracy was of 82% for Subject AA, 69% for Subject BB and 90% for
Subject CC in comparison with the average 62% accuracy before processing in
Dataset Ila. In Dataset 1Va, the classification accuracy was of an average of 82%
through five testing sets which is 30% higher than the accuracy using the unprocessed
data. It is worth noting that the more advanced SVM based classifier did not show a
significant improvement in performance on the same data, although an increase of

about 2% compared to the simple linear classifier was observed.

Amplitude (arbitrary unit)

=
[
I
=
T
z
(=]
=
I
e
=
=4
=
<L 4 5] 8 10 12 14 16 18 20
time (s)
10'°
o
z
10
L 10 F
=
=]
g
105 | | | I | | | |
0 10 20 a0 40 a0 &0 T0 a0

frequency (HzZ)

Figure 6.7: (above) The original white noise with arbitrary unit for Subject CC; (middle)
The bandpass (10 ~ 15 Hz) filtered white noise modulated with the mean power of the
signal recordings, (below) The same signal in the middle shown in frequency domain.
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Figure 6.8: The power feature outputs of Subject CC for testing Session 10. (a) shows the
power features on C3 using the unprocessed data; (b) shows the power features on C3
after spectrally constrained ICA processing. A circle denotes Target 1 (cursor up); a star

indicates Target 2 (cursor down).
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Figure 6.9: The power feature outputs for Subject ‘ay’ on testing set. (a) shows the power
features on C3 using the unprocessed data; (b) shows the power features on C3 after
spectrally constrained ICA processing. A circle denotes the power feature for Target A
(right hand imagination); a star indicates the power feature for Target B (right foot

imagination).
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Table 6.1: Classification accuracy of the test set based on power feature(s) in Data set Ila. The
three columns for each individual subject show the performance of linear classification on
unprocessed data, linear classification and SVM classification on the processed data.

Data AA Data BB Data CC
linear linear linear
Linear
classifier SVM on Linear classifier SVM on Linear classifier SVM on
Testing | classifier
on extracted classifier on extracted classifier on extracted
data set on raw
extracted data on raw data extracted data on raw data extracted data
data
data data data
Set 7 64.6% 80.2% 85.4% 65.6% 72.0% 73.0% 58.3% 85.4% 87.4%
Set 8 59.4% 88.5% 89.6% 71.9% 72.9% 72.9% 62.1% 92.2% 90.3%
Set 9 61.5% 80.2% 79.2% 66.8% 63.5% 67.7% 60.1% 86.1% 88.1%
Set 10 65.6% 80.2% 80.2% 59.4% 68.8% 72.9% 61.2% 96.1% 98.1%

Table 6.2: Classification accuracy of the testing set based on power feature(s) in Data set IVb. The
columns depict the results using the three proposed classification schemes, and the last column lists

published [212] for comparison.

training/test linear classifier | Linear classifier on SVM on SVM on DS
Data set

trials on raw data extracted data extracted data features
al 224/56 48.2% 85.7% 89.3% 96.3%
aa 168/112 46.0% 83.0% 85.7% 83.3%
av 84/196 49.5% 75.0% 75.0% 72.7%
aw 56/224 55.4% 80.3% 85.3% 86.9%
ay 28/252 54.3% 85.0% 85.0% 89.0%
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6.6 Summary

Two datasets described in this chapter being part of the BCI competition dataset have
been used to examine the performance of the proposed algorithm. Both of these data
sets use the characteristic that changes in the amplitude of sensorimotor rhythms over
the right/left hemisphere act as the major control pattern. The difficulty here is to
maximally and reliably identify at least two classes from single-trial data. The
proposed ICA technique using spectral constraints has been developed and applied to
isolate and extract the power spectrum in the rhythmic band of interest. In order to
demonstrate the performance of the proposed spectrally constrained ICA, the power
feature in the x rhythm frequency band is used as the major classification pattern. The
results using a simple linear classifier and a SVM to classify the ICA processed data
show that the classification accuracy has considerably increased over processing the
raw data. After the basic analysis the overall classification accuracy is improved by
about 20% in Dataset Ila and 30% in Dataset IVa. As an additional comparison of
classification performance to spectrally constrained ICA in Dataset [Va, the results of
a method using DS features as well as a SVM classifier is reviewed and compared
[212]. This method also includes two steps for data pre-processing (a temporal filter
and a spatial filter). The accuracy of the techniques in [212] was about 3% more than
the results of spectrally constrained ICA with a linear classifier and 1% more than
spectrally constrained ICA with a SVM. However the use of a linear classifier and a
simple spatial filter in this study aims to simplify the problem and is desirable from a

computational complexity perspective.

As this work is an application to single trial classification, the sensitivity to
artifacts in the EEG becomes a major problem. The LSDIAGtp ICA algorithm uses
the covariance of the trial data to estimate the covariance stack matrices which are the
essentials to calculate the unmixing matrix and hence the spatial filter. The random
selection of training trials which may include artifacts can cause serious changes to

the final filter. Therefore, most methods require that the data should be artifact free,
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which can be achieved by several preprocessing steps such as filtering or manual
artifact rejection. Here instead of applying any preprocessing methods before hand,
the study estimates the stack matrices by using the averaged lagged covariance
matrices from the data. The idea behind the process is that the influence of artifacts is
reduced since the procedure of averaging the covariance matrices acts as a filter which
could balance and minimise the random noise level. Moreover, the system includes a
training phase used to tune the proper unmixing matrix (spatial filter) using the
proposed ICA. Once the unmixing matrix has been computed, it works as a spatial
filter to remove the additional artifacts by weighted spatial averaging the testing data
trials and returns the processed time series patterns. After filtering, the different brain
activities seen as power changes can be clearly extracted. It indicates that through the
use of spectrally constrained ICA, it is possible to track the rhythmic changes of
different brain states in the EEG. These results show a clear improvement for use in

this kind of BCI system.

The next chapter proposes the application of the ICA algorithm to recordings from
single (or few) channel(s) in a P300 BCI application. The aim is to drastically reduce
the number of channels required; not a big number of channels as is required in
multi-channel application, the actual recording channels here are reduced to just one
or two channels. This would mean that simpler BCI systems could be designed using

less setup time and with less reliance on accurate placement of the scalp electrodes.
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CHAPTER 7

Single channel ICA algorithm for ERP based BCI

7.1 Introduction

Conventional BSS (such as multi-channel ICA) generally requires multi-channel data
for the inputs. However there are many circumstances where only one recording
channel is available or desired. Such BSS techniques are not directly applicable to the
data which consists of only one single channel record. Fortunately by applying as
explained in Chapter 3 the so-called method of delays, the single channel data can be
rearranged and represented as a matrix of time-delayed vectors. In this way, the BSS
analysis techniques can be used with single channel recordings and is able to solve the
more sources than sensors problem. This ICA algorithm is referred to here as SC-ICA.
Moreover, this single channel model can be extended to a more general algorithm

called ST-ICA based on the combination of space-time vectors.

This chapter demonstrates the proposed SC-ICA, as well as ST-ICA methods, on
the dataset from a P300 based BCI system. It also proposes an automatic method to
speed up the component selection process. Results show that the proposed ICA
methods can separate the single channel recordings into their underlying components.
Moreover the results are also comparable in the final classification performances

between Multi-channel ICA, SC-ICA and a lowpass FIR filter.
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7.2 The dataset

The dataset used here is from the BCI competition Data set IIb as it explained in
Chapter 5. There are a total of 180 brain responses for each presented character (12
responses multiply 15 reinforcements), 30 of which should contain P300 responses.
The study firstly demonstrates the proposed methods on the data where each character
is present in only three 1.5s-epochs (the recording of an epoch starts 0.5s before the
stimulus presents) where possible P300 patterns are randomly selected and then
concatenated to form a 4.5s trial. To examine the performance when using different
channel locations, three channels including C3, C4 and Oz are selected to form
several data combinations: C3, C4 and Oz alone, and C3 & C4, C3 & Oz and C4 &
Oz combined. In the literature the P300 activity dominates over the parietal electrode
sites (around C3 and C4), whereas Oz is located further way, towards the occipital
region. However as the EEG is believed to be a linear mixture of underlying brain
sources, even the recordings from a far electrode, for example Oz, is supposed to
contain P300 patterns at a lower SNR. The above combination sets aim to explore this
fact. The second purpose is to examine and compare the performance of the character

identification on the single channel Cz.

7.3 P300 EP extraction

7.3.1 The proposed ICA techniques

(1) Single channel ICA (SC-ICA)

To examine the possibility of extracting P300 EP activities on just one channel by
ICA, SC-ICA is applied. The details have already been introduced in Chapter Three.

However for SC-ICA single channel the data need to be reformatted as a
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multi-dimensional data representation which is done through the method of delays.
Such a multi-channel representation is also called the matrix of delays. Some
parameters, for example dimension of the matrix of delay m and delay lag 7 need to
be set. To set parameters for the embedding dimension m, the analysis introduces
and uses Equation 3.22 as shown in Chapter 3. The sampling rate is set at 240Hz, and
the lowest frequency of interest is assumed to be at about 2 Hz. Therefore m is set to
120; and 7 is set to 1 as the default value. In short this SC-ICA algorithm includes
following steps:

a) create the delayed vector matrix and temporally whiten the signal;

b) apply an ICA algorithm to learn the mixing matrix A;

¢) project all the components back to the measurement space;

d) select the relative components based on observing the positive peaks presented

around 300ms after the stimulus onset (subjectively);

e) project the selected components together to the measurement space and form

the extracted signal.

For the ICA algorithm, both FastiICA or Infomax ICA can be chosen in this
analysis. However due to the high dimension of this delayed input data and the length
of the data, the FastICA algorithm sometimes fails to converge for the exceptionally
low achieved SIR problem [213]. Generally dimensional reduction is applied to
discard some weak components so that the possibility of convergence could be
improved. However Infomax ICA is able to achieve a better global convergence [214].
For this reason, Infomax ICA (the software in the EEGLab package) is selected for

this analysis.

The proposed SC-ICA method tests the performance on different chosen channels.

The analysis starts on Channel C3, C4 and Oz separately (C3 and C4 are located over
the P300 focus).
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(2) Space-time ICA (ST-ICA)

A ST-ICA technique is developed to work on the two-channel data. Adding just one
more signal channel would provide extra information on both temporal and spatial
domains. Although such information is quite limited, it allows ICA to achieve a better
extraction performance. The study is applied to the two-channel combinations:
C3&C4, C3&0z and C4&0Oz. The new delay matrix is similar to the application of
the single channel case. However, this matrix is constructed from the concatenation of
two delay vectors for each channel. So the value of m for each set of delay vectors is
120 and then the dimension of this delayed matrix would be 240. Forz , the default
value 1 is used here again. In the IC projection step, each IC has to be back-projected
on to the measurement space for each channel separately. This also means that the
number of ICs will be doubled. The IC selection is the same as the manual method

shown above.

7.3.2 Dimensional reduction

In the above context, the dimension of the matrix of delay m has been set ‘big enough’
to capture the necessary information of the signal. In effect, it takes a single channel
data and generates a multivariate data set. Because this data set is likely to be of
extremely high dimensionality, the problem of interpretation of this data remains. To
overcome the problem, the dimensionality of this data should be reduced before
applying ICA. Here SVD is used to decompose each delay matrix into a set of
orthogonal components. Dimensional reduction of the data is performed by truncating
the SVD transformation after a certain number of eigenvectors. This step also

provides an opportunity to reduce some of the low level noise [215] [216].
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7.3.3 Manual IC selection

Since each individual IC is hard to interpret physiologically in the source space, to
assess each IC’s neurophysiological significance, it needs to be projected back to the
measurement space. However it is not generally possible to linearly separate
independent components from a single time series, for example, the resulting sources
are not necessarily truly independent. Therefore the IC selection is about finding and
grouping the components of interest. Since this application is to extract P300 EPs, the

P300 wave morphology is used as the IC selection criteria.

7.3.4 Automatic IC selection

The current component selection is based on a subjective (manual) method. Obviously
it is a functionally limited method and can be only really used in the lab for study
purposes. To build a practical BCI system, the component selection has to be
automated. Here the study proposes and demonstrates a simple P300 extraction
application which involves an automatic method — an improved approximate method
to take the place of manual selection. The basic idea is to apply SC-ICA on the
selected data from Cz (these data are randomly selected from the P300 response
epochs) and learn the parameters needed to construct a separation filter. The obtained
filter then can be applied to extract the rest of the data. The original automatic
algorithm can be repeated if there are more sources in the data. Here the study found
that running this filter once on the data is good enough to extract the P300
components. The algorithm is summarised as:

a) create the delayed vector matrix from the selected data set, temporally whiten

the signal and reduce the dimension by SVD (here reduce the dimension down to

40 by observing the convergence of the singular spectra of the matrix of delay);

b) apply a deflationary ICA algorithm to learn the mixing matrix A,
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¢) create the separation filter f,(¢)=a,(—t)*w,(f), where i€y, y, is the
selected subset of basis vectors; where a,(¢) is the column vector of A and

w,(t) i1s the row vector of W;

d) apply this filter to the available data set and then calculate the scaling

parameter a, to adjust and rescale the filtered signal, a, is given as:
a,= <x(t), £ () *x(t)> / <x(t),x(t)> , Where <,> is the usual vector inner product;
the a,f, *x(¢) is the extracted source component.

Infomax ICA has been applied in the previous session, for the automatic IC
selection, here the aim is to examine another popular ICA algorithm — FastICA. In
order to prevent the failure of convergence, the data dimension is reduced by SVD
(the number of dimensions is set to 40). The FastlICA program is obtained from

FastICA software package [150].

7.3.5 Comparison of extraction methods

In the digital signal processing field, many filtering techniques have already been
developed with the aim of enhancing the signal’s SNR. Of course, one of the primary
applications is noise removal: removing unwanted parts of the signal, such as random
noise, or extracting the useful parts of the signal, such as components lying within a
certain frequency range. In this aspect, SC-ICA works like a filter. As a performance
comparison of noise reduction and useful component extraction, the study uses a
lowpass FIR filter on the same data. This FIR filter is setup as part of the EEGLab
toolbox. The filter has a cutoff frequency at 10Hz (since the frequency band of
interest for P300 EP is below 10Hz) and the filter order is set to 72 by an approximate
method (3x(sampling frequency/cutoff)). In addition, the performance after this FIR
filter is applied is compared with the performance after the proposed SC-ICA

techniques with manual component selection and with automatic component selection.
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Figure 7.1 shows the frequency response of the applied lowpass FIR filter. As the
proposed automatic component selection after SCICA is equivalent to the filtering

and the filter coefficient (order is 79 in this case) are found from

f,(t)=a;(=t)*w,(t). Figure 7.2 shows the frequency response of the applied filter

learned from SCICA. Comparing to the frequency responses of this lowpass FIR filter
and the filter directly learned from SCICA, both two filters perform lowpass filtering
the data. FIR filter reduces higher frequency components and smoothes the signal.
However the filter from SCICA passes the low frequency components and also leaves

partly higher frequency components.

hagnitude (dB)

0k J

BN i

-a0 1 L 1 L 1 L I ! I
o 5 10 15 20 25 a0 35 40 45 a0

Frequency (Hz)

Figure 7.1: The frequency response of the applied lowpass FIR filter. The filter order is
set to 72 by an approximate method (3x(sampling frequency/cutoff), the sampling
frequency was 240 Hz and cutoff was 10 Hz).
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Figure 7.2: The frequency response of the applied filter learned by SCICA. The filter
coefficients (order is 79) are found by f,(t) =a,(=t)* w,(¢).

7.4 Results

Figure 7.3 depicts the results for the single character ‘a’ using SC-ICA on C3, Figure
7.3a shows the raw data and consists of three concatenated 1.5s P300 epochs. The
solid vertical line represents the stimulus presentation time and the dashed line marks
the point 300ms following the stimulus onset. It is clear in the raw data that the P300
representation is poor due to the low SNR. Figure 7.3b shows the manually selected
ICs with P300 patterns in the measurement space after SC-ICA is performed. The
signal recovered from the back-projected and summed ICs of Figure 7.3b is depicted

in Figure 7.3c. For each epoch, a peak around 300ms after the stimulus is apparent.
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Figure 7.4 depicts the same analysis steps on the same character ‘a’ but as
measured from the opposite electrode C4. The raw data shown on Figure 7.4a still
shows a poor SNR level. Figure 7.4b shows the manually selected ICs in the
measurement space after ICA. Figure 7.4c depicts the recovered signal by the back
projection of selected ICs of Figure 7.4b. The extracted data have the clear P300 peak
for each epoch. Comparing both of the extracted signals on C3 and C4, the extracted

P300 patterns are nearly identical and also exhibit similar amplitude.

Figure 7.5 demonstrates the same analysis on the same character ‘a’ but far from
P300 focused area — on channel Oz this time. It is even more difficult to identify any
P300 patterns from the raw data shown in Figure 7.5a. The extracted signal in Figure
7.5¢ is much cleaner and depicts similar peaks as in those extracted on C3 and C4 —
albeit at a lower SNR. These results demonstrate that the SC-ICA method is able to
extract the information from the single recording on the related central cortex region

and even in the locations far from it.
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Figure 7.3: (a) Raw data for character ‘a’ using single channel C3 consisting of 3 P300
epochs. (b) The selected ICs in the measurement space. (c) Extracted signal from the
back-projected selected ICs.
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Figure 7.4: (a) Raw data for character ‘a’ using single channel C4 consisting of 3 P300
epochs. (b) The selected ICs in the measurement space. (c) Extracted signal from the
back-projected selected ICs.
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Figure 7.5: (a) Raw data for character ‘a’ using single channel Oz consisting of 3 P300
epochs. (b) The selected ICs in measurement space. (c) Extracted signal from the back
projected selected 1Cs.P300 peaks (at a lower SNR signal before) are apparent in the
trace in (c).
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Figure 7.6 shows the analysis as before but using ST-ICA on both channels C3 and
C4. Both raw signals are depicted in Figure 7.6a. After ST-ICA, the selected
back-projected components for each channel are shown in Figure 7.6b. These selected
components are finally projected back to the measurement space together to form an
extracted signal. In Figure 7.6c the results show that using only one additional

channel leads to a similar to results in Figure 7.3c.

Figure 7.7 depicts the same ST-ICA analysis but on the channel combination C3
and Oz and Figure 7.8 presents the results on the combination C4 and Oz. These tests
are designed to determine whether it is possible to extract components for a pair of
recordings: one from near the P300 site and the other further away. From the extracted
signals are shown in Figure 7.7c and 7.8c, with the assistance of recordings from C3
and C4 in these two examples, the final extraction gives a better visual improvement

compared to the previous extractions on a signal recording channel.

Figure 7.9 uses the same two channels on C3 and C4 as Figure 7.6 but this time
the middle epoch is replaced by a non-P300 epoch. This aims to test the reliability of
the ICA method in conditions where the response is alternately present. After
applying ST-ICA, as expected the recovered signal (Figure 7.9c) depicts P300 peaks
in the 1% and 3™ epoch but none in the 2™. For the purpose of visualization, Figure
7.10 plots two of the extracted signals, of Figure 7.6¢ and Figure 7.9c, superimposed
on top of each other. In order to measure the similarity of extracted signals, one way
of doing this is to calculate the correlation values between these two signals for each
epoch (there are three 1.5 second epochs in the signal and the correlation is assessed
through each pair of epochs across the signals). The values for each pair of epochs are
0.93, 0.15 and 0.89, correctly depicting a strong correlation when P300’s are present

and very little correlation at epoch 2.
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Figure 7.6: (@) Raw data for character ‘a’ using channels C3 and C4 consisting of 3 P300
epochs. (b) The selected ICs for each channel in the measurement space. (c) Extracted
signal from the back-projected selected ICs for C3 and C4 and the average of these two
extracted signal.
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Figure 7.7: (a) Raw data for character ‘a’ using channels C3 and Oz consisting of 3 P300
epochs. (b) The selected ICs for each channel in the measurement space. (c) Extracted
signal from the back-projected selected ICs for C3 and Oz and the average of these two
extracted signal.
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Figure 7.8: (@) Raw data for character ‘a’ using channels C4 and Oz consisting of 3 P300

epochs. (b) The selected ICs for each channel in the measurement space. (c) Extracted
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Figure 7.9: (a) Raw data for character ‘a’ using channels C3 and C4 — epoch 2 is a
non-P300 epoch. (b) The selected ICs for each channel in the measurement space. (c)
Extracted signal from the back-projected selected ICs for C3 and C4 and the average of
these two extracted signal.
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One way to assess the performance of extracted P300 signal is to compare the
correlation with a predefined template. Here two P300 templates are prepared:
Template A (Figure 7.11a) is a 1.5s averaged P300 which is obtained from averaging
a number (200) of raw P300 responses on C3; Template B (Figure 7.11b) is 4.5s of
activity which is repeated Template A three times in series to the same length of data
trial. After that, it is easy to calculate values of correlation between the outputs of the
SC-ICA analysis and these two P300 templates. It is worth noting that P300 is a
subject dependent signal and can be affected by habituation in which the peak
amplitude could be decreased. Moreover the P300 peak appears somewhere near to
300ms, and not exactly at 300ms. After a number of averages, the averaged P300 peak
could become wider and the amplitude level could be lower compared to an individual
P300 wave. Therefore the templates from coherent averaged raw EEG are not

necessarily the most desirable way to construct a ‘gold standard’.

The graph of Figure 7.12 shows the correlation values from raw data and extracted
data after SC-ICA together with Template B, it indicates that SC-ICA over C3
consistently outperforms its raw signal counterpart. Furthermore, the same analysis on
Oz yields good results, again always exceeding the raw signal counterpart and
sometimes even exceeding the performance of the raw channel located over the P300

focus.

In order to build an online real time BCI system, the component selection has to
be automatic. Here this study examines the possibility of applying an automatic
method. Figure 7.13 depicts the results for the single character ‘e’ using SC-ICA on
C3. Figure 7.13a shows the raw data and consists of three concatenated 1.5s P300
epochs as before. The solid vertical line represents the stimulus presentation time and
the dashed line marks the point 300ms following the stimulus onset. The study applies
the approximate component method which has been introduced in Section 3.6.3,

Chapter 3. The proposed algorithm (depending on the application) can repeatedly be
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used to extract more than one component of interest. But in this case, the first
extraction has almost extracted the entire relevant P300 component. Figure 7.13b
presents this extracted component in the measurement space. As a comparison, Figure
7.13c shows the extracted component for the same data but by using manual
component selection instead. Both extracted P300 peaks between the manual and
automatic methods are nearly identical. This confirms that the approximate method

can perform at least at the same performance level as the manual selection method.

To be able to apply this automatic component separation method to this BCI
system, the above approximation has been changed by a few steps to an improved
version. For this new method, the P300 components are extracted by filtering the data

with the filter that is obtained from the SC-ICA on the training data.

Figure 7.14 presents a set of 15 P300 repetition responses to one type of flashing
stimulus for the character ‘z’. The thick and dashed activity depicts P300 Template A.
The dashed vertical line represents the stimulus presentation at the time 300 ms. The

raw P300 responses are quite noisy and it is not possible to view P300 patterns at all.

Figure 7.15 shows the extracted P300 components for the data as shown in Figure
7.14. The thick and dashed red line depicts P300 Template A. The dashed vertical line
represents the stimulus presentation at the time 300 ms. The extracted data are
visually cleaner than the raw data. Some individual extracted components exhibit a

similar shape as Template A.

The correlation values between Template A with raw P300 epochs and the
extracted components are shown in Figure 7.16. For those original signals with low
SNR or even without P300 pattern, the extraction cannot enhance the data quality.
However once such extraction is applied on the signal containing P300 patterns,
things change. By comparing the correlation values with and without extraction, the

results (for example the correlation values between Template A and the sixth epoch
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are 0.45 (on the extract data) and 0.32 (on the raw data) show clearly that such

processing is able to enhance the quality of P300 in the recordings.

However applying an appropriate lowpass FIR filter could properly achieve the

same outcome, this is discussed in Section 7.5.

Figure 7.17 highlights an unaveraged P300 response plotted from the raw and
extracted data. The thick and dashed active depicts P300 Template A. Figure 7.18
shows the P300 response which benefits from two averages on the raw and extracted
data. Figure 7.19 presents the P300 activity after three averages and Figure 7.20
shows the P300 activity after four averages. The results show that after a few averages
the SNR of both raw signal and extracted signal is improved. Visually the extracted
signal has shown a clearer P300 pattern than the raw signal. Figure 7.21 shows the

correlation values between the averaged signals and Template A.
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Figure 7.10: Two extracted signals (from Figure 7.6c and Figure 7.9¢c), the values in bold
indicate the correlation between each epoch across both channels.
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Figure 7.11: a) P300 Template A is a clear 1.5s P300 response which is averaged from
200 P300 epochs, b) P300 Template B is a 4.5s activity which is repeated P300 Template
A three times in series.
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Figure 7.12: Correlation values between signals (before and after ICA using single
channel C3) and P300 Template A.
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Figure 7.13: (a) Raw data for character ‘e’ using single channel C3 consisting of 3 P300

epochs. (b) Extracted signal by applying the filter obtained from the approximate method.

(c) The extracted signal by using manual component selection as a comparison.
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Figure 7.14: A set of 15 P300 repetition responses to flashing stimulus for the character
‘z’. The thick and dashed active depicts P300 Template A. The dashed vertical line
represents the stimulus presentation at the time 300 ms.
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Figure 7.15: 15 Extracted P300 components from the same data shown in Figure 7.12.
The thick and dashed line (red) depicts P300 Template A. The dashed vertical line

represents the stimulus presentation at the time 300 ms.
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Figure 7.16: The correlation values between Template A with 15 raw P300 epochs and
the extracted version.
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Figure 7.17: A non-averaged P300 response plotted from the raw and extracted data.
The thick and dashed active depicts P300 Template A. The dashed vertical line
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Figure 7.18: A twice averaged P300 response plotted from the raw and extracted data.

The thick and dashed active depicts P300 Template A. The dashed vertical line represents

the stimulus presentation at the time 300 ms.
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Figure 7.19: A three-time averaged P300 response plotted from the raw and extracted
data. The thick and dashed active depicts P300 Template A. The dashed vertical line

represents the stimulus presentation at the time 300 ms.
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Figure 7.20: A4 four-time averaged P300 response plotted from the raw and extracted
data. The thick and dashed active depicts P300 Template A. The dashed vertical line

represents the stimulus presentation at the time 300 ms.
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Figure 7.21: The correlation values between Template A with raw averaged data and
extracted averaged data.

To compare the extraction performance between the traditional lowpass FIR filter
and the proposed SC-ICA techniques, Figure 7.22 shows an example of filtering a
signal segment consisting three 1.5s P300 signal trials. Results after SC-ICA with
manual component selection, a lowpass FIR filter and the raw signal on its own are
superimposed to give a better view for a close comparison. The results indicate both
lowpass FIR filter and SC-ICA are able to extract the P300 peaks out of the noisy
signal. The SC-ICA manages to preserve maximum wave appearance so that the
signal amplitude nearly remains the same. As a drawback perhaps, the extraction still

has some higher frequency noise left.

In order to examine and enhance the component extraction so to improve the final
P300 word identification accuracy. Figure 7.23 shows twelve 8-time averaged
activities for one character detection, these two bold waves are the targets containing
averaged P300 EP. The first vertical line at 500ms presents the stimulus and the
second vertical line at 800ms indicates the line 300ms after the stimulus onset. Figure
7.23 (a) shows results after the lowpass FIR filter. Components higher than 10Hz are

filtered off, extracted signals are very smooth and P300 peaks in the target waves are
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clear. As a comparison, Figure 7.23 (b) shows results after the proposed SC-ICA and
the manual component selection method. Two clear bold target waves indicate
SC-ICA is able to extract the component of interest. In both plots similar P300 peaks
can be observed. Figure 7.24 demonstrates another good example of the performance
difference caused by the same problem. Data shown here are twelve 9-time averaged
activities for the detection of a character. After that coherent averaging is then applied
to the extracted signals. Obviously the averaging does not bring much benefit to the
lowpass filtered signals since they have already had high frequency noise reduced and
smoothed through the filter. As the assumption of coherent averaging is that the noise
is random and not fixed to the stimulus, so the noise can be reduced through

averaging.

As a comparison of final classification performance for this P300 speller system,
the classification accuracy of using the previous multi-channel ICA algorithm, and
SC-ICA with manual/automatic component selection, FIR lowpass filter and raw data
on its own. Table 7.1 depict the final classification accuracy whilst looking at various
times of averaging on the data. Figure 7.25 gives a better visualization of such
performance. Obviously the classification using multi-channel ICA is the best
performed since multi-channel signals offer more information and allows ICA to
construct a suitable spatial filter to extract component of interest from the mixing
multi-channel data. Performance after FIR lowpass filtering gives a better result than
one on the raw data, but not as favourable as in the multi-channel case. The SC-ICA
together with manual component selection acts more likely a precise filter for each
data portion (signals for one character form a data portion). This method reduces most
of the noise and leaves the slow wave untouched so as to benefit the final
classification accuracy during the processing of the averaging. SC-ICA methods end
up extracting parameters that are equivalent to an FIR filter. SC-ICA with the manual

component selection performs marginally better than the FIR filter, however the FIR

194



Chapter 7 Single channel ICA algorithm for ERP based BCI

filter works, and since it is a much simpler method to implement, it should be the

method of choice in this single channel application.

The most important thing is that this method can implement and provide an

automatic and fast way to extract components of interest from the noisy signal which

is more suitable to embed into an online BCI system.
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Figure 7.23: Twelve 8-time averaged activities for one character detection, two bold
waves are the targets containing averaged P300 EP. a) shows results after the lowpass
FIR filter; b) shows results after proposed SC-ICA and the manual component selection
method.
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Figure 7.24: Twelve 9-time averaged activities for another character detection, two bold
waves are the targets containing averaged P300 EP. a) shows results after the lowpass
FIR filter; b) shows results after proposed SC-ICA and the manual component selection
method.
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Table 7.1: The final comparison of the classification accuracy (%) using a previous multi-channel ICA
method, the proposed SC-1CA algorithm, a lowpass FIR filter and a normal average method.

Numbers of Averages
Methods
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
en-ICA 29.03 | 41.94 | 51.61 | 54.84 | 67.74 | 64.52 | 67.74 | 80.65 | 83.87 | 93.55 | 93.55 | 96.77 | 96.77 | 96.77 | 93.55
FIR filter 6.45 | 3.23 | 16.13 | 22.58 | 29.03 | 38.71 | 58.06 | 58.06 | 64.52 | 67.74 | 58.06 | 67.74 | 67.74 | 74.19 | 74.19
SC-ICAmanu | 12.90 | 16.13 | 25.81 | 29.03 | 41.96 | 45.16 | 61.29 | 58.06 | 74.19 | 70.97 | 70.97 | 70.97 | 70.97 | 80.65 | 87.10
SC-ICAauto | 6.45 | 323 | 9.68 | 16.13 | 16.13 | 35.48 | 35.48 | 41.94 | 48.39 | 51.61 | 51.61 | 70.97 | 67.74 | 70.97 | 83.87
raw 323 | 9.68 | 16.13 | 16.13 | 19.35 | 29.03 | 29.03 | 32.26 | 51.61 | 38.71 | 38.71 | 41.94 | 51.61 | 45.16 | 38.71
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Figure 7.25: The final comparison of the classification accuracy using a previous en-1CA
method, the proposed SC-ICA algorithm and a lowpass FIR filter.
7.5 Summary

This chapter proposes a new ICA technique on single or few channel(s) of recorded
data. This chapter first demonstrates the proposed SC-ICA together with a manual

component selection on just three P300 epochs from the total of thirty P300
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repetitions for each character. The data is structured as three individual channels C3,
C4 and Oz and also in another three combinations: C3&0z, C4&0Oz and C3&C4. The
extracted data from one-channel studies show very clear P300 peaks with higher SNR
compared to the raw data. Even from a relatively far channel on Oz, the technique is
still able to trace P300 responses. Moreover with only a minimal requirement of an
extra recording channel, this work shows that the proposed ST-ICA algorithm can
increase the BCI performance. Since channels C3 and C4 are much closer to the P300
area, the original data SNR is already good so that the extraction performance from
this pair of channels is much clearer and better than from others. By using this
ST-ICA method, even the data from a far channel such as Oz has benefited from the
assistance of extra recording from C3 or C4. The results have shown a better
performance than those using Oz individually. Therefore with the proposed ICA
algorithm on few or even a single channel, accurate spatial location of the recording
electrode is not critical and the P300 responses can still be recovered to a usable

degree of accuracy.

Furthermore since the IC selection algorithms in the literature currently are based
on a manual selection which will negate a real time BCI system, here the study
presents and demonstrates an application using an improved version of approximate
automatic IC selection method to take the place of manual selection. The new method
creates a filter by using the vectors of the mixing and unmixing matrixes from ICA.
After that the system performs rather like on the signal filtering in one go rather than
to select the relevant components. In this way the approximate method avoids the
selection step and as a consequence performs substantially faster than the application
with the manual method. The results show that this approximate component selection
method has a similar performance as those from the manual method. As a comparison
of classification performance after different extraction techniques are applied, this
chapter presents results by using proposed multi-channel ICA method introduced in
previous chapter, the SC-ICA method with manual/automatic component selection

and lowpass FIR filtering. Results also show the classification accuracy along with
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different amounts of averaging applied. The results indicate that naturally more
information available to multi-channel ICA contributes to a better classification
performance. As for the SC-ICA method, since in this situation only one recording is
available, the current results are much better than results after lowpass FIR filter but
are not good as those in the multi-channel applications. Whereas the appropriate
number of averages improves the SNR of P300 patterns which lead to achieve a better

classification.

In summary, these results on the P300 speller BCI dataset are extremely
encouraging. The proposed ICA method can extract information from single or few
channels with a reasonable accuracy even at low SNR channels. This method also has
the potential of reducing the required number of repeated trials and speeding up the
system — whilst maintaining accuracy. Furthermore this system can be easily extended

to other, similar task-relevant EP based systems.
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CHAPTER 8

Discussion and Future work

8.1 Background

Throughout the history of the development of BCI, although not long, people have
realized that this may be the only way for patients who have suffered some severe
debilitating diseases to increase their independence, leading to a dramatically
improved quality of life and also reduce social cost. These diseases include ALS,
brainstem stroke, brain or spinal cord injury and numerous other debilitating diseases.
The diseases may result in paralysis of the entire motor system restricting both verbal
and nonverbal communication, these also called locked-in syndrome. From a healthy
person’s point of view, the quality of life in such patients is low. However, the quality
of life can be maintained regardless of the physical decline. By creating another
communication output pathway, BCls allow a person with restricted motor abilities to
maintain communication and operate electrical devices and computers directly

through their brain activity.

In theory, BCIs can be divided into dependent and independent types. In
dependent BClIs, the brain’s normal output pathways are not used to carry the message,
but the pathways need to be active to carry certain generated brain activities

pertaining to a given task. For example, a VEP based BCI depends on extraocular
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muscles and EEG signals generated by the cranial nerves for the operation. Whereas
for the independent case, relevant EEG signals will arise regardless of the activity
pattern carried in brain output pathways. The generation of the EEG control signal
depends mainly on the user’s intent. Such control patterns include: SCPs, P300, x and
cortical neuron activity. Depending on the type of electrodes being used, in the
literature BCIs are also separated into two classes, namely implanted BCIs and
non-implanted BClIs. In the former, the micro electrode array is implanted directly
into the grey matter of the brain through neurosurgery. As the electrodes are very
close to the neuronal activity, this is able to produce the highest quality signals.
However, there are safety and potential ethical issues with implanted methods in
human subjects. Whether the implanted electrodes’ performance remains optimal in
the long term is also questionable at this stage. For non-implanted technologies,
mainly surface attached EEG electrodes are used, which obviously are inexpensive
and easy to wear, setup and maintain. But the drawbacks of non-implanted
technologies could be such as incorrect electrodes location, electrodes falling off, time

consuming to attach multi-electrodes and their characteristics varying with time.

EEG recording from non-implanted methods also could lead to the problem of
poor signal resolution because the skull attenuates signals, dispersing and blurring the
electromagnetic waves created by the groups of neurons. Eye movement, teeth
clenching, frowning, varying facial expression, muscle contractions and other forms
of artifacts can also spot the EEG signal. Moreover the noise contaminating the
recordings is generally non-deterministic. To reduce these artifacts, filtering methods
such as FIR, IIR filterings are usually applied to the recordings. However due to the

diversity of artifacts, the performance of the filtering sometime is not effective.

In order to detect the relevant EEG patterns for BCI, one way of dealing with
those artifact-containing segments is to simply discard them. However it is impossible
to do this in real time BCI system. Based on the assumption that the noise is random

and not reproducible, one possible way is to perform a coherent averaging, i.e. to

203



Chapter 8 Discussion and Future work

measure the EEG control signal more than once and average out all the measurements
point-by-point. This can substantially improve the SNR. However too many times of
averaging could slow down the speed of processing or even cause habituation. AR
modelling is often used to remove EOG artifacts from EEG signals. Although one
problem in practise is that when AR modelling removes EOG from EEG signals it
could possibly remove part of the EEG signal too. Another method used for BCI
application is spectrum analysis. It can be used to separate the relative contribution of
the different frequencies and reduce the noise’s troublesome frequency component
from the signal. However if the frequencies of noise and components of interest are
overlapped and fall in the same frequency band(s) it could be more difficult for the
spectrum analysis to separate the component of interest from the signal. Since the
EEG signals are so small in amplitude and sensitive to noise, to achieve an efficient
detection the input signal (or features derived from it) should be selected with great

carc.

These techniques bring with them, however, two problems in developing an
efficient BCI system: (1) The repetition of signal measurements for the use of signal
reinforcement means longer recording times, and (2) multi-channel signal input for
the use of spatial position optimisation produces huge amounts data. This really slows
down the BCI signal processing capability and the detection accuracy is not
guaranteed to be improved much anyway. For these reasons, the real-world
application of BCI is somewhat limited. Therefore, the development of faster, more

useful and stable BCI systems continues to remain a difficult challenge.

EEG signals measured on the scalp actually are the result of linear mixture of
underlying cortical activities. The discovery of how the sources mix and extracting
them from the observations would offer the great opportunity to enhance the signal
SNR fundamentally. In the field of biomedical signal processing, the technique of
ICA provides a tool to extracting a set of underlying sources or components from a set

of random variables, measurements or signals. The ultimate aim is to extract
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information underlying a set of signal measurements made over time. Fundamentally,
the sources are assumed to be unknown and to be mixed linearly or even nonlinearly.
ICA tends to demix these sources by exploiting this independence of the sources
underlying the measured data. In the literature there are quite a number of
publications about applications of ICA to biomedicine and even to BCls. However
most studies only tend to apply the existing ICA techniques to preprocess their data
(e.g. filtering the data to reduce some simple noise). This work here expands the ICA
concept and develops improved ICA techniques especially for use in the field of BCI

research.

8.2 Objectives

The thesis presents two overreaching objectives in this BCI study: (1) to reduce the
amount of reinforcement needed in order to reduce the processing time and hence
increase the information transfer rate, whilst maintaining a high performance, and (2)
to reduce the number of recording channels to make the application of BCI recording
equipment less cumbersome and less reliant on accurate electrode placement in the
context of increasing classification accuracy or at least with it remaining the same as

the current classification performance.

8.3 Discussion

This thesis proposes and demonstrates several ICA techniques on two popular BCI
systems: ERP based BCI and spontaneous EEG based BCI to deal with the EEG
pattern detection problems and improve the overall performance. It starts with the
preliminary analyses on the Southampton BCI pilot study. The purpose here is to
examine the basic and advanced signal processing techniques on the pilot datasets so
that the necessary knowledge can be accumulated and contributed towards follow-on

studies. The pilot study includes ERP experiments (P300 and N400 tasks) and mental
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imagery experiments (motor/non-motor imagery tasks). As this is a pilot study, the
pilot data are not designed and structured as meaningful information carriers.
Therefore it is difficult to measure and compare the performance with the results from
the literature. However, irrespective, results show that the proposed ICA techniques
are able to achieve an improvement between the extracted and raw ERP datasets so
that the relevant P300 peaks are extracted more clearly and are much more easily
identifiable. Results also indicate the mental imagery can be used in the Southampton

BCI study if the suitable paradigm is available and the subjects are well trained.

In a multi-channel P300 based word speller BCI application, three ICA methods
are proposed to improve the existing systems in the literature. After extracting and
enhancing the desired responses through these ICA based techniques, the results show
that much better performance can be achieved by using these techniques followed by
a simple classifier, when compared to straight coherent averaging followed by simple
classification, on the BCI competition data set. Furthermore, two of the proposed
algorithms which benefit from the use of a spatial constraint and a predefined
template mainly optimize and automate the components selection, meaning that this
allows ICA to be run in an automated fashion. This is non-trivial as most ICA
algorithms yield components which require interactive and subjective post processing.
The final classification accuracy by an ICA technique has been increased to about
40% higher than one by coherent averaging. The study also shows that for fewer
averages the ICA based post-processed techniques still exhibit quite good
performance. For example, after ICA the data just applied to eight averages/epochs
can achieve 83.9% classification accuracy whilst the data by coherent averaging can

give only 32.3% accuracy.

Multi-channel spontaneous rhythmic activity based BCI applications are different
to the above systems. In the above numerous repetitive trials could be performed, in
this case the analysis must be based on “single trial” classification. Traditional

methods need to select some trial recordings as the training datasets. However if the
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training sets include artifacts, it can cause serious problems and lead to a poor
performance. Therefore most methods require that the data should be artifact free,
which can be achieved by several preprocessing steps such as filtering or manual
artifact rejection. Here instead of applying any preprocessing methods beforehand, the
study proposes an ICA technique based on time structure and spectral constraints to
deal with this classification issue. It estimates the stack matrices by using the
averaged lagged covariance matrices from the data. The idea behind the process is
that the influence of artifacts is reduced since the procedure of averaging the
covariance matrices acts as a filter which could balance and minimise the random
noise level. Through the technique of spectrally constrained ICA, a spatial filter suited
to each individual EEG recording is learned. This can effectively extract
discriminatory information from two types of single-trial EEG data. Through the use
of the ICA algorithm, the classification accuracy is improved by about 25%, on
average, compared to the performance of the same classifier on the unpreprocessed

data.

The thesis has already demonstrated how efficient ICA based techniques are able
to enhance single-trial recording so that this means it is not necessary to apply many
repetitions to obtain a reliable output. To examine the possibility of achieving the
second objective— i.e. reducing the number of recording channels, an ICA technique
working on single or few channel(s) recordings is proposed and demonstrated on the
above same P300 word speller application. The results show that it is possible to
extract single trial evoked potentials and to do so even on recording channels not sited
over the event focus. Moreover, an automatic IC selection method is also proposed to
take the place of manual source selection. The idea of manual selection is to simply
check and choose the related signal patterns visually after ICA. But it is impossible to
use it in an online BCI system which requires signal processing in real time. From the
results the automatic IC selection performs substantially faster than the application of

a manual method. The final classification performance indicates that more
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information available to multi-channel ICA can benefit a better classification
performance. However, as only one recording channel is available for the SC-ICA
method, the current results are much better than results after lowpass FIR filter but are
not as good as those in the multi-channel applications (unsurprisingly). Whereas the
appropriate number of averages improves the SNR of P300 patterns which helps
SC-ICA to achieve a better classification. Therefore the final classification by

SC-ICA can be comparable to that obtained using multi-channel analysis techniques.

In this thesis, ICA has played an important role in signal enhancement (or signal
de-noising). The results are extremely encouraging and show that the proposed
algorithms are able to accurately and repeatedly extract the relevant information
buried within noisy signals. Therefore the proposed ICA techniques are able to reduce
the number of repetitions and reduce the number of recording channels in the BCI
applications. Moreover the quality of the extracted signal is enhanced such that even a
very simple linear classifier can achieve good classification accuracy. The use of a
linear classifier in BCI applications simplifies the classification process and is
desirable from a reduced computational complexity perspective. In order to
maximally increase the final classification performance, more advanced classifiers
can be applied in the BCI application. However results from this study did not
necessarily show a significant improvement in performance on the same data used by
the simple classifier. For example, a SVM on the data from a spontaneous EEG based
BCI increased the performance by about 2% more than the simple linear classifier.
Therefore a good classification rate coupled with low computational cost is designed
in order to be able to achieve a reliable, on-line, system for BCI — especially for use

outside of the clinical laboratory.
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8.4 Future Work

Extensive future work should examine the possibility of using the single channel ICA
concept to reduce the number of channels or even use a signal channel recording in
the spontaneous EEG based BCI application. The work will discover the ICA
application on identifying and isolating rhythmic component underlying single

channel brain recordings.

Up to this point, the study has examined and analyzed improvements in several
existing BCI systems and paradigms. When the development of BCI systems is
reviewed, some BCI applications appear difficult to improve performance due to the
limitation of the existing BCI paradigm themselves. Control signals like SCP requires
long training time but its processing speed is still slow. g rhythm based BCI again
requires long time training and the performance is more dependent on the individual’s

skill.

An upgraded BCI paradigm which combines the P300 ERP paradigm and the VEP
approach can possibly be a good solution to overcome the existing limitation. The
advantage of grouping these two features in one system is that the P300 ERP is
known to be a training free component for most subjects, such that in the literature the
P300 word speller has been proved to be able to reach a relatively good information
transfer rate and classification accuracy. However, one drawback is that the
performance is much more dependent on subjects’ intention and concentration. A
VEP is a naturally occurring response and more dependent on the stimulus
presentation than subject attentiveness. For example in a VEP application some
objects are flashing with different frequencies and the frequency correlated signal
pattern can be magnified and detected when a flickering stimulus is visually fixated.
In the literature, VEP based BCI belongs to dependent BCI paradigms and requires

little or even no training for the subjects, and it can reach the maximum information
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transfer rate among all types of BCI systems. Furthermore a technique called a
pseudorandom binary sequence (PRBS) [217] [218] can be introduced as a new
feature in the presentation stimulation, VEPs can benefit from several advantages,
such as, the recording time reduction and more efficient pattern detection. As a
summary, visual stimuli with different frequency are involved in this new formed BCI
paradigm, the user intends to response to low frequency flashings to generate P300 EP
patterns; the natural response — the VEP is evoked by PRBS flashings regardless of
the user’s intention. All the characteristics are able to support each other and make the

detection more efficient.

To make this paradigm work, the analysis could be divided into three steps:

Step 1: to construct P300 based word speller (it has been done already);

Step 2: to construct a VEP based system using a standard flashing stimulus at
fixed (yet alterable) flashing rates. This will be followed by a VEP system
with PRBS stimulus.

Step 3: to combine the P300 and VEP to build up the proposed BCI system. At the
same time, the developed ICA techniques will be plugged into the system

to maximally support the detection of the signal control patterns.

This new formed BCI system should offer these immediate benefits: fewer

recording channels, less need for training, less (or no) averaging, less false detections

and faster on-line classification.
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Appendix A Information sheet for Southampton BCI pilot study

Ufnéver;srilty . School of Health
oroutampron Professions and

Rehabilitation Sciences

Brain Activity Associated with Language

Information for Research Participant (Version 2)

Purpose of the study

We are undertaking a study which involves collaboration between three schools within the University of
Southampton (School of Health Professions and Rehabilitation Sciences {SHPRS}, the Institute of Sound
and Vibration Research {ISVR} and School of Psychology). We are studying the effect of spoken and
written language on brain activity. This research requires the involvement of healthy adults who do not
have dyslexia, any skin diseases or allergies, or a history of a neurological disorder or head injury. We
would like you to consider taking part in this study.

What the study involves

If you agree, you will be asked to come to the School of Health Professions and Rehabilitation Sciences for
three appointments of approximately 1 hour each. During this time you will undertake some language
assessments, during which the natural electrical activity of your brain (‘brain waves”) will be recorded from
your scalp. This involves placing 14 sensors attached to leads on your scalp, and keeping them in place
with a ‘vaseline-like’ gel and sticky tape. The leads are sufficiently sensitive to pick-up electrical activity
from the brain, but they cannot send any information fo your brain. Brain activity is recorded in the form of
an EEG (electroencephalogram).

Once the electrodes are in position, you will be asked to complete some simple tasks involving: looking at
pictures on paper or a computer screen; listening to certain sounds; thinking about specific things we ask
you to (e.g. imagine you are sitting on a beach...). The sensors will then be removed, and we will try to
remove as much of the gel as possible. You may, however, wish to wash your hair on the same day.

Personal information will not be released to, or viewed by, anyone other than the researchers named below.
All results will be coded so that they are anonymous, 1.e. they will not include your name or any other
identifying information.

Your participation is voluntary and you can withdraw consent at any time, even once the data have been
collected. If you chose not to participate there will be no consequences to your academic progression if you
are a student or your employment if you are a member of staff. If you have any further questions, please
email Morwenna Collins on moc{@soton.ac.uk.

What we hope to achieve

By conducting this research, we hope to learn more about how people understand spoken language and
form words in order to speak and hold a conversation. We then plan to use the information to better
understand the problems faced by people who have difficulties speaking and understanding after strokes
and head injuries, and to use the technology of recording brain activity to help in their treatment.

If you wish to participate in this study please contact Morwenna Collins directly. Participants will be asked
to sign a consent form at their appointment.

Prof Maria Stokes — Director of Research & Professor of Neuromuscular Rehabilitation (SHPRS)
Morwenna Collins Research Fellow (SHPRS)

Dr Christopher James - Lecturer in Biomedical Engineering (ISVR)

Dr Alexandra Hogan - Lecturer in Developmental Neuroscience (School of Psychology)

Dr Awvijit Datta - Consultant Respiratory Physician (Honorary Lecturer School of Medicine)

July 2005
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Ufnéver;srilty . School of Health
oroutampron Professions and

Rehabilitation Sciences

Brain Activity Associated with Language

Post-participation description of study (Version 2)

The aim of this research is to study healthy peoples’ performance when they undertake commonly
used language assessments. Specifically we are interested in brain activity associated with the
understanding of written and spoken words. We need to collect this information in preparation for
a study of people who have had a stroke or head injury and have difficulties speaking or
understanding what is being said. We have experience of studying certain types of brain activity
in response to processing simple and complex sounds and we are now hoping to apply this
information to developing new technology for people with disabilities.

We were also interested to see if imagining or remembering certain things produces the same
consistent pattern of brain activity across individuals and testing sessions. In order to study this
we asked you to remember your favourite piece of music, imagine moving a part of your body and
imagining scanning around your house. We were investigating the possibility of being able to
record consistent brain signals while people think of certain things. We aim to make these
recorded signals reliable enough to control a cursor on a computer screen, which is known as
brain-computer interfacing or BCL. This would have implications for people who have damaged
their language systems and are unable to understand or speak due to accident or illness. We did
not tell you too much about the things you were going to be asked to think about, as this may have
affected the way you performed during the tests and made the results invalid.

Brain activity recorded from one person does not give any meaningful information, so no
individual feedback is given in this study. It is only when we average together brain activity from
healthy subjects and compare them in a later study to those from people with language difficulties,
that we see anything new or of interest. Although our brain activity study 1s similar to a clinical
EEG study (e.g. for epilepsy). it does not provide the level of information necessary for a clinical
diagnosis. If you are concerned about any aspect of your physical or mental health you should
consult your GP in the first instance.

We thank you for your participation in this study, and remind you that you may withdraw consent
for us to use your results even though you have already participated. If you have any further
questions, please contact Morwenna Collins (moc(@soton.ac.uk).

If you have any concerns that the researchers could not address any issue about your
rights as a participant in this study, or if you feel that vou have been placed at risk,
you may contact the Chair of the School of Health Professions and Rehabilitation
Sciences Ethics Committee, School of Health Professions and Rehabilitation
Sciences, University of Southampton, Southampton, SO17 1BJ. Phone: 023 8059
2142,

July 2005
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Ufnisvel'fri]tv . School of Health
oroutampron Professions and

Rehabilitation Sciences

Brain Activity Associated with Language

Consent Form (Version 2)

| (full name in block capitals) have read
the information sheet (dated Version 2) and consent to participate in this study. I understand that I
may withdraw my consent and discontinue participation at any time without penalty or loss of
benefits to myself. I understand that the data collected as part of this study will be treated
confidentially, and that published results of this project will maintain my confidentiality. In
signing this consent letter, [ am not waving my legal claims, rights, or remedies. A copy of this
letter has been offered to me.

I give consent to participate in the above study (circle yesorno): ' YES  NO

I consent to the session being videotaped (circlevesorno):  YES ~ NO

If yes, I consent to the use of my videotaped image (face) being presented to
students or other health professionals for the purpose of:

Education in this University (circle yesorno):  YES ~ NO
Education in any University other than Southampton (ircle vesorno): ' YES ~ NO

National and international conferences (circle yes orno):  YES NO

Signature Date

Name of Researcher taking consent:

July 2005
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Figure C.1: The averaged P300 activities vs the number of random averaging on raw
data and extracted data for Subject 2 after normal ICA. For each plot, the upper signal
shows the averaged activity on raw data, and the bottom one plots the same average bia'?
on extracted data.
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Figure C.2: The one selected topographic map from the data of Subject 2 after the normal
ICA. Each map is corresponding to an independent component. Therefore there are one
selected components projected to the original measurement space.
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Figure C.3: the template used to compute the correlation coefficient with the averaged
P300 activities on the data from Subject 2. The template was an average of selected P300

epochs.
correlation with a template on the data from Subject 2 (normal
ICA)
1
20,5
A
g
5 0
&
£ 0.5 L
-1
rrmber of arerages

Figure C.4: The performance of the correlation between the P300 template and the
averaged P300 activities before and after normal ICA on the data from Subject 2. There
were a total 10 pairs of random averages of P300 activities.
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Figure C.5: The averaged P300 activities vs the number of random averaging on raw
data and extracted data for Subject 2 after spatially constrained ICA. For each plot, the
upper one shows the averaged activity on raw data, and the bottom one plots the samé!®
average but on the extracted data.
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Figure C.6: The constraint topographic map for Subject 2. This constraint was a selected
column of the mixing matrix after a normal ICA on a special data portion which includes
all the selected P300 epochs
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Figure C.7: The performance of the correlation between the P300 template and the
averaged P300 activities before and after the spatially constrained ICA on the data from
Subject 2.
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Figure C.8: The averaged P300 activities vs the number of random averaging on raw

data and extracted data for Subject 6 after normal ICA. For each plot, the upper signal
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Figure C.9: The two selected topographic maps from the data of Subject 6 after the
normal ICA. Each map is corresponding to an independent component. Therefore there

are two selected components projected to the original measurement space.
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Figure C.10: The template used to compute the correlation coefficient with the averaged
P300 activities on the data from Subject 6. The template was an average of selected P300

epochs.
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Figure C.11: The performance of the correlation between the P300 template and the
averaged P300 activities before and after normal ICA on the data from Subject 6. There
were a total 10 pairs of random averages of P300 activities.
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Figure C.12: The averaged P300 activities vs the number of random averaging on raw
data and extracted data for Subject 6 after spatially constrained ICA. For each plot, the

upper signal shows the averaged activity on raw data, and the bottom one plots the samé?3
average but on the extracted data.
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Figure C.13: The constraint topographic map for Subject 6. This constraint was a
selected column of the mixing matrix after a normal ICA on a special designed data with
all the selected P300 epochs

correlation with a template onthe data from Subject 6
{constrained ICA)

O Fawr data
@ Extr data

correlalion coefficiem

rrmber of arerages

Figure C.14: The performance of the correlation between the P300 template and the
averaged P300 activities before and after the spatially constrained ICA on the data from
Subject 6.
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Figure C.15: The averaged power spectra over ten trials for right hand grasping task
together with the averaged power spectra of baseline signal on C3 and C4 in frequency
domain on the data from Subject 1.
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The averaged power spectra over ten trials for left hand grasping task

together with the averaged power spectra of baseline signal on C3 and C4 in frequency
domain on the data from Subject 1.
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Figure C.17: The averaged power spectra for right/left hand imagination in one graph on
the data from Subject 1.
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Figure C.18: The averaged power spectra over ten trials for right hand grasping task
together with the averaged power spectra of baseline signal on C3 and C4 in frequency
domain on the data from Subject 2.
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Figure C.19: The averaged power spectra over ten trials for left hand grasping task

together with the averaged power spectra of baseline signal on C3 and C4 in frequency
domain on the data from Subject 2.
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Figure C.20: the averaged power spectra for right/left hand imagination in one graph on

the data from Subject 2.
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Figure C.21: The averaged power spectra over ten trials for right hand grasping task
together with the averaged power spectra of baseline signal on C3 and C4 in frequency

domain on the data from Subiect 3.
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Figure C.22: The averaged power spectra over ten trials for left hand grasping task
together with the averaged power spectra of baseline signal on C3 and C4 in frequency

domain on the data from Subject 3.
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Figure C.23: the averaged power spectra for right/left hand imagination in one graph on
the data from Subject 3.
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Figure C.24: The averaged power spectra over ten trials for right hand grasping task
together with the averaged power spectra of baseline signal on C3 and C4 in frequency
domain on the data from Subject 4.
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Figure C.25: The averaged power spectra over ten trials for left hand grasping task
together with the averaged power spectra of baseline signal on C3 and C4 in frequency
domain on the data from Subject 4.
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Figure C.26: the averaged power spectra for right/left hand imagination in one graph on
the data from Subject 4.
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Figure C.27: The averaged power spectra over ten trials for right hand grasping task
together with the averaged power spectra of baseline signal on C3 and C4 in frequency

domain on the data from Subject 5.
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Figure C.28: The averaged power spectra over ten trials for left hand grasping task
together with the averaged power spectra of baseline signal on C3 and C4 in frequency

domain on the data from Subject 5.
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Figure C.29: the averaged power spectra for right/left hand imagination in one graph on
the data from Subject 5.
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Figure C.30: The averaged power spectra over ten trials for right hand grasping task
together with the averaged power spectra of baseline signal on C3 and C4 in frequency
domain on the data from Subject 6.
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Figure C.31: The averaged power spectra over ten trials for left hand grasping task
together with the averaged power spectra of baseline signal on C3 and C4 in frequency
domain on the data from Subject 6.
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Figure C.32: the averaged power spectra for right/left hand imagination in one graph on
the data from Subject 6.
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ERDIERS maps for right hand imagery
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Figure C.35: The ERD/ERS maps for right hand grasping imagery on the data from the
same Subject 2. The dashed vertical line represented the stimulus onset.
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Figure C.36: The ERD/ERS maps for left hand grasping imagery on the data from the
same Subject 2. The dashed vertical line represented the stimulus onset.
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ERDIERS maps for right hand imagery
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Figure C.37: The ERD/ERS maps for right hand grasping imagery on the data from the
same Subject 3. The dashed vertical line represented the stimulus onset.
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Figure C.38: The ERD/ERS maps for left hand grasping imagery on the data from the
same Subject 3. The dashed vertical line represented the stimulus onset.
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ERDIERS maps for right hand imagery
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Figure C.39: The ERD/ERS maps for right hand grasping imagery on the data from the
same Subject 4. The dashed vertical line represented the stimulus onset.
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Figure C.40: The ERD/ERS maps for left hand grasping imagery on the data from the
same Subject 4. The dashed vertical line represented the stimulus onset.
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Figure C.41: The ERD/ERS maps for right hand grasping imagery on the data from the
same Subject 5. The dashed vertical line represented the stimulus onset.

ERD/ERS maps for left hand imagery
100 . . .

T
Motar left on C4
M otor left on C3

80

B0 -

40+ -

%

20+ .

40 I !
3 4 7] 4]

time (=)

[mm)
—
o]

Figure C.42: The ERD/ERS maps for left hand grasping imagery on the data from the
same Subject 5. The dashed vertical line represented the stimulus onset.
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ERD/ERS maps for right hand imagery
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Figure C.43: The ERD/ERS maps for right hand grasping imagery on the data from the
same Subject 6. The dashed vertical line represented the stimulus onset.
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Figure C.44: The ERD/ERS maps for left hand grasping imagery on the data from the
same Subject 6. The dashed vertical line represented the stimulus onset.
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Figure C.45: The averaged power spectra over ten trials for the spatial navigation
imagery and music imagery at the temporal area on the data from Subject 2.
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Figure C.46: The averaged power spectra over ten trials for the spatial navigation
imagery and music imagery at the parietal area on the data from Subject 2.
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Figure C.47: The averaged power spectra over ten trials for the spatial navigation
imagery and music imagery at the temporal area on the data from Subject 3.
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Figure C.48: The averaged power spectra over ten trials for the spatial navigation
imagery and music imagery at the parietal area on the data from Subject 3.
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Figure C.49: The averaged power spectra over ten trials for the spatial navigation
imagery and music imagery at the temporal area on the data from Subject 4.
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Figure C.50: The averaged power spectra over ten trials for the spatial navigation
imagery and music imagery at the parietal area on the data from Subject 4.
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Figure C.51: The averaged power spectra over ten trials for the spatial navigation
imagery and music imagery at the temporal area on the data from Subject 5.
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Figure C.52: The averaged power spectra over ten trials for the spatial navigation
imagery and music imagery at the parietal area on the data from Subject 5.
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Figure C.55: The averaged power spectra over ten trials for the spatial navigation
imagery and music imagery at the temporal area on the data from Subject 7.
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Figure C.56: The averaged power spectra over ten trials for the spatial navigation
imagery and music imagery at the parietal area on the data from Subject 7.
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S. Wang, and C. J. James, “Extracting rhythmic brain activity for brain-computer
interfacing through constrained independent component analysis”, Computational

Intelligence and Neuroscience, 2007(1D41468), 9pp, 2007.

Conference Papers

C.J. James and S. Wang, “Single Channel ICA on P300 based BCI”, Proceedings of
the IET Medical Signal and Information Processing Conference MEDSIP 2008, Italy,
14-16 July, CD-ROM, 2008

M. Davies, C. J. James and S. Wang, “Space-Time ICA and EM Brain Signals”,
Proceeding of 7" International Conference, ICA 2007, 577-584, 2007.

S. Wang, and C. J. James, “On the independent component analysis of evoked
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C. J. James and S. Wang, “Blind source separation in single-channel EEG analysis:
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