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Doctor of Philosophy

MODELLING BREAKDOWN DURATIONS IN SIMULATION MODELS OFENGINE

ASSEMBLY L INES

Lanting Lu

Machine failure is often an important source of variabilityand so it is essential

to model breakdowns in manufacturing simulation models accurately. This thesis

describes the modelling of machine breakdown durations in simulation models of

engine assembly lines. To simplify the inputs to the simulation models for com-

plex machining and assembly lines, the Arrows classification method has been de-

rived to group machines with similar distributions of breakdown durations, where

the Two-Sample Craḿer-von Mises statistic and bootstrap resampling are used to

measure the similarity of two sets of data. We use finite mixture distributions fit-

ted to the breakdown durations data of groups of machines as the input models for

the simulation models. We evaluate the complete modelling methodology that in-

volves the use of the Arrows classification method and finite mixture distributions,

by analysing the outputs of the simulation models using different input distribu-

tions for describing the machine breakdown durations. Details of the methods and

results of the grouping processes will be presented, and will be demonstrated using

examples.



Contents

List of Figures vii

List of Tables xvi

Declaration of Authorship xix

Acknowledgements xxi

1 Introduction 1

1.1 Finite Mixture Models . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Estimating Similarity . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Evaluation of the Breakdown Inputs . . . . . . . . . . . . . . . . 6

1.5 Modelling Machine Breakdowns . . . . . . . . . . . . . . . . . . 7

1.6 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Literature Review for Modelling Breakdowns 12

2.1 Definition of a Machine Breakdown . . . . . . . . . . . . . . . . 13

2.2 Machine Failure Rates . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Elements of a Machine Breakdown . . . . . . . . . . . . . . . . . 17

ii



CONTENTS iii

2.4 Historical Data Collection . . . . . . . . . . . . . . . . . . . . . 21

2.5 Distributions for Representing Downtimes . . . . . . . . . . . .. 24

2.5.1 General Input Modelling . . . . . . . . . . . . . . . . . . 24

2.5.2 Input Modelling of Machine Downtimes . . . . . . . . . . 27

3 Statistical Models of Breakdown Duration Data 30

3.1 Multimodal Distributions . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Bayesian Fitting Process . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.1 Data Validation . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.2 Data Correlation . . . . . . . . . . . . . . . . . . . . . . 41

3.3.3 Data Transformation . . . . . . . . . . . . . . . . . . . . 49

3.4 Component Distribution Selection . . . . . . . . . . . . . . . . . 54

3.5 Relating Components with Faults . . . . . . . . . . . . . . . . . . 60

4 Estimating the Similarity Matrix 62

4.1 Index of Similarity . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Goodness of Fit Statistics . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Basic Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Bootstrapping for Estimating the Similarity Matrix . . . .. . . . 68

4.5 Testing the Estimation of Similarity . . . . . . . . . . . . . . . .73

4.5.1 Phase 1: the impact of the number of bootstrap iterations . 73

4.5.2 Phase 2: the influence of the sample size . . . . . . . . . 76



CONTENTS iv

4.5.3 Phase 3: distinguishing samples with different means. . . 78

4.5.4 Phase 4: distinguishing samples with different variances . 79

4.5.5 Phase 5: distinguishing samples generated from different

types of distributions . . . . . . . . . . . . . . . . . . . . 81

4.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6.1 Breakdown Duration Data . . . . . . . . . . . . . . . . . 83

4.6.2 Length-of-Stay Data . . . . . . . . . . . . . . . . . . . . 84

5 Classification of Machines 89

5.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.1.1 Types of Classification . . . . . . . . . . . . . . . . . . . 90

5.1.2 Method Targets . . . . . . . . . . . . . . . . . . . . . . . 92

5.1.3 Obtaining Classes . . . . . . . . . . . . . . . . . . . . . 92

5.1.4 Strategy Comparison . . . . . . . . . . . . . . . . . . . . 97

5.2 Arrows Classification Method . . . . . . . . . . . . . . . . . . . 99

5.3 An Example of Machine Classification . . . . . . . . . . . . . . . 101

5.4 Comparison with Cluster Analysis . . . . . . . . . . . . . . . . . 108

5.4.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4.3 Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.5 Classification of Hospital Length-of-Stay Data . . . . . . . .. . . 123

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126



CONTENTS v

6 Simulation 128

6.1 Manufacturing and Engine Assembly Lines . . . . . . . . . . . . 129

6.2 Construction of Simulation Systems . . . . . . . . . . . . . . . . 133

6.3 Breakdown and Maintenance Logic . . . . . . . . . . . . . . . . 134

6.4 Machine Breakdown Modelling Process . . . . . . . . . . . . . . 136

6.5 Using WITNESS to Model Breakdowns . . . . . . . . . . . . . . 138

6.6 Time Between Failures . . . . . . . . . . . . . . . . . . . . . . . 139

6.7 Issues with Model Execution . . . . . . . . . . . . . . . . . . . . 140

6.7.1 The Influence of the Initial Transient . . . . . . . . . . . . 142

6.7.1.1 Simple Time-Series Inspection . . . . . . . . . 144

6.7.1.2 Welch’s Method . . . . . . . . . . . . . . . . . 144

6.7.2 Checking for Dependence . . . . . . . . . . . . . . . . . 148

7 Simulation Evaluation 150

7.1 Breakdown Input for Simulation Model . . . . . . . . . . . . . . 151

7.2 Output Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.2.1 Graphic Comparison . . . . . . . . . . . . . . . . . . . . 153

7.2.2 Paired T-Test . . . . . . . . . . . . . . . . . . . . . . . . 154

7.2.3 Bootstrapping Analysis . . . . . . . . . . . . . . . . . . . 156

7.2.4 Further Investigation . . . . . . . . . . . . . . . . . . . . 157

7.3 Impact of the Threshold . . . . . . . . . . . . . . . . . . . . . . . 163

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167



CONTENTS vi

8 Conclusions and Future Research 171

8.1 Finite Mixture Models . . . . . . . . . . . . . . . . . . . . . . . 172

8.2 Method for Estimating Similarity . . . . . . . . . . . . . . . . . . 173

8.3 Arrows Classification Method . . . . . . . . . . . . . . . . . . . 175

8.4 Evaluate Breakdown Duration Input Modelling . . . . . . . . . .176

8.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

8.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Glossary 182

A Grouping Results of the 20 Machines 184

B Similarity Matrix and Grouping Results of the 39 Machines in Dun-

tonL01 Engine Assembly Line 187

References 191



List of Figures

1.1 Diagram of the proposed machine breakdown duration modelling

process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Bathtub Curve for machine reliability. . . . . . . . . . . . . . . . 15

2.2 Diagram of elements of two types of repair process at Ford. . . . . 19

2.3 Detailed diagram of elements of the maintenance process. Repro-

duced from [97]. . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Histogram of the distribution of the raw breakdown duration data

of a machine involved in engine assembly process. . . . . . . . . 23

2.5 Histogram of the distribution of the validated breakdown duration

data of the same machine given in Figure 2.4. . . . . . . . . . . . 23

3.1 Histogram showing the distribution of the machine breakdown du-

ration data of a machine involved in engine assembly process. . . 31

3.2 Histogram corresponding to a probability density function of a

multimodal distribution with two local modes. . . . . . . . . . . .32

3.3 Autocorrelation of lags1, 2, . . . , 7492 within the data set of break-

down durations for all39 machines in the assembly line. Red curve

indicates the 5% significance limits for the autocorrelations. . . . 43

vii



L IST OF FIGURES viii

3.4 Scatter plot of observationi vs. observationi+ 1211 in the break-

down duration data set for all39 machines. The circled point in-

dicates an outlier. . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Autocorrelation of lags1, 2, . . . , 58 within the data set of break-

down duration for machine ML08. Red curve indicates the 5%

significance limits for the autocorrelations. . . . . . . . . . . .. . 45

3.6 Autocorrelation of lags1, 2, . . . , 60 within the data set of break-

down duration for machine ML07. Red curve indicates the 5%

significance limits for the autocorrelations. . . . . . . . . . . .. . 46

3.7 Scatter plot of observationi vs. observationi + 1 in the break-

down duration data set for machine ML07. The circled points are

identified as outliers. . . . . . . . . . . . . . . . . . . . . . . . . 47

3.8 Scatter plot of observationi vs. observationi+1 in the breakdown

duration data set for machine ML07, after deleting the two outliers

circled in the previous scatter plot in Figure 3.7. . . . . . . . .. . 48

3.9 Time series plot of the breakdown duration data set for all 39 ma-

chines in the engine assemble line collected in the period between

07 January 2008 and 14 March 2008. . . . . . . . . . . . . . . . . 48

3.10 Histogram of the valid untransformed data and plot of the PDF of

the fitted 3-component lognormal mixture model. . . . . . . . . . 50

3.11 Plots of the EDF and the best-fit CDF of the untransformed data

on four different scales. Red line for EDF and black line for CDF

in all four plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



L IST OF FIGURES ix

3.12 The first chart includes the histogram of the transformed data and

the PDF of the fitted 4-component lognormal mixture model. The

second chart includes the EDF of the transformed data and the

CDF of the fitted lognormal mixture distribution; red line forEDF

and black line for CDF. . . . . . . . . . . . . . . . . . . . . . . . 53

3.13 The first chart includes the histogram of the same sampleof trans-

formed data shown in Figure 3.12 and the PDF of the fitted 8-

component Weibull mixture model. The second chart includesthe

EDF of the transformed data and the CDF of the fitted Weibull

mixture distribution; red line for EDF and black line for CDF.. . 56

3.14 The first chart includes the histogram of the same sampleof trans-

formed data shown in Figure 3.12 and the PDF of the fitted 6-

component gamma mixture model. The second chart includes the

EDF of the transformed data and the CDF of the fitted gamma

mixture distribution; red line for EDF and black line for CDF.. . 57

3.15 The first chart includes the histogram of the same sampleof trans-

formed data shown in Figure 3.12 and the PDF of the fitted 4-

component extreme mixture model. The second chart includesthe

EDF of the transformed data and the CDF of the fitted extreme

mixture distribution; red line for EDF and black line for CDF.. . 58

3.16 The first chart includes the histogram of the same sampleof trans-

formed data shown in Figure 3.12 and the PDF of the fitted 4-

component inverse Gaussian mixture model. The second chartin-

cludes the EDF of the transformed data and the CDF of the fitted

inverse Gaussian mixture distribution; red line for EDF andblack

line for CDF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



L IST OF FIGURES x

3.17 Histogram of breakdown duration data for machine ML01;the dif-

ferent colours represent different groups of faults, and the plot of

the PDF of the fitted 3-component lognormal mixture distribution. 61

4.1 (a) The bootstrapping process used to determine the nulldistribu-

tion of T , Φ(T ), and (b) the evaluation of the Cramér-von Mises

statistic for the original samples, which is compared withΦ(T ) to

determine the p-value for the similarity of the two machines. . . . 71

4.2 M1 vs.M2, p12 < 0.10 . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 M1 vs.M3, p13 > 0.90 . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Plots of the PDF ofGamma(10, 2.5) andGamma(5.0, 1.0) and

the histograms of the two random samples, Ga1S100 and Ga3S100,

generated from each of the two distributions respectively.. . . . . 80

4.5 Plots of the PDF curves of the4 different distributions listed in

Table 4.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.6 Plots of the PDF ofExponential(0.20) andLognormal(1.109, 1.0)

and the histograms of the two random samples, E1S100 and LN1S100,

generated from each of the two distributions respectively.. . . . . 82

4.7 Histograms of the breakdown duration data for the six machines. . 87

4.8 Histograms of the patients’ hospital length-of-stay data for the five

procedures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.1 A Taxonomy of classification methods and sorting algorithms. Re-

produced from [55]. . . . . . . . . . . . . . . . . . . . . . . . . . 94



L IST OF FIGURES xi

5.2 Steps 1 and 2 of the example of 20 machines, showing groupswith

double-arrow and single-arrow connections and the strength of the

connections within each group. Red curve (— - - — -): p-value

of the two connected machines is significantly different; yellow

curve (- - - - - - - -): p-value of the two connected machines is

on the borderline; green curve (————–): p-value of the two

connected machines is not significantly different. . . . . . . .. . 106

5.3 Step 4 of the example of 20 machines in which we try to combine

the primary groups without red connections . . . . . . . . . . . . 107

5.4 Dendrograms of the grouping results for objects with thedistance

matrix given in Table 5.3: (a) from the complete linkage cluster

analysis; (b) from the average linkage cluster analysis. The first

column of numbers is the corresponding distance between theob-

jects or groups at each amalgamation. . . . . . . . . . . . . . . . 110

5.5 Dendrogram of the grouping results from the Arrows method for

objects with distance matrix given in Table 5.3. The first column

of numbers is the distance threshold. . . . . . . . . . . . . . . . . 110

5.6 Dendrograms of the grouping results for objects with distance ma-

trix given in Table 5.4: (a) from the complete linkage cluster analy-

sis; (b) from the average linkage cluster analysis. The firstcolumn

of numbers is the corresponding distance between the objects or

groups at each amalgamation. . . . . . . . . . . . . . . . . . . . . 112

5.7 Dendrogram of the grouping results from the Arrows method using

distance threshold lower than5.00 for objects with distance matrix

given in Table 5.4. The first column of numbers is the distance

threshold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113



L IST OF FIGURES xii

5.8 Dendrogram from the complete linkage cluster analysis for the ex-

ample of 20 machines. The first column of numbers is the corres-

ponding similarity level at each amalgamation. . . . . . . . . . .117

5.9 Dendrogram from the average linkage cluster analysis for the ex-

ample of 20 machines. The first column of numbers is the corres-

ponding similarity level at each amalgamation. . . . . . . . . . .118

5.10 Dendrogram from the Arrows clustering method using similarity

thresholdp0 > 0.046 for the example of 20 machines. The first

column of numbers is the corresponding p-value/similaritythreshold.119

6.1 Layout diagram of the whole view of the DuntonL01 engine as-

sembly line built in the WITNESS 2008 version software. . . . . .131

6.2 Layout diagram of a part of the DuntonL01 engine assemblyline

built in WITNESS 2008 version software. . . . . . . . . . . . . . 132

6.3 A sample WITNESS layout diagram from a Ford simulation model

showing a typical simulation dialog which contains controlrules

and timings for the each operation and facility within the plant

using the WITNESS software, given in [162]. . . . . . . . . . . . 134

6.4 Diagram of the machine breakdown modelling methodology. . . . 136

6.5 Hourly throughputs (Jobs completed per hour), DuntonL01 model. 145

6.6 Averaged process for hourly throughputs (Jobs completed per hour),

DuntonL01 model. . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.7 Moving averages (w = 5) for hourly throughputs (Jobs completed

per hour), DuntonL01 model. . . . . . . . . . . . . . . . . . . . . 147

6.8 Moving averages (w = 10) for hourly throughputs (Jobs com-

pleted per hour), DuntonL01 model. . . . . . . . . . . . . . . . . 147



L IST OF FIGURES xiii

6.9 Autocorrelation of all possible lags within the JPH output of the

simulation run. Red curve indicates the 5% significance limits for

the autocorrelations. . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.1 Boxplot of simulation output JPH using the three methods for

sampling breakdown durations. The central line shows the median

and the box spans the inter-quartile range. . . . . . . . . . . . . . 154

7.2 Interval plot of the set of real JPH observations and simulation

output JPH using the three methods for sampling breakdown dura-

tions. The central circle shows the mean and the interval describes

the95% confidence interval for the mean. . . . . . . . . . . . . . 155

7.3 Boxplot and Interval plot of simulation output JPH using three

methods for sampling breakdown durations: group FMD (p0 =

0.10), one FMD for all 39 machines and one lognormal distribu-

tion for all 39 machines. The central line shows the median and

the box spans the inter-quartile range. The central circle shows the

mean and the interval describes the95% confidence interval for

the mean. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.4 Boxplot of simulation output JPH using four different methods

for sampling breakdown durations: EDF, individual FMD, group

FMD (p0 = 0.10) and one FMD for all 39 machines; while the

engine repairs and operator stoppages are set to be turned off. The

central line shows the median and the box spans the inter-quartile

range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160



L IST OF FIGURES xiv

7.5 Interval plot of simulation output JPH using four different methods

for sampling breakdown durations: EDF, individual FMD, group

FMD (p0 = 0.10) and one FMD for all 39 machines; while the

engine repairs and operator stoppages are set to be turned off. The

central circle shows the mean and the interval describes the95%

confidence interval for the mean. . . . . . . . . . . . . . . . . . . 161

7.6 Histogram of the transformed breakdown duration data ofmachine

ML06 and plots of its fitted mixture distribution’s PDF and its

group fitted mixture distribution’s PDF. . . . . . . . . . . . . . . 162

7.7 Boxplot of simulation output JPH using the FMD for individual

machines together with the FMD for groups classified at different

threshold levels using the Arrows method for sampling breakdown

durations. The central line shows the median and the box spans the

inter-quartile range. . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.8 Interval plot of simulation output JPH using the FMD for indi-

vidual machines together with the FMD for groups classified at

different threshold levels using the Arrows method for sampling

breakdown durations. The central circle shows the mean and the

interval describes the95% confidence interval for the mean. . . . . 165

7.9 Boxplot of simulation output JPH using the FMD for groups clas-

sified at different threshold levels using the Arrows methodfor

sampling breakdown durations in the model with the engine re-

pairs and operator stoppages turned off. The central line shows the

median and the box spans the inter-quartile range. . . . . . . . .. 167



L IST OF FIGURES xv

7.10 Interval plot of simulation output JPH using the FMD forgroups

classified at different threshold levels using the Arrows method

for sampling breakdown durations in the model with the engine

repairs and operator stoppages turned off. The central circle shows

the mean and the interval describes the95% confidence interval for

the mean. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168



List of Tables

4.1 The3 different distributions from which4 random samples in total

are generated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 The inter-quartile ranges of each set of the100 p-values resulting

from 100 random runs with each different number of iterations

of bootstrapping when comparing each of the3 pairs of random

samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 The4 different distributions from which24 random samples in

total are generated. . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4 Similarity Matrix for the six generated samples from distribution

N(5.0, 1.0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5 The9 different distributions with the same variance but different

means, from which9 random samples are generated. . . . . . . . 78

4.6 The6 p-values comparing the6 pairs of random samples. . . . . . 79

4.7 The6 different distributions with the same mean but different vari-

ances, from which6 random samples are generated. . . . . . . . . 79

4.8 The3 p-values comparing the3 pairs of random samples. . . . . . 80

4.9 Similarity Matrix for the four random samples generatedfrom dis-

tributionsNormal(5.0, 1.0),Gamma(10.0, 0.5),Exponential(0.2)

andLogNormal(1.109, 1.0) respectively. . . . . . . . . . . . . . 82

xvi



L IST OF TABLES xvii

4.10 Similarity Matrix for six machines in a Ford engine assembly line,

based on their breakdown duration data. . . . . . . . . . . . . . . 84

4.11 Similarity Matrix for five procedures based on their patients’ length-

of-stay data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1 Values of the parameters for clustering strategies. Reproduced

from Gordon [70]. . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 Similarity Matrix for the20 machines based on their breakdown

duration data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3 Distance Matrix of Example 1 from Everitt [53] P9. . . . . . .. . 109

5.4 Distance Matrix of Example 2. . . . . . . . . . . . . . . . . . . . 112

5.5 Grouping results of Example 2 using the Arrows method with a

distance threshold of4.60, 5.00 or 5.50. . . . . . . . . . . . . . . 114

5.6 Grouping results of the 20 machines at a similarity levelof 0.10

using the average linkage clustering method. . . . . . . . . . . . .120

5.7 Grouping results of the 20 machines at a similarity levelof 0.10

using the complete linkage clustering method. . . . . . . . . . . .121

5.8 Grouping results of the 20 machines at a similarity levelof 0.10

using the Arrows classification method. . . . . . . . . . . . . . . 121

5.9 Grouping results of the hospital procedures. . . . . . . . . .. . . 126

7.1 The results of the paired t-tests between the outputs of models us-

ing the three breakdown duration inputs. . . . . . . . . . . . . . . 156

7.2 The p-values obtained from the bootstrapping process ofcompari-

son between the outputs of models using the three breakdown du-

ration inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157



L IST OF TABLES xviii

7.3 Frequency of generating long breakdown durations (greater than

50 minutes) for machine ML06 using the three different distribu-

tions. TTR is short for time to repair. . . . . . . . . . . . . . . . . 163

7.4 The results of the paired t-tests comparing the simulation output of

the model using individual FMD and those of models using FMD

for different groups of machines resulting from the Arrows method

using different thresholds. . . . . . . . . . . . . . . . . . . . . . . 166

7.5 The p-value results obtained from the bootstrapping process com-

paring the simulation output of the model using the individual

FMD and those of models using FMD for different groups of ma-

chines resulting from the Arrows method using different thresholds. 166

A.1 Grouping results of the 20 machines with Similarity Matrix given

in Table 5.2, using the Arrows Classification method and complete

linkage clustering. . . . . . . . . . . . . . . . . . . . . . . . . . . 186

B.1 Part a of the Similarity Matrix of the breakdown duration data for

the39 machines involved in DuntonL01 engine assembly line, es-

timated using the method described in Chapter 4. . . . . . . . . . 188

B.2 Part b of the Similarity Matrix of the breakdown duration data for

the39 machines involved in DuntonL01 engine assembly line, es-

timated using the method described in Chapter 4. . . . . . . . . . 189

B.3 Grouping results of the 39 machines based on the Similarity Ma-

trix given in Tables B.1 and B.2, using the Arrows Classification

method with thresholdp0 = 0.10. . . . . . . . . . . . . . . . . . . 190



Declaration of Authorship

I, Lanting Lu, declare that the thesis entitled Modelling Breakdown Durations in
Simulation Models of Engine Assembly Lines and the work presented in it are
both my own, and have been generated by me as the result of my own original
research. I confirm that:

• this work was done wholly or mainly while in candidature for aresearch
degree at this University;

• where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has
been clearly stated;

• where I have consulted the published work of other, this is always clearly
attributed;

• where I have quoted from the work of others, the source is always given.
With the exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed
myself;

• parts of this work have been published as:

– Lu, L., Currie, C.S.M., Cheng, R.C.H. and Ladbrook, J. “Classification
analysis for simulation of machine breakdowns” inProceedings of the
Winter Simulation Conference 2007, S.G. Henderson, B. Biller, M.-H.
Hsieh, J. Shortle, J.D. Tew and R.R. Barton as editors, pages 480-487,
2007.

– Currie, C.S.M. and Lu, L. “Optimal Scheduling Using Length-of-Stay
Data for Diverse Routine Procedures”. Intelligent Patient Manage-
ment. S. McClean, P. Millard, E. El-Darzi and C. D. Nugent as editors.
Heidelberg, Springer Berlin. 189: 193-205, 2009.

• parts of this work are due to be published as:

– Currie, C. S. M. and Lu, L. ”Comparison of Simulation Output Series
Using Bootstrapping”. In Proceedings of the 2009 INFORMS Simula-
tion Society Research Workshop. L. H. Lee, M. E. Kuhl, J. W. Fowler,
and S. Robinson as editors, 2009.



DECLARATION OF AUTHORSHIP xx

• parts of this work presently unpublished are:

– Lu, L., Currie, C.S.M., Cheng, R.C.H. and Ladbrook, J. “Classification
Analysis for Simulation of the Duration of Machine Breakdowns”.

– Currie, C. S. M. and Lu, L. “Evaluation of the Arrows Methods for
Classification of Data”.

Signed: ............................................................................................

Date: ...............................................................................................



Acknowledgements

I would first like to thank my supervisor Dr Christine Currie forthe assistance,

advice and support she has given freely and generously throughout the course of

my PhD study.

I would also like to thank Professor Russell Cheng for his knowledge and guidance

throughout my PhD.

I am grateful to the Ford Motor Company who supported me throughout this re-

search and to John Ladbrook who provided warm help and massive data.

Many people at the Ford’s Dunton Technical Centre have helpedme through the

course of my PhD, especially John Ladbrook, Mark, Matthew Loynes and Zou

Qi. Thanks also to Phil Smith and Ornella Benedett for their kindhearted support

during the times I worked at Dunton.

I would also like to thank Honora Smith, Georgina Mellor, Andrew Drake, Simon

Doherty and Marion Penn with whom I have had such a great time sharing offices

with.

I would like to give my recognition and thanks to all my familyfor their continued

love and support, without whom my study in Southampton wouldnot be possible.

Last but not least, I would very much like to thank my partner BoHuang, whose

continued encouragement, patience and good humour throughout my time of study

has been absolutely invaluable to me.



Chapter 1

Introduction

This thesis describes the methodology of modelling machinebreakdown durations

in simulation models of engine assembly lines. We derive a classification method

termed the Arrows classification method to simplify the inputs to the simulation

models for complex machining and assembly lines by groupingmachines with

similar distributions of breakdown durations. We fit finite mixture distributions

to the breakdown duration data of groups of machines that areinvolved in the

engine assembly lines to represent the machine breakdown duration inputs in the

corresponding simulation models.

This research is supported by Ford Motor Company and their objective was to

find an appropriate mathematical representation of the machine breakdown dura-

tion inputs in manufacturing simulation models. We use a pre-existing simulation

model of an engine assembly line, to test our methodology. The simulation model

is built in WITNESS simulation software (Lanner Group) [102]and is supplied by

Ford who also provide the necessary data.

Discrete-event simulation has been widely used in manufacturing industry to

model production operations. Ford have used this powerful tool since 1982 to help

with the planning of new facilities and the improvement of existing lines in all

1
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of their manufacturing plants. Different scenarios, such as number of resources,

length of buffers or layout of the manufacturing lines, can be set in different simu-

lation models. The outputs of these simulation models of machining and assembly

lines can and have been used to estimate costs, productivitytargets and proper la-

bour requirements and layouts for existing and new engine programs. Therefore,

simulation models are required to reflect the real world as accurately as possible.

In manufacturing systems, machine failure is often an important source of vari-

ability. Therefore it must be represented correctly in simulation models of the

process. Machine and engine repairs and operator stoppagescan have a signific-

ant effect on the line yield. For example, the total loss due to these repairs and

stoppages in the engine assembly line we consider in this thesis, for the last three

months of 2007 was 18.7%. However, while Ford have detailed duration data for

machine repairs, since the machines are linked to an automatic on-line monitoring

system, similar data are not available for engine repairs and operator stoppages

because the enormous time and resource requirements for monitoring every single

engine repair and operator stoppage are prohibitive. We therefore focus on the

development of a methodology to enable the modelling of the machine repair dur-

ations.

Currently, historical data are commonly used in Ford as machine breakdown

duration inputs to the simulation models while theoreticaldistributions are only

used when there are no historical data available for a machine. However, it is

generally preferable to use appropriate theoretical distributions as simulation in-

puts for several reasons; for example, it is often easier to change a theoretical

distribution when performing different experiments on thesimulation model. No

common statistical distribution has been found to be a reasonable fit for most of

the breakdown duration data as each set of data is a mixture ofa number of dis-

tinct populations, resulting in a multimodal distribution. Therefore, finite mixture

distributions have been proposed to fit the breakdown duration data of machines.
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There are normally hundreds of different machines involvedin each engine

assembly line in Ford. A major contribution of this thesis isthe simplification of

the machine breakdown duration inputs, which is required when modelling such

large assembly lines. We have derived a method of grouping machines based on

the breakdown duration data available, called the Arrows classification method.

The grouping is such that two machines can be placed in the same group only if

there is a statistically significant similarity between their breakdown duration data,

where the statistical similarity between the breakdown duration data sets of two

machines is estimated using the Cramér-von Mises goodness-of-fit statistic [5].

Bootstrapping is used to determine the significance level of the statistic. Finite

mixture distributions are fitted to the grouped breakdown duration data so that

the fitted finite mixture distributions for each group can be used to represent the

breakdown duration inputs for all of the machines in this group. The grouping

reduces the number of input distributions that must be estimated and increases the

data available for fitting the finite mixture distributions.

1.1 Finite Mixture Models

We use finite mixture models to represent the breakdown duration data for ma-

chines in engine assembly lines because the data are generally multimodal. Finite

mixture models provide a good description of multimodal data, using parameters

that have an intuitive meaning, and their implementation inmost standard simula-

tion packages, including the WITNESS software (Lanner Group) [102], which we

use to build our simulation models, is simple and convenient.

A continuous finite mixture model is defined by probability density function

written as

h(x) =
k∑

i=1

wifi(x|θi), (1.1)
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wherefi(x|θi) is a component distribution andwi is its weight and satisfieswi > 0

and
∑k

i=1wi = 1.

Parameterθi comprises the unknown parameters associated with theith indi-

vidual component. Parametersθi, weightwi and number of componentsk are all

unknown. We therefore wish to determine the number of componentsk and other

parameters in the finite mixture model. Since it is possible that the mixture model

is composed of components that are not represented in the data, findingk is a sta-

tistically non-standard problem. In addition, the likelihood is unusual with certain

combinations of parameter values giving rise to an infinite likelihood, and these

combinations do not correspond to consistent parameter estimates. Hence making

use of standard maximum likelihood methods is impossible inthis case.

Instead, a Bayesian framework is used for the fitting process as described in

[40]. Using Bayesian statistics, although the posterior distribution may still be

multimodal, the prior distribution smooths out the likelihood function. Moreover,

the posterior distribution fork is considered to be a more meaningful measure of

k in the mixture model than the likelihood function [40]. Importance sampling is

used to determine the posterior distribution for the numberof components.

1.2 Estimating Similarity

We wish to classify machines involved in the engine assemblylines into groups

with similar breakdown duration data, in order to simplify the breakdown inputs

for simulation models. To achieve this we first need to estimate the similarities

between the machines. As the breakdown duration data sets have uneven numbers

of data points, no standard method for measuring similarityis applicable. Thus,

we derive a new approach and measure the similarity of two machines by estimat-

ing the possibility of the two corresponding breakdown duration data sets having
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been drawn from identical distributions. We assume that twosamples of break-

down duration dataX = (x1, x2, . . . , xn), andY = (y1, y2, . . . , ym) for machines

Mx andMy respectively consist of independent observations. Under the null hy-

pothesis that samplesX andY are drawn from the same distribution, we calculate

the Two-Sample Craḿer-von Mises goodness-of-fit statisticT , which is a good

general purpose goodness-of-fit test method [42] and has an advantage of being

a distribution-free method, i.e. there is no need to make anyassumptions about

the underlying distributions of the data sets being analysed [5]. We reject the null

hypothesis ifT is too large. Tabulated criterion values for this test are not very

extensive and only give standard criterion values for samples with up to8 data

points or with sizes close to infinite [5]; while the number ofdata points of ma-

chine breakdown duration data sets varies from9 to 1310. Therefore, in order to

determine whetherT is too large, we need to estimate the p-value ofT by estimat-

ing Φ(T ), the distribution of the statistics of samples that are drawn from the same

distribution. We do this using bootstrapping, which is described further in Chapter

4. The similarities between each and every pair of machines are put together to

form the similarity matrix of all of the machines involved.

In Chapter 4 the method for measuring similarity is tested by comparing ran-

dom samples generated from known distributions. Although this method was

originally derived to estimate similarity between the machine breakdown dura-

tion data sets, it is widely applicable, and we have also usedit to calculate the

similarity between medical procedures based on their patients’ length-of-stay in a

group of private hospitals [41].

1.3 Classification

The machining and engine assembly lines that we are modelling often include hun-

dreds of different machines. Since the breakdown duration data of many machines
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follow similar distributions, for the purpose of reducing the number of input dis-

tributions, we propose a new classification method for grouping machines based

on their breakdown duration data. The fitted mixture distribution for the group can

then be used to described the breakdown duration inputs for all of the machines in

this group. In the classification process, two machines withsignificantly different

breakdown duration data, as calculated using the bootstrapping method described

in Section 1.2, are not allowed to be placed in the same group.

We name this classification method the Arrows method becausein this method

the strength of connections between objects are defined using arrows. This will be

described in Chapter 5. Objects with double-arrow and single-arrow connections

are placed in the same groups whenever possible. Objects 1 and 2 are said to have

a double-arrow connection ifp12, the p-value similarity of the two objects, is the

greatest in both row1 and row2 of the similarity matrix; but ifp12 is the greatest

in only one of row1 or row 2, objects 1 and 2 are said to have a single-arrow

connection instead. Another major feature of the Arrows method is the setting of a

threshold. A similarity threshold,p0, is set with the assumption that two data sets

with a similarity of the threshold value or above are similarenough to be put in the

same group. Thus, two objects can be put in the same group onlyif the p-value for

comparing their corresponding data sets is greater than or equal top0.

1.4 Evaluation of the Breakdown Inputs

We evaluate the whole process of modelling breakdowns by studying the outputs

of a simulation model of an engine assembly line designed by Ford using three

different inputs to represent the machine breakdown durations: (1) empirical dis-

tributions; (2) fitted finite mixture distributions for individual machines; (3) fitted

finite mixture distributions for groups of machines. We assess the simulation out-

puts of the models with the three machine breakdown durationinputs using three
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different methods: graphical comparison, paired-T test and bootstrapping analysis.

The bootstrapping analysis uses the same method for calculating the similarity of

two sets of simulation output data as is used to measure the similarity of break-

down duration data from pairs of machines. This is another important potential

application of the work in this thesis.

We also wish to investigate the impact of the choice of similarity threshold

when using the Arrows classification method. Simulation models are built with

the breakdown duration inputs represented by different sets of fitted mixture distri-

butions corresponding to the different groups that are generated using the Arrows

method with a range of thresholds. The simulation outputs ofthe same engine

assembly line model with different groupings of machines are compared to give

some insights.

1.5 Modelling Machine Breakdowns

The models of the manufacturing plants that we consider in this thesis are built in

WITNESS simulation software (Lanner Group) [102].

Historical breakdown duration data for machines are available directly from the

on-line monitoring system that the engine assembly line is linked to. The collected

data need to be validated by deleting unreasonable data points or subtracting some

part of durations for some data points; checked for correlations before the data

can be used in the subsequent analysis; and transformed for further analysis in the

breakdown duration modelling process. We discuss the data preparation further in

Section 3.3.

We propose using fitted mixture distributions for groups of machines to repre-

sent the machine breakdown durations, i.e. the time to repair machine failures. Fit-

ted mixture distributions cope well with the multimodalitypresent within the data
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and can smooth out its irregularities. Our proposed breakdown duration modelling

process is shown in Figure 1.1 and comprises three major steps:

1. Data preparation/ transformation:

Adjustments need to be made to validate the data for the mixture distribu-

tions fitting process. We transform the validated breakdownduration data to

obtain a better fit of finite mixture distributions.

2. Select component distribution type:

The type of component distribution is chosen based on the characterisations

of the breakdown duration data. A mixture of lognormal distributions is

considered to be the most appropriate to represent machine downtimes and

is simple to input into the WITNESS models for the engine assembly lines.

Section 3.4 describes the rationale behind this choice.

3. Fitting mixture distributions:

We propose using finite mixture distributions fitted to the amalgamation of

the data for all of the machines in a group to represent the machine down-

times for machines in the same group. There are three steps inthis part:

(a) Estimate similarities between the machines

The similarities between machines are measures by the significance

levels of Craḿer-von Mises statistics of their corresponding breakdown

duration data sets. The method for measuring machines’ similarities is

described in Chapter 4.

(b) Machines classification

Use the Arrows classification method to divide machines intogroups

based on the similarities between their breakdown durationdata. This

classification method is described in Chapter 5.
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(c) Fitting mixture distributions to the grouped data

This step involves estimating parameters of finite lognormal mixture

distributions for representing the breakdown durations for groups of

machines. A Bayesian framework is applied to find the posterior dis-

tributions of the parameters of the component distributions and that of

the number of components in the mixture distribution (see Section 3.2

for details). We fit one mixture distribution to each group ofmachines.

The fitted mixture distribution for one group can be used to represent

the breakdown durations for all machines in this group.
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Figure 1.1: Diagram of the proposed machine breakdown duration modelling pro-
cess.
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1.6 Outline of the Thesis

A literature review of machine breakdown input modelling inmanufacturing simu-

lation models is given in Chapter 2. We then describe the proposed statistical

model for representing the breakdown duration data in Chapter 3. In Chapter 4

we discuss the methodology used to estimate the similarity of data sets of uneven

sizes and test the method by implementing it on samples generated from a number

of known distributions. The application of this method to the machine breakdown

duration data and data on patients’ hospital length-of-stay for a set of medical

procedures is also given here. The Arrows classification method used for the ma-

chines classification process is presented in Chapter 5, including a comparison

between the Arrows method and popular cluster analysis methods and examples

of the method’s application to grouping machines and medical procedures. The

machine breakdown modelling process for the simulation model of an existing en-

gine assembly line that is currently in use is described in Chapter 6. In Chapter

7 we describe the methodology for evaluating the proposed machine breakdown

duration modelling methodology by constructing experiments on the engine as-

sembly line simulation model. We conclude in Chapter 8.



Chapter 2

Literature Review for Modelling

Breakdowns

We aim to develop a new mathematical form to represent the distribution of ma-

chine breakdown durations in simulation models of engine assembly lines. As “the

most important source of randomness in many manufacturing systems” ([103],

P687), machine breakdowns have a very big impact on the system throughput and

need to be modelled correctly. While there is a substantial literature on modelling

the time between breakdowns ([64], [128], [99], [163], [171] and [68]), there has

been relatively little work done on modelling the durationsof breakdowns. The

lack of literature on this specific subject is indicated in [6], [97] and [103]. It is

also suggested that even within the written literature on the topic of modelling

breakdowns there is little discussion on the practical implementation [97]. The

most practical publication on this subject suggested by [97] is [78]. There are

some other good references on modelling breakdowns in manufacturing system

models, such as [83], [103], [25] and [6].

This chapter gives a review of the available literature on previous methods for

modelling machine breakdowns. We begin by giving the definition of the term

breakdown in Section 2.1. A discussion of machine failure rates is then given in

12
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Section 2.2 and the elements of a machine breakdown are described in Section 2.3.

As the failure data collection is often problematic, a discussion of data collection

methods is given in Section 2.4. Finally, Section 2.5 discusses the approaches that

can be used to represent the machine downtimes.

2.1 Definition of a Machine Breakdown

Machine downtimes can be classified into two types:

1. Deterministic downtimes are machine downtimes that can be scheduled:

such as shift changes, breaks and planned maintenance [103].

Modelling this type of machine downtimes can be relatively easy.

2. Random downtimes are unscheduled machine downtimes: suchas actual

machine failures, broken tool changes, parts being stuck and gauging ([97]

and [103]).

This thesis concentrates on modelling random downtimes.

There are arguments about the randomness of machine breakdowns. Binroth

and Haboush [15] believe that breakdowns are time dependentas the occurrence

of future events would depend on the random times at which past events happened.

Bradford and Martin [21] also consider that machine failuresare not entirely ran-

dom and scheduling the next breakdown in simulation models might be dependent

on the machines’ previous breakdowns. Some, for example [128], [129], [27] and

[37], believe that electronic machine failure rates are related to time and follow

the classical Bathtub curve (see Section 2.2). Venton [156] on the other hand

states that machine breakdown consists of mechanical failures that often are the

result of physical wear, and electronic failures that are invariably concerned with

a chance and argues that electronic failures are random while mechanical failures
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should really be treated as time dependent events. Althoughmost Ford manufac-

turing machines are combinations of mechanical and electronic components and

the theory of time dependent breakdowns is probably correct, the Productivity En-

gineers at Ford assume that all breakdowns are random independent events [97].

We do not consider the modelling of the times between breakdowns in this thesis.

A breakdownis defined in [97] as “a generalisation for a mechanism failing to

perform its required function for an unknown reason when it was capable of doing

so”. In other words, a breakdown is the event after a mechanism fails and before

the machine functions again. Thebreakdown durationincludes the amount of time

to gather resources to analyse the problems and the length ofthe actual repair time

[103], and this whole period of the breakdown is also referred to as therepair time

or thetime to repair(TTR) or themachine downtime.

There are many causes that may lead to a breakdown: machine operating times,

maintenance conditions, parts replacements, machine weariness, design errors,

operator skills and random machine failures [17]. It seems impossible to predict

the occurrence of breakdowns ([25] and [16]). Thus, the machine breakdowns are

considered to be random downtimes. The main objective of ourresearch is finding

accurate statistical distributions for describing machine downtimes.

2.2 Machine Failure Rates

A classical categorisation of failures is based on the time at which they occur,

which separates machine failures into three types:

• Early Life: Also referred to as Infant Mortality [37]. In this initial period of

time the failure rate gradually decreases with time after time zero ([27] and

[37]).
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• Useful Life: This long period is also known as the Intrinsic Failure period or

Stable Failure period. In this phase the failure rate is roughly constant ([27]

and [37]).

• Wearout: In this period of time failures are mainly caused bydegradation

and the failure rate increases with time ([27] and [37]).

The sum of these three phases is commonly know as thebathtub curve, shown

in Figure 2.1, which is suggested to be the traditional curvefor electronic machines

[124]. The basic concept for the bathtub curve was believed to be established in

Proschan [128], [129]. There is some discussion, disagreement and development

about the true character and the use of the bathtub curve (see, for example, [99],

[163], [171], [64] and [68]). Condra [37] states that the argument of correctness of

the bathtub curve appears to be very subjective.

Time

F
a
il

u
re

R
a
te

Useful LifeEarly Life Wearout

Figure 2.1: Bathtub Curve for machine reliability.

Venton [156] separates machine breakdown into mechanical failures and elec-

tronic failures. The former are suggested to be treated as time dependent because

they are “often a result of physical removal of material by wear”. The latter can

be considered as random events as they are “invariably concerned with a chance

excess of applied stress over inherent strength”.
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Porter and Finke [127] examined machine breakdowns with forty eight causes

on the area of integrated circuits and classified them into four main categories:

broken parts, time degradation, mechanical stress and serial effects of time de-

gradation and mechanical abrasion.

Buzacott and Hanifin [23] identified two types:

• Operation dependent cause:

Cannot happen when the machine is in the idle state; happens after a certain

number of operation cycles.

• Time dependent cause:

Can happen when the machine is idle; is due to some uncertain reason except

wear and happens after a certain amount of time.

This categorisation suggests that a breakdown can happen even when the ma-

chine is not operating and there is time dependency in the occurrences of break-

downs. However, engineers in Ford assume that a breakdown isa totally random

and independent event and cannot happen when a machine is notoperating. We

make the same assumption in the simulation model and this is discussed further in

Chapter 6.

Another categorisation identified by Ibe and Wein [84] is based on the duration

of the failures, which is also used by Ford engineers. Law [103] (P320) gives a

similar opinion about the types of machine breakdowns. The two types are:

• Permanent failure:

Commonly classified as inherent failure by machine manufacturers, and “re-

quires the physical repair of a system by the field service crew and usually

takes hours to complete” It is referred to as Major failure byFord and defined

as a failure that usually requires highly skilled maintenance staff to fix and

normally takes longer than15 minutes to repair.
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• Intermittent failure:

Commonly classified as operational failure by machine manufacturers, and

“can be taken care of by the system operator and usually takesminutes to

complete” This is called Minor failure by Ford and defined as afailure that

generally needs basic skills to perform the maintenance andusually takes no

more than15 minutes to fix.

2.3 Elements of a Machine Breakdown

Barton et al [10] point out that the time spend on collecting and analysis data is

huge, therefore understanding the elements of breakdowns can really help with ini-

tial data analysis. It is believed that the time from when thefailure occurs until the

machine functions again is not only actual repair time. Thispoint is demonstrated

in an example given by Feltner and Weiner [54]:“the line stopped at 3:00pm on

a Thursday and was not running again until Monday morning, should we use the

elapsed time as repair time? Is it possible that the shift finished at 3.30pm and,

since part of the press line was not needed for the rest of the week, action was

deferred until the No2 shift came on board on Monday”. The total time of the

failure contains a long period of time in which no repair was carried out. Since the

data collected electronically in Ford states only the startand finish time of a failure

(see Section 2.4), this is the main reason for requiring datavalidation (see Section

3.3.1) before the analysis can take place.

Blache and Shrivastava [16] introduced the term of corrective maintenance as

corrections have to be undertaken to make a repair. They indicate that there are

more actions than just repairing the machine to turn it “froma failed state to an

operating or available state”. It is stated that the whole period of corrective main-

tenance can be separated into two main stages:
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1. The active stage

The period needed to change the machine into “a serviceable state”, i.e.

actual repair time.

2. The delay stage

Waiting time caused by the absence of one or more resources, such as tools

or maintenance staff.

Law [103] splits the repair time into the same two stages. Human behaviour

was cited by Hanifin [77] as an important contribution to uncertainty. Banks et al

[7] also blame human behaviour for much of the variability.

A diagram of two major types of machine repair process used atFord manu-

facturing plants is given in Ladbrook [97] and is reproducedin Figure 2.2. The

repair process has two main types: (a) the left hand side of this diagram, shown

as blue arrows, is the process without line side maintenanceand (b) the right hand

side, shown as purple arrows, is the process with line side maintenance. The rec-

tangles indicate the basic steps of the breakdown process and the blue or purple

arrows indicate two different sequences of the basic steps:blue for without line

side maintenance process and purple for with line side maintenance process. As

shown in this diagram, the biggest difference between the two types is that with

line side maintenance, there is no need to “call maintenanceoperators from a cen-

tral pool” [97].

Operators can manage to undertake a minor repair and maintenance operators

are called if it is identified as a major repair at the initial inspection of the operator.

Machine tryouts are test runs carried out by operators or maintenance operators to

check whether the machine is fixed properly. If the machine operates successfully

during tryouts, the whole maintenance process is considered to be completed.

A sequence of very detailed elements and phases in a maintenance process is

identified by Ferrazano in [97], although no explanation of the different phases of
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Breakdown Process
without Line Side

Maintenance

Breakdown Processwith
Line Side Maintenance
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Maintenance Operator Response

Major Repair Undertaken

Machine Tryout

Machine Repaired

Figure 2.2: Diagram of elements of two types of repair process at Ford.

the whole maintenance route for a breakdown is given. A diagram of the mainten-

ance process is shown in Figure 2.3.

Carrie [25] describes a more straightforward logic for modelling machine break-

downs. After choosing the method to generate the failure times much (Steps 1 and

2), his approach is as follows:

Step 3 “Schedule start of breakdown event at this time.”

Step 4 “When the clock reaches this time take the machine out ofservice.”

Step 5 “Draw a sample from the repair time distribution and add it to the current
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Figure 2.3: Detailed diagram of elements of the maintenanceprocess. Reproduced
from [97].

clock time.”

Step 6 “Schedule an end of breakdown event at this time.”

Step 7 “When the clock reaches this time return the machine to normal serv-

ice.”

Step 8 “Draw a sample from the time between repair distribution and add it to

the current clock time.”

This logic assumes the time generated for a machine failure is the whole e-

lapsed time of all elements of the breakdown stage. Compared to the detailed

model shown by Figure 2.3, the greatest advantage is its simplicity. Ford found

it was very time consuming and even unrealistic to collect precise data for each

phase shown in Figure 2.3. Besides, experiments have been carried out on sim-

ulation models with different detail levels of breakdown durations modelling and

no significant differences have been detected [97]. Therefore engineers in Ford

make similar assumptions to Carrie’s, that all of the elements of breakdowns are

included within the generated time to repair.
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2.4 Historical Data Collection

There are two main methods of breakdown data collection in Ford: electronic

and manual collection. The former data collection method isachieved by using

the automatic on-line monitoring system, while the latter requires the work of

line foremen, machine operators or productivity engineers. The data we use is all

collected automatically. It includes every breakdown of machines that are linked

to the on-line monitoring system on the engine assembly line, recorded during a

period of three months from January to March 2008. There are39 machines linked

to the monitoring system for this line, and these machines are chosen because they

are considered the most important to the running of the line.Each entry of the

data has several attributes consisting of the ID of the machine that has broken

down, the start time of the breakdown, the finish time of the breakdown and a brief

description of the fault that caused the breakdown.

The manual collection in Ford includes two methods: Line Foreman’s Records

and Productivity Engineers Records. Compared to manual collection, the advan-

tage of electronic collection is that the monitoring systemrecords every failure

of machines that have been connected to the system. Manual collection can also

be expensive and time-consuming. The disadvantages of electronic collection are

described by Ladbrook [97] as the following:

1. The system cannot identify lack of spares, tools collection or tidy up or the

shift break times.

2. During a machine breakdown, the maintenance operator sometimes needs to

run some ‘try outs’ to see if the machines is repaired correctly. The system

cannot treat the ’try outs’ as part of one failure. Hence, onebreakdown could

be recorded as more.
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3. If the machine is powered off during repair, the system mayrecord two stop-

pages instead of one.

4. A failure occurring on the last production shift of the week could have one

of two outcomes. First, the machine is fixed during overtime at the weekend,

or second, it is fixed in the first shift of the following week. In either case,

the system records the duration of this repair as lasting thewhole weekend

or lasting until the end of the last shift.

5. The monitoring system may be off during weekend overtime.Thus, it is

often not known when the repair is completed during the overtime period.

6. The automatic monitoring system might breakdown. In thiscase, it is nec-

essary to rely on the engineers responsible for the line to use other methods

to collect the data.

The data collected from the on-line monitoring system therefore needs to be

validated before subsequence analysis. The cleaning and validation of the raw

data was previously carried out manually in Ford, which was avery time consum-

ing process especially when dealing with large data sets that include thousands of

breakdown entries. We have derived a program using Visual Basic of Applica-

tions in Excel to process the data validation, which has helped the Ford simulation

modellers to achieve an enormous saving of time spent on thistask.

The data validation may change the raw data significantly. For example, the

histogram of the distribution of the raw repair time data fora typical machine in

an engine assembly line is shown in Figure 2.4 and the histogram of the validated

repair time data for the same machine is given in Figure 2.5. The detail of the data

validation process will be discussed in Section 3.3.
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Figure 2.4: Histogram of the distribution of the raw breakdown duration data of a
machine involved in engine assembly process.
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Figure 2.5: Histogram of the distribution of the validated breakdown duration data
of the same machine given in Figure 2.4.
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2.5 Distributions for Representing Downtimes

Finding a good representation of machine breakdown durations is a crucial part

of modelling breakdowns when building a simulation model. Input modelling is

used to specify the appropriate form of the distributions representing input random

variables to a simulation model. In this section, we will give a discussion of lite-

rature reviews in general simulation input modelling and then consider machine

breakdown input modelling in more detail.

2.5.1 General Input Modelling

Almost all simulation models of real-world systems requirethe input random vari-

ables that represent the sources of variability to be modelled. For example, in a

queuing system, sources of variability include random customer inter-arrival times

and customer service times and their probability distributions are required.

There is an extensive discussion of general simulation input modelling. The

common recommendation is that if a standardtheoretical distributioncan be found

that is a good model for the input data, then this distribution should be used in the

simulation model; otherwise, using theempirical distributionbased on the data is

a good option (see, for example, [103], [157] and [12]). Whileusing an empiri-

cal distribution seems to be straightforward, an adequately well fitted theoretical

distribution is generally preferable for a number of reasons:

• Smooth out the data:

As the number of data points in the data is finite and sometimeseven very

small, the empirical distribution may contain irregularities, such as gaps,

in which there are no observations in this sample but these values may be

possible in other samples ([103] and [12]).
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• Represent extreme events:

Generally, empirical distributions only represent data with limited values be-

cause the randomly generated data from an empirical distribution cannot be

less than the minimum of the observed data or greater than themaximum of

the observed data. Since the chance of extreme events can heavily influence

the performance of simulation systems, a fitted theoreticaldistribution can

be a better method of representing the whole process ([103] and [12]).

• Physical reasons:

Certain physical characteristics of the data, such as nonstationarity or de-

pendence, make it elaborate to obtain the empirical distribution ([103] and

[12]).

• Simpler to make changes:

It is much simpler to make changes to a theoretical distribution. If we want

to investigate the system performance in different scenarios with differences

in that input data. With theoretical distributions, simplychanging the para-

meters will make all of the changes. But there is no straightforward way for

making the changes when using an empirical distribution ([103] and [12]).

• Compact way to represent the data:

The physical process to input the empirical distribution into the simulation

model might be time-consuming especially with a large data set. A theoreti-

cal distribution, on the other hand, is a much more compact way to represent

the input data [103].

In relevant work using this approach, most authors focus on relatively simple

problems where input random variables are independently and identically distri-

buted and follow well-known parametric theoretical distributions, such as gamma,

lognormal, normal, Weibull, etc. Since the natures of different kinds of data vary
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a lot, the number of choices is correspondingly large. Thereare a few features of

the data that can help narrow down the possible choice to a fewthat may have a

better fit, e.g. the shape of the histogram of data or whether the data consist of

negative or positive values([107], [108] and [109]). For example, if the histogram

of data skews to the right, the normal distribution can probably be ruled out. Law

[103] gives a tutorial on “hypothesizing” distributions that might be a good fit of

the data. A good descriptions of the physical features of many standard theoretical

distributions can be found in [52] and Chapter 9 of [8].

Law et al. [106] identified that sometimes no standard theoretical distributions

can reflect the actual underlying distribution. If no theoretical distribution seems

to be a good fit, it is recommended by most text books, such as Law [103], that an

empirical distribution should be used. Biller and Barry [12] also suggest that an

empirical distribution can be a good option “when an adequate sample is available,

the data are thought to be representative and there is no compelling reason to use a

probability model (including the case that nothing appearsto fit well)”. Barton et

al. [10] express their concerns on the common approach of using fitted theoretical

distributions as simulation input and advocate the use of empirical distribution for

its simplicity and “transparent” meanings.

There is a growing recognition of problems where input random variables are

multivariate or correlated. Some recent work, such as Nelson and Yamnitsky [123],

Deler and Nelson [47], Ghosh and Henderson [65], Biller and Nelson [13] and

[14], Lada et al. [96] and Kuhl et al. [94], have studied thesetwo situations.

There are also cases where no standard theoretical distribution can be a rea-

sonable fit for the data: “the data are a mixture of two or more heterogeneous

populations” [103]. Cheng and Currie [35] indicate that many of these cases can

be generalised to the situation where input random variables are drawn from fi-

nite mixture distributions. Most of Ford’s machine breakdown duration data are

multimodal and so can be described by finite mixture distributions. The term finite
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mixture distribution and the methodology and process of fitting mixture distribu-

tion to Ford’s machine downtimes will be introduced in Chapter 3.

2.5.2 Input Modelling of Machine Downtimes

When considering the more specific case of input modelling formanufacturing

systems most of the literature recommends modelling machine breakdown dura-

tions by assuming the time between failures (TBF) and the timeto repair (TTR)

are independently and identically distributed and follow awell-known theoretical

distribution, such as Weibull, Erlang or exponential.

In the very early stage of breakdown modelling, the exponential distribution

was suggested to be a plausible distribution for all data sets of breakdown dura-

tions ([43] and [51]). Then, more researchers and modellersbecame aware that ex-

ponential distribution may not be a good model for machine breakdown durations

as many real-life random variables cannot be well describedby the exponential

distribution ([128] and [129]). The normal distribution isanother distribution that

has been widely assumed to be an appropriate distribution for modelling break-

down durations. However, this is disputed by Law et al [106].Other distributions

have been studied on representing breakdowns in later work.Kay [92] believes that

“life to failure distribution” can be demonstrated by the Weibull distribution. Some

other authors like [104], [158], [159] and [105] believe that machine downtimes

can be correctly represented by theoretical distributionsprovided that adequately

well fitted theoretical distributions can be found.

Nevertheless, there are researchers who advocate the use ofempirical distribu-

tions, such as [78], [54] and [142]. Carson [142] suggests that the use of an empi-

rical distribution is probably the simplest way to use the data. Feltner and Wiener

[54] also prefer the use of empirical distributions as the process for estimating a

fitted theoretical distribution is very complex. Hanifin andLiberty [78] consider
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that modelling machine breakdowns with theoretical distributions has risks and

indicate that first, there is no actual theoretical proof that the assumed theoretical

distribution fits data from a real transfer line and second, important variables in the

data are “disregarded, assumed constant or forced to fit”. Intheir work, they gen-

erated machine breakdown durations in the simulation that were exactly the same

as the data they collected. The input was fixed and set as the sequence of actual

start time and finish time of machine failures collected in a certain period. There-

fore, under their approach, every run has exactly the same sequence of breakdown

durations. However, this means that the length of the simulation run time can not

be more than the amount of time over which the breakdown data has been collect-

ed. Hence, if a particular event has low frequency and a relatively short length of

breakdown input is used, the simulation run length may not besufficient to reflect

the true impact of the rare events.

Some of the research on breakdown modelling of manufacturing simulation

supports the use of theoretical distributions. Bradford andMartin [21] studied10

transfer line machines’ breakdown behaviour and compared the performance of av-

erage throughput of two simulation models consisting of these10 machines. One

of the two models uses actual historical data to model machine breakdowns and the

other uses a negative exponential distribution to model machine up durations and

uses a Erlang-2 to represent machine downtimes. The conclusion is that the aver-

aged line yield produced with the use of standard theoretical distributions was “as

accurate as using historical data”. However, it is also indicated that no one distri-

bution used (negative exponential, Weibull, Poisson and Erlang-2) could represent

the time between failures and the breakdown durations accurately for all of the

machines, and the breakdown durations were modelled especially badly. Some

other authors like [104], [158], [159] and [105] believe that simulation models

using theoretical distributions to represent machine downtimes produce accurate

performance, but only when adequately well fitted theoretical distributions can be
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found.

Some projects on breakdown modelling that have been undertaken in Ford pre-

ferred the use of historical data (empirical/user-defined distribution). Crosby and

Murton [39] conclude that the theoretical distribution could not truly reflect the

underlying distribution as the outputs were very different. Ikonen [85] states that

an empirical distribution was believed to be the more accurate way to represent the

actual data. Ladbrook [97] expresses his concerns that no theoretical distribution

seems to be an appropriate representation of the breakdown data.

It is also indicated that much of the relevant mathematical and statistical know-

ledge of theoretical distribution selection and estimation of parameters are very

complex [32] and “beyond the understanding of many manufacturing engineers”

who happen to be the simulation modellers. Correspondingly,it takes much longer

for the engineers to learn and build simulation models if applying theoretical dis-

tributions.

The factor of time limitations has been emphasized in a number of manufactur-

ing simulation studies, such as [111], [119], [97] and [98].Therefore, as Ma and

Kochhar [111] state, it is ideal to obtain accurate repair times representation with

simple and intuitively meaningful mathematical formulations that can be easily

implemented in simulation software, which our proposed method aims to provide.
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Statistical Models of Breakdown

Duration Data

The machine breakdown duration data is a collection of machine breakdown du-

rations over a period of manufacturing time. Currently, empirical distributions

are used for representing the time to repair by Ford since no common distribution

appears to fit the data of breakdown durations well. The empirical distributions are

input into the WITNESS simulation models in the form of a histogram.

In the case when there are no historical data available or a new machine is being

modelled, Ford usually use the Erlang-2 or exponential distributions to describe the

distributions of machine breakdown durations. Only the mean breakdown duration

is needed to fit the Erlang-2 and exponential distributions,and this is normally

provided by the machine manufacturer.

If we plot a single histogram of the entire collection of breakdown durations

for each machine, we see two or more distinct peaks for most ofthe histograms,

i.e. the breakdown duration data ismultimodal. Figure 3.1 shows the distribution

of breakdown durations for a typical machine and is clearly multimodal. There-

fore, the more common statistical distributions, such as Erlang-2 and exponential,

30
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will produce poor fits to these data. Instead, we use finite mixture distributions,

allowing us to describe the multimodality.
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Figure 3.1: Histogram showing the distribution of the machine breakdown dura-
tion data of a machine involved in engine assembly process.

We begin with a description of finite mixture distributions,our proposed meth-

od, in Section 3.1, stating the estimation problem of fitted finite mixture models.

We use a Bayesian approach for the fitting methodology and thisis discussed in

Section 3.2, including a brief description of the implementation of the importance

sampling used to fit the finite mixture models. Section 3.3 addresses some of the

issues in the raw data before carrying out the actual fitting process for the machine

breakdown duration data. Section 3.4 discusses the selection of the distribution for

the individual components. We investigate the relations between the components

of the fitted mixture distributions for the breakdown durations of a machine and

the different types of faults that cause failures of the machine in Section 3.5.
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3.1 Multimodal Distributions

In statistics, a multimodal distribution is a continuous probability distribution that

has multiplemodes, i.e. whose density function has two or more distinct peaks;

as illustrated in Figure 3.2. Sharing the same physical features, multimodal dis-

tributions can be used to fit a dataset that is composed of a number of distinct

modes.

x

h
(x

)

Figure 3.2: Histogram corresponding to a probability density function of a multi-
modal distribution with two local modes.

Mixture models are a common form of multimodal distributions. A finite mix-

ture modelis defined as having probability density function [115]:

h(x) =
k∑

i=1

wifi(x|θi), (3.1)

where

0 < wi ≤ 1 for i = 1, . . . , k (3.2)

and
k∑

i=1

wi = 1 (3.3)
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are the weights of the components whose individual densities arefi(x|θi) for i =

1, . . . , k. The parameterk is the number of components in the finite mixture model.

Being a particularly flexible and useful method of modelling,finite mixture

models have been receiving more attention recently [76] andhave been success-

fully applied in both practical and theoretical fields (e.g.[136], [11], [131], [35],

[110] and [1]).

Other multimodal distributions exist for fitting data that are not distributed

according to common stochastic models. These are generallybased on using flexi-

ble families of distributions, such as the Bézier distribution ([161], [160], [123],

[95] and [103]) or the Johnson family (see Chapter 12 of [90], or page 297 of

[103]). The B́ezier distribution exploits the properties of Bézier curves and allows

the modeller to fit the cumulative distribution functionF (x) to a wide range of

distributions of data, its flexibility being due in part to the fact that the number

of parameters to be used is not fixed. Johnson distributions are based on trans-

formations of normal variables and, although they offer a wide range of shapes of

distributions, do not cope as well with multimodality.

The advantage of the use of finite mixture models is that they provide a good

description of multimodal data, using parameters that havean intuitive meaning,

which will make it more understandable for engineers with little expertise. They

are also easy to implement in most standard simulation packages using a two-stage

approach, where the component is sampled in the first step andthen the input value

is sampled from the component density.

We use software developed by Cheng and Currie [40] to estimate the best fitted

mixture models for breakdown duration data sets. The assumption made in [40] is

that all of the component densities take the same form. If we allow the component

densities to take different forms in the mixture, the time spent on the fitting process

will increase massively, especially with a large selectionof different distribution
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types and a high number of components. Therefore the probability density function

3.1 can be written as

h(x) =
k∑

i=1

wif(x|θi), (3.4)

where0 < wi ≤ 1 for i = 1, . . . , k and
∑k

i=1wi = 1.

In this work, we have assumed that the components follow a lognormal distri-

bution, and so

f(x|θi) =
1

xτi
√

2π
e
−

(ln x−µi)
2

2τ2
i (3.5)

where

θi = (µi, τi)
T (3.6)

The choice of distributions for the component densities should be dependent

on the characterisations of the data being modelled, for example the shape of the

corresponding histogram and the range of the data, and the selection is further

discussed in Section 3.4.

It is assumed that none of theθi nor the number of componentsk are known

in the model. It is possible for components to be present in the mixture that are

not represented within the data. Fitting such models is therefore a non-standard

statistical problem. The main issue of the estimating problem is that standard

asymptotic theory does not hold when the number of components is not known.

Thus, suitable statistical tests are difficult to be constructed to identify the cor-

rect number of components. We adopt a Bayesian framework thatmakes use of

importance sampling ([35] and [40]). This is discussed further in the next section.
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3.2 Bayesian Fitting Process

We first give a brief introduction of Bayesian statistics. In Bayesian statistics, the

parameters of a model are treated as random variables, such that the parameterθ is

the realised value of a random variableΘ. We define the prior distribution initially,

which represents the prior information about the parameterθ before the dataD that

the model is describing are obtained. We combine the prior information aboutΘ

encapsulated in the prior distributionπ(θ), with the likelihood functionP (D|θ) to

obtain the posterior distributionP (θ|D), such that

P (θ|D) =
π(θ)P (D|θ)

P (D)
. (3.7)

The posterior distribution represents the information about θ given the knowledge

of the data and the prior information. The functionP (D) is a normalising factor,

which is required to ensure that the posterior distributionintegrates to one [19].

Formula 3.7 states that the posterior distribution is proportional to the product

of the likelihood and the prior distribution, and so only theproduct of the likelihood

and the prior distribution at any point inΘ, the parameter space ofθ, need be

evaluated to describe the shape of the posterior probability distribution. However,

to obtain a proper probability distribution, we need to evaluate the constant of

proportionalityP (D). The calculation ofP (D) is given by

P (D) =

∫

Θ

π(θ)P (D|θ) dθ, (3.8)

the product of the prior probability distribution and the likelihood integrated over

parameter space. In the finite mixture distribution fitting problem that we con-

sider here, the integral cannot be computed analytically, and we use importance

sampling to evaluate it. We describe the process briefly hereand refer the reader

to [35] for more details.
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In the following we letk∗ denote the unknown true number of components and

let θ∗i denote the unknown true values of the parameters of component distribution

i = 1, 2, . . . , k∗. For simplicity, we also assume that we can specify a maximum

number of components,K, where,0 < k∗ < K.

We use a prior distribution for the unknown parameters of themixture model

π(ψk|k)π(k), k = 1, 2, . . . , K (3.9)

where

π(k), k = 1, 2, . . . , K (3.10)

is the prior distribution fork, andπ(ψk|k) for given k, is the conditional prior

density of the component parametersψk = (θ1, θ2, . . . , θk, w1, w2, . . . , wk).

Suppose we fit the finite mixture model to asampleof breakdown duration data

x = (x1, x2, . . . , xn), then the posterior distribution is given as

p(ψk, k|x) =
p(x|ψk, k)π(ψk|k)π(k)

∑K

k=1 π(k)
∫
p(x|ψk, k)π(ψk|k)dψk

, k = 1, 2, . . . , K (3.11)

wherep(x|ψk, k) is the likelihood corresponding to the mixture model withk com-

ponents.

In order to determinep(ψk, k|x), the main problem is in evaluating the de-

nominator in Equation 3.11. The most popular sampling method used to find

the posterior distribution without evaluating the denominator explicitly is Markov

chain Monte Carlo (MCMC), which is described in [66]. However, in our case, as

MCMC requires random moves between differentk values and the form of these

moves is not easy to identify, it is difficult to implement. Other authors have pro-

posed several methods for doing this: [75] and [130] describes the reversible jump

methods; [63] described an approach using indicator variables and [33] proposed

a simpler approach without using the indicator variables.



CHAPTER 3 37

We use importance sampling as the sampling method to determine the denomi-

nator in Equation 3.11 and thus the posterior distribution.Importance samplingis a

method to evaluate a general integralI =
∫
Θ
m(θ) dθ numerically. In importance

sampling, the integral can be estimated by sampling from a candidate distribution

w(θ, β) and calculating the ratio of the integrandm(θ) at each sample pointθi

to the value of the candidate distribution at that point. By taking n samples, the

integralI can be estimated by

Îw =
1

n

n∑

i=1

m(θi)

w(θi, β)
.

The integral of interest here is the normalisation of the posterior probability distri-

bution in Bayesian statistics involved in Equation 3.11, i.e. m(θ) is the product of

the prior,π(ψk|k) and likelihood distributions,p(x|ψk, k).

In importance sampling, sample points are chosen from a distribution which

concentrates the points where the function being integrated is large, instead of

sampling them from a uniform distribution. This means that it is important to know

something about the function being sampled prior to sampling. Therefore, we find

the modes and covariance matrices for the posterior distribution before setting the

candidate distribution. The requirement to have some knowledge of the function

means that when dealing with problems in which the form of theposterior is not

clear in advance, importance sampling is generally considered to be less robust

than MCMC, but it is simpler to implement in the case of mixture models [35].

3.2.1 Implementation

A more detailed discussion of the implementation of the methodology we use for

importance sampling can be found in [40]. We describe it herebriefly.

The Nelder Mead optimization method [122] is chosen as the optimization
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routine for finding the mode of the posterior distribution. The optimization routine

starts by fitting a model with one component. The starting parameters for the

model withk components,1 < k < K, are decided by the best estimates for the

model withk − 1 components by determining the greatest discrepancy between

the model and the data.

Defining

ψ̃k = arg max[p(x|ψk, k)π(ψk|k)] (3.12)

conditional on eachk = 1, 2, . . . , K as the modes of the posterior distribution, the

candidate distribution for the importance sampling of a model with k components

is

q(ψk, k) = Φ(ψk|ψ̃k,Ξk), (3.13)

whereΦ(ψk|ψ̃k,Ξk) is the degenerate multivariate normal density with meanψ̃k

and covariance matrixΞk, equal to the generalised inverse of the information ma-

trix at the mode. The reason it is degenerate is that the weights must sum to1

(Equation 3.3).

The candidate distribution for the number of components is auniform distri-

bution such that

q(k) = K−1, k = 1, 2, . . . , K. (3.14)

Thus, the complete candidate distribution for the importance sampling procedure

is

q(ψ, k) = q(k)q(ψk|k) = K−1Φ(ψk|ψ̃k,Ξk). (3.15)

The implementation of the importance sampling is quite straightforward. Draw

a sample ofm values of(kj, ψ
kj

j ), j = 1, 2, . . . ,m, from the candidate distribution

q(k)q(ψk|k), then the posterior distribution sample is

p(ψkj |x) =
p(x|ψkj , kj)r(ψ

kj , kj)∑m

j=1 p(x|ψkj , kj)r(ψkj , kj)
, j = 1, 2, . . . ,m, (3.16)
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where

r(ψkj , kj) =
π(ψkj |kj)π(kj)

q(ψkj |kj)q(kj)
. (3.17)

The posterior distribution fork, the number of components is then equal to

p(k|x) =
m∑

j=1

p(ψkj |x) δkkj
, k = 1, 2, . . . , K, (3.18)

whereδkkj
is the Kronecker delta, such that

δkkj
=





1, if kj = k

0, otherwise
(3.19)

We use the value ofk for which p(k|x) is maximised as our final estimate for

the number of components.

In addition to the advantage of easy implementation, another feature of this

method is that the posterior distribution sample given in Equation 3.16 is a random

sample of independent variables. Also, if the shape and location of the candidate

distribution are similar to those of the posterior distribution, then the values of

the posterior distribution sample will tend to be reasonably constant, and thus the

integration over the posterior distribution can be performed quite accurately even

with a relatively small sample size.

3.3 Data Preparation

The machine breakdown data are collected using the automatic on-line monitoring

system that is connected with the machines. Due to the systemsetting and human

errors as discussed in Section 2.4, the data contain some inaccuracies. We make

some initial adjustments to the raw data, followed by a checkfor autocorrelation.

As the ranges of most of the data sets are large, we need to find amethod to
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transform the data in order to obtain a good fitted model. A discussion of the data

transformation is given with an example.

3.3.1 Data Validation

As we discussed in Section 2.4, there are issues concerning accuracy or availa-

bility using the existing two data collecting methods. Fordcurrently use electronic

collection as the main method for breakdown data collection. The data collected

directly from the monitoring system are known as theraw data. It is important

to analyse and validate the raw data and make modifications ifnecessary, before

fitting input distributions.

Carson [142] emphasised that caution needs to be taken when validating raw

data. For example, Feltner and Weiner [54] studied Ford’s systems and pointed

out that the time difference between a failure starting and finishing was the total

repair time, however this is not always real as there is a possibility of shift breaks

or other activities happening within that period, as discussed in Section 2.3.

It is reasonable to model the breakdown duration data of all the elements as

a whole. Therefore, we only need to extract the period of shift breaks out of the

breakdown duration. We ignore any stoppage that starts inside a shift and finishes

outside a shift and delete any stoppage that occurs during breaks or subtract any

part of that stoppage that is overlapping with break(s).

The raw data often contain data points with very small valuesthat are less than

30 seconds. These extremely small values appear to be suspicious. The engine

assembly line that the raw data are collected from has a cycletime of 24 seconds,

so it is not possible that the duration of a machine failure issmaller than half a

minute due to the limitation of the response time. Three potential reasons of the

recorded stoppages being less than30 seconds were identified [97]:

1. Actual machine failures.
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2. Extended cycle time but mistakenly recorded as failures.

3. Not stoppages but recorded due to errors in the setting up of the monitoring

system.

However, a comprehensive investigation is required to find out the exact reason.

The current assumption made by Ford engineers is that these short periods are ex-

tended cycle times and thus should be removed from the data set of machine failure

times. We decided to make the same assumption when processing the raw break-

down data.

3.3.2 Data Correlation

We wish to check whether the sequence of breakdown durationsdemonstrates any

autocorrelation. This may occur for individual machines if, for example, the ma-

chine is wearing out. In this case, breakdown durations may get longer and longer

as the machine gets harder to fix. Alternatively, it may happen for the whole line if

the maintenance team reacts to a lengthy period spent fixing one machine by work-

ing slowly on the next or it takes longer for a machine to be fixed because a long

time is spent waiting for resources during an extremely busyperiod for the main-

tenance team. We thus wish to check whether there are any correlations within the

valid breakdown duration data for all machines as well as forindividual machines.

We denote a sequence of observations of machine breakdown durations, a

time-series, asx1, x2, . . . , xn. The intervalj unit(s) (in this case,j breakdowns)

between two observationsxi andxi+j is referred to as thelag; and for a sequence

of n observations, there aren − 1 possible lags. The lagj autocorrelation is

defined as the correlation betweenx1, x2, . . . , xn−j andxj+1, x2, . . . , xn. Corre-

lation betweenxi andxi+j would indicate that the time to repair a machine is

possibly dependent on previous repair time data and the breakdown duration data

cannot be considered as independent random variables.
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For the breakdown duration data of all of the39 machines in the assembly line,

there are7493 observations. Figure 3.3 is the plot of autocorrelations ofall possi-

ble lags1, 2, . . . , 7492 of this data set with approximateα = 0.05 critical bands for

the hypothesis that the correlations are equal to zero, generated by Minitab. It is

seen from this plot that the autocorrelations of some lags exceed the approximate

α = 0.05 critical bands, which suggests that the absolute value of autocorrelations

of these lags are statistically significantly greater than zero. However, the largest

of all, lag1211 autocorrelation, is0.0958, which is a quite small value. Since there

are7493 observations included in the data set, we wish to check whether it is the

influence of outliers that causes the lag1211 autocorrelation to be relatively high.

We thus examine the lag1211 autocorrelation more closely by making a scatter

plot ofX1, X2, . . . , X5981 againstX1212, X1213, . . . , X7493, which is given in Figure

3.4. As shown in this scatter plot, there is no obvious correlation between the

majorities of points in the two time series. It is possible that the one outlier circled

in Figure 3.4 might be the reason that lag1211 autocorrelation is high. Thus,

we delete that one outlier. Carrying out a Pearson correlation statistic test for the

two time-series of lag1211 after deleting the outlier, the p-value is0.826, which

suggests there is no significant correlation between the twotime-series. Based on

this more detailed analysis, we believe we may still assume that the breakdown

duration data for all of the39 machines is made up of independent observations,

i.e. the repair time of the current failure of any machine does not have influence

on the repair time of the1211st failure later of any machine in the assembly line.

The relationship between the current repair time and the next repair time is of

most interest. If there are other factors that might affect the breakdown durations,

such as the availability of maintenance operators or the ageof a machine, the lag

1 autocorrelation should be able to indicate this by having a very large value. In

other words, in this case it is whether the lag1 autocorrelation is zero that is of

most interest rather than any other autocorrelation with a greater lag. Therefore,
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we focus on the calculation and analysis of the lag1 autocorrelation for the whole

data set of the39 machines as well as for the data sets of individual machines.
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Figure 3.3: Autocorrelation of lags1, 2, . . . , 7492 within the data set of breakdown
durations for all39 machines in the assembly line. Red curve indicates the 5%
significance limits for the autocorrelations.

The lag1 autocorrelation for the whole data set of the39 machines is0.0448,

which is an extremely small value. Although the5% significance limits shown

in Figure 3.3 suggests that0.0448 is statistically significantly greater than zero,

it is possibly because the whole data set for all machines contains such a large

number of observations (7493) that the statistical test rejects the hypothesis that

the correlations are equal to zero. Thus, we assume that there is no influence on

the next repair time of any machine from the duration of the current repair.

For the individual machines,36 out of 39 have lag1 autocorrelations that are

not significantly different from zero. For example, Figure 3.5 gives the autocorre-

lations of lag1 and all other possible lags for the breakdown duration data of

machine ML08, in which we can see that the values are all fairly small and can
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Figure 3.4: Scatter plot of observationi vs. observationi+1211 in the breakdown
duration data set for all39 machines. The circled point indicates an outlier.

be considered as zero according to the 5% significance limits. However, there

are3 machines: ML17, ML07 and ML36, which have lag1 autocorrelations that

are significantly different from zero. Therefore, we examine the data sets for these

three machines more closely to decide whether we can assume there is no apparent

autocorrelation within the breakdown duration data for these three machines.

For machine ML17, the lag1 autocorrelation is0.104, which is still fairly close

to zero. Since the breakdown duration data set for ML17 has1310 observations,

it is possible that the statistical test rejects the hypothesis that the correlations are

equal to zero because of the size of the data set. As this data set has a large number

of data points, with the majority falling into a very small range, the test can pick

up spurious correlations. Thus, we believe that for machineML17, there is no

apparent correlation between the repair time for previous failure and that for the

current failure.

For machines ML07 and ML36, we believe the relatively high lag 1 autocorre-
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lations are probably due to the effect of an extremely small number of outliers.

Within these two machines, machine ML07 appears to be more problematic as

ML36’s lag 1 autocorrelation is less than0.20 while ML07’s is greater than0.30.

Thus, we use the investigation of the data of machine ML07 as an illustration to

demonstrate the impact of outliers.

5550454035302520151051

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Lag

A
u

to
c
o

rr
e

la
ti

o
n

Figure 3.5: Autocorrelation of lags1, 2, . . . , 58 within the data set of breakdown
duration for machine ML08. Red curve indicates the 5% significance limits for the
autocorrelations.

Figure 3.6 gives the autocorrelation of lags1, 2, . . . , 60 for the breakdown du-

ration data set of machine ML07, and it can be seen that only the lag1 value is

suggested to be significantly higher than zero. We make the scatter plot of the

two lag 1 stochastic process given in Figure 3.7. There is no obvious correlation

between the majority of points in the two time series that canbe seen in this scatter

plot. It is possible that the two outliers circled in Figure 3.7 might be the reason

that the lag1 autocorrelation of ML07 is relatively big. Thus, we delete those

two outliers and get the new scatter plot in Figure 3.8, in which there seems to be

no obvious correlation. After deleting the two outliers, the p-value result of the
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Pearson correlation statistic test for the two stochastic processes of lag1 is 0.826,

which suggests that there is no significant correlation between the two stochastic

processes.
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Figure 3.6: Autocorrelation of lags1, 2, . . . , 60 within the data set of breakdown
duration for machine ML07. Red curve indicates the 5% significance limits for the
autocorrelations.

Since it is illustrated that the lag1 autocorrelation for machine ML07 is rela-

tively high because of the two outliers, we believe that we can still assume that the

breakdown duration data for machine ML07 are independent observations, i.e. the

time to repair the current failure of machine ML07 does not have any effect on the

time to repair the next failure of ML07. We also believe that it is due to the impact

of only one outlier in the data set for machine ML36 that the autocorrelations are

statistically non-zero, as after deleting that outlier, the lag1 autocorrelation drops

dramatically from0.193 to 0.028.

Therefore, from the analysis of the autocorrelation valuesand testing results,

we are able to assume that there is neither obvious correlation between the failure
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Figure 3.7: Scatter plot of observationi vs. observationi + 1 in the breakdown
duration data set for machine ML07. The circled points are identified as outliers.

durations of one machine and that of any other machine in the assembly line nor

apparent correlation between the current repair duration and the next repair dura-

tion for the same machine; i.e. the breakdown durations are independent of each

other.

We also wish to check whether there is any correlation between the breakdown

durations of a machine failure and the time this failure occurred, e.g. durations

may be longer at the end of a week. The time series plot for the whole breakdown

duration data set of39 machines shown in Figure 3.9 shows no apparent correla-

tion between the two. Similar results can be drawn from the time series plots for

individual machines. Thus, it is believed that the time a failure happens does not

have any impact on the time that it takes to repair it.

Based on the above analysis of correlations for the breakdownduration data,

we may assume that the breakdown durations are independent random variables

and furthermore have no obvious correlation with the time the failures occur.
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Figure 3.8: Scatter plot of observationi vs. observationi + 1 in the breakdown
duration data set for machine ML07, after deleting the two outliers circled in the
previous scatter plot in Figure 3.7.
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Figure 3.9: Time series plot of the breakdown duration data set for all39 machines
in the engine assemble line collected in the period between 07 January 2008 and
14 March 2008.
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3.3.3 Data Transformation

After removing the invalid data points, the data has a wide range of values. We

transform the data in order to reduce its range so as to improve the accuracy of the

fitting process. We considered two transformations: (1) taking logs; and (2) taking

the square root.

When taking logs, durations of less than one minute are transformed to nega-

tive values. This limits the choice of component distribution that can be used.

Taking the square root of the original data shrinks the data’s range and ensures

all of the transformed data are positive.

Here we show the advantage of the data transformation using an example. We

fit mixture distributions for a sample of valid breakdown duration data and also

for the transformed data of the same sample and then compare the two fittings.

We here assume the components of the mixture model are lognormal distributions.

We obtain the best-fit lognormal mixture distribution for the valid untransformed

data first, which has3 components. The histogram of the original data and the plot

of the fitted model’s Probability Density Function (PDF) aregiven in Figure 3.10.

Plots of the original data’s Empirical Distribution Function (EDF) and the fitted

mixture model’s Cumulative Distribution Function (CDF) on four different scales

are given in Figure 3.11 (a, b, c, d).

Both Figure 3.10 and Figure 3.11 show that the fitted mixture model is not very

accurate. In Figure 3.11, (a) and (b) show that the fitted model fits the part where

data are greater than10 minutes quite well; (c) and (d) suggest that the distribution

is a poor fit to the data that are smaller than8 minutes. More than87% of the

data in this example is smaller than8 minutes, which means that the fitted mixture

model appears to fail to fit the majority of the sample well.
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Figure 3.10: Histogram of the valid untransformed data and plot of the PDF of the
fitted 3-component lognormal mixture model.
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Figure 3.11: Plots of the EDF and the best-fit CDF of the untransformed data on
four different scales. Red line for EDF and black line for CDF inall four plots.
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We then obtain the best-fit lognormal mixture model for the transformed data

(square roots of the same data). This fitted mixture model has4 components. The

histogram of the transformed data and the plot of the best-fitmixture model’s PDF,

and plots of the transformed data’s EDF and the fitted mixturemodel’s CDF are

given in Figure 3.12.

Both of the charts in Figure 3.12 show that the best-fit distribution is a rea-

sonably good fit to the transformed data, which means that ourfitting method

deals with the transformed data set better than with the untransformed one. Also

for the implementation in simulation models, the transforming is straightforward;

simulations first generate the transformed data from the fitted models and then

transform back to the breakdown duration data by taking their squares.
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Figure 3.12: The first chart includes the histogram of the transformed data and
the PDF of the fitted 4-component lognormal mixture model. The second chart
includes the EDF of the transformed data and the CDF of the fitted lognormal
mixture distribution; red line for EDF and black line for CDF.
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3.4 Component Distribution Selection

In order to get an adequately fitted mixture distribution, itis important to choose an

appropriate component distribution. In our program for estimating fitted mixture

distribution, there are seven choices for component distribution: extreme, negative

extreme, Weibull, normal, lognormal, gamma and inverse Gaussian distributions.

The most appropriate distribution for representing the component distributions is

selected from within these seven types.

The histogram of the transformed breakdown duration data generally skews to

the right and has a long tail, therefore normal or negative extreme are considered

to be inappropriate distributions as the PDF curve of the former is symmetric and

that of the latter distribution skews to the left. The remaining distributions: ex-

treme, Weibull, lognormal, gamma and inverse Gaussian, seem to be reasonable

choices, as the PDF curves of these five distributions all have a similar shape to

the breakdown duration data. To find the best distributions for components out

of the remaining five choices, we fit mixture distributions using the five different

component distributions for the same sample of transformedbreakdown duration

data used in Section 3.3.3 and then compare the five fitted distributions.

The histogram and EDF plot of the data and the plots of the fitted mixture

models’ probability density functions and cumulative density functions using the

five different component distributions: lognormal, Weibull, gamma, extreme and

inverse Gaussian are shown in Figures 3.12, 3.13, 3.14, 3.15and 3.16, respectively.

Comparing the five fitted distributions, it appears that threedistributions: the

extreme, inverse Gaussian and lognormal mixture distributions, are the most robust

as their best-fit distributions contain only4 components each and fit the data very

well. The Weibull mixture distribution contains8 components and gamma mixture

distribution contains6 and both still seem to fail to fit the highest peak in the data.

Furthermore, as the mixture distributions are ultimately required to be input into
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the simulation models built in the WITNESS software, it is essential to choose a

distribution that is convenient and simple to code in the software language. Thus,

the lognormal distribution is selected to be the component distribution to analyse

the breakdown duration data as it is the only one of the three remaining types of

distributions that can be easily input into the WITNESS models.
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Figure 3.13: The first chart includes the histogram of the same sample of trans-
formed data shown in Figure 3.12 and the PDF of the fitted 8-component Weibull
mixture model. The second chart includes the EDF of the transformed data and
the CDF of the fitted Weibull mixture distribution; red line for EDF and black line
for CDF.
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Figure 3.14: The first chart includes the histogram of the same sample of trans-
formed data shown in Figure 3.12 and the PDF of the fitted 6-component gamma
mixture model. The second chart includes the EDF of the transformed data and
the CDF of the fitted gamma mixture distribution; red line for EDF and black line
for CDF.
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Figure 3.15: The first chart includes the histogram of the same sample of trans-
formed data shown in Figure 3.12 and the PDF of the fitted 4-component extreme
mixture model. The second chart includes the EDF of the transformed data and
the CDF of the fitted extreme mixture distribution; red line for EDF and black line
for CDF.
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Figure 3.16: The first chart includes the histogram of the same sample of trans-
formed data shown in Figure 3.12 and the PDF of the fitted 4-component inverse
Gaussian mixture model. The second chart includes the EDF ofthe transformed
data and the CDF of the fitted inverse Gaussian mixture distribution; red line for
EDF and black line for CDF.
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3.5 Relating Components with Faults

The motivation of this section is to investigate whether each component in the fit-

ted mixture distribution for the breakdown duration data ofall faults reflects one

particular fault or one particular group of similar faults.We here use a sample of

breakdown durations data collected within a period of threemonths for machine

ML01 as an example to show the relations between the groups offaults and com-

ponents in the fitted mixture distribution for the data. The data set includes170

failures that are caused by the occurrence of12 different faults. In this data set,

repair duration varies from52 seconds up to a maximum of59 minutes for all fail-

ures. For failures caused by the same fault, the durations for two different repairs

can differ by more than10 minutes.

We obtain the best-fit lognormal mixture distribution for the breakdown du-

ration data set of ML01, which has3 components: 2 distinct components with

means at 0.93 and 1.81, and one with a fairly flat shape spread out over the whole

data range. The probability histograms for the repair durations of failures that are

caused by each of the12 different faults and the PDF plot of the fitted lognormal

mixture distribution are given in Figure 3.17, where the faults are distinguished by

different colours. As shown in this figure, the repair times data for the12 different

faults are fairly spread out. Nevertheless, it can be seen that the histograms of some

faults have only one peak corresponding to either component1 or component 2;

while the histograms of some other faults, such as 18997, 29685, 29621, have two

peaks corresponding to both components 1 and 2.

On the whole, it is reasonable to say that there are no remarkable relations

between the components in the fitted mixture distribution for the data and the in-

dividual faults that cause the failures recorded in the data.
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Figure 3.17: Histogram of breakdown duration data for machine ML01; the dif-
ferent colours represent different groups of faults, and the plot of the PDF of the
fitted 3-component lognormal mixture distribution.
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Estimating the Similarity Matrix

Before classifying the machines, we measure their similarity by calculating the

goodness of fit statistic between the two sets of breakdown duration data. The

breakdown duration data sets have uneven numbers of data points and we do not

wish to assume distributions for the data at this stage. The Two-Sample Craḿer-

von Mises goodness of fit statistic [5] can cope with these characteristics of the

data, although p-values are only tabulated for a few examples. Bootstrap resam-

pling allows estimation of the sample distribution of almost any statistic using only

very simple methods. We therefore use bootstrap resampling[50] to estimate the

p-values for each comparison.

We first give a brief literature review in Section 4.1. Section 4.2 gives an in-

troduction of the Craḿer-von Mises statistic as well as some other goodness of

fit statistics. The basic process of bootstrapping and its common applications are

introduced in Section 4.3. We then describe the methodologythat we have used

to generate the similarity matrix in Section 4.4. An explicit study of the method

is given in Section 4.5 by testing on random samples generated from known dis-

tributions. The method is applicable in a wide range of situations, not strictly for

analysing breakdown duration data. Two real-life examplesare given in Section

4.6: (1) assessing similarities between six machines usingtheir real breakdown

62
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duration data; (2) analysing the similarities between hospital procedures based on

patients’ lengths-of-stay in a group of private hospitals [41].

4.1 Index of Similarity

The raw data matrix is ann× p matrix,X, that consist of observationsxik, where

xik denotes the value of thekth variable observed for theith object. The raw data

matrix is required to be transformed into ann × n matrix of pairwise dissimilari-

ties or pairwise similarities for many classification methods. The dissimilarity or

similarity matrix consists ofdij, wheredij denotes the dissimilarity or similarity

between theith andjth objects. Twelve similarity structures,S, are listed in [79].

A large number of empirical studies have proposed differentmethods of proceed-

ing fromX to S ([48], [30], [22], [24], [148], [121], [59], [117], [31], [100], [72],

[20] and [91]).

One of the most commonly used similarity structures is the Euclidean distance.

When all variables are quantitative, it can be measured by calculating the sum of

the Euclidean distances between the data points from objecti and those from object

j. Other similarity structures tend to work on a similar principle but different

distance measures are used. Exceptions are where the raw data matrix is not an

n × p matrix, where the number of data points of objecti is not necessarily the

same as the number of data points of objectj, such as in the data we have.

We measure the similarity of the breakdown duration data of any two ma-

chines using the Two-Sample Cramér-von Mises goodness of fit statistic [5]. Boot-

strapping is used to determine the p-value, i.e. the significance level, of the statistic

of the pair of machines, which gives the probability that thebreakdown duration

data for these two machines are drawn from the same distribution. The similar-

ity matrix is then made up of the p-values of every pair of machines and thus is

symmetric and real-valued.
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4.2 Goodness of Fit Statistics

Generally, the goodness of fit problem is to test the null hypothesis that a sample

comes from a population defined by a distribution function, given a random sample

and a distribution function. The goodness of fit statistic iscompared with tabu-

lated criterion values to describe how well the distribution fits the given sample.

For most commonly used tests for this problem, such as theχ2 tests, information

about the underlying distribution is required before constructing the test [151]. We

use the Craḿer-von Mises statistic to test whether two samples of breakdown dur-

ation data from two machines come from the same unspecified distribution. The

advantage of the Craḿer-von Mises statistic is that it is distribution-free and there-

fore there is no need to make any assumptions about the distributions of the data

sets being analysed [5]. It also allows for the data sets having uneven sizes.

The most obvious contenders to the Cramér-von Mises statistic are three non-

parametric statistics: the Kolmogorov-Smirnov [151], Somer’s D concordance

statistic [153] and Mann-Whitney tests [114]. The Mann-Whitney test aims to

determine whether the data points in one set of data are greater than those in

the other, whereas we wish to establish whether the data coming from two ob-

jects could have been drawn from the same distribution; the Mann-Whitney test

is therefore less appropriate here. In the general situations we consider here, the

data sets may have different number of data points; thus, theSomer’s D concord-

ance statistic, which describes the strength of concordantrelations between pairs

of variables and deal with data sets with identical size, is less applicable here. The

Kolmogorov-Smirnov statistic is the closest in form and objective to the Craḿer-

von Mises statistic but has been shown in simulation studiesto have a lower power

([151] and [42]).

Given two samples of breakdown duration dataX = (x1, x2, . . . , xn), and

Y = (y1, y2, . . . , ym) for machinesMx andMy respectively, the Craḿer-von Mises
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T criterion for testing that the two samples,X andY , come from the same unspeci-

fied continuous distribution is

T = [nm/(n+m)]

∫
∞

−∞

[Fn(v) −Gm(v)]2dHn+m(v), (4.1)

whereFn(v) is the EDF of the first sample; that is,Fn(v) = (no. ofxi ≤ v)/n;

Gm(v) is the EDF of the second sample andHn+m(v) is the EDF of the two

samples together; that is,(n+m)Hn+m(v) = nFn(v) +mGm(v).

AsHn+m(v) gives each observation in the pooled sample a weight of1/(n +

m), Equation 4.1 can be calculated by

T = [nm/(n+m)2]

{
n∑

i=1

[Fn(xi) −Gm(xi)]
2 +

m∑

j=1

[Fn(yi) −Gm(yi)]
2

}
,

(4.2)

Let ri andsj be the ranks in the pooled sample of the ordered observationsof

the two samplesX andY , respectively, wherei = 1, 2, . . . , n andj = 1, 2, . . . ,m.

Then

Fn(v) −Gm(v) = i/n− (ri − i)/m, (4.3)

wherev = xi, theith x-observation and

Fn(v) −Gm(v) = (sj − j)/n− j/m, (4.4)

wherev = yj, thejth y-observation. Thus we can write the criterionT as

T =
U

nm(n+m)
− 4nm− 1

6(n+m)
, (4.5)

where

U = n

n∑

i=1

(ri − i)2 +m

m∑

j=1

(sj − j)2. (4.6)
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To test the null hypothesis that the two samples are drawn from the same dis-

tribution, all of the observations are ordered, the ranksr1 < r2 < . . . < rn of the

n observations from the first sample and the rankss1 < s2 < . . . < sm of them

observations from the second sample are then determined andT is computed. If

T is too large, we reject the null hypothesis, that the samplesare drawn from the

same distribution.

Generally, tabulated criterion values are used to decide the significance level

of the goodness of fit statistic. However, for the Two-SampleCraḿer-von Mises

goodness-of-fit test, tabulated criterion values are not very extensive and do not

cover the samples that we are dealing with: for example, onlystandard criterion

values for samples with up to8 data points and that for samples both with infinite

number of data points are given in Anderson [5], while the number of data points

of breakdown duration data sets for machines varies from9 to 1310. Therefore,

bootstrapping is used to determine the p-values of the Cramér-von Mises statistics

for the breakdown duration data sets of each possible pair ofmachines.

4.3 Basic Bootstrapping

Bootstrapping is a practical and effective method for estimating the standard error,

the confidence intervals or the distribution of statisticalestimates of variables by

resampling ([44] and [34]). Efron and Tibshirani [50] statethat bootstrap is a

computer-based implementation of basic statistical concepts. Suppose we have

a random sample that is generated from a unknown probabilitydistribution. We

have calculated a statistic of interest such as the mean fromthe observed data and

we wish to know the statistic’s behaviour, for example its distribution. A number

of bootstrap samples can be drawn from the empirical distribution of the observed

data and thus the same number of replications of the statistic can be calculated

to form a distribution of the statistic, the process of whichis described in the
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following.

Let s(Y) denote the statistic calculated from samplesY = (Y1, Y2, . . . , Yn).

Assume that theYi are mutually independent samples, i.e.Y is a random vector.

Bootstrapping is a numerical method for findingG(s), the distribution of the sta-

tistic s(Y ). Generally,F (y), the distribution ofY , is unknown, butFn(y|y), the

EDF of the observed datay = (y1, y2, . . . , yn) is available. We generate a sample

fromFn(y|y) instead ofF (y), which is equivalent to drawing a sample of the same

sizen from the original set ofy’s with replacement, asy is a set of observations

that can be assumed to be independent and identically distributed. We call such

a sample abootstrap sample, and write it asy∗ = (y1∗, y2∗, . . . , yn∗). As in the

basic process above,B numbers of such bootstrap samples are drawn, and the

statisticsj∗ = s(yj∗) is calculated from each bootstrap sample. Then theempirical

distribution function(EDF) of the bootstrap statisticss∗ = (s1∗, s2∗, ..., sB∗) given

by

GB(s|s∗) =
(no. ofsj∗ ≤ s)

B
(4.7)

is our estimate ofG(s), as it will converge toG(s) with probability one asB tends

to infinity ([50] and [34]).

The Bootstrap Sampling Processis then:

Given a random sampley = (y1, y2, . . . , yn) from F (y)

Form the EDFFn(y|y)

For j = 1 toB

For i = 1 to n

Drawyj∗
i from Fn(y|y)

Next i

Calculatesj∗ = s(yj∗)

Next j

FormGB(s|s∗)
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Bootstrapping may also be used for constructing hypothesis tests [34]. Efron

and Tibshirani [50] describe the application of the bootstrap to hypothesis testing

on a two-sample problem, where there are two random samples from two proba-

bility distributions and we wish to test the null hypothesisthat the two distributions

are identical. Bootstrapping can be used to estimate the distribution of the test sta-

tistic θ and hence the significance level of the test. The value of the test statistic is

initially calculated for the two samples of observations. Bootstrap samples are then

drawn from the two empirical distributions for the two observed random samples,

and for each pair of bootstrap samples, the test statistic iscalculated. We can draw

as many bootstrap samples as we want and hence we can calculate as many boot-

strap replications of the statistic of interest as we want. Thus, the distribution of the

statistic can be determined in a direct and intuitive way. Having observedθ and

the distribution ofθ, the significance level of the test can be computed straight-

forwardly. This problem is similar to the problem we consider in this thesis and

we use a similar bootstrapping method to estimate the significance level of the

Craḿer-von Mises statistics.

4.4 Bootstrapping for Estimating the Similarity Ma-

trix

We wish to measure the similarity of the two samples of breakdown duration data

X = (x1, x2, . . . , xn), andY = (y1, y2, . . . , ym) for machinesMx andMy respec-

tively by estimating the significance level of the Two-Sample Craḿer-von Mises

goodness of fit statisticT . As we mentioned earlier, tabulated criterion values are

not very extensive and do not cover the samples that we are dealing with. Thus,

in order to assess whether the Cramér-von Mises goodness of fit statisticT is

too large, we need to estimate its p-value by using bootstrapping to determine the
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distribution ofT , Φ(T ). The p-value gives the probability that the breakdown dura-

tion data for the two machines are drawn from the same distribution and therefore

is considered to indicate the similarity between these two machines. The p-values

of any two of the machines are stored in thesimilarity matrix. This is then input

into the Arrows classification method to group the machines,which is discussed

in the next chapter.

For each pair of machinesMx andMy, we combine the breakdown data,

X andY , in order to form the pooled sample of the breakdown durationdata,

Z = (z1, z2, . . . , zn+m). The EDF ofZ is denoted byHn+m(z). In each iteration

of the bootstrapping, we generate two samples out of the original pooled set of ob-

servations,Z, with replacement: one of sizen, written asX∗ = (x∗1, x
∗

2, . . . , x
∗

n),

and the other of sizem, written asY ∗ = (y∗1, y
∗

2, . . . , y
∗

m); this is called one pair

of bootstrap samples. We calculate the Craḿer-von Mises statistic,T ∗, for each

pair of bootstrap samples,X∗ andY ∗. In order to estimateΦ(T ), we generateB

pairs of bootstrap samples fromZ : (X∗1, Y ∗1), (X∗2, Y ∗2), . . . , (X∗B, Y ∗B) and

calculate the statisticT ∗j for each pair of these samples. The EDF of the sample

T ∗ = (T ∗1, T ∗2, . . . , T ∗B) is then written as

ΦB(T ) =
(no. ofT ∗j ≤ T )

B
(4.8)

Since the bootstrap distributionΦB(T ) will converge to the true distribution

Φ(T ) with probability one asB tends to infinity ([50] and [34]), we can useΦB(T )

as our estimate ofΦ(T ).

The Bootstrapping Process can be briefly described as:

For j = 1 toB

For i = 1 to n

Drawx∗ji fromZ (with replacement)

Next i
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For i = 1 tom

Drawy∗ji fromZ (with replacement)

Next i

CalculateT ∗j by comparingX∗j with Y ∗j

Next j

Form the EDF ofT ∗, ΦB(T ).

The p-value describing the fit of data from machineMx to data from machine

My is then obtained by checking the calculatedT with ΦB(T ). The whole process

of estimating the p-value is illustrated in Figure 4.1. Thisprocedure is carried out

for all pairs of machines to form the similarity matrix.

As a measure of the similarity between machineMx and machineMy, the

higher the p-value, the greater the possibility that the breakdown duration data

of the two machines have been drawn from the same distribution and thus the

more similar the two machines. For example, Figure 4.2 showsthat the p-value

corresponding toT is under0.10, which means that the data from the two machines

being compared are significantly different at a similarity threshold level of0.10 and

have not been drawn from the same distribution. In contrast,Figure 4.3 shows that

the p-value ofT is over0.90, which means that the data from the two machines

being compared can be assumed to have been drawn from the samedistribution,

with a probability of more than0.90.
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Figure 4.1: (a) The bootstrapping process used to determinethe null distribution of
T , Φ(T ), and (b) the evaluation of the Cramér-von Mises statistic for the original
samples, which is compared withΦ(T ) to determine the p-value for the similarity
of the two machines.
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Figure 4.2:M1 vs.M2, p12 < 0.10
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Figure 4.3:M1 vs.M3, p13 > 0.90
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4.5 Testing the Estimation of Similarity

The testing procedure consists of five phases:

• Phase 1. Assess the impact of the number of bootstrapping iterations on the

p-value results and find an appropriate number of bootstrap samples to run.

• Phase 2. Check the influence of the sample size, i.e. the numberof data

points in the sample, on the resultant p-value.

• Phase 3. Examine the performance of the method when dealing with samples

that are drawn from the same type of distribution with the same variance but

different mean.

• Phase 4. Investigate the method using samples that are generated from the

same type of distribution with equal means but different variances.

• Phase 5. Test the method with samples generated from different types of

distributions.

4.5.1 Phase 1: the impact of the number of bootstrap iterations

We can use the EDF of the bootstrap samples ofT , ΦB(T ) as an estimateof the

true distributionΦ(T ) whenB is big enough. We here investigate how largeB

should be forΦB(T ) to be a good approximation toΦ(T ). In general, there are

three types of data sets in terms of their similarities: (a) very similar samples, (b)

neither very different nor very similar and (c) distinctly different. We randomly

generate four samples of size100 from the3 different distributions given in Table

4.1 below: two samples from distribution N1 and one each fromN2 and N3. We

choose100 as the sample size as it is of a similar order to the machine duration

data sets we analyse in the assembly lines. An investigationof the influence of
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the sample size on the resultant p-value is given in the next phase of this testing

process.

We examine three pairs of samples corresponding to the threetypes of data

sets listed above: (a) very similar - N1S100a and N1S100b, two samples both

from N1; (b) neither very similar nor very different - N1S100a and N2S100, one

sample from N1 and the other from N2; and (c) distinctly different - N1S100a

and N3S100, one sample from N1 and one from N3. With each pair of random

samples, we use seven different and widely spread number of bootstrapping num-

bers: B = 50, 100, 200, 300, 500, 1000, 2000. For each of the three pairs of

samples, we run the comparison seven times, once for eachB; for each of these

seven comparisons, we repeat the method100 times, which gives7 sets of p-values

for the comparison of each pair of samples. The inter-quartile ranges of the total

21 sets of p-values are given in Table 4.2.

Code Distribution Notation Mean Variance Sample ID

N1S100a
N1 Normal N(5.0, 1.0) 5.0 1.0 & N1S100b
N2 Normal N(5.1, 1.0) 5.1 1.0 N2S100
N3 Normal N(7.0, 1.0) 7.0 1.0 N3S100

Table 4.1: The3 different distributions from which4 random samples in total are
generated.

We then study the influence of the choice ofB by comparing the inter-quartile

ranges of the p-value results using all the differentB. As shown in Table 4.2, asB

increases, the results for the comparison of the two pairs ofsamples become more

stable, and the variability decreases, as the inter-quartile range tends to shrink as

B gets larger.

As the two samples, N1S100a and N1S100b, are generated from the same

distribution N1, in theory, they should be very similar to each other and thus the

comparison should give very high p-value results. The inter-quartile ranges of the
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N1S100a vs.
B N1S100b N2S100 N3S100

50 (0.940, 0.975) (0.000, 0.159) (0, 0)

100 (0.935, 0.964) (0.007, 0.113) (0, 0)

200 (0.947, 0.976) (0.029, 0.119) (0, 0)

300 (0.953, 0.972) (0.043, 0.114) (0, 0)

500 (0.955, 0.969) (0.063, 0.105) (0, 0)

1000 (0.958, 0.971) (0.062, 0.105) (0, 0)

2000 (0.958, 0.969) (0.070, 0.105) (0, 0)

Table 4.2: The inter-quartile ranges of each set of the100 p-values resulting from
100 random runs with each different number of iterations of bootstrapping when
comparing each of the3 pairs of random samples.

p-values using the7 choices ofB for this pair of samples are within the range of

(0.935, 0.976), which shows that the two samples are very similar, as expected.

The two distributionsNormal(5.0, 1.0) andNormal(5.1, 1.0) are not iden-

tical, but are very close, therefore, in theory, the two samples, N1S100a and

N2S100, should be neither very similar nor very different and thus the p-values

for the comparison should be neither very high nor very low. The inter-quartile

ranges for this pair of samples given in Table 4.2 show that the majority of the

p-values are within the range of(0, 0.159), which is as expected. Samples of this

type are neither very similar nor very different and thus tend to be on the edge of

groups in classification analysis, i.e. they are fairly similar to a large number of

other data sets but not very similar to any. Assuming we use0.10 as the threshold

significance level in classification analysis, such that twodata sets with p-value

smaller than0.10 can not be placed in the same group, samples such as N1S100a

and N2S100 might be put in two different groups with one run ofbootstrapping

process and then be placed in the same group with a subsequentrun, as the p-value

might be smaller than0.10 with one run and then might become larger than0.10

with a subsequent run. Although N1S100a and N2S100 are drawnfrom two dif-

ferent distributions, N1 and N2 are so close that it would notbe unreasonable to
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place them in the same group. Nevertheless, the difference would still be distin-

guished as the p-value would be relatively low. Moreover, ifa higher similarity

level within the final groups is required, a threshold significance level higher than

0.10 can be set for the classification analysis process to achievethat.

For the third comparison, since the two distributionsNormal(5.0, 1.0) and

Normal(7.0, 1.0) are very different, the two generated samples N1S100a and

N3S100 should be very different and thus the p-values for thecomparison should

be very low. The inter-quartile ranges for this pair of samples given in Table 4.2

are all equal to zero, which shows that these two samples are extremely different,

as expected.

To conclude, the method provides sensible p-values for all three types of sam-

ples even for small values ofB. The p-values do, however, become more stable

when more bootstrap samples are run. The bootstrapping process withB = 2000

will take much longer than that withB = 50, especially when a large number

of data points are involved. Nevertheless, while running more bootstrap samples

may improve the stability of the p-values, the resultant p-values when using a

bootstrapping number as small as50 are quite reasonable. Therefore, to reduce the

computational cost, we useB = 100 to estimate the p-values in this work.

4.5.2 Phase 2: the influence of the sample size

As the method has been derived to estimate the similarity between data sets with

uneven numbers of data points, we design this phase to test this ability. Since

our comparison method is a distribution-free approach, thedata sets in question

may be drawn from any distribution. Hence, we use samples generated from four

different types of distributions. A set of six samples, two of size20, two of size

100 and two of size200, is randomly generated from each of the four distributions

listed in Table 4.3 below. In this phase, we only compare likedistributions.
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Code Distribution Notation Mean Variance

N1 Normal N(5.0, 1.0) 5.0 1.0

Ga1 Gamma Ga(10.0, 0.5) 5.0 2.5

E1 Exponential E(0.2) 5.0 25.0

LN1 LogNormal LN(1.109, 1.0) 5.0 43.0

Table 4.3: The4 different distributions from which24 random samples in total are
generated.

N1S20a N1S20b N1S100a N1S100b N1S200a N1S200b
N1S20a − 0.69 0.91 0.95 0.84 0.78
N1S20b 0.69 − 0.76 0.79 0.75 0.70
N1S100a 0.91 0.76 − 0.97 0.73 0.70
N1S100b 0.95 0.79 0.97 − 0.87 0.56
N1S200a 0.84 0.75 0.73 0.87 − 0.25
N1S200b 0.78 0.70 0.70 0.56 0.25 −

Table 4.4: Similarity Matrix for the six generated samples from distribution
N(5.0, 1.0).

For each set of the three pairs of samples drawn from distributionsN(5.0, 1.0),

Ga(10.0, 0.5), E(0.2) or LN(1.109, 1.0), we run100 bootstraps for each pair of

samples to determine the p-values. The p-values in each of the four resultant simi-

larity matrices are fairly high and are all greater than0.10, which is what we would

expect as the samples for each matrix are indeed drawn from the same distribution.

All four p-value matrices show a similar tendency, that the p-values between the

samples with200 data points are much smaller than the other p-values. For exam-

ple, in the p-value matrix for the samples generated from N1 given in Table 4.4, the

p-value between N1S200a and N1S200b, the two samples with the largest size, is

0.25, while the smallest of the rest of the p-values is0.56. The reason for this range

is likely to be that the more data points, the more possibilities that a statistical test

will find dissimilarities between the data sets. Nevertheless, the four smallest p-

values from the four matrices are all still higher than0.10. Overall, the method

manages to provide reasonable p-value results for data setswith different sizes.
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4.5.3 Phase 3: distinguishing samples with different means

In this phase, we check the performance of the method in distinguishing samples

that are drawn from the same type of distribution with the same variance but differ-

ent means. We also test it on four different distribution types. The9 distributions

we generate samples from are listed in Table 4.5. As the exponential distribution

has only one parameter, the two exponential distributions we test on have different

means and variances.

Code Distribution Mean Variance Sample ID

N1 Normal 5.0 1.0 N1S100
N2 Normal 5.1 1.0 N2S100
N3 Normal 7.0 1.0 N3S100

Ga1 Gamma 5.0 2.5 Ga1S100
Ga2 Gamma 7.0 2.5 Ga2S100

E1 Exponential 5.0 25.0 E1S100
E2 Exponential 7.0 49.0 E2S100

LN1 LogNormal 5.0 43.0 LN2S100
LN2 LogNormal 7.0 43.0 LN2S100

Table 4.5: The9 different distributions with the same variance but different means,
from which9 random samples are generated.

We generate one random sample of size100 out of each of the9 distributions.

Then, we run100 bootstraps for each pair of samples that are drawn from the same

type of distribution to get the p-values shown in Table 4.6. All of the p-values

exceptp(N1S100, N2S100) are extremely small, which is sensible as the distri-

butions that the pairs of samples come from are clearly distinct. The p-value for

the comparison between N1S100 and N2S100 is0.118, greater than our suggested

threshold of0.10. Therefore, we would assume that these two samples had been

drawn from the same distribution. Although this is not the case, the distributions

are so close that it would not be an unreasonable assumption.This comparison was

included to test the method and the fact that the p-value is soclose to the threshold
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is encouraging.

Distribution Samples p-value

Normal N1S100 vs. N2S100 0.118

N1S100 vs. N3S100 0.000

N2S100 vs. N3S100 0.000

Gamma Ga1S100 vs. Ga2S1000.000

Exponential E1S100 vs. E2S100 0.041

LogNormal LN1S100 vs. LN2S100 0.000

Table 4.6: The6 p-values comparing the6 pairs of random samples.

4.5.4 Phase 4: distinguishing samples with different variances

In this phase, we check the performance of the method in distinguishing samples

that are drawn from the same type of distribution with the same mean but different

variances. As we have considered the exponential distribution in Section 4.5.3, we

do not include it in this test. The6 distributions we generate samples from are

listed in Table 4.7.

Code Distribution Mean Variance Sample ID

N1 Normal 5.0 1.0 N1S100
N4 Normal 5.0 4.0 N4S100

Ga1 Gamma 5.0 2.5 Ga1S100
Ga3 Gamma 5.0 5.0 Ga3S100

LN1 LogNormal 5.0 43.0 LN2S100
LN3 LogNormal 5.0 415.9 LN2S100

Table 4.7: The6 different distributions with the same mean but different variances,
from which6 random samples are generated.

We generate one random sample of size100 from each of the6 distributions.

We run 100 bootstraps for each pair of samples that come from the same type

of distribution to get the p-values given in Table 4.8. As shown in this table,
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p(N1S100, N4S100) andp(LN1S100, LN3S100) are both very small, which is

sensible as the distributions that the two pairs of samples come from are differ-

ent. However,p(Ga1S100, Ga3S100) is 0.210, which indicates the two samples

appear to be quite similar. The PDF curves for these two distributions and the his-

tograms for these two samples are given in Figure 4.4, and show that distributions

Ga1 and Ga3 are not that different. Therefore, it is unsurprising that the p-value

for samples Ga1S100 and Ga3S100 is greater than the threshold of 0.10.

Distribution Samples p-value

Normal N1S100 vs. N4S100 0.007

Gamma Ga1S100 vs. Ga3S1000.210

LogNormal LN1S100 vs. LN3S100 0.000

Table 4.8: The3 p-values comparing the3 pairs of random samples.
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Figure 4.4: Plots of the PDF ofGamma(10, 2.5) andGamma(5.0, 1.0) and the
histograms of the two random samples, Ga1S100 and Ga3S100, generated from
each of the two distributions respectively.
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4.5.5 Phase 5: distinguishing samples generated from different

types of distributions

We wish to assess the method’s ability to find the similarities between samples

with similar mean but different distribution shapes. We randomly generate one

sample of size100 from each of the4 different distributions listed in Table 4.3

above, which gives a collection of4 random samples in total. The plots of prob-

ability density functions for these distributions are given in Figure 4.5. We run

100 bootstraps for each pair of samples to determine the p-values and hence the

similarity matrix given in Table 4.9.
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Figure 4.5: Plots of the PDF curves of the4 different distributions listed in Table
4.3.

The p-values given in Table 4.9 are all extremely low, as expected, except that

between the exponential and the lognormal. Both have their modes close to or at

zero and then decline, and so although the lognormal has lessweight in the tails

of the distribution, the general shapes are similar. Furthermore, it is seen from

the histograms shown in Figure 4.6 that the two particular random samples are
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N1S100 Ga1S100 E1S100 LN1S100
N1S100 − 0.00 0.00 0.00
Ga1S100 0.00 − 0.00 0.00
E1S100 0.00 0.00 − 0.12
LN1S100 0.00 0.00 0.12 −

Table 4.9: Similarity Matrix for the four random samples generated from
distributions Normal(5.0, 1.0), Gamma(10.0, 0.5), Exponential(0.2) and
LogNormal(1.109, 1.0) respectively.

fairly close and so it is not unreasonable to have a p-value slightly higher than the

threshold0.10.
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Figure 4.6: Plots of the PDF ofExponential(0.20) andLognormal(1.109, 1.0)
and the histograms of the two random samples, E1S100 and LN1S100, generated
from each of the two distributions respectively.

4.6 Examples

Although this method of measuring similarity was originally derived to analyse

machine breakdown duration data, it is widely applicable. In this section, we

consider two examples:
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• breakdown duration data collected over a period of3 months for six ma-

chines.

• hospital length-of-stay data for patients recovering frommedical procedures.

4.6.1 Breakdown Duration Data

We here consider real breakdown duration data sets for six machines: ML01,

ML02, ML03, ML04, ML05, ML06, in an engine assembly line at one of Ford’s

plants. The size of these six data sets are170, 319, 112, 113, 60 and460 data

points, respectively. They come from machines with different functionalities in

different stations. The histograms of the breakdown duration data for the six ma-

chines are given in Figure 4.7. We wish to group the machines based on their

breakdown duration data and so we need to produce the similarity matrix for the

six machines.

We run 100 bootstraps for each pair of machines to determine the p-values

matrix given in Table 4.10. The p-value between machine ML05and ML06 is the

highest value in the matrix, the p-values between any one of these two machines

and any machine of the other four machines are extremely small, which tells that

these two machines are very similar to each other and not similar to any other

machines in terms of their breakdown behaviour. Within the other four machines:

machine ML01 has a0.21 similarity to ML04 and a0.11 similarity to ML02 but

a similarity of less than0.10 to ML03; Machine ML02 seems to be significantly

similar to ML01 and ML04, especially similar to ML04 as they have a much higher

p-value, but has a nearly zero similarity to ML03; machine ML04 has high p-

values for the comparison with ML02, ML01 and ML03; and ML03 only has a

significant p-value (greater than0.10) for its comparison with ML04. Referring to

the histograms in Figure 4.7, both of the histograms for machines ML05 and ML06

have high peaks around1.60 while the histograms for the other four machines
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ML01 ML02 ML03 ML04 ML05 ML06
ML01 − 0.11 0.08 0.21 0.01 0.00
ML02 0.11 − 0.03 0.51 0.00 0.00
ML03 0.08 0.03 − 0.20 0.00 0.00
ML04 0.21 0.51 0.20 − 0.00 0.00
ML05 0.01 0.00 0.00 0.00 − 0.89
ML06 0.00 0.00 0.00 0.00 0.89 −

Table 4.10: Similarity Matrix for six machines in a Ford engine assembly line,
based on their breakdown duration data.

have high peaks within the range of(0.60, 1.30); and both histograms have more

symmetric shapes than the other four. These features of the histograms confirm

the reliability of the p-value results.

4.6.2 Length-of-Stay Data

The method of estimating similarity presented here has beenimplemented to calcu-

late the similarity between medical procedures based on thehospital length-of-stay

data of the corresponding patients, where the data comes from a group of private

hospitals [41]. More information about the data and the grouping process will be

described in Section 5.5. We here use a small example of the length-of-stay data

of five procedures to illustrate our method.

The five procedures are coded as Q13.1, Q20.2, Q38.3, W37.1 andW42.1

(the codes are called OPCS-4 codes and are used by NHS). The first three pro-

cedures are procedures on the uterus and fallopian tubes: Q13.1 is implantation

of fertilised egg into uterus, Q20.2 is a biopsy of lesion of uterus, and Q38.3 is

therapeutic endoscopic operations on fallopian tube; and the last two procedures

are joint replacements: W37.1 is hip joint replacement and W42.1 is knee replace-

ment.

We run100 bootstraps for each pair of procedures to determine the p-values.

The similarity matrix is given in Table 4.11. The p-values between any pair of
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Q13.1 Q20.2 Q38.3 W37.1 W42.1
Q13.1 0.91 0.46 0.00 0.00
Q20.2 0.91 0.60 0.00 0.00
Q38.3 0.46 0.60 0.00 0.00
W37.1 0.00 0.00 0.00 0.31
W42.1 0.00 0.00 0.00 0.31

Table 4.11: Similarity Matrix for five procedures based on their patients’ length-
of-stay data.

the procedures Q13.1, Q20.2 and Q38.3 are all larger than0.40, which suggests

the length-of-stay data of these three procedures have beendrawn from the same

distribution with a high probability. This seems to reflect the real situation be-

cause these three procedures are similar operations on similar organs. In particular,

the similarity between Q13.1 and Q20.2,0.91, is much higher than the similarity

between Q13.1 and Q38.3 and that between Q20.2 and Q38.8, which makes sense

intuitively as both Q13.1 and Q20.2 are operations on the uterus and Q38.3 is a

procedure on the fallopian tubes. The matrix also shows thatthere are significant

differences between the set of procedures Q13.1, Q20.2 and Q38.3 and the set

of procedures W37.1 and W42.1 as the p-value between any procedure from the

former set and any from the latter set is zero, which is sensible because the former

set of procedures are very distinct from the joint replacements. That the p-value

between procedures W37.1 and W42.1 is larger than0.30 is also reasonable as

there are definite similarities between the recovery time from a hip joint replace-

ment and a knee replacement. Overall, the resultant similarity matrix of the five

procedures appears to be reflecting the real situation quitewell.

Since the p-value demonstrates the probability of the data sets having been

drawn from the same distribution, it shows the similarity ofthe corresponding

distributions of the data sets. The histograms of the length-of-stay data for the five

procedures given in Figure 4.8 add more confidences to the similarity results. For

instance, the way the histograms for procedures Q13.1, Q20.2 and Q38.3 distinct
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from those for W37.1 and W42.1 clearly supports the extremely small similarity

between the two sets of procedures.

These two examples show that the method we have described in this chapter

is an appropriate distribution-free method for estimatingthe similarity between

data sets that may be of different sizes. Although this method has been derived

to estimate the similarity index between breakdown duration data sets, it is also

applicable to other data sets, such as the hospital length-of-stay data in Example 2.
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Figure 4.7: Histograms of the breakdown duration data for the six machines.
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Chapter 5

Classification of Machines

Having found the similarity matrix of the machines, we discuss the classification

method we propose to use for grouping the machines in this chapter. The group-

ing is such that two machines with statistically significantly different breakdown

duration data cannot be placed in the same group. We can laterfit finite mixture

distributions to the grouped breakdown duration data. The aim is to use the fitted

finite mixture models for groups to represent the breakdown duration inputs for all

of the machines in the same group.

A review of the literature on classification methods is givenin Section 5.1.

Then, in Section 5.2 we present a description of the Arrows classification method.

Section 5.3 gives an example of20 machines involved in an engine assembly line

to demonstrate the Arrows classification process.

The Arrows method has similarities with cluster analysis and a comparison

with the cluster analysis method is given in Section 5.4 using some standard data as

examples and using the same example considered previously of the 20 machines.

A study of the features of the Arrows method is also included in this section. The

classification process described in this chapter could be applied to classify data

from a wide range of applications, in addition to manufacturing. We present an

89
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example of the classification of hospital procedures by their patients’ length-of-

stay data in Section 5.5. A short conclusion drawing together the main ideas of

this chapter is given in Section 5.6.

5.1 Classification

Classification is normally understood as the activity of allocating objects into a

smaller number of classes so that objects in one class are similar to one another. It

is also calledidentificationor assignment[38].

There are a large number of classification methods, Section 5.1.1 gives suggest-

ed categorisations for these methods. We introduce two maintargets of classifica-

tion methods in Section 5.1.2. We then go on to describe the sorting strategies and

algorithms of the procedure generally used for finding clusters in Section 5.1.3. A

brief comparison of different sorting strategies is given in Section 5.1.4.

5.1.1 Types of Classification

Two general types of classification methods can be specified based on distinction

of the classification process (see for example, Grabmeier and Rudolph [74] and

Fielding [55]):

(i) Hierarchical Classification:

Generally known as being able to transform a raw data matrix,similarity

matrix or dissimilarity matrix into a dendrogram.

(ii) Partitioning:

The result is a partition of the set of objects.



CHAPTER 5 91

In addition to these two types, Cormack [38] indicates that there is another ma-

jor type: clumping, where the resultant classes can overlap. There are other types

such as model-based, density-based, factor analysis variants and graph theoretic

methods (see for example, Aldenderfer and Blashfield [2], Anderberg [3], Everitt

[53] and Fielding [55]).

Another categorisation of classification made based on the distinction of the

process is given by Kendall [93]:

(a) Classification:

Objects in one class are needed to be isolated from objects inanother class.

(b) Dissection:

Objects in one class are not necessarily isolated from objects in another

class.

Gengerelli [62] gives an example to demonstrate the differences: “If there are

two dense clusters of buildings separated by much empty space, we have no diffi-

culty in perceiving the existence of two villages; whereas if a village by one name

coalesces with a village by another name, we feel that the separation is artificial

and that there exist not two entities, but one”. It seems to beunderstandable that

all sets of objects can be dissected but not all can be classified.

It is emphasized by Cormack [38] that different methods of classification can

be achieved by one algorithm; for example, a sorting strategy with a particular

algorithm gives a hierarchical classification but producesa partition or clump when

a stopping rule is applied. The Arrows classification method, which we introduce

in Section 5.2, can be described as a combination of an hierarchical classification

method and a partitioning method. A dendrogram is formed by clusters merging

at different similarity levels but a threshold, whose valueis chosen by the user, is
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used as a stopping rule: any amalgamation of two clusters with a similarity smaller

than the chosen similarity threshold is not allowed.

5.1.2 Method Targets

Methods strive to maximize either internal cohesion or external isolation or some

combination of the two, where internal cohesion can be defined such that an object

should be added into an existing cluster if its smallest similarity with any mem-

ber in the cluster is larger than some chosen threshold [29] and external isolation

focuses on the isolation between clusters such that there should be a clear distinc-

tion between clusters, and similar objects shall not be divided into different clusters

[137]. Sźekely and Rizzo [152] state that many standard clustering procedures aim

only at within cluster distance minimization, i.e. internal cohesion maximization,

or at between cluster distance maximization, i.e. externalisolation maximization.

Cormack [38] states that often both are included in one classification method. For

example, Gengerelli [62] discusses a method satisfying therequirement that the

distance between any two objects in one group is less than thedistance between

any object in the group and any not in it. Needham [121] describes a method in

which the sum of the similarities of any object to the other objects in one group

should exceed the sum of its similarities to objects in othergroups and vice versa

for objects in other groups. Our method also is a combinationof the two ideas.

5.1.3 Obtaining Classes

Cormack [38] indicates that there are three types of procedure generally used for

finding clusters:

• Agglomerative: mergingn objects into classes.
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• Divisive: dividing one initial class containingn objects into a larger number

of classes.

• Clustering: reallocating objects between sets of some initial classes.

The first two types: agglomerative and divisive, are suggested by a number of

authors to be the two major types of hierarchical classification, which is gener-

ally known as the procedure for transforming the raw data matrix, similarity or

dissimilarity matrix into a dendrogram. There are other types of algorithms of

hierarchical classification methods; for example, Gordon [70] identifies two addi-

tional types: constructive and direct optimization algorithms. The former progress

by “successively adding new objects to a hierarchical classification of a smaller

data set” and algorithms have been introduced by Sibson [146] and Defays [46]

to update single linkage and complete linkage dendrograms.The latter has been

advocated by Hartigan [79], Carroll [26] and De Soete [45].

Grabmeier and Rudolph [74] give a diagram of a taxonomy of classification

methods and clustering algorithms and a simpler version of this diagram is shown

in Figure 5.1, reproduced from Fielding [55]. Hierarchicalclassification methods

are considered to be the most popular classification methods. The agglomerative

and divisive algorithms will be further described below.

Agglomerative

There aren single-object classes initially, and the most similar pairof classes is

merged at each stage. Different sorting strategies are distinguished by their way

of determining the similarity between two classes of objects. There is a general

agglomerative algorithm proposed by Lance and Williams [100, 101], in which the

measures of dissimilarity between classCk and a new classC(ij) that is formed by
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Figure 5.1: A Taxonomy of classification methods and sortingalgorithms. Repro-
duced from [55].

combining classCi and classCj can be defined as:

dk(ij) = αidki + αjdkj + βdij + γ |dki − dkj| (5.1)

A similar but more general form for Equation 5.1 was proposedby Jambu [87],

with three new parameters introduced,

dk(ij) = αidki + αjdkj + βdij + γ |dki − dkj| + δihi + δjhj + ǫhk (5.2)

wherehi is the height of classCi in the dendrogram representing the clustering

process.

Gordon [70] states “an advantage of the general formulationis that the initial

matrix of pairwise dissimilarities need not be retained, but can be overwritten as

the amalgamation proceeds”.

The values of the parameters for a number of well-known clustering strategies

are given in Table 5.1, reproduced from Gordon [70]. In this tablewi is the weight

of classCi, and is set equal to the number of objects inCi, i.e.wi = ni.

The single linkage clustering strategy is also referred to as thenearest neigh-
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Method
& References αi β γ γi ǫ

Single linkage
(Sneath [147];
Sokal and Sneath [149])

1
2

0 −1
2

0 0

Complete linkage
(McQuitty [116];
Sokal and Sneath [149])

1
2

0 1
2

0 0

Group average linkage
(Sokal and Michener [148];
McQuitty [118])

wi

wi+wj
0 0 0 0

Weighted average linkage
(McQuitty [118], [118])

1
2

0 0 0 0

Table 5.1: Values of the parameters for clustering strategies. Reproduced from
Gordon [70].

bour method. Forsingle linkageclusters, the distance between two clusters is

defined as the distance between the two most similar objects in the two clusters

[53]. It is said to be “the simplest agglomerative sorting procedure” [38]. An

advantage of this strategy is that consecutive merging always occurs at lower levels

of inter-cluster similarity.

One drawback of single linkage is that clusters may be forcedto be merged

due to only one object from one cluster being similar to another object from the

other cluster, even if many other objects in each cluster arevery distant from each

other: a situation described as thechaining phenomenon. Another pitfall identified

by Hodson in [82] is that when there are “transitional” objects between distinct

clusters, single linkage cannot provide reasonable results. Such transitional objects

were referred to as “intermediates” and suggested to be treated as noise in Cormack

[38]. Wishart [170] and Baron and Fraser [9] propose methods to eliminate noise

from objectives and from variables respectively. Shepherdand Willmott [145]

suggest an extra constraint that an object is allowed to joina cluster only if its
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similarities to a certain number of members of that cluster are all larger than some

chosen threshold and this can be used to break the chaining phenomenon.

Complete linkage is also known as thefurthest neighboursorting method. It is

the opposite of single linkage; the distance between two clusters here is specified

as the distance between the two farthest objects in the two clusters [53]. Thus,

one feature of thecomplete linkagemethod is that it gives compact clusters [3].

However, the outliers greatly affect the merging process. This strategy is not ap-

propriate if random noise is present in the data, but is useful if the expected clusters

are very distinct in the multi-dimensional space. Similar to single linkage, merging

occurs “monotonically with inter-cluster similarity” [38].

Group average linkageandWeighted average linkagemethods define the sim-

ilarity between two clusters as the unweighted and weightedaveraged similarity

between the objects from one cluster and those from the other[53] and both there-

fore need numerical calculations. Accordingly, their clustering effect is in-between

the single linkage and complete linkage. Both methods produce monotonic cluster

trees. The two methods are almost identical, the only difference is that with the

weighted average linkage, the numbers of objects containedin the two clusters

are used as weight [53]. Sokal and Sneath [149] formulate thesimilarity between

clustersCi andCj as:

Sij =

∑
a∈Ci

∑
b∈Cj

(sabwawb)∑ ∑
wiwj

(5.3)

wheresab is the similarity index between objectsa from Ci andb from Cj. So

for the group average linkage strategywa is equal to1 and for the weighted av-

erage linkage strategywa = ni. Therefore, the weighted average linkage method

is suggested to be applied if the cluster weights are expected to be significantly

uneven.

For the agglomerative hierarchical part, our Arrows methodhas similarities to
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the complete linkage and average linkage methods, with a major additional con-

straint that the similarities of every pair of objects in every cluster should all be

greater than or equal to some specified threshold.

Divisive

Divisive algorithms start with one big class including alln objects. At each stage

of the algorithm, the current class is divided into two smaller classes. The divisive

hierarchical method can be thought of as the opposite of the agglomerative hie-

rarchical method. It is stated by Fielding in [55] that it is not widely used as it

appears to have computational difficulties. This method canbe divided into two

types: monothetic and polythetic [55]. The former divides the class on the basis of

the possession of only a single variable and often leads it to“misclassify” [167],

while the latter uses the values taken by more than one variable ([125] and [80]).

Chipman and Tibshirani [36] have proposed a hybrid method that combines the

solutions of agglomerative hierarchical clustering and divisive hierarchical clus-

tering.

5.1.4 Strategy Comparison

Jardine and Sibson [88] and many other authors have identified that methods and

algorithms can have distinct meanings. For example, Rohlf [139] has proved that

the single linkage method can be achieved by a number of different algorithms.

Gower [73] believes that if there is a huge distinction between objects and clear

distinct clusters any useful clustering strategy would classify the objects correctly.

However, different clustering methods can and do generate different classification

solutions to the same data set when the distinction is less clear cut ([53] and [70]).

The single linkage method has been proposed by Jardine and Sibson in [88] to be

the method that satisfies a number of desirable properties, but, there is no single
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method believed to be uniquely suitable for any data set. Therefore, it is important

to choose the appropriate clustering methods for differentdata sets and a number

of approaches have been proposed to do so.

There are simulation studies investigating the behaviour of clustering methods.

Milligan [120] gives a review of this type of study. Althoughdetailed information

about the clustering procedures can be accumulated in thesesimulation studies,

they provide little guidance on the most appropriate methodfor a particular data

set without knowing its characteristics. A second approachis to obtain a number

of requirements that it is desirable to see in the analysis ofa data set and examine

various sorting strategies to ascertain whether the requirements can be satisfied.

Fisher and Van Ness [56] and Van Ness [154] have proposed thisapproach and

provided a list of properties. An example is given in Gordon [70]: if a clustering

method is required to bemonotone admissible(that is, if a monotone transforma-

tion is made on the entire similarity or dissimilarity matrix, the clustering solution

stays the same.) Single linkage and complete linkage methods are the only two

strategies in Table 5.1 that satisfy this requirement. Another approach is to use

more than one clustering method to classify the data set and synthesize the ob-

tained results so that the combined solution may “representgenuine structure in the

data” [70]. Rohlf [138] has proposed an adaptive agglomerative sorting algorithm

to adapt the index of dissimilarity corresponding to the data structure. Diday and

Moreau [49] have used the information obtained from a training set whose clusters

are given by the analyser to choose suitable values of the parameters in formula-

tion 5.2 for analysing a new data set of a larger size. It is suggested by Gordon [70]

that the adaptive agglomerative clustering algorithm and the training set strategies

can be applied to specify the structure in the data set and thus to help in selecting

suitable clustering methods for it.
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5.2 Arrows Classification Method

We aim to classify the machines involved in the assembly lineinto a smaller num-

ber of groups, based on their breakdown duration data, such that no pair of ma-

chines in a group has sampled breakdown duration data with significantly different

distributions. The similarity matrix that is used to classify the machines into groups

is made up of the p-values describing the probabilities of pairs of samples having

been drawn from the same distribution as described in Section 4.4.

First, we define two terms that we associate with the name of the method. Ma-

chinesMi andMj have adouble-arrow connectionif pij, the p-value comparing

their corresponding sets of data, is the highest in both rowi and rowj of the simi-

larity matrix andpij is greater than the specified thresholdp0. MachinesMi and

Mk have asingle-arrow connectionif pik is the highest in only one of the rowsi

or k andpik is greater than the specified thresholdp0.

We follow the steps below to determine the groups.

1. Choose the threshold p-value,p0, for assuming that two sets of data are

similar enough to be grouped together. If the p-value for thefit between the

breakdown duration data of a pair of machines is greater thanor equal to

p0 then they can be put in the same group; otherwise, the data areassumed

to be significantly different. We currently use0.10 as a threshold p-value.

Increasing the p-value threshold to, e.g.0.20, may increase the average

similarities within groups but may also increase the numberof groups.

2. Search the similarity matrix,

(a) If Mi andMj are not grouped and they have the greatest double-arrow

connection in the pool of ungrouped machines, put machinei and ma-

chinej into one group, say groupCa.
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(b) Place all ungrouped machines that have double-arrow connections or

single-arrow connections to machinei or machinej in groupCa.

(c) Place inCa all ungrouped machines that have double-arrow connec-

tions or single-arrow connections to any of the machines added to

groupCa in step 2(b). Continue until there are no more possible ma-

chines to be grouped together.

(d) Start to find a new group from step 2(a). Search the whole similari-

ty matrix, until no more new machine groupings can be made. Itis

possible that some groups are made up of only one machine.

3. Check the p-values of all pairs of machines in each group, e.g. for group

Ca: if the values are all greater than or equal top0, the threshold we choose,

keepCa; otherwise, for pairs with p-values less thanp0, use the following

decision process to determine which machine in the pair to keep and which

machine should be deleted from group.

(a) If Mi andMj have a double-arrow connection keep both of the ma-

chines inCa as machines with double-arrow connections form the core

of the groups. This also reduces the number of machines that we need

to search over in the following step of the algorithm.

(b) Take out the machine with the weakest connection with theothers in

the group and repeat this until there are no pairs of machineswith p-

values underp0 inCa, where the strength of a connection of an machine

Mi to its groupCa is measured by itsinside connectiondefined as

p(i,a) =

∑
pij

Na − 1
,Mj ∈ Ca andj 6= i, (5.4)

whereNa is the number of machines in groupCa. This is effectively

the average of the p-values between machineMi and the other ma-
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chines inCa.

4. For each possible pair of groups, check the p-values between the machines

in the first group and those in the second group. If all pairs ofmachines in

groupCa and groupCb have p-values greater than or equal top0, these two

groups can be combined into a new group. If we can combine group Ca

with groupCb or with groupCd, combine the groups which have the greater

average connectionbetween them, where the average connection between

groupsCa andCb is defined to be

p(a,b) =

∑
Mi∈Ca

∑
Mk∈Cb

pik

NaNb

, (5.5)

wherepik is the similarity between machinei from groupCa and machine

k from groupCb, andNa andNb are the numbers of machines in groupCa

and groupCb respectively. This is effectively the average of the p-values

for the comparisons between the machines in groupCa and those in group

Cb. Search until all of the groups have been processed and combined where

possible, including groups formed during step 4.

The above classification procedure has been implemented in Visual Basic for

Applications. Although this method has been devised to classify machines, it is

widely applicable. We next consider its application to a number of example data

sets.

5.3 An Example of Machine Classification

We illustrate the classification method using an example of twenty machines in-

volved in one of Ford’s engine assembly lines. We currently use0.10 as the thresh-

old p-value for assuming two sets of breakdown duration dataare similar enough
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to be grouped together. Increasing the threshold may improve the homogeneity of

the groups but also would increase the number of groups. It istherefore necessary

to set the threshold for p-values to achieve a balance between the two conflicting

aims of homogeneity and a small number of groups. A study of the influence of

the threshold on grouping results using the Arrows method will be given in Section

5.4. Using the groups found by the Arrows method we then fit a different mixture

distribution for each group, and in the simulation use this as the breakdown dura-

tion distribution for all of the machines in the group. The influence of the choice of

threshold for machines grouping on the resultant output of simulation models us-

ing fitted mixture distributions for different groups will be investigated in Section

7.3.
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M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20
M01 − 0.02 0.00 0.00 0.11 0.00 0.03 0.00 0.09 0.14 0.50 0.50 0.06 0.00 0.04 0.00 0.06 0.00 0.13 0.13
M02 0.02 − 0.62 0.00 0.03 0.00 0.00 0.00 0.08 0.22 0.02 0.03 0.00 0.00 0.17 0.00 0.00 0.01 0.01 0.07
M03 0.00 0.62 − 0.00 0.03 0.00 0.00 0.00 0.01 0.05 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.02 0.08
M04 0.00 0.00 0.00 − 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
M05 0.11 0.03 0.03 0.00 − 0.00 0.00 0.03 0.00 0.19 0.15 0.16 0.57 0.00 0.12 0.00 0.14 0.00 0.85 0.93
M06 0.00 0.00 0.00 0.00 0.00 − 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
M07 0.03 0.00 0.00 0.00 0.00 0.00 − 0.17 0.00 0.36 0.00 0.00 0.31 0.01 0.00 0.00 0.82 0.00 0.18 0.01
M08 0.00 0.00 0.00 0.00 0.03 0.00 0.17 − 0.00 0.29 0.00 0.00 0.20 0.00 0.00 0.00 0.63 0.00 0.32 0.01
M09 0.09 0.08 0.01 0.00 0.00 0.00 0.00 0.00 − 0.02 0.05 0.08 0.00 0.00 0.01 0.00 0.00 0.00 0.02 0.01
M10 0.14 0.22 0.05 0.01 0.19 0.00 0.36 0.29 0.02 − 0.27 0.26 0.82 0.03 0.14 0.02 0.23 0.07 0.53 0.36
M11 0.50 0.02 0.00 0.00 0.15 0.00 0.00 0.00 0.05 0.27 − 0.38 0.29 0.00 0.06 0.00 0.01 0.00 0.38 0.25
M12 0.50 0.03 0.00 0.00 0.16 0.00 0.00 0.00 0.08 0.26 0.38 − 0.26 0.00 0.09 0.00 0.01 0.00 0.30 0.30
M13 0.06 0.00 0.00 0.00 0.57 0.00 0.31 0.20 0.00 0.82 0.29 0.26 − 0.02 0.05 0.00 0.62 0.02 0.57 0.48
M14 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.03 0.00 0.00 0.02 − 0.00 0.00 0.37 0.00 0.06 0.00
M15 0.04 0.17 0.12 0.00 0.12 0.00 0.00 0.00 0.01 0.14 0.06 0.09 0.05 0.00 − 0.00 0.00 0.10 0.38 0.45
M16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 − 0.07 0.00 0.01 0.00
M17 0.06 0.00 0.00 0.00 0.14 0.00 0.82 0.63 0.00 0.23 0.01 0.01 0.62 0.37 0.00 0.07 − 0.00 0.30 0.11
M18 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.02 0.00 0.10 0.00 0.00 − 0.51 0.15
M19 0.13 0.01 0.02 0.00 0.85 0.01 0.18 0.32 0.02 0.53 0.38 0.30 0.57 0.06 0.38 0.01 0.30 0.51 − 0.71
M20 0.13 0.07 0.08 0.00 0.93 0.00 0.01 0.01 0.01 0.36 0.25 0.30 0.48 0.00 0.45 0.00 0.11 0.15 0.71 −

Table 5.2: Similarity Matrix for the20 machines based on their breakdown duration data.
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For these20 machines the Arrows classification process proceeds as follows:

1. Step 1

Choose the p-value thresholdp0 = 0.10.

2. Step 2 (see Figure 5.2)

Form 8 groups based on identifying the single-arrow and double-arrow con-

nections, which are displayed in Figure 5.2 as black arrows with heads at

either one end (single-arrow connections) or both ends (double-arrow con-

nections). For example, machines M01 and M11 have a double-arrow con-

nection as the p-value for the comparison between these two machines is the

greatest in row 1 and row 11 of the similarity matrix and is greater thanp0.

3. Step 3 (see Figure 5.2)

Identify 6 pairs of machines in3 groups that are formed in step 2 that have

significantly different breakdown duration data. The connections between

these pairs are coloured red in Figure 5.2. Decide which machine or ma-

chines to remove from the corresponding groups to ensure that there are no

groups containing pairs of machines with p-values less thanp0, i.e. no red

connections. The three groups with red connections are groups 2, 3 and 4.

We consider each of the three groups in turn:

(a) Group 2: The priority is to keep pairs of machines with double-arrow

connections in the same group; therefore, M09 is removed from the

group to eliminate the red connection.

(b) Group 3: M05 and M20 have a double-arrow connection and should

be kept in the same group. M18 has the weakest inside connection and

is discarded. The resultant group has no red connections.

(c) Group 4: M07 and M17 have a double-arrow connection and should

be kept in the same group. Of the remaining machines, M14 has the
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weakest inside connection and is deleted. The resulting group has no

red connections.

4. Step 4 (see Figure 5.3)

Combine groups 4 and 5 after step 3 as no pairs of members are significantly

different, i.e. there are no red connections after the amalgamation. This is

the only merging that can take place without creating red connections.

Finally 10 groups are obtained, as shown in Figure 5.3, the largest group

contains5 machines and there are6 groups that contain only one machine.
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M16

M06

M04

M10 M13

M07 M17

M08

M14

M05 M20

M19 M15

M18

M02 M03

M09

M01 M11

M12

Figure 5.2: Steps 1 and 2 of the example of 20 machines, showing groups with
double-arrow and single-arrow connections and the strength of the connections
within each group. Red curve (— - - — -): p-value of the two connected machines
is significantly different; yellow curve (- - - - - - - -): p-value of the two connec-
ted machines is on the borderline; green curve (————–): p-value of the two
connected machines is not significantly different.
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M07 M17

M08

M10 M13

M18

M14

M09

M16

M06

M04

M05 M20

M19 M15

M02 M03

M01 M11

M12

Figure 5.3: Step 4 of the example of 20 machines in which we tryto combine the
primary groups without red connections
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5.4 Comparison with Cluster Analysis

In this section, we compare the Arrows method with cluster analysis. The Arrows

classification method has similarities with complete linkage clustering and average

linkage clustering methods. The complete linkage cluster analysis algorithm pro-

ceeds iteratively, combining the two most similar machinesor groups of machines

at each iteration, where the distance between any two groupsis defined to be the

greatest distance (in this case, the smallest p-value) fromany member of one group

to any member of the other group. The average linkage clusteranalysis algorithm

is the same as the complete linkage except the distance between any two groups is

now defined to be the average of the distances from any member of one group to

any member of the other group.

The Arrows classification method uses a threshold distance or similarity to

ensure that all of the objects in a group have significant similarities. It is thus

very easy to control the similarity level in the final groups when using the Arrows

method. Where the two methods differ is that the clustering method searches the

whole matrix to find the most similar groups to merge while theArrows method

aims to keep together objects that have what we term an double-arrow connection.

Two objects have a double-arrow connection if one object hasthe greatest simi-

larity to the other object and vice versa for the other objectand thus keeping these

objects together is a way to enhance the internal cohesion ofgroups resulting from

the Arrows method.

The following gives a comparison between the complete and average linkage

cluster analysis methods and the Arrows method by first usingan example distance

matrix from a text book and then extending this example to better highlight the

features of the Arrows method. Finally, we show how the Arrows method works

in practice, using the20 machines example that has been described in Section 5.3.
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1 2 3 4 5
1 0.0 2.0 6.0 10.0 9.0
2 2.0 0.0 5.0 9.0 8.0
3 6.0 5.0 0.0 4.0 5.0
4 10.0 9.0 4.0 0.0 3.0
5 9.0 8.0 5.0 3.0 0.0

Table 5.3: Distance Matrix of Example 1 from Everitt [53] P9.

5.4.1 Example 1

We use a distance matrix obtained from Everitt [53] (P9) as anexample; the dis-

tance matrix is given in Table 5.3. We apply complete linkageand average linkage

clustering methods, and the Arrows method. The grouping results for the cluster

analyses are presented in the two dendrograms given in Figure 5.4. For the Arrows

method, we set a distance threshold of10.00 with the purpose of getting a complete

dendrogram, as shown in Figure 5.5. (In all of the dendrograms shown in Section

5.4, the first column of numbers is the corresponding distance or similarity level at

each amalgamation, and the second column of numbers denote the order of each

amalgamation only.) As the opposite of setting a similarity/p-value threshold, a

distance threshold is set so that a pair of objects can be put in the same group only

when the distance between them is less than or equal to this distance threshold.

So, in this case, a distance threshold of10.00 is equivalent to a similarity threshold

of zero.

The dendrograms of this example resulting from the three methods are all seen

to be similar in shape. Such is not always the case, as will be seen in Sections

5.4.2 and 5.4.3. Moreover, it may not be possible for the Arrows method to show

the grouping results of different similarity levels by a continuous and complete

dendrogram such as Figure 5.5, since the merging of some objects or groups might

change when the threshold is set to a different value, which will also be illustrated

in Sections 5.4.2 and 5.4.3.
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DIS

2.00 1

3.00 2

5.00 3

10.00 4

(a)

51 2 3 4 DIS

2.00 1

3.00 2

4.50 3

7.83 4

(b)

51 2 3 4

Figure 5.4: Dendrograms of the grouping results for objectswith the distance mat-
rix given in Table 5.3: (a) from the complete linkage clusteranalysis; (b) from the
average linkage cluster analysis. The first column of numbers is the corresponding
distance between the objects or groups at each amalgamation.

Distance

Threshold

2.00 1

3.00 2

5.00 3

10.00 4

1 2 3 4 5

Figure 5.5: Dendrogram of the grouping results from the Arrows method for ob-
jects with distance matrix given in Table 5.3. The first column of numbers is the
distance threshold.

In this example, objects 1 and 2, and objects 4 and 5 have double-arrow con-

nections and are also the closest and second closest pairings and therefore the

merging of these two pairs of objects will occur first using all of the three meth-

ods. Although at the dissimilarity level of5.00, object 3 is in the same group with

(4, 5) rather than with (1, 2) using all of the three methods, the criteria and pro-

cess of getting the group (3, 4, 5) differs between the three methods. For complete

linkage clustering and average linkage clustering, the only difference is the way

of calculating the distance from object 3 to the existing twogroups (1, 2) and (4,
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5). For the former method, the distance between object 3 and group (1, 2) is6.00,

which is larger than the distance between object 3 and group (4, 5), so with com-

plete linkage object 3 will be combined with group (4, 5). Foraverage linkage,

the distance between object 3 and group (4, 5) is4.50, which is smaller than the

distance between object 3 and group (1, 2),5.50, so the next merging is again

between object 3 and group (4, 5).

The Arrows method gives objects with single-arrow connections some priority

by combining all objects with single-arrow and double-arrow connections at the

beginning of the grouping process, right after the threshold has been set. In this

case, objects 3 and 4 have an single-arrow connection, as thedistance between

3 and 4 is the smallest in column 3 and row 3 of the distance matrix, and the

distances between objects 3 and 4 and objects 4 and 5 are both smaller than the

chosen distance threshold; thus the Arrows method combinesobject 3 with group

(4, 5) rather than with group (1, 2) at the second step of the classification process

described in Section 5.2, when the chosen distance threshold is5.00.

5.4.2 Example 2

We extend Example 1 by changing the distances between objects 1 and 3 and ob-

jects 2 and 3, and adding two new objects. The new set up is designed to highlight

the features of the Arrows method and the distance matrix is given in Table 5.4.

The new dendrograms of grouping results from the complete linkage clustering

and average linkage clustering are given in Figure 5.6. The dendrogram of groups

resulting from the Arrows method using a distance thresholdof less than5.00 is

given in Figure 5.7; it is not possible to show the grouping results of similarity

levels that are greater than or equal to5.00 properly in the same dendrogram, since

the merging of object3 changes when the threshold is set to5.00 or greater, which

will be illustrated later in this section.
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1 2 3 4 5 6 7
1 0.0 2.0 5.5 10.0 9.0 11.0 11.0
2 2.0 0.0 3.1 9.0 8.0 11.0 11.0
3 5.5 3.1 0.0 4.0 5.0 4.6 4.6
4 10.0 9.0 4.0 0.0 3.0 11.0 11.0
5 9.0 8.0 5.0 3.0 0.0 11.0 11.0
6 11.0 11.0 4.6 11.0 11.0 0.0 3.5
7 11.0 11.0 4.6 11.0 11.0 3.5 0.0

Table 5.4: Distance Matrix of Example 2.

DIS

2.00 1

3.00 2

3.50 3

4.60 4

10.00 5

11.00 6

5 6 7

(a)

1 2 34 DIS

2.00 1

3.00 2

3.50 3

4.30 4

7.50 5

9.72 6

(b)

5 6 71 2 3 4

Figure 5.6: Dendrograms of the grouping results for objectswith distance matrix
given in Table 5.4: (a) from the complete linkage cluster analysis; (b) from the
average linkage cluster analysis. The first column of numbers is the corresponding
distance between the objects or groups at each amalgamation.

Using the new distance matrix, objects 1 and 2, objects 4 and 5, and objects

6 and 7 have double-arrow connections and are the closest pairs of objects and

therefore the merging of these three pairs of objects make upthe first three amal-

gamations. At the dissimilarity level of4.60, the complete linkage clustering and

the Arrow method differ from the average linkage clusteringover where they place

object 3. For the complete linkage clustering, the distancebetween object 3 and

group (6, 7) is4.60, which is smaller than the distances between object 3 and

group (1, 2) or group (4, 5); and so object 3 is combined with group (6, 7). For
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Distance

Threshold

2.00 1

3.00 2

3.50 3

4.60

< 5.00

6 751 2 34

Figure 5.7: Dendrogram of the grouping results from the Arrows method using
distance threshold lower than5.00 for objects with distance matrix given in Table
5.4. The first column of numbers is the distance threshold.

the Arrows, object 3 is amalgamated with group (6, 7) rather than with group (1,

2) or group (4, 5) because the distances between object 3 and objects 1 or 5 are

both higher than the specified distance threshold. While for the average linkage

clustering, the distance between object 3 and group (1, 2) is4.30, which is smaller

than the distances between object 3 and group (4, 5) or group (6, 7); the next

merging is therefore object 3 and group (1, 2).

For the Arrows method, multiple criteria are used to decide the next merging.

First it ensures that no objects that are further apart than the threshold distance can

be placed within the same group, then it ensures that objectswith double-arrow

connection are placed in the same group. The Arrows method prefers to keep ob-

jects with single-arrow connections together, if all relevant distances are below the

threshold distance, even when there are other potential amalgamations satisfying

the first criterion. If there are no objects with single-arrow connections involved, it

allows the merging of objects or groups with lower or the lowest average distance

(i.e. higher or the highest average connection).

It is possible that one object or group may be combined with different groups

or objects when the distance threshold changes. This might occur as a result of
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the method’s intention of keeping objects with single-arrow connections in the

same group, while satisfying the condition that every pair of objects in the same

group should have a distance that is below the threshold distance. For example, the

grouping results for object 3 are different when the distance threshold is changed

from 5.50 to 5.00, as shown in Table 5.5. When there is no relevant influence from

single-arrow connections, one object may also be grouped with different groups

or objects when a different distance threshold is selected due to the method’s aim

to merge objects or groups with higher average connections,while satisfying the

condition that every pair of objects in the same group shouldhave a distance that

is below the selected threshold distance. An illustration of this situation is also

shown in Table 5.5: the different merging for object 3 when the distance threshold

is changed from5.00 to 4.60.

Distance
Threshold Group Objects

5.50 1 1, 2,3
2 4, 5
3 6, 7

5.00 1 1, 2
2 3, 4, 5
3 6, 7

4.60 1 1, 2
2 4, 5
3 3, 6, 7

Table 5.5: Grouping results of Example 2 using the Arrows method with a distance
threshold of4.60, 5.00 or 5.50.

Selecting a distance threshold of5.50, object 3 is placed in the same group as

objects (1, 2) in step 2 of the Arrows classification process described in Section

5.2, because object 3 has a single-arrow connection with object 2 and the distance

between objects 3 and 1 is no greater than5.50, the distance threshold. However,

when the distance threshold is set to be5.00, object 3 can no longer be put in the
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same group with (1, 2) because the distance between objects 3and 1 is now larger

than the distance threshold; thus, object 3 is grouped with group (4, 5) in step

4 of the classification process described in Section 5.2, as the distances between

object 3 and object 4 or object 5 are both no greater than the current distance

threshold and the average distance between object 3 and group (4, 5) is smaller

than the average distance between object 3 and group (6, 7). Moreover, when the

threshold is changed to be4.60, the grouping result for object 3 is different again;

object 3 is amalgamated with group (6, 7) rather than with group (4, 5) because

the distance between objects 3 and 5 is now higher than the specified distance

threshold and hence object 3 cannot be merged with group (4, 5) even though the

average distance between object 3 and group (4, 5) is smallerthan the average

distance between object 3 and group (6, 7).

Since using different thresholds means the grouping results for object 3 may

be different, it is not possible for the Arrows method to showthe grouping results

of different similarity levels by a continuous and completedendrogram; only the

incomplete dendrogram of using a distance threshold of lessthan5.00 shown in

Figure 5.7 can be drawn, from which the grouping results can be read straightfor-

wardly when a distance threshold is set to be any value less than5.00.

It is seen that the three methods give similar results; for instance, the core of the

groups, (1, 2), (4, 5) and (6, 7), stay the same. From the groupings resulting from

the Arrows method using different distance thresholds, it seems that when a lower

similarity level is required within the groups, the Arrows method appears to be

more similar to the average linkage clustering, however, when a higher similarity

level needs to be achieved, the Arrows method tends to be closer to the complete

linkage clustering.
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5.4.3 Example 3

It is seen from the previous two examples that the Arrows classification method

has similarities with the complete linkage and average linkage hierarchical cluster

analysis [3]. We here use a more complicated example to studythe differences

between the methods as well as the influence of the threshold on the results of the

Arrows method; the similarity matrix is given in Table 5.2. The dendrograms of

the grouping process of the20 machines using the complete linkage and average

linkage clustering are given in Figures 5.8 and 5.9, respectively. The dendrogram

resulting from the Arrows classification method for p-valuethresholdsp0 > 0.046

is given in Figure 5.10. When the threshold is set to be less than or equal to0.046,

group (M10, M13) may be combined with different machines or groups of ma-

chines and thus the corresponding grouping results cannot be properly displayed

in the same dendrogram.

For the machines data, we generally assume that two machineswith a p-value

smaller than0.10 are considered to be significantly different and therefore cannot

be combined in to one group. Thus, it is reasonable to ignore the grouping results

obtained at a similarity level below0.046.
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0.927 1

0.822 2

0.819 3

0.715 4

0.623 5

0.502 6

0.383 7

0.235 8

0.125 9

0.112 10

0.109 11

0.006 12

0.000 13

0.000 14

0.000 15

0.000 16

0.000 17

0.000 18

0.000 19

M06M01 M19 M03 M15M11 M20M12 M05 M09 M16 M18M07M02 M17 M10 M13 M08 M14M04

Figure 5.8: Dendrogram from the complete linkage cluster analysis for the ex-
ample of 20 machines. The first column of numbers is the corresponding similarity
level at each amalgamation.
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0.927 1

0.822 2

0.819 3

0.783 4

0.623 5

0.502 6

0.451 7

0.442 8

0.371 9

0.227 10

0.187 11

0.126 12

0.094 13

0.084 14

0.043 15

0.027 16

0.007 17

0.001 18

0.000 19

M04M10 M13 M08 M14M18 M07 M02M17 M06M01 M19 M03M15M11 M20M12M05 M09 M16

Figure 5.9: Dendrogram from the average linkage cluster analysis for the example
of 20 machines. The first column of numbers is the corresponding similarity level
at each amalgamation.
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P-value

Threshold 1

0.822 2

0.819 3

0.715 4

0.623 5

0.502 6

0.383 7

0.235 8

0.121 9

0.109 10

0.049 11

>0.046

M06 M14 M16 M18M17 M10 M13 M04M20 M15 M08M07M02 M03 M19 M05M12 M01 M11 M09

Figure 5.10: Dendrogram from the Arrows clustering method using similarity
thresholdp0 > 0.046 for the example of 20 machines. The first column of numbers
is the corresponding p-value/similarity threshold.
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We compare the classification methods by examining the grouping results at a

similarity level of0.10 as we assume that two sets of data are similar enough to be

grouped together when their p-value is above0.10.

We consider the average linkage clustering initially. The dendrogram is given

in Figure 5.9, and this shows that the 12th merging happens atsimilarity level of

0.126 while the 13th amalgamation happens at0.094. Thus, at a similarity level

of 0.10, it gives8 groups, as listed in Table 5.6. Since the average linkage clus-

tering uses the average similarity between groups as the only measure to decide

groups, there are pairs of machines with very low p-values that are included in the

same groups. For example, in the first group in Table 5.6, the similarity between

M15 and M13 is0.046; in the third group, M07 and M14 have an extremely small

similarity p-value of0.009, while M08 and M14 has a even lower p-value of zero,

which statistically means there is zero possibility that the breakdown duration data

of M08 and M14 are drawn from the same distribution. Thus, although the final

number of groups at the similarity level of0.10 is fewer than the number of groups

resulting from the other two methods, the homogeneity of thegroups is not suffi-

ciently high. Hence, in the following we focus on comparing the Arrows method

with the complete linkage clustering.

Group Machines

AL1 M01, M05, M10, M11, M12, M13, M15, M19, M20
AL2 M02, M03
AL3 M07, M08, M14, M17

AL4-AL8 (Single machine groups) M04, M06, M09, M16, M18

Table 5.6: Grouping results of the 20 machines at a similarity level of 0.10 using
the average linkage clustering method.

In the complete linkage clustering dendrogram shown in Figure 5.8, the 11th

merging happens at a similarity level of0.109, while the 12th amalgamation hap-

pens at a p-value equal to0.006. Therefore, there are9 groups, listed in Table
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5.7, at a similarity level of0.10. Figure 5.3 and the dendrogram in Figure 5.10

show that using the Arrows method with a threshold of0.10 produces10 groups,

as listed in Table 5.8.

Average Similarity
Group Machines within Group

CL1 M01, M05, M11, M12, M19, M20 0.385

CL2 M02, M03, M15 0.303

CL3 M07, M08, M10, M13, M17 0.420

CL4-CL9 (Single machine groups) M04, M06, M09,
M14, M16, M18

-

Table 5.7: Grouping results of the 20 machines at a similarity level of 0.10 using
the complete linkage clustering method.

Average Similarity
Group Machines within Group

AR1 M01, M11, M12 0.462

AR2 M02, M03 0.623

AR3 M05, M15, M19, M20 0.574

AR4 M07, M08, M10, M13, M17 0.420

AR5-AR10 (Single machine groups) M04, M06,
M09, M14, M16, M18

-

Table 5.8: Grouping results of the 20 machines at a similarity level of 0.10 using
the Arrows classification method.

It can be seen from Tables 5.7 and 5.8 that the results are similar, for example,

the single machine groups are exactly the same; the reason for this similarity

between the two classification methods appears as both methods ensure that every

pair of objects within the same group has a similarity that isabove the similarity

level, 0.10: for complete linkage clustering, it is achieved by using the smallest

p-value within one group as the similarity level of that group; while for Arrows

method, it is achieved by setting a p-value threshold as one of the main features of

this classification method.
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The differences between the two grouping results come from the different

groupings of machine M15 only and this demonstrates one of the major features

of the Arrows method, that is, it aims to keep together objects with single-arrow

connections when possible. Using the Arrows method, M15 hasa single-arrow

connection with machine M20 and has above-threshold (p0 = 0.10) similarities

with M05 and M19. Therefore it is amalgamated with group (M05, M19, M20)

during the second step of the process described in Section 5.2. The complete link-

age clustering method uses the furthest distance as the onlyindex for grouping, in

this case, the smallest p-value. Using complete linkage, M15 is merged with (M02,

M03) instead of (M05, M19, M20) because the smallest p-valuebetween M15 and

(M02, M03) is higher than the smallest between M15 and (M05, M19, M20). The

differences between the grouping results coming from the complete linkage and

the Arrows method can be seen in Tables 5.7 and 5.8: CL1 and CL2 vs. AR1,

AR2 and AR3. The average similarities within the three groups resulting from

the Arrows method are all higher than those within the two groups resulting from

the complete linkage clustering. Thus, it is believed that the Arrows classification

method achieves more homogeneity within the resultant groups than the complete

linkage clustering at the similarity level of0.10, although the latter method gives a

slightly smaller number of groups.

At similarity levels of0.20, 0.30, . . . , 0.90, all of the grouping results of the

Arrows method and complete linkage clustering are the same,despite their differ-

ent methods for merging groups. The results are shown in the dendrograms in

Figures 5.8 and 5.10 and are listed in Appendix A. It is seen that by increasing the

threshold p-value the homogeneity of the groups is improvedbut the number of

groups needed to describe the data increases.

On the whole, it seems that the proposed Arrows classification method pro-

duces similar results to the hierarchical cluster analysis. The major difference

between the two is that the clustering method searches the whole matrix to find the
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most similar groups to merge while the Arrows method prefersto keep together

objects with double-arrow and single-arrow connections. The use of a threshold

distance or similarity is also a characteristic of the Arrows method, which ensures

that any two objects whose similarity is less than the selected similarity threshold

will not be allowed to be put in the same group. The Arrows classification method

therefore allows us to control the similarity level in the resultant groups more eas-

ily than cluster analysis.

5.5 Classification of Hospital Length-of-Stay Data

The Arrows classification method is a general method and could be applied to

classify data from a wide range of applications, in additionto manufacturing. We

here include an example involving a health care applicationwhere it has also been

applied. This example comes from [41], where the ultimate purpose was to use

Gallivan and Utley’s linear programming approach for setting up optimal sched-

ules for hospital procedures [61]. As we mentioned in 4.6.2,we wish to group

procedures based on the similarity of their patients’ length-of-stay data.

This classification of procedures into groups before the optimising process has

three benefits [41]. First, the schedules output by the optimisation program have

more flexibility. Instead of insisting that a set number of procedures of a particu-

lar typeX need to be performed on a certain day, the schedules output are able

to suggest that a set number of procedures of GroupGX need to be performed

on a certain day, where GroupGX may include more than one type of proced-

ure. Therefore, if a cancellation or a last minute request for a procedure occurs,

substitution is relatively easy. Second, the number of variables in the optimisation

program can be reduced by the grouping and the subsequent computation time re-

quired to find the optimal schedule can be decreased. This saving can be signific-

ant when setting up a schedule of a large number of proceduresfor several weeks.
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Third, the demand for a group of procedures will be more accurately forecast than

the demand for individual procedures.

We have length-of-stay data for10, 929 different episodes recorded over a

period of7 months coming from655 different procedures. There are a large num-

ber of rare procedures for which we have little data. After the primary analysis of

the data (see [41] for details), there are147 procedures or procedure groups that

we wish to classify into a smaller number of groups. The aim ofthis example is

to group these147 different procedures or procedure groups based on their length-

of-stay data; which means that two procedures or procedure groups can be put in

the same group if there is no statistically significant difference between the distri-

butions of their length-of-stay data. Beforehand, we need toobtain the similarity

matrix of the procedures using the method we introduced in Section 4.4. We run

100 bootstraps for each pair of procedures or procedure groups to determine the

p-values. Here, we again set0.10 to be the p-value threshold for the Arrows clas-

sification procedure.

The results of the Arrows method suggest that there should be48 groups, and

these are given in Table 5.9 (the codes are called OPCS-4 codesand are used by

NHS; www.hesonline.nhs.uk provides a facility for decoding these codes). The

largest group contains8 procedures and there are four groups of7 procedures;14

groups contain only one procedure. Overall, the groups makesense intuitively.

For example, group19 is mainly made up of rare inpatients procedures; group23

includes only endoscopic procedures on the fallopian tubesand uterus; and group

28 contains hip and knee replacements.

Group Procedures

1 25120, A52.1, F09.5, SO8.2, Ear, nose and throat Outpatients

2 A57.3, E35.2, Q18.1, W92.4, Anaesthetics Mixed, Paediatrics

Outpatients, Gynaecology Outpatients
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Group Procedures

3 25012, A57.6, A57.7, C71.2, S64

4 A65.1, A65.8, S70.1

5 B27.8, C13.4, F34.4, F34.8, L85.8, T20, T21, W08.1

6 B28, C13.2, W78, Urology Mixed

7 B28.2, B28.8, H51, M79.4

8 B31, J18.3, S01

9 B31.3, W79.1

10 C13.3, N18.1, Q17, W85

11 C17, C18.1, N30.3, W82

12 D03.3, S06.4, S25, W90.4, ultrasound guided biopsy

13 B31.2, E02.6, W86

14 E03.6, E14.3

15 F34, L85.2, L85.3, T27, W81.9

16 H55.1, Q38, S62.2, T24, W87, Orthopaedics Mixed, Ear,

Nose and Throat Mixed

17 J18.8, M11.1, W03, W08.6, Plastic Surgery Inpatients

18 L85.1, W77.1, Paediatrics Mixed

19 M42.1, Orthopaedics Inpatients, General Surgery Inpatients,

Urology Inpatients

20 M42.3, W08.5, W28.3, W82.8, General Surgery Mixed,

Plastic Surgery Mixed, Ophthalmology Mixed, General

Medicine Mixed

21 N13.4, Q48.1

22 D15.1, F09.1, H20, P27.3, T80.5, Anaesthetics Outpatients,

Urology Outpatients

23 Q13.1, Q20.2, Q38.3
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Group Procedures

24 B31.2, E02.3, S01.4, T79.1, Ophthalmology Inpatients, Ear,

Nose and Throat Inpatients

25 C22.2, S06, Ophthalmology Outpatients, Plastic Surgery Out-

patients, Oral Surgery Outpatients

26 T59, T72.3

27 B27.4, T85.2, V33.6

28 W37.1, W42.1

29 Medical admission, Non-procedure related admission

30 G65, H25

31 Q07.4, T41.3, W37.15

32 M45.1, Orthopaedics Outpatients

33 T20.1, T21

34 W90.3, General Medicine Outpatients

35 to 48 (Single procedure groups) C12.3, K65.1, M14, M65.3, Q39,

S02.1, S06.3 , S60.4, V25.4, W74.2, W82.3, W86, Gynaeco-

logy Inpatients, Gynaecology Mixed

Table 5.9: Grouping results of the hospital procedures.

5.6 Conclusion

The Arrows classification method has been demonstrated using a simple distance

matrix from a text book as well as practical and more complicated similarity

matrices. The method is widely applicable and we have described its use in the
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classification of medical procedures [41], as well as the classification of machines.

When a larger similarity threshold is set, the homogeneity ofthe groups improves

but the number of groups generally increases. The balance between the competing

requirements of homogeneity within groups and having a small number of groups

therefore can be achieved by selecting an appropriate threshold p-value.

The Arrows method gives groupings similar to those resulting from complete

linkage and average linkage hierarchical cluster analysis. In general, when a lower

similarity level is required within the groups the Arrows method tends to be more

similar to the average linkage clustering, while when a higher similarity level needs

to be achieved the Arrows method performs more similarly to the complete link-

age clustering. This flexibility in the Arrows method allowsthe same algorithm

to be used to satisfy different aims by simply changing the similarity threshold,

whereas with cluster analysis it can be necessary to switch to a different algorithm.

Moreover, the Arrows classification method has been implemented in Visual Basic

for Applications in Excel, allowing it to be used by a non-expert; for example, the

engineers at Ford.

In the case of classifying machines based on their breakdownduration data,

the target might be to use fewer groups to gain a greater saving on the time spent

estimating fitted mixture models. Using the Arrows method wecan set a lower

threshold and using cluster analysis, we may choose to use the average linkage

clustering. If it is necessary to be cautious with the classification, and only to group

machines with fairly high similarities we can use a higher threshold to achieve this

in the Arrows method, but using cluster analysis, we might need to switch to the

complete linkage clustering.
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Simulation

Discrete-event simulation is commonly used in the manufacturing industry to in-

vestigate the design and operation of different productionlines ([89] and [140]).

Ford has been using discrete-event simulation modelling toevaluate new designs

for assembly and machining lines and to improve the efficiency of existing lines

since 1982. Engine Assembly lines produce saleable enginesby assembling com-

ponents together, most of which are manufactured on automatic transfer lines. We

focus on the study of the machine breakdown modelling process for simulating

an existing engine assembly line. The line will be referred to as ‘DuntonL01’. In

this case, the simulation is used to perfect the design of thelayout in line Dun-

tonL01. For example, the layout design department may introduce a new design

for a particular part of this line. If the new design is launched, the buffer sizes, con-

veyor length or number of machines may need to be adjusted. Thus, corresponding

changes are made in the simulation model to generate new simulation outputs, e.g.

line yield and costs, which are used to verify the feasibility of the new design and

to estimate its effectiveness.

In this chapter we first briefly introduce the engine assemblylines and transfer

lines in Ford manufacturing plants in Section 6.1 and then describe the construc-

tion process of simulation models in Section 6.2. In Section6.3, the modelling for

128



CHAPTER 6 129

machine breakdowns, engine repairs and operator stoppagesare introduced briefly

and the maintenance settings are described. We then focus onthe machine break-

down modelling process in Section 6.4.

As the simulation models are built by Ford using the WITNESS simulation

software (Lanner Group) [102], one of the major steps of the machine breakdown

modelling process is to select a breakdown mode in the software to decide the

method for modelling the machine breakdown behaviour, and this is discussed in

Section 6.5. As the whole cycle of a machine during manufacturing consists of a

sequence of cycles of two segments [103]: up segment where the machine is busy,

blocked or idle and down segment where the machine is broken down. Estimating

distributions for machine breakdown data thus contains twoparts as well: deciding

the distributions for representing the time between failures as the machine up seg-

ment modelling and estimating the distributions for representing the breakdown

durations as the machine down segment modelling. We do not focus on modelling

the up segment in this work. A brief description of the modelling method for the

machine up segment is given in Section 6.6. Finally, there are a number of issues

concerned with the simulation settings, these are described in Section 6.7.

6.1 Manufacturing and Engine Assembly Lines

The engine assembly process generally involves automatic,semi-automatic and

manual machines, material handling and machine linking systems, human services

including operators, engineers and maintenance operatorsand other facilities in-

cluding electrical and coolant materials, tool and parts stores and computerised

support and monitoring systems ([97] and [135]). The major standardized engine

components that are required for the assembly process are manufactured in auto-

matic transfer lines [21]. A transfer line consists of machining facilities including

different machines for various tasks, material handling systems that connect the
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machines such as powered conveyors, gantries or palletisedloops, manual serv-

ices and the other facilities mentioned above for assembly lines. Rough parts are

processed and machined into completed components in a transfer line. The ap-

propriate engine components are later transported to engine assembly lines, where

they are assembled together in a defined sequence and finishedas a saleable en-

gine.

The number of machines in an engine assembly line varies based on the type

of engines being assembled and the quantity required. Figures 6.1 and 6.2 are

layout diagrams of the DuntonL01 engine assembly line simulation model built

in WITNESS that we are working on. The former shows the whole view of the

assembly line but no details are legible as there are192 main operations and over

200 machines involved in this line; the latter shows the detailsof a small part of

this line where the yellow blocks with the print of “OP” on indicate machines and

the other yellow blocks with small image of conveyor on indicate the conveyors

that link the machines together.
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Figure 6.1: Layout diagram of the whole view of the DuntonL01engine assembly
line built in the WITNESS 2008 version software.
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Figure 6.2: Layout diagram of a part of the DuntonL01 engine assembly line built
in WITNESS 2008 version software.
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6.2 Construction of Simulation Systems

Ford Motor Company have developed several interfaces using Microsoft Excel

so that simulation models can be created automatically oncethe engineers have

filled all required entries in the spreadsheets [162]. The initial interface was called

FIRST standing for Fast Interactive, Replacement SimulationTool [98]; created

for easier and quicker use by Ford manufacturing engineers.

The interfaces have being used as replacements for detailedsimulation con-

struction. These tools enable manufacturing engineers to construct a simulation

model by simply inputting required data that is marked and explained clearly in

the spreadsheets. Generally, operation numbers, machine identification names,

cycle times, setup rates, breakdown settings for machines,shift patterns and a lot

of other data are required to be added into these spreadsheets. Using Visual Basic

macros inside these spreadsheets, all the data can then be saved directly into the

WITNESS system and simulation models with the specified design will be auto-

matically created.

The simulation models constructed through these spreadsheet interfaces mostly

have 2D schematics of the whole production line layouts suchas that shown in

Figure 6.1. Every entry into the spreadsheets by engineers corresponds to their

design for the model. For example, positioning data of facilities can be specified

in the spreadsheets so that the next facility in the production line is automatically

placed in a position relative to the current facility in the built model [162].

A model built through the Excel interface is no different to asimulation model

that is built directly on the WITNESS simulation system interface. Figure 6.3

shows a simple conveyor system and a machine details settingdialog. All details

included in the dialog are built in when the simulation modelis automatically

created by the spreadsheet in which the engineers have already input all details

that are required to define the machines and other elements inthe model.



CHAPTER 6 134

Figure 6.3: A sample WITNESS layout diagram from a Ford simulation model
showing a typical simulation dialog which contains controlrules and timings for
the each operation and facility within the plant using the WITNESS software,
given in [162].

The DuntonL01 engine assembly line model whose layout diagram is shown

in Figure 6.1 is built through an Excel interface called FAST. There are192 main

operations and over200 machines involved in this line. Building a simulation

model as complicated as this, the use of spreadsheet tools obviously appear to be a

much simpler way and saves considerable time. In addition, small changes to the

created simulation models can be made on the WITNESS system interface as well

as through the spreadsheets interface.

6.3 Breakdown and Maintenance Logic

The simulation model of the complete engine assembly line isdeveloped in the

WITNESS simulation system. As we mentioned in Chapter 1, thereare three

major causes of production loss: the machine repairs, engine repairs and operator

stoppages. This work focuses on the modelling of machine breakdown durations

and we propose to use finite mixture distributions fitted to grouped breakdown
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duration data as the simulation inputs for machines involved. Engine repairs are

simply modelled using the percentage of engines with production quality issues,

since there are no available data for more detailed analysis. An operator who is

attending the machine may suddenly fail to perform the job onrare occasions.

Human breakdown modelling for machines is included to modelthese rare cases,

where generally an Erlang distribution is used to representthe time of operator

stoppages, and an extremely low percentage is used to model the frequency of

occurrences.

The maintenance logic for machine repairs in the model assumes that an imme-

diate repair will be made when a machine fault occurs and an operator or mainten-

ance operator is available [135]. The failure’s duration, which is generated from

the machine breakdown duration input distribution, is usedto determine the skill

level of the maintenance staff required to complete the repair. For example, when

the time to repair a failure is generated to be longer than15 minutes, the highly

skilled maintenance operator will be called; otherwise theoperator attending the

machine will carry out the repair.

The assumption made is that the generated repair time includes the time to wait

for maintenance to become available and also the maintenance operator’s travel

time. In the design of the simulation model, the waiting timefor maintenance to

become available is generated separately in situations where all of the maintenance

staff are busy. In order to meet the assumption of the wait formaintenance being

included in the repair time, while still using standard resources settings, a bypass

designed in the model is to set a large number of resources so that there are always

maintenance staff available for attending a repair when a machine failure happens.
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6.4 Machine Breakdown Modelling Process

The machine breakdown modelling process for engine assembly line simulation

models is considered to be the typical breakdown modelling methodology at Ford

and is the one to be used in all production models such as transfer line models.

The general process used to model breakdowns includes six main steps as shown

in Figure 6.4, and is described below.

Execute
Model

Input
Breakdown
Data

Collect
Historical
Breakdown
Data

Develop
Distributions
for Time between
Repairs & for
Repair Times

Decide on
Breakdown
Mode

Verify
Breakdown
Input

Figure 6.4: Diagram of the machine breakdown modelling methodology.

1. Collect historical data:

When building a simulation model for an existing line, collect raw break-

down duration data for all machines from that line; when building a simula-

tion model for an in-planning new line, collect raw breakdown duration data

from existing machines which will be involved in the new lineor are similar

to the machines that will be placed in the new line. We use an automatic

on-line monitoring system to collect breakdown data (see Section 2.4 for

details). The raw data collected directly from the monitoring system need

to be validated and checked (see Sections 3.3.1 and 3.3.2), and then can be

used in the subsequent analysis.

2. Decide on breakdown mode:
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An appropriate breakdown mode in the WITNESS simulation software must

be chosen as the method for modelling the machine breakdown behaviour

during simulation runs, i.e. the way that the WITNESS software calculates

the time between successive repairs. This step will be discussed in Section

6.5.

3. Develop distributions for representing time between machine failures and

repair times:

In order to use the models to reflect the real-world situation, information re-

lating to the breakdowns of the machines must be entered. This is normally

in the form of a downtime distribution and a time between failures distri-

bution [21]. An exponential distribution has been used to represent the time

between failures, to parameterise which only the value of mean time between

failures (MTBF) needs calculation; MTBF is calculated using formulations

that have been established by Ford engineers and will be introduced in Sec-

tion 6.6. To represent the breakdown durations, Ford usually use empirical

distributions; we propose to use the finite mixture models for groups of ma-

chines, for which the fitting process has been discussed in Chapter 3.

4. Input breakdown data:

Input the empirical distributions or finite mixture distributions that repres-

ent the machine failure durations and negative exponentialdistributions that

represent the time between failures.

5. Execute model:

It is usually executed for a warm up of one day and a length of10 days in

Ford due to time limitation. An investigation of choosing appropriate warm

up period will be explained in Section 6.7.1.

6. Verify breakdown input:
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Initially, this is to check whether the target machine downtime levels were

met. The simulation evaluation process will be introduced in the next chapter,

Chapter 7.

6.5 Using WITNESS to Model Breakdowns

There are three methods for modelling machine breakdown behaviour in the WIT-

NESS simulation software:

1. Available Time Mode:

This method is also referred to as Calendar Time Mode [103]. Inthis mode,

machines can break down whether they are operating or not. Failures can

occur when a machine is idle, busy, blocked, being setup, being repaired or

waiting for labour. The time between failures refers to the total elapsed time

that the machine has spent in any of the above listed states ([141], [150],

[97], [103] and [102]).

Two drawbacks of the available time method have been identified by Law

[103]. One is that it may not be realistic for machines to break down when

they are in the idle state. The other is the problem that when aspecified

machine is in two different systems with a number of other machines. Since

there is the same distribution of time between failures for this machine in

both systems, the generated time between failures will be the same in both

systems. Due to different operating times and conditions inthe two simu-

lations, this particular machine may have significantly less breakdowns for

one system than for the other. Thus, this approach may not be very realistic.

2. Busy Time Mode:

Using this option, machines can only break down while they are operating.

In other words, a failure can only happen when the machine is processing at
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least one part. The time between failures here refers to the elapsed time the

machine has spent only in the busy state ([141], [150], [97],[103] and [102]).

It is generally believed to be a more natural approach than the available time

mode [103].

3. Number of Operations Mode:

This method is referred to as number of completed parts in [103]. Selecting

this mode, a machine will break down after a certain number ofoperations

([141], [150], [97], [103] and [102]). The time between failures is expressed

as the number of operations that a machine has completed since the last

failure. Many manufacturing machines do not follow this kind of breakdown

pattern; therefore this method is not as well-known as the other two.

Ladbrook [97] also suggested that care should be taken when using the Avail-

able Time mode. It was noticed that some scheduled breakdowns were delayed

since both the time to the next failure and the repair time of this failure are gen-

erated from the input distributions at the start of a breakdown. We use the Busy

Time mode in this work.

6.6 Time Between Failures

We do not focus on modelling the time between failures in thiswork and use

the standard method employed by Ford’s engineers. This assumes that the time

between failures follows an negative exponential distribution, with mean equal

to the mean time between failures (MTBF), which is the way the time between

failures are currently modelled in the simulation model forline DuntonL01. The

WITNESS simulation model will then generate the time of the next failure on a

machine from the negative exponential distribution at the start time of a break-

down.
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This method for modelling the time between failures is verified in some of the

research undertaken in Ford’s Engineering Department [97]. It is believed that

the averaged line yield produced by the simulation model with the use of negative

exponential distribution as the inputs of the time between failures is “as accurate as

using historical data” [21]. Nonetheless, it is also indicated that in [21] the negative

exponential distribution can not represent the time between failures accurately for

all of the machines. Without available data and further research, this is believed to

be the best representation of the time between failures. But,we believe there may

be a better representation and further suggestions are described in Section 8.5.

We calculate the MTBF for a machine to be

MTBF =
TT − TTR

No.ofFailures
, (6.1)

where TT is the time period over which the raw breakdown duration data are col-

lected, andTTR is the total time a machine is broken down during the data collec-

tion period. To calculateTTR, we split the breakdown duration data inton bins

with thresholdsb1, b2, . . . , bn, where the bins do not necessarily need to have the

same width. Thus,

TTR =
n−1∑

i=1

(bi+1 − bi)

2
Fi, (6.2)

whereFi, i = 1, . . . , n is the number of observations in bini. The MTBF is then

used as the parameter in the exponential distribution.

6.7 Issues with Model Execution

In order to carry out our analysis of the simulation output data, we need to be able

to assume that we have a set ofindependent and identically distributed(IID) obser-

vations. For this to be true, the stochastic process must be covariance-stationary
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and demonstrate no autocorrelations. An output stochasticprocess beginning at

time zero in a simulation is unlikely to be covariance-stationary and is likely

to present autocorrelations [103]. We therefore wish to estimate the appropriate

warm-up period when executing the simulation to ensure thatthe output process

of the engine assembly line simulation is in a steady state when we start collecting

results. We then need to check that the steady-state output exhibits no autocorrel-

ations.

We lety1, y2, . . . , yn denote a sequence of throughput observations of a simu-

lation run of the assembly line model, which is known as a discrete-timestochastic

process. It is said to becovariance-stationaryif

µi = µ, for i = 1, 2, . . . n and −∞ < µ <∞ (6.3)

σ2
i = σ2, for i = 1, 2, . . . n and σ2 <∞ (6.4)

whereµi andσ2
i denote the mean and variance ofyi, respectively; andCi,i+j =

Cov(yi, yi+j) is independent ofi for j = 1, 2, . . . , n− i.

The definition of covariance-stationary means that the covariance between two

observationsyi andyi+j depends only on the time interval, lagj. Therefore, the

lag j autocorrelation of stochastic processy1, y2, . . . , yn is

ρj =
Ci,i+j√
σ2

i σ
2
i+j

=
Cj

σ2
=
Cj

C0

, for j = 0, 1, 2, . . . , n

whereCj andρj denote the covariance and correlation betweenyi andyi+j, re-

spectively. With autocorrelated simulation output data the sample meanx(n) re-

mains the unbiased estimator of the distribution meanµ, but the sample variance

S2(n) is a biased estimator ofσ2 ([103] and [4]):
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E[S2(n)] = σ2

[
1 − 2

∑n−1
j=1 (1 − j/n)ρj

n− 1

]
. (6.5)

Hence, ify1, y2, . . . , yn are autocorrelated, i.e.ρj > 0, thenE [S2(n)] will be

smaller thanσ2. However, as shown in Equation 6.5, whenρj → 0, E[S2(n)] →
σ2. Thus, we can assume that a covariance-stationary stochastic process is a set of

IID random variables ifρj is significantly small.

If y1, y2, . . . , yn is an output stochastic process of jobs completed per hour

(JPH) of a simulation run beginning at time zero, it is unlikely to be covariance-

stationary. However,yk+1, yk+2, . . . , yn could reach asteady-state distribution

([103] P488) and can be assumed to be covariance-stationaryif k is large enough.

The lengthk is the warm-up period and its estimation will be described inthe

following Section 6.7.1, using two different methods.

Before we can assume the covariance-stationary output stochastic processyk+1,

yk+2, . . . , yn is composed of IID observations, we need to estimate the autocorrel-

ations. The calculation of the autocorrelations is discussed in Section 6.7.2. Only

if the autocorrelation is small enough can we assume thatyk+1, yk+2, . . . , yn are a

set of IID random variables and perform our analysis of the simulation output data

later in the next chapter.

6.7.1 The Influence of the Initial Transient

In order to remove any initialisation bias in the simulationoutput, we only wish

to collect results when it has reached a more stable state. There is an elaborate

discussion of initial transient and steady-state distributions in [164], and a list of

relevant papers and books can be found in [67]. If the selected warm-up period

is too short, the output stochastic process has not reached asteady-state, which

can cause misleading data to be presented in the collected output. On the other

hand, if we select a very long warm-up period, it is a waste of time and resources.
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Therefore, we need to estimate an appropriate warm-up period. Over the last 40

years of research into estimating warm-up periods for discrete-event simulation

models, various methods have been proposed. There are five main types of warm-

up estimating methods ([132], [133], [134] and [81]):

1. Graphical Methods:

A visual inspection of time-series of the simulation output. This set of meth-

ods can be implemented simply but relies on the expertise of the analyst

for a proper decision ([71], [164], [7], [133] and [103]). The simplest and

most popular methods are simple Time-series Inspection ([71] and [133])

and Welch’s method ([164] and [103]).

2. Heuristic Approaches:

Rules for determining the length of the stabilising process.These methods

have the advantage of easy implemention. Compared to the graphical meth-

ods, the use of rules reduces the risk factor of human judgement ([57], [58],

[60], [126] and [165]).

3. Statistical Methods:

Statistical principles are applied. These methods are morecomplicated and

require more specific knowledge ([103] and [172]).

4. Initialisation Bias Tests:

These tests are strictly speaking tests for determining whether initialisation

bias exists in a series of data. Therefore, these methods canbe combined

with the above methods to verify whether the selected warm-up period is

long enough. These tests can lack accuracy for certain kindsof data ([143],

[144], [155] and [69]).

5. Hybrid Methods:
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A combination of initialisation bias tests with any of the first three methods

([126] and [86]).

A table of 42 warm-up methods found in currently published literature is given in

[81].

There is little research evaluating the performance of the various methods. The

only few papers we found were: [168], [169], [60], [126], [28], [112], [166] and

[113]. Although the advantages and disadvantages of the tested methods are ob-

served and some warm-up estimation methods are recommendedfor use on some

types of simulation models, no single method is found to workwell for all types

of models. It is suggested that we apply several methods in order to achieve an

accurate estimate of the warm-up length.

We applied two widely used methods, simple time-series inspection method

and Welch’s method, to determine the warm-up period of our simulation models.

6.7.1.1 Simple Time-Series Inspection

Only one replication is required to carry out this graphicalmethod. Thus, we

made a replication of the assembly line model of200 hours. We plot the hourly

throughputs of the engine assembly line model for hour1, 2, . . . , 200. The time-

series appears to be quite randomly distributed after48 hours, as shown in Figure

6.5.

6.7.1.2 Welch’s Method

This graphical technique requires multiple replications.Welch’s method [164] is

carried out in the following four steps as given in [103] (P509):

1. Make15 replications of the simulation of equal length,l = 200 hours. Let
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Figure 6.5: Hourly throughputs (Jobs completed per hour), DuntonL01 model.

Nij denote JPH in thejth hour from theith replication,i = 1, 2, . . . , 15 and

j = 1, 2, . . . , 200.

2. LetN j =
∑15

i=1Nij/15 for j = 1, 2, . . . , 200. The averaged processN1, N2,

. . . , N200 has the same mean as the original but only1/15th of the variance.

The plot of the averaged process is shown in Figure 6.6.

3. To highlight the long-run trend of interest, we smooth outthe high-frequency

oscillations in the averaged process by using the moving average,

N r(w) =





Pr−1
s=−(r−1)

Nr+s

2r−1
, if r = 1, . . . , wPw

s=−w Nr+s

2w+1
, if r = w + 1, . . . , 200 − w

wherew is termed thewindowand is an integer satisfying1 ≤ w ≤ 50. We

calculate the moving averages forw = 5 andw = 10.

4. PlotN r(w) for r = 1, 2, . . . , 200−w for bothw = 5 andw = 10 and choose

the warm up lengthk to be that value ofr beyond which the plot seems to

have converged. The plots are shown in Figures 6.7 and 6.8. Wechoose a

warm-up period ofk = 48 hours from the smoother plot forw = 10.
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Figure 6.6: Averaged process for hourly throughputs (Jobs completed per hour),
DuntonL01 model.

Both methods suggested a warm-up period of48 hours, i.e.2880 minutes.
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Figure 6.7: Moving averages (w = 5) for hourly throughputs (Jobs completed per
hour), DuntonL01 model.
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Figure 6.8: Moving averages (w = 10) for hourly throughputs (Jobs completed
per hour), DuntonL01 model.
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6.7.2 Checking for Dependence

We can only apply standard statistical analysis methods to IID data. Therefore, we

need to calculate the autocorrelation,ρj, of the simulation output data to determine

whether the data are independent. Consider random variablesx1, x2, . . . , xn as a

covariance-stationary stochastic process. The autocorrelation ρj can be estimated

by Equation 6.6 ([103] P231):

ρ̂j =
Ĉj

S2(n)
, Ĉj =

∑n−j

i=1 [Xi −X(n)][Xi+j −X(n)]

n− j
. (6.6)

Whenn is very large, we can usen − 1 instead ofn − j in Equation 6.6 and use

the autocorrelation function in Equation 6.7 [18]:

ρ̂j =

∑n−j

i=1 [Xi −X(n)][Xi+j −X(n)]∑n

i=1[Xi −X(n)]2
. (6.7)

We make one replication of the engine assembly simulation model (the LION

model) of lengthm = 259, 200 minutes (180 working days, excluding the warm-

up period) and collect the averaged JPH of every5 days as one observation of the

output, which gives36 observations. We then calculateρj for all possible lags

of the output stochastic process of theses36 observations,X1, X2, . . . , X36 . The

plot of the autocorrelation function generated by Minitab15, is given in Figure

6.9. Approximate0.05 critical bands for the hypothesis that the correlations are

equal to zero are included on the plot. As shown in this figure,the autocorrelations

for all lags1, 2, . . . , 35 of the simulation output are small and can be considered as

zero according to the 5% significance limits.

According to the plot of the autocorrelations, there appearto be no significant

inter correlations within the output of the engine assembleline model. Therefore,

as the simulation output of36 JPH observations is obtained when the simulation

model has reached a steady-state, it can be assumed to be a setof IID random
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Figure 6.9: Autocorrelation of all possible lags within theJPH output of the simu-
lation run. Red curve indicates the 5% significance limits forthe autocorrelations.

variables. Thus, we may carry on the simulation evaluation assuming that, which

is given in Chapter 7.



Chapter 7

Simulation Evaluation

In this chapter, we evaluate our method for modelling breakdown durations us-

ing a simulation model of an engine assembly line. We comparethree different

representations of breakdown duration inputs:

(i) empirical distributions for individual machines;

(ii) fitted mixture distributions for individual machines;

(iii) fitted mixture distributions for groups of machines derived using the Arrows

classification method.

The methodology for evaluating the inputs compares the simulation outputs of

the simulation models with the different breakdown duration inputs using several

different methods: graphical comparison, paired-T test and bootstrapping.

The results of the evaluation process suggest that the throughput of the simula-

tion model is not particularly sensitive to the machine breakdown durations, which

is confirmed by further investigation of the causes of the total production loss. The

engine repairs and operator stoppages seem to be responsible for a larger portion

of the line loss and their impact on the simulation model overpowers the effect of

the machine breakdowns and effectively masks any differences in output resulting

150
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from different breakdown duration inputs. However, although in this case the sim-

ulation output shows only a light dependence on the breakdown duration inputs,

the methodology for the evaluation that we introduce in thischapter is still of in-

terest and could be applied in other simulations to evaluatethe effect of different

inputs on simulation output statistics.

We also further investigate the impact of the choice of p-value threshold for the

Arrows grouping by evaluating the simulation outputs of themodels with different

collections of fitted mixture distributions of different sets of groups obtained using

the Arrows classification method with different p-value thresholds.

We describes the three types of input in Section 7.1. The methodology of

assessing the three different representations of breakdown durations are described

in Section 7.2, including an investigation of the sources causing the line production

loss. In Section 7.3 we investigate the impact of the threshold for grouping the

machines on the simulation performance. A discussion of theresults of the study

and a conclusion is given in Section 7.4.

7.1 Breakdown Input for Simulation Model

The simulation model we use describes the DuntonL01 engine assembly line, one

of Ford’s lines used for the assembly of engines, which is made up of over200

machines, but for the modelling of breakdown durations, we consider only 39 of

these. Among the other machines, some are small pieces of equipment and thus are

not linked to the on-line monitoring system, therefore breakdown duration data for

these machines are not available. For these small machines,the reliability data in-

cluding the frequency of failures and the average breakdownduration provided by

the machine manufacturers are used to model their breakdownbehaviours within

the simulation model. The rest of the machines such as buffers and conveyors,
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are thought to be very reliable machines, and Ford make the assumption that they

rarely break down.

We use WITNESS (Lanner Group 2008) [102] to simulate the assembly plant

using Busy Time breakdown mode, assuming that machines can only break down

when they are working. An exponential distribution is used to simulate the time

between failures, to parameterise which we calculate the mean time between fail-

ures (MTBF) for a machine using the method described in Section 6.6.

Meanwhile, the modelling of the other two factors that causeproduction loss

is described in Section 6.3. Engine repairs are simply modelled using the percent-

age of engines with quality issues. The modelling of operator stoppages is also

included in the simulation model, where generally an Erlangdistribution is used to

represent the time of operator stoppages, and an extremely low percentage is used

to model the frequency of occurrences.

The three different methods for generating breakdown durations we compare

initially are: (1) sampling from historical data, i.e. using empirical distribution

functions (EDF);(2) sampling from the fitted mixture distributions (FMD) for

individual machines;(3) sampling from the fitted mixture distributions for the

groups of machines obtained using the Arrows classificationmethod with a spe-

cified threshold (we here usep0 = 0.10); the similarity matrix for the 39 machines

being modelled and the grouping results are given in Appendix B.

7.2 Output Evaluation

We set the warm-up period to be2880 minutes as discussed in Section 6.7.1 and

make10 independent runs, where the length of each run is36 weeks, for each of

the three different models. We make36 observations in each run, each observation

being the averaged number of jobs shipped per hour (JPH) in each of the36 weeks.
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Thus, we obtain360 averaged JPH observations for each model.

We can compare these JPH outputs with the real line yield, which includes a set

of 36 weekly averaged JPH observations. This set of real line yield observations

has a mean of28.306 with a95% Confidence Interval (CI) of(27.828, 28.783) and

a median of28.000 with a95% CI of (28.000, 29.000), though the actual values of

the observations are not provided for reasons of confidentiality. All of the 95% CIs

in this chapter are calculated using the standard formula byassuming normality

within the data.

7.2.1 Graphic Comparison

We first use a graphical method to compare the outputs visually and statistically.

The boxplot and 95% confidence interval plot of the three setsof JPH outputs

for the engine assembly line simulation model using the three different methods

for sampling breakdown durations, together with the real JPH data, are given in

Figures 7.1 and 7.2 respectively.

As we can see from the two plots, the inter-quartile ranges and 95% confidence

intervals of the three JPH data sets overlap, showing a high degree of similarity

between the outputs. The medians of the three sets of JPH are28.608, 28.604

and28.608, which are all within the95% CI for the median estimated from the

real JPH data set. Moreover,95% confidence intervals for the means of the three

sets of JPH output:(28.578, 28.636), (28.581, 28.638) and(28.578, 28.635) all fall

within the95% CI for the mean in the real JPH data set. It is also noticeable that the

spread of the real JPH data is much wider than the simulated JPH data, indicating

that the observations obtained from the simulations are less variable than the real

data. The reason for this, suggested by Ford, is that there are other sources of

variability in real world that are not modelled (or rather are too complicated to be

modelled) in the simulation model. For example, in real world, there are situations
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Figure 7.1: Boxplot of simulation output JPH using the three methods for sampling
breakdown durations. The central line shows the median and the box spans the
inter-quartile range.

where operators have team meetings during shifts, or have early lunches or late

start or are absent; which would give lower averaged JPH. It is also possible for

the operators to accumulate overtime work to give the next week a higher averaged

JPH.

7.2.2 Paired T-Test

We use a paired t-test for testing the mean difference between paired observations

of the JPH outputs of simulation models using the different breakdown duration

input methods. The null hypothesis is

H0 : µd = µ0,
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Figure 7.2: Interval plot of the set of real JPH observationsand simulation output
JPH using the three methods for sampling breakdown durations. The central circle
shows the mean and the interval describes the95% confidence interval for the
mean.

whereµd is the population mean of the differences andµ0 is the hypothesized

mean of the differences. Since this test is comparing the difference between paired

observations of the outputs, it is applied to evaluate the simulation performance

at approximately the same time while using three different breakdown duration

inputs.

The results of the paired t-tests are given in Table 7.1. The confidence intervals

for the mean difference between any two output process of themodel using any

two breakdown duration inputs all include zero, which suggests there is no obvious

difference between any two of the simulation outputs. The high p-values further

suggest that the data are consistent withH0 : µd = µ0 = 0, that is, any two outputs
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do perform equally.

95% CI for
Paired T-Test Mean Differences T-Value P-Value

empirical data input vs.
individual FMD input (−0.00868, 0.00497) −0.53 0.594

empirical data input vs.
group FMD input(0.10) (−0.00451, 0.00618) 0.31 0.759

individual FMD input vs.
group FMD input(0.10) (−0.00405, 0.00942) 0.78 0.433

Table 7.1: The results of the paired t-tests between the outputs of models using the
three breakdown duration inputs.

7.2.3 Bootstrapping Analysis

We have investigated the differences between the medians and means of the JPH

outputs and the differences between paired JPH observations using the graphical

method and the statistical test. We here wish to study the distributional proper-

ties of the simulation JPH outputs, i.e. to examine the similarities between the

underlying distributions of the JPH outputs of the models using the three different

breakdown duration inputs, where the similarities are measured by the possibilities

that any two sets of the JPH observations have been drawn fromthe same distribu-

tion. The larger the possibility, the more similar the two sets of JPH outputs and

thus the more similar the two breakdown duration inputs. We use the method de-

scribed in Chapter 4 to calculate the p-value similarity between the distributions of

the JPH outputs of simulation models using the three different breakdown duration

inputs.

The resultant p-values are given in Table 7.2. As shown in this table, the p-

values are all quite high, which indicates that the distributions of the JPH outputs

of the three simulation models using different breakdown inputs are all very similar
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to each other and thus suggests the three representations ofthe breakdown dura-

tions as simulation input have a similar effect on the whole system’s production

performance.

Bootstrapping Process of Comparison P-Value

empirical data input vs. individual FMD input 0.371

empirical data input vs. group FMD input(0.10) 0.536

individual FMD input vs. group FMD input(0.10) 0.736

Table 7.2: The p-values obtained from the bootstrapping process of comparison
between the outputs of models using the three breakdown duration inputs.

7.2.4 Further Investigation

As discussed in the previous three sections, the evaluationresults all suggest that

the JPH outputs of models using the three breakdown durationinputs are very

similar. The outputs are so close that it appears that the machine breakdowns may

have only a small impact on the throughput. We therefore check this inference

by comparing the output of the model using the group FMD inputwith two other

possible input distributions: (1) using one lognormal distribution and (2) using one

FMD for the whole data set of all machines. The differences between these three

breakdown duration inputs are statistically significant, and so we would expect

there to be significant differences in the outputs. The boxplot and 95% confidence

interval plot of the three sets of JPH outputs are given in Figure 7.3, and suggest

that the JPH again appears to be insensitive to the changes made to the machine

breakdown duration inputs, which confirms our inference.
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Figure 7.3: Boxplot and Interval plot of simulation output JPH using three methods
for sampling breakdown durations: group FMD (p0 = 0.10), one FMD for all 39
machines and one lognormal distribution for all 39 machines. The central line
shows the median and the box spans the inter-quartile range.The central circle
shows the mean and the interval describes the95% confidence interval for the
mean.
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Therefore we investigate the causes of production loss further. Since there are

three main causes of production loss: the machine breakdowns, engine repairs and

operator stoppages, we shut down the engine repairs and operator breakdowns, and

run the simulation models with only the factor of machine breakdowns on to gain

a better and clearer picture of the solo impact of the machinebreakdowns on the

system throughput.

The boxplot and interval plot of the JPH outputs of models with the factors

of engine repairs and human breakdowns taken out and using four methods for

describing the machine breakdown durations: historical data, individual FMD,

group FMD with a threshold of0.10 in the grouping process and one FMD for all

machines, are shown in Figures 7.4 and 7.5. It is seen that themachine repairs

are only responsible for a small portion of the loss, as the JPH outputs are much

higher than the outputs when all of the three factors: machine breakdowns, engine

repairs and operator stoppages, are included in the simulation model. Thus, it

seems that the engine repairs and operator stoppages are responsible for a larger

portion of the production loss and when all three factors arefunctioning, their

impact on the simulation model overpowers the effect of the machine breakdowns

and effectively masks any differences in output resulting from different breakdown

duration inputs.

Although the simulation model with the engine repairs and operator stoppages

turned off is not a complete model, the outputs show the true impact of the machine

breakdowns on the line throughput, without the interactionwith other factors that

are also affecting the total loss in real world. From Figures7.4 and 7.5, it is seen

that the inter-quartile ranges and95% confidence intervals of the four outputs all

overlap, which suggests that there are similarities between the four breakdown

duration inputs. Another interesting observation to be made is that as we move

to more general models, i.e. from individually fitted models, to fitted models for

groups of machines, to a model for all of the machines, the 95%confidence interval
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Figure 7.4: Boxplot of simulation output JPH using four different methods for
sampling breakdown durations: EDF, individual FMD, group FMD (p0 = 0.10)
and one FMD for all 39 machines; while the engine repairs and operator stoppages
are set to be turned off. The central line shows the median andthe box spans the
inter-quartile range.

for the output increases.

We focus on the models using the first three methods for representing the ma-

chine breakdown durations: historical data, individual FMD, group FMD with a

threshold of0.10. It can also be seen in the interval plot given in Figure 7.5 that

using empirical distributions results in a slightly lower JPH than the output using

FMD inputs. We use the breakdown duration data of machine ML06 as an example

to study a possible reason of these differences. Figure 7.6 shows the histogram

of the breakdown duration data for ML06, the fitted mixture model for machine

ML06 only and the fitted mixture model for G03, the group of machines including

ML06 (see Appendix B for more details). It can be seen in the histogram that there
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Figure 7.5: Interval plot of simulation output JPH using four different methods for
sampling breakdown durations: EDF, individual FMD, group FMD (p0 = 0.10)
and one FMD for all 39 machines; while the engine repairs and operator stop-
pages are set to be turned off. The central circle shows the mean and the interval
describes the95% confidence interval for the mean.

is one extreme outlier for which the breakdown duration is around133 minutes (i.e.

near11.5 in the X-axis, as the data shown in the plot is the transformeddata of the

real breakdown durations), resulting in the whole assemblyline being down for a

relatively long period. The fitted mixture model for ML06 andthe fitted mixture

model for G03 are both much smoother than the empirical distribution for ML06,

and by using a continuous curve are unlikely to sample durations of133 minutes

or greater as often as when using the empirical distributions. Hence, the JPH with

the EDF inputs could be lower than that with the mixture distribution inputs.

Since the cycle time of the assembly is103 seconds, if a repair for any machine

needs a long time to be fixed all machines need to stop after a while; therefore long
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Figure 7.6: Histogram of the transformed breakdown duration data of machine
ML06 and plots of its fitted mixture distribution’s PDF and its group fitted mixture
distribution’s PDF.

repair durations have a greater effect on the line production. As the high value out-

liers of breakdown durations have a significant impact on theresultant JPH output,

we calculated the frequency of generating long breakdown durations (greater than

50 minutes) in the WITNESS models using the three different representations of

breakdown durations for machine ML06. The results are givenin Table 7.3. The

frequency of long breakdowns is the highest when using the empirical distribution

as the breakdown duration input. Moreover, the three modelsare using the same

distribution to simulate time between two successive failures, so the fact that when

running for the same amount of time, the model using the empirical distribution as

its input has the lowest efficiency is quite reasonable.



CHAPTER 7 163

TTR Input P (TTR > 50mins)

Empirical distribution 0.002632

FMD for ML06 0.000609

FMD for G03 0.000611

Table 7.3: Frequency of generating long breakdown durations (greater than50
minutes) for machine ML06 using the three different distributions. TTR is short
for time to repair.

7.3 Impact of the Threshold

The grouping results of the Arrows classification method vary for different thresh-

olds, and so we here study the influence of the choice of threshold on the output

of simulation models using fitted mixture distributions fordifferent groups. We

consider the following thresholds:0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70,

0.80, 0.90. Most of the corresponding grouping results are different with two

exceptions: the groupings withp0 = 0.50 match those withp0 = 0.60; and the

groupings withp0 = 0.70 match those withp0 = 0.80; therefore, we have8

different sets of fitted mixture distributions for8 different sets of groups. We use

these8 sets of group fitted mixture distributions as the breakdown duration inputs

of the same engine assembly line simulation model and make10 independent runs

of 36 weeks for the models to get 8 sets of JPH observations.

The boxplot and interval plot of the sets of JPH output for theengine assembly

line simulation model using the individual FMD breakdown input together with the

groups FMD breakdown input at different threshold levels are given in Figures 7.7

and 7.8 respectively. As shown in both plots, there are no significant differences

between the JPH outputs of models using FMD for groups that are obtained at

different threshold levels.

The similarities can be further confirmed by the paired t-test results and boot-

strapping analysis, as described in Sections 7.2.2 and 7.2.3, which are shown in
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Figure 7.7: Boxplot of simulation output JPH using the FMD forindividual ma-
chines together with the FMD for groups classified at different threshold levels us-
ing the Arrows method for sampling breakdown durations. Thecentral line shows
the median and the box spans the inter-quartile range.

Tables 7.4 and 7.5, respectively. All of the confidence intervals in Table 7.4 in-

clude zero, and the p-values are all quite high; both of whichsuggest that there is

no apparent difference between any pair of the simulation outputs and thus all of

the8 simulation outputs perform equally. All of the p-values in Table 7.5 are all

quite high, which indicates that the distributions of the JPH outputs of the8 simu-

lation models are all very similar to each other and thus consistently suggests the8

representations of the breakdown duration inputs have a similar effect on the sys-

tem production performance. Therefore, it is believed thatthe choice of threshold

in finding the groups of machines does not have a significant impact on the sim-

ulation performance when using group FMD as breakdown duration inputs. This
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Figure 7.8: Interval plot of simulation output JPH using theFMD for individual
machines together with the FMD for groups classified at different threshold levels
using the Arrows method for sampling breakdown durations. The central circle
shows the mean and the interval describes the95% confidence interval for the
mean.

suggests thatp0 = 0.05 may be chosen as it is the smallest value of the thresholds

and thus provides the smallest number of groups; and hence decreases the time

spent estimating the fitted distributions for all machines and also reduces the time

spent inputting the breakdown settings.

We next investigate the impact of the threshold using the simulation models

with the engine repairs and operator stoppages turned off. The plots of outputs are

shown in Figures 7.9 and 7.10, and these also suggest that there is little difference

in the outputs for the different thresholds.
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Paired T-Test
individual FMD input

95% CI for
T-Value P-Value

vs.
Mean Differences

group FMD input(0.10) (−0.00405, 0.00942) 0.78 0.433

group FMD input(0.05) (−0.00520, 0.00802) 0.42 0.675

group FMD input(0.20) (−0.00509, 0.00819) 0.46 0.646

group FMD input(0.30) (−0.00650, 0.00603) −0.07 0.941

group FMD input(0.40) (−0.00170, 0.01223) 1.49 0.138

group FMD input
(0.50/0.60) (−0.00295, 0.01125) 1.15 0.251

group FMD input
(0.70/0.80) (−0.00265, 0.01151) 1.23 0.219

group FMD input(0.90) (−0.00246, 0.01124) 1.26 0.209

Table 7.4: The results of the paired t-tests comparing the simulation output of the
model using individual FMD and those of models using FMD for different groups
of machines resulting from the Arrows method using different thresholds.

individual FMD input vs. P-Value

group FMD input(0.10) 0.736

group FMD input(0.05) 0.695

group FMD input(0.20) 0.637

group FMD input(0.30) 0.691

group FMD input(0.40) 0.896

group FMD input(0.50/0.60) 0.779

group FMD input(0.70/0.80) 0.603

group FMD input(0.90) 0.803

Table 7.5: The p-value results obtained from the bootstrapping process comparing
the simulation output of the model using the individual FMD and those of models
using FMD for different groups of machines resulting from the Arrows method
using different thresholds.
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Figure 7.9: Boxplot of simulation output JPH using the FMD forgroups classified
at different threshold levels using the Arrows method for sampling breakdown
durations in the model with the engine repairs and operator stoppages turned off.
The central line shows the median and the box spans the inter-quartile range.

7.4 Discussion

The first observation to be made is that the machine breakdowns have only a small

impact on the JPH, and the engine repairs and operator stoppages are respons-

ible for a much greater portion of the total loss than the machine breakdowns.

Therefore, it is reasonable that the JPH outputs of the modelusing the three dif-

ferent machine breakdown inputs appear to be similar, whichmay indicate why

this topic has not been discussed much before. The evaluation process was carried

out to investigate the influence of the machine breakdown inputs on the simulation

throughput and the fact that the outputs are so similar even when the engine repairs
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Figure 7.10: Interval plot of simulation output JPH using the FMD for groups clas-
sified at different threshold levels using the Arrows methodfor sampling break-
down durations in the model with the engine repairs and operator stoppages turned
off. The central circle shows the mean and the interval describes the95% confid-
ence interval for the mean.

and operator stoppages are turned off, is encouraging.

The results of the comparison of the simulation outputs of the simulation mod-

els that have only the machine breakdowns functioning, i.e.with the engine repairs

and operator stoppages turned off, show that when FMD inputsare used, the JPH

output by the model is higher than the output when empirical distribution inputs

are used. It is believed that the reason for this is that the possibility of getting ex-

tremely high breakdown durations in the WITNESS models usinghistorical data

is greater than that of the model using individual FMD or group FMD inputs; and

the very long breakdown durations have a significant impact on the JPH of the line.
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Nevertheless, as suggested by the analysis, the simulationoutputs using the three

different breakdown duration representations are all quite similar.

The use of mixture distributions for representing simulation inputs has advant-

ages over using EDF inputs. Since the EDF is estimated from a random sample,

it may contain irregularities and have a limitation that data generated from it can

only be within a certain range. A mixture distribution is a continuous distribution

that copes well with the multimodality present within the data, thus can smooth

out the irregularities in the data. It is a compact way to represent the duration data

and also makes it simpler to make changes for experimental reasons.

On the whole, the similar simulation performance using FMD and group FMD

strongly suggests that the classification of machines basedon their breakdown

duration data is good enough for this purpose. Moreover, there are a number of

advantages of using grouped FMD instead of individual FMD. First, less fitting

processes need to be carried out; and the number of data sets and variables in the

simulation can be reduced by the grouping and thus the subsequent input time re-

quired for all machines can be decreased. The total saving oftime is significant,

even when taking into account the time spent implementing the Arrows method.

Second, in the situations that a machine needs to be modelledwhile there is no

available data for it or it is a new machine, an experienced engineer could probably

help with identifying which groups of machines the no-data/new machine belongs

to and so the FMD for that group could be used to represent the breakdown dura-

tion input of this new machine. The accuracy of identifying the machine as being

similar to a group of machines should be higher that that of identifying a similarity

with one particular machine whose breakdown duration data are available.

While the different thresholds suggest different groupings, it appears that the

simulation outputs of models using different collections of group fitted mixture

distributions for different sets of groups are not significantly different, with or

without the factors of engine repairs and operator stoppages. The paired t-tests
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and bootstrapping analysis that compares the simulation output of the model using

individual machine FMD and that of the models using FMD for groups obtained

using different thresholds confirm this. Thus, it is concluded that the choice of

threshold for the Arrows grouping process does not have a significant influence on

the simulation throughput of models using corresponding group fitted distributions

in this example. Therefore, we could use a relatively low threshold for the classi-

fication analysis to gain a greater saving on the time for the fitting and inputting

processes.



Chapter 8

Conclusions and Future Research

Simulation modelling is used widely within manufacturing industry to evaluate

new designs for production lines and to improve the efficiency of existing lines. As

an important source of variability in many manufacturing systems [103], machine

breakdowns need to be modelled correctly in manufacturing simulation models.

Our work has focused on an existing engine assembly line within a Ford manu-

facturing plant, where over two hundred different machinesare involved in the

assembly process. Although many authors have considered the machine failure

rates occurring on a production line ([64], [128], [99], [163], [171] and [68]),

we have found little work in the literature on modelling the duration of machine

breakdowns ([97] and [103]). A review of the literature on machine breakdown

modelling in manufacturing simulation models has been given in Chapter 2.

In this thesis we have described a modelling process to represent machine

breakdown durations in engine assembly line simulation models. We use finite

mixture distributions to model machine breakdown durations, allowing us to de-

scribe the multimodality present within the data. Since thesimulation models

generally contain a large number of machines and can be very complex, we have

derived the Arrows classification method to group machines with similar distribu-

tions of breakdown durations, where the Two-Sample Cramér-von Mises statistic

171
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is used to measure the similarity of two sets of breakdown duration data for two

machines, with bootstrapping being used to assess the significance of the similar-

ity. The grouping is such that two machines with statistically significantly different

breakdown duration data cannot be placed in the same group. Finite mixture dis-

tributions are fitted to the grouped breakdown duration datasets and one fitted

mixture distribution for the group is used in the simulationmodel to model the

breakdown durations for all of the machines in the group.

We have implemented the breakdown duration modelling methodology with

the simulation model of the engine assembly line and have evaluated the classifica-

tion and mixture distributions fitting procedure by comparing the throughput of the

simulation model when running with three different machinebreakdown duration

inputs: mixture models fitted to individual machine breakdown durations; mixture

models fitted to group breakdown durations; and historical data. Three different

methods have been used for the outputs comparison and the results suggest that

the modelling methodology successfully produced an appropriate representation

of machine breakdown duration inputs for the simulation model.

8.1 Finite Mixture Models

Finite mixture models are multimodal and have been found to be an appropriate

statistical model of the breakdown durations of machines inengine assembly lines.

Their use has advantages over the historical data and commontheoretical distribu-

tions for modelling the breakdown durations. Historical data may contain irregu-

larities and have strict upper and lower boundaries. Commonly used theoretical

distributions may be worse representations of breakdown durations as most break-

down duration data sets are not unimodal, while common theoretical distributions

are. In comparison, finite mixture distributions are particularly appropriate as they

can cope with the multimodality present in most of the breakdown duration data
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sets and adequately fitted mixture distributions can smoothout the irregularities

within the historical data, represent extreme events and make it simpler to make

changes for experimental reasons. From a practical point ofview, fitted mixture

distributions are found suitable as well as they contain parameters with intuitive

meanings and can be input into simulation models in a simple way.

Since the original data has a wide range of values, we found that using a data

transformation could help in getting more accurately fittedmixture distributions

by reducing the range of the data so that the fitting process coped better. By taking

the square root of the original data, the range of the transformed data shrinks and

all of the transformed data stay positive. We found that the lognormal mixture

distribution was most robust for representing the machine breakdown duration data

sets.

8.2 Method for Estimating Similarity

A new method for estimating the similarities between machines based on the

breakdown duration data sets was described in Chapter 4. The method uses the

Two-Sample Craḿer-von Mises goodness of fit to compute a statistic,T , of two

data sets by testing the null hypothesis that the two samplesare drawn from the

same distribution, and then applies bootstrap resampling to estimate the signific-

ance level of the statistic by determining the distributionof T , Φ(T ). The Craḿer-

von Mises goodness of fit statistic was used as it has advantages when dealing

with the machine breakdown duration data sets, compared with other goodness

of fit statistics. For other goodness of fit statistics, such as theχ2 statistic and

the Anderson-Darling statistic, information about the underlying distribution of

the data is required before constructing the goodness of fit tests [151]. In compar-

ison, computing the Craḿer-von Mises statistic is relatively straightforward, as it is

distribution-free and therefore there is no need to make anyassumptions about the
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distributions of the data sets being analysed [5]. In addition, the Craḿer-von Mises

goodness of fit statistic copes well with the fact that the data sets contain very un-

even numbers of data points. The tabulated criterion valuesfor the Craḿer-von

Mises test are not very extensive and do not cover the samplesthat we are dealing

with and so we use bootstrap resampling to produce the distribution of Craḿer-von

Mises goodness of fit statistics. The similarity of the two samples of breakdown

duration data is then measured by the significance level, i.e. the p-value, ofT ,

which is obtained by simply comparingT with Φ(T ).

We tested the new method on samples drawn from (a) identical distributions;

(b) distributions with the same variance but different mean; (c) distributions with

equal means but different variances; and (d) different types of distributions. The

method is especially successful when applied to cases wherethe samples are clearly

distinct or are identical to each other, where extremely small or high p-values were

obtained as expected. It is more difficult to calculate p-values for samples drawn

from close although not identical distributions. In these cases the method gives p-

values that are not extremely low but are close to our suggested threshold. Given

how close the distributions used are for some examples, it isnot unreasonable to

sometimes obtain a result suggesting that the samples are generated from the same

distribution.

We applied the method to estimate the similarity matrix for all machines in-

volved in the engine assembly line we focused on. An example of six machines

was given in Section 4.6.1 and the reliability of the p-values was confirmed by

the check of the features of the breakdown duration data sets. The method is

widely applicable and we have demonstrated its applicationto estimating the sim-

ilarity between medical procedures based on the patients’ hospital length-of-stay

data [41]; an example of five procedures was given in Section 4.6.2, where the

similarity results made sense intuitively. This method hasalso been used to eval-

uate the similarities between simulation outputs of modelsusing the current and
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the proposed breakdown duration modelling. Overall, this method appears to be

an appropriate distribution-free method for estimating the similarity between data

sets that may contain different numbers of data points.

8.3 Arrows Classification Method

The Arrows classification method was derived to group machines based on the

similarity matrix, consisting of the similarities betweenmachines. The similar-

ity between two machines is assumed to be the p-value for the Cramér-von Mises

goodness of fit test for the comparison between their breakdown duration data sets,

as described in the previous section. We found that this classification method per-

formed well for a simple distance matrix from a text book, as well as for practical

and more complicated similarity matrices such as the machine breakdown duration

data. The method could be applied to classify data from a widerange of applic-

ations and it also gave sensible results when we applied it togrouping medical

procedures based on the similarities between their patients’ hospital length-of-stay

data.

There are three main features of the Arrows method: (1) it ensures that objects

with similarities below a specified threshold are not placedin the same group; (2) it

ensures that objects with double-arrow connections are putin the same group; and

(3) it prefers to keep objects with single-arrow connections in the same group when

possible. Two machines have a double-arrow connections only if their similarity

is greater than the specified threshold and is the highest among the similarities

between the two machines and all of the other machines; two machines have a

single-arrow connections if their similarity is greater than the specified threshold

and is the highest among the similarities between either oneof the two machines

and all of the other machines. One characteristic of the Arrows method resulting

from the multiple criteria is that it is possible that one object or group may be
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combined with different groups or objects when the threshold changes. This can

occur as a result of the method’s intention of keeping objects with single-arrow

connections in the same group, while satisfying the condition that every pair of

objects in the same group should have a p-value that is above the threshold. When

there is no relevant influence from single-arrow connections, this can also happen

as a result of the method’s intention of merging objects or groups with higher

average connections, while satisfying the condition that every pair of objects in

the same group should have a p-value that is above the selected threshold.

The method has similarities with complete linkage and average linkage hier-

archical cluster analysis. The Arrows method places objects with double-arrow

connections in the same group and prefers to keep together objects with single-

arrow connections, which is different from cluster analysis in which the clustering

method searches the whole similarity matrix to find the most similar groups to

amalgamate. The results from the three methods suggest thatthe Arrows method

seems to give more similar results to average linkage clustering when a lower sim-

ilarity level is required, but when a higher similarity level is required the Arrows

method tends to be more similar to complete linkage clustering. An advantage of

the Arrows method over the two forms of cluster analysis considered here is that it

allows us to control the similarity level in the resultant groups more easily through

the use of a threshold, such that any two objects whose similarity is less than the

threshold will not be placed in the same group.

8.4 Evaluate Breakdown Duration Input Modelling

In Chapter 7 we described the methodology used to evaluate themodelling of the

machine breakdown durations, by comparing the system throughput of the same

engine assembly model using three different breakdown duration inputs. The

methodology could be useful for comparing system configurations, by evaluat-
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ing the similarities between the stochastic outputs comingfrom the corresponding

simulation models.

The evaluation process revealed that the machine breakdownduration settings

did not affect the system throughput significantly. Furtherwork on investigating

the causes of production loss was carried out and it was foundthat the main sources

of variability in the line yield are the engine repair process and operator stoppages,

and these mask the effect of changes in machine breakdown durations on the sys-

tem throughput. The three representations of the machine breakdown durations

considered here (empirical distributions, fitted mixture distributions for individual

machines, and fitted mixture distributions for the groups ofmachines obtained us-

ing the Arrows classification method) generated simulationoutputs that were all

within the 95% confidence interval of the real line yield data, suggesting any of

them could be used as input models. The mixture distributionfitted to groups of

machines is likely to be the most appropriate representation of the breakdown dur-

ation inputs for several reasons. First, it overcomes some shortcomings of the use

of empirical distributions as simulation inputs as discussed in Section 8.1. Further-

more, comparing the use of group fitted mixture distributions to using individual

fitted mixture distributions, the former has a couple of advantages over the latter:

(a) the total saving of time for the fitting processes and the inputting of breakdown

setting is considerable, even when taking into account the time spent implementing

the Arrows method for the grouping; (b) for situations wherea machine without

available data or a new machine is being modelled, an experienced engineer could

probably help with identifying which group of machines the no-data/new machine

belongs to and so the fitted mixture distribution for that group could be used to rep-

resent the breakdown duration input of this machine; and theaccuracy of identify-

ing the machine as being similar to a group of machines shouldbe higher that that

of identifying one particular machine whose breakdown duration data are available

as a similar machine. In addition, the similar simulation performance using inputs
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of individual FMD and group FMD strongly justified the use of the classification

method.

The choice of threshold for the Arrows grouping process did not appear to have

a significant influence on the simulation throughput of models using corresponding

group fitted distributions in this model. The impact of usingdifferent values for the

threshold in the Arrows classification method on the system throughput was stud-

ied. In this case, we adjusted the simulation model so that machine breakdown was

the only major source of variability in the system throughput (the engine repairs

and operator stoppages were turned off) and the results showed that the simulation

outputs of models using different group fitted mixture distributions are not signi-

ficantly different. Therefore, a relatively low threshold,producing a low number

of groups, can be chosen for the purpose of using group fitted mixture distribution

for representing the machine breakdown duration input of simulation models.

8.5 Future Work

We have considered only a small part of the total breakdown process in this thesis

and we would like to develop a complete model of breakdowns. While machine

breakdown durations are important, the current method of modelling the time

between failures may also be influencing the model output. Improving the rep-

resentation of the time between failures could use the basicmethodology with

most of the additional work probably being the collection ofdata of time between

failures.

The breakdown duration data provided by Ford included not only the actual

repair time but also some waiting time for some resources, e.g. maintenance team

or parts. In this work we focused on developing a statisticalmodel of the total

breakdown duration. Splitting the breakdown duration up into its constituent parts

and modelling them separately would allow a better description of breakdowns in
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the simulation model. The methodology would not need to change substantially

and most of the work to make this extension would be involved in distinguishing

and recording the data for the actual repair stage and for thewaiting stage.

Engine repairs and operator stoppages, which are essentially product quality is-

sues and human behaviour breakdowns, are responsible for a great part of the total

loss of the line productions in the engine assembly plant. Therefore, it is important

that they are modelled accurately. As MODAPTS, a technologyinvolved in record-

ing all motions required for a person to complete a task and analysis for methods

improvement, has been introduced and used in more manufacturing companies,

human behaviour can also be recorded more accurately. Accordingly it should

be possible to extend the methodology to incorporate modelling of human break-

downs and response times. This would allow a complete and integrated model of

machine breakdown behaviour to be developed including the modelling of time to

repair failures, waiting time for resources, time between failures, human response

times and human breakdowns. In the future we should also consider implement-

ing the methodology described in this thesis to model the engine repairs process.

Together with the extensions of modelling machine breakdowns discussed above,

this would result in a complete system for modelling the total loss in manufac-

turing processes due to machine breakdowns, operator performances and product

quality issues.

Simulation input modelling is an important part of simulation construction.

The methodology for modelling breakdown durations presented in this thesis could

be extended to model variable inputs in other simulation applications, where the

inputs are multimodal, outside of the manufacturing area.

The Arrows classification of machines has been examined using the collected

historical breakdown duration data and we would like to be able to validate the

classification using the machines’ future performance. Newbreakdown duration

data may provide more confidence in the methods or may lead to the groups being
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updated. It would be useful to devise an update procedure that does not involve

a complete recalculation of the similarity matrix and rerunof the Arrows method.

We have suggested that when modelling the breakdown of new machines, exper-

ienced engineers may decide they may be similar to a group of machines. It may

also be useful to collect their real breakdown duration dataduring a period when

they are used in the actual production, which can then be analysed to assess the

engineers’ decision.

The Arrows method could be extended to classify objects in other applications.

The distribution-free method for estimating the similarity between data sets that

may be of different sizes has the scope to be useful in fields other than manufac-

turing. For example we have shown their applications to the grouping of medical

procedures in this thesis.

8.6 Discussion

We have demonstrated the modelling of machine breakdown durations in an engine

assembly line simulation model. We found that fitted finite mixture distributions

for groups of machines were suitable for representing machine breakdown dura-

tions as simulation inputs, and used parameters with an intuitive meaning. Group-

ing like machines serves to decrease the total time spent on fitting the input models

considerably, as well as simplifying the breakdown duration inputs required for the

simulation model. The Arrows classification of the machinesbased on the simil-

arities between their breakdown duration data sets serves this purpose well.

The method for estimating similarity that we have introduced can be used to

calculate the similarity between data sets with uneven numbers of data points and

being a distribution-free method, its application is relatively simple and widely

applicable.
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We introduce the Arrows Classification procedure in Chapter 5 and tested it

on a textbook example as well as two different sets of data coming from widely

different applications (manufacturing and health care). The results suggest that it

produces similar results to cluster analysis, while makingit much easier to control

the similarity level in each resultant group in order to achieve different classifica-

tion targets.

Ford have been using the program we developed for the data validation, which

has achieved a huge saving on the data process time. Meanwhile, they have showed

interest in using the proposed method for modelling machinebreakdown durations.

However, as Ford use Excel interfaces to generate simulation models, these inter-

faces need to be upgraded, in order to allow the engineers andsimulation modellers

to use fitted mixture distributions to model the machine breakdown durations.

In conclusion, if there is multimodality present in a data set, the machine break-

down duration modelling process described in this thesis can be used to obtain a

representation of the random inputs for simulation models.We have demonstrated

its use on machine breakdown duration modelling in the manufacturing simulation

model of an engine assembly line. The calculation of similarity and the Arrows

Classification method introduced in this thesis would be applicable in a wide range

of situations, not simply for analysing machine breakdown duration data. We have

demonstrated their use on grouping machines and medical procedures. The meth-

odology of simulation evaluation has been successfully used for evaluating the

machine breakdown duration inputs and could also be appliedto evaluate other

sources of variability in simulation models.



Glossary

Arrows Classification Procedure: A classification method we have derived. It

has a setting of similarity threshold that can be specified bythe user, which allows

the user to easily control the similarity level in the resultant groups.

Available Time Mode: In this mode, machines can break down whether they are

operating or not.

Breakdown Duration: The whole period of a machine breakdown, which is also

generally referred to as therepair timeor thetime to repair(TTR) or themachine

downtime.

Busy Time Mode: In this mode, machines can only break down while they are

operating.

CDF: Cumulative Distribution Function.

Double-Arrow Connection: A definition of similarity between objects that asso-

ciate with the Arrows Classification method. ObjectsOi andOj have adouble-

arrow connectionif pij, the p-value comparing their corresponding sets of data, is

the biggest in both rowi and rowj of the similarity matrix andpij is greater than

the specified thresholdp0.

EDF: Empirical Distribution Function.

FMD : Fitted finite Mixture Distribution.

Forman: A generic title of a supervisory person in a manufacturing plant and can

be a male or female.

JPH: Jobs completed Per Hour for a machining or engine assembly line.

182



GLOSSARY 183

Maintenance Operator: A worker who has been trained to obtain the required

skills to identify and rectify the faults of equipment that fails to function.

Major Repair : A machine failure that takes longer than 15 minutes to repair and

generally requires a highly skilled maintenance operator to fix.

Minor Repair : A machine failure that takes less than 15 minutes to repair and

generally only require a basic level of skill to fix.

Monitoring system: An automatic data record system that keeps track of all stop-

pages that occur on machines that are connected to the system.

MTBF : An acronym stands for Mean Time Between Failure.

MTTR : An acronym stands for Mean Time to Repair.

Number of Operations Mode: In this mode, machine breaks down after a certain

number of operations.

Operator: A worker who is responsible for ensuring the efficient functioning of

equipment in the assigned department.

PDF: Probability Density Function.

Productivity Engineering Department: A department usually known as Indus-

trial Engineering department which used the skills of Time and Method Study. But

due to changes in operating philosophy the name was changed.

Single-Arrow Connection: A definition of similarity between objects that associ-

ate with the Arrows Classification method. ObjectsOi andOk have asingle-arrow

connectionif pik, the p-value comparing their corresponding sets of data, isthe

biggest in only one of rowi or rowk of the similarity matrix andpik is greater than

the specified thresholdp0.

TTR : An acronym stands for Time to Repair.



Appendix A

Grouping Results of the 20 Machines

For the 20 machines with Similarity Matrix given in Table 5.2, the Arrows Classi-

fication method and complete linkage clustering give the same grouping results at

similarity levels of0.20, 0.30, . . . ,0.90. These grouping results are given in Table

A.1.
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P-value Arrows Method or Complete Linkage

Threshold Group Clustering Method

0.20 1 M01, M11, M12

2 M02, M03

3 M05, M19, M20

4 M07, M10, M13, M17

5-12 (Single machine groups) M04, M06, M08, M09, M14,

M15, M16, M18

0.30 1 M01, M11, M12

2 M02, M03

3 M05, M19, M20

4 M07, M17

5 M10, M13

6-13 (Single machine groups) M04, M06, M08, M09, M14,

M15, M16, M18

0.40/0.50 1 M01, M11

2 M02, M03

3 M05, M19, M20

4 M07, M17

5 M10, M13

6-14 (Single machine groups) M04, M06, M08, M09, M12,

M14, M15, M16, M18

0.60 1 M02, M03

2 M05, M19, M20

3 M07, M17

4 M10, M13
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P-value Arrows Method or Complete Linkage

Threshold Group Clustering Method

5-15 (Single machine groups) M01, M04, M06, M08, M09,

M11, M12, M14, M15, M16, M18

0.70 1 M05, M19, M20

2 M07, M17

3 M10, M13

4-16 (Single machine groups) M01, M02, M03, M04, M06,

M08, M09, M11, M12, M14, M15, M16, M18

0.80 1 M05, M20

2 M07, M17

3 M10, M13

4-17 (Single machine groups) M01, M02, M03, M04, M06,

M08, M09, M11, M12, M14, M15, M16, M18, M19

0.90 1 M05, M20

2-19 (Single machine groups) M01, M02, M03, M04, M06,

M07, M08, M09, M10, M11, M12, M13, M14, M15,

M16, M17, M18, M19

Table A.1: Grouping results of the 20 machines with Similar-

ity Matrix given in Table 5.2, using the Arrows Classification

method and complete linkage clustering.



Appendix B

Similarity Matrix and Grouping

Results of the 39 Machines in

DuntonL01 Engine Assembly Line

The estimated Similarity Matrix of the 39 machines involvedin the engine as-

sembly line, DuntonL01, is given in Tables B.1 and B.2. The similarities are es-

timated using the method descrined in Chapter 4. The matrix has been split across

the two tables for presentation purposes.

The grouping results of the 39 machines using the Arrows Classification method

with a specified threshold of 0.10 are given in Table B.3.
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ML01 ML02 ML03 ML04 ML05 ML06 ML07 ML08 ML09 ML10 ML11 ML12 ML13 ML14 ML15 ML16 ML17 ML18 ML19 ML20
ML01 − 0.12 0.07 0.21 0.00 0.00 0.02 0.00 0.00 0.00 0.93 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.07 0.00
ML02 0.12 − 0.03 0.48 0.00 0.00 0.00 0.00 0.00 0.00 0.87 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.01 0.00
ML03 0.07 0.03 − 0.20 0.00 0.00 0.01 0.00 0.00 0.00 0.36 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.18 0.00
ML04 0.21 0.48 0.20 − 0.00 0.00 0.00 0.00 0.00 0.02 0.89 0.02 0.00 0.00 0.00 0.15 0.00 0.00 0.03 0.00
ML05 0.00 0.00 0.00 0.00 − 0.89 0.00 0.00 0.01 0.02 0.21 0.00 0.00 0.30 0.00 0.23 0.62 0.06 0.00 0.00
ML06 0.00 0.00 0.00 0.00 0.89 − 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.18 0.01 0.00 0.00 0.00
ML07 0.02 0.00 0.01 0.00 0.00 0.00 − 0.00 0.00 0.00 0.09 0.00 0.16 0.00 0.00 0.00 0.00 0.00 0.49 0.06
ML08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 − 0.00 0.00 0.01 0.00 0.00 0.01 0.23 0.33 0.00 0.00 0.00 0.00
ML09 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 − 0.00 0.07 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00
ML10 0.00 0.00 0.00 0.02 0.02 0.00 0.00 0.00 0.00 − 0.94 0.01 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.00
ML11 0.93 0.87 0.36 0.89 0.21 0.10 0.09 0.01 0.07 0.94 − 0.73 0.00 0.12 0.00 0.29 0.15 0.02 0.16 0.00
ML12 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.73 − 0.00 0.00 0.00 0.14 0.00 0.00 0.00 0.00
ML13 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.00 0.00 − 0.00 0.00 0.00 0.00 0.00 0.02 0.26
ML14 0.00 0.00 0.00 0.00 0.30 0.00 0.00 0.01 0.00 0.00 0.12 0.00 0.00 − 0.00 0.37 0.00 0.00 0.00 0.00
ML15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.23 0.00 0.00 0.00 0.00 0.00 0.00 − 0.06 0.00 0.00 0.00 0.00
ML16 0.07 0.10 0.04 0.15 0.23 0.18 0.00 0.33 0.12 0.16 0.29 0.14 0.00 0.37 0.06 − 0.20 0.10 0.02 0.00
ML17 0.00 0.00 0.00 0.00 0.62 0.01 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.00 0.20 − 0.00 0.00 0.00
ML18 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.10 0.00 − 0.00 0.00
ML19 0.07 0.01 0.18 0.03 0.00 0.00 0.49 0.00 0.00 0.00 0.16 0.00 0.02 0.00 0.00 0.02 0.00 0.00 − 0.01
ML20 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.26 0.00 0.00 0.00 0.00 0.00 0.01 −

ML21 0.00 0.00 0.20 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.04 0.00
ML22 0.24 0.05 0.42 0.11 0.00 0.00 0.37 0.00 0.00 0.00 0.33 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.87 0.00
ML23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00
ML24 0.04 0.00 0.29 0.03 0.00 0.00 0.21 0.00 0.00 0.00 0.32 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.84 0.00
ML25 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.00 0.01 0.00 0.61 0.00 0.00 0.00 0.00 0.00 0.03 0.47
ML26 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.18 0.00 0.06 0.00 0.00
ML27 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.64 0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.00 0.00
ML28 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.72 0.00
ML29 0.39 0.46 0.04 0.38 0.00 0.00 0.00 0.00 0.00 0.00 0.91 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.01 0.00
ML30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.01 0.00 0.00 0.01 0.04 0.68 0.00 0.00 0.00 0.00
ML31 0.28 0.14 0.86 0.23 0.00 0.00 0.20 0.00 0.00 0.00 0.36 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.50 0.00
ML32 0.36 0.12 0.51 0.29 0.00 0.00 0.14 0.00 0.00 0.00 0.49 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.28 0.00
ML33 0.00 0.00 0.04 0.01 0.00 0.00 0.02 0.00 0.00 0.00 0.47 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.16 0.00
ML34 0.05 0.11 0.06 0.23 0.02 0.00 0.00 0.00 0.00 0.12 0.53 0.27 0.00 0.00 0.00 0.25 0.00 0.00 0.00 0.00
ML35 0.00 0.00 0.00 0.00 0.00 0.00 0.23 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.88 0.01
ML36 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.17 0.00 0.22 0.00 0.00
ML37 0.13 0.09 0.05 0.29 0.06 0.03 0.00 0.06 0.00 0.18 0.58 0.12 0.00 0.05 0.00 0.68 0.02 0.01 0.02 0.00
ML38 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.04 0.00 0.00 0.19 0.00 0.00 0.00 0.00 0.62 0.00 0.00 0.00 0.00
ML39 0.06 0.18 0.03 0.41 0.02 0.00 0.00 0.00 0.00 0.35 0.94 0.13 0.00 0.00 0.00 0.19 0.00 0.00 0.00 0.00

Table B.1: Part a of the Similarity Matrix of the breakdown duration data for the39 machines involved in DuntonL01 engine
assembly line, estimated using the method described in Chapter 4.
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ML21 ML22 ML23 ML24 ML25 ML26 ML27 ML28 ML29 ML30 ML31 ML32 ML33 ML34 ML35 ML36 ML37 ML38 ML39
ML01 0.00 0.24 0.00 0.04 0.00 0.00 0.00 0.00 0.39 0.00 0.28 0.36 0.00 0.05 0.00 0.00 0.13 0.00 0.06
ML02 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.46 0.00 0.14 0.12 0.00 0.11 0.00 0.00 0.09 0.00 0.18
ML03 0.20 0.42 0.00 0.29 0.00 0.00 0.00 0.00 0.04 0.00 0.86 0.51 0.04 0.06 0.00 0.00 0.05 0.00 0.03
ML04 0.03 0.11 0.00 0.03 0.00 0.00 0.01 0.00 0.38 0.00 0.23 0.29 0.01 0.23 0.00 0.00 0.29 0.01 0.41
ML05 0.00 0.00 0.00 0.00 0.00 0.10 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.09 0.06 0.01 0.02
ML06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00
ML07 0.00 0.37 0.00 0.21 0.19 0.00 0.00 0.08 0.00 0.00 0.20 0.14 0.02 0.00 0.23 0.00 0.00 0.00 0.00
ML08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.04 0.00
ML09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ML10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.18 0.00 0.35
ML11 0.13 0.33 0.03 0.32 0.01 0.04 0.64 0.02 0.91 0.01 0.36 0.49 0.47 0.53 0.05 0.02 0.58 0.19 0.94
ML12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.27 0.00 0.00 0.12 0.00 0.13
ML13 0.00 0.00 0.00 0.00 0.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ML14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00
ML15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ML16 0.03 0.03 0.01 0.01 0.00 0.18 0.33 0.00 0.09 0.68 0.04 0.07 0.03 0.25 0.00 0.17 0.68 0.62 0.19
ML17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00
ML18 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.01 0.00 0.00
ML19 0.04 0.87 0.01 0.84 0.03 0.00 0.00 0.72 0.01 0.00 0.50 0.28 0.16 0.00 0.88 0.00 0.02 0.00 0.00
ML20 0.00 0.00 0.00 0.00 0.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
ML21 − 0.07 0.17 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.05 0.00 0.01 0.00 0.00 0.04 0.00 0.00
ML22 0.07 − 0.00 0.99 0.00 0.00 0.00 0.19 0.08 0.00 0.86 0.79 0.52 0.01 0.37 0.00 0.03 0.01 0.02
ML23 0.17 0.00 − 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ML24 0.01 0.99 0.00 − 0.00 0.00 0.00 0.05 0.00 0.00 0.63 0.62 0.11 0.00 0.08 0.00 0.02 0.00 0.00
ML25 0.00 0.00 0.00 0.00 − 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ML26 0.00 0.00 0.00 0.00 0.00 − 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00
ML27 0.00 0.00 0.00 0.00 0.00 0.00 − 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.44 0.00 0.02
ML28 0.00 0.19 0.00 0.05 0.00 0.00 0.00 − 0.00 0.00 0.02 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00
ML29 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 − 0.00 0.17 0.17 0.00 0.05 0.00 0.00 0.09 0.00 0.17
ML30 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 − 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.06 0.00
ML31 0.11 0.86 0.00 0.63 0.00 0.00 0.00 0.02 0.17 0.00 − 0.96 0.63 0.05 0.10 0.00 0.04 0.00 0.05
ML32 0.05 0.79 0.00 0.62 0.00 0.00 0.00 0.00 0.17 0.00 0.96 − 0.87 0.04 0.01 0.00 0.07 0.01 0.03
ML33 0.00 0.52 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.63 0.87 − 0.00 0.00 0.00 0.03 0.00 0.00
ML34 0.01 0.01 0.00 0.00 0.00 0.00 0.15 0.00 0.05 0.00 0.05 0.04 0.00 − 0.00 0.00 0.08 0.01 0.49
ML35 0.00 0.37 0.00 0.08 0.00 0.00 0.00 0.07 0.00 0.00 0.10 0.01 0.00 0.00 − 0.00 0.00 0.00 0.00
ML36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 − 0.01 0.00 0.00
ML37 0.04 0.03 0.00 0.02 0.00 0.03 0.44 0.00 0.09 0.06 0.04 0.07 0.03 0.08 0.00 0.01 − 0.82 0.20
ML38 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.01 0.00 0.01 0.00 0.00 0.82 − 0.00
ML39 0.00 0.02 0.00 0.00 0.00 0.00 0.02 0.00 0.17 0.00 0.05 0.03 0.00 0.49 0.00 0.00 0.20 0.00 −

Table B.2: Part b of the Similarity Matrix of the breakdown duration data for the39 machines involved in DuntonL01 engine
assembly line, estimated using the method described in Chapter 4.
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Group Machines

G01 ML01, ML02, ML04, ML29

G02 ML03, ML21

G03 ML05, ML06

G04 ML07, ML19, ML35

G05 ML08, ML15

G06 ML10, ML11, ML34, ML39

G07 ML13, ML20, ML25

G08 ML16, ML37, ML38

G09 ML18, ML36

G10 ML22, ML24, ML31, ML32, ML33

G11-G19 (Single machine groups) ML09, ML12, ML14, ML17,

ML23, ML26, ML27, ML28, ML30

Table B.3: Grouping results of the 39 machines based on

the Similarity Matrix given in Tables B.1 and B.2, using the

Arrows Classification method with thresholdp0 = 0.10.
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In E. Yücesan, C. H. Chen, J. L. Snowdon, and J. M. Charnes, editors,

Proceedings of the 2002 Winter Simulation Conference, pages 35–40, 2002.

[13] B. Biller and B. L. Nelson. Modeling and generating multivariate time-

series input processes using a vector autoregressive technique. ACM Trans.

Model. Comput. Simul., 13(3):211–237, 2003.

[14] B. Biller and B. L. Nelson. Fitting time-series input processes for simula-

tion. Oper. Res., 53(3):549–559, 2005.

[15] W. Binroth and R. K. Haboush. Stochastic system modellingapplied to

an industrial production system. InInternational Congress and Exposition,

Detroit, MI, USA, March 1978.

[16] K. M. Blache and A. B. Shrivastava. Reliability and maintainability of ma-

chinery and equipment for effective maintenance. InInternational Congress

and Exposition, pages 19–23, Detroit, MI, USA, March 1993.



REFERENCES 193

[17] H. P. Bloch and F. K. Geitner.Practical Machinery Management for Process

Plants Volume 2 - Machinery Analysis and Troubleshooting. Gulf Publish-

ing, 2nd edition, 1994.

[18] G. E. P. Box and G. M. Jenkins.Time Series Analysis: Forecasting and

Control. Holden-Day series in time series analysis and digital processing.

Holden-Day, San Francisco, 1976.

[19] G. E. P. Box and G. C. Tiao.Bayesian Inference in Statistical Analysis.

Wiley Classics Library. John Wiley and Sons, New York, May 1992.

[20] A. J. Boyce. Mapping diversity: A comparative study of some numerical

methods. In A. J. Cole, editor,Numerical Taxonomy, pages 1–30. Academic

Press, New York, 1969.

[21] T. C. Bradford and K. F. Martin. Modelling the breakdown behavior of

transfer line machines for use in computer simulation.International Journal

of Modelling and Simulation, 13, 1993.

[22] J. R. Bray and J. T. Curtis. An ordination of the upland forest communities

of s. wisconsin.Ecological Monographs, 27:325–349, 1957.

[23] J. A. Buzacott and L. E. Hanifin. Models of automatic transfer. lines with

inventory banksa review and comparison.AIIE. Transactions, 10:197–207,

1978.

[24] A. J. Cain and G. A. Harrison. An analysis of the taxonomist’s judgment of

affinity. Proc. Zool. Soc., 131:85–98, 1958.

[25] A. S. Carrie.Simulation of Manufacturing Systems. John Wiley and Sons,

New York, NY, USA, 1988.



REFERENCES 194

[26] J. D. Carroll, L. A. Clark, and W. S. DeSarbo. The representation of three-

way proximity data by simple and multiple tree structure models. Journal

of Classification, 1:25–74, 1984.

[27] A. D. S. Carter.Mechanical Reliability. Halsted Pr, 1986.

[28] C. R. Cash, B. L. Nelson, D. G. Dippold, J. M. Long, and W. P. Pollard.

Evaluation of tests for initial-condition bias. InProceedings of the 1992

Winter simulation conference, pages 577–585, New York, NY, USA, 1992.

ACM.

[29] R. B. Cattell. A note on correlation clusters and cluster search methods.

Psychometrika, 9:169–184, 1944.

[30] R. B. Cattell.rp and other coefficients of pattern similarity.Psychometrika,

14:279–298, 1949.

[31] R. B. Cattell and M. A. Coulter. Principles of behavioural taxonomy and

the mathematical basis of the taxonome computer program.British Journal

of Mathematical and Statistical Psychology, 19:237–269, 1966.

[32] F. T. S. Chan. Using simulation to predict system performance: a case study

of an electro-phoretic deposition plant.Integrated Manufacturing Systems,

6, 1995.

[33] R. C. H. Cheng. Bayesian model selection when the number of components

is unknown. In D. J. Medeiros, E. F. Watson, J. S. Carson, and M.S. Mani-

vannan, editors,Proceedings of the 1998 Winter Simulation Conference,

pages 653–659. IEEE, 1998.

[34] R. C. H. Cheng. Analysis of simulation output by resampling. International

Journal of Simulation Systems, Science & Technology, 1:51–58, 2001.



REFERENCES 195

[35] R. C. H. Cheng and C. S. M. Currie. Prior and candidate models inthe

Bayesian analysis of finite mixtures. In S. Chick, P. J. Sánchez, D. Fer-

rin, and D. J. Morrice, editors,Proceedings of the 2003 Winter Simulation

Conference, pages 392–398. IEEE, 2003.

[36] H. Chipman and R. Tibshirani. Hybrid hierarchical clustering with applica-

tions to microarray data.Biostatistics, 7(2):286–301, April 2006.

[37] L. W. Condra.Reliability Improvement with Design of Experiments. Marcel

Dekker, New York, 2nd edition, 2001.

[38] R. M. Cormack. A review of classification.Journal of the Royal Statistical

Society, 134:321–367, 1971.

[39] P. J. Crosby and D. R. Murton. Simulation of machine tool breakdowns.

Project report for the degree of bachelor of engineering, University of Bath,

June 1990.

[40] C. S. M. Currie.Bayesian Sampling Methods in Epidemic and Finite Mix-

ture Models. PhD thesis, University of Southampton, November 2004.

[41] C. S. M. Currie and L. Lu. Intelligent Patient Management, volume

189/2009, chapter Optimal Scheduling Using Length-of-Stay Data for Di-

verse Routine Procedures, pages 193–205. Springer Berlin, Heidelberg,

2009.

[42] R. B. D’Agostino and M. A. Stephens.Goodness-of-fit techniques. Statis-

tics: textbooks and monographs; 68. Marcel Dekker, New York, 1986.

[43] D. J. Davis. An analysis of some failure data.Journal of the American

Statistical Association, 47(258):113–150, 1952.

[44] A. C. Davison and D. V. Hinkley.Bootstrap Methods and Their Application.

Cambridge University Press, Cambridge, 1997.



REFERENCES 196

[45] G. De Soete. A least squares algorithm for fitting an ultrametric tree to a

dissimilarity matrix.Pattern Recognition Letters, 2:133–137, 1984.

[46] D. Defays. An efficient algorithm for a complete link method. The Com-

puter Journal, 20(4):364–366, 1977.

[47] B. Deler and B. L. Nelson. Input modeling and its impact: modeling and

generating multivariate time series with arbitrary marginals and autocorrel-

ation structures. InProceedings of the 2001 Winter Simulation Conference,

pages 275–283, Washington, DC, USA, 2001. IEEE Computer Society.

[48] L. R. Dice. Measures of the amount of ecologic association between spe-

cies.Ecology, 26:297–302, 1945.

[49] E. Diday and J. V. Moreau. Learning hierarchical clustering from examples

- application to the adaptive construction of dissimilarity indices. Pattern

Recognition Letters, 2:365–378, 1984.

[50] B. Efron and R. J. Tibshirani.An Introduction to the Bootstrap. FL: CRC

Press, Boca Raton, 1994.

[51] B. Epstein and M. Sobel. Life testing.Journal of the American Statistical

Association, 48(263):486–502, 1953.

[52] M. Evans, N. Hastings, and B. Peacock.Statistical Distributions. John

Wiley, New York, 3nd edition, 2000.

[53] B. S. Everitt.Cluster Analysis. Halstead Press, London, 1974.

[54] C. E. Feltner and S. A. Weiner. Models, myths and mysteries in manufac-

turing. Industrial Engineering, 17(7):66–76, July 1985.

[55] A. H. Fielding. Cluster and Classification Techniques for the Biosciences.

Cambridge University Press, Cambridge, 2007.



REFERENCES 197

[56] L. Fisher and J. W. Van Ness. Admissible clustering procedures.Biomet-

rika, 58(1):91–104, 1971.

[57] G. S. Fishman. Estimating sample size in computing simulation experi-

ments.Management Science, 18(1):21–38, 1971.

[58] G. S. Fishman.Concepts and Methods in Discrete Event Digital Simulation.

Wiley, New York, 2004.

[59] J. J. Fortier and H. Solomon. Clustering procedures. InProceedings of

Symp. Multiv. Analysis, pages 493–506, 1966.

[60] A. V. Gafarian, C. J. Ancker, and T. Morisaku. Evaluationof commonly

used rules for detecting steady-state in computer simulation. Naval Re-

search Logistics Quarterly, 25:511–529, 1978.

[61] S. Gallivan and M. Utley. Modelling admissions bookingof elective in-

patients into a treatment center.IMA Journal of Management Mathematics,

16:305–315, 2005.

[62] J. A. Gengerelli. A method for detecting subgroups in a population and

specifying their membership.Journal of Psychology, 55:457–468, 1963.

[63] E. I. George and R. E. McCulloch. Variable selection via gibbs sampling.

Journal of the American Statistical Association, 88(423):881–889, 1993.

[64] L. George.The Bathtub Curve Doesn’t Always hold water. American So-

ciety for Quality.

[65] S. Ghosh and S. G. Henderson. Chessboard distributions.In Proceedings of

the 2001 Winter Simulation Conference, pages 385–393, Washington, DC,

USA, 2001. IEEE Computer Society.



REFERENCES 198

[66] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter.Markov Chain Monte

Carlo in Practice. Chapman and Hall, London, 1996.

[67] P. W. Glynn. Initial transient problem for steady-state output analysis. In

Proceedings of the 2005 Winter Simulation Conference, pages 739–740,

2005.

[68] A. Goel and R. J. Graves. Electronic system reliability:Collating prediction

models.IEEE Transactions on Device and Materials Reliability, 6(2):258–

265, June 2006.

[69] D. Goldsman, L. W. Schruben, and J. J. Swain. Tests for transient means in

simulation time series.Naval Research Logistics, 41:171–187, 1994.

[70] A. D. Gordon. A review of hierarchical classification.Journal of the Royal

Statistical Society, 150:119–137, 1987.

[71] G. Gordon.System Simulation. Prentice Hall, New Jersey, 1969.

[72] J. C. Gower. Multivariate analysis and multidimensional geometry. The

Statistician, 17(1):13–28, 1967.

[73] J. C. Gower. A survey of numerical methods useful in taxonomy. Acarolo-

gia, 11:357–376, 1969.

[74] J. Grabmeier and A. Rudolph. Techniques of cluster algorithms in data

mining. Data Mining and Knowledge Discovery, 6(4):303–360, 2002.

[75] P. J. Green. Reversible jump markov chain monte carlo computation and

bayesian model determination.Biometrika, 82(4):711–732, 1995.

[76] B. Grün and F. Leisch. Fitting finite mixtures of generalized linear regres-

sions inR. Computational Statistics & Data Analysis, 51(11):5247–5252,

July 2007.



REFERENCES 199

[77] L. E. Hanifin. Increased Transfer Line Productivity Utilizing Systems Sim-

ulation. PhD thesis, University of Detroit, 1975.

[78] L. E. Hanifin and S. G. Liberty. Improved efficiency of transmission case

machining: A gpss-v simulation of a transfer line. InAutomotive Engin-

eering Congress and Exposition, pages 23–27, Detroit, MI, USA, February

1976.

[79] J. A. Hartigan. Representation of similarity matrices by trees. Journal of

the American Statistical Association, 62(320):1140–1158, 1967.

[80] M. O. Hill, R. G. H. Bunce, and M. W. Shaw. Indicator speciesanalysis, a

divisive polythetic method of classification, and its application to a survey

of native pinewoods in scotland.The Journal of Ecology, 63(2):597–613,

1975.

[81] K. Hoad, S. Robinson, and R. Davies. Automating estimation of warm-up

length.Unpublished, 2008.

[82] F. R. Hodson, P. H. A. Sneath, and J. E. Doran. Some experiments in the

numerical analysis of archaeological data.Biometrika, 53(3/4):311–324,

1966.

[83] W. J. Hopp and M. L. Spearman.Factory Physics: Foundations of Manu-

facturing Management. Illinois, Chicago, 2nd edition, 2001.

[84] O. C. Ibe and A. S. Wein. Availability of systems with partially observable

failures. IEEE Transactions on Reliability, 41(1), 1992.

[85] I. Ikonen. Simulation of transfer line machine breakdowns. Master’s thesis,

University of Cranfield, September 1994.



REFERENCES 200

[86] P. T. Jackway and B. S. DeSilva. A methodology for initialization bias re-

duction in computer simulation output.Asia-Pacific Journal of Operational

Research, 9:87–100, 1992.

[87] M. Jambu. Classification automatique pour l’analyse des données. I -
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