
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other 
copyright owners. A copy can be downloaded for personal non-commercial 
research or study, without prior permission or charge. This thesis cannot be 
reproduced or quoted extensively from without first obtaining permission in writing 
from the copyright holder/s. The content must not be changed in any way or sold 
commercially in any format or medium without the formal permission of the 
copyright holders.
  

 When referring to this work, full bibliographic details including the author, title, 
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name 
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/


 
 

University of Southampton 
Faculty of Engineering, Science and Mathematics 

School of Electronics and Computer Science 
 
 
 
 
 
 
 
 

Development of a Micromachined Electrostatically Suspended Gyroscope 

by 

Badin Damrongsak 

 

 
 
 
 
 
 
 
 
 

Thesis for the degree of Doctor of Philosophy 
 

February 2009 
 



UNIVERSITY OF SOUTHAMPTON 
ABSTRACT 

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS 
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE 

Doctor of Philosophy 
DEVELOPMENT OF A MICROMACHINED  

ELECTROSTATICALLY SUSPENDED GYROSCOPE 
by Badin Damrongsak 

 

In this thesis, a new approach based on an electrostatically suspended gyroscope (ESG) was 
explored in order to improve the performance of micromachined gyroscopes. Typically, a 
conventional micromachined gyroscope consists of a vibrating mass suspended on elastic 
beams that are anchored to a substrate. It measures the rotation rate of a body of interest by 
detecting rotation-induced Coriolis acceleration of a vibrating structure. Such a gyro is 
sensitive to fabrication imperfections and prone to cross-coupling signals between drive and 
sense modes, which degrade its performance. The micromachined ESG, on the other hand, 
employs a proof mass with no elastic beams connecting it to a substrate. The proof mass is 
levitated and spun electrostatically. In the presence of rotation, the spinning mass will rotate 
in the direction perpendicular to the spin and input axes. The displacement of the mass is 
capacitively sensed by a closed-loop electrostatic suspension system based on a sigma delta 
modulator (ΣΔM). The system, in turn, produces feedback forces to counteract the 
movement of the mass, moving it back to its nominal position. These feedback forces are 
equal to the precession torque and provide a measure of the rotation rate. Electrostatic 
levitation isolates the proof mass from unwanted inputs (for instance, mechanical friction, 
wear and stress), and thus the long-term stability of the gyroscope is expected to be 
improved. Furthermore, the micromachined ESG has a potential to achieve higher device 
sensitivity than that of a conventional vibrating-type micromachined gyroscope. 
 
This thesis deals with three aspects of the development of the micromachined ESG: device 
design and analysis, design and simulation of an electrostatic suspension system and device 
fabrication. Analytical calculations and ANSYS simulations were carried out to predict the 
behaviour of the micromachined ESG. The micromachined ESG with an electrostatic 
suspension control system based on a sigma-delta modulator (ΣΔM) was modelled in 
Matlab/Simulink and OrCAD/PSPICE to evaluate the operation and performance of the 
closed-loop gyroscope. A front-end capacitive readout circuit was also developed. Initial 
tests were carried out and the measurement results showed a reasonable good agreement to 
both theoretical calculation and OrCAD/PSPICE simulation. The fabrication of the 
prototype micromachined ESG was developed using a triple-stack glass-silicon-glass anodic 
bonding in combination with a high-aspect-ratio DRIE process. Fabrication results and 
processing issues were discussed. However, it was found that the rotor of the fabricated 
gyroscopes was stuck to the substrate. Therefore, a fabricated prototype, which had not yet 
covered by a top substrate, was used to investigate an alternative approach to provide 
electrostatic levitation using sidewall electrodes. The analysis of this approach was 
investigated using 2D electrostatic finite element simulations in ANSYS. Initial tests were 
also carried out. 
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Chapter 1 

Introduction 
 

 

1.1 BACKGROUND AND MOTIVATION 
 

Gyroscopes are generally used to provide measurement of rate and angle of rotation. 

Numerous types of gyroscopes have been developed since 1850s when Léon Foucault 

demonstrated the rotation of the Earth by his invented Foucault pendulum. Macro-scale 

gyroscopes, for example conventional rotating wheel gyroscopes, ring laser gyroscopes and 

fibre optic gyroscopes, are found mainly in navigation and guidance applications. However, 

they are far too bulky and too expensive for use in mass market applications.  

 

With current microfabrication technology, it is possible to develop a gyroscope several 

orders of magnitude smaller and significantly reduce the cost of fabrication. This will open 

up a wide range of applications [1]. Micromachined gyroscopes have a large volume 

demand in automotive applications where they can be used in smart airbag deployment, 

braking systems, active suspension and roll-over detection. They can also be exploited in 

consumer applications, including image stabilisers for video cameras, virtual reality handsets, 

novel pointing devices and robotics applications. Recently, high performance 

micromachined gyroscopes have become interesting for use in military and space 

applications, such as unmanned aerial vehicles, micro/pico satellites, missiles, etc. 

 

Almost all micromachined gyroscopes reported to date are a vibratory type gyroscope, 

which relies on sensing the Coriolis acceleration of a vibrating proof mass [2–4]. Such a 

gyro requires matching of drive and sense mode resonant frequencies to increase its 

performance; hence, making it very sensitive to fabrication imperfections. Vibrating 

micromachined gyroscopes also suffer from the so-called quadrature error, which is resulted 
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from a coupling of a drive mode into a sense signal. These issues are two major problems in 

the development of MEMS gyroscopes with navigation-grade or inertial-grade performance.  

 

The figures of merit used to evaluate the performance of MEMS gyroscopes are device 

resolution1 and angular bias stability2. The resolution of the sensor is limited by white noise 

and is generally defined by the noise level of the sensor. This can be expressed as a noise 

density in deg/s/Hz1/2 or deg/hr/Hz1/2, which describes the output noise as a function of the 

bandwidth of the sensor. Sometimes the term “angle random walk” (ARW3) in deg/hr1/2 is 

used instead. The ARW describes the average angular displacement error that will occur 

when the signal is integrated over time. Gyro bias stability is the other important parameter, 

which represents changes in the long-term average of the collected data. For navigation use, 

it requires a gyroscope with the ARW less than 0.001 deg/hr1/2 and the bias drift less than 

0.01 deg/hr [2].  

 

Table 1.1 shows the performance requirements for different classes of gyroscopes. Rate-

grade and tactile-grade gyroscopes are typically used to measure relatively short term 

angular rates. The ARW is the dominating random error that limits their performance. On 

the other hand, inertial grade gyroscopes are used to maintain a fixed long-term heading in 

an inertial reference frame. The bias drift tends to dominate for long-term performance. 

 

Table 1.1: Performance requirements for gyroscopes [2]. 

 

Parameters Rate grade Tactical grade Inertial grade 

Angle random walk (deg/hr1/2) >0.5 0.5 – 0.05 <0.001 

Bias stability (deg/hr) 10-1000 0.1-10 <0.01 

Scale factor accuracy (%) 0.1-1 0.01-0.1 <0.001 

Full scale range (deg/s) 50-1000 >500 >400 

Max. shock in 1ms (g) 1000 1000-10000 1000 

Bandwidth (Hz) >70 ~100 ~100 

 

                                                 
1 The resolution is the smallest change of the input signal (rate of rotation) the gyro can detect. 
2 The bias stability, also referred to as the bias drift, is the minimum change in rotation rate over the time which 
the measurements are integrated. 
3 ARW in deg/hr1/2 can be converted into deg/s/Hz1/2 by dividing by 60. 
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While many research groups and companies worldwide have done research on MEMS 

gyroscopes, none of them has yet to achieve inertial-grade performance. Several focus on 

development of automotive/rate-grade performance MEMS gyroscopes. Only a few groups 

achieve tactile-grade performance. The Charles Stark Darper Laboratory has achieved a 

tactile-grade performance MEMS gyroscope [5]. The Darper gyroscope based on a tuning 

fork design has demonstrated 30 deg/hr bias stability and 5-10 deg/hr/Hz1/2 noise floor. With 

temperature control and compensation, its bias stability can be reduced to 1 deg/hr. The 

other tactile-grade vibratory gyroscope was reported by the MEMS technology group at Jet 

Propulsion Laboratory (JPL) [6]. Its bias stability of 1 deg/hr was demonstrated under 

environmental lab conditions [7]. More details on the development of vibratory MEMS 

gyroscopes can be found in chapter 2. 

 

To enhance the performance of MEMS gyroscopes, alternative approaches to vibratory type 

gyroscopes are of interest [8, 9]. Those with proven navigation-grade capability at the macro 

scale are worth investigating. This work aims to develop a small-scale electrostatically 

suspended gyroscope (ESG) using microfabrication technology. The ESG has commonly 

been employed for naval use. A similar gyroscope with electrostatic suspension has 

intensively been developed in the Gravity Probe B space mission and proven to be the 

current world’s highest precision gyroscope [10].  

 

A micromachined ESG has several advantages over a vibratory MEMS gyroscope. Its proof 

mass is electrostatically supported without physical contact with a substrate. This will isolate 

the proof mass from unwanted inputs such as friction, wear and stress; hence, improving the 

long-term stability of the sensor. The micromachined ESG can also be used as a tri-axial 

accelerometer [11, 12] and concurrently be able to measure rotation rate about two axes if 

the levitated proof mass was spun at high speed [13, 14]. The high spin speed of the rotor 

can produce angular momentum larger than that of a vibrating-type gyro, hence making it 

possible to achieve higher gyro sensitivity. More details can be found in chapter 3. 

 

The micromachined ESG is unable to operate in open-loop mode. To control a position of 

the proof mass, an electrostatic suspension system is required. Generally, an electrostatic 

suspension system for the ESG is based on analogue feedback control, both at the macro and 

micro scale [15, 16]. A micromachined levitated spinning gyroscope with analogue servo 
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control was successfully demonstrated by Tokimec, Inc. (Japan) [16, 17]. It revealed a 

potential to measure multi-axis acceleration and angular velocity simultaneously. However, 

analogue feedback control has some disadvantages, such as a nonlinear feedback 

relationship and the so-called latch-up problem for large deflections of the proof mass [18]. 

To avoid such problems, a digital closed-loop system based on an electromechanical sigma 

delta modulation (ΣΔM) is considered to be exploited in an electrostatic suspension system 

of the micromachined ESG. With ΣΔM force feedback, at one given point in time, only 

electrodes away from the proof mass are energised to force the proof mass back to its 

nominal position and thus the latch-up problem can be avoided. The ΣΔΜ control system 

also provides a pulse-density modulated bitstream that can be directly interfaced to a digital 

signal processing (DSP) without the requirement of an analogue-to-digital converter (ADC). 

 

 

1.2 RESEARCH OBJECTIVES AND CONTRIBUTIONS 
 

The aim of this thesis is to explore the feasibility in development of an electrostatically 

suspension gyroscope using microfabrication technologies. The research project is divided 

into three main tasks.  

 

The first task is to design and analysis the micromachined ESG. A system level model is 

developed in Matlab/Simulink to investigate the dynamic behaviour of the micromachined 

ESG and the stability of the closed-loop control system. The developed Simulink model is 

employed to investigate the influence of the sensor performance in the presence of 

mechanical and electronic noise sources as well as non-idealities of electronic interface. The 

findings of this study have been published in references [19–21]. 

 

The second task is to design and develop an electronic front-end interface. The front-end 

circuit is used to measure a change in capacitance due to the displacement of the proof mass 

in the presence of rotation or acceleration. An OrCAD/PSPICE model is developed to study 

the performance of the front-end interface. The designed front-end circuit is also 

implemented on a printed circuit board (PCB). Measurements are carried out to verify 

results obtained from analytical calculations and OrCAD/PSPICE simulations.  
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The final task is to develop a suitable microfabrication process for the micromachined ESG. 

The fabrication process is based on a glass/silicon/glass sandwich structure, which combines 

a high-aspect-ratio DRIE process and triple-wafer stack anodic bonding. The development 

of these fabrication procedures is published in reference [14]. 

 

The prototype sensors suffer from the so-called stiction problem where a fabricated rotor is 

stuck inside a device cavity. The problem could not be resolved because the entire 

Southampton University cleanroom facilities were destroyed by a fire. Thus, the 

micromachined ESG cannot be tested with the designed closed-loop ΣΔM system during the 

course of this research project. Alternatively, the exploitation of sidewall electrodes to 

provide electrostatic levitation is investigated. The analysis of this approach is carried out in 

an ANSYS software package.  

 

 

1.3 THESIS OUTLINE 
 

This thesis is divided into eight chapters describing the theory, design and development of a 

micromachined electrostatically suspended gyroscope. Chapter 2 discusses the state-of-the-

art attained on MEMS gyroscopes. The basic principle of conventional vibrating MEMS 

gyroscopes with due considerations to the design for performance improvement is presented. 

Alternative approaches to vibrating MEMS gyroscopes are also presented with emphasise on 

spinning type gyroscopes. 

 

Chapter 3 discusses the operating principle of the micromachined ESG. Advantages of the 

micromachined ESG over conventional MEMS gyroscopes are also discussed. The last 

section of chapter 3 focuses on the major design issues for the development of the 

micromachined ESG. In particular, this involves the design of a levitated proof mass and the 

design of the sense and control electrodes. 

  

In chapter 4, a capacitive front-end interface used to measure the linear and angular 

displacement of the rotor due to inertial forces/moments is described. 
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Chapter 5 presents a closed-loop electrostatic suspension system based on a digital 

ΣΔΜ feedback loop. The closed-loop system is required to levitate the mechanically 

unsupported micromachined rotor. Simulations at system and electronic level of the closed-

loop micromachined ESG are used to evaluate the overall system performance and its 

stability.  

 

Device fabrication of a micromachined ESG is detailed in chapter 6. Fabrication results are 

presented and also relevant issues are addressed. 

 

In chapter 7, an alternative approach was explored to realise a micromachined levitated disc 

gyroscope. Sidewall electrodes of the device were used to provide electrostatic forces in 

order to levitate the rotor. System level simulations including preliminarily experimental 

results are described. 

 

Chapter 8 is conclusion and gives an outlook on further work. 
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Chapter 2 

High Performance MEMS Gyroscopes: 

Comprehensive Review 
 

 

2.1 INTRODUCTION 
 

The market value of MEMS gyroscopes is forecasted to reach $800M (approximately 

£400M) in 2010 [22]. This is because applications of MEMS gyros are very board with high 

growth potential from low-end automotive and consumer markets to defence and space 

applications. This motivates researchers worldwide to explore actively on the development 

of MEMS gyroscopes.  

 

The vast majority of all reported MEMS gyroscopes are a vibratory type gyroscope, which 

detects the rotation-induced Coriolis acceleration of a vibrating proof mass to measure the 

rate of rotation of the reference frame [2–4]. Although various MEMS gyroscopes have been 

extensively researched worldwide for decades, achieving a sensor with tactical and inertial-

grade performances has proven to be very challenging. Many companies (for example, 

Analog Devices [23], Silicon Sensing Systems which is a collaboration of BAE Systems and 

Sumitomo [24] and Samsung [25]) have commercialised automotive or rate-grade 

performance MEMS gyroscopes. Only two companies, i.e. Honeywell/Draper [26, 27] and 

Systron Donner/BEI [28] are producing tactical-grade performance MEMS gyroscopes. 

Section 2.2 discusses the principle of vibrating MEMS gyroscopes with due considerations 

to the design for performance improvement. Recent work to improve performance of 

conventional vibrating MEMS gyroscopes is presented in section 2.3. 

 

Vibrating MEMS gyroscopes have yet to achieve inertial-grade performance to date. Such 

gyroscopes suffer from manufacturing tolerances and a mechanical cross-talk between drive 
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and sense modes (the so-called quadrature error). Therefore, MEMS designers recently 

become interested in alternative approaches in order to improve the sensor performance. 

Among them, an electrostatically suspended gyroscope (ESG), which was mainly developed 

for navigation applications [29], is one of the most promising concepts. A review on this 

topic is presented in section 2.4. 

 

 

2.2 PRINCIPLE OF CONVENTIONAL MEMS GYROSCOPES 
 

Due to the difficulty in making a friction-less rotational element using current 

microfabrication technology, conventional MEMS gyroscopes are based on a principle 

called Coriolis effect [2]. The Coriolis force Fcor of a moving mass m in a rotating system is 

expressed as: 

 

vmFcor ×Ω−= 2              (2.1) 

 

where v is the velocity of the moving mass and Ω is angular rate of the rotating system. The 

equation implies that the Coriolis force will cause the moving mass to displace in the 

direction perpendicular to the direction of the velocity of the moving mass and the rotating 

frame.  

 

Vibratory micromachined gyroscopes are typically comprised of a mass suspended on 

elastic flexures that are anchored to the substrate. They can be modelled with a two degree-

of-freedom mass-spring-damper system as shown in Figure 2.1. In this discussion, x-axis is 

defined to be the drive axis, y-axis is the sense axis and z-axis is the axis of rotation. The 

dynamic equations of motion of vibratory MEMS gyroscopes can then be described as [30]: 

 

ymFxkxbxm zxxx Ω+=++ 2    (2.2) 

 

xmFykybym zyyy Ω−=++ 2       (2.3) 
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where  

m =  mass of a sensing element, 

x,y,z =  subscripts that indicate x (drive), y (sense)  and z (rotation) axes, 

b =  damping coefficient, 

k =  spring constant, 

F =  external force acting on a proof mass, and 

Ω =  rotation rate of the rotating frame. 

 

Fx is the driving force applied to vibrate the proof mass and Fy is zero if the device is 

operated in open-loop mode. Equations (2.2) and (2.3) can then be simplified to: 

 

xzxx Fymxkxbxm =Ω−++ 2      (2.4) 

 

02 =Ω+++ xmykybym zyy       (2.5) 

 

Equation (2.4) represents the dynamic equation of the mechanical structure for the drive axis; 

whereas the equation of motion in the sense axis is defined by equation (2.5). The terms 

ym zΩ2  and xm zΩ2  are the Coriolis-induced forces resulted from the rotation of the 

reference frame. 

 

 

 

      
 

Figure 2.1 Mass-spring-damper model for a micromachined vibrating gyroscope. 
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For the sake of simplicity, assume that there is no Coriolis force induced into the drive axis 

( 02 =Ω ym z ). Rearranging equations (2.4) and (2.5) yields: 

 

m
F

xx
Q

x x
x

x

x =++ 2ω
ω

      (2.6) 

 

xyy
Q

y zy
y

y Ω=++ 22ω
ω

      (2.7) 

 

where 

Fx =  sinusoidal driving force = Fdsinωdt, 

Fd = amplitude of the driving force, 

ωd  = frequency of the driving force, 

x,y,z =  subscripts that indicate x (drive), y (sense)  and z (rotation) axes, 

ω  = resonant frequency ( mk=ω ) and 

Q  = quality factor ( bmQ ω= ).  

 

 

The steady state solutions of equations (2.6) and (2.7) can be expressed as: 
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Assuming txx dd ωsin=  yields txx ddd ωω cos= . Then, equation (2.9) can be rewritten as:  
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Equations (2.8) and (2.10) are two basic equations employed in the design of vibratory 

MEMS gyroscopes. The former represents the motion of the mechanical structure in the 

drive mode. The latter equation determines the motion of the vibrating structure in the sense 

mode. It can be seen that the maximum sensitivity of the vibratory gyroscope can be 

obtained by matching the resonant frequencies of the drive and sense mode. Also, the 

driving frequency must be equal to the resonant frequency of the structure  in the drive mode. 

Thus, equation (2.10) can be simplified to: 

 

y

dyz
cor

xQ
y

ω
Ω

=
2

max,       (2.11)  

 

In the open-loop operation, the rate of rotation can then be determined by measuring the 

amplitude of the sensing motion.  

 

To give some idea about the magnitude of the Coriolis force, let’s put some numbers into 

equation (2.11). Assuming the drive mode vibration amplitude is 2 μm, the drive mode 

resonant frequency is 40 kHz and the quality factor is 15,000, the maximum Coriolis 

displacement for the input rotation rate of 1 deg/sec is only 4.2 nm. It is obvious that the 

Coriolis motion is relatively weak.  

 

It should be noted that the resolution of the vibratory gyroscopes is fundamentally limited by 

the noise source in the mechanical structure of the sense mode. Typically, the mechanical 

noise is generated from thermal vibration of air molecules causing Brownian motion of the 

proof mass. From Nyquist’s relation, the fluctuating force due to mechanical-thermal noise 

for a given bandwidth BW is [31]: 
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TbBWkF Bn 4=               (2.12) 

 

where  

kB  = Boltzmann’s constant (1.38 ×10-23 J/K) and  

T  = absolute temperature.  

 

Assuming Fn is equivalent to the Coriolis force, equation (2.12) can then be rewritten as:   

 

TbBWkxm Bddn 42 =Ω ω      (2.13) 

 

Substituting b = yy Qmω  into equation (2.13) yields: 

 

ydd

yB
n Qxm

BWTk
22ω

ω
=Ω      (2.14) 

 

The parameter Ωn is called the mechanical-thermal noise equivalent angular rate, which 

represents the fundamental limiting noise component of vibratory MEMS gyroscopes. 

 

In summary, the need for a high performance gyroscope requires: 

• large drive amplitude, 

• frequency matching between the drive and sense modes, 

• high mechanical quality factor (by operating the gyroscope at very low pressure), 

• low resonant frequency, but well above environmental noise level (>2 kHz) [2] and 

• maximise mass per unit area. 

 

 

2.3 DEVELOPMENT OF VIBRATORY MEMS GYROSCOPES 
 

A conventional micromachined gyroscope typically consists of a vibratory proof mass 

mechanically supported above a substrate via elastic beams. The proof mass is driven into 

linear or rotary oscillation at its resonant frequency. External rotation applied to the 



Chapter 2  High Performance MEMS Gyroscopes: Comprehensive Review 13
 
 
substrate induces a second oscillation of the proof mass due to Coriolis forces. Typically, the 

sensing structure is arranged to be perpendicular to the drive axis. The displacement of the 

proof mass in the sense direction can be used to estimate the angular motion of a base on 

which the MEMS gyro is attached. General speaking, the vibratory gyroscopes are 

composed of two MEMS devices – a large-amplitude high-Q resonator and a high sensitivity 

submicro-g accelerometer – that have to work together to sense angular velocity. 

 

Various transduction mechanisms have been employed to drive and maintain oscillation of 

the vibrating element at its resonant frequency. The most common drive mechanisms are 

piezoelectric [32], electromagnetic [33, 34] and electrostatic [35–37]. Both piezoelectric and 

electromagnetic actuations are common methods used in macro-scale devices since they can 

provide relatively high energy density. However, they are relatively difficult to implement in 

silicon-based technology as both require non-standard materials. Hence, the most common 

actuation mechanism employed for vibratory MEMS gyroscopes is electrostatic, particularly 

using a comb structure.  

 

Similar to actuation mechanisms, capacitive detection is most commonly used for MEMS 

gyroscopes, even though there are a variety of sensing mechanisms available. This is mainly 

because a capacitive sensing is relatively simple to fabricate and can be simultaneously used 

as the actuator. Moreover, no special material is required in the fabrication. 

 

Vibrating micromachined gyroscopes can be implemented by various microfabrication 

technologies, including surface micromachining [35], bulk micromachining and wafer 

bonding [38, 39], electroplating and LIGA [40, 41], combined surface-bulk micromachining 

[42] and recent developed EFAB™ technology [43]. Surface micromachining is based on 

the deposition and etching of thin layers (~2 μm) on the top of the substrate. The benefit of 

surface micromachining is its compatibility with a conventional IC fabrication technology 

and thus allowing a sensor and integrated electronic interfaces to be fabricated on a single 

chip. However, the surface micromachined gyroscopes suffer from the low-mass problem, 

making them difficult to reach a low noise floor required for high-end navigation 

applications. As a consequence, the majority of MEMS gyroscopes is developed using high-
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aspect-ratio bulk microfabrication, for example Silicon on Glass (SOG), Silicon on Insulator 

(SOI) and LIGA technologies.   

 

The designs of vibrating micromachined gyros are typically based on three basic 

configurations, including tuning forks [26, 27, 32, 39], vibrating plates [35, 36] and 

vibrating rings [40]. A comprehensive review and evolution of micromachined gyroscopes 

has already been discussed in references [2–4, 44, 45]. This section presents the state-of-the-

art in this field. 

 

The classic example of vibrating MEMS gyros is a tuning fork design developed by The 

Charles Stark Darper Laboratory [26, 27] (Figure 2.2). It contains a pair of proof masses 

coupled to each other via a mechanical suspension. These masses are vibrated in anti-phase 

with the same amplitude, but in opposite direction. When the device is in the presence of 

rotation, Coriolis force will cause both masses to vibrate out-of-phase to each other, 

perpendicular to the drive axis (see Figure 2.3). The deflection of the proof masses 

represents the measured rate of rotation. Typically, the device structure is designed to allow 

motion in two directions (the drive and sense axes), but the other axis will be relatively rigid 

(the axis sensitive to applied angular velocity). The advantage of the tuning fork design is 

that it has an ability to reject common mode inputs (linear acceleration, for instance). The 

Darper gyroscope has demonstrated tactile-grade performance (30 deg/hr bias stability and 

5-10 deg/hr/Hz1/2 noise floor). However, it was realised with considerable effort and 

difficulty [5]. Matching between sense and drive mode frequencies has been proven to be 

challenging. The sense and drive resonant frequencies generally depend on the width and 

thickness of the elastic beams. For the Darper gyroscope, typical beam widths are 10 µm. 

Obtaining ±2 % sense-drive frequency separation tolerances requires 0.2 µm absolute 

accuracy of the beam widths. This challenges the tolerance on photolithography and silicon 

etching processes. The other issue is cross-coupling signals, which is caused by fabrication 

imperfections and anisoelasticity in the mechanical suspension system. These coupling 

signals can manifest itself as an output signal of the gyroscope even in the absence of 

rotation. 
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Figure 2.2 Configuration of a vibrating gyroscope based on a tuning fork design: (top) top 

view and (bottom) side view of the tuning fork vibrating gyroscope.  

 

 

 

     
 

 

Figure 2.3 Operating principle of a tuning fork vibrating gyroscope. Top view shows the 

vibrating of a pair of proof masses with the same amplitude, but opposite direction. Bottom 

view shows the movement of the proof masses in the presence of rotation about the z axis. 
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The cross-coupling signal that arises from anisoelasticity and other asymmetry in the 

mechanical suspension system is called the mechanical quadrature error. The quadrature 

signal is in phase with the drive signal; but 90° phase different to the Coriolis force. This 

quadrature signal can easily dominate the output of a gyroscope due to the small magnitude 

of the Coriolis force. Nevertheless, the problem of quadrature signal can be alleviated by 

very careful micromachining and by applying electrostatic forces to null deflections 

resulting from quadrature error [46]. The use of adaptive control strategies and post signal 

processing are also proposed to cancel or minimise quadrature error [47]. However, 

mechanical quadrature over 50 rad/s is difficult to cancel out, due to the limited available 

feedback voltage. Quadrature error larger than 50 rad/s requires very precise mechanical 

trimming using laser ablation [48].  

 

The other cross-coupling signal that originates from imperfections of the drive mode 

actuator is the most serious issue. For example, in the case of interdigitated-finger comb 

drive gyroscopes, fabrication imperfections can result in small geometric nonidealities of the 

comb fingers. This will generate additional electrostatic forces in the sense direction even if 

no rotation rate is applied to a gyroscope. This coupling signal causes a motion in the sense 

axis that has a 0° or 180° phase shift from the Coriolis signal [5, 49]. Thus, this signal 

cannot be rejected by means of electronic tuning. 

 

To overcome these problems, several approaches have been investigated to provide 

frequency matching between drive and sense resonance modes and also to improve 

robustness against cross-coupling errors. Najafi et al. from the University of Michigan 

proposed a micromachined gyroscope based on a vibrating ring structure [40] as shown in 

Figure 2.4. The device is of symmetrical design providing two identical resonance modes 

with the same natural frequency. This will avoid unwanted cross-axis coupling and 

temperature stability problem. Akin et al. from Middle East Technical University (METU), 

Turkey have developed micromachined gyroscopes (Figure 2.5), which employs a 

symmetric design of the suspension beams as well as identical actuation and detection 

mechanisms [50–53]. The anchors of the structure are located in such a way that the drive 

and sense modes of the gyroscopes is mechanically decoupled from each other. The METU 

gyroscope demonstrated 7 deg/sec bias stability and 35 deg/hr/Hz1/2 noise floor. Geiger et al. 
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from HSG-IMIT, Germany reported relatively high precision MEMS gyroscopes based on 

the patented decoupling principle, called DAVED (Decoupled Angular Velocity Detector) 

[37, 54–55]. Figure 2.6 shows conceptual drawings of decoupled MEMS gyroscopes. The 

prototype decoupled gyro fabricated by surface micromachining has a bias stability of 65 

deg/hr and a noise floor of 0.14 deg/hr1/2. 

 

           
 

Figure 2.4 Micromachined vibrating ring-type gyroscope [40]: (left) conceptual drawing 

and (right) scanning electron micrograph (SEM) image. 

 

 

 
 

Figure 2.5 Conceptual drawing of the METU symmetrical and decoupled micromachined 

gyroscope [53]. 
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Figure 2.6 Conceptual drawing of decoupled MEMS gyroscopes developed at HSG-IMIT, 

Germany [55].  

 

As mentioned earlier, the conventional MEMS gyroscopes are very sensitive to fabrication 

imperfections and tolerances. Therefore, recent work focuses on the development of 

vibratory micromachined gyroscopes that will provide inherent robustness against the 

variation of structural and thermal parameters [3, 43, 56–62]. Shkel et al. from the 

University of California, Irvine proposed novel structural designs to obtain a dynamical 

system with wide-bandwidth frequency response [58–61]. This can be achieved by: (1) 

increasing the degrees-of-freedom of the drive and sense mode vibrations (see Figure 2.7) 

and (2) utilizing multiple driven resonators with incremental resonant frequencies (see 

Figure 2.8). However, these designs trade off the increase in robustness with a decrease in 

device sensitivity. The other approach employs parametric resonance as a driving 

mechanism [62]. The prototype gyroscope developed by University of California, Santa 

Barbara showed large driving amplitude over a wide range of excitation frequencies.  

 

Due to the weakness of Coriolis forces, mechanical Brownian noise and electronic noise 

limit device resolution. For surface micromachined gyroscopes, a noise level of about 1 

deg/sec/Hz1/2, which is accurate enough for automotive applications, has been achieved [35]. 

However, it suffers from the low-mass problem (high Brownian noise) which makes it 

unlikely to ever reach a level of 1 deg/hr/Hz1/2 required for navigation and high-end military 

applications. 
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Figure 2.7 MEMS gyroscope developed at University of California, Irvine (USA) [58]: a 

conceptual illustration (left) and frequency responses of 2-DOF drive- and sense-mode 

oscillators, with overlap flat regions (right). 

 

 

 
 

Figure 2.8 Distributed-mass MEMS gyroscope with eight drive oscillators developed at 

University of California, Irvine (USA) [60]: a conceptual drawing (top), a frequency 

response of distributed drive-mode oscillators (bottom, left) and a frequency spectrum of the 

total Coriolis forces generated by distributed drive-mode oscillators (bottom, right). 



Chapter 2  High Performance MEMS Gyroscopes: Comprehensive Review 20
 
 
A variety of methods have therefore been investigated to reduce mechanical noise and also 

enhance the readout signal. In order to overcome the mass factor in surface micromachined 

gyroscopes and increase sense capacitances in capacitive devices, high-aspect-ratio (HAR) 

bulk micromachining techniques are of interest. Several companies like STS, Alcatel and 

Plasmatherm have developed the technology for deep and narrow trench etching in single-

crystalline silicon. Deep etching with aspect ratio of 50:1 for hundreds of micron thick 

silicon can be achieved [63, 64].This technology greatly simplifies the design of high-

performance gyroscopes by making the fabrication of high aspect ratio beams and proof 

mass possible. A matched-mode SOI tuning fork gyroscope developed by the Georgia 

Institute of Technology is an example of a HAR micromachined vibratory gyroscope with a 

reported resolution and bias stability of 0.05 deg/hr/Hz1/2 and 0.96 deg/hr, respectively [39, 

65–66]. Other examples of fabrication techniques to achieve high aspect-ratio MEMS 

gyroscopes are a HAR combined poly and single-crystal silicon MEMS technology 

developed by the University of Michigan [38], a post-release capacitance enhancement from 

the University of California, Irvine [67], a sacrificial bulk micromachining (SBM) process 

from Samsung [68–70] and EFAB™ process commercially available from Microfabrica [43, 

71]   

 

In summary, the performance of vibrating-type MEMS gyroscopes is limited by many 

factors, such as the weakness of the rotation-induced Coriolis force, the cross-coupling 

effect and the fabrication tolerances. Although, such gyroscopes have extensively been 

researched for decades, vibratory MEMS gyroscopes with navigation-grade performance 

have not yet been achieved to date. In order to realise a high performance MEMS gyroscope, 

it is worth investigating alternative approaches.   
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2.4 ALTERNATIVE APPROACHES TOWARDS HIGH 

PERFORMANCE MEMS GYROSCOPES 
 

2.4.1 Introduction 
 

The demand of high performance MEMS gyroscopes is steadily increasing; however, as 

mentioned previously, the performance of vibrating MEMS gyros with suspended 

mechanical structures is limited. To overcome those limitations, radically different design of 

MEMS gyroscopes with no mechanical suspension are of interest, especially those with 

proven inertial-grade capability on the macro scale. For example, a fluidic angular rate 

sensor which measures a change of fluid (air) velocity related to the applied rotation rate 

[72–74]. Other examples are micromachined gyroscopes based on the use of acoustic wave 

to measure angular rate of rotation [75–78], and a microfabricated nuclear magnetic resonant 

gyroscope developed by the University of California, Irvine [79, 80]. These approaches are 

currently in the initial state of development and have not achieved navigation-grade 

performance yet. 

 

Macroscopic interferometric fiber-optic gyro (IFOG) and ring laser gyro (RLG) are the most 

widely used for navigation and guidance applications. They allow highly accurate 

measurement of rotation rates, with reported achievements of below 0.005 deg/hr1/2 angle 

random walks, and attainment of below 0.015 deg/hr bias instability under laboratory 

simulated test conditions [81]. Both IFOG and RLG measure rotation based on the Sagnac 

effect, also called Sagnac interference. Basically, light is made to travel in opposite 

directions in a setup called ring interferometry, which comprises a long circular waveguide. 

When it is subjected to rotation, counter-rotation light beams will have different path lengths 

and thus exhibit a relative phase difference. The measured interference signal of the two 

beams provides a measure of angular velocity. The performance of optical gyroscopes scales 

directly with its optical path. This makes it relatively difficult to realise a small scale, high 

performance IFOG/RLG using the current microfabrication technology. There are very few 

examples in the literature reporting the development of micromachined optical gyroscopes; 

notable exceptions are an interferometric MOEMS gyroscope from the Air Force Institute of 
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Technology [82] and micro-ring optical gyros proposed by the University of Delaware [83]. 

Only realisation of the device and verification of the concept were performed; no device 

characterization has been reported so far.  

 

One of the most promising alternative concepts is the electrostatically suspended gyroscope 

(ESG). A macro-scale ESG was developed mainly for guidance and space applications 

where high precision and robust sensors are crucial [23, 84]. It employs electrostatic forces 

to suspend a proof mass, which has no mechanical connection to the substrate. Electrostatic 

levitation isolates the proof mass from unwanted long term effects, such as mechanical 

friction, so that the long-term stability of the device is improved. A levitated proof mass is 

typically spun at high speed; then, the displacement of the proof mass resulted from the 

presence of rotation can be used to determine the angular velocity. Successful realisation of 

micromotors using microfabrication technology [85, 86] makes a micro-scale ESG even 

more interesting. The next section will discuss in detail on the evolution and development of 

spinning MEMS gyroscopes. 

 

2.4.2 Spinning MEMS gyroscopes: a review 

 

A micro-scale ESG employing a levitated proof mass has many advantages over 

conventional vibrating type gyros. It can be exploited as a tri-axial accelerometer and 

concurrently is able to measure the rate of rotation about two axes if the levitated proof mass 

is spinning. A micro-rotor with no mechanical connection to a substrate is levitated and spun 

by electrostatic forces. The absence of mechanical friction, wear and stress would result in 

the improvement of bias drift. It is also expected that a high speed rotation of the rotor can 

produce larger angular momentum compared with that of conventional vibrating type 

micromachined gyroscopes (see chapter 3 for more details). Hence, it is possible to design a 

high sensitivity and robustness MEMS gyro with this approach. 

 

The operation of spinning MEMS gyroscopes is based on the conservation of angular 

momentum [87], which can be expressed using the following basic gyroscopic equation: 

 

                                                             yzzx IM ΩΩ=                (2.15) 
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where  

Mx  = precession torque,  

Iz  = moment of inertia of the proof mass,  

Ωz  = spin speed of the proof mass and  

Ωy  = rate of rotation to be measured.  

 

Basically, a proof mass, hereafter also called a rotor, is suspended and rotated by 

electromagnetic/electrostatic forces. The rotation rate can then be determined by detecting 

the torque-induced precession of the rotor.  

 

Although an ESG has the potential to deliver navigation-grade performance, relatively little 

work has been done to realise an ESG using microfabrication techniques. Early development 

work of a micromachined rate gyroscope employing electrostatic suspension was reported 

using surface micromachining by SatCon Technology Co. (USA) [88, 89]. A micromotor-

like silicon rotor with a diameter of 200 μm was patterned onto a 2.2 μm thick polysilicon 

layer. Analogue closed-loop system was used to control the orientation of the rotor. 

However, the sensor failed to operate due to charged induced adhesion [89]. Researchers at 

the Case Western Reserve University also developed a surface micromachined micromotor-

based IMU as shown in Figure 2.9. Most of the published work in the literature focused on 

the sensing and control electronic interface for both suspension and rotation control [90, 91]. 

Recent work from the University of California at Berkeley also explores the use of surface 

micromachining process flow to fabricate a floating electromechanical system (FLEMS) 

gyroscope [92]. A micromotor-like rotor was made out of a thin film poly-Si1-xGex layer. A 

1 μm thick low temperature oxide (LTO) was used as a sacrificial layer. To avoid adhesion 

from wet-chemical release process, a HF vapour release process was used. However, it was 

found that more than half of the released device, the rotor was stuck to the electrodes.  

 

Several literature sources [93–97] reported the use of electromagnetic induction in order to 

levitate and spin a rotor (Figure 2.10). The advantage of electromagnetic over electrostatic 

forces is that it is possible to produce both attractive and repulsive forces; hence, the 

levitation with great stability can be accomplished using electrodes on only one side of the 
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rotor. Achievement of spinning a rotor was reported; however, no one yet reported a 

gyroscopic sensor with this approach. One major issue of an electromagnetically levitating 

gyroscope is relatively high currents are required during the operation which will make the 

stator reach 600°C temperature.  

 

 
 

Figure 2.9 Surface micromachined micromotor-based IMU developed at the Case Western 

Reserve University (private communication). 

 

 
 

Figure 2.10 Electromagnetic induced rotational micromotor [81]. 



Chapter 2  High Performance MEMS Gyroscopes: Comprehensive Review 25
 
 
Recent developments from Tokimec, Inc. (Japan) have demonstrated the potential of a 

spinning gyro using a microfabricated, ring-shaped rotor, implemented into an analogue 

feedback control system [17, 98–100]. The Tokimec gyro was fabricated using bulk 

micromachining technique (Figure 2.11). Top and bottom electrodes were patterned on glass 

substrates and the ring rotor was fabricated on silicon or SOI wafers. Glass/Silicon/Glass 

substrates were assembled together by anodic bonding. The control system employed in the 

Tokimec gyro was based on an analogue frequency-multiplexing closed-loop system. A 6.5 

mV/deg/s sensitivity, 0.05 deg/s resolution and 0.15 deg/hr1/2 noise floor at a bandwidth of 

10 Hz were reported. 

 

Robert Bosch GmbH (Germany) patented a similar work to the Tokimec gyro with the 

difference in a design of sense and control electrodes [101]. Archangel System, Inc. (USA) 

also patented the on-going development of a motion sensor employing two spinning discs, 

rotating in opposite directions to detect a rate of rotation [102]. However, no literature about 

their results is publically released so far.   

 

 

 
 

Figure 2.11 Tokimec spinning gyroscopes [17] 
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Almost all of spinning MEMS gyros reported to date employ analogue closed-loop system 

to control the rotor position. Such a control system has some disadvantages such as a 

nonlinear feedback relationship and stability problem for large deflections of a proof mass 

[18]. The instability issue is also known as the electrostatic latch up effect where a proof 

mass is attracted to one side of electrodes. To overcome the latch up problem, Kraft et al. 

proposed a digital control system based on sigma delta modulation (ΣΔM) for capacitive 

microsensors [103–105]. Basically, only electrodes on one side of the rotor are energised to 

maintain the position of the rotor at the nominal position, while the other side is grounded. 

This will prevent the latch up effect resulted from analogue feedback control. Kraft et al. [11] 

and Houlihan et. al. [12, 106] exploit the benefit of ΣΔ feedback control to realise a multi-

axis microaccelerometer employing a levitated disc proof mass. Figure 2.12a shows a 

conceptual illustration of the micromachined sensor employing a levitated disc. Two 

fabrication processes were investigated, including nickel electroplating [107, 108] and DRIE 

process [12]. Figure 2.12b shows the fabricated prototype accelerometer employing a 

levitated proof mass. 

 

 
                      (a)          (b) 

 

Figure 2.12 Multi-axis microaccelerometer with an electrostatically levitated disc [106]: (a) 

conceptual illustration of the sensor and (b) the fabricated prototype sensor.  
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2.5 CONCLUSIONS 
 

For decades vibrating-type gyroscopes have dominated the research work in the area of 

MEMS rotation-rate sensors. Numerous types of MEMS vibrating gyroscopes have been 

developed for a wide range of applications – from automotive and safety applications to 

consumer applications.  However, they have a limit use in military and space applications, in 

which a high performance gyroscope is required. This is because vibration-type MEMS 

gyroscopes are extremely sensitive to defects and imperfections, which will result in a 

decrease in the gyro resolution and bias instability. In recent years, alternative approaches 

have intensively been investigated in order to achieve a high performance MEMS gyroscope. 

 

One of the most promising alternative approaches is spinning MEMS gyroscopes, whose 

proof mass is suspended and spun using electrostatic forces. The proof mass has no 

mechanical connection to substrate, thereby unwanted long-term effects, such as friction and 

stress, are isolated. This will improve the gyro stability revealing a potential to deliver 

navigation-grade performance.  

 

Spinning MEMS gyroscopes have been developed since 1990. However, relatively little 

work has been done to realise such gyroscopes due to the difficulty in microfabrication. At 

the present time the spinning MEMS gyroscopes are still in the initial phase of development 

using both surface and bulk micromachining techniques. One of the major issues in the 

development of spinning MEMS gyroscopes is that the released microstructure (the proof 

mass) is stuck to a substrate. This could be resulted from device fabrication itself and/or the 

so-called latch-up effect caused by an analogue control system. 

 

In this research work, a new approach in development of a spinning MEMS gyroscope was 

investigated. A closed-loop control system based on a ΣΔM was employed in order to avoid 

the electrostatic latch-up effect. A bulk micromachining technique based on triple-stack 

wafer bonding was explored to realise a spinning MEMS gyroscope.  
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Chapter 3 

Principle, Design and Analysis of the 

Micromachined ESG 
 

 

3.1 INTRODUCTION 

 

A spinning gyroscope, developed in this work, relies on the same principle as a macro-scale 

electrostatically suspended gyroscope (ESG); thus, it is called a micromachined ESG. The 

ESG is a two-axis gyro where the spinning levitated rotor is supported by electrostatic forces. 

The entire micromachined ESG system consists of a micromachined sensing element, and a 

closed-loop electrostatic suspension control system. This chapter discusses solely the 

sensing element. The closed-loop electrostatic levitation control system will be described in 

chapter 5. 

 

In section 3.2 the operating principle of the prototype micromachined ESG is presented. It 

provides a brief overview of how the micromachined ESG works, followed by a comparison 

between the micromachined ESG and conventional vibrating MEMS gyros in section 3.3. 

Section 3.4 describes the dynamic response of the micromachined ESG when used as an 

accelerometer and a gyroscope. The design of the micromachined ESG is discussed 

thoroughly in section 3.5. The chapter ends with a summary in section 3.6. 
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3.2 THE MICROMACHINED ESG: PRINCIPLE OF 

OPERATION 
 

An exploded view of the micromachined ESG is shown in Figure 3.1. The gyroscope 

consists of a disc-shaped rotor, surrounded by sets of sense, feedback and spin control 

electrodes. The electrodes located above and under the rotor are used to detect and control 

the position of the rotor in three degrees of freedom: the translation in the z-axis and the 

rotation about the x and y axes. They are also used to control a rotation of the rotor about the 

spin axis (the z-axis). The electrodes at the outer periphery of the rotor are for in-plane 

motion control along the x and y axes. Each of the surrounding control electrodes forms a 

capacitor with the levitated rotor.  

 

              
Figure 3.1 Exploded view of the prototype micromachined ESG. 
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The rotor is levitated and rotated using electrostatic forces produced by applying voltages on 

sets of control electrodes. When the gyro experiences, for example, a rotation about the y 

axis, the rotor will displace away from its nominal position about the x axis, which is 

perpendicular to the spin and input axes (see Figure 3.2b). This can be expressed using the 

following basic gyroscopic equation [87]:  

 

                   zzyx IM Ω×Ω=                    (3.1) 

 

where Mx is the precession torque, Iz is the moment of inertia of the rotor, Ωz is the spin 

speed of the rotor and Ωy is the input rate of rotation. 

 

 
(a) 

 
(b) 

 

Figure 3.2 Illustrations showing the gyro rotor (a) when it is levitated at the nominal 

position and (b) when it displaces if a rotation about the y axis was applied. 
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Figure 3.2a shows the rotor at a nominal position where it is maintained at the middle 

between the top and bottom electrodes. At this nominal position, each capacitor pair has the 

same capacitance value. For example, sense capacitors, Cs1T and Cs1B, have the same 

capacitance value; and also capacitors, Cs2T and Cs2B, have the same capacitance value. The 

precession of the rotor results in a capacitance imbalance in each of the capacitor pairs (see 

Figure 3.2b). The capacitance of the capacitor Cs1T becomes greater than that of the 

capacitor Cs1B; and capacitor Cs2T has a lower capacitance than that of the capacitor Cs2B.  

 

The capacitance imbalance is differentially sensed by a closed-loop electrostatic suspension 

control system. The system, in turn, produces electrostatic feedback forces to counteract the 

movement of the rotor, nulling it back to the nominal position. Due to the servo feedback 

principle, these feedback forces are related to the precession torque and, thus, provide a 

measure of the rotation rate (assuming the rotor spins at a constant velocity).  

 

 

3.3 ADVANTAGES OF THE MICROMACHINED ESG  
 

The micromachined ESG has several advantages compared with conventional MEMS 

vibratory gyroscopes. Inherently, the micromachined ESG has no quadrature error1, which is 

one of the major issues in the development of MEMS vibratory gyroscopes. There is also no 

need to tune the drive and sense resonance frequencies; hence, the micromachined ESG is 

less sensitive to fabrication tolerances. Since the levitated spinning rotor is free to move in 

any degree of freedom, the micromachined ESG can be used to measure linear acceleration 

along the three axes simultaneously. More details of this topic are discussed later in section 

3.4. 

 

In the following, an initial calculation is performed to compare the sensitivity of the 

micromachined ESG to a MEMS vibratory gyroscope. A rotational vibration type gyroscope 

is considered in this comparison as its basic operating principle is similar to that of the 

micromachined ESG. More details regarding the rotational vibrating gyroscope can be found 

in references [109]. Figure 3.3a shows a conceptual drawing of the rotation vibration type 

                                                 
1 See chapter 2 for more details on quadrature error. 
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MEMS gyroscope. Basically, the gyro is driven to vibrate about the z axis, the tilting 

oscillation about the x and y axes are used to detect rate of rotation. The prototype of the 

rotational MEMS gyroscope is shown in Figure 3.3b. Ideally, the x and y axes are identical 

due to its symmetric design. Therefore, it is sufficient to consider only one sensing axis (the 

x axis).  

 

 
(a) 

 

 
(b) 

 

Figure 3.3 Rotation vibrating-type MEMS gyroscope: (a) conceptual sketch of the gyro and 

(b) scanning electron micrograph of the gyro [109]. 
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The equation of motion of a rotation vibrating-type MEMS gyroscope is described in 

Equation (3.2), assuming there is no damping and stiffness coefficients:  

 

zyzxx II θα �Ω=      (3.2) 

 

where  

αx  = Coriolis acceleration in the x axis,  

Ωy  = input rotation rate to be measured, and  

zθ�   = resonant drive angular rate.  

 

For the gyro with a disc shape structure, the moment of inertia about the z axis Iz is two 

times greater than the moment of inertia about the x and y axis Ix,y (i.e. 2

2
1 mRI z =  and 

2
, 4

1 mRI yx = where m is the mass of the thin disc and R is the disc radius [110]). Equation 

(3.2) can then be re-written as: 

 

zyx θα �Ω⋅= 2        (3.3) 

 

Assuming tzz ωθθ sin0= , the mechanical sensitivity for the x axis can then be expressed as: 

 

tzzz
y

x ωωθθ
α

cos22 0 ⋅⋅=⋅=
Ω

�    (3.4) 

 

where  

θ0  = maximum amplitude of a driving angular displacement and  

ωz  = driving angular frequency.  

 

Equation (3.4) can then be compared to the mechanical sensitivity of the micromachined 

ESG.  
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From equation (3.1), the mechanical sensitivity of the micromachined ESG is: 
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     (3.5) 

 

where Mx = Ixαx. Replacing equation (3.5) into equation (3.4) results in: 

 

tzzz ωωθ cos0 ⋅=Ω      (3.6) 

 

This equation is the rotor spin speed Ωz of the micromachined ESG that is required to 

achieve the same sensitivity as the rotational vibration MEMS gyroscope. 

 

To give some idea about the magnitude of the required spin speed, let’s put some numbers 

into equation (3.6). The rotational vibration MEMS gyroscope and the micromachined ESG 

are assumed to have the same size and material properties. The rotational vibration MEMS 

gyro is driven at a frequency of 4.4 kHz and a maximum angular displacement of 6 degrees 

[109]. Then, the spin speed required to obtain the same sensitivity as the rotational vibrating 

gyro can be calculated as shown below: 
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This means the micromachined ESG employing the levitated rotor, which spins at 27,645 

RPM, will have the same sensitivity as the rotational vibration MEMS gyroscope mentioned 

above. To date, spin speeds greater than 75,000 RPM have been demonstrated [17]. Thus, 

such a micromachined ESG has the potential to achieve higher sensitivity than that of 

vibrating-type gyroscopes. 

 

It is also interesting to note that the spinning of the rotor will cause an unavoidable wobble 

due to imbalance of the rotor. This will manifest itself at the rotation frequency. In case of 
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the above example, the frequency of the wobble will be at the spin speed of the rotor, which 

is equal to 460 Hz. This frequency is about five times higher than the required frequency 

bandwidth of the navigation grade gyroscope (100 Hz). By spinning the rotor at higher spin 

speed, these two frequencies will be several of magnitude apart and hence easy to separate 

electronically.  

 

 

3.4 DYNAMIC RESPONSE OF THE MICROMACHINED ESG 
 

3.4.1 The micromachined ESG as a three-axis accelerometer 
 

The micromachined ESG, when it is used to measure acceleration, can be modelled using a 

mechanical mass-spring-damper system. The levitated rotor is modelled as a mass 

mechanically attached to a rigid frame via an elastic spring and a damper as shown in Figure 

3.4. Note that only one degree of freedom, the z-direction, is considered here in order to 

illustrate its principle.  

 

 
Figure 3.4 Mechanical lumped parameter model of the micromachined ESG when used as 

an accelerometer along the z axis. 
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Although the rotor has no actual mechanical spring and damper connecting it to the substrate, 

the existence of virtual stiffness and viscous damping of the system is due to the so-called 

squeezed-film and slide-film effects. This is caused by gas molecules in a micron-sized air 

gap between the rotor and substrate. These effects will be discussed in more details in 

section 3.5.1.2. 

 

The working principle of the micromachined ESG as an accelerometer is based on Newton’s 

law of motion. When the mass-spring-damper system is subjected to an acceleration in the z 

axis, a force Fz, equal to the product of the mass of the rotor m and the input acceleration az, 

is generated acting on the system. The basic equation that describes the translational 

movement of the mass is: 

 

zzz Fzkzbzm =++ ���               (3.7) 

  

where bz is the linear damping coefficient in the z-direction and kz are the linear spring 

constant in the z-direction, z = wc2 – wc1 is the relative displacement of the mass.  

 

The static mechanical sensitivity Sz of the accelerometer is defined as a ratio between the 

relative mass displacement and the input acceleration. It can be expressed as: 

 

zz
z k

m
a
zS == .      (3.8) 

 

And its resonance frequency ωz is: 

 

m
k

S
z

z
z ==

1ω .     (3.9) 

 

The bandwidth of the accelerometer, when it is operated open-loop, is determined by the 

resonant frequency of the sensor. The sensor bandwidth can be increased by reducing the 

mass of the rotor and increasing the stiffness constant. However, this will result in lower 

sensor sensitivity.  
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Taking the Laplace transform of equation (3.7) and replacing Fz = maz , the transfer function 

for the accelerometer can be expressed as: 

 

( ) ( )
( ) 222

11

z
z

zzzz
z

s
Q

s
m
k

s
m
b

ssa
szsH

ω
ω

++
=

++
== ,    (3.10) 

 

where 
z

z
z b

mk
Q = is the quality factor. 

Equation (3.10) can be used to predict the behaviour of the micromachined ESG when it is 

employed to measure a linear acceleration in the z-direction. The same approach can also be 

used to analyse the operation of the micromachined ESG for sensing linear accelerations in 

the other directions. Their transfer functions in the x and y directions can be described 

respectively as: 
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3.4.2 The micromachined ESG as a dual-axis gyroscope 
 

The micromachined ESG when used as a rotation rate sensor is described in this subsection. 

Note that the z axis is defined as the spin axis of the micromachined ESG (see Figure 3.5). 

In general, the dynamics of the gyroscope is complicated, involving both nonlinear and 

coupled terms. However, it can be simplified by assuming that the angular motion of the 

rotor due to precession is relatively small compared to the gap and also the rotor spins at a 

constant speed, which is higher than the measured angular velocity. Thus, the equations of 
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motion of the micromachined ESG, which is the key to dual-axis operation for the angular 

motion about the x and y axes, can be expressed as [87]: 

 

      yzzxxx IKBI ΩΩ=++ φφφ ���                       (3.13) 

                             xzzyyy IKBI ΩΩ−=++ θθθ ���                     (3.14) 

 

where  

x,y,z =  subscripts that indicate x, y and z (spin) axes, respectively, 

I = moments of inertia of the rotor, 

B  = angular squeeze film damping coefficient, 

K  = angular squeeze film stiffness,  

Ωx,y  = input rate of rotation, 

Ωz  = spin speed of the rotor and  

φ,θ  = angular displacement of the rotor about the x and y axes with respect to the 

substrate, respectively. 

 

When the spinning rotor is experienced angular motion perpendicular to its spin axis, for 

example, about the y axis with rate of rotation Ωy, a precession torque about the x axis will 

be induced, which in turn causes the rotor tilting about the x axis. Due to the symmetrical 

design of the micromachined ESG in two orthogonal axes, the rotor will tilt about the y axis 

when it is subjected to rotation motion about the y axis with rotation rate Ωx.   

 

The mechanical sensitivity of the micromachined ESG, which relates to a precession-

induced displacement of the rotor to the substrate rotation rate, can be derived from 

equations (3.13) and (3.14), which are:  
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The term IzΩz is the sensitivity gain. The faster the rotor spins, the higher the sensitivity. In 

theory, the maximum spin speed of the rotor is limited by a mechanical centrifugal stress. 

For silicon, the ultimate physical limit of the rotation speed is about 107 RPM [111]. In 

practice, a micromachined motor with a spin speed of 100,000 RPM has been demonstrated 

so far [112]. The rotation speed of the motor was limited by the viscosity of surrounded air, 

friction and wear.  

 

 
 

Figure 3.5 Coordinates used to define a rotor position with respect to the substrate. 

 

 

3.5 DESIGN CONSIDERATIONS FOR THE 

MICROMACHINED ESG 
 

This section describes the major design issues for the development of the micromachined 

ESG. In particular, this involves the design of a levitated proof mass and the design of the 

sense and control electrodes. Firstly, the design of the sensing element, the levitated rotor, is 

described, followed by a numerical estimation of its spring and damping components. 

Secondly, the design of the sense and control electrodes is discussed with regard to 

capacitive position sensing, electrostatic levitation, spinning actuation and lateral position 

sensing and control. 
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3.5.1 Design of the levitated spinning rotor 
 

3.5.1.1 Rotor geometry 

 

A macro-scale ESG typically employs a spherical solid rotor coated with highly conductive 

materials [113]. The sphere-shaped proof mass has a high degree of symmetry, offering a 

symmetric sensitivity in any direction. It is however difficult to make a sphere with current 

microfabrication technologies [114, 115]; hence, the development of micromachined 

spinning gyroscopes typically uses a disc-shaped [12, 16, 93] or ring-shaped proof mass [99, 

100] as a rotor.  

 

A ring rotor offers good suspension control in lateral directions, i.e. low suspension voltages 

and high sensitivity in the in-plane x and y axes. This is because electrodes for lateral 

positioning control can be placed both inside and outside the ring rotor, resulting in large 

sense and feedback capacitances. However, this is traded off for lower mass and moment of 

inertia of the proof mass as well as smaller sense capacitances in the gyro sensitive axes. 

Thus, in the design of the micromachined ESG developed in this work, the rotor was 

designed in disc shape. It has a higher mass and moment of inertia, and also offers larger 

sense capacitances for measuring the rotation rate. 

 

For the prototype micromachined ESG, the configuration of the rotor is illustrated in Figure 

3.6. The openings in the rotor are used for spinning the proof mass using the principle of 

electrostatic motors [116]. This section only deals with the mechanical design of the rotor. 

Details of rotor spinning are given in section 3.5.2.3. 

 

The mass m of the rotor and the moments of inertia Ix Iy and Iz can be calculated by: 
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22
, 12

1
4
1 mhmRI oyx +=     (3.19) 

 

where  

h  = thickness of the rotor 

Ro  = radius of the rotor and  

ρ = material density of the rotor; in case of silicon,  ρ = 2330 kg/m3. 

 

 
Figure 3.6 Conceptual drawing of the rotor employed in the design of the micromachined 

ESG.  

 

The first prototype of the micromachined ESG was designed with device dimensions shown 

in Table 3.1. The rotor dimensions and the distance between the rotor and electrodes were 

chosen in such a way that a sense capacitance was greater than 1 pF (see section 3.5.2.1 for 

the design of sense capacitors); and a voltage required to levitate the rotor was low, less than 

15 V (more detail about electrostatic levitation, see section 3.5.2.2). The design and 

dimension of opening areas used for spinning the rotor was discussed in section 3.5.2.3. 

From the given numbers, the mass and moment of inertias of the rotor can be calculated 

using Equations (3.17) – (3.19), which yield m = 3.73 mg, Ix = Iy = 3.75×10-12 kg m2 and Iz = 

7.47×10-12 kg m2, respectively.   
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Table 3.1: Geometrical dimensions of the rotor in the prototype micromachined ESG. 

 

Device dimensions Value Unit 

Inner radius, Ri 1550 μm 

Intermediate radius, Rm 1900 μm 

Outer radius, Ro 2000 μm 

Thickness, h 200 μm 

Angle of the fin, θ1 18 deg (°) 

Angle of the hole, θ2 27 deg (°) 

Capacitive gap when the rotor is at the middle position 

between upper and lower electrodes, zo 

3 μm 

 

 

3.5.1.2 Estimation of stiffness and damping coefficients 

 

Equivalent spring and damping forces are present in the system of the micromachined ESG, 

even though there is no actual mechanical suspension connecting the rotor to the substrate. 

This is due to the so-called squeeze film and slide film effects. The slide action refers to the 

slipping of the moving rotor in a gas ambient causing a surface friction (see Figure 3.7a). 

This will produce a damping force at the interface between the surface of the rotor and the 

surrounding air molecules.  In contrast, the squeeze action refers to compressing the gas 

molecules between the rotor and the substrate (see Figure 3.7b). When the rotor rapidly 

fluctuates about its nominal position, the gas molecules are squeezed to the substrate. The 

molecules, which cannot escape fast enough from a gap between the rotor and the substrate, 

are trapped. Thus, a pressure is built up in the central region of the gap, producing resisting 

forces, which is equivalent to air-spring and damping forces. Accurate modelling of the gas 

flow through the narrow air gap is important for precise estimation of the stiffness and 

damping coefficients due to the slide-film and squeeze-film effect [117, 118]. However, 

constructing such models requires an in-depth knowledge of fluidic dynamics, which is 

beyond the scope of this work. Instead, simpler estimation was employed to approximate 

these stiffness and damping constants. 
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(a) 

 
(b) 

 

Figure 3.7 Conceptual illustrations of (a) the slide film effect and (b) the squeeze film effect. 

 

For the micromachined ESG, the slide film effect influences the in-plane motions of the 

rotor along the x and y axes. Slide film damping, assuming the flow of gas molecules in the 

space between the rotor and the substrate is Couette flow2, can be expressed by [30]: 
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where  

A  = area of the rotor, 

zo  = static gap between the rotor and the substrate, 

                                                 
2 Couette flow refers to the flow of the viscous fluid with a constant velocity gradient across the gap. 
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μeff = effective viscosity 159.1
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μ ,  

Po  = ambient pressure (= 1.013×105 Pa), 

λ =  mean free path at the operating pressure po and  

µ  = viscosity of air (=18.27×10-6 Pa s). 

 

On the other hand, the transverse motion of the rotor along the z axis and the out-of-plane 

motions about the x and y axes are dominated by the squeeze-film damping effect. The 

analytical solutions for the damping and stiffness coefficients for circular plates moving 

normal to a fixed substrate (see Figure 3.6) are given by [119]: 
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where ω is the frequency of the rotor fluctuating about its nominal position, 
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σ =  is the squeeze number for a circular plate with a outer radius Ro. The so-

called squeeze number is a dimensionless factor, which provides a measure of the pressure 

built-up in the central plate area.  
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Equations (3.21) and (3.22) assume a small displacement of the circular plate and involve 

Kelvin functions bern(x) and bein(x), which are defined by an infinite series as [120]: 
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As obvious from the above equations, the squeeze-film spring and damping coefficients for 

the disc-shaped rotor have very complex solutions. Yet there is no published literature 

reporting a general solution for the squeeze-film spring and damping coefficients of a 

circular plate tilting about its in-plane axes. It is even more difficult to find a solution in case 

of the micromachined ESG which employs the rotor with open areas. Rather, in this study, 

alternative approach using finite element simulations in ANSYS was performed to estimate 

the squeeze film stiffness and damping coefficients. This method assumes small deflections 

of a microstructure, which is a valid assumption for the micromachined ESG employing a 

closed-loop control system. Therefore, spring and damping coefficients can be assumed as a 

constant value. 

 

In ANSYS simulations, a two-dimensional harmonic thermal analysis was performed in an 

analogous way to determine the squeeze film effect. The simulations were carried out by 

assuming that there is no fluid resistance across the openings in the rotor since the size of the 

openings is larger than the depth of the openings. A uniform heat generation rate was 

applied to the rotor to emulate the oscillating rotor. The resulting temperature distribution 

analogously represents a normalised pressure distribution across the rotor. Summing the 

pressure over the surface area of the rotor yields the net resultant force. The net force can 

then be divided into a velocity and a displacement term to obtain the squeeze-film damping 

and stiffness coefficients. In-depth discussions on this methodology can be found in 

reference [121].  
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An example result of the ANSYS simulations is shown in Figure 3.8 for the case of the rotor 

fluctuating about its nominal position at a frequency of 32 kHz under atmospheric pressure. 

Figure 3.8a shows the temperature distribution (analogous to the pressure distribution) of the 

rotor oscillating normal to the fixed substrate. The transverse squeeze film damping and 

spring constants for motion of the rotor along the z axis can then be extracted by summing 

the pressure over the surface area of the rotor. Similarly, the pressure distribution of the 

rotor tilting about the y-axis, obtained from ANSYS simulations, is shown in Figure 3.8b. 

This simulation was performed to obtain the rotational squeeze-film stiffness and damping 

coefficients about the y axis.  

 

In general, the squeeze-film stiffness and damping constants depend mainly on two physical 

parameters, i.e. the oscillation frequency and operating pressure. In the following, ANSYS 

simulations were carried out to obtain the stiffness and damping coefficients of the 

micromachined ESG at varying operating pressure and oscillation frequencies. Figure 3.9 

and 3.10 show the squeeze-film damping and spring coefficients for transverse motion along 

the z axis and rotation motion about the y axis, respectively, for ambient pressure ranging 

from 1 kPa to atmospheric pressure (~100 kPa). The red lines show corresponding damping 

coefficients with regard to oscillation frequencies. The blue lines represent squeeze-film 

spring constants corresponding to oscillation frequencies.  

 

As can be seen from Figures 3.9 and 3.10, squeeze-film damping coefficients dominate the 

mechanical behaviour of the micromachined ESG at relatively low oscillation frequencies. 

The squeeze-film damping coefficients are relatively high and remain almost constant in a 

certain frequency range. In contrast, the squeeze-film spring constants are relatively low and 

become larger with higher frequencies. Beyond certain frequency, the squeeze-film spring 

constants become dominant as the damping constants drop rapidly with increasing 

frequencies. This implies that at low frequencies, the squeezed gas film behaves similar to a 

damper, whereas it acts like a mechanical spring when the rotor oscillating at higher 

frequencies. 
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(a) 

 
(b) 

 

Figure 3.8 Temperature distribution, analogous to the pressure distribution, across the rotor 

when it is oscillating at a frequency of 32 kHz under atmospheric pressure: (a) the rotor is 

moving along the z axis and (b) the rotor is tilting about the y axis.  The results were 

obtained from ANSYS simulations and a 2D thermal analogy. A red colour area is where the 

built-up pressure is high, while a blue colour area is where the built-up pressure is low. 
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Figure 3.9 Transverse squeeze-film stiffness (blue) and damping constants (red) for 

different oscillation frequencies for the rotor with a diameter of 4 mm oscillating normal to 

the substrate. The space gap between the rotor and the substrate is 3 μm. The results were 

obtained from ANSYS simulations and a 2D thermal analogy.   
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Figure 3.10 Rotational squeeze-film stiffness (blue) and damping constants (red) for the 

rotor with a diameter of 4mm tilting about the y axis, for different oscillation frequencies. 

The space gap between the rotor and the substrate is 3 μm. The results were obtained from 

ANSYS simulations and a 2D thermal analogy.   

 

The relationship between the ambient pressure and the squeeze-film stiffness and damping 

coefficients is shown in Figures 3.11 and 3.12, for transverse motion along the z axis and 

rotation motion about the y axis, respectively. For the micromachined ESG, which is 

implemented with a ΣΔΜ force feedback loop, the rotor typically fluctuates about its 

nominal position at a high frequency (for more details see chapter 5). Therefore, in this 

study the ANSYS simulations were carried out with the assumption that the rotor is 

oscillating at the following frequencies: 32 kHz, 128 kHz and 512 kHz. As obvious from 

Figures 3.11 and 3.12, the squeeze-film damping and spring coefficients decrease rapidly as 

ambient pressure is reduced. This is because at lower pressure there is a small amount of gas 

molecules inside the gap between the rotor and the substrate. Thus, gas molecules have more 

chance to escape away from the gap, which consequently reduces the pressure built-up.  
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Figure 3.11 Squeeze-film stiffness (blue) and damping constants (red) for the rotor with a 

diameter of 4mm oscillating along the z axis, for different values of ambient pressure. The 

space gap between the rotor and the substrate is 3 μm. The results were obtained from 

ANSYS simulations and a 2D thermal analogy.   

 

 

 

 

 

 

 

bz 

kz 

32 kHz 
128 kHz 
512 kHz 



Chapter 3 Principle, Design and Analysis of the Micromachined ESG 51
 
 
 

 

 

 

 
 

Figure 3.12 Rotation squeeze-film stiffness (blue) and damping constants (red) for the rotor 

with a diameter of 4mm tilting about the y axis, for different values of ambient pressure. The 

space gap between the rotor and the substrate is 3 μm. The results were obtained from 

ANSYS simulations and a 2D thermal analogy.   
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3.5.2 Electrodes Design 
 

Capacitive sensing and electrostatic actuation, employed in the prototype micromachined 

ESG, are based on a parallel-plate capacitor. Basically, a capacitor is formed between two 

conductive surfaces: a fixed electrode and the rotor. Capacitive sensing and electrostatic 

actuation techniques offer high sensitivity, low drift, low temperature sensitivity and good 

noise performance, in addition to the ease of fabrication and integration with the 

micromachining technology [122].  

 

The configuration of the electrodes positioned on the top and bottom Pyrex substrates is 

shown in Figure 3.13. The twelve outermost electrodes are used for rotor spin control. These 

electrodes are called rotation control electrodes. The other electrodes are divided into four 

quadrants as illustrated in the figure. Each quadrant comprises of three electrodes: one sense 

electrode and two feedback electrodes. The centre circular-shape electrode is called common 

excitation electrode. It is used to couple an electrical excitation signal, which is required for 

capacitive position measurement. The four sets of the sense and feedback electrodes, 

together with the excitation electrode, are used to control the displacement of the rotor in 

three degrees of freedom, i.e. translation along the z direction and rotation about the x and y 

axes.  

 

It should be noted that the electrodes that are used for the position measurement, i.e. the 

excitation and sense electrodes, are placed close to the centre. This is to ensure that all sense 

capacitors (formed between the sense electrodes and the rotor) have the same capacitance 

even if the top and bottom electrodes are misaligned to each other due to fabrication 

tolerances. The actuation electrodes including feedback and rotation control electrodes are 

located further outside so that a high moment can be produced.  Figure 3.14 shows the 

electrode arrangement for the rotor position control along the x and y directions. The 

electrodes are positioned at the rotor periphery and also divided into four quadrants. Each set 

consists of one sense and two feedback electrodes. According to the figure, the top and 

bottom sets of electrodes are used for rotor position control along the y axis, whereas the left 

and right ones are employed for translation control along the x direction.  
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Figure 3.13 Conceptual drawing showing the configuration of the sense and control 

electrodes which are located on the top and bottom glass wafers. The numbers indicate the 

quadrant.  

 

 
 

Figure 3.14 Conceptual drawing of the sense and feedback electrodes for lateral control 

along the x and y axes.  
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In the following, design and analysis of the capacitive sensing for the motion along the z 

axis and the rotation about the x and y axes are presented, followed by analysis of the 

electrostatic feedback and levitation. Then, design, simulation and analysis of the spin 

control electrodes are discussed in details. At last, the electrode design for the lateral control 

along the x and y directions are described.  

 

3.5.2.1 Capacitive sensing for the motion along the z axis and the rotation about the x 

and y axes 

 

As mentioned previously, the electrodes shown in Figure 3.13 are used to control the 

position of the rotor for motion along the z direction and rotation about the x and y axes. 

These electrodes are located above and underneath the rotor. The air gap between each of 

the pie-shaped electrodes and the rotor forms a capacitor (see Figure 3.15). Its capacitance is 

given by the general equation [106]: 

 

α
αφαθ

ε
α

α
drd

rrZ
rC o

i

R

R∫ ∫ −+
= 2

1 sincos
,   (3.23) 

 

where  

ε = dielectric constant (= 8.854 ×10-12 F/m, for air),  

Z  = distance between the rotor and the electrodes (Z = zo – z for the top electrodes 

and Z = zo + z for the bottom electrodes),  

Ri, Ro = inner and outer radii of the electrode, respectively and  

α1, α2 = angular position of the electrode. 

 

Considering only the first quadrant, the sense capacitance formed between the rotor and the 

top electrode plate C1sT, where and Rso are the inner and outer radii of the sense electrode, 

respectively, can be expressed as: 
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By integrating equation (3.24) and using a Taylor series approximation, C1sT with respect to 

z, φ and θ can be estimated as: 
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The capacitances for the capacitors formed between the rotor and the other sense electrodes 

can be approximated using the same analysis as above. A detailed analysis can be found in 

reference [123].  

 

 

 
 

Figure 3.15 Conceptual drawing showing a capacitor formed between the rotor and an 

electrode above. Its capacitance is a function of the rotor displacement (Z) along the z axis 

and the tilt of the rotor (φ, θ) about the in-plane axes. 
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For the micromachined ESG, the detection of the rotor displacement is achieved by 

measuring a differential capacitance between two capacitors (a top and bottom sense 

capacitors). These two capacitors are designed in such a way that both have the same value 

of capacitance when the rotor is levitated at the middle between the top and bottom 

electrodes. The displacement of the rotor away from its nominal position will result in an 

imbalance between the top and bottom capacitances. For example, if the rotor moves toward 

the top electrode, the capacitance of the top sense capacitor will be higher than that of the 

bottom capacitor.  

 

Generally, there are two basic schemes used for differential capacitance measurement. The 

first one is called a half bridge type which is configured for single-ended output. The 

excitation signals (positive and negative AC signals) are fed into the ends of the capacitive 

bridge and the output is taken from the centre node (see Figure 3.16a). For multiple sensing 

nodes, such as in the case of the micromachined ESG, several excitation sources with a 

different frequency are required as shown in Figure 3.16b. As a result, the output signal at 

the centre node contains multiple frequencies. The major issue using half-bridge capacitive 

sensing is the output stability. In order to obtain high output stability, very precise 

generation of the positive and negative AC signals is required independent of temperature 

and power supply fluctuation [124].  

 

The other capacitive sensing scheme is configured for differential output [125] as shown in 

Figure 3.17. Differential output is achieved by reversing the roles of the centre node and the 

end terminals. The excitation signal is applied to the centre nodes with the ends providing 

the differential output signal. With this configuration it is possible to measure multiple sets 

of sense capacitors in different axes by using only single excitation source. Thus, it was 

employed in the capacitive position measurement of the prototype micromachined ESG. 
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(a) 

 
(b) 

Figure 3.16 Half-bridge configuration of the differential capacitive sensing: (a) single 

channel sensing. (b) multi-channel sensing. 

 

 

 
Figure 3.17 Half bridge capacitive sensing configured for differential output.  
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Since there is no direct electrical contact connecting the rotor to the substrate, the 

supplementary electrodes are necessary to couple the AC excitation signal through the rotor. 

This electrode pair is called the excitation electrodes (see Figure 3.13), which are located on 

the top and bottom glass substrate. The schematic diagram of the differential capacitance 

measurement for the micromachined ESG is shown in Figure 3.18. Note that only a single 

channel (one quadrant) of the control electrodes is illustrated. 

 

The equivalent electronic model of the capacitive sensing for multi-channels is presented in 

Figure 3.19. During the sensing phase, the excitation voltage Vac is applied to the top and 

bottom excitation electrodes. All feedback and rotation control electrodes are tied to ground 

and pairs of top and bottom sense electrodes are connected to high input impedance pick-off 

amplifiers. The pick-off amplifier is modelled as a high impedance resistor connected to 

ground. The pick-off currents insT and insB flowing through each top and bottom sense 

capacitor are given as a function of the capacitances in Equation (3.26). 
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where 

T,B = subscripts that indicate the top and bottom capacitance, repectively, 

CE  = capacitances of the excitation capacitors, 

Cs = capacitances of the sense capacitors, 

∑ FBC = total feedback capacitance and 

∑ RC  = total rotation control. 
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Figure 3.18 Schematic diagram of the capacitive position measurement employed in the 

prototype micromachined ESG. Only one channel is shown here. The AC excitation signal is 

applied to the top and bottom excitation electrodes. The excitation signal is then coupled 

through the rotor to the sense electrodes. During the sensing phase, feedback and rotation 

control electrodes are grounded. 

 

 

According to equation (3.26), the magnitude of the pick-off current is proportional to the 

excitation and sense capacitances, which are related to the geometry of the excitation and 

sense electrodes. It is interesting to note that the dimension of these electrodes is related to 

each other (RE ≈ Rsi). Therefore, the optimisation of the electrode design was carried out in 

order to obtain the maximum pick-off current as a function of the electrode geometry k = 

Rsi/Rso.  

 

Consider the case in which the rotor levitates at nominal mid-position between the top and 

bottom electrodes. Assuming no feedback and rotation control capacitance, the pick-off 

current insT(B) can then be re-written as a function of the term k as: 
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Figure 3.19 Schematic diagram of the multi-channel pick-off circuit employed in the 

prototype micromachined ESG. The AC excitation signal is applied to the top and bottom 

excitation electrodes. The excitation signal Vac is applied to the upper and lower excitation 

electrodes. The pick-off amplifiers have high input impedance. During the sensing phase, 

feedback and rotation control electrodes are grounded. 
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Figure 3.20 shows the variation of the pick-off current with respect to the electrode 

geometry k. The maximum pick-off current can be derived from equation (3.27) and also 

from the plot shown in Figure 3.20. It was found that the optimised readout current occurs 

when 21=k . 

 

3.5.2.2 Electrostatic levitation and force/moment feedback 

 

Stable electrostatic suspension can be ensured by the sets of feedback electrodes 

surrounding the rotor (see Figure 3.1). Each set is formed by two pairs of feedback 

electrodes: one pair is positioned on one side of the rotor and the other pair is located on the 

opposite side. In order to illustrate the concept of electrostatic levitation, let’s consider a 

simple example for motion of the rotor along only one direction (the z axis). Figure 3.21 

illustrates the configuration of a floating rotor and feedback electrodes used in the following 

analysis. Note that only one set of feedback electrodes is considered here. One pair of 

feedback electrodes, called top pair, is located above the floating rotor; the other, called 

bottom pair, is positioned below. 

 

 
Figure 3.20 Variation of the pick-off current corresponding to the ratio between the inner 

and outer sense radii k. The pick-off current is optimised when 21=k , that is, Rsi = 

0.707Rso. 
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Figure 3.21 Rotor and feedback electrodes configuration employed to illustrate the concept 

of electrostatic levitation for motion of the rotor along the z axis. Equivalent capacitors 

(shown in red) are formed between the rotor and feedback electrodes. 

 

Capacitances formed between the rotor and the feedback electrodes with regard to the 

displacement z can be expressed in the most general form as: 

 

zz
AC fb ∓0

ε
=       (3.28) 

 

where A is the overlap area between the rotor and the feedback electrode and z0 is the 

nominal gap between the rotor and the feedback electrode when the rotor is levitated in the 

middle position between the top and bottom electrodes. All feedback electrodes are assumed 

having the same overlap area; thus, all feedback capacitors will have the same value of 

capacitance when the rotor is levitated at its nominal position (z = 0): 

 

0
4,3,2,1, z

ACCCC fbfbfbfb
ε

==== .    (3.29) 

 

When the rotor is displaced away from its nominal position towards the top pair electrodes, 

the capacitances of the feedback capacitors will be: 
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By applying voltages to these feedback electrodes, electrostatic forces are generated. The net 

electrostatic force Fz acting on the rotor along the z direction can be derived as: 
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where the subscripts 1 – 4 denote the number of electrodes, Vfb is the voltage applied to the 

feedback electrode and Vr is the net potential of the levitating rotor, which can be derived 

from [126, 127]: 
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Assume that the rotor is a conductor and it is maintained at the nominal position. When a 

positive voltage is applied to the top pair electrode and a negative voltage with the same 

magnitude is applied to the bottom pair, charges will move within the rotor until the interior 

field becomes zero. The positive voltage on the upper electrodes draws negative charges to 

the top surface of the rotor. On the other hand, the negative voltage applied to the bottom-

pair electrodes forces positive charges moving to the bottom surface of the rotor. Figure 3.22 

illustrates the charge induced on the rotor. From solving equations (3.31) and (3.32), it can 

be seen that the net electrostatic force acting on the rotor is zero and the rotor potential is 

maintained at ground potential.  
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Figure 3.22 Charge distributions in the rotor when a positive voltage is applied to the upper 

electrodes and a negative voltage is applied to the lower electrodes. 

 

 
 

Figure 3.23 Charge distributions in the rotor when a positive voltage is applied to one of the 

upper electrodes and a negative voltage is applied to the other upper electrodes. The lower 

electrodes are connected to ground potential.  

 

Alternatively, electrostatic levitation can be achieved by applying positive and negative 

voltages with the same magnitude to one pair of the electrodes and grounding the electrodes 

on the opposite side (see Figure 3.23). The applied voltages will draw positive and negative 

charges to the top surface of the rotor. With this setup, there is no force pulling the rotor 

toward the bottom-pair electrodes. Only electrostatic force attracting the floating rotor 
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toward the upper electrodes occurs, giving rise to electrostatic levitation. Let’s consider the 

setup in Figure 3.23. Assume that the top pair electrodes are connected to positive and 

negative voltage sources, which have the same magnitude but opposite polarity, Vfb,1 = +V 

and Vfb,2 = –V, and the bottom pair is grounded (Vfb,3= Vfb,4= 0). The resultant electrostatic 

force Fnet acting to the rotor along the z direction can be calculated from equation (3.31), 

yielding:  
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In order to levitate the rotor, the resultant electrostatic force must be large enough to 

counteract the sum of the forces acting on the rotor. These forces includes the force of 

gravity, the damping force on the rotor, the spring force on the rotor, the externally applied 

inertial force and the pull-off force emerging during the start-up phase where the rotor sits 

on the bottom substrate. Consider only the simplest case in which only the gravity force acts 

on the rotor. The generated electrostatic force must then be greater than the force of gravity 

(Fnet > mg). Thus, the minimum voltage required to levitate the rotor Vlev,min is given by: 
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However, the levitation voltage applied to the feedback electrodes should be kept as low as 

possible to avoid electric discharge at the gap between the rotor and feedback electrodes. 

This can be achieved by reducing the nominal gap z0. For micro-scaled devices, the 

minimum electric breakdown field occurring under atmospheric pressure is approximately 

360 V at a gap of 6.6 μm (see the Paschen curve in references [128]). The breakdown 

voltage should rise with narrower or wider gap spacing. Chen et. al. have studied this 

phenomena for MEMS device with different micron separations [129]. When the gap 

distance approaches 5 μm, the minimum breakdown voltage occurs at the voltage of 340 V 

(for electrodes made of n-type silicon) and 375 V (for p-type silicon), respectively. The 

minimum breakdown voltage is 320 V at 2 μm separation for metal electrodes. 
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Two dimensional electrostatic simulations in ANSYS were carried out to verify the concept 

of electrostatic levitation. The configuration of the rotor and electrodes as shown in Figure 

3.21 was modelled in the ANSYS simulations. The gap between the rotor and electrodes y0 

is 5 microns. Assume that the rotor is made of highly conductive silicon and it is floating at 

the middle between the top and bottom electrodes. Figure 3.24a shows the resulting potential 

distribution in the case that a positive voltage (+10 V) is applied to the upper electrodes and 

a negative voltage (–10 V) is connected to the lower electrodes. The extracted potential 

distribution along the path defined by A–A’ is illustrated in Figure 3.24b. The potential of 

the rotor lies at 0 V and the voltage varies linearly across the gap. Consequently, the electric 

field is uniform and equal for both the upper and lower gaps.  The resulting forces on the 

rotor are then equal in magnitude but act in opposite directions. This yields a net force on 

the rotor of zero. 

 

Figure 3.25 shows the distribution of potential when a positive voltage of +10 V is 

connected to one of the upper electrodes and a negative voltage of –10 V is applied to the 

other one, while the lower electrodes are grounded. The potential of the rotor is close to the 

voltage applied to the lower electrodes (0 V). Thus, the electric field between the rotor and 

the lower electrodes is relatively small. On the other hand, the electric field between the 

rotor and the upper electrodes is significantly higher. This results in the net electrostatic 

force moving the rotor towards the upper electrode, giving a rise to electrostatic levitation. 

ANSYS simulations were carried out to investigate the net vertical force Fz0 as a function of 

a vertical displacement z. The following device parameters were used in the simulations: the 

rotor diameter is 200 µm, the thickness of the rotor is 20 µm, a nominal capacitive gap is 5 

µm and each electrode is 90 µm long. Note that the resulting electrostatic force calculated 

from 2D ANSYS simulations is the force per unit length. Figure 3.26 shows the relationship 

between the resulting electrostatic levitation force Fz0 and the displacement of the rotor z 

along a vertical direction. It can be seen that the results obtained from ANSYS simulations 

agreed well with the analytical calculation (using equations (3.32) and (3.33)).  
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(a) 

 
(b) 

 

Figure 3.24 Simulation results obtained from 2D electrostatic analysis in ANSYS for the 

rotor levitating in the centre position between the upper and lower feedback electrodes: (a) 

The contour plot of the potential distribution when the upper electrodes are connected to a 

positive voltage of 10 V and the lower electrodes are connected to a negative voltage of –10 

V. (b) The potential distribution along path A–A’.  
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(a) 

 
(b) 

 

Figure 3.25 ANSYS simulation results for the rotor levitating in the centre position between 

the upper and lower feedback electrodes: (a) the contour plot of the potential distribution 

when 10 V is applied to the right upper electrode and –10 V is applied to the left upper 

electrodes while the lower electrodes are connected to ground (0 V). (b) The potential 

distribution along path A–A’. 
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Figure 3.26 Plot of the electrostatic levitation forces per unit length Fz0 as a function of a 

vertical displacement z with respect to the nominal position (the rotor is levitated at the 

middle position between the upper and lower electrodes). 

 

 

For the electrode design of the micromachined ESG (see Figure 3.13), the capacitance 

formed between the rotor and the pie-shaped feedback electrodes can be derived using the 

same method as described in section 3.5.2.1. The capacitance of the upper feedback 

electrodes located in the first quadrant C1fbT as a function of the displacement z and the 

angular displacements φ and θ can be estimated as: 
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The resulting electrostatic force Fz1T and moments Mx1T and My1T are calculated by 

differentiating equation (3.35) with respect to z, φ and θ, yielding: 
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Equations (3.36) – (3.38) are used to calculate the feedback forces and moments generated 

when a voltage V is applied to the upper feedback electrode in the first quadrant. The other 

feedback capacitances and the resulting electrostatic forces and moments can also be 

approximated using the above method.  

 

The net electrostatic force acting on the rotor along the z direction is the sum of electrostatic 

forces generated from all upper and lower feedback electrodes, which is: 
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The net electrostatic moments acting on the rotor for motions about the x and y axes are: 
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In order to lift the rotor up from its initial state where the rotor sits on the bottom substrate (z 

= –zinit), the net electrostatic force should be greater than the force of gravity. Positive and 

negative voltages are applied to the upper feedback electrodes and 0 V is connected to all 

lower electrodes. Then, the resultant electrostatic force Fz is:  
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Thus, the minimum voltage required to levitate the rotor Vlev is: 
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For the ideal case, the rotor, which has a circular shape, is parallel to all electrodes; hence φ 

= θ = 0. The levitation voltage can then be re-written in a simple form as: 
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3.5.2.3 Electrostatic spin control 

 

The variable capacitance principle used in axial drive electrostatic micromotors [85, 86, 111] 

is employed to control spinning of the levitated rotor. It is based on the storage of electrical 

energy in variable rotor-stator capacitances. The variation of the stored energy in the 

direction of motion will result in the output torque of the motor. The motive torque Mmotor 

can be expressed as the rate of change of the potential energy U stored in the capacitor with 

respect to the rotor angular displacement θ as given by: 
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where  

Vdrive  = applied drive voltage to the stator electrodes and  

Cr  = rotation control capacitance. 

 

For the first prototype micromachined ESG, the configuration of spin control electrodes was 

taken from the design of the micromachined motor reported in references [85, 86]. It 

employs the configuration with a stator:rotor ratio of 3:2, which was reported that it provides 

a relatively high motive torque with minimum torque ripples. The spin control electrodes 

employed in the micromachined ESG is comprised of twelve stator poles and eight rotor 

poles as shown in Figure 3.27. The rotation control electrodes, called stators, are located 

above and below the silicon rotor. The length of a stator electrode is 300 µm and the width 

is 18 degrees with 12 degree separation between each stator electrode. The opening patterns 

on the rotor have a length of 400 µm, a width of 18 degrees and a pitch of 45 degrees. The 

length of the opening patterns was designed so that it is somewhat larger than that of the 

stator electrodes. This is to deal with misalignment in fabrication process. In addition, the 

value of the width and separation between each stator electrodes was chosen so that when 

one stator electrode aligns with a rotor pole, the other stator electrodes have an area 

overlapping with rotor poles. The capacitance formed between the rotor and the upper stator 

electrode can be expressed using the parallel-plate capacitor estimation, which yields:   
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where  

Rdo, Rdi  = outer and inner radii of the rotation control electrodes and  

θoverlap   = overlap angle (in degree unit) between the rotor and stator electrode.  

 

Note that the so-called fringe field effect, in which the electric fields bow out at the edges, is 

neglected.  

 

As illustrated in Figure 3.27, each set of the rotation control electrodes consists of three 

stator electrodes, termed phase A, phase B and phase C electrodes. The motive torque is 
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produced by applying voltages to these stators in sequence. Assume that the rotor is levitated 

in the middle position between the upper and lower electrodes. Driving voltages are applied 

to only one phase of the stator electrodes at the time, the other phase stators are grounded. A 

positive voltage of +Vdrive is connected to the upper rotation control electrodes and a 

negative voltage of –Vdrive is connected to the lower electrodes. According to equations (3.31) 

and (3.32), the net electrostatic force in the z direction is zero and also the potential of the 

rotor is maintained at 0 V. Thus, only tangential forces act on the rotor providing motive 

torques. There is no electrostatic force acting on the rotor along the z axes. 

 

 

 
 

 

Figure 3.27 Configuration of spin control electrodes employed in the first prototype 

micromachined ESG. 

 

The stator electrodes are designed in such a way as they are misaligned to the opening 

patterns on the rotor (see Figure 3.27). In order to generate the motive torque, driving 

voltages are applied to each phase of stator electrodes in sequence. For example, driving 

voltages +Vdrive and –Vdrive are applied to phase A stator electrodes, whereas 0 V is applied to 

the other phase stator electrodes. The rotor then rotates to align the rotor poles with the 

energised stators. Immediately after the rotor poles are aligned with the stators, the phase B 

stator electrodes are then energised and the stators in the other phases are grounded. This 
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will cause the rotor continuously to rotate. When the rotor poles are aligned with the phase B 

stator electrodes, the driving voltages are applied to the phase C stator electrodes. By 

repeating the sequence, the rotor will keep spinning about the z axis. Figure 3.28 

demonstrates the concept of the motor drive sequence employed in a side-drive electrostatic 

micromotor. This method is similar to the rotor spinning sequence mentioned above, except 

the rotor is driven by exciting electrodes located at its periphery. 

 

Finite element simulations in ANSYS were performed to validate equations (3.44) and 

(3.45). As the design of the micromachined ESG is symmetrical, the simulations were 

carried out using only a quarter model of the rotor and stator electrodes as shown in Figure 

3.29. However, the actual device geometry is relatively large, causing a problem in mesh 

generation. Therefore, in the following simulations, a gyro sensor with smaller device 

dimensions is modelled. Device parameters used in the ANSYS simulations are as follows: a 

rotor has a diameter of 2 mm and a thickness of 100 μm, a capacitive gap is 10 μm, and the 

length of the stator is 150 μm. The upper phase B stator electrode is connected to a driving 

voltage of +10 V and the lower phase B stator electrode is connected to –10 V. The other 

stator electrodes are connected to ground (0 V).  

 

Figure 3.30 shows the capacitance formed between the rotor and the phase B electrode 

corresponding to the angular position of the rotor and also the resultant electrostatic torque 

acting on the rotor. The results show a good agreement between the analytical estimations 

and FEM simulations; except at the angular position where there is no overlap between the 

rotor and stator. This is due to the fringe field effect is excluded in the analytical equations.  
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                        (i)     (iii)             (v) 

 
                       (ii)              (iv)             (vi) 

 

Figure 3.28 Drive sequence employed in a side-drive electrostatic micromotor: (i) Phase A 

stator electrodes are activated, the energised electrodes shown with red dots. (ii) Phase B 

stator electrodes are connected to driving voltages, forcing the rotor to rotate. (iii) The rotor 

is aligned to the energised stator electrodes (green dots). (iv) Phase C stator electrodes are 

then energised, forcing the rotor to spin. (v) The rotor is aligned to the active stator 

electrodes (yellow dots). (vi) The phase A stator electrodes are re-activated. The rotor will 

keep spinning by repeating steps (i) – (vi). 
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Figure 3.29 ANSYS quarter model of the rotor and stators employed to estimate the 

capacitance of the capacitor formed between the rotor and the phase B stator. 

 

 
Figure 3.30 Phase B stator capacitance (top) and electrostatic torques (bottom) as a function 

of the rotor position, obtained from ANSYS simulations (red) and analytical calculations 

using equations (3.44) and (3.45) (blue). 
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The maximum achievable spin speed of the levitating rotor Ωz,max is limited by the 

mechanical centrifugal stress in the rotor, which can be given as [111]: 

 

hR ⋅⋅
=Ω
ρ
σ2

max      (3.46) 

 

where  

σ  = maximum centrifugal stress of silicon (≅ 109 N/m2), 

ρ  = density of the silicon rotor (= 2330 kg/m3),  

R  = radius of the rotor and  

h  = rotor thickness.  

 

Therefore, for the prototype micromachined ESG, the ultimate spin speed is approximately 

1.0358 × 106 rad/s or 9.8915 × 106 RPM.  

 

In practice, the spin speed of the rotor is also limited by the viscosity of surrounding air. The 

viscous drag torque τd is calculated by multiplying the coefficient of viscous drag Bz by the 

spin speed of the rotor Ωz: 

 

zzd B Ω=τ       (3.47) 

 

The contribution to the viscous drag torque from each part of the micromachined ESG is 

calculated separately and the results are summed to obtain the total viscous drag torque. 

Assume that the rotor is levitated at its nominal position. The coefficients of viscous drag at 

the gaps between the rotor with the radius of Rrotor and the top and bottom substrate are 

given by [118]: 
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where  

zo  = nominal gap between the rotor and the substrate,  

μeff  = effective viscosity of surrounding air.  
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The coefficient of viscous drag for a region between the rotor and side wall electrodes is 

given by [130]: 
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where  

Rsidewall  = radius of the inner sidewall electrodes and  

h   = thickness of the rotor.  

 

The total coefficient of viscous drag Bz is the sum of Bz1T(B) and Bz2: 
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Figure 3.31 shows the relationship between the total coefficient of viscous drag and the 

ambient pressure and also the maximum achievable spin speed of the rotor corresponding to 

the ambient pressure and driving voltages. The device parameters employed in this 

analytical calculation are as follows: the diameter of the rotor is 4 mm, its thickness is 200 

μm, the capacitive gap between the rotor and the top/bottom substrate is 3 μm, and the 

capacitive gap between the rotor and the sidewall electrodes is 10 μm. The damping 

coefficient Bz drops dramatically as the ambient pressure is reduced, hence, higher rotor spin 

speed can be achieved. The rotor only spins at speeds of approximately 10 – 100 RPM under 

atmospheric pressure (~105 Pa). The spin speed can go up to 105 RPM by decreasing the 

operating pressure to 10-2 mtorr (~10 Pa).  

 

3.5.2.4 Lateral suspension control 

 

As mentioned earlier in section 3.5.2, the electrodes for lateral control along the x and y axes 

divided into four quadrants. Each set consists of one sense and two feedback electrodes as 

shown in Figure 3.14. The width of the sense electrode is 30 degrees and the width of each 
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feedback electrode is 27 degrees. A capacitive gap between the rotor and the sense/feedback 

electrodes located at the rotor periphery is 10 µm. The minimum size of the gap is limited by 

the aspect ratio of deep reactive ion etching (DRIE) process (for more details, see chapter 5).  

 
Figure 3.31 Viscous damping coefficients (top) and rotor spin speeds (bottom) 

corresponding to ambient pressures and driving voltages for the prototype micromachined 

ESG with the rotor diameter of 4 mm and the thickness of 200 μm. The capacitive gap 

between the rotor and the substrates is 3 μm and the gap between the rotor and the sidewall 

electrodes is 10 μm. 
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Figure 3.32 illustrates a diagram of the rotor and sidewall electrodes. The radius of the rotor 

is Ro, the radius of the electrode is Rs and the angular position of the electrode centre is θ. In 

this figure, the origin of the reference axis is fixed at the electrode centre. At nominal 

position, the centre of the levitated rotor is at the centre of the electrodes. The capacitance 

Csw formed between each electrode and the rotor can be estimated using the parallel plate 

capacitor approximation, which is: 

 

θ
εθ

θ

d
d

hR
C s

sw ∫=
2

1 0

     (3.51) 

 

where d0 is the nominal separation gap between the rotor and the sidewall electrode. 

Equation (3.51) is used for calculating a nominal capacitance of the sidewall sense and 

feedback electrodes. 

 

Assume that the rotor is displaced away from its nominal position as shown in Figure 3.33. 

The distance between the centre of the rotor and the centre of the electrode is dr. To 

calculate the capacitance formed between each electrode and the rotor, the separation gap d 

between the electrode and the rotor as a function of the rotor displacement and the electrode 

position (θ) is needed. The distance d between the rotor and electrode at angle θ is given by: 

 

( ) ( )θθ RRd s −=      (3.52) 

 

When the rotor is centred as shown in Figure 3.32, R(θ) = Ro and thus the distance between 

the rotor and electrode is equal to d0. Note that all symbols are defined in Figures 3.32 and 

3.33. 
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Figure 3.32 Diagram of the rotor and sidewall electrodes, showing radii, angles and the 

separation gap between the rotor and electrode when the rotor is at the nominal position.  

 

 
Figure 3.33 Diagram of the rotor and sidewall electrode, showing radii, angles and a 

displacement of the rotor away from the centre by dr. 
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Considering Figure 3.33 in the polar coordinate system, R as a function of θ can be written 

as [131]: 
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drRR −+=    (3.53) 

 

Substituting equation (3.53) into (3.52) yields:   

 

( ) θθ cos21 2

2

oo
os R

dr
R
drRRd −+−=    (3.54) 

 

Then, the capacitance formed by the rotor and sidewall electrodes is given as: 
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However, a simple closed-form solution for equation (3.55) cannot be derived. Therefore, 

two parallel-plate capacitor approximation in equation (3.51) is used to model the 

capacitance changes between the rotor and sidewall electrodes in system level simulations 

(in chapters 5 and 7).  The capacitances Csw,x and Csw,y in the x and y axis can then be 

estimated as: 
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where dx and dy are the displacement of the rotor along the x and y axes, respectively.  
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The feedback forces produced by the sidewall electrodes can be calculated as: 
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Thus, in system-level simulations presented in chapters 5 and 7, equations (3.56) and (3.57) 

are used to model the capacitance changes due to the rotor is displaced away from its 

nominal position; and feedback forces acting on the rotor can be modelled using equations 

(3.58) and (3.59).  

 

 

3.6 SUMMARY 
 

The micromachined ESG is composed of a mechanically unsuspended micro-rotor that is 

surrounded by sets of sense, feedback and spin control electrodes. These sets of electrodes 

are used to sense and control the rotor position in five degrees of freedom, i.e. the out-of-

plane translation in the z-axis, the in-plane motion along the x and y axes and the out-of-

plane rotation about the x and y axes. The operating principle of the sensor is discussed in 

detail in section 3.2, followed by design and analysis of the micromachined ESG. The 

prototype micromachined ESG has been designed according to all the aforementioned 

design considerations. The rotor and electrode dimensions are given in Table 3.1 and 3.2, 

respectively. The device parameters and expected properties are summarised and given in 

Table 3.3.   
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Table 3.2: Electrode dimensions of the first prototype micromachined ESG. 

 

 

Electrode dimensions 

 

 

Value 

 

 

Unit 

 

The outer radius of excitation electrode, REo 820 μm 

The inner radius of sense electrode, Rsi 850 μm 

The outer radius of sense electrode, Rso 1175 μm 

The inner radius of feedback electrode, Rfbi 1200 μm 

The outer radius of feedback electrode, Rfbo 1500 μm 

The inner radius of rotation control electrode, Rdi 1600 μm 

The outer radius of rotation control electrode, Rdo 1900 μm 

The stator pole width 18 ° 

The separation displacement between each stator pole 12 ° 

The rotor pole width 18 ° 

The separation between each rotor pole 27 ° 
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Table 3.3: Device parameters of the first prototype micromachined ESG. 

 

Parameters Value 

Mass of the rotor, m (mg) 3.73 

Moment of inertia about  the spin axis, Iz (kg⋅m2)  7.47 × 10-12 

Moment of inertia about  the x and y axes, Ix,y (kg⋅m2)  3.75 ×10-12 

Spring constant along the z direction, kz (N/m) 16 

Damping coefficient along the z direction, bz (N⋅s/m) 4.66 × 10-9 

Damping coefficient along the x and y directions, bx,y (N⋅s/m) 8.42× 10-7 

Out-of-plane spring constant, Kx,y (kg⋅m2/rad) 7.17 × 10-4 

Out-of-plane damping coefficient, Bx,y (kg⋅m2⋅s/rad) 6.34 × 10-13 

Nominal capacitance of excitation electrodes, CE (pF) 6.25 

Nominal capacitance of sense electrodes, Cns (pF) 1.54 

Nominal capacitance of feedback electrodes, Cnfb (pF) 1.88 

Nominal capacitance of sidewall sense electrodes, Cns(sw) (pF) 0.186 

Nominal capacitance of sidewall feedback electrodes, Cnfb(sw) (pF) 0.168 
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Chapter 4 

Front-end Interface Design for the 

Micromachined ESG 
 

 

4.1 INTRODUCTION 
 

The prototype micromachined ESG employs a differential capacitive measurement to sense 

the displacement of the rotor. The capacitive sensing is based on the capacitance half-bridge 

configured for differential output as discussed in chapter 3. This chapter presents the design 

and analysis of a front-end circuit for the differential capacitance sensing.  

 

Section 4.2 discusses design considerations of the prototype front-end circuit, which is based 

on commercial off-the-shelf components. It is then followed by simulations at electronic-

level using OrCAD/PSPICE, which were carried out to evaluate the circuit operation. In 

section 4.3, a printed-circuit-board (PCB) prototype of the front-end circuit was built and 

experiments were carried out to compare the results obtained from the measurement with 

simulation results.  

 

 

4.2 DESIGN AND SIMULATION OF THE FRONT-END 

INTERFACE 
 

The measurement of a sensor capacitance, in practice, has to deal with stray and parasitic 

capacitances [132]. These undesired strays typically arise from the parasitic capacitances of 

the sensing electronics connected to the sensor and also the stray capacitances between the 

electrodes (including the leads to the sensing circuit) and the grounded electrodes.  Figure 

4.1 shows a simplified model of a sense capacitor with stray capacitors Cstray at its terminals. 
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The value of these stray capacitances is often in the same order of magnitude as the nominal 

sensor capacitance1. Thus, a front-end circuit should be immune to stray capacitances and 

provides the output voltage which is only dependent on the sensor capacitance. Several 

capacitance measuring circuits have been reported [132, 133], including oscillation methods, 

charge measurement circuits and switched-capacitor interfaces 

 

 
 

Figure 4.1 Sense capacitance with stray capacitances at its terminals. 

 

The basic circuit of the front-end interface is shown in Figure 4.2.  The front-end circuit is 

completely symmetrical providing a relatively high common-mode rejection ratio. It consists 

of charge amplifiers, diode demodulators and an instrumentation amplifier. The charge 

amplifier, also called a pick-off amplifier, detects and converts the variation of the sense 

capacitance into voltage. The output voltage of the charge amplifier is in a form of 

amplitude modulation (AM), in which a high-frequency excitation signal acts as a signal 

carrier. The diode demodulator is employed to extract a data signal (the variation of the 

sense capacitance) from the modulated signal. At last, the instrumentation amplifier converts 

the differential output into the single-ended output and rejects common mode signals. More 

detail about the front-end circuit is given in the following sections. 

 

 

 

 

 
                                                            
1 The nominal sense capacitance is the capacitance formed between a sense electrode and the rotor when the 
rotor is positioned at a centre between the upper and lower electrodes. 
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Figure 4.2 Basic circuit of the front-end interface employed to convert the differential 

capacitance to a voltage signal. 

 

4.2.1 Excitation Signal 
 

In order to convert the capacitance to voltage, the front-end circuit needs to be driven by a 

high frequency voltage source, hereafter called the excitation signal. This excitation signal 

can create electrostatic forces which disturbs the displacement of the rotor. The electrostatic 

forces can be expressed as shown below:  
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Therefore, the frequency of the excitation signal must be far above the resonance frequency 

of the rotor and the magnitude of the excitation voltage should be sufficiently small so that 

the position disturbance can be negligible. Accurate measurement also requires the use of 

very short pulses in such a way as the measurement is completed before the rotor can change 

position.  
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As discussed in chapter 3, the micromachined ESG has no direct electrical contact to the 

rotor. The excitation signal is coupled to the rotor via capacitive coupling. The potential at 

the levitated rotor Vrotor can be calculated using equation (4.2). 
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CCV exex
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++++
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  (4.2) 

 

The high-frequency excitation voltage Vex is divided by coupling capacitors. In order to 

maximise Vrotor the excitation capacitances should be greater than the sum of all sense, 

feedback and rotation capacitances. Refer to chapter 3 for a detailed discussion about the 

optimisation of these capacitances.  

 

 

4.2.2 Charge Amplifier 
 

The schematic diagram of the op-amp charge amplifier is shown in Figure 4.3. Cs represents 

the variable sense capacitance of the micromachined ESG. The output of the charge 

amplifier Vca is: 
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    (4.3) 

 

The feedback resistor Rf provides DC bias current to the op-amp input so that the DC value 

at the inverting input is clamped at zero. The feedback resistor together with the feedback 

capacitor Cf also acts as a high-pass filter with a cut-off frequency of 
ff CRπ2

1 . The value of 

Rf was chosen in such a way that the resulting cut-off frequency is much lower than the 

frequency of the excitation signal.  
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Figure 4.3 Schematic diagram of a charge amplifier. Cs is a sense capacitor; Rf and Cf are a 

feedback resistor and capacitor, respectively. VCC and VEE are the positive and negative 

supply voltage, respectively. 

 

For the ΣΔM micromachined ESG, the sinusoidal signal with a high frequency (between 500 

kHz to 2 MHz) is chosen as the excitation signal. Thus, the term ωRfCf is generally larger 

than unity. Then the output signal of the charge amplifier can be approximated in a 

frequency independent form as: 

 

rotor
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V ⋅−≈      (4.4) 

 

Generally, the variation of Cs due to external rotation rates and/or accelerations is at low 

frequency ωsignal. The capacitance change can be expressed as: 

 

tCCC signalsss ωcos0 ⋅Δ+=     (4.5) 

 

where  

Cs0  = nominal sense capacitance2 and  

ΔCs  = variations of Cs due to external rotation rates and/or accelerations. 

 

                                                            
2 A nominal sense capacitance is the capacitance value of the sense capacitor when the rotor is at the middle 
position between the upper and lower sense electrodes. 

Vrotor Vca 
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Substituting equations (4.2) and (4.5) into equation (4.4) yields:  
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  (4.6) 

 

The output signal of the charge amplifier is then proportional to the variations of Cs. In 

general, when no rotation rate or acceleration is applied Cf is chosen such that its value 

equals to: 
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Consequently, the transfer function from Vex to Vca will be –1. Then in the presence of 

rotation rates and/or accelerations, the output voltage of the charge amplifier will show 

small variations around –1 due to the small value of ΔCs/Cs0.  

 

In addition, the output of the charge amplifier is in a form of amplitude modulation (AM). 

By rearranging equation (4.6), it can be expressed in a simple equivalent form as: 
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It can be seen that the output is composed of three frequency components at the high 

frequency excitation signal ωex, ωex + ωsignal and ωex – ωsignal. The circuit modulates the low-

frequency input signal to higher frequency range where there is low 1/f noise. As a result, 

this will suppress low-frequency amplifier 1/f noise and drift in the signal band.  

 

4.2.3 AM Demodulator 
 

A simple diode demodulation circuit, illustrated in Figure 4.4, is employed to extract the 

modulated amplitude. The circuit consists of one diode and an RC low-pass filter circuit 

with resistor RD and capacitor CD. The RDCD time constant of the demodulator was selected 

in such a way that the input frequency fex is eliminated and the sensor signal can be 

transferred unaffectedly. In a case of the sensor with a ΣΔM feedback loop, the RC low-pass 

filter is designed to cover the sampling frequency fs of a ΣΔ modulator. After demodulation, 

the output signal of the demodulation circuit Vdm becomes:  
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where VD is the voltage dropped across the diode.  

 

As can be seen from equation (4.9), the output signal of the charge amplifier is decreased by 

the amount of voltage dropped across the demodulation diode. Therefore, the diode with fast 

switching time and low turn-on voltage is preferable. 

 

 
 

Figure 4.4 Synchronous AM demodulation circuit 

Vca Vdm 
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4.2.4 Instrumentation Amplifier 
 

The instrumentation amplifier, also called in-amp, is employed to amplify the differential 

output signal obtained from upper and lower sense capacitances. The in-amp circuit is 

illustrated in Figure 4.5. The gain of the circuit Gina is given as:  
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The output voltage of the front-end circuit can then be expressed as: 
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Assume that the circuit is symmetrical, Cf,1 = Cf,2 = Cf, Cs,1 = Cs,2 = Cs, ΔCs,1 = ΔCs,2 = ΔCs 

and VD,1 = VD,2. Equation (4.11) can be simplified to: 

 

ex
rfbsEBET

EBET

f

signals
inaout V

CCCCC
CC

C
tC

GV ⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

++++
+

×⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ⋅Δ
−=

∑ ∑∑
ωcos2

 (4.12) 

 

It can be seen that the output signal of the front-end circuit is proportional to the variations 

of Cs and thus the displacement of the rotor. In the absence of external accelerations and/or 

rotation rates, ΔCs = 0. Hence, the output voltage of the front-end circuit remains zero (Vout = 

0). When rotation rates and/or accelerations are applied, the output voltage of the front-end 

circuit will be varied about zero, assuming the ideal case where amplifiers have no DC 

offset.  
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Figure 4.5 Schematic diagram of the instrumentation amplifier. The amplifier consists of 

three op-amps. Two op-amps act as a buffer providing high input impedance. The third op-

amp acts as a differential amplifier. 

 

 

4.2.5 Simulation of the front-end interface 
 

OrCAD/PSPICE simulation was carried out to evaluate the operational behaviour of the 

front-end circuit. A variable capacitance was modelled in PSPICE as a voltage controlled 

variable admittance (YX) [18, 134]. Figure 4.6 illustrates the PSPICE model for the variable 

capacitances of the excitation and sense capacitors. Note that only one channel was 

investigated in the simulation. The variable admittances X1 and X2 model the excitation 

capacitors with a nominal capacitance of 6.25 pF, and the admittances X3 and X4 are the 

upper and lower sense capacitors with a nominal capacitance of 1.54 pF. The AC voltage 

source Vex is the excitation voltage. The time-variable signal dC_signal and two function 

blocks emulate the capacitance variations. A high value resistor Rdummy is required to 

prevent a floating point error in OrCAD/PSPICE simulations. 

 

Vout 

Vdm,1 

Vdm,2 
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Figure 4.6 PSPICE model for the upper/lower excitation and sense capacitors. 

 

 

 
 

Figure 4.7 Front-end circuit for one channel of the micromachined ESG.  
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Figure 4.7 shows the front-end circuit in OrCAD/PSPICE simulations. Low-noise and high-

gain-bandwidth-product amplifiers are required in the front-end circuit due to a low value of 

the sense capacitances and a high frequency of the carrier signal. Thus, precision Difet 

operational amplifiers, OPA2107 [135], were used because they provide low noise (8 

nV/Hz1/2 at 1 kHz), low bias current (10 pA maximum), and relatively high gain bandwidth 

product (4.5 MHz at ±12 V supply voltage).  

 

Figure 4.8 shows simulation results of the front-end circuit. The simulation was carried out 

to evaluate the sensitivity of the front-end circuit. The input signal was a sinusoidal wave, 

which emulates 10 ppm capacitance variation. The sinusoidal signal with a peak magnitude 

of 1 V and a frequency of 1 MHz was used as the excitation signal. The orange waveform is 

a differential signal between the outputs of the charge amplifiers. The waveform is 

amplitude modulated signal which is composed of two components, i.e. 1 MHz excitation 

signal and the capacitance variations at a frequency of 1 kHz. The pink waveform represents 

the differential output signal of the diode demodulation circuit. As expected, some high-

frequency ripple signal still present. This is because the filter in the demodulation circuit is 

merely a simple first-order low-pass filter. The shape of the roll-off or transition band is too 

wide to filter out some high frequency components. This ripple signal was brought through 

to the output signal of the in-amp (as shown in the red waveform). To filter out this high-

frequency ripple signal, an additional low pass filter circuit is required. The forth-order low-

pass filter, including a second-order passive filter and a second-order Sallen-Key filter [136], 

was then employed here. It was designed to cut off the frequency components above 5×fs, 

which approximately 625 kHz. The output signal of the filter is illustrated in the blue 

waveform.  

 

The results reveal that the front-end circuit can cope with the capacitance variation in the 

order of 10 ppm of the nominal sense capacitance (1.54 pF). This corresponds to a 

capacitance change of 15.4 aF. The corresponding output voltage of the front-end circuit is 

150 μV approximately. This can imply that the capacitance-to-voltage sensitivity of the 

front-end circuit is about 9.74 V/pF. However, the phase lag and offset are inherent to the 

output signal of the front-end interface. Thus, care must be taken during the design of the 

closed-loop system. 
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Figure 4.8 OrCAD/PSPICE simulation results of the front-end circuit for the capacitance 

variations of 10 ppm at a frequency of 1 kHz. The upper trace shows response waveforms of 

differential outputs of the charge amplifiers (yellow) and the demodulation circuits (pink). 

The bottom trace shows response waveforms of the output signals of the in-amp (red) and 

the low-pass filter (blue).  

 

 

4.3 MEASUREMENT RESULTS 

 

4.3.1 Hardware implementation 
 

The hardware implementation was realised using the circuit diagram shown in Figure 4.7. 

All components are surface mount devices. The charge amplifiers were designed with Rf = 5 

MΩ and Cf is adjustable between 0.167 – 0.5 pF. The feedback capacitance was tuned so 

that the charge amplifier has a gain of 2. The domodulation diodes were Schottky diodes 
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with forward voltage VD of 0.4 V. For the initial tests, only fixed capacitors were used 

instead of the sensor capacitances. 

 

4.3.2 Transfer function of the charge amplifier on the excitation frequency 
 

The first test was carried out to evaluate the operation of the charge amplifier. Two fixed 

capacitors with a capacitance of 1 pF were used to emulate the nominal sense capacitors. A 

sinusoidal excitation signal generated from a signal generator, Agilent 33220A, was directly 

connected to the common node between these two fixed capacitors. The frequency response 

of the charge amplifier was investigated by varying the excitation frequency fex from 500 Hz 

up to 5 MHz while the excitation amplitude was kept constant at 2.31 V. A digital 

oscilloscope, Agilent DSO032A, was used to measure the input and output signals of the 

charge amplifier. The resulting transfer function from the excitation voltage to the output 

voltage of the charge amplifier is illustrated in Figure 4.9.  

 

As mentioned in section 4.2.2, the expected cut-off frequency was found at a frequency 

1/RfCf. At low frequencies, the measurement result agreed well with both OrCAD/PSPICE 

simulation and the analytical calculation from equation (4.3). However, a decrease in the 

gain at high frequencies was found in measurement and OrCAD/PSPICE simulation. This is 

due to the limited gain bandwidth product of the amplifier [137]. For an operational 

amplifier, OPA2107, its gain bandwidth product is 4.5 MHz at ±12 V supply voltage [135]. 

For the amplifier with a gain of 2, its bandwidth drops to about 2 MHz (see the dotted line in 

Figure 4.9). However, for the case of measurement results (the circles shown in Figure 4.9), 

it showed somewhat higher gain, but narrower bandwidth. This could be resulted from 

experimental error due to parasitic capacitances from lead wires, which connect fixed 

capacitors on a breadboard to the charge amplifier.  

 

According to Figure 4.9, it can be concluded that the operating range of the charge amplifier 

is about 100 kHz to 1 MHz. Therefore, the front-end circuit should be operated with the 

excitation frequency within this operating range.   
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Figure 4.9 Bode plot of the transfer function Vca/Vex: the circles are data taken from the 

measurement, the solid line is obtained from equation (4.3) and the dotted line is the results 

from OrCAD/PSPICE simulations.  

 

4.3.3 Linearity of the capacitance-to-voltage front-end circuit 
 

In this section, the linearity of the conversion of capacitance to voltage was experimentally 

tested. Fixed capacitors were used to emulate the nominal sense capacitors and the change in 

capacitance was implemented using smaller fixed capacitors connecting in parallel to one of 

the nominal sense capacitors.  

 

With a closed-loop control system, the displacement of the rotor is maintained within about 

1% of the nominal capacitive gap (see chapter 5). The maximum ΔC to be measured is 20 fF 

for the sensor with a nominal sense capacitance of 1 pF. The value of ΔC is, however, too 

small to realise experimentally. Therefore, the fixed capacitors with a value of 10 nF were 

used as the nominal sense capacitors. The excitation frequency fex was then decreased to 100 

Hz so that the impedance of the sensing element remains constant. The excitation signal 

with amplitude of 100 mV was applied to the common node of the nominal sense capacitors. 
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The symmetry of the two charge amplifiers is also critical. Thus, care must be taken in the 

selection of components used in the front-end circuit. For the prototype front-end circuit, all 

components are packaged in dual units. In addition, prior to the experiment, the charge 

amplifiers were tuned (by trimming feedback capacitance) in such a way that its output 

signal was well matched to each other.  

 

 
             (a)                (b) 

 

Figure 4.10 Output voltage of the front-end circuit corresponding to a change in capacitance: 

the circles are data taken from the measurement, the dot line is the results from curve fitting 

using polyfit function in Matlab and the solid line is calculated from equation (4.12).  

 

The measurement was carried out by varying ΔC from 560 pF down to 2.2 pF (using a fixed 

capacitor connecting in parallel to one of the nominal sense capacitors). The variation of ΔC 

is equivalent to the displacement of the rotor between 3% and 0.01% of the nominal 

capacitive gap (3 µm). The measurement results are shown in Figure 4.10. Figure 4.10a 

shows the output voltage due to capacitance variations ΔC from 560 pF down to 2.2 pF. 

Figure 4.10b shows the output voltage corresponding to small variations of capacitance. It 

can be seen that a small offset (–14.2 mV) is present in the measured output voltage of the 

front-end circuit. This DC offset can come from any operation amplifiers or mismatch 

between two charge amplifiers. This nevertheless can be compensated electronically. The 

expected theoretical output voltage can be calculated using equation (4.12) and is 
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represented by the solid lines in Figure 4.10. The red dot lines are the result from data fitting 

using polyfit function in Matlab. The results show that the conversion of capacitance to 

voltage is linear within the operating range of interest. The measurement results also show a 

good correspondence with the theoretical values.   

 

 

4.4 CONCLUSIONS 

 

This chapter discusses the front-end circuit to be used in the prototype micromachined ESG. 

The circuit is completely symmetrical and it is used to measure a differential capacitance 

and convert it to voltage. The design and analysis of the prototype front-end circuit are 

described in detail.   

 

The printed-circuit-board (PCB) prototype of the front-end circuit was built and experiments 

were carried out to evaluate the measurement results with that obtained from theoretical 

calculation and OrCAD/PSPICE simulation. It was found that the operating bandwidth of 

the charge amplifier is in the range between 100 kHz and 1 MHz. The initial test also shows 

that the front-end circuit can convert capacitance to voltage linearly for the capacitance 

variations ΔC, which are equivalent to the displacement of the rotor between 3% and 0.01% 

of the nominal capacitive gap. All measurement results agreed well to theoretical calculation 

and OrCAD/PSPICE simulation. 

 

Note that the front-end circuit described in this chapter is also employed in chapter 7, which 

investigates a use of sidewall electrodes to levitate the mechanically unsuspended rotor.  
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Chapter 5 

Electrostatic Suspension System Based on 

Sigma Delta Modulation 
 

 

5.1 INTRODUCTION 
 

The micromachined ESG requires a closed-loop electrostatic suspension system in order to 

levitate the mechanically unsupported micromachined rotor at the nominal position between 

the upper and lower electrodes. The closed-loop suspension system capacitively senses the 

displacement of the rotor. When the rotor is away from its nominal position, the suspension 

system will apply corresponding voltages to feedback electrodes in order to re-balance the 

rotor. The resulting electrostatic forces can then be used to measure the motion of the 

levitating rotor.  

 

Typically, electrostatic control systems based on analogue force feedback is employed to 

suspend the levitating gyro rotor [15–17, 89]. Figure 5.1 shows the diagram of a basic 

levitating gyroscope with analogue feedback using electrostatic forces. For the sake of 

simplicity, only one degree of freedom along the z-axis is considered here. Assume that the 

rotor is levitated at the middle position between the upper and lower electrodes.  

 

The electrostatic force is non-linear. It is proportional to the square of the voltage and 

inversely quadratically dependent on the distance between the rotor and the electrode. 

Therefore, to achieve linear electrostatic force feedback, the common approach is to apply 

the feedback voltage vfb together with a DC bias voltage VB to the feedback electrodes [136, 

138]. A positive bias voltage is applied to one of the feedback electrode (say, the upper 

electrode), whereas a negative DC voltage with the same magnitude is applied to the lower 

electrode. The net electrostatic force Ffb on the rotor then becomes: 
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where  

ε  = dielectric constant of the air gap,  

Afb  = total area of feedback electrodes and 

zo  = nominal capacitive gap.  

 

For a closed-loop system, small displacements of the rotor, z → 0, can be assumed. The 

quadratic terms cancel and the net electrostatic force can then simplify as shown in equation 

(5.2) where Cfb represents the feedback capacitance formed between the top and bottom 

electrodes and the rotor. 

 

o

Bfb
fbfb z

Vv
CF 2−=      (5.2) 

 

However, in practice, the linearity of the analogue force feedback is also limited by the 

accuracy in matching Cfb,top and Cfb,bottom. 

 

 
 

Figure 5.1 Block diagram of a closed-loop, analogue force-feedback micromachined 

levitating gyroscope. 
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The feedback voltage vfb is generally derived from the output voltage of the front-end 

position measurement circuit. For larger displacements, the front-end circuit gain becomes 

non-linear [139]. This non-linearity will also affect the force feedback loop. For even larger 

deflections, e.g., the rotor is subjected to a shock or at the start-up phase where the rotor sits 

on the bottom substrate, the feedback force will change its polarity and drives the rotor 

towards the electrodes, resulting in the latch-up effect1 [18]. This can lead to instability of 

the sensor system. 

 

Due to these disadvantages, a digital force feedback system based on ΣΔΜ architectures is 

employed in the design of the micromachined ESG. This aims to improve the overall system 

stability compared with an analogue force feedback system. In this chapter, the concept of 

ΣΔΜ force feedback is discussed. Simulations of the micromachined ESG implemented into 

a ΣΔΜ force feedback loop were carried out to investigate the system behaviour and to 

evaluate the overall system performance. Two simulation tools were employed: one is 

OrCAD/PSPICE, which was used to perform simulations at electronic component level; the 

other tool is Matlab/Simulink with which simulations of the micromachined ESG at system 

level were carried out.  

 

 

5.2 THE MICROMACHINED ESG WITH ΣΔM DIGITAL 

FORCE FEEDBACK 
 

The micromachined ESG considered in this work employs a closed-loop electrostatic 

suspension system (ESS) based on electro-mechanical ΣΔΜ force feedback. The role of the 

ESS is to electrostatically levitate the rotor and maintain it at the middle position between 

the upper and lower control electrodes. Furthermore, the output of the ESS can be employed 

to measure both angular and linear displacements of the levitated rotor, which are related to 

input rates of rotation and accelerations. The basic block diagram of the micromachined 

                                                            
1 The latch-up occurs when the rotor is stuck to one side of the electrodes. This is a non-recoverable situation 

requiring a sensor power shut down. 
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ESG implemented with a ΣΔΜ ESS is shown in Figure 5.2. The ESS contains four channels 

of the ΣΔΜ force feedback loop. These four channels are used to control the movement of 

the levitating rotor in the in-plane translation along the z directions and the out-of-plane 

tilting about the x and y axes. The ESS also comprises of the other two channels of the ΣΔΜ 

loop for a control of rotor motion along two in-plane axes (the x and y directions). Each 

channel of the ΣΔΜ feedback loops works independently. 

 

 

 

 
Figure 5.2 Block diagram of the micromachined ESG implemented with a closed loop 

electrostatic suspension system based on ΣΔΜ.  

 

5.2.1 Principle of operation 
 

The basic principle of the ΣΔΜ ESS is similar to that of purely electronic ΣΔΜ low-pass 

analogue to digital converters (ADC) [140]. In general a ΣΔΜ ADC evaluates the input 

signal by measuring the difference between the input and the output, integrating it and then 

compensating for that error at a frequency considerably higher than the sensing bandwidth. 

This is an intrinsic property of a ΣΔΜ, thus, sometimes it is referred to as an oversampling 

system. Typically, a basic ΣΔΜ ADC consists of three important components: (1) a loop 

4-channel ΣΔΜ control loop 

2-channel ΣΔΜ control loop 
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transfer function, (2) a clocked quantiser and (3) a digital-to-analogue converter (DAC). A 

loop transfer function in a general ΣΔΜ ADC is built from integrators. Thus, noise is shaped 

away from frequencies near DC [141]. Such a ΣΔΜ low pass ADC is then normally used for 

low frequency applications. Thus, the ESS based on ΣΔΜ is well suited for navigation grade 

gyroscopes, where a signal bandwidth is about 100 Hz.  

 

The basic principle of operation for each channel can be described as follows (see Figure 

5.2): the sensing element itself acts as a double integrator for frequencies beyond its 

resonance frequency. In the presence of external forces and rotations, the rotor will move 

away from the middle position between the upper and the lower electrodes (i.e. the nominal 

position). The displacement of the rotor is then sensed by a front-end circuit which converts 

the differential change in capacitance into a voltage signal (for more details, see chapter 4). 

The signal is passed on to an electronic compensator in order to ensure system stability by 

adding some phase lead-lag to the control loop. The voltage signal is then followed by a 

clocked comparator with a sampling frequency fs, which is higher than the frequency 

bandwidth of the ESG (100 Hz). In the feedback path, the digital output signal of the 

comparator is then amplified and fed to the feedback electrodes. The sign of the output 

signal of the comparator is used to determine to which electrodes feedback voltages are 

applied to. For example, the output signal of the comparator is +1 when the rotor moves 

away from its nominal position towards the upper electrode and its output is –1 if the rotor 

displaces from its nominal position towards the lower electrode. Then, if the output of the 

comparator is +1, the lower feedback electrodes are activated and vice versa. Generally 

speaking, only feedback electrodes that the rotor is further away from are applied with 

positive and negative fixed feedback voltages ±Vfb, while the feedback electrodes closer to 

the rotor are grounded. This generates electrostatic forces pulling the rotor back to its 

nominal position. By assuming there is negligible movement of the rotor during one 

sampling period, the net electrostatic forces are approximately constant. This assumption is 

valid by the short duration of a clock cycle compared to the dynamics of the micromachined 

ESG. Thus, normally the electromechanical ΣΔΜ control loop is designed to use a sampling 

frequency far higher than the bandwidth of the sensing element. 
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5.2.2 Linear model of the micromachined ESG with ΣΔΜ force feedback 
 

A ΣΔΜ control system consists of a non-linear component (i.e. a comparator/quantiser) that 

cannot be linearised easily. This makes it complicated and difficult to analyse.  For the 

purposes of analysis, such a comparator is normally replaced by an arbitrary gain element 

with added quantisation noise, which is white. Thus, the micromachined ESG under 

consideration (Figure 5.2) can be modelled as a linear block diagram shown in Figure 5.3. 

The transfer functions of the sensing element are defined in section 3.4. In the presence of 

the input rotation rates and inertial forces, the rotor will be displaced away from its nominal 

position. The displacement of the rotor is sensed and, in turn, converted to a voltage signal 

by the front-end interface with a gain constant kpo. The gain constant kpo can be expressed as: 

kpo = kxkc where kx is the gain constant relating the displacement variation of the rotor to the 

differential change in capacitance as defined in equation (3.25). kc is the capacitance-to-

voltage sensitivity of the front-end circuit as expressed in Equation (4.10). The simulation 

results in OrCAD/PSPICE shows that the gain kc is 9.74 V/pF (see section 4.3). The 

feedback gain kF is given by equations (3.36) – (3.38).  

 

The compensator provides some phase lead to compensate for the phase lag introduced by 

the micromachined ESG. The transfer function of the compensator can be expressed in the 

Laplace’s domain as: 

 

ps
zsCs +

+
=    `  (5.3) 

 

where z and p are the zero and pole frequencies in radians per second. To provide phase lead 

in the correct frequency range (i.e., between the resonant peak of the micromachined ESG 

and the sampling frequency), the pole and zero frequencies are chosen so that p > 2πfs > z. 

The comparator is linearlised and modelled as a quantiser gain kQ with the introduced 

quantisation noise NQ.  

 

Each channel of the ΣΔΜ control loops individually provides one-bit output stream tracking 

the input rotations rates and/or accelerations. In order to retrieve the input signals (i.e., maz, 
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ωx and ωy) the digital output bitstreams (BS) from the four-channel ΣΔΜ are summed as 

expressed in equations (5.4) – (5.6)  

 

zz maBSBSBSBSBS ∝+++= 4321 ,                  (5.4) 

( )yxwx MBSBSBSBSBS ω∝−−+= 4321 ,                 (5.5) 

( )xywy MBSBSBSBSBS ω∝−++−= 4321 ,              (5.6) 

 

where subscript 1 – 4 denote the channel of the ΣΔΜ control loops. The input signals max 

and may can be retrieved by BSx and BSy, respectively. 

 

 

 
 

Figure 5.3 Linear model of the micromachined ESG implemented with a closed loop 

electrostatic suspension system based on ΣΔΜ.  
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The outputs (i.e., BSx, BSy, BSz, BSwx and BSwy) can now be written in terms of the inputs (i.e., 

max, may, maz, ωx and ωy) and noise introduced by the quantisers as follows: 

 

a) in the case of BSx: 
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Equation (5.7) can then be reworked as: 
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is defined as a noise transfer function (NTF) 

relating the output signal to the quantisation noise (in the absence of the input inertial force) 

and the term ( )⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−++ sxQxpoxFxxxx

sxQxpox

Ckkkksbsm
Ckk

2 is defined as a signal transfer function (STF) 

relating the output signal to the input inertial force when no quantisation noise. 

 

b) in the case of BSy:  

 

The relationship between the output and the two inputs may and NQy is similar to the case of 

BSx: 
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and 
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c) in case of BSz: 
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Equation (5.10) can then be reworked as: 
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c) in case of BSwx and BSwy: 
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Rework these two equations yields: 
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Equations (5.9), (5.10), (5.11), (5.14) and (5.15) present the characteristics of the output 

bitstreams BSx, BSy, BSz, BSwx and BSwy in terms of the signal and noise transfer functions. 

However, a numerical evaluation of the above equations is problematic since it is difficult to 

estimate the quantiser gain kQ. The general approach is to simulate the system using 

Matlab/Simulink model, which is described in the next section. 

 

 

5.3 SIMULATION OF THE ELECTROMECHANICAL ΣΔΜ 

MICROMACHINED ESG 
 

This section presents simulations of the micromachined ESG with the ΣΔΜ electrostatic 

suspended system. The purpose of the simulations at system level is to analyse the behaviour 

and performance of the system. More importantly, the simulations are performed in order to 

investigate the stability of the closed-loop sensor with digital ΣΔΜ force feedback because a 

linear analysis is not suitable for predicting the stability of the ΣΔΜ system [139].  

 

In this thesis, two simulation software packages, i.e. Matlab/Simulink and OrCAD/PSPICE, 

are used to model the micromachined ESG with the ΣΔΜ closed-loop control system. 

Matlab/Simulink is a simple, yet powerful tool to study the behaviour of the whole system at 

system level. It allows the integration of sensor dynamics together with a mixed-signal 

electronic interface by using mathematical models. It is mainly used to perform simulations 

for system analysis in this chapter. The other tool employed in this study is OrCAD/PSPICE 

which is used to simulate the device system at electronic-level. The OrCAD/PSPICE model 

provides more realistic insight into the system behaviour and performance as it takes into 

account of various effects, such as non-idealities of electronic components, saturation effects 

and electrical feedback signals coupling to a sensing circuit. However, the drawback of 

OrCAD/PSPICE simulations is simulation time. Therefore, the OrCAD/PSPICE model was 
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developed only just to simulate the stability of the micromachined ESG with ΣΔΜ feedback, 

in particular, at the “start-up” phase. This was carried out to ensure that the closed loop ESS 

is able to levitate the rotor when it sits on stoppers at the bottom substrate and maintain the 

rotor at the mid-position between the upper and lower electrodes. Furthermore, the 

OrCAD/PSPICE model was performed to compare results to the Matlab/Simulink model, 

which has much faster simulation time.  

 

5.3.1 Matlab/Simulink model 
 

This section presents Matlab/Simulink models of the micromachined ESG with the digital 

ΣΔΜ ESS. Two models were developed. The first model (Figure 5.4) was implemented by 

considering only the behaviour of the micromachined ESG for the motion along the z axis 

(levitation direction), thus hereafter also called the “concise” model. It was developed for a 

purpose: to predict the stability and behaviour of the device system at the start-up phase. The 

simulation results were also compared to those obtained from the OrCAD/PSPICE model 

(discussed in section 5.3.2). This model assumes that only one channel of a ΣΔΜ control 

loop is implemented to control the position of the rotor along the z axis.  

 
 

Figure 5.4 Matlab/Simulink model of the micromachined ESG with a closed loop ESS 

based on ΣΔΜ. 
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The concise Matlab/Simulink model contains several building blocks as follows: the model 

of the micromachined ESG for the motion along the z direction is shown in a yellow 

building block. It is a second-order mass-spring-damper model (see chapter 3) including an 

over-range displacement stoppers2. The displacement of the rotor is then converted into the 

differential capacitance using a building block dC/dz. The model of the electronic interface 

is shown in light-blue building blocks, including a front end circuit, a lead-lag compensator 

and a clocked comparator. The clocked comparator was modelled using a zero-order hold 

building block, which represents a sample and hold clocked at the sampling frequency, and 

an ordinary comparator building block. The output of the comparator controls switches that 

decide the sign of the feedback force; in other words, whether the rotor is pulled up or down. 

The concise model also includes major internal disturbances; for example, the gravity force 

(mg), electrostatic forces generated from the excitation voltages required for the position 

measurement circuit and the op-amp non-idealities (i.e. saturation voltage, bandwidth and 

finite gain). 

  

The second Matlab/Simulink model shown in Figure 5.5 was developed to simulate the full 

system of the micromachined ESG, hereafter also called the full model. The model takes 

into account of motions in five degrees of freedom, i.e. the translation of the rotor along the 

x, y and z axes and the rotation of the rotor about the x and y axes. The dynamics of the 

sensing element is shown in a yellow-colour building block. The dynamics of the rotor 

spinning about its main axis (the z-axis) is neglected. The rotor is assumed to spin at a 

constant speed. Light-blue building blocks represent the front-end capacitive readout circuit 

and electronic interface. As discussed earlier, clocked comparators were modelled using a 

zero-order hold building block connecting in series with an ordinary comparator. The output 

of the comparator in each channel controls switches that decide whether the feedback 

voltages are applied to the upper or lower feedback electrodes. The conversion of the 

feedback voltages to electrostatic forces and moments is modelled by a white building block. 

 

5.3.2 OrCAD/PSPICE model 
                                                            
2 Separate mechanical stoppers were designed to prevent the rotor touching the electrodes which will lead to a 

short circuit problem. 
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The model of the micromachined ESG incorporating into a ΣΔΜ feedback control system at 

electronic level was implemented in OrCAD/PSPICE. Due to the simulation time issue as 

mentioned in the beginning, just only the behaviour of the micromachined ESG in the z 

direction was considered. This OrCAD/PSPICE model was developed to investigate the 

behaviour of the device in the z axis (the levitation direction) and, in particular, to ensure the 

stability of the sensor when it is operated from the start-up.  

 

Figure 5.6 shows the OrCAD/PSPICE model of the sensing element, which was 

implemented using the analogue behavioural modelling library [134, 142]. The model is the 

second-order mass-spring-damper representing the rotor motion along the z axis. The 

variable sense and feedback capacitors were modelled by the use of two OrCAD/PSPICE 

components, i.e. function blocks and time-variable admittances [143], as illustrated in Figure 

5.7. Two function blocks convert the displacement of the rotor into the signal which 

represents the imbalance in capacitance. The variable admittances X1 and X2 represent the 

top and bottom excitation capacitors, respectively. The admittances X3 and X4 are the top 

and bottom sense capacitors. The top and bottom feedback capacitors were included into the 

OrCAD/PSPICE model using the admittances X5–X7. These feedback capacitors were 

modelled to examine whether or not the feedback signals are coupled into the pick-off 

circuit. This may influence to the system stability. The sinusoidal carrier signal Vcarrier 

with a frequency of 1 MHz was used as the excitation voltage source.  A high value resistor 

Rdummy was required to prevent a floating point error. 
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Figure 5.5 Matlab/Simulink model of the micromachined ESG implemented into the multi-

channel ΣΔΜ electrostatic suspension system. 
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Figure 5.6 OrCAD/PSPICE model of the sensing element for the motion along the z axis 

and function blocks representing electrostatic forces generated from voltage applied to top 

and bottom electrodes. 

 

 

 

 

 

 

Dynamics of the micromachined ESG 

Electrostatic forces generated from 

voltage on top and bottom electrodes 
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Figure 5.7 OrCAD/PSPICE model of variable capacitors formed between top/bottom 

electrodes and the rotor. 
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Figure 5.8 OrCAD/PSPICE model of the front-end interface and a ΣΔΜ feedback loop for 

the micromachined ESG. 
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The front-end interface and a ΣΔM control circuit are shown in Figure 5.8. The front-end 

interface converts the differential capacitance to the single-end output voltage. Its principle 

of operation is discussed in chapter 4. A phase compensator is added into the loop in order 

to compensate phase lag resulted from the double integration characteristics of the sensing 

element and phase delay in electronic components. The output is then digitised by a clocked 

comparator, which is implemented in OrCAD/PSPICE by a comparator AD8561 and a D-

type flip flop. The electrode-selection switches were modelled by a SPICE model of a 

commercial discrete component, ADG441 [144]. Conversion of the output feedback 

voltages to electrostatic forces is done by two function blocks as illustrated in Figure 5.6. 

 

5.3.3 Stability analysis 
 

In this section, the stability analysis of the closed-loop micromachined ESG under two 

circumstances was investigated. The first simulation was carried out to examine the stability 

of the system at the start-up phase. As mentioned earlier in chapter 3, the rotor has no 

mechanical connection to a substrate and thus during the start-up it does not stay in the 

middle position between the upper and lower electrodes, rather it sits on the bottom 

electrodes. As the distance of the rotor with respect to the middle position is relatively large, 

it can result in a nonlinear effect in the force feedback process, which may lead to system 

instability. Therefore, the simulation was carried out to ensure that the closed-loop ESS is 

able to levitate the rotor from the bottom substrate and keep it floating at the centre between 

the upper and lower electrodes (i.e. the so-called nominal position). The second simulation 

carried out in this section is to evaluate the stability and performance of the closed-loop 

micromachined ESG when it experienced the input acceleration only along the levitation 

axis (the z-axis).  

 

The simulations considered in this section were performed using OrCAD/PSPICE model 

and the concise Matlab/Simulink model. The micromachined ESG having the following 

parameters is used: m = 3.73 mg, bz = 4.66 nNm/s, kz = 16 Nm, CE(T,B) = 6.25 pF, Cs(T,B) = 4 

× 1.54 pF and Cfb(T,B) = 4 × 1.88 pF. For the sensing element with a closed-loop control 

system, the damping coefficient bz can be assumed as a constant value. The parameters 

related to the closed-loop ΣΔΜ control system are given in Table 5.1. 
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At the start-up, assume that the rotor sits on stoppers at the bottom substrate and thus the 

initial distance of the rotor is 1 μm below the nominal position. Figure 5.9 shows the 

simulation results which present the system behaviour of the micromachined ESG at the 

start-up phase. The upper trace shows the displacement of the rotor along the z axis, the 

middle trace showing the feedback force and the bottom trace showing the output bitstream. 

It can be seen that at the start-up phase the feedback force shows a non-linear behaviour and 

its magnitude is not constant. However, it is apparent that the control system can cope with 

this large displacement. After transient-state behaviour, the control system captures the rotor 

and ensures that the rotor is maintained at the middle position between the electrodes. When 

the rotor reaches steady state (i.e. the rotor levitating at the nominal position), the waveform 

of the output bitstream indicates a limit cycle frequency changing between fs/4 and fs/6 (see 

5.9b). This is the expected behaviour of the second-order ΣΔM system [125]. From Figure 

5.9a and 5.9b, both OrCAD/PSPICE and Matlab/Simulink simulations show similar results 

and have a good agreement to each other. 

 

Table 5.1: System parameters of the closed-loop ESS which are employed in the system 

stability analysis.  

Parameters Value 

Sampling frequency, fs (kHz) 128 

Signal bandwidth, BW (Hz) 1024 

Excitation frequency, fex (Hz) 1 × 106 

Feedback voltage, Vfb (V) ±15 
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(a) OrCAD/PSPICE 

 
(b) Matlab/Simulink 

 

Figure 5.9 System response at the start-up phase, assuming the rotor sits on the stoppers at 

the bottom substrate (1 μm below the nominal position). The top trace shows the 

displacement of the rotor, middle trace showing the feedback forces and bottom trace is the 

digital output bitstreams. 
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Figure 5.10 shows the system response when the micromachined ESG experiences 

acceleration along the z direction. The acceleration is a sinusoidal signal and has a peak 

magnitude of 1 g (1 g = 9.8 m/s2) and a frequency of 1 kHz. The upper trace shows the input 

force due to the applied acceleration, the middle trace the displacement of the rotor in the z 

axis direction and the bottom trace the pulse-modulated output bitstreams. The simulations 

were carried out by assuming the rotor is already levitated in the middle position between 

the upper and lower electrodes. It was found that the rotor displaces up and down about 5 

nm below the centre position between the upper and lower electrodes. The maximum 

displacement of the rotor was ±5 nm as a result of the input acceleration. The offset 

displacement of 5 nm was resulted from the constant force of gravity (mg). Figure 5.11 

shows the power spectral densities (PSD) of the output bitstream in the above simulation. A 

peak value was found at the input frequency (1 kHz). This indicates that the output bitstream 

can be employed to track the input acceleration. Furthermore, the spectra showed the 

expected noise-shaping characteristics of the second-order ΣΔΜ control system. Both 

OrCAD/PSPICE and Matlab/Simulink simulations showed results that have a good 

agreement to each other, although the OrCAD/PSPICE simulation yields a lower signal to 

quantisation noise ratio3 (SQNR) than that of Matlab/Simulink simulation (SQNR = 50 dB). 

However, these simulations revealed the potential of the designed electrostatic suspension 

system for being used to levitate and suspend the rotor. A good agreement between 

OrCAD/PSPICE and Matlab/Simulink simulations indicates that the Matlab/Simulink tool 

can be employed to investigate the behaviour of the micromachined ESG and also to 

evaluate its performance.   

                                                            
3 SQNR is the ratio of the signal present to the noise generated by the ΣΔΜ control system. 
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(a) OrCAD/PSPICE 

    
 

(b) Matlab/Simulink 

 

Figure 5.10 Device response when ±1 g sinusoidal acceleration with a frequency of 1 kHz is 

applied. The top trace shows the input acceleration, middle trace showing the displacement 

of the rotor and bottom trace is the digital output bitstreams. 
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(a) OrCAD/PSPICE 

 
 

(b) Matlab/Simulink 

 

Figure 5.11 Power spectral densities of the output bitstreams when ±1 g sinusoidal 

acceleration with a frequency of 1 kHz is applied 
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5.3.4 Simulink simulations of the multi-axis micromachined ESG  
 

Simulations of the full model of the micromachined ESG with digital ΣΔΜ force feedback 

(see Figure 5.5) were carried out at system level using Matlab/Simulink. The purpose of the 

simulations was to investigate the system behaviour and also to evaluate the performance of 

the sensor. The sensor parameters given in Table 3.3 were used in the following simulations.  

 

5.3.4.1 Cross coupling issue 

 

As mentioned in chapter 2, the so-called quadrature error coupling between drive and sense 

modes has been the major problem in the design of conventional vibration-type 

micromachined gyroscopes. However, the quadrature error is inherently ruled out with the 

design of the micromachined ESG. Rather, in the micromachined ESG a precession torque 

from one gyro axis can be coupled into the other gyro axis due to its operating principle (see 

equations (3.13) and (3.14)). This may decrease the performance of the sensor. In order to 

investigate the effect of the cross coupling, the gyro model was developed as shown in 

Figure 5.12. The model includes the aforementioned cross coupling issue.  

 

The parameters related to the closed-loop ΣΔΜ control system are given in Table 5.2. 

Assume that the micromachined ESG experienced the rotation about the x axis only. The 

input rotation rate is a sinusoidal signal having a magnitude of ±10 rad/s and a frequency of 

48 Hz. The output bitstreams from four channels were summed according to equations (5.4) 

– (5.6) to extract ωx, ωy and Fz. Figure 5.13 shows the power spectrum densities of the 

summed output bitstreams. As can be seen from the figure, only the ωx signal was observed 

at the My output bitstream; there was no peak signal at 48 Hz induced into the other axis, 

hence no cross coupling can be observed. A SQNR was calculated from the PSD of the My 

output bitstream, yielding 72 dB.  
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Table 5.2: System parameters of the closed-loop ESS which are used in the full-model 

Simulink simulations. 

Parameters Value 

Sampling frequency, fs (kHz) 512 

Signal bandwidth, BW (Hz) 128 

Excitation frequency, fex (Hz) 1 × 106 

Feedback voltage, Vfb (V) ±15 

  

 

 

 
 

Figure 5.12 the gyro model implemented in Matlab/Simulink simulations. 
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Figure 5.13 Device responses when only rotation about the x axis was applied. The input is 

a sinusoidal signal with the rotation rate of ± 10 rad/s and a frequency of 48 Hz. 
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5.3.4.2 Multi-axis sensing 

 

A Simulink simulation in this section was carried out to evaluate a multi-axis sensing 

capability of the micromachined ESG. Assume that three sinusoidal signals were 

simultaneously applied to the micromachined ESG: the rotation rate about the x axis ωx 

having a magnitude of ±10 rad/s and a frequency of 16 Hz, the rotation rate about the y axis 

ωy having a magnitude of ±10 rad/s and a frequency of 48 Hz and the acceleration along the 

z axis az with a ±1 g magnitude and a frequency of 4 Hz. 

 

The parameters related to the closed-loop ΣΔΜ control system are given in Table 5.2. Figure 

5.14 shows the power spectrum densities of the summed output bitstreams. The result 

revealed that the full system micromachined ESG has the ability to measure rotation rates 

and acceleration simultaneously. The Mx output bitstream represents the ωy signal, the My 

output bitstream represents the ωx signal and the Fz output bitstream is related to the az input 

signal. The SQNR of these three output bitstreams are 64 dB for the Mx, My bitstreams and 

69 dB for the Fz bitstream. Compared to Figure 5.13, it can be seen that the SQNR of the My 

bitstream reduced from 72 dB to 64 dB, due to the level of the quantisation noise increased. 

The cross coupling between the Mx and My bitstreams can be observed; however its 

magnitude is the same level as the quantisation noise. 

 

To evaluate the performance of the micromachined ESG with the designed ΣΔΜ control 

system, the SQNR with regard to the variation of the input signals applied to the device 

system was calculated. For example, the magnitude of the rotation rate about the x axis was 

varied. Then, only the SQNR of the My bitstreams was considered. The SQNR plot 

corresponding to various magnitudes of the rotation rate is shown in Figure 5.15. As can be 

seen from the figure, the micromachined ESG can be used to measure the rotation rate in the 

range of 0.01 – 10 rad/s. The input rate of rotation below 0.01 rad/s, the SQNR became 

dominated by the quantisation noise. It can also be seen that beyond 10 rad/s the SQNR 

dropped dramatically. This is because the magnitude of the electrostatic force generated 

from the feedback voltage ±15 V is not enough to counteract the input rotation. 
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Figure 5.14 Power spectral densities of all three degrees of freedom assuming three input 

signals, ωx, ωy and Fz with three different frequencies, 48, 16 and 4 Hz, respectively, were 

applied to the device. 

Frequency [Hz] 

PS
D

 fo
r t

he
 M

x o
ut

pu
t b

its
tre

am
 [d

B
] 

PS
D

 fo
r t

he
 M

y o
ut

pu
t b

its
tre

am
 [d

B
] 

PS
D

 fo
r t

he
 F

z o
ut

pu
t b

its
tre

am
 [d

B
] 

Frequency [Hz] 

Frequency [Hz] 

a peak signal of  

the input ωx

SQNR = 64 dB 

a peak signal of  

the input ωy

SQNR = 64 dB 

a peak signal of  

the input az

SQNR = 69 dB 



Chapter 5  Electrostatic Suspension System Based on Sigma Delta Modulation 132

 

 

 
Figure 5.15 SQNR of the output bitstream BSwx for various input rate of rotation about the x 

axis ωx. Assume that the feedback voltage is ±15 V which is limited by the maximum supply 

voltage of a commercial available analogue switch, ADG441. 

 

 

5.3.5 Noise analysis 
 

Typically, there are three main noise sources limiting the performance of the micromachined 

ESG, i.e. mechanical, electronic and quantisation noises. These noise sources generally limit 

the minimum detectable rotation rate signal of the device. The mechanical noise Mn is 

introduced by Brownian motion of the rotor [31]. This can be calculated by equating the 

Brownian motion to the displacement caused by the precession torque for the minimum 

detectable input rotation rate, ΩMNE:   
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      BWTBkIM yxBMNEzzn ,4=ΩΩ=             (5.16) 

 

Therefore, ΩMNE of the micromachined ESG can be estimated as: 

 

   
zz

yxB
MNE I

BWTBk

Ω
=Ω

,4
                           (5.17) 

 

where  

kB  = Boltzmann constant = 1.38 × 10-23 J/K,  

T  = absolute temperature, 

x,y = subscripts that incidate the x and y axes,  

B  = damping coefficient and 

BW = signal bandwidth.  

 

For the designed device dimension, assuming the rotor spins at 10,000 RPM, BW = 100 Hz 

and the device working at a room temperature (300 K), the thermo-mechanical noise 

equivalent rate signal will be approximately 0.027 deg/hr. Note that the mechanical noise 

can be reduced even further by increasing the moment of inertia and the spin speed of the 

rotor and also by reducing the damping coefficient.  

 

An electronic interface circuit also introduces noise to a device system due to thermal noise 

sources in electronic devices. In a ΣΔM force feedback system, the so-called quantisation 

noise is present, which is introduced by the analogue to digital conversion process. The 

quantisation noise is less significant than the other two noise sources as it is relatively easy 

to push the quantisation noise floor to a level below any other intrinsic noise sources. This 

can be achieved by increasing the sampling frequency of the sigma-delta modulator and/or 

by the use of higher order electromechanical ΣΔM [105, 145]. 

 

Simulations in Matlab/Simulink were performed to evaluate the signal-to-noise ratio (SNR) 

and power spectral density (PSD) of the full system corresponding to mechanical and 

electronic noise. The block diagram of the micromachined ESG which includes all noise 
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sources is shown in Figure 5.16. Brownian noise was added at the input of the device system. 

Electronic noise sources were also added at the input of all building blocks which are related 

to electronic interface. The most importance source is at the input of the front-end circuit.  

 

Simulations were carried out using device and system parameters in Table 3.3 and 5.3, 

respectively. The external acceleration was applied to the z axis, which was assumed to be a 

sinusoidal ±1 g signal at a frequency of 100 Hz. Figure 5.17 shows comparisons of the PSD 

of the system with and without noise sources. The rotation rate about the y axis with ± 10 

rad/s peak-to-peak amplitude at a frequency of 100 Hz was assumed as the external input. 

The corresponding PSD of a simulation with and without noise sources are shown in Figure 

5.18. As obvious from those figures, the electronic noise is the most significant noise source 

reducing the SNR of the micromachined ESG. It was found that the SNR was decreased by 

approximately 20 dB (for acceleration measurement) and 10 dB (for rotation rate 

measurement).  

 

 
 

Figure 5.16 Simulink model of the micromachined ESG for noise analysis. A Brownian 

noise source is added to the input of the sensing element. Electronic noise sources are added 

to the input of the front-end circuit, low-pass filter and lead compensator circuits. 

 

Table 5.3: Simulink parameters employed in the simulation for noise analysis. 



Chapter 5  Electrostatic Suspension System Based on Sigma Delta Modulation 135

 

 

Parameters Value 

Sampling frequency, fs (kHz) 512 

Signal bandwidth, BW (Hz) 128 

Input signal frequency, fin (Hz)  100 

Excitation frequency, fex (Hz)  106 

Feedback voltage, Vfb (V) ±15 

Rotor spin speed, Ωz (RPM) 10,000 

Input referred op-amp noise, Vn (nV/√Hz) 20 

Mechanical noise floor, gn (µg/√Hz)  0.02 

Minimum detectable input rotation rate, ΩMNE (deg/hr/√Hz) 0.0027 

 

 
 

Figure 5.17 Power spectral densities of a simulation with noise sources. The input signal 

was a sinusoidal ±1 g at 100 Hz, applied to the z axis.   
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Figure 5.18 Comparisons of power spectral densities of the ΣΔM micromachined ESG 

with/without noise sources. The rotation rate about the y axis, with a sinusoidal ± 10 rad/s at 

100 Hz, was assumed as the input signal.   

 

 

5.4 CONCLUSIONS 
 

This section presented the design and simulations of the closed-loop electrostatic suspension 

system to be implemented together with the micromachined ESG. The ESS was based on 

ΣΔΜ force feedback. It was employed to levitate and maintain the rotor at the mid-position 

between the upper and lower electrodes. The output bitstream of the ESS can also be used to 

measure the linear and angular displacements of the rotor and thus the input acceleration and 

rotation rates.  
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In order to investigate the stability of the device system, OrCAD/PSPICE and 

Matlab/Simulink models were developed. The simulations were carried out to ensure that 

whether or not the closed-loop ESS is able to levitate the rotor at the start-up phase where 

the rotor sits on stoppers at the bottom substrate. The result shows that the developed ESS 

can be levitate the rotor and maintain it at the mid-position between the upper and lower 

electrodes. Both simulation results obtained from OrCAD/PSPICE and Matlab/Simulink 

model gave similar results and agreed well with each other. The output bitstream showed the 

expected characteristic of a second-order ΣΔΜ. Its power spectrum density revealed the 

ΣΔΜ noise shaping. The results showed the potential of the developed ESS to be used 

together with the micromachined ESG.    

 

The full system model was developed in Matlab/Simulink. This model was employed to 

evaluate the performance of the micromachined ESG implemented with a ΣΔΜ feedback 

control system. The first simulation was carried out to investigate the cross coupling issue 

when the device experienced the rotation rate about one input axis. As can be seen from the 

power spectrum densities of the summed output bitstream, no sign of cross coupling was 

found. When three input signals, i.e. rotation rate about the x and y axes and the acceleration 

along the z direction, were applied to the micromachined ESG, it was found that the level of 

the noise floor increased and thus the SQNR is reduced. The simulation also revealed that 

the micromachined ESG with the designed ESS can be measure the input rotation rate in the 

range between 0.01 – 10 rad/s. 

 

In addition, two main noise sources, which limit the performance of the developed 

micromachined ESG, were analysed. The first one is a mechanical noise source generated 

from Brownian motion of air molecules under room temperature. The mechanical noise is 

proportional to the damping coefficient of the sensing element. Typically, the 

micromachined ESG is operated under vacuum pressure and thus the mechanical noise is 

relatively low compared to other noise sources. From noise analysis, it can be seen that the 

noise floor and SNR of the micromachined ESG were limited by intrinsic thermal noise 

generated from electronic components, especially noise at the input of the front end interface. 

This shows that special attention should be paid in the design and development of low-noise 

electronic interface. 
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Chapter 6 

Device Fabrication 
 

 

6.1 INTRODUCTION 
 

With current microfabrication technology, the realisation of a frictionless microstructure 

having no mechanical connection to a substrate is considerably challenging. For the 

micromachined ESG, it must be ensured that a fabricated rotor is encaged within a cavity 

and can move freely in six degrees of freedom. Several microfabrication techniques, 

including surface micromachining [86, 89, 92], high-aspect-ratio electroplating [107, 108] 

and glass/silicon/glass bonding [9, 16, 17], have been investigated by several research 

groups to develop a micromachined rotor with no mechanical bearing. The fabrication based 

on surface micromachining suffers from the adhesion of the rotor and the substrate, also 

known as stiction problem. This is usually caused when a device is removed from aqueous 

solutions after wet etching of a sacrificial layer. Capillary forces originating from the 

dehydration of liquid residue pulls the rotor towards the substrate and thus the stiction 

occurs. However, this release-stiction can be alleviated by vapour-phase HF etching and 

CO2 supercritical point drying. The other problem is in-use stiction which occurs during 

operation when the rotor came into contact to the substrate. This is due to the thickness of 

the surface-micromachined rotor is relatively thin, typically in the order of two to ten 

microns. When electrostatic forces are applied to some area of the rotor, it may be bent and 

bonded to the substrate. In order to alleviate the problem, the microfabrication based on bulk 

micromachining has gained more interest. Bulk micromachining generally involves multiple 

wafers, which are stacked together using bonding techniques [16, 17, 102]. At the University 

of Southampton, two fabrication processes have been investigated in the development of a 

micromachined accelerometer employing a levitating proof mass, including nickel 

electroplating [107, 108] and a combination with glass/silicon/glass bonding and DRIE 

processes [12]. The latter approach revealed promising results, i.e. simpler and batch 
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fabricatable. Therefore, the fabrication process of the micromachined ESG was developed 

based on glass/silicon/glass bonding in a combination of a high-aspect-ratio DRIE process. 

This chapter presents in detail the fabrication process flow, followed by fabrication results 

and processing issues. 

 

 

6.2 PROCESS FLOW FOR THE MICROMACHINED ESG 
 

This section describes the developed fabrication process for the micromachined ESG. The 

fabrication process of the micromachined ESG was started with two different rotor 

dimensions: 2 mm and 4 mm diameters. The device was fabricated using one 4-inch silicon 

wafer and two 4-inch glass substrates. The silicon wafer is N-type (100), 200 µm thick, 

double-side polished with a resistivity of 0.001-0.005 Ω-cm. The glass wafers are 525 µm 

thick, double-side polished, borosilicate Pyrex 7740. The fabrication on glass wafers 

requires three photolithographic masks. The process sequence for top and bottom Pyrex 

wafers is the same, but with different mask designs. The process sequence for the silicon 

wafer consists of only one single mask, for high-aspect-ratio DRIE through the wafer. The 

complete fabrication process flow is shown in Figure 6.1. Full detail of the process flow is 

described in Appendix B.  

   

Firstly, the glass wafers were cleaned to remove surface contaminations in a piranha 

solution, a 3:1 mixture of concentrated sulfuric acid (H2SO4) with hydrogen peroxide (H2O2). 

Then, the capacitor gap and stoppers were patterned and etched in two steps into the glass 

wafers by using standard photolithography and wet etching in hydrofluoric (HF) -based 

solution (Figure 6.1a and 6.1b). The first etch defined a 1 µm gap spacing between the rotor 

and stoppers. The second etch defined the capacitor gap (3 µm) and also the mechanical 

stoppers, which prevent the rotor making direct contact to the electrodes and therefore 

preventing a short circuit and stiction. After etching, 200 Å/500 Å/2500 Å thick 

Chrome/Platinum/Gold (Cr/Pt/Au) layers were evaporated and patterned using a lift off 

process to form control electrodes and wire bond pads (Figure 6.1c). 
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(a) 

Glass wafer is cleaned and 

then etched to define a gap 

spacing between the rotor 

and stoppers. 

(b) 

A second wet etch is 

performed to define 

stoppers and a capacitive 

gap. 

(c) 

Cr/Pt/Au metal layers are 

deposited and patterned 

using Lift-off technique.  

 
 

(d) 

Silicon wafer is bonded to 

the bottom glass substrate 

and then aluminium layer is 

coated on the backside 

using sputtering. 

 

(e) 

Silicon wafer is etched 

through to release a rotor 

and also define sidewall 

electrodes 

 

(f) 

Anodically bond a top 

wafer to silicon/glass 

substrate. Then, the stack is 

diced into small chips.  

Figure 6.1 Process flow of the developed micromachined ESG. 
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The bare silicon and bottom glass substrates were initially cleaned in solvent solutions 

(acetone, followed by IPA) to remove surface contaminations prior to anodic bonding. They 

were then electrostatically bonded together using a Karl Suss SB6e bonder (Figure 6.1d). 

Prior to the bonding operation, the two wafers were separated by spacers and the bonder 

chamber was pumped down to 1×10-5 torr. During the pump-down step, both wafers were 

heated up. When the temperature reached the pre-set value (350 °C), the two wafers were 

brought into contact and the spacers were pulled out. Anodic bonding was then carried out 

by applying a negative voltage to the glass substrate in multiple steps, starting from –250 V 

to –800 V, under a contact force of 400 N. With this procedure, the air trapped between the 

two wafers has enough time to escape towards the edges of the wafer, resulting in void-free 

and uniform bonding. After bonding, a 1000 Å thick aluminium layer was deposited on the 

back side of the glass substrate by sputtering. It needs to be ensured that the rims of both 

wafers are covered by the aluminium layer. This step forms the electrical contact between 

the two wafers, which is necessary for triple-wafer stack bonding. 

 

10 µm thick AZ9260 photoresist was spun on the front surface of the silicon wafer as the 

mask for DRIE. The photoresist layer was then exposed to a UV radiation and developed in 

a 1:3 mixture of commercial developer AZ400K and DI water. Before etching, the device 

wafer was mounted to a handle wafer using thermal cool grease (AI Technology, Inc.). The 

DRIE process step etched the silicon wafer all the way through (Figure 6.1e) and not only 

released the rotor, but also defines a capacitor gap between the rotor and the sidewall 

electrodes. After the rotor was freed, the AZ9260 mask was stripped off using oxygen 

plasma etching and the handle wafer was removed using isopropyl alcohol. 

  

The top glass wafer was cleaned in solvents, followed by the triple-wafer stack bonding step. 

The wafers were aligned and anodically bonded by the Karl Suss MA6/SB6e. At this step, 

the top electrodes were electrically connected to the bottom bond pads via silicon pillars. 

The wafer was then diced to open the wire bond pads and also to separate the sensors into 

small chips (see Figure 6.1f). Finally, the sensor was wire bonded to a ceramic chip package 

for further testing. 

 

Due to a fire, the entire Southampton University cleanroom facility was destroyed in 

October 2005, the fabrication of the micromachined ESG described above was carried out in 
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two different places in the United States: the microfabrication laboratory (MFL) at the Case 

Western Reserve University and the Michigan nanofabrication facility 1  (MNF) at the 

University of Michigan. The prototype micromachined ESGs were fabricated, but, 

unfortunately, problems were found in all of the fabricated devices. It was found that none 

of them came out working due to the fabricated rotor was stuck inside the cavity. In the 

following section, the developed process flow is discussed in detail. Fabrication problems 

and issues are also addressed. 

 

 

6.3 RESULTS AND DISCUSSION 
 

This section describes in detail the developed processes for the fabrication of the 

micromachined ESG. The first section presents the glass etching and its results. Next, 

material selection and processing for the metal deposition are discussed. The detailed 

processing and recipe for the anodic bonding are then described, followed by the deep 

etching of silicon bonded on a glass substrate. Lastly, the triple-wafer stack bonding and its 

issues are presented. At last, the wafer dicing and associated problems are discussed.  

 

6.3.1 Glass etching 
 

A Corning Pyrex 7740 glass wafer is not a pure silicon dioxide, but also has other 

components, i.e. 80.6% SiO2, 13% B2O3, 4% Na2O, 2.3% Al2O3, etc. [146]. This makes 

glass etching difficult since each component has a different etch rate, resulting in an etched 

surface with considerable roughness. For the micromachined ESG, glass etching is 

important as it defines the capacitive gap between the rotor and the upper and lower control 

electrodes. Any variation of the gap spacing will affect the device sensitivity, hence 

potentially degrading the performance of the device. Therefore, the glass etching solution 

should provide a uniform and smooth etch surface. Two different HF-based solutions, 7:1 

buffered oxide etch (BOE) and a mixture of hydrofluoric and nitric acid (7:3:10 

HF:HNO3:H2O), were investigated in this study. 

  

                                                 
1 The MNF is currently run under a new name, i.e. the Lurie Nanofabrication Facility (LNF). 
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For etching in BOE, a standard photoresist, Shipley S1800 series, was employed as the etch 

mask. The glass wafer with 2 µm thick S1813 photoresist was hard baked at 115 °C for 25 

minutes in an oven prior etching. Note that it is necessary to apply a primer on a wafer 

before photoresist coating. This improves adhesion of the photoresist to the glass substrate. 

Glass wafers were etched in BOE; and then the etch depths were examined using an alpha 

step profilometer. It was found that the glass etching in BOE provides a uniform and smooth 

etched surface and sidewall, however, the etch rate is very slow. It took 1 hour to etch 1 µm 

of the glass wafer, corresponding to an etch rate of approximately 16 Å/min. This is due to 

the low concentration of HF in the BOE solution, which does not contain enough fluoride 

ions for etching. The slow etch rate, however, makes it possible to precisely control the etch 

depth. It was also observed that the glass substrate was etched both in the lateral and vertical 

direction with an etch ratio of approximately 20:1. This anisotropic behaviour of the etching 

physically creates a gradual slope from the bottom to the top surface, which is beneficial for 

the design of the micromachined ESG. The resulting step heights measured on a Dektak 

3030 ST profilometer are shown in Figure 6.2. The distance between the stoppers and the 

rotor is 1 µm and the gap from the bottom to the rotor is 3 µm.   

 

Glass etching in a HF/HNO3 mixture was carried out aiming to improve the etch rate. As 

expected, the etch rate of the glass etching is significantly higher, approximately 1.5 µm/min, 

which is about 100 times faster than etching in BOE. The etched recess shows a uniform and 

smooth finish; and it was also observed that the etch ratio in the lateral and vertical direction 

was reduced from 20:1 to around 4:1 (see Figure 6.3). However, the relatively fast etch rate 

makes it difficult to define the etch depth accurately. 
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(a) 

 

 
(b) 

 

Figure 6.2 The measured step height of the etched glass wafer in 7:1 BOE: (a) for 4 mm 

diameter rotor and (b) for 2 mm diameter rotor.  
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1 µm 

1 µm 
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Figure 6.3 Optical image of the alignment key when a Pyrex wafer was etched to a depth of 

2 μm in (a) 7:1 BOE and (b) 7:3:10 HF/HNO3/H2O mixture.  

 

The other issue when etching glass wafers in a HF/HNO3 mixture is the mask material. A 

photoresist is not suitable to be used as the mixture is too strong. The photoresist peeled off 

right after dipping wafers in the mixture for a few minutes. Therefore, a metal mask, i.e. 

Cr/Au layers, is required. This makes the process flow of the micromachined ESG more 

complicated; consequently, taking a total time from start to finish longer than glass etching 

in BOE. Therefore, glass etching in this study was carried out using 7:1 BOE solution. 

 

6.3.2 Metallisation 
 

The material used for electrodes and wire bond pads is generally aluminium or gold as both 

metals have very low resistivity. According to the design of the micromachined ESG, the 

sidewall silicon electrodes have to form the low-resistance contact to the metal wires located 

on the bottom glass wafers during the anodic bonding process. As aluminium can relatively 

easily become oxidised with oxygen from the air, resulting in high resistance at the interface, 

gold is preferable. Gold, however, has a poor adhesion to a glass substrate so that a chrome 

adhesive layer is necessary. It was also found that chrome diffused into the gold layer at 

high bonding temperatures (above 350 °C) and thus potentially degrading the gold 

conductivity. Higher resistivity of gold tracks can result in a higher voltage drop across lead 

lines, leading to a decrease in signal amplitude. This will result in lower device resolution. 

The inter-diffusion of chrome and gold layer can be alleviated by decreasing the bonding 

temperature to below 320 °C, however it resulted in a poor quality bond (bond strength is 

(a) 
 

(b) 
 

20 µm 
 

20 µm 
 

40 µm 
 8 µm 
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reduced and un-bonded areas can be observed). To overcome the diffusion problem, 

platinum was used as an intermediate layer preventing the diffusion of chrome into the gold 

layer. 

 

Figure 6.4 shows optical images of the electrodes after the anodic bonding process. The 

images were taken from the backside through the Pyrex wafers. The electrodes shown in 

Figure 6.4a were made of a deposited Cr/Au layer. After anodic bonding, it was observed 

that the colour of the electrodes became yellow and there were dark dots in the electrodes 

area. These indicate inter-diffusion between the gold and chrome layers. For Cr/Pt/Au 

electrodes, there was no inter-diffusion problem after bonding. The colour of electrodes 

(seen from the backside of the Pyrex wafers) was still silver/chrome (see Figure 6.4b). 

 

 

   
 

Figure 6.4 Optical images of metal electrodes after anodic bonding. (a) Electrodes were 

made of Cr/Au layers and (b) electrodes were made of Cr/Pt/Au layers. 

 

 

6.3.3 Anodic Bonding 
 

The process of anodic bonding is dependent on several parameters – flatness of silicon and 

glass wafers, bonding temperature, applied DC voltage across the wafers, and pressure. In 

this study, anodic bonding of silicon and glass wafers was done using a Karl Suss SB6e 

bonder at University of Michigan (see Figure 6.5). The setup configuration for anodic 

bonding is shown in Figure 6.6.  

(a) 
 

(b) 
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Double-side polished glass and silicon wafers with an average roughness of less than 8 Å are 

employed as the starting material. A silicon wafer sits on a hotplate, which provides heat to 

the two wafers. A Pyrex substrate is placed on top of the silicon wafer. A graphite plate 

located on top of the Pyrex wafer is an electrode. Generally, for anodic bonding, the hotplate 

is connected to ground while a negative voltage is applied to the graphite electrode. Above a 

temperature of 310 °C, a Pyrex substrate will behave like an electrolyte, containing two 

mobile ions – sodium ion (Na+) and oxygen ion (O2–). When applying a negative voltage to 

the glass substrate and positive voltage to the silicon wafer, oxygen ions in the Pyrex wafer 

will be driven towards the interface and migrate into the silicon, forming a permanent 

chemical bond at the interface of the two wafers.  

 

 

 
 

Figure 6.5 Karl Suss SB6e bonder in MNF at the University of Michigan. 
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Figure 6.6 Setup configuration for anodic bonding of a Pyrex wafer to a silicon wafer. A 

high negative voltage is applied to a Pyrex wafer and ground is connected to a silicon 

substrate. 

 

Achieving a good bond (uniform and void-free bonding) is important for fabrication of the 

micromachined ESG. Therefore, prior to bonding, both the silicon and glass wafers require 

proper cleaning in order to remove any contamination. This can be done using strong 

chemical acids, such as fuming nitric acid (FNA), or a combination of solvent solutions 

(acetone and IPA). Generally, solvent cleaning is preferred since it is much simpler and less 

dangerous compared with acid-based cleaning processes.  

 

Care must be taken when bonding thin silicon to a glass substrate with recessed cavities. The 

voltage applied to the two wafers, normally around –1000 V, will introduce a high electric 

field across any air gaps between the silicon surface and the surface of the etched glass. 

When attempting to bond the wafers at atmospheric pressure, electric breakdown occurred 

since the height of etched cavity is very shallow (3 µm), resulting in damage on the 

electrodes and silicon surface. The applied voltage also generates electrostatic forces pulling 

together the surfaces of silicon and Pyrex substrates (see Figure 6.7). It was found that when 

an electric potential greater than –850 V was applied, silicon located above the 4 mm 

diameter cavity is pulled down and bonded to the etched glass surface.  

 

Wafer bonding was performed at two different operating pressures – (1) atmospheric 

pressure and (2) low pressure, in the order of 10-3 mtorr. For bonding at atmospheric 

pressure, voids due to air trapped were found randomly at the interface. In addition, when 
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the bonded wafers were DRIE etched in the next step, the wafers were found broken when 

opening the DRIE chamber. This is likely due to a pressure difference between the recess 

and the etching chamber. The difference between the pressure inside the recess (high 

pressure) and the DRIE chamber (low pressure) introduces a strong force on a thin silicon 

wafer (see Figure 6.8), leading to the wafer being broken.  

 

In order to alleviate voids and to prevent the damage due to the pressure difference, anodic 

bonding process was performed at vacuum pressure. Basically, a pressure inside a bonding 

chamber is reduced prior the silicon wafer and the glass substrate are brought into contact. 

Then, heat is applied to the two wafers until the temperature of the wafers reaches 350 °C. 

Then, a high voltage of –850 V is applied to the glass substrate. 

 

 
 

Figure 6.7 Pull-down effect in the anodic bonding of the silicon and glass wafers, which has 

shallow recesses between their interfaces. This is due to too high bonding voltages are 

applied to the two bonding wafer. 
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Figure 6.8 Pressure different between a device cavity (atmospheric pressure) and a DRIE 

chamber (vacuum pressure) resulting in the area of thin silicon above the cavity being 

damaged.  

 

 

6.3.4 Deep reactive ion etching (DRIE) 
 

High-aspect-ratio (HAR) dry etching plays an important role in the development of the 

micromachined ESG since it is not only used to release the rotor, but also to define the gap 

spacing between the rotor and the sidewall electrodes. The etching was carried out using the 

so-called Bosch process, which is widely used to produce deep and HAR features with 

almost vertical sidewalls. It is achieved by switching between passivation (C4F8) and etching 

(SF6) cycles in sequence [147, 148]. There are a number of equipment manufacturers who 

have licensed the Bosch process, including Silicon Technology Systems (STS) and Oxford 

Instruments. In this study, the DRIE process was performed in a STS multiplex inductively 

coupled plasma (ICP) etcher (see Figure 6.9) in the MNF at the University of Michigan.  

 

Pressure inside a cavity 
(higher pressure) 

Operating pressure inside a DRIE chamber 
(lower pressure) 
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Figure 6.9 STS single chamber multiplex ICP etcher at the University of Michigan. 

 

For the DRIE process, 10 µm thick positive photoresist, AZ9260, was used as the etch mask. 

It was spun on the front surface of the silicon wafer at a spin speed of 2100 RPM for 30 

seconds. Photoresist coating was followed by a soft bake at 110 °C for 110 seconds on a 

hotplate. After exposure to UV radiation, the photoresist layer was developed in a 1:3 

mixture of a commercial developer AZ400K and DI water. No hard baking is required prior 

to etching. 

 

It is somewhat difficult to etch the silicon wafer that was bonded to a glass substrate. In 

general, Helium backside cooling is used in order to cool down the silicon wafer during 

etching of silicon in a STS ICP etcher. This will improve an etch selectivity between silicon 

and photoresist and also prevent photoresist burning. However, a glass substrate does not 

provide a good thermal contact between the silicon wafer being etched and Helium backside 

cooling. Hence, prior etching, the wafer was mounted to a handle wafer (a silicon wafer) 

using thermal cool grease (AI Technology, Inc.). After etching, the device wafer was 

separated from the handle wafer using a razor blade. The cool grease was cleaned by wiping 

with isopropyl alcohol using a lint free cloth.  
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In this study, the deep etch was performed using an etch recipe shown in Table 6.1. The 

recipe employs the technique called parameter ramping in order to achieve deep, high-

aspect-ratio silicon etching. At the start of the process, a high pressure etching cycle is used. 

Under a high-pressure condition, a silicon etch rate is high, but removal of the passivating 

polymer film from the deep trench base is less efficient. Therefore, the process pressure is 

ramped down at the rate of 0.2 %/min throughout the etching process. Decreasing the 

pressure in the chamber increases the mean free path of F+ ions. This allows F+ ions to reach 

the deep trench base. However, the silicon etch rate is reduced [149]. The pressure inside a 

DRIE chamber is controlled by setting a parameter, which is called automatic pressure 

control (APC). The APC actually sets the valve, which is located between the main DRIE 

chamber and a vacuum turbo pump, to open up at certain percentage. The more the valve is 

opened up, the lower the pressure inside the DRIE chamber.  

 

Table 6.1: Etching recipe used in a STS DRIE etch tool for etching through a 200 µm thick 

silicon wafer which is bonded to a glass substrate. 

 

 Etch cycle Passivation cycle 

SF6 flow rate (sccm) 130 - 

O2 flow rate (sccm) 13 - 

C4F8 flow rate (sccm) - 85 

Time duration (s) 12 7 

Coil power (W) 800 600 

Platen power (W) 10.0 - 

Automatic pressure control 65 % and ramped pressure 

down at 0.2%/min 

65 % and ramped pressure 

down at 0.2%/min 

Chiller temperature (°C) 5 5 

   

The etch depth of different opening areas was inspected using a Zygo interferometer. It was 

found that the average silicon etch rate is around 1.8 µm/min (a gap between the rotor and 

sidewall electrodes) to 2.4 µm/min (the largest opened area). The smaller the exposed areas, 

the slower the etch rate. Therefore, the etching process was performed for 120 minutes to 

ensure that the rotors were released.  
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Device designs with different sized capacitive gaps between the rotor and the sidewall 

electrodes were pursued on the same wafer. Figure 6.10 shows optical images of three rotors 

with gap sizes of 10 µm (left), 15 µm (middle) and 20 µm (right), respectively. The images 

reveal that the front surface of the rotors with 15 and 20 µm gap sizes had an unacceptably 

high surface roughness, while that with a gap size of 10 µm was not visibly damaged. This 

can be explained by non-uniform etch rates for different gap sizes, which result in rotors 

with larger gap sizes being released first and rotors with smaller gap sizes still being etched, 

due to the so-called RIE lag effect. The released rotor has no thermal path to get rid of heat 

generated during etching; hence, the photoresist mask burnt out leading to top surface of 

some rotor damaged.  

 

 
            10 μm gap size                        15 μm gap size      20 μm gap size  

 

Figure 6.10 Optical images of fabricated rotors with various gap spaces(10, 15 and 20 μm) 

between the rotor and the sidewall electrodes. Images reveal the damage on the front surface 

of the fabricated rotor due to the RIE lag effect. The rotor with a gap size of 10 μm (left) 

was not damaged by the etching. It still has a shiny polished surface. The other rotors with 

gap sizes of 15 μm (middle) and 20 μm (right) were visibly damaged as their front surface 

became darker and not shiny. Their front surfaces were etched away by 1 to 2 μm (measured 

from a white interferometer). 

 

Due to the design of the first prototype micromachined ESG, there are various opened areas 

on the same device, i.e. gap spacing and opened patterns for rotation control. Once the 

etching of the opened patterns (wider trench) is complete, plasma ions can reach the bottom 

glass substrate through the wide trench and get charged up on the bottom wafer. Plasma ions 

rotor 

electrode electrode rotor 

electrode rotor 
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then can get underneath the rotor and etch the bottom side of the rotor. An optical image of 

the backside of the rotor is shown in Figure 6.11a. A Zygo interferometer was employed to 

inspect the damage on the backside of the rotor. It revealed that the surface of the rotor was 

etched to a depth between 0.2 to 0.4 µm (see Figure 6.11b). The etched shape looks more 

like metal electrodes located underneath the rotor. Thus, the damage of the rotor possibly 

came from plasma ion scattering from the metal surface bombarding the bottom side of the 

rotor. 

  

The damage of the front and back sides of the rotor will contribute to the imbalance between 

the top and bottom sense capacitances, resulting in the undesirable output bias. This problem 

can be minimised by designing all the exposed areas in such a way that they all have similar 

geometry resulting in a uniform etch rate. Alternatively, the damage can be avoided by 

coating a metal layer on both top and bottom sides of the rotor. Practically, it can also be 

compensated using electronic trimming. 

 

      
                      (a)                   (b)     

Figure 6.11 Damage on the back side of rotors: (a) the optical image and (b) the 

measurement result from Zygo white interferometer.  

 

The DRIE lag not only causes damage on the front and back side of the rotor, but also 

results in the so-called footing effect in some area; for instance, the pillars (see Figure 6.12), 

which are used as a feed through connecting between the top electrodes and the bond pads 

located on the bottom glass wafer. Inspection by an optical microscope revealed that an over 

etch resulted in about 35 μm undercut.  
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                              (a)                                                                   (b)  

Figure 6.12 Footing effect due to the RIE lag: (a) mask layout and (b) the optical image of 

the actual device after DRIE etch. The image was taken from the backside of the glass wafer. 

The image revealed that an over etch resulted in about 35 μm undercut. 

 

After etching, the rotor was completely released and free to move. This makes photoresist 

removal and wafer cleaning relatively difficult; wet processing is therefore impossible. 

Immersing etched wafers into a removal solution will cause released rotors to float away. 

Thus, in the fabrication of micromachined ESGs, the removal of photoresist was carried out 

using dry oxygen plasma process. This photoresist ashing was done in Semi Group 1000 

RIE using the following parameters: pressure = 300 mtorr, power = 200 W, O2 flow rate = 

100 sccm. It was carried out until the photoresist is clear.   

 

Wafer cleaning of the etched wafer is also challenging. This was done by putting the wafer 

on a spinner and spraying acetone and IPA. Basically, the etched wafer was placed on a 

spinner and spun at the speed of 500 RPM. Then, acetone and IPA were gently sprayed onto 

the surface of the wafer. The proper spin speed is crucial to ensure that the whole surface of 

the etched wafer was soaked; however, it should not be too low so that the released rotor 

came off. Then, the spin speed was raised high up to 1500 RPM in order to dry the wafer.  
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6.3.5 Anodic bonding of a triple-wafer stack 
 

Anodic bonding of a triple-wafer stack was carried out using a Karl Suss BA6/SB6e 

aligner/bonder. A Karl Suss BA6 was used to align a top Pyrex wafer to the so-called 

bottom wafer (i.e. a silicon wafer bonded to a bottom Pyrex wafer). The three wafers were 

then mechanically clamped before they were transferred to a Karl Suss SB6e to pursue 

anodic bonding. 

 

As mentioned in section 6.3.3, the general method for anodic bonding of a glass substrate to 

a silicon wafer can be achieved by applying a voltage on the two wafers in such a way as 

that the voltage applied to the glass substrate is negative with respect to that of the silicon 

wafer. However, this general method cannot be used for the case of triple-wafer stack 

bonding. A bottom Pyrex wafer, which was already bonded to a silicon wafer, prevents a 

current from passing through. Thus, in order to provide an electrical connection to a silicon 

wafer, the backside of the bottom glass wafer was coated with an aluminium layer in 

advance before bonding. A sputtering method was preferred over metal evaporation to 

ensure that the rims of both wafers were covered by a metal layer. This aluminium layer 

provides an electrical connection between the silicon wafer and the graphite electrode.  

 

A Karl Suss BA6 aligner was employed to align the top glass substrate with the bottom 

silicon/glass wafer. Firstly, the top glass substrate was loaded into the aligner, followed by 

the bottom silicon/glass substrate. When the wafers were aligned with each other, they were 

then clamped together on the aligner. The clamped wafer stack was then loaded into a Karl 

Suss SB6e bonder. According to loading mechanism of the SB6e bonder, the triple-wafer 

stack had to be flipped over before loaded into the bonder. The top glass substrate then sit on 

a bonding chuck as shown in Figure 6.13. The bonding chuck is normally connected to 

ground potential; thus, to perform anodic bonding of the wafer stack, a positive high voltage 

was applied to the bonded glass/silicon wafer.  

 

The recipe for the triple-wafer stack bonding is as follows: temperature = 350 °C, ambient 

pressure = 4×10-2 mtorr and applied voltage = 700 V. Figure 6.14 shows the photograph of a 

bonded wafer. 
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Figure 6.13 Schematic diagram showing the setup configuration for anodic bonding of the 

glass/silicon/glass wafer stack. The bonding was carried out using a Karl Suss SB6e.  

 

 

          
 

Figure 6.14 Top view of the bonded triple-wafer stack. The dark area is where the glass 

wafer is bonded to the silicon wafer.  
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6.3.6 Wafer dicing 
 

A bonded wafer stack was separated into individual small chips using a wafer dicing tool, 

Micro Automation model 1006, as shown in Figure 6.15. The dicing blade was Glass blade 

777 and it has a thickness of 250 μm. The blade was spun at a speed of 8500 RPM.  

 

In order to prevent water and debris getting into a device cavity, the bonded wafer stack 

cannot be cut all the way through. The following procedure was employed to dice the wafer 

into small chips: firstly, a top glass substrate was diced to a depth of 475 μm. Next, a bottom 

glass substrate was diced to a depth of 475 μm. Then, the diced wafer was snapped into 

small pieces. However, it was found difficult to snap the wafer into pieces since the 

thickness of the silicon wafer is relatively thick, 200 μm. Therefore, to separate the stack 

into individual chips, the wafer stack was sawed all the way through the silicon wafer. 

Unsurprisingly, water was found inside a device cavity of the diced chips (see Figure 6.16).  

 

          
 

Figure 6.15 Wafer dicing tool, Micro Automation model 1006 at the University of Michigan. 

 

The following method was performed to get rid of trapped water: the diced chips were 

soaked into Methanol for 10–20 minutes. Agitation was required to ensure that water is 

replaced by Methanol. Then, the diced chips were transferred into a super critical point dryer 

(CPD) as shown in Figure 6.17. Basically, Methanol is washed away by a high pressure 

liquid CO2. Then, the CPD chamber is heated up until the pressure goes beyond the critical 
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point of CO2. At the end, the pressure is released making the CO2 gas to escape from the 

device cavity. Figure 6.18 illustrates the prototype micromachined ESG after drying in a 

CPD and after the chip was wired bonded to a chip carrier. 

 

 

    
 

Figure 6.16 Water was found inside a device cavity after the water was diced to separate 

into individual chips. 

 

 

                             
                                 (a)           (b) 

 

Figure 6.17 (a) Tousimis 915B super critical point dryer at the University of Michigan. (b) 

A sample soaked with Methanol in the CPD chamber.  
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                (a)                                               (b)      

 

Figure 6.18 Photograph of the prototype micromachined ESG: (a) after complete fabrication 

process flow and (b) after the prototype chip was mounted and wire-bonded to a chip carrier. 

 

6.3.7 Discussion 
 

There are two major issues found in the fabrication of the first prototype micromachined 

ESG. The first issue is the so-called RIE lag. In the first batch, devices were designed to 

have various gap sizes between the rotor and the sidewalls. As a consequence, when some 

rotor was already released, others were still being etched. The photoresist coated on the 

released rotors was then burnt out since heat cannot be dissipated from the rotors. This 

resulted in damage on the front surface of the rotors by plasma etching. In addition, the 

design of the first micromachined ESG has different opening areas (see Figure 3.1 and 3.6). 

The larger areas were etched faster and thus the area of the bottom glass substrate, which 

lies underneath the large areas, was exposed to plasma ions. As a result, the bottom surface 

of the rotors was damaged. This will cause an imbalance between the upper and lower sense 

and feedback capacitances. The RIE-lag issue can be sorted out by designing the 

micromachined ESG in such a way as that it has the same opening area. The other approach 

is by depositing a metal layer, for instance platinum, aluminium or chrome/gold, on both 

front and bottom rotor surfaces. 

 

The second issue in the fabrication of the micromachined ESG is the so-called stiction 

problem where a rotor got stuck to substrates. It was found that all of the devices from the 

first batch have the stiction problem. There are several possibilities that can cause a released 

rotor getting stuck to a substrate. Water got into a device cavity after wafer dicing is one of 
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them. Water used in the dicing tool is not ultrapure DI water, but just filtered city water. 

Particles in water itself and also dicing debris can make a rotor stuck and thus resulting in 

stiction.  

 

Electrostatic bonding of a triple-wafer stack is the other possibility. As mentioned in section 

6.3.5, during the operation of triple-wafer bonding a silicon wafer was connected to a 

positive high voltage, while a released rotor was electrically floated (since it has no direct 

contact to a silicon substrate). Assuming if the released rotor touched silicon sidewall 

electrodes, its potential will be the same as the silicon wafer (a positive high voltage). As the 

rotor already sit on the top glass substrate (see Figure 6.13), the rotor can be electrostatically 

bonded to the top glass wafer.  

 

One issue needs to be pointed out here is the difficulty in cleaning a wafer after a DRIE 

process. It was found that the wafer cleaning using wet chemicals, for instance fuming nitric 

acid, acetone or IPA, was difficult since the rotors were already released. Although oxygen 

plasma etching was carried out to strip off photoresist, a very thin layer of photoresist 

sometimes remains on the surface of the silicon substrate. This remaining thin photoresist 

layer is unable to be inspected by an optical microscope. It was found this thin photoresist 

layer can be removed in fuming nitric acid or acetone. The photoresist residual can result in 

a failure in triple-wafer stack bonding and also the stiction. The etched wafer was cleaned by 

putting the wafer on a spinner and spraying acetone and IPA as discussed in section 6.3.4. 

However, this method is difficult to thoroughly clean the whole wafer, in particular the 

surface of the rotor. In the end, the individual released rotor was taken out of the cavity and 

was cleaned in acetone and IPA. After cleaning, it was then put back to the cavity.  

 

 

6.4 CONCLUSIONS  
 

The micromachined ESG has been developed using a microfabrication process, which 

combines high-aspect-ratio dry etching with triple-wafer stack bonding. The process 

sequence, fabrication results and issues were discussed in detail in this chapter. In brief, the 

fabrication of top and bottom glass wafers has the same process flow. Glass etching was 

carried out to define a capacitive gap and also stoppers. This was followed by metal 
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deposition and wet chemical etching in order to pattern top and bottom electrodes. Then, a 

thin bare silicon wafer was anodically bonded to a bottom glass substrate. Silicon etching 

was carried out using a DRIE process to define sidewall electrodes as well as the rotor. Next, 

the fabricated top glass wafer was electrostatically bonded to the etched silicon wafer. Lastly, 

the triple-wafer stack was sawed into individual chips and a diced chip was wire bonded to a 

chip carrier. 

 

The second part in this chapter describes results and issues regarding to the fabrication of the 

micromachined ESG. It was found that glass etching using 7:1 BOE is suitable for defining 

a capacitive gap. It provides a uniform and smooth etched surface. The etch rate is relatively 

slow; however, this makes it easy to control the etch depth accurately. Metal electrodes and 

bond pads were made of chrome/platinum/gold layers. The chrome layer acted as an 

adhesive layer; the platinum layer was deposited in-between chrome and gold layers in order 

to prevent the diffusion from chrome to gold and vice versa.  

 

The anodic bonding was carried out to bond silicon and glass substrates. This was done 

under ambient vacuum pressure to minimise voids, which cause by air trapped at the 

interface between silicon and glass wafers. The bonding parameters, i.e. temperature and 

bonding voltage, were optimised. It was found that the magnitude of bonding voltage must 

be less than 850 °C to avoid silicon located above a shallow recess pulled down and bonded 

to the etched glass surface.  

 

A DRIE process was used to releases the rotor and also define a gap between the rotor and 

the sidewall electrodes. The recipe of the DRIE process employs the parameter ramping 

technique. Ambient pressure was ramped down throughout the etching process in order to 

achieve deep, high-aspect-ratio silicon etching. One issue resulted from a DRIE process is 

the so-called RIE lag. This RIE lag causes damage on both front and bottom sides of the 

released rotor.  

 

Anodic bonding was again used for triple-wafer stack bonding. Wafer preparation was 

carried out in advance to make an electrical connection between the bottom surface of the 

glass substrate and a silicon wafer. This was done by sputter coating an aluminium layer on 

the bottom surface of the glass wafer. The stack was successfully bonded using the 
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following parameters: temperature = 350 °C, ambient pressure = 4×10-2 mtorr and applied 

voltage = 700 V. However, it was found later that the fabricated device had a stiction 

problem. This is likely because the released rotor was electrostatically bonded to the top 

glass substrate.  
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Chapter 7 

Feasibility Study of Electrostatic Levitation 

using Sidewall Electrodes 
 

 

7.1 INTRODUCTION 
 

During the course of this research project it was found that the fabricated devices suffered 

from stiction problems. Before the silicon/glass wafer was bonded to the top glass substrate, 

the released rotor was free to move. However, the rotor was stuck to a substrate after the 

triple-wafer stack bonding step. This issue could not be resolved during this research project 

as the entire Southampton University cleanroom facilities were destroyed by a fire. The final 

device, therefore, could not be tested.  

 

As a result, in this chapter a micromachined device with no top substrate (see Figure 7.1) 

was considered and an alternative approach to provide electrostatic levitation by sidewall 

electrodes was explored. These sidewall electrodes are normally used to provide 

electrostatic forces in order to suspend the rotor along the x- and y-axis directions and 

maintain it at the centre of the device cavity. By applying a superimposed signal consisting 

of a DC bias voltage and an AC feedback control signal to the sidewall electrodes, a vertical 

levitation force in combination with lateral control forces can be generated on the rotor. This 

levitation effect was first reported in electrostatic comb drive actuators [150–152]. Vertical 

levitation of a microstructure was observed when such devices were driven by interdigitated 

comb electrodes biased with a DC voltage.  

 

In this chapter, the feasibility of such an approach is investigated. The analysis of side drive 

electrostatic levitation is described along with the 2D simulation results. An analogue 
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feedback control interface for the lateral motion along the x- or y-axis is discussed. 

Matlab/Simulink simulations were performed to investigate the control stability.  

 

 

 

 
Top view 

 

 

 

 

 

Cross-sectional view 

 

Figure 7.1 Top-viewed and side-viewed schematics of a micromachined device considered 

in this chapter. Its design configuration and device dimensions are the same as the 

micromachined ESG discussed in chapter 3, except that it was not capped by a top glass 

substrate. The sidewall electrodes are employed to provide forces to control lateral motions 

of the rotor in the x and y directions and also a vertical levitation force along the z axis. The 

bottom electrodes can be used to measure angular displacements of the rotor about the x and 

y axis; thus, it may be possible to use it as a dual-axis accelerometer. 
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7.2 ANALYSIS OF SIDE–DRIVE ELECTROSTATIC 

LEVITATION 
 

Cross-sectional views of the micromachined device considered in this study are shown in 

Figure 7.2. Figure 7.2a illustrates the device at rest where the rotor sits on the bottom glass 

substrate. This occurs at start-up when there is no DC voltage applied to the sidewall 

electrodes. Figure 7.2b shows the levitated rotor when sufficient DC voltage is applied to the 

sidewall electrodes. By applying a positive voltage to one electrode and a negative voltage 

with the same magnitude on the opposite electrode, the potential of the rotor is kept close or 

equal to zero as explained in more detail in chapter 3. Assuming the rotor is in the middle 

position between the surrounding sidewall electrodes, the net electrostatic force in the lateral 

directions (the x and y axes) will become zero and thus there is only a vertical levitation 

force acting on the rotor. 

 

The vertical levitation force Fe,z is, in this case, induced by electrostatic fringe fields. It 

cannot be modelled using a simple parallel-plate analysis. Therefore, finite element program, 

i.e. ANSYS, was used to estimate the levitation force acting on the rotor. In ANSYS 

simulations, a two-dimensional electrostatic analysis was performed to simulate the cross 

section of the micromachined device (as shown in Figure 7.2). Sidewall electrodes were 

biased with positive and negative DC voltages, where as bottom electrodes were grounded. 

Assume that the rotor is made of highly conductive silicon and it is in the centre between 

both sidewall electrodes. Thus, the potential of the rotor can be assumed as zero.  

 

It is very challenging to run a simulation using the actual device geometry (discussed in 

chapter 3). The actual device dimension is large compared to the gap, and thus causing a 

problem during mesh generation. Therefore, the following simulations were carried out with 

a smaller rotor diameter (400 μm) and thickness (20 μm). Assume that a capacitive gap 

between the rotor and sidewall electrodes is 10 μm and the rotor is sitting on the stoppers, 1 

μm away from the bottom substrate.  
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Figure 7.3 shows the resulting electric potential when the sidewall electrodes were biased 

with ±100 V. It reveals a high potential gradient between the sidewall electrodes and the 

edge of the rotor, and thus the magnitude of the resulting electrostatic force is high in the 

region close to the rotor edge. Note that the resulting forces obtained from 2D ANSYS 

approximation are the induced force per unit length of the rotor. Figure 7.4 shows the 

distribution of the electrostatic forces acting along the top (top graph) and the bottom of the 

rotor (bottom graph). A positive sign implies that the rotor is pulled up and a negative sign 

means the rotor is pulled down. The sum of the top and bottom forces is the net vertical 

levitation force per unit length Fz0.  

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

(b) 

 

Figure 7.2 Schematic diagrams of a micromachined device considered in this chapter: (a) 

when no voltage is applied to sidewall electrodes, a rotor sits on a bottom substrate and (b) a 

rotor is lifted up when sidewall electrodes are biased with DC voltages. By applying a 

positive voltage +Vbias to one electrode and a negative voltage –Vbias with the same 

magnitude to the opposite electrode, the rotor potential is kept close or equal to zero; and 

thus, only a vertical levitation force is produced on the rotor. Red arrow lines show the 

corresponding electric field lines. 
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Figure 7.3 The potential distribution obtained from ANSYS 2D electrostatic analysis when 

the rotor sit on the stoppers and ±100 V was applied to sidewall electrodes. 

 

 
 

Figure 7.4 Induced electrostatic forces per unit length acting on the top surface (top plot) 

and bottom surface (bottom plot) of the rotor when it rests on the stoppers and ±100 V is 

applied to the sidewall electrodes. 
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Figure 7.5 Net electrostatic levitation forces as a function of the bias voltage (top, left), 

distances between the rotor and sidewall electrodes (top, right), rotor diameters (bottom, left) 

and rotor thickness (bottom, right). These results are obtained from ANSYS simulations by 

assuming the rotor sitting on the stoppers.  

 

 

ANSYS simulations were carried out to investigate the net vertical force as a function of 

various parameters, including the bias voltage Vbias, the distance between the rotor and 

sidewall electrodes d0, the rotor diameter and the thickness of the rotor. The simulation 

results are shown in Figure 7.5. It can be seen that the net vertical levitation force is directly 

proportional to the square of the bias voltage and inversely proportional to the distance 

between the rotor and sidewall electrodes. However, the net vertical force remains almost 

constant with regard to the diameter and thickness of the rotor, which implies that the net 

vertical force is independent of the rotor dimension. The relationship between the net 
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electrostatic levitation force Fz0 and the displacement of the rotor z along a vertical direction 

is plotted as shown in Figure 7.6. It can be seen that in the absence of the force of gravity, 

the rotor will be levitated to a stable equilibrium position z0 (∼ 5.5 μm for this case) upon the 

application of a bias voltage.  

 

 
 

 

Figure 7.6 Net vertical electrostatic forces corresponding to the displacement of the 

levitated rotor away from the bottom substrate when the sidewall electrodes were biased 

with ±100 V, ±250 V and ±500 V, respectively. The results were simulated in ANSYS with 

the following parameters: a rotor diameter = 400 μm, a rotor thickness = 20 μm, separations 

from the rotor and the sidewall electrodes = 10 μm and an etched depth in the bottom glass 

substrate = 3 μm. 
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The resulting electrostatic force calculated from 2D ANSYS simulations is the force per unit 

length. In order to obtained the actual electrostatic levitation force acting on the rotor, the 

resulting vertical force Fz0 has to be multiplied by the overlap angle between the rotor and 

the set of the sidewall electrodes. Figure 7.7 is a plot of the actual electrostatic levitation 

force Fe.z as a function of a vertical displacement z for the device dimensions: a rotor having 

a diameter of 4 mm and a thickness of 200 μm, and the gap between the rotor and sidewall 

electrodes is 10 μm. The relationship between the levitation force and the vertical 

displacement for a given Vbias can be expressed as:  

 

( )zzVF biaszze −= 0
2

, γ      (7.1) 

 

where  

z  = levitation height,  

z0  = maximum levitation height and  

γz  = geometry factor (∼ 8.7214×10-10 N μm-1 V-2 for this case).  

 

The geometry factor depends on design parameters, including the separation between the 

rotor and the sidewall electrodes and the height of the sidewall electrode relative to the 

thickness of the rotor. Note that equation (7.1) is justified only for z less than z0.   

 

In order to levitate the rotor, the net electrostatic force must be large enough to counteract 

the force of gravity, Fe,z > mg. Thus, the minimum voltage required to levitate the rotor 

Vlev,min can be evaluated by solving: 

 

0, =− mgF ze       (7.2) 

 

Substituting (7.1) into (7.2) yields:  

 

( ) 00
2 =−− mgzzVbiaszγ     (7.3) 
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The minimum voltage Vlev,min can then be solved by rearranging equation (7.3), which yields: 

 

( ) zo
lev zz

mgV
γ−

=min,       (7.4) 

 

For the rotor with a diameter of 4 mm and a thickness of 200 μm, the minimum voltage 

required to maintain the rotor at 3 μm above the bottom substrate is about 325 V. This level 

of voltage is below the breakdown voltage under atmospheric pressure, which is about 400 

V for a 10 μm separation between the rotor and the sidewall electrodes.   

 

 

Figure 7.7 A plot of the vertical electrostatic forces divided by the square of the bias voltage 

as a function of (z0 – z). 
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The approach discussed above was based on the assumption that the rotor was kept in the 

middle position between all sidewall electrodes. If the rotor was off-centre, the potential of 

the rotor will not be maintained at zero. Furthermore, as can be seen in Figure 7.5, the 

magnitude of a vertical electrostatic levitation force strongly depends on the distance 

between the rotor and sidewall electrodes. The off-centred rotor will result in the imbalance 

between electrostatic forces acting on each side of the rotor. For instance, Figure 7.8 shows 

the resulting electrostatic forces acting across the rotor when it is off-centre by 0.1 μm. It is 

obvious that the resulting force on the right hand side is stronger than that on the left side of 

the rotor and thus causing the rotor to rotate about the x axis. The calculation obtained from 

ANSYS shows that the moment per unit length acting on the rotor is 0.11×10-1 μN. As a 

consequence, a closed-loop system is required to control the translational motion of the rotor 

along the x and y axes. Principle, design and simulation of such a closed-loop system are 

discussed in the next section. 

 

 
 

Figure 7.8 Induced electrostatic forces per unit length acting on the top surface (top plot) 

and bottom surface (bottom plot) of the rotor when the rotor is off-centre by 0.1 μm. The 

result was obtained from ANSYS simulations with an assumption that the rotor rests on the 

stoppers and ±100 V is applied to the sidewall electrodes. 
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7.3 A CLOSED–LOOP SYSTEM FOR CONTROLLING 

LATERAL MOTIONS OF THE ROTOR 

 

For the micromachined device considered in this chapter, sidewall electrodes are used to 

provide the vertical electrostatic levitation force acting on the rotor and at the same time also 

control lateral motions of the rotor along the x and y axes. The levitation force can be 

realised by biasing the sidewall electrodes with DC voltages as discussed in the previous 

chapter. On the other hand, in order to maintain the position of the rotor in the centre among 

the sidewall electrodes, a closed-loop control system is required. Due to the relatively high 

voltage needed for levitation, a closed-loop control system based on analogue force 

feedback is preferred. This section discusses the sensing and actuation strategy employed in 

the closed-loop control system. The principle and analysis of the analogue feedback loop is 

also presented. 

 

7.3.1 Sensing and actuation strategy  
 

For the sake of simplicity, the lateral motion of the rotor along only one direction, i.e. the y 

axis, is considered in the following. This assumption is justified due to the symmetrical 

design of the micromachined device. The sensing strategy relies on a fully differential 

capacitance measurement using reverse-role half bridge configuration as described in 

section 3.5.2. As the rotor is floating and has no direct electrical connection to a bond pad, 

the AC excitation signal is coupled through the rotor via the capacitor formed between the 

rotor and the excitation electrode, which is located on the bottom glass substrate (see Figure 

7.9a). The displacement of the rotor away from the centre position between the left and right 

sense electrodes (see Figure 7.9b) will cause an imbalance in the capacitance of the two 

capacitors formed between the rotor and the left and right sense electrodes. The differential 

of these two capacitances will be picked up and amplified by a front-end amplifier. The 

position sensing approach is actually similar to that explained in chapter 3, except that the 

excitation voltage is only applied to the bottom excitation electrode. One disadvantage of 

this approach is that the amplitude of the coupled excitation signal changes according to the 
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levitation of the rotor along the vertical z axis. However, this common-mode error is 

cancelled out by a differential capacitive readout scheme.  

 

 

 
(a) Top view 

 

 
(b) Cross-sectional view 

 

Figure 7.9 Schematic diagram showing the approach employed to control the position of the 

rotor along the in-plane axes. (a) The AC voltage source is connected to the excitation 

electrode located on the bottom substrate. This voltage source is required for capacitive 

position sensing. (b) A front-end amplifier is used to read out the imbalance between the left 

and right capacitances formed between the rotor and the two sense electrodes. The feedback 

electrodes are fed by feedback control voltages vfb superimposed on the DC levitation 

voltages Vbias.  
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The equivalent capacitance network for the capacitive position sensing of the 

micromachined levitated device considered here is presented in Figure 7.10. The 

relationship between the rotor potential Vr and the input excitation voltage Vex can be written 

as: 

 

( )

( ) ∑ ∑++
=

fbswsswEB

EBex
r

CCzC

zCV
V

,,

   (7.5) 

 

where  

Csw,s  = sense capacitance between the rotor and the sense electrodes,  

Csw,fb  = feedback capacitances between the rotor and the feedback electrodes, 

CEB  = capacitance between the rotor and the bottom excitation electrode. 

 

The CEB is a function of the levitation height. However, assuming the rotor is levitated at the 

equilibrium point, CEB can be treated as a constant. For the considered micromachined 

device, CEB = 6.25 pF, Csw,s = 0.186 pF and Csw,fb = 0.168 pF. It should be noted that the CEB 

is relatively larger than the sum of the sense and feedback capacitances and thus Vr ≈ Vex. 

 

 
 

Figure 7.10 Equivalent electronic model of the capacitances formed between the rotor and 

the electrodes. 

 

The electrostatic actuator is composed of two sets of parallel-plate electrodes as shown in 

Figure 7.9. Each set has two feedback electrodes: one electrode is connected to a positive 

bias voltage and the other electrode to a negative bias voltage. The applied bias voltages 

This node represents 
the rotor. 
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provide a vertical electrostatic force to levitate the rotor in the z axis. In addition, AC 

feedback control signals are superimposed on the DC bias voltages. These feedback voltages 

provide electrostatic forces to control the motion of the rotor along the in-plane directions, 

i.e. the x and y axes. Figure 7.9b shows a circuit diagram to combine the bias voltage and 

the feedback control signal. The voltage Vfeedback at the electrode terminal can be derived by 

the principle of superposition. It is the sum of the DC and AC components as given by: 

 

ACDCfeedback vVV +=      (7.6) 

 

where VDC and vAC are the DC and AC components of the Vfeedback signal at the electrode 

terminal. By considering the AC voltage source is disconnected (shorted) from the circuit, 

VDC can simply be expressed as: 

 

BIASDC VV =       (7.7) 

 

Similarly, vAC at the electrode terminal can be derived by considering the case where the DC 

voltage source is disconnected (shorted) from the circuit. Assume that vfb is a sinusoidal 

signal with an angular frequency ω, vAC as a function of vfb can be expressed in the phasor 

form as:  

 

RCj
RCj

v
v fb

AC ω
ω

×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
1

    (7.8) 

  

Note that when ωRC is much greater than 1, the amplitude of the vAC will be equal to that of 

the vfb. In other words, the impedance of the capacitor becomes small enough and can be 

neglected at frequencies f much higher than the cutoff frequency fc = 1/2πRC. In general, a 

high value of R (about hundreds kilo-ohm) is chosen to prevent a short circuit occurring 

between the rotor and the sidewall electrodes. A 100 kΩ resistor and a 0.1 μF capacitor are 

employed in the design, which yields a 15.9 Hz cutoff frequency. 
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7.3.2 Analogue feedback control system  
 

Figure 7.11 shows the block diagram and linear model of the considered micromachined 

levitating device with a force feedback loop. Due to the symmetrical design of the 

micromachined device in the x and y axes, only one degree of freedom is considered here. 

The displacement of the rotor due to inertial forces is detected by the imbalance of the sense 

capacitors. The differential change between the sense capacitors is picked up and converted 

into a voltage by a front-end amplifier. An electronic controller is added to improve the 

system stability. An electrostatic force is used as a feedback on the rotor to counteract the 

displacement caused by inertial forces. Assume small displacements of the rotor due to a 

closed-loop system (compared to the nominal gap d0). By applying the feedback voltage vfb 

together with a DC bias voltage VBIAS to the sidewall electrodes, the electrostatic feedback 

force Ffb on the rotor can be approximated as: 

 

0
,2

d
Vv

CF BIASfb
fbswfb −≈     (7.9) 

 

where Csw,fb is the feedback capacitance and d is the nominal distance between the rotor and 

the sidewall electrodes. 

 

Consider the linear model of the closed-loop system illustrated in Figure 7.11b. The sensing 

element can be modelled as a proof mass connected in series with a damper (but no spring). 

This is due to the absence of suspension beam connecting between the rotor and substrate. 

The displacement-to-capacitance building block and the front-end circuit are modelled with 

the gains kx (with dimension pF/m) and kc (~ 9.74 V/pF, see chapter 4), respectively. 

According to equation (7.4), the force feedback block can be modelled as the linear gain kFB. 

The electronic controller employs a lead compensator in order to shift poles of the closed-

loop system to the left hand side and thus improve the stability of the system. Its transfer 

function compensator can be expressed in the Laplace’s domain as: 

 

ps
zskC ps +

+
=    `  (7.10) 
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where kp is the gain, z and p are the zero and pole frequencies in radians per second. For a 

lead compensator, the pole frequency is normally greater than the zero frequency (z > p). 

Then, the transfer function from the input inertial forces to the output feedback voltage can 

be expressed as: 

 

( ) ( )
( ) ( ) zkkkspkkkbpbmpsms

zkkskk
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sv

sH
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+++++
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== 23   (7.11) 
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(a) 

 
(b) 

Figure 7.11 (a) Block diagram and (b) linear model of the micromachined levitating device 

with an analogue feedback control system. 
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The lead compensator was designed using Matlab/Simulink and SISO design tools [153] 

where the system parameters were assumed as follows: m = 3.73 mg, b = 7.65×10-5 Ns/m 

(for air pressure), d = 10 µm, CEB = 6.25 pF, Csw,s = 0.186 pF, Csw,fb = 0.168 pF and Vbias = 

350. Figure 7.12 shows the root locus diagram of the open-loop transfer function with a lead 

compensator. The compensator has a gain kp of 10 and its pole and zero frequencies are 

located at –50000 rad/s and –35000 rad/s, respectively. The location of pole and zero of the 

compensator was chosen in such a way as to the poles of the closed-loop system are on the 

left hand side of the root locus plot and thus improve the stability of the system. Increasing a 

control gain will result in higher natural frequency and quality factor of the closed-loop 

system. Figure 7.13 compares the frequency responses of the micromachined levitating 

device with and without a feedback control loop.  

 

 
 

Figure 7.12 Root locus plot of the open-loop transfer function with a lead compensator, 

which has a pole at –50000 rad/s and a zero at –35000 rad/s. The red dots represent the poles 

of the closed-loop system with the gain kp = 10. 
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Figure 7.13 Bode plot of the micromachined levitating device with and without a control 

feedback loop. The closed-loop system employs a lead compensator, which has a pole at –

50000 rad/s and a zero at –35000 rad/s as well as a gain of 10.  

 

 

7.3.3 Simulation of the closed-loop position control system  
 

Simulations of the closed-loop system discussed in the previous section have been 

performed in Matlab/Simulink to study the system behaviour and to evaluate its stability. 

Due to the symmetrical design of the micromachined device in the x and y axes, only one 

degree of freedom of the closed-loop system is considered. The following parameters were 

assumed for the simulations: m = 3.73 mg, b = 7.65×10-5 Ns/m (for air pressure), d = 10 µm, 

CEB = 6.25 pF, Csw,s = 0.186 pF, Csw,fb = 0.168 pF, Vbias = 350, kp = 1000, p = –50000 rad/s, z 

= –35000 rad/s, Cf = 1 pF and Vex = 1 V. 

 

The first issue to be considered is that whether or not the micromachined levitating device is 

stable when it operates as part of the developed feedback control loop. Recall that the rotor 
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has no mechanical connection to substrate and it is surrounded by sense and feedback 

control electrodes (see Figure 7.1). Since there are no bearings or pillars to kept the rotor in 

the middle position among the surrounding electrodes, it can sit anywhere inside the cavity 

during the start-up. Therefore, the first simulation was carried out to ensure that the closed-

loop system is able to cope with this situation. A stable closed-loop system should be able to 

maintain the rotor in the centre position, i.e. the so-called nominal position. 

 

Simulation assumed that, for the worst case scenario1, the rotor is off centre by 7 μm at the 

start-up and no inertial force is applied to the rotor. Simulation results (see Figure 7.14) 

reveal that the closed-loop system is able to capture the rotor and maintain it at the nominal 

position. The upper trace in Figure 7.14 shows the displacement of the rotor along the in-

plane direction and the bottom trace shows the waveform of the voltage output. At the 

beginning, the rotor fluctuates about the centre position with displacement amplitude of 7 

μm, resulting in the output voltage of the amplifier saturating at its supply voltages of ±12 V. 

The displacement of the rotor starts converging at the centre position after some period of 

time. It took about 9 ms for the closed-loop system to settle. At this point, the rotor is 

maintained at its nominal position.   

 

The system response when the micromachined levitating device experiences acceleration 

along the in-plane axis is shown in Figure 7.15. The acceleration is a sinusoidal signal and 

has a peak magnitude of 10 g (1 g = 9.8 m/s2) and a frequency of 10 Hz. The upper trace 

shows the input inertial force due to the applied acceleration, the middle trace is the 

displacement of the rotor along the in-plane direction and the bottom trace is the output 

feedback voltage. The simulations were carried out by assuming the rotor is already in the 

middle position between the sidewall electrodes. It can be seen that the output feedback 

voltage is in-phase to the applied force and the closed-loop system seems stable.  

 

 

 

 

 
                                                            
1 If the rotor is off-centre by more than 7 μm, the closed-loop system will become unstable. Therefore, the 
worst case is defined as the maximum distance of the rotor away from the centre that the control system can 
handle.  
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Figure 7.14 System response at the start-up phase, assuming the rotor is off-centre by 7 μm: 

the upper trace showing the displacement of the rotor and the bottom trace showing the 

output feedback voltage. 
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Figure 7.15 Time-domain response of the closed-loop system when an in-plane sinusoidal 

acceleration with a magnitude of 10 g and a frequency of 10 Hz was applied to the sensing 

element. Assume that the rotor was initially at the centre position. The upper trace shows the 

input inertial force, the middle trace showing the displacement of the rotor and the bottom 

trace showing the output feedback voltage. 

 

 

To conclude, it can be seen that the designed analogue feedback control loop based on a lead 

compensator provides a stable closed-loop system.  It is able to cope with the situation 

where the rotor is initially located at the off-centre position. The closed-loop system is still 

stable under applied inertial force. 
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7.4 INITIAL TEST 
 

A preliminary measurement of a fabricated prototype sensor was performed to measure the 

capacitances which are formed between the sidewall electrodes and the released rotor. The 

measurement was carried out using the prototype sensor with the parameters shown in Table 

3.1 and 3.2, except the thickness of the rotor is 80 µm and the gap distance between the rotor 

and sidewall electrodes is 10 µm.  

 

The experimental setup for measuring the sidewall capacitances is illustrated in Figure 7.16. 

One probe tip that contacts the rotor is used to maintain the rotor fixed in position. The other 

probe tip is movable to connect sidewall electrodes to an Agilent 4279A CV meter. The 

capacitance measurement was carried out using the following procedure. First, the open-

circuit and short-circuit calibrations of the CV meter are performed. The probe tips are then 

moved into contact to the prototype sensor. The position of the rotor is adjusted so that the 

reading value of each sidewall sense capacitance is as close to each other as possible. The 

sidewall capacitances were measured using an AC excitation signal with amplitude of 1 Vrms 

and a frequency of 1 MHz at different bias voltages (from –2 to 2 V). This approach, 

however, cannot be used to measure the exact value of each sidewall capacitance since the 

actual gap distance between the rotor and each sidewall electrode is difficult to be measured. 

The measurement only gives an approximation value of the sidewall capacitances 

 

The sidewall capacitance at different bias voltages, as measured by the CV meter, shows 

small deviations about a constant value. The measured capacitances for each sidewall sense 

capacitor are then averaged as shown in Table 7.1. It can be seen that the measured values 

are in the same order of magnitude to the nominal sidewall capacitance calculated from 

equation (3.51). However, the measured values are relatively smaller. This is because the 

actual gap between the rotor and the sidewall electrodes is somewhat larger than the 

designed value (due to undercut etching during photolithography and DRIE processes).  
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Figure 7.16 Schematic diagram of the experimental setup for measuring capacitances 

between the rotor and sidewall sense electrodes.  

 

 

Table 7.1: Measured values of the capacitances between the rotor and the sidewall 

electrodes in comparison with the theoretical value calculated from equation (3.51). 

 

 
Measured 

(pF) 

Analytical 

(pF) 

Capacitance between the rotor and the left-hand electrode 

to sense motion in the x direction 
3.44×10-2 7.45×10-2 

Capacitance between the rotor and the right-hand electrode 

to sense motion in the x direction 
3.43×10-2 7.45×10-2 

Capacitance between the rotor and the left-hand electrode 

to sense motion in the y direction 
4.03×10-2 7.45×10-2 

Capacitance between the rotor and the right-hand electrode 

to sense motion in the y direction 
4.36×10-2 7.45×10-2 
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sidewall electrodes 
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Furthermore, the prototype sensor implemented with a closed-loop position control circuit 

was experimentally tested. This aims to evaluate electrostatic levitation resulted from 

applying high voltages onto the sidewall electrodes. Figure 7.17 depicts a schematic diagram 

of this experimental setup. A Polytec white light interferometer (micro system analyser 

MSA-400) is employed to measure the levitation height of the rotor. First, a step height 

between the top surface of the rotor and the sidewall electrodes were measured as a 

reference point (see Figure 7.18a). Then, the measurement was carried out to measure a 

change in the step height when the applied bias voltages (±350 V) were switched on. Two 

configurations were conducted: (1) the bottom excitation electrode is connected to an AC 

excitation signal with the amplitude of 1 V and a frequency of 500 kHz and (2) the bottom 

electrode is grounded.  

 

The measurement results are shown in Figure 7.18. Levitation of the rotor could not be 

observed on both experiments. The step height between the rotor and the sidewall electrode 

remains constant even the applied voltages were increased to ±400 V (the maximum output 

voltage of the high voltage power supply). As the gap between the rotor and the sidewall 

electrodes is larger than the designed value (due to undercut etching), the applied voltages 

may not be enough to achieve levitation.  

 

In addition, the designed closed-loop control circuit did not function properly as it was 

expected.  It was found that the rotor was stuck to the sidewall electrodes. This caused the 

applied levitation voltages to be connected to the input of the front-end circuit. As a result, 

the pick-off amplifiers of the front-end circuit were damaged.  

 

The test results at this point are not yet conclusive. Further tests need to be performed to 

investigate the electrostatic levitation.  
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Figure 7.17 Schematic diagram of the experimental setup for a feasibility study of the 

electrostatic levitation effect. Electrostatic forces are generated by applying high voltages 

onto sidewall electrodes of the prototype sensor. The levitation is inspected using a Polytec 

white light interferometer.  
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Figure 7.18 Topographical images of the prototype sensor obtained from a Polytec white 

light interferometer: (a) no high voltage applied to the sidewall electrodes, (b) and (c) are 

when high voltages are applied to the sidewall electrodes. The bottom electrode is connected 

to: (b) an excitation signal and (c) ground potential. 
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7.5 CONCLUSIONS 
 

This chapter presented the feasibility study of a micromachined device in which its sidewall 

electrodes are used to provide the vertical electrostatic levitation force acting on the rotor; 

and at the same time also control lateral motions of the rotor along the x and y axes. By 

applying DC voltages to sidewall electrodes, the levitation force along the z direction can be 

realised. Feedback control voltages (AC signals) are also superimposed on DC bias and 

provide electrostatic forces to control the motion of the rotor along the in-plane directions, 

i.e. the x and y axes. 

 

The analysis of such a micromachined device has been investigated using 2D electrostatic 

finite element simulations in ANSYS. It can be seen that the net vertical levitation force is 

directly proportional to the square of a bias voltage and inversely dependent on the distance 

between the rotor and sidewall electrodes. However, the net vertical force remains almost 

constant with regard to the diameter and thickness of the rotor. Simulations also showed that 

the magnitude of a vertical electrostatic levitation force strongly depends on the distance 

between the rotor and sidewall electrodes. If the rotor was placed off-centre, it will result in 

the imbalance between electrostatic forces acting on each side of the rotor and thus causing 

the rotor to rotate out of plane (about the x and y axes). This confirms that such a device 

requires a closed-loop control system to maintain the rotor in the middle position between 

sidewall electrodes.  

 

The closed-loop control system for the micromachined device considered in this chapter is 

based on analogue force feedback. The displacement of the rotor due to inertial forces is 

detected by the imbalance of the sense capacitors. The different capacitance between the 

sense capacitors is then picked up and converted into voltage by a front-end amplifier. An 

electronic lead compensator is added to improve the system stability. An electrostatic force 

is used as a feedback on the rotor to counteract the displacement caused by inertial forces. 

Simulations conducted in Matlab/Simulink showed that the designed closed-loop system is 

able to cope with the situation where the rotor is initially located at the off-centre position. 

The closed-loop system is also stable under applied inertial force. 
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Initial tests were carried out to measure sidewall sense capacitances and to evaluate 

electrostatic levitation. The measured capacitances are in the same order of magnitude to the 

calculated nominal sidewall capacitance. However, the measured values are relatively 

smaller, which could be because the distance between the rotor and the sidewall electrode is 

larger than the designed value. The prototype sensor implemented with the designed closed-

loop control was also experimentally evaluated. However, the test results at this point are 

not yet conclusive. 
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Chapter 8 

Conclusions 
 

 

8.1 SUMMARY 
 

This thesis presented important issues in the development of a micromachined 

electrostatically suspended gyroscope (ESG). The micromachined ESG employs a rotor, 

which has no mechanical connection to a substrate, as a proof mass. Instead, the 

micromachined rotor is suspended using electrostatic levitation. The operating principle of 

the micromachined ESG differs from that of conventional MEMS gyroscopes, which are 

based on detection of rotation-induced Coriolis acceleration of a vibrating structure. Hence, 

many major problems that limit the performance of vibratory MEMS gyroscopes are 

inherently ruled out. Furthermore, it is possible to design the micromachined ESG which 

produces higher gyro sensitivity compared with that obtained from vibratory-type 

gyroscopes (for more details, see chapter 3). The micromachined ESG cannot operate in 

open loop; it needs a closed-loop control system. The micromachined ESG, considered in 

this thesis, employs a digital feedback control loop based on a ΣΔΜ to avoid the electrostatic 

latch-up problem of an analogue closed-loop control system,  

 

The micromachined ESG consists of a rotor, which is surrounded by sets of sense, feedback 

and spin control electrodes. The electrodes located above and underneath the rotor are used 

to detect and control the position of the rotor in three degrees of freedom: the levitation 

along the z direction and the rotation about the x and y axes. The in-plane motion of the 

rotor along the x and y axes is controlled by sets of sense and feedback electrodes at the 

periphery of the rotor. Each of the surrounding electrodes forms a capacitor with the 

levitated rotor. In the presence of rotation, the spinning rotor will displace away from its 

nominal position, perpendicular to the spin and input axes. The displacement of the rotor 

results in a change in capacitances formed between the rotor and upper/lower sense 
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electrodes. The capacitance imbalance is differentially sensed by a closed-loop electrostatic 

suspension control system. The system, in turn, produces electrostatic feedback forces to 

counteract the movement of the rotor, and thus nulling it back to the nominal position. These 

feedback forces associated with the precession torque provide a measure of the rotation rate. 

 

OrCAD/PSPICE and Matlab/Simulink models were developed in order to investigate the 

stability of the micromachined ESG implemented with the closed-loop system. The 

simulations revealed that it is feasible to levitate the rotor at the start-up phase using the 

closed-loop system if the rotor is initially placed on stoppers at the bottom substrate. Both 

OrCAD/PSPICE and Matlab/Simulink simulation results show a good correspondence with 

each other. The output bitstreams of the system showed the expected characteristic of a 

second-order ΣΔΜ. The full system model was developed in Matlab/Simulink to evaluate 

the performance of the micromachined ESG with ΣΔΜ force feedback. The results 

confirmed that the micromachined ESG can be used to sense multiple inputs (rotation rates 

and accelerations) simultaneously. Nevertheless, the level of the noise floor increased when 

three input signals, i.e. rotation rate about the x and y axes and acceleration along the z 

direction, were applied to the micromachined ESG at the same time.  

 

The micromachined ESG needs to be operated under vacuum condition for two purposes. 

One reason is to reduce the squeezed-film damping/spring constants. The other is for the 

sake of rotor spinning speed. As a result, a Brownian noise floor of the sensor is relatively 

low. Noise analysis in Matlab/Simulink simulations confirmed that the signal-to-noise ratio 

of the output bitstream of the sensor system was limited by electronic noise sources. Hence, 

special care must be taken in the design and development of low-noise electronic interface. 

 

The prototype micromachined ESG was implemented using the glass/silicon/glass bonding 

technology, which combines high-aspect-ratio deep etching with triple-wafer anodic 

bonding. Glass etching on top and bottom Pyrex substrate was carried out to define a 

capacitive gap and stoppers. It was followed by metal deposition and wet chemical etching, 

respectively, in order to pattern the upper and lower electrodes. Then, a thin bare silicon 

wafer was anodically bonded to a bottom glass substrate. A high-aspect-ratio DRIE process 

was used to etch silicon in order to form the sidewall electrodes and also release the rotor. 

Next, the fabricated top glass wafer was anodically bonded to the etched silicon wafer. 
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Lastly, the triple-wafer stack was sawed into individual chips and a diced chip was wire 

bonded to a chip carrier. However, the fabrication of the micromachined ESG with the 

process flow described above was not successful. All of the fabricated sensors suffered from 

the so-called stiction problem. Unfortunately, such a problem could not be resolved during 

the course of this research project because the entire Southampton University cleanroom 

facilities were destroyed by a fire. 

 

Some fabricated prototype, which has not yet bonded to the top substrate, was used to 

investigate an alternative approach to provide electrostatic levitation using sidewall 

electrodes. These sidewall electrodes are normally used to provide electrostatic forces in 

order to suspend the rotor along the x- and y-axis directions and maintain it at the centre of 

the device cavity. However, by applying a superimposed signal consisting of a DC bias 

voltage and an AC feedback control signal to the sidewall electrodes, a vertical levitation 

force in combination with lateral control forces is generated on the rotor. The analysis of this 

approach was investigated using 2D electrostatic finite element simulations in ANSYS. 

Simulation results showed that the net vertical levitation force is directly proportional to the 

square of the bias voltage and inversely dependent on the distance between the rotor and 

sidewall electrodes. In contrast, the net vertical force remains almost constant with regard to 

the diameter and thickness of the rotor. ANSYS simulations also revealed that for the case 

that the rotor was placed off-centre, electrostatic forces acting on each side of the rotor are 

imbalanced and thus causing the rotor to rotate out of plane. This confirms that electrostatic 

levitation using sidewall electrodes requires a closed-loop control system in order to 

maintain the rotor in the middle position between the sidewall electrodes. A relatively high 

voltage is required to control the vertical levitation. Thus, a closed-loop system based on 

analogue force feedback is more suitable and it is used for initial tests. System simulations 

in Matlab/Simulink were carried out and confirmed that the designed closed-loop system is 

able to cope with the situation where the rotor is initially located at the off-centre position 

and it is also stable under applied inertial force. 

 

Initial tests of the prototype sensor with no top substrate were carried out to measure 

sidewall capacitances and to evaluate electrostatic levitation. The sidewall capacitances were 

measured using the procedure described in chapter 7. It was found that the measured 

capacitances are in the same order of magnitude to the designed value. However, the 
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measured values are relatively smaller, which could be because the distance between the 

rotor and the sidewall electrode is larger than the designed value (due to undercut etching 

during photolithography and DRIE processes). The prototype sensor was also implemented 

with the designed analogue feedback control. Experimental test was carried out to evaluate 

electrostatic levitation using sidewall electrodes. However, the test results at this point are 

not yet conclusive. 

 

8.2 FUTURE WORK 
 

In this section, suggestions for future work are presented with regard to all main aspects in 

the development of the micromachined ESG, including (1) design and analysis of the sensor, 

(2) electrostatic suspension control and (3) device fabrication.  

 

8.2.1 Design and analysis of the micromachined ESG 

 

The analysis of the micromachined ESG presented in this thesis assumed that the net charge 

on the rotor is always zero and the potential of the rotor always remains at zero. However, in 

reality the levitated rotor may become charged and the potential of the rotor is not always 

equal to zero. This can result in the adhesion of the rotor to substrate and, as a consequence, 

the sensor system will become unstable. For macro-scale electrostatically suspended devices 

[154, 155], this problem is resolved by connecting a relatively light-weight gold wire to a 

levitated proof mass so that its potential can be controlled through the gold wire. However, 

this is not suitable for the micromachined ESG, which has a relatively small dimension 

proof mass and the proof mass also rotates. This charging and discharging of the rotor is the 

remaining topic that needs to be investigated in more details.  

 

8.2.2 Electrostatic suspension control 

 

The results obtained from Matlab/Simulink and OrCAD/PSPICE simulations have 

confirmed the expected operation and performance of the micromachined ESG with the 

designed ΣΔM control system; however, this has not yet been tested experimentally. This is 

due to unavailability of a working sensor prototype. Therefore, it would be interesting to 

fabricate a dummy sensor, which has the same design and configuration to the 
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micromachined ESG; but has suspended beams (very low spring constant) connecting a 

rotor to anchors. Such a dummy sensor can then be used to test the operation and 

functionalities of the electrostatic suspension control system.   

 

8.2.3 Device fabrication 

 

The prototype sensor has not yet been realised yet due to problems mentioned in chapter 6. 

Therefore, future work should focus on the development of the fabrication process to 

overcome considerable problems, for instance the so-called stiction problem and a surface 

damage on the front and back side of the rotor. Some suggestion to the problems is given in 

section 8.3. 

 

8.2.4 Further work towards the goal of the project 

 

The short-term goal of the project is to realise working prototypes of the micromachined 

ESG. Other than what mentioned above, the following work should also be addressed: 

• Electrostatically spinning the levitated rotor needs to be explored. 

• A closed-loop system to control a spin speed of the levitated rotor should also be 

investigated. This will improve scale factor stability in the micromachined ESG. 

 

8.3 SUGGESTIONS ON DEVICE FABRICATION 
 

The most crucial issue in the development of the micromachined ESG is the fabrication of 

the sensor. One issue is the so-called RIE lag that causes damage on the front and back sides 

of the rotor. This will cause an imbalance between the upper and lower sense and feedback 

capacitances. The RIE lag issue can be resolved by designing the micromachined ESG in 

such a way that it has the same opening area. The other approach is by depositing a thin 

layer of metal, for example platinum, aluminium or chrome/gold, on both front and bottom 

surfaces of the rotor (see Figure 8.1). This approach requires two additional steps from the 

original fabrication of the micromachined ESG (for more details, see chapter 6). Before a 

silicon wafer is bonded to a bottom glass wafer, a metal layer is deposited and patterned on 

the front and back sides of the silicon wafer. This will also prevent the released rotor to be 

bonded to the top and bottom glass substrates during the anodic bonding process. In addition, 
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the metal layer on the top and bottom of silicon feedthroughs can be exploited to make an 

electrical connection between the top electrodes and the bottom bond pads. When the silicon 

wafer is bonded to the top glass substrate, these metal layers (one on the silicon wafer and 

the other on the glass substrate) will be pressed together and forms a press-on contact. 

 

The fabricated prototype suffers from the so-called stiction problem. This problem may 

come from: (1) electrostatic bonding of the triple-wafer stack, (2) water and debris getting 

into a device cavity during wafer dicing and (3) remaining thin photoresist on the released 

rotor (see chapter 6 for more details). During the triple-wafer stack bonding, the released 

rotor may become charged and thus will be bonded to glass or silicon substrate. This 

problem could be avoided by using alternative bonding techniques, for example, soldering 

bonding [156, 157], eutectic bonding [158, 159] and thermo-compression bonding [160, 

161]. Figure 8.2 shows the schematic diagram of the triple-wafer stack bonding using a 

thermo-compression technique. Gold is normally the material of choice in thermo-

compression bonding due to its oxidation resistant property. Basically, Chrome/gold layers 

are patterned on both top glass and silicon wafers and then bonded together by applying 

appropriated pressure to the wafers at a temperature of 375 or 400 °C. 

  

 

 

 
Figure 8.1 Additional steps to the fabrication of the micromachined ESG in order to avoid 

damage on the front and bottom sides of the rotor. Before a silicon wafer is bonded to a 

bottom glass wafer, a metal layer is deposited and patterned on the front and back sides of 

the rotor: (a) prior to etching and (b) after etching. 

 

Rotor 

Sidewall electrode 
Silicon feedthrough connecting  
top electrodes to bottom bond pads

(a) 

Silicon

(b) 

Metal layers 
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Figure 8.2 Schematic of the triple-wafer stack bonding using a thermo-compression method. 

 

The real bottleneck in the sensor fabrication is that the rotor was completely released in the 

middle of the fabrication. This not only leads to the rotor stiction problem, but it also makes 

the wafer cleaning difficult. These issues can be resolved using the sacrificial layer 

technique that can kept the rotor in its place; and a sacrificial material is then released (a dry 

release is preferable) at the end of the process flow. 

 

One possible approach is by exploiting the Unity™ polymer as a sacrificial layer. The 

Unity™ polymer was recently developed by the Promerus to be used together with solid 

polymer overcoat, Avatel™, for wafer packaging applications [162, 163]. It is photo-

definable using deep UV exposure (248 nm) and can withstand a high temperature up to 

400°C. The Unity™ polymer can then be released by thermal decomposition. The by-

products will become volatile gases such as CO2. Hence, there is no residual remaining in 

the device cavity.  

 

The proposed process flow for the micromachined ESG based on the Unity™ approach is 

shown in Figure 8.3. This approach is similar to the fabrication presented in chapter 6. The 

fabrication process of top and bottom glass wafers remains the same. A thin silicon wafer is 

replaced by a highly conductive SOI wafer. The SOI wafer is first etched to define a 

structure, followed by filling Unity™ polymer into the etched trenches. Next, the SOI wafer 

Pyrex® 

Rotor 

Cr/Au metal layers 
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is bonded to the bottom glass substrate. The thin layer of silicon and buried oxide layer are 

removed. The top glass wafer is then bonded to the pair of the glass/silicon wafer. The 

fabricated wafer is diced into small chips and the Unity™ polymer is released at the end of 

the process. 

 

 

 

Glass wafer is cleaned and  

then etched two steps to  

create a capacitive gap and  

stoppers. Metal electrodes are  

then patterned.  

 

 

 

 

SOI wafer is cleaned and  

deep etched to define a  

rotor and sidewall electrodes.  

 

 

 

 

 

 

Unity™ polymer is filled  

into a cavity 

 
 

 

 

Anodic bonding a SOI wafer  

to a bottom glass substrate. 

 

Anodic bond a top wafer to silicon/glass 

substrate. Then, the stack is diced into small 

chips. At the end, the Unity™ polymer is 

released by thermal decomposition. 

Figure 8.3 Proposed process flow for the fabrication of the micromachined ESG which 

utilizes the Unity™ polymer as a sacrificial layer. 

 



Appendix A: ANSYS Parametric Design Language Code 200
 
 

Appendix A 

ANSYS Parametric Design Language Code  
 

 

A.1 2D ELECTROSTATIC LEVITATION 
 

A two-dimensional finite element model for calculating electrostatic levitation forces acting 

on a rotor as it was presented in chapter 3 (Figure 3.26). 

 
finish 
/clear 
/title, 2D electrostatic analysis of a levitated rotor 
/prep7 
 
!solid modelling 
!================ 
 
W = 200 
Hd = 20 
gap = 5 
We = (W-Hd)/2 
He = 4 
z = 0 
 
Wair = W + (W/4) 
Hair = 4*Hd 
 
blc5,0,z,W,Hd,,     ! Levitated rotor 
blc5,(We/2)+(Hd/4),(Hd/2)+gap+(He/2),We,He,, ! Top electrodes 
blc5,-(We/2)-(Hd/4),(Hd/2)+gap+(He/2),We,He,, 
blc5,(We/2)+(Hd/4),-(Hd/2)-gap-(He/2),We,He,, ! Bottom electrodes 
blc5,-(We/2)-(Hd/4),-(Hd/2)-gap-(He/2),We,He,, 
blc5,0,0,W+20,Hd+(2*gap),, 
blc5,0,0,Wair,Hair,,    ! Air boundary 
 
aovlap,all 
numcmp,area 
 
 
!material attribute 
!================== 
 
et,1,plane121 
 
emunit,epzro,8.854e-6 
mp,rsvx,1,0 
mp,perx,1,11.7 
mp,perx,2,1 
asel,s,area,,1     ! area 1 = silicon rotor 
aatt,1,1,1 
asel,s,area,,6,7,1     ! air  
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aatt,2,1,1 
allsel 
 
!meshing 
!======= 
 
mshape,1 
esize,gap/3 
amesh,6 
esize,3*gap 
amesh,7 
esize,2*gap 
amesh,1 
allsel 
 
 
!loading 
!======= 
 
V = 10 
GND = 0 
 
asel,s,area,,1 
lsel,s,ext 
nsll,s,1 
cm,cond1,node 
 
asel,s,area,,2 
lsel,s,ext 
nsll,s,1 
cm,cond2,node 
d,all,volt,V 
 
asel,s,area,,3 
lsel,s,ext 
nsll,s,1 
cm,cond3,node 
d,all,volt,V 
 
asel,s,area,,4 
lsel,s,ext 
nsll,s,1 
cm,cond4,node 
!d,all,volt,GND 
d,all,volt,-V 
 
asel,s,area,,5 
lsel,s,ext 
nsll,s,1 
cm,cond5,node 
!d,all,volt,GND 
d,all,volt,-V 
allsel 
 
finish 
 
/solu 
eqslv,iccg 
solve 
 
finish 
 
/post1 
set,last 
cmsel,s,cond1 
emft 
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A.2 3D ELECTROSTATIC ANALYSIS OF THE AXIAL–

DRIVE LEVITATED ROTOR  
 

A three-dimensional model for calculating a capacitance forming between the rotor and the 

upper/lower electrodes as a function of the angular position of the rotor (presented in chapter 

3).  
 
finish 
/clear 
/title, 3D electrostatic axial-drive levitated rotor model 
/prep7 
 
 
Ro = 1500     ! rotor structure     
Ri = 1200       
Rm = Ro-0      
h  = 50     ! thickness of rotor/stator 
Rso = Ro-100 
gap = 5       
Rb = Ro + 15*gap    ! air boundary radius 
rt = 0      ! rotor angle 
rotor_theta = rt    ! rotor angle 
 
*IF,rotor_theta,GT,9,THEN 
   rotor_theta = rotor_theta - 45 
*ENDIF 
 
theta1 = 18     ! rotor pole's angle 
theta2 = 45 - theta1   ! space between each rotor pole 
theta3 = 18     ! stator pole's angle  
theta4 = 30 - theta3   ! space between each stator pole 
thetaRA = 9 + rotor_theta   ! initial state 
thetaRB = 0 
thetaSA = 6 
thetaSB = 0 
 
md = 90 
 
! Rotor model 
!============ 
 
cyl4,0,0,Ro,0,0,md,, 
 
*DO,I,1,8 
   thetaRB = thetaRA + theta2 
    
   *IF,thetaRB,GE,md,THEN 
      thetaRB = md 
   *ENDIF 
   cyl4,0,0,Rm,thetaRA,Ri,thetaRB,, 
   thetaRA = thetaRB + theta1 
   asba,1,2         
   numcmp,area 
 
   *IF,thetaRA,GE,md,THEN 
      *EXIT 
   *ENDIF 
*ENDDO 
vext,all,,,,,h+2*gap 
numcmp,volume 
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! Air boundary domain 
!==================== 
 
cylind,Rb,0,0,h+(2*gap),0,md 
cylind,Ro,0,0,h+(2*gap),0,md 
cylind,Rb,0,h+gap,h+(2*gap),0,md 
cylind,Rb,0,0,gap,0,md 
vovlap,all 
numcmp,volume 
vglue,all 
 
! Top/Bottom electrodes 
!====================== 
 
thetaSA = 6 
thetaSB = 0 
 
*DO,I,1,3 
   thetaSB = thetaSA + theta3 
   cylind,Ri,Rso,(h+(2*gap))+1,(h+(2*gap))+2,thetaSA,thetaSB 
   thetaSA = thetaSB + theta4 
*ENDDO 
 
thetaSA = 6 
thetaSB = 0 
 
*DO,I,1,3 
   thetaSB = thetaSA + theta3 
   cylind,Ri,Rso,-1,-2,thetaSA,thetaSB 
   thetaSA = thetaSB + theta4 
*ENDDO 
 
/color,volume,4,13,18,1 
/color,volume,14,1,11,1 
/trlcy,volume,1,1,11,1 
/trlcy,volume,0.5,13,18,1 
 
 
! Meshing 
!======== 
 
et,1,solid122     ! 3D 10-node electrostatic solid   
et,5,mesh200,7    ! Unsolved element type 
 
 
!Define physical parameters 
!========================== 
 
emunit,epzro,8.854e-6   ! Free space permittivity (uMKSV units) 
mp,perx,1,1     ! air permittivity 
mp,perx,2,11.5    ! silicon permittivity 
vsel,s,volume,,12 
vatt,2,1,1 
vsel,s,volume,,1,11,1 
vatt,1,1,1 
allsel 
 
 
type,5 
mshape,1 
esize,5*gap 
amesh,52 
amesh,46 
amesh,2 
amesh,72 
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type,1 
esize,,3 
vsweep,4,52,57 
vsweep,3,46,51 
vsweep,11,2,93 
vsweep,7,72,73 
allsel 
esize,,4 
vsweep,6,57,39 
vsweep,5,51,45 
vsweep,12,93,90 
vsweep,9,73,81 
allsel 
esize,,3 
vsweep,1,39,34 
vsweep,2,45,40 
vsweep,10,90,1 
vsweep,8,81,80 
allsel 
vclear,12 
allsel 
 
 
!Loading 
!======= 
       
V1 = 10     ! define driving potential on stator 
V0 = 0      ! define ground potential on rotor 
csys,1 
 
!Define load to rotor node 
!========================= 
 
vsel,s,volume,,12 
asel,s,ext 
nsla,s,1 
cm,cond1,node 
d,all,volt,V0 
sf,all,mxwf 
allsel 
 
!Define load to stator nodes 
!=========================== 
 
theta3 = 18     ! stator pole's angle (normally = of rotor) 
theta4 = 30 - theta3   ! space between each stator pole 
 
thetaSA = 6 
thetaSB = thetaSA + theta3 
 
! Phase A - TOP 
 
nsel,s,loc,x,Ri,Rso 
nsel,r,loc,y,thetaSA,thetaSB 
nsel,r,loc,z,h+(2*gap) 
cm,cond2,node 
d,all,volt,V0 
 
! Phase A - BOTTOM 
 
nsel,s,loc,x,Ri,Rso 
nsel,r,loc,y,thetaSA,thetaSB 
nsel,r,loc,z,0 
cm,cond3,node 
d,all,volt,V0 
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thetaSA = thetaSB + theta4 
thetaSB = thetaSA + theta3 
 
! Phase B - TOP 
 
nsel,s,loc,x,Ri,Rso 
nsel,r,loc,y,thetaSA,thetaSB 
nsel,r,loc,z,h+(2*gap) 
cm,cond4,node 
d,all,volt,V1 
 
! Phase B - BOTTOM 
 
nsel,s,loc,x,Ri,Rso 
nsel,r,loc,y,thetaSA,thetaSB 
nsel,r,loc,z,0 
cm,cond5,node 
d,all,volt,V0 
thetaSA = thetaSB + theta4 
thetaSB = thetaSA + theta3 
 
! Phase C - TOP 
 
nsel,s,loc,x,Ri,Rso 
nsel,r,loc,y,thetaSA,thetaSB 
nsel,r,loc,z,h+(2*gap) 
cm,cond6,node 
d,all,volt,V0 
 
! Phase C - BOTTOM 
 
nsel,s,loc,x,Ri,Rso 
nsel,r,loc,y,thetaSA,thetaSB 
nsel,r,loc,z,0 
cm,cond7,node 
d,all,volt,V0 
 
allsel 
finish 
 
 
/solu 
solve 
!cmatrix,1,'cond',7,1 
finish 
 
/post1 
 
set,first 
etable,sene,sene 
etable,efx,ef,x 
etable,efy,ef,y 
 
/number,1 
 
plnsol,volt 
plvect,efx,efy 
ssum 
*GET,W,ssum,,item,sene 
C = (W*2)/((V1-V0)**2) 
*STATUS,C 
 
 

 

 



Appendix A: ANSYS Parametric Design Language Code 206
 
A.3 2D ANALYSIS OF ELECTROSTATIC LEVITATION 

USING SIDEWALL ELECTRODES 
 

A two-dimensional finite element model for calculating a resulting electrostatic force acting 

on a rotor as a function of various parameters as presented in chapter 7.  

 
finish 
/clear 
/title, 2D electrostatic force analysis of a side-drive levitated rotor 
/prep7 
 
 
!solid modelling 
!================ 
 
xo = 10 
yo = 3 
z = 4.5 
Wsub = 300 
Hsub = 60 
Wd = 400 
Hd = 20 
We = 20 
He = Hd+yo 
Wair = Wd+(2*xo)+(2*We) 
Hair = Hsub 
blc5,0,Hd/2+z,Wd,Hd,,     ! rotor 
blc5,-(Wd/2)-(We/2)-xo,He/2,We,He,,   ! left side electrode 
blc5,(Wd/2)+(We/2)+xo,He/2,We,He,,   ! right side electrode 
blc5,0,Hair/2,Wair,Hair,,     ! Air boundary 
aovlap,all 
numcmp,area 
 
 
!material attribute 
!================== 
 
et,1,plane121 
 
emunit,epzro,8.854e-6 
mp,perx,1,11.7      ! silicon  
mp,perx,2,1       ! air 
asel,s,area,,1,3,1      ! silicon 
aatt,1,1,1 
asel,s,area,,4      ! air  
aatt,2,1,1 
allsel 
 
!meshing 
!======= 
 
mshape,1 
 
esize,0.5 
amesh,4 
allsel 
 
 
!loading 
!======= 
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V = 100 
GND = 0 
 
asel,s,area,,1 
lsel,s,ext 
nsll,s,1 
cm,rotor,node 
d,all,volt,GND 
 
asel,s,area,,2 
lsel,s,ext 
nsll,s,1 
cm,Lelectrode,node 
d,all,volt,V 
 
asel,s,area,,3 
lsel,s,ext 
nsll,s,1 
cm,Relectrode,node 
d,all,volt,-V 
 
asel,s,area,,4 
lsel,s,ext 
nsll,s,1 
cm,air,node 
allsel 
 
finish 
 
/solu 
eqslv,iccg 
solve 
 
finish 
 
/post1 
set,last 
cmsel,s,rotor 
emft 
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Appendix B 

Fabrication Process Flow for 

Micromachined ESGs  
 
STEP PROCESS DESCRIPTION COMMENTS 

1 Materials International Wafer Service 

Si Wafers, 100mm diameter,  <100>±0.5°, N-type, 

Double Sides Polished (DSP) 

0.001 – 0.005Ω cm, Thickness 200μm±5 

0.005 – 0.020Ω cm, Thickness 150μm±5 

0.005 – 0.020Ω cm, Thickness 75μm±5 

 

Sensor Prep Services, Inc. 

7740 Pyrex Wafers, 100mm±0.5, DSP,  Thickness 

0.50mm±0.05, Surface Finish: SI 4–8A° 

 

 

PYREX WAFERS 

2 Piranha clean H2SO4:H2O2 3:1 mixture: 15min 

Spin, rinse and dry (SRD) 

 

3.1 Evaporate Cr/Au: 200A°/3000A°  

3.2 Photolithography 

Mask 1: FB and FT (front side) 

Dehydration: 15min @140°C in an oven 

Vapour HMDS or HMDS: 30sec @4krpm  

S1813: spread  4sec @500rpm, spin 30sec @4krpm 

Soft bake: 60sec @115°C on a hotplate 

Expose: MA6 20mW/cm2 4.5sec Hard  contact 

Develop: MIF 319 or Microprofit 351 60sec+10sec 

SRD 

Hard bake : 15min @115°C in an oven 

FB: for bottom glass wafers 

FT: for top glass wafers 

 

 

 

 

Measure the thickness of 

S1813 

3.3 Wet etch Cr/Au Etch Au: KI-based etchant 1min or ‘til clear 

Etch Cr: CR-14 etchant 15sec or ‘til clear 

SRD 

Measure the thickness of 

Cr/Au layer 

3.4 Backside protection S1813: spread  4sec @500rpm, spin 30sec @4krpm 

Hard bake : 10min @115°C in an oven 

Not necessary 

4 Etch glass 1.3μm J.T Baker 7:1 BOE with surfactant or  

Transene BHF improved or  

H2O:HNO3:HF 10:3:7 mixture 

SRD 

 

Inspect etch depth using step profilometer 

 

5 Strip photoresist (PR) Hot PRS-2000: 20min or Acetone/IPA can be used to 
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STEP PROCESS DESCRIPTION COMMENTS 

Piranha clean: 15min 

SRD 

 

Inspect etch depth (no PR) 

strip PR; but not as good as 

PRS-2000 and Piranha clean

6 Piranha clean H2SO4:H2O2 3:1 mixture: 15min 

SRD 

 

7.1 Evaporate Cr/Au: 200A°/3000A°  

7.2 Photolithography 

Mask 2: SB and ST (front side) 

Dehydration: 15min @140°C in an oven 

Vapour HMDS or HMDS: 30sec @4krpm  

S1827: spread  4sec @500rpm, spin 30sec @4krpm 

Soft bake: 60sec @115°C on a hotplate 

Expose: MA6 20mW/cm2 14sec Hard  contact 

Develop: MIF 319 or Microprofit 351 60sec+10sec 

SRD 

Hard bake : 15min @115°C in an oven 

SB: for bottom glass wafers 

ST: for top glass wafers 

 

 

 

 

Measure the thickness of 

S1813 

7.3 Wet etch Cr/Au Etch Au: KI-based etchant 1min or ‘til clear 

Etch Cr: CR-14 etchant 15sec or ‘til clear 

SRD 

Measure the thickness of 

Cr/Au layer 

7.4 Backside protection S1813: spread  4sec @500rpm, spin 30sec @4krpm 

Hard bake : 10min @115°C in an oven 

Not necessary 

8 Etch glass 2μm J.T Baker 7:1 BOE with surfactant or  

Transene BHF improved or  

H2O:HNO3:HF 10:3:7 mixture 

SRD 

 

Inspect etch depth using step profilometer 

 

9 Strip PR Hot PRS-2000: 20min or 

Piranha clean: 15min 

SRD 

 

Inspect etch depth (no PR) 

Acetone/IPA can be used to 

strip PR; but not as good as 

PRS-2000 and Piranha clean

10 Piranha clean H2SO4:H2O2 3:1 mixture: 15min 

SRD 

 

11 Photolithography 

Mask 3: MB and MT (front 

side) 

Dehydration: 5min @115°C  

Vapour HMDS   

SPR220-3: spread  4sec @500rpm, spin 30sec 

@3krpm 

Soft bake: 60sec @95°C 

Expose: MA6 20mW/cm2 15sec Hard  contact 

Develop: MIF 300 30sec+60sec 

SRD 

Optical inspection 

MB: for bottom glass wafers

MT: for top glass wafers 

 

Spin on SPR220-3 was done 

using Suss ACS2000: recipe 

SPR220-3 5μm  

 

 

12 Evaporate  Cr/Pt/Au: 200A°/500A°/2500A°  

13 Metal liftoff Hot 1112A: 20min 

1112A + Ultrasonic tank: 5min 

DI Rinse 

Acetone + IPA + DI Rinse 
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STEP PROCESS DESCRIPTION COMMENTS 

SRD 

Optical inspection 

BOTTOM PYREX + SILICON 

14 Wafer preparation Piranha clean: 15min (Si wafers only) 

Acetone + Ultrasonic tank: 10min 

IPA:10min 

DI Rinse 

SRD 

 

15 Anodic bonding Recipe : 

Top/Bottom temperature : 385°C 

Chamber pressure : 1×10-4 Torr 

Contact force : ~370 N 

Voltage: 1min @-250V 

               1min @-500V 

               1min @-650V 

               @-800V ‘til current drops to 10%  of Imax   

               3min @-800V 

Cool down: 100°C 

 

Optical inspection 

EVG501 or Suss SB6e 

16 Solvent clean Acetone + IPA + DI Rinse 

SRD 

 

17.1 Front side protection S1813: spread  4sec @500rpm, spin 30sec @4krpm  

17.2 Sputter (back side) Al or Cr: 2000-5000A°  

18 Photolithography 

Mask 4: DE (front side) 

Dehydration: 15min @115°C  

Vapour HMDS or HMDS: 30sec @4krpm 

AZ9260: spread  6sec @300rpm, spin 30sec @2krpm 

Soft bake: 60sec @90°C on hotplate 

Expose: MA6 20mW/cm2 50sec Hard  contact 

Develop: AZ400k:DI 1:3 30sec+90sec 

SRD 

Optical inspection 

Backside alignment 

 

19.1 Attach a handle wafer Mix cool grease with IPA 

Put a handle wafer on a hotplate, temp = 115°C 

Pour cool grease onto a handle wafer 

Wait ‘til it looks dried (no IPA left) 

Adhere the device wafer to the handle wafer 

AIT Technology, INC. 

Cool grease 7016, good 

thermal and electrical 

conductive 

19.2 DRIE (STS™) Target depth: Thru wafer 200μm 

UMICH Recipe: PCC-HR 

Recipe : 

 Etch Passivation 

C4F8 - 85 sccm 

SF6 130 sccm - 

O2 13 sccm - 

Coil Power 800 W 600 W 

Platen Power 10 W - 

Time 12 sec 7 sec 

STS Multiplex ICP ASE 

System 

 

 

 

 

 

 

 

Inspection: 

Optical microscope 
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STEP PROCESS DESCRIPTION COMMENTS 

* Passivation step first, then Etch step 

* APC set to manual 65% - 0.2%/min 

ZYGO™ Interferometer 

SEM 

19.3 Remove a handle wafer Glass wafer might be required to cover the front side 

Detach the device wafer using a razor blade 

Clean the back side using IPA + CleanWIPE™ 

 

20 Strip PR O2 plasma asher (preferred) or Solvent clean  

PYREX/SILICON + TOP PYREX 

21 Wafer preparation Acetone + Ultrasonic tank: 10min 

IPA:10min 

DI Rinse 

SRD 

Only for top Pyrex wafers 

22 Anodic bonding Recipe : 

Top/Bottom temperature : 350°C 

Chamber pressure : 1×10-4 Torr 

Contact force : ~370 N 

Voltage: 1min @250V 

               1min @500V 

               1min @650V 

               @700V ‘til current drops to 10%  of Imax   

               3min @700V 

Cool down: 100°C 

 

Optical inspection 

Suss SB6e 

23 Dicing Glass blade 777, 250 microns thick @8.5krpm  

24 Wire bonding Au wire bonding  
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