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MODELLING BREAKDOWN DURATIONS IN SIMULATION MODELS OFENGINE
ASSEMBLY LINES

Lanting Lu

Machine failure is often an important source of variabibiyd so it is essential
to model breakdowns in manufacturing simulation modelsigately. This thesis
describes the modelling of machine breakdown durationsnalation models of
engine assembly lines. To simplify the inputs to the simafatnodels for com-
plex machining and assembly lines, the Arrows classificatiethod has been de-
rived to group machines with similar distributions of brdatn durations, where
the Two-Sample Craér-von Mises statistic and bootstrap resampling are used to
measure the similarity of two sets of data. We use finite meéxtlistributions fit-
ted to the breakdown durations data of groups of machindseasput models for
the simulation models. We evaluate the complete modelliathodology that in-
volves the use of the Arrows classification method and finiteure distributions,
by analysing the outputs of the simulation models usingediifit input distribu-
tions for describing the machine breakdown durations. iBatdthe methods and
results of the grouping processes will be presented, andéevdemonstrated using

examples.
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Chapter 1

Introduction

This thesis describes the methodology of modelling madhiaekdown durations
in simulation models of engine assembly lines. We deriveaasification method
termed the Arrows classification method to simplify the itspto the simulation
models for complex machining and assembly lines by groupiaghines with
similar distributions of breakdown durations. We fit finitextare distributions
to the breakdown duration data of groups of machines thatnamdved in the
engine assembly lines to represent the machine breakdokati@uinputs in the

corresponding simulation models.

This research is supported by Ford Motor Company and the@ctiisg was to
find an appropriate mathematical representation of the meadireakdown dura-
tion inputs in manufacturing simulation models. We use agxisting simulation
model of an engine assembly line, to test our methodologg. Slimulation model
is built in WITNESS simulation software (Lanner Group) [1@2ld is supplied by

Ford who also provide the necessary data.

Discrete-event simulation has been widely used in manuifieagf industry to
model production operations. Ford have used this poweyblidince 1982 to help

with the planning of new facilities and the improvement ofséirg lines in all
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of their manufacturing plants. Different scenarios, susimamber of resources,
length of buffers or layout of the manufacturing lines, carsbt in different simu-
lation models. The outputs of these simulation models ofmmicg and assembly
lines can and have been used to estimate costs, produdéxggts and proper la-
bour requirements and layouts for existing and new engingrems. Therefore,

simulation models are required to reflect the real world asiately as possible.

In manufacturing systems, machine failure is often an irgarsource of vari-
ability. Therefore it must be represented correctly in datian models of the
process. Machine and engine repairs and operator stoppagédsave a signific-
ant effect on the line yield. For example, the total loss duéhese repairs and
stoppages in the engine assembly line we consider in thissthfer the last three
months of 2007 was 18.7%. However, while Ford have detailedtobn data for
machine repairs, since the machines are linked to an autaratine monitoring
system, similar data are not available for engine repaitsaperator stoppages
because the enormous time and resource requirements faonagevery single
engine repair and operator stoppage are prohibitive. Wefibre focus on the
development of a methodology to enable the modelling of thelime repair dur-

ations.

Currently, historical data are commonly used in Ford as nmechreakdown
duration inputs to the simulation models while theoretidigtributions are only
used when there are no historical data available for a machkhowever, it is
generally preferable to use appropriate theoreticalidigions as simulation in-
puts for several reasons; for example, it is often easiehamge a theoretical
distribution when performing different experiments on smaulation model. No
common statistical distribution has been found to be a restsle fit for most of
the breakdown duration data as each set of data is a mixtlaenamber of dis-
tinct populations, resulting in a multimodal distributiohherefore, finite mixture

distributions have been proposed to fit the breakdown curatata of machines.
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There are normally hundreds of different machines involvedach engine
assembly line in Ford. A major contribution of this thesishie simplification of
the machine breakdown duration inputs, which is requireérwmodelling such
large assembly lines. We have derived a method of groupirchimes based on
the breakdown duration data available, called the Arrowssification method.
The grouping is such that two machines can be placed in the gaoup only if
there is a statistically significant similarity betweenithweakdown duration data,
where the statistical similarity between the breakdowration data sets of two
machines is estimated using the C&amon Mises goodness-of-fit statistic [5].
Bootstrapping is used to determine the significance levehefstatistic. Finite
mixture distributions are fitted to the grouped breakdowration data so that
the fitted finite mixture distributions for each group can Isedito represent the
breakdown duration inputs for all of the machines in thisugro The grouping
reduces the number of input distributions that must be edééchand increases the

data available for fitting the finite mixture distributions.

1.1 Finite Mixture Models

We use finite mixture models to represent the breakdown iduaraiata for ma-
chines in engine assembly lines because the data are dgmeudtimodal. Finite
mixture models provide a good description of multimodabdaising parameters
that have an intuitive meaning, and their implementatiomast standard simula-
tion packages, including the WITNESS software (Lanner Gy¢1@2], which we

use to build our simulation models, is simple and convenient

A continuous finite mixture model is defined by probabilityndey function

written as

k
h(z) = Zwifi(:vléi), (1.1)
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wheref;(xz|0;) is a component distribution and is its weight and satisfies; > 0
and> ¥ w; = 1.

Parametef; comprises the unknown parameters associated withthhedi-
vidual component. Parametets weightw; and number of componentsare all
unknown. We therefore wish to determine the number of coraptst and other
parameters in the finite mixture model. Since it is possifhéd the mixture model
is composed of components that are not represented in thefotalingk is a sta-
tistically non-standard problem. In addition, the likeldd is unusual with certain
combinations of parameter values giving rise to an infirikelihood, and these
combinations do not correspond to consistent parametenasts. Hence making

use of standard maximum likelihood methods is impossibtaigicase.

Instead, a Bayesian framework is used for the fitting procesteacribed in
[40]. Using Bayesian statistics, although the posteriotrithstion may still be
multimodal, the prior distribution smooths out the likeldd function. Moreover,
the posterior distribution fok is considered to be a more meaningful measure of
k in the mixture model than the likelihood function [40]. Inmence sampling is

used to determine the posterior distribution for the nundé@omponents.

1.2 Estimating Similarity

We wish to classify machines involved in the engine asseribds into groups
with similar breakdown duration data, in order to simplihetbreakdown inputs
for simulation models. To achieve this we first need to edtnthe similarities
between the machines. As the breakdown duration data setsihaven numbers
of data points, no standard method for measuring similasigpplicable. Thus,
we derive a new approach and measure the similarity of twdimas by estimat-

ing the possibility of the two corresponding breakdown tioradata sets having
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been drawn from identical distributions. We assume thatsamples of break-
down duration dat& = (z1, z,...,x,), andY = (y1, s, ..., yn,) for machines
M, and M, respectively consist of independent observations. Urtgenull hy-
pothesis that samples andY” are drawn from the same distribution, we calculate
the Two-Sample Craér-von Mises goodness-of-fit statisfig which is a good
general purpose goodness-of-fit test method [42] and hashaantage of being
a distribution-free method, i.e. there is no need to makeamsymptions about
the underlying distributions of the data sets being analysg We reject the null
hypothesis ifT" is too large. Tabulated criterion values for this test areveoy
extensive and only give standard criterion values for samplith up to8 data
points or with sizes close to infinite [5]; while the numberdaita points of ma-
chine breakdown duration data sets varies ffbta 1310. Therefore, in order to
determine whethé€r is too large, we need to estimate the p-valué'diy estimat-
ing ®(7"), the distribution of the statistics of samples that are dr&fam the same
distribution. We do this using bootstrapping, which is ddxsd further in Chapter
4. The similarities between each and every pair of machinegat together to

form the similarity matrix of all of the machines involved.

In Chapter 4 the method for measuring similarity is tested dygaring ran-
dom samples generated from known distributions. Although method was
originally derived to estimate similarity between the maehbreakdown dura-
tion data sets, it is widely applicable, and we have also usadcalculate the
similarity between medical procedures based on their pitieength-of-stay in a

group of private hospitals [41].

1.3 Classification

The machining and engine assembly lines that we are mogelftien include hun-

dreds of different machines. Since the breakdown duratia of many machines
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follow similar distributions, for the purpose of reducifgetnumber of input dis-
tributions, we propose a new classification method for girggipnachines based
on their breakdown duration data. The fitted mixture distitn for the group can
then be used to described the breakdown duration inputdl foirthe machines in
this group. In the classification process, two machines sighificantly different
breakdown duration data, as calculated using the boogsirgpnethod described

in Section 1.2, are not allowed to be placed in the same group.

We name this classification method the Arrows method bedaukes method
the strength of connections between objects are defined asiows. This will be
described in Chapter 5. Objects with double-arrow and siagiew connections
are placed in the same groups whenever possible. Objects 2 @ said to have
a double-arrow connection if;», the p-value similarity of the two objects, is the
greatest in both row and row2 of the similarity matrix; but ifp,, is the greatest
in only one of rowl or row 2, objects 1 and 2 are said to have a single-arrow
connection instead. Another major feature of the Arrowshoeéis the setting of a
threshold. A similarity threshold, is set with the assumption that two data sets
with a similarity of the threshold value or above are simdaough to be putin the
same group. Thus, two objects can be put in the same groupf dinéyp-value for

comparing their corresponding data sets is greater thagual ¢op.

1.4 Evaluation of the Breakdown Inputs

We evaluate the whole process of modelling breakdowns lystg the outputs
of a simulation model of an engine assembly line designeddry Esing three
different inputs to represent the machine breakdown dumati(1) empirical dis-
tributions; (2) fitted finite mixture distributions for inddual machines; (3) fitted
finite mixture distributions for groups of machines. We asshe simulation out-

puts of the models with the three machine breakdown duratiouts using three
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different methods: graphical comparison, paired-T tedt@otstrapping analysis.
The bootstrapping analysis uses the same method for cahguthe similarity of
two sets of simulation output data as is used to measure sty of break-
down duration data from pairs of machines. This is anothgomant potential

application of the work in this thesis.

We also wish to investigate the impact of the choice of sintyiahreshold
when using the Arrows classification method. Simulation et®dre built with
the breakdown duration inputs represented by differestdditted mixture distri-
butions corresponding to the different groups that are ig@e using the Arrows
method with a range of thresholds. The simulation outputthhefsame engine
assembly line model with different groupings of machines @mpared to give

some insights.

1.5 Modelling Machine Breakdowns

The models of the manufacturing plants that we considerigtiiesis are built in
WITNESS simulation software (Lanner Group) [102].

Historical breakdown duration data for machines are abhaldirectly from the
on-line monitoring system that the engine assembly linmkel to. The collected
data need to be validated by deleting unreasonable datssmwiaubtracting some
part of durations for some data points; checked for coigiatbefore the data
can be used in the subsequent analysis; and transformedtfloerf analysis in the
breakdown duration modelling process. We discuss the dafmmtion further in

Section 3.3.

We propose using fitted mixture distributions for groups afchmnnes to repre-
sent the machine breakdown durations, i.e. the time toregachine failures. Fit-

ted mixture distributions cope well with the multimodalgyesent within the data
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and can smooth out its irregularities. Our proposed breakdturation modelling

process is shown in Figure 1.1 and comprises three majos:step

1. Data preparation/ transformation:

Adjustments need to be made to validate the data for the meixtistribu-
tions fitting process. We transform the validated breakddunmation data to

obtain a better fit of finite mixture distributions.

2. Select component distribution type:

The type of component distribution is chosen based on theactaisations
of the breakdown duration data. A mixture of lognormal disttions is
considered to be the most appropriate to represent machwmetidnes and
is simple to input into the WITNESS models for the engine asdgiines.

Section 3.4 describes the rationale behind this choice.

3. Fitting mixture distributions:

We propose using finite mixture distributions fitted to theatgamation of
the data for all of the machines in a group to represent thehmaadown-

times for machines in the same group. There are three stéipis ipart:

(a) Estimate similarities between the machines
The similarities between machines are measures by thefisarie
levels of Crangr-von Mises statistics of their corresponding breakdown
duration data sets. The method for measuring machinedasitigs is

described in Chapter 4.

(b) Machines classification
Use the Arrows classification method to divide machines grtmps
based on the similarities between their breakdown durataia. This

classification method is described in Chapter 5.
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(c) Fitting mixture distributions to the grouped data

This step involves estimating parameters of finite logndmmixture

distributions for representing the breakdown duratiorrsgimups of
machines. A Bayesian framework is applied to find the postelis

tributions of the parameters of the component distribwgiand that of
the number of components in the mixture distribution (sexiSe 3.2
for details). We fit one mixture distribution to each groupr@chines.
The fitted mixture distribution for one group can be used fresent

the breakdown durations for all machines in this group.
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Collect Raw Historical Breakdown Data

Data Preparation/ Transformation

Component Distribution Type Selection

Obtain
f M th Distributions
easure the Representin
Similarity / Estimate o g
Similarity Matrix Breakdown
Durations
Estimate Fitted
Mixture
Distributions < Machines
for Classification
Groups of
Machines

Estimate Fitted
Mixture Distributions
\ for Groups

J

Input Different Machine Breakdown
Distributions

Execute Simulation Models

Figure 1.1: Diagram of the proposed machine breakdown iduratodelling pro-
cess.
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1.6 Outline of the Thesis

A literature review of machine breakdown input modellingnanufacturing simu-
lation models is given in Chapter 2. We then describe the mepctatistical

model for representing the breakdown duration data in Cha&ptén Chapter 4

we discuss the methodology used to estimate the similafridhata sets of uneven
sizes and test the method by implementing it on samples getefrom a number
of known distributions. The application of this method te thachine breakdown
duration data and data on patients’ hospital length-of-&ba a set of medical

procedures is also given here. The Arrows classificatiornatetised for the ma-
chines classification process is presented in Chapter S)dimg a comparison
between the Arrows method and popular cluster analysisadsthnd examples
of the method’s application to grouping machines and mégicacedures. The
machine breakdown modelling process for the simulationeghoflan existing en-

gine assembly line that is currently in use is described inp@he6. In Chapter
7 we describe the methodology for evaluating the proposechma breakdown
duration modelling methodology by constructing experiteean the engine as-

sembly line simulation model. We conclude in Chapter 8.



Chapter 2

Literature Review for Modelling

Breakdowns

We aim to develop a new mathematical form to represent thahidison of ma-

chine breakdown durations in simulation models of engiise@bly lines. As “the
most important source of randomness in many manufactugetems” ([103],

P687), machine breakdowns have a very big impact on themytst®ughput and
need to be modelled correctly. While there is a substanteabliure on modelling
the time between breakdowns ([64], [128], [99], [163], [Ldhd [68]), there has
been relatively little work done on modelling the duratiaisreakdowns. The
lack of literature on this specific subject is indicated i [87] and [103]. It is

also suggested that even within the written literature enttpic of modelling

breakdowns there is little discussion on the practical @m@ntation [97]. The
most practical publication on this subject suggested by i9778]. There are
some other good references on modelling breakdowns in raetwing system
models, such as [83], [103], [25] and [6].

This chapter gives a review of the available literature e@vjmus methods for
modelling machine breakdowns. We begin by giving the dédinibf the term

breakdown in Section 2.1. A discussion of machine failutegas then given in

12
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Section 2.2 and the elements of a machine breakdown aralgar Section 2.3.
As the failure data collection is often problematic, a d&stan of data collection
methods is given in Section 2.4. Finally, Section 2.5 disegaghe approaches that

can be used to represent the machine downtimes.

2.1 Definition of a Machine Breakdown

Machine downtimes can be classified into two types:

1. Deterministic downtimes are machine downtimes that carsdheduled:

such as shift changes, breaks and planned maintenance [103]

Modelling this type of machine downtimes can be relativelgye

2. Random downtimes are unscheduled machine downtimes: asuelstual
machine failures, broken tool changes, parts being studlganging ([97]

and [103]).

This thesis concentrates on modelling random downtimes.

There are arguments about the randomness of machine breadkd8inroth
and Haboush [15] believe that breakdowns are time deperdettie occurrence
of future events would depend on the random times at whichgvasits happened.
Bradford and Martin [21] also consider that machine faillaesnot entirely ran-
dom and scheduling the next breakdown in simulation modéajstbe dependent
on the machines’ previous breakdowns. Some, for exampl [1229], [27] and
[37], believe that electronic machine failure rates aratezl to time and follow
the classical Bathtub curve (see Section 2.2). Venton [1B6ihe other hand
states that machine breakdown consists of mechanicatdailinat often are the
result of physical wear, and electronic failures that avaiiably concerned with

a chance and argues that electronic failures are randone wiathanical failures



CHAPTER?2 14

should really be treated as time dependent events. Althowggt Ford manufac-
turing machines are combinations of mechanical and eleict@mponents and
the theory of time dependent breakdowns is probably corteetroductivity En-
gineers at Ford assume that all breakdowns are random indepeevents [97].

We do not consider the modelling of the times between breakdan this thesis.

A breakdowns defined in [97] as “a generalisation for a mechanism fgitm
perform its required function for an unknown reason whereis wapable of doing
so”. In other words, a breakdown is the event after a mechafads and before
the machine functions again. Theeakdown duratiomcludes the amount of time
to gather resources to analyse the problems and the lentjth attual repair time
[103], and this whole period of the breakdown is also refitoeas theepair time

or thetime to repair(TTR) or themachine downtime

There are many causes that may lead to a breakdown: macteretiog times,
maintenance conditions, parts replacements, machineinesar design errors,
operator skills and random machine failures [17]. It seemzoissible to predict
the occurrence of breakdowns ([25] and [16]). Thus, the nm&cbreakdowns are
considered to be random downtimes. The main objective ofes@arch is finding

accurate statistical distributions for describing maetdowntimes.

2.2 Machine Failure Rates

A classical categorisation of failures is based on the titnedch they occur,

which separates machine failures into three types:

e Early Life: Also referred to as Infant Mortality [37]. In thinitial period of
time the failure rate gradually decreases with time aftaetzero ([27] and

[37]).
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e Useful Life: This long period is also known as the IntrinsailBre period or
Stable Failure period. In this phase the failure rate is Inbugonstant ([27]
and [37]).

e Wearout: In this period of time failures are mainly causeddbgradation

and the failure rate increases with time ([27] and [37]).

The sum of these three phases is commonly know aldtigub curveshown
in Figure 2.1, which is suggested to be the traditional ctovelectronic machines
[124]. The basic concept for the bathtub curve was believdakttestablished in
Proschan [128], [129]. There is some discussion, disageaeand development
about the true character and the use of the bathtub curvef(gesxample, [99],
[163], [171], [64] and [68]). Condra [37] states that the angunt of correctness of

the bathtub curve appears to be very subjective.

Failure Rate

Early Life Useful Life Wearout

Time
Figure 2.1: Bathtub Curve for machine reliability.

Venton [156] separates machine breakdown into mecharsgatés and elec-
tronic failures. The former are suggested to be treatedrasdiependent because
they are “often a result of physical removal of material byawe The latter can
be considered as random events as they are “invariably ooextevith a chance

excess of applied stress over inherent strength”.
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Porter and Finke [127] examined machine breakdowns witly fEight causes
on the area of integrated circuits and classified them intw foain categories:
broken parts, time degradation, mechanical stress anal sfiects of time de-

gradation and mechanical abrasion.

Buzacott and Hanifin [23] identified two types:

e Operation dependent cause:

Cannot happen when the machine is in the idle state; happemnsafertain

number of operation cycles.

e Time dependent cause:

Can happen when the machine is idle; is due to some unceresanm@xcept

wear and happens after a certain amount of time.

This categorisation suggests that a breakdown can hapeensen the ma-
chine is not operating and there is time dependency in theromaces of break-
downs. However, engineers in Ford assume that a breakdoavtotally random
and independent event and cannot happen when a machineaperating. \We
make the same assumption in the simulation model and thisassked further in

Chapter 6.

Another categorisation identified by Ibe and Wein [84] isdzhsn the duration
of the failures, which is also used by Ford engineers. Lav8][1P320) gives a

similar opinion about the types of machine breakdowns. Wuetypes are:

e Permanent failure:

Commonly classified as inherent failure by machine manufacsuand “re-
quires the physical repair of a system by the field services ened usually
takes hours to complete” It is referred to as Major failurd-byd and defined
as a failure that usually requires highly skilled mainteseastaff to fix and

normally takes longer thalb minutes to repair.
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e Intermittent failure:

Commonly classified as operational failure by machine mantufars, and
“can be taken care of by the system operator and usually takastes to
complete” This is called Minor failure by Ford and defined dailre that
generally needs basic skills to perform the maintenanceiandlly takes no

more thanl5 minutes to fix.

2.3 Elements of a Machine Breakdown

Barton et al [10] point out that the time spend on collectind analysis data is
huge, therefore understanding the elements of breakdaamally help with ini-

tial data analysis. Itis believed that the time from whenftikire occurs until the
machine functions again is not only actual repair time. Paist is demonstrated
in an example given by Feltner and Weiner [54]:“the line gigh at 3:00pm on
a Thursday and was not running again until Monday morningukhwe use the
elapsed time as repair time? Is it possible that the shifshigdl at 3.30pm and,
since part of the press line was not needed for the rest of tekwaction was
deferred until the No2 shift came on board on Monday”. Thaltotme of the

failure contains a long period of time in which no repair wasied out. Since the
data collected electronically in Ford states only the stad finish time of a failure
(see Section 2.4), this is the main reason for requiring dalidation (see Section

3.3.1) before the analysis can take place.

Blache and Shrivastava [16] introduced the term of correatiaintenance as
corrections have to be undertaken to make a repair. Thegdtelihat there are
more actions than just repairing the machine to turn it “frarfailed state to an
operating or available state”. It is stated that the wholgogleof corrective main-

tenance can be separated into two main stages:
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1. The active stage

The period needed to change the machine into “a service#diie’ si.e.

actual repair time.

2. The delay stage

Waiting time caused by the absence of one or more resounsas as tools

or maintenance staff.

Law [103] splits the repair time into the same two stages. Behaviour
was cited by Hanifin [77] as an important contribution to utaiaty. Banks et al

[7] also blame human behaviour for much of the variability.

A diagram of two major types of machine repair process uséeat manu-
facturing plants is given in Ladbrook [97] and is reprodugedrigure 2.2. The
repair process has two main types: (a) the left hand sidei®idihgram, shown
as blue arrows, is the process without line side maintenand€b) the right hand
side, shown as purple arrows, is the process with line sideter@ance. The rec-
tangles indicate the basic steps of the breakdown procektharblue or purple
arrows indicate two different sequences of the basic stelps for without line
side maintenance process and purple for with line side maamtce process. As
shown in this diagram, the biggest difference between tletypes is that with
line side maintenance, there is no need to “call maintenapeeators from a cen-
tral pool” [97].

Operators can manage to undertake a minor repair and manderperators
are called if it is identified as a major repair at the initr@pection of the operator.
Machine tryouts are test runs carried out by operators ont@aance operators to
check whether the machine is fixed properly. If the machirexaies successfully

during tryouts, the whole maintenance process is congideree completed.

A sequence of very detailed elements and phases in a mang&paocess is

identified by Ferrazano in [97], although no explanationhef different phases of



CHAPTER?2 19

Breakdown Process
without Line Side
Maintenance

Breakdown Processwith
Line Side Maintenance

Operator Response

Minor Repair Undertaken

Maintenance Operator Response

Major Repair Undertaken

Machine Tryout

Machine Repaired

Figure 2.2: Diagram of elements of two types of repair precd-ord.

the whole maintenance route for a breakdown is given. A diagsf the mainten-

ance process is shown in Figure 2.3.

Carrie [25] describes a more straightforward logic for mbdgimachine break-
downs. After choosing the method to generate the failuregsimuch (Steps 1 and

2), his approach is as follows:
Step 3 “Schedule start of breakdown event at this time.”
Step 4 “When the clock reaches this time take the machine aérefce.”

Step 5 “Draw a sample from the repair time distribution andliatb the current
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Figure 2.3: Detailed diagram of elements of the maintenanoeess. Reproduced
from [97].

clock time.”
Step 6 “Schedule an end of breakdown event at this time.”

Step 7 “When the clock reaches this time return the machinetmal serv-
ice.”
Step 8 “Draw a sample from the time between repair distrdouéind add it to

the current clock time.”

This logic assumes the time generated for a machine faitutee whole e-
lapsed time of all elements of the breakdown stage. Comparéiet detailed
model shown by Figure 2.3, the greatest advantage is itslisityp Ford found
it was very time consuming and even unrealistic to colleecige data for each
phase shown in Figure 2.3. Besides, experiments have beeedcaut on sim-
ulation models with different detail levels of breakdowrrations modelling and
no significant differences have been detected [97]. Thezedagineers in Ford
make similar assumptions to Carrie’s, that all of the elesmehtreakdowns are

included within the generated time to repair.
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2.4 Historical Data Collection

There are two main methods of breakdown data collection m:Felectronic
and manual collection. The former data collection methoacisieved by using
the automatic on-line monitoring system, while the lattequires the work of
line foremen, machine operators or productivity engine€he data we use is all
collected automatically. It includes every breakdown othaes that are linked
to the on-line monitoring system on the engine assembly feeorded during a
period of three months from January to March 2008. Ther8@meachines linked
to the monitoring system for this line, and these machineshosen because they
are considered the most important to the running of the liBach entry of the
data has several attributes consisting of the ID of the nm&cthat has broken
down, the start time of the breakdown, the finish time of treakdown and a brief

description of the fault that caused the breakdown.

The manual collection in Ford includes two methods: Linesihaain’s Records
and Productivity Engineers Records. Compared to manualctiolfe the advan-
tage of electronic collection is that the monitoring systeoords every failure
of machines that have been connected to the system. Maniedtmn can also
be expensive and time-consuming. The disadvantages afatexcollection are

described by Ladbrook [97] as the following:

1. The system cannot identify lack of spares, tools colbectr tidy up or the

shift break times.

2. During a machine breakdown, the maintenance operatcgtsoes needs to
run some ‘try outs’ to see if the machines is repaired cayethe system
cannot treat the 'try outs’ as part of one failure. Hence,lmeakdown could

be recorded as more.
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3. Ifthe machine is powered off during repair, the system reagprd two stop-

pages instead of one.

4. A failure occurring on the last production shift of the \wemuld have one
of two outcomes. First, the machine is fixed during overtittb@weekend,
or second, it is fixed in the first shift of the following weeh ¢ither case,
the system records the duration of this repair as lastingvtide weekend

or lasting until the end of the last shift.

5. The monitoring system may be off during weekend overtifius, it is

often not known when the repair is completed during the awerperiod.

6. The automatic monitoring system might breakdown. In ¢aise, it is nec-
essary to rely on the engineers responsible for the linedattseer methods

to collect the data.

The data collected from the on-line monitoring system tfoeeeneeds to be
validated before subsequence analysis. The cleaning dit&ti@n of the raw
data was previously carried out manually in Ford, which wasrg time consum-
ing process especially when dealing with large data setsrtblaide thousands of
breakdown entries. We have derived a program using VisuacBdsApplica-
tions in Excel to process the data validation, which hasdtethe Ford simulation

modellers to achieve an enormous saving of time spent omtasks

The data validation may change the raw data significantly. ekample, the
histogram of the distribution of the raw repair time dataddypical machine in
an engine assembly line is shown in Figure 2.4 and the hsto@f the validated
repair time data for the same machine is given in Figure 2ng. detail of the data

validation process will be discussed in Section 3.3.
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Figure 2.4: Histogram of the distribution of the raw breakdaluration data of a
machine involved in engine assembly process.
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Figure 2.5: Histogram of the distribution of the validateddkdown duration data
of the same machine given in Figure 2.4.
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2.5 Distributions for Representing Downtimes

Finding a good representation of machine breakdown dursii® a crucial part
of modelling breakdowns when building a simulation modelput modelling is

used to specify the appropriate form of the distributioqsesenting input random
variables to a simulation model. In this section, we willegga discussion of lite-
rature reviews in general simulation input modelling anentitonsider machine

breakdown input modelling in more detail.

2.5.1 General Input Modelling

Almost all simulation models of real-world systems reqime input random vari-
ables that represent the sources of variability to be medelFor example, in a
gueuing system, sources of variability include randomamst inter-arrival times

and customer service times and their probability distrdng are required.

There is an extensive discussion of general simulationtinpdelling. The
common recommendation is that if a standéuebretical distributiorcan be found
that is a good model for the input data, then this distribusbould be used in the
simulation model; otherwise, using tkenpirical distributionbased on the data is
a good option (see, for example, [103], [157] and [12]). Whiteng an empiri-
cal distribution seems to be straightforward, an adequatell fitted theoretical

distribution is generally preferable for a number of reason

e Smooth out the data:

As the number of data points in the data is finite and sometawen very
small, the empirical distribution may contain irregulest, such as gaps,
in which there are no observations in this sample but thekesanay be

possible in other samples ([103] and [12]).
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e Represent extreme events:

Generally, empirical distributions only represent datdwmited values be-
cause the randomly generated data from an empirical digitsiibcannot be
less than the minimum of the observed data or greater thamakenum of
the observed data. Since the chance of extreme events caly iefuence
the performance of simulation systems, a fitted theoretlsttibution can

be a better method of representing the whole process ([12B]12]).

e Physical reasons:

Certain physical characteristics of the data, such as nomsaaity or de-
pendence, make it elaborate to obtain the empirical didgtdb ([103] and
[12]).

e Simpler to make changes:

It is much simpler to make changes to a theoretical disiobutif we want
to investigate the system performance in different scesavith differences
in that input data. With theoretical distributions, simplyanging the para-
meters will make all of the changes. But there is no straigivhod way for

making the changes when using an empirical distributio@3]nd [12]).

e Compact way to represent the data:

The physical process to input the empirical distributioto ithe simulation
model might be time-consuming especially with a large dataA theoreti-
cal distribution, on the other hand, is a much more compagttweepresent
the input data [103].

In relevant work using this approach, most authors focusetatively simple
problems where input random variables are independentyidantically distri-
buted and follow well-known parametric theoretical disitions, such as gamma,

lognormal, normal, Weibull, etc. Since the natures of défe kinds of data vary
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a lot, the number of choices is correspondingly large. Theeea few features of
the data that can help narrow down the possible choice to dhfatvnay have a
better fit, e.g. the shape of the histogram of data or whetieedata consist of
negative or positive values([107], [108] and [109]). Foample, if the histogram
of data skews to the right, the normal distribution can pbipae ruled out. Law
[103] gives a tutorial on “hypothesizing” distributionsattmight be a good fit of
the data. A good descriptions of the physical features ofynsgandard theoretical
distributions can be found in [52] and Chapter 9 of [8].

Law et al. [106] identified that sometimes no standard thtexaledistributions
can reflect the actual underlying distribution. If no thewad distribution seems
to be a good fit, it is recommended by most text books, suchwaq1@3], that an
empirical distribution should be used. Biller and Barry [1&oasuggest that an
empirical distribution can be a good option “when an adeggample is available,
the data are thought to be representative and there is noatlomyreason to use a
probability model (including the case that nothing app¢arfg well)”. Barton et
al. [10] express their concerns on the common approach nfjdgied theoretical
distributions as simulation input and advocate the use giecal distribution for

its simplicity and “transparent” meanings.

There is a growing recognition of problems where input randariables are
multivariate or correlated. Some recent work, such as Meiso Yamnitsky [123],
Deler and Nelson [47], Ghosh and Henderson [65], Biller antbdde[13] and
[14], Lada et al. [96] and Kuhl et al. [94], have studied thige situations.

There are also cases where no standard theoretical diginbean be a rea-
sonable fit for the data: “the data are a mixture of two or matetogeneous
populations” [103]. Cheng and Currie [35] indicate that mahthese cases can
be generalised to the situation where input random vasadéte drawn from fi-
nite mixture distributions. Most of Ford’s machine breakaoduration data are

multimodal and so can be described by finite mixture distiims. The term finite
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mixture distribution and the methodology and process ohjttmixture distribu-

tion to Ford’s machine downtimes will be introduced in Chate

2.5.2 Input Modelling of Machine Downtimes

When considering the more specific case of input modellingrianufacturing
systems most of the literature recommends modelling madiieakdown dura-
tions by assuming the time between failures (TBF) and the torrepair (TTR)

are independently and identically distributed and followedl-known theoretical

distribution, such as Weibull, Erlang or exponential.

In the very early stage of breakdown modelling, the expdakdistribution
was suggested to be a plausible distribution for all dats. sebreakdown dura-
tions ([43] and [51]). Then, more researchers and moddikecame aware that ex-
ponential distribution may not be a good model for machireakdown durations
as many real-life random variables cannot be well descrilyethe exponential
distribution ([128] and [129]). The normal distributionasother distribution that
has been widely assumed to be an appropriate distributioméalelling break-
down durations. However, this is disputed by Law et al [1@her distributions
have been studied on representing breakdowns in later Wank[92] believes that
“life to failure distribution” can be demonstrated by the@l distribution. Some
other authors like [104], [158], [159] and [105] believe ttinaachine downtimes
can be correctly represented by theoretical distributfmesided that adequately

well fitted theoretical distributions can be found.

Nevertheless, there are researchers who advocate the eisgwical distribu-
tions, such as [78], [54] and [142]. Carson [142] suggeststhiwause of an empi-
rical distribution is probably the simplest way to use thead&eltner and Wiener
[54] also prefer the use of empirical distributions as thecpss for estimating a

fitted theoretical distribution is very complex. Hanifin aniberty [78] consider
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that modelling machine breakdowns with theoretical distibns has risks and
indicate that first, there is no actual theoretical proof tha assumed theoretical
distribution fits data from a real transfer line and secomghdrtant variables in the
data are “disregarded, assumed constant or forced to fithdim work, they gen-
erated machine breakdown durations in the simulation tleaéwexactly the same
as the data they collected. The input was fixed and set as tjuesee of actual
start time and finish time of machine failures collected iregan period. There-
fore, under their approach, every run has exactly the saqmeesee of breakdown
durations. However, this means that the length of the sinaumlaun time can not
be more than the amount of time over which the breakdown detdben collect-
ed. Hence, if a particular event has low frequency and aivelgtshort length of
breakdown input is used, the simulation run length may natufigcient to reflect

the true impact of the rare events.

Some of the research on breakdown modelling of manufacjgimulation
supports the use of theoretical distributions. Bradford lsliadtin [21] studied10
transfer line machines’ breakdown behaviour and compaeegérformance of av-
erage throughput of two simulation models consisting o$&1® machines. One
of the two models uses actual historical data to model madhieakdowns and the
other uses a negative exponential distribution to modehmacup durations and
uses a Erlang-2 to represent machine downtimes. The caomiclissthat the aver-
aged line yield produced with the use of standard theolatisaributions was “as
accurate as using historical data”. However, it is alsodatdid that no one distri-
bution used (negative exponential, Weibull, Poisson atahigr2) could represent
the time between failures and the breakdown durations atayrfor all of the
machines, and the breakdown durations were modelled edlyeloadly. Some
other authors like [104], [158], [159] and [105] believe ttsamulation models
using theoretical distributions to represent machine diomes produce accurate

performance, but only when adequately well fitted theoagticstributions can be
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found.

Some projects on breakdown modelling that have been ukaerta Ford pre-
ferred the use of historical data (empirical/user-definistridution). Crosby and
Murton [39] conclude that the theoretical distribution buot truly reflect the
underlying distribution as the outputs were very differdkbnen [85] states that
an empirical distribution was believed to be the more adeusay to represent the
actual data. Ladbrook [97] expresses his concerns thatewdtical distribution

seems to be an appropriate representation of the breakdatan d

It is also indicated that much of the relevant mathematicdlstatistical know-
ledge of theoretical distribution selection and estimatd parameters are very
complex [32] and “beyond the understanding of many manufag engineers”
who happen to be the simulation modellers. Correspondiiigkes much longer
for the engineers to learn and build simulation models ifli@pg theoretical dis-

tributions.

The factor of time limitations has been emphasized in a nnwi@anufactur-
ing simulation studies, such as [111], [119], [97] and [9Bherefore, as Ma and
Kochhar [111] state, it is ideal to obtain accurate repaies representation with
simple and intuitively meaningful mathematical formuteis that can be easily

implemented in simulation software, which our proposedhoetaims to provide.
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Statistical Models of Breakdown

Duration Data

The machine breakdown duration data is a collection of nmechreakdown du-
rations over a period of manufacturing time. Currently, empl distributions
are used for representing the time to repair by Ford sinceonmmon distribution
appears to fit the data of breakdown durations well. The eagbdistributions are

input into the WITNESS simulation models in the form of a hggtim.

In the case when there are no historical data available ovanaehine is being
modelled, Ford usually use the Erlang-2 or exponentialiligions to describe the
distributions of machine breakdown durations. Only them@@akdown duration
is needed to fit the Erlang-2 and exponential distributi@ms] this is normally

provided by the machine manufacturer.

If we plot a single histogram of the entire collection of bkdawn durations
for each machine, we see two or more distinct peaks for mogteohistograms,
i.e. the breakdown duration datanmsultimodal Figure 3.1 shows the distribution
of breakdown durations for a typical machine and is clearbjtimodal. There-

fore, the more common statistical distributions, such dargr2 and exponential,

30
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will produce poor fits to these data. Instead, we use finiteumxdistributions,

allowing us to describe the multimodality.
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Figure 3.1: Histogram showing the distribution of the maehbreakdown dura-
tion data of a machine involved in engine assembly process.

We begin with a description of finite mixture distributiomsir proposed meth-
od, in Section 3.1, stating the estimation problem of fitteddi mixture models.
We use a Bayesian approach for the fitting methodology andshiscussed in
Section 3.2, including a brief description of the implenaian of the importance
sampling used to fit the finite mixture models. Section 3.3eskkes some of the
issues in the raw data before carrying out the actual fitthoggss for the machine
breakdown duration data. Section 3.4 discusses the seiatthe distribution for
the individual components. We investigate the relatiorte/ben the components
of the fitted mixture distributions for the breakdown duvas of a machine and

the different types of faults that cause failures of the maein Section 3.5.
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3.1 Multimodal Distributions

In statistics, a multimodal distribution is a continuouslpability distribution that
has multiplemodesi.e. whose density function has two or more distinct peaks;
as illustrated in Figure 3.2. Sharing the same physicalfeat multimodal dis-

tributions can be used to fit a dataset that is composed of dauof distinct

modes.

h(x)

Figure 3.2: Histogram corresponding to a probability dgmnsinction of a multi-
modal distribution with two local modes.

Mixture models are a common form of multimodal distribuSo finite mix-

ture models defined as having probability density function [115]:

k
h(z) = Zwifi(flfwz‘), (3.1)
=1
where
O<w; <1lfori=1,...,k (3.2)
and

Swi—1 (3.3)

=1
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are the weights of the components whose individual dessdtief;(xz|0;) for i =

1,..., k. The parametér is the number of components in the finite mixture model.

Being a particularly flexible and useful method of modellifigjte mixture
models have been receiving more attention recently [76]heaveé been success-
fully applied in both practical and theoretical fields (e[§36], [11], [131], [35],
[110] and [1]).

Other multimodal distributions exist for fitting data thatanot distributed
according to common stochastic models. These are genbead on using flexi-
ble families of distributions, such as th&H8er distribution ([161], [160], [123],
[95] and [103]) or the Johnson family (see Chapter 12 of [90]page 297 of
[103]). The Bezier distribution exploits the properties oéBer curves and allows
the modeller to fit the cumulative distribution functidf{z) to a wide range of
distributions of data, its flexibility being due in part toetffiact that the number
of parameters to be used is not fixed. Johnson distributiom®ased on trans-
formations of normal variables and, although they offer deniange of shapes of

distributions, do not cope as well with multimodality.

The advantage of the use of finite mixture models is that tmeyige a good
description of multimodal data, using parameters that f@vatuitive meaning,
which will make it more understandable for engineers wittteliexpertise. They
are also easy to implement in most standard simulation ggskasing a two-stage
approach, where the component is sampled in the first stefnandhe input value

is sampled from the component density.

We use software developed by Cheng and Currie [40] to estirnatesst fitted
mixture models for breakdown duration data sets. The assommade in [40] is
that all of the component densities take the same form. Ifil@evdhe component
densities to take different forms in the mixture, the timergn the fitting process

will increase massively, especially with a large selectblifferent distribution
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types and a high number of components. Therefore the pridalgnsity function

3.1 can be written as

k
h(z) = Z w; f(x]6;), (3.4)

where0 < w; < 1fori=1,....kand}"  w; = 1.

In this work, we have assumed that the components follow mdogal distri-

bution, and so

1 _neop)
91’ — 275 3.5
flaih) = — = @9
where
0; = (pi, )" (3.6)

The choice of distributions for the component densitiesukhbe dependent
on the characterisations of the data being modelled, fompi@athe shape of the
corresponding histogram and the range of the data, and teetisa is further

discussed in Section 3.4.

It is assumed that none of ti#le nor the number of componentsare known
in the model. It is possible for components to be presentenntixture that are
not represented within the data. Fitting such models isefoee a non-standard
statistical problem. The main issue of the estimating mwbis that standard
asymptotic theory does not hold when the number of compsnentot known.
Thus, suitable statistical tests are difficult to be cortded to identify the cor-
rect number of components. We adopt a Bayesian frameworkrthkés use of

importance sampling ([35] and [40]). This is discussedhertin the next section.
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3.2 Bayesian Fitting Process

We first give a brief introduction of Bayesian statistics. IryBsian statistics, the
parameters of a model are treated as random variables,sidhé parametéris
the realised value of a random variable We define the prior distribution initially,
which represents the prior information about the parantdbefore the dat® that
the model is describing are obtained. We combine the priorimation about®
encapsulated in the prior distributiarn#), with the likelihood functionP(D|6) to
obtain the posterior distributioR? (9| D), such that

~(6)P(D]6)

(3.7)

The posterior distribution represents the informationulda@iven the knowledge
of the data and the prior information. The functi®D) is a normalising factor,

which is required to ensure that the posterior distributidagrates to one [19].

Formula 3.7 states that the posterior distribution is propoal to the product
of the likelihood and the prior distribution, and so only greduct of the likelihood
and the prior distribution at any point i@, the parameter space 6f need be
evaluated to describe the shape of the posterior probadisitribution. However,
to obtain a proper probability distribution, we need to aat¢ the constant of

proportionality (D). The calculation of?(D) is given by
P(D) = / ~(0)P(D|6) do, (3.8)
©

the product of the prior probability distribution and thkelihood integrated over
parameter space. In the finite mixture distribution fittimglgem that we con-
sider here, the integral cannot be computed analyticatigt, \vae use importance
sampling to evaluate it. We describe the process briefly hederefer the reader

to [35] for more details.
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In the following we lett* denote the unknown true number of components and
let &7 denote the unknown true values of the parameters of compdrstnbution
1 =1,2,..., k* For simplicity, we also assume that we can specify a maximum

number of componentdy’, where0 < k* < K.

We use a prior distribution for the unknown parameters ontindure model
T(*k)r(k), k=1,2,...,K (3.9)

where

mk), k=1,2,...,K (3.10)

is the prior distribution fork, andr(v*|k) for given k, is the conditional prior

density of the component parameters= (0,0, ..., 0k, wi,ws, ..., wy).

Suppose we fit the finite mixture model teampleof breakdown duration data

x = (x1,x9,...,%,), then the posterior distribution is given as

p(¥F, k|z) = Pl K)m (V" |k)m (k) k=12, K (311)

S (k) [ p(aluk, B (k| k)dyk

wherep(x|*, k) is the likelihood corresponding to the mixture model witbom-

ponents.

In order to determine(«/*, k|x), the main problem is in evaluating the de-
nominator in Equation 3.11. The most popular sampling nethsed to find
the posterior distribution without evaluating the denoatan explicitly is Markov
chain Monte Carlo (MCMC), which is described in [66]. Howeverpur case, as
MCMC requires random moves between differéntalues and the form of these
moves is not easy to identify, it is difficult to implement.H@t authors have pro-
posed several methods for doing this: [75] and [130] dessrihe reversible jump
methods; [63] described an approach using indicator viesadnd [33] proposed

a simpler approach without using the indicator variables.
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We use importance sampling as the sampling method to deterime denomi-
nator in Equation 3.11 and thus the posterior distributiorportance sampling a
method to evaluate a general integfat f@ m(6) do numerically. In importance
sampling, the integral can be estimated by sampling frormdidate distribution
w(#, ) and calculating the ratio of the integrand#) at each sample poir;
to the value of the candidate distribution at that point. Byirtg n samples, the

integral/ can be estimated by

— m(0;)

I, = .

S|

The integral of interest here is the normalisation of thetgriar probability distri-
bution in Bayesian statistics involved in Equation 3.11,7#x0) is the product of

the prior,w(¢*|k) and likelihood distributionsy (x|, k).

In importance sampling, sample points are chosen from alaisbn which
concentrates the points where the function being intedretdarge, instead of
sampling them from a uniform distribution. This means thetimportant to know
something about the function being sampled prior to sargpliinerefore, we find
the modes and covariance matrices for the posterior diiito before setting the
candidate distribution. The requirement to have some kadgé of the function
means that when dealing with problems in which the form ofgbsterior is not
clear in advance, importance sampling is generally constleo be less robust

than MCMC, but it is simpler to implement in the case of mixturedals [35].

3.2.1 Implementation

A more detailed discussion of the implementation of the m@tfhogy we use for

importance sampling can be found in [40]. We describe it beiefly.

The Nelder Mead optimization method [122] is chosen as thenggation
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routine for finding the mode of the posterior distributioneloptimization routine
starts by fitting a model with one component. The startingapeters for the
model withk components] < k < K, are decided by the best estimates for the
model withk — 1 components by determining the greatest discrepancy betwee

the model and the data.

Defining
OF = arg maz[p(x|*, k) (F(k))] (3.12)

conditional on eaclk = 1,2, ..., K as the modes of the posterior distribution, the
candidate distribution for the importance sampling of a el@dth £ components
is

q(vr, k) = d(F[0F, EF), (3.13)

where® (y*|¢*, ZF) is the degenerate multivariate normal density with me&n
and covariance matrix®, equal to the generalised inverse of the information ma-
trix at the mode. The reason it is degenerate is that the weiglist sum ta
(Equation 3.3).

The candidate distribution for the number of componentsusiéorm distri-
bution such that
k=K' k=12, K. (3.14)

Thus, the complete candidate distribution for the impargasampling procedure
IS

a(¥,k) = q(k)q(¥|k) = K @04 9", =), (3.15)

The implementation of the importance sampling is quitagiitforward. Draw
a sample ofn values of(k;, wfj), j=1,2,...,m, fromthe candidate distribution

q(k)q(v*|k), then the posterior distribution sample is

p([phi, ky)r(gh, k))

m y :1,2,...,7)17 316
ST DR k) ) (3.16)

p(¥h|z) =
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where
—w(h k) (k;)

) = R alky)

(3.17)

The posterior distribution fok, the number of components is then equal to

m

plkle) = p(W*|2) b,y k=1,2,... K, (3.18)

j=1

wheredy,; is the Kronecker delta, such that

1, |f k’j — k’
Ok, = (3.19)
0, otherwise

We use the value of for which p(k|z) is maximised as our final estimate for

the number of components.

In addition to the advantage of easy implementation, amdeedure of this
method is that the posterior distribution sample given ind&opn 3.16 is a random
sample of independent variables. Also, if the shape anditotaf the candidate
distribution are similar to those of the posterior disttibn, then the values of
the posterior distribution sample will tend to be reasoypabinstant, and thus the
integration over the posterior distribution can be perfednuite accurately even

with a relatively small sample size.

3.3 Data Preparation

The machine breakdown data are collected using the autooratine monitoring
system that is connected with the machines. Due to the sysfting and human
errors as discussed in Section 2.4, the data contain soroeuirseies. \We make
some initial adjustments to the raw data, followed by a cHeclautocorrelation.

As the ranges of most of the data sets are large, we need to finetlzod to



CHAPTER3 40

transform the data in order to obtain a good fitted model. Audision of the data

transformation is given with an example.

3.3.1 Data Validation

As we discussed in Section 2.4, there are issues concerngugagy or availa-
bility using the existing two data collecting methods. Foudrently use electronic
collection as the main method for breakdown data collectibime data collected
directly from the monitoring system are known as thes data It is important

to analyse and validate the raw data and make modificatiamsciéssary, before

fitting input distributions.

Carson [142] emphasised that caution needs to be taken whdativey raw
data. For example, Feltner and Weiner [54] studied Fordssesys and pointed
out that the time difference between a failure starting andling was the total
repair time, however this is not always real as there is aipidissof shift breaks

or other activities happening within that period, as diseglsin Section 2.3.

It is reasonable to model the breakdown duration data ohalleiements as
a whole. Therefore, we only need to extract the period ot sindaks out of the
breakdown duration. We ignore any stoppage that startdaresshift and finishes
outside a shift and delete any stoppage that occurs durgakbror subtract any

part of that stoppage that is overlapping with break(s).

The raw data often contain data points with very small vathesare less than
30 seconds. These extremely small values appear to be suspicidhe engine
assembly line that the raw data are collected from has a tyateof 24 seconds,
so it is not possible that the duration of a machine failurenmller than half a
minute due to the limitation of the response time. Three m@kreasons of the

recorded stoppages being less tBarseconds were identified [97]:

1. Actual machine failures.
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2. Extended cycle time but mistakenly recorded as failures.

3. Not stoppages but recorded due to errors in the setting i@ enonitoring

system.

However, a comprehensive investigation is required to firtdlee exact reason.
The current assumption made by Ford engineers is that theseperiods are ex-
tended cycle times and thus should be removed from the daté&rs@chine failure
times. We decided to make the same assumption when progdhsimaw break-

down data.

3.3.2 Data Correlation

We wish to check whether the sequence of breakdown duradem®nstrates any
autocorrelation. This may occur for individual machinedof example, the ma-
chine is wearing out. In this case, breakdown durations nedyogger and longer
as the machine gets harder to fix. Alternatively, it may hagpethe whole line if
the maintenance team reacts to a lengthy period spent fixieg@achine by work-
ing slowly on the next or it takes longer for a machine to bedikecause a long
time is spent waiting for resources during an extremely pesyod for the main-
tenance team. We thus wish to check whether there are arsfations within the

valid breakdown duration data for all machines as well agfdividual machines.

We denote a sequence of observations of machine breakdoratichs, a
time-seriesasxy, o, ..., x,. The intervalj unit(s) (in this case; breakdowns)
between two observations andx,, ; is referred to as thiag; and for a sequence
of n observations, there ane — 1 possible lags. The lag autocorrelation is
defined as the correlation between z,, ..., z,_; andz,,2s,...,z,. Corre-
lation betweenr; andz;,; would indicate that the time to repair a machine is
possibly dependent on previous repair time data and thddogan duration data

cannot be considered as independent random variables.
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For the breakdown duration data of all of ttf®machines in the assembly line,
there arer493 observations. Figure 3.3 is the plot of autocorrelationaligbossi-
ble lagsl, 2, .. ., 7492 of this data set with approximate= 0.05 critical bands for
the hypothesis that the correlations are equal to zero,rgteby Minitab. It is
seen from this plot that the autocorrelations of some lags&x the approximate
a = 0.05 critical bands, which suggests that the absolute valuetotaurelations
of these lags are statistically significantly greater tharoz However, the largest
of all, lag1211 autocorrelation, i9.0958, which is a quite small value. Since there
are7493 observations included in the data set, we wish to check venédtis the

influence of outliers that causes the lgxj 1 autocorrelation to be relatively high.

We thus examine the lai11 autocorrelation more closely by making a scatter
plotof X1, Xs, ..., X5981 @gainstXo19, X213, . . ., X7403, Which is given in Figure
3.4. As shown in this scatter plot, there is no obvious catieh between the
majorities of points in the two time series. It is possiblatitne one outlier circled
in Figure 3.4 might be the reason that |&g11 autocorrelation is high. Thus,
we delete that one outlier. Carrying out a Pearson correlatiatistic test for the
two time-series of lag211 after deleting the outlier, the p-value(s326, which
suggests there is no significant correlation between thdaitmeseries. Based on
this more detailed analysis, we believe we may still assumethe breakdown
duration data for all of th&9 machines is made up of independent observations,
i.e. the repair time of the current failure of any machinesdoet have influence

on the repair time of th&211st failure later of any machine in the assembly line.

The relationship between the current repair time and thénegair time is of
most interest. If there are other factors that might affeetlireakdown durations,
such as the availability of maintenance operators or theohgemachine, the lag
1 autocorrelation should be able to indicate this by havingmy Yarge value. In
other words, in this case it is whether the lagutocorrelation is zero that is of

most interest rather than any other autocorrelation witheatgr lag. Therefore,
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we focus on the calculation and analysis of thelayitocorrelation for the whole

data set of th89 machines as well as for the data sets of individual machines.

0.2

Autocorrelation

1 1000 2000 3000 4000 5000 6000 7000
Lag

Figure 3.3: Autocorrelation of lags 2, . . . , 7492 within the data set of breakdown
durations for all39 machines in the assembly line. Red curve indicates the 5%
significance limits for the autocorrelations.

The lagl autocorrelation for the whole data set of ifemachines i%).0448,
which is an extremely small value. Although th& significance limits shown
in Figure 3.3 suggests that0448 is statistically significantly greater than zero,
it is possibly because the whole data set for all machinesacesuch a large
number of observationg493) that the statistical test rejects the hypothesis that
the correlations are equal to zero. Thus, we assume that iheo influence on

the next repair time of any machine from the duration of theent repair.

For the individual machines6 out of 39 have lagl autocorrelations that are
not significantly different from zero. For example, Figut 8ives the autocorre-
lations of lag1l and all other possible lags for the breakdown duration data o

machine MLO8, in which we can see that the values are allyfaimall and can
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Figure 3.4: Scatter plot of observatioms. observation+ 1211 in the breakdown
duration data set for al9 machines. The circled point indicates an outlier.

be considered as zero according to the 5% significance linkitswvever, there
are3 machines: ML17, MLO7 and ML36, which have lagautocorrelations that
are significantly different from zero. Therefore, we exagrtine data sets for these
three machines more closely to decide whether we can as$iemgei$ no apparent

autocorrelation within the breakdown duration data fosth#hree machines.

For machine ML17, the lag autocorrelation i9.104, which is still fairly close
to zero. Since the breakdown duration data set for ML1718&8 observations,
it is possible that the statistical test rejects the hypaiththat the correlations are
equal to zero because of the size of the data set. As thiselgtasa large number
of data points, with the majority falling into a very smalhige, the test can pick
up spurious correlations. Thus, we believe that for macMhd7, there is no
apparent correlation between the repair time for previailsre and that for the

current failure.

For machines MLO7 and ML36, we believe the relatively higihlautocorre-
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lations are probably due to the effect of an extremely smathlper of outliers.
Within these two machines, machine MLO7 appears to be marklgmatic as
ML36's lag 1 autocorrelation is less than20 while MLO7’s is greater thaf.30.

Thus, we use the investigation of the data of machine MLO7nafiusstration to

demonstrate the impact of outliers.
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Figure 3.5: Autocorrelation of lagk 2, . . ., 58 within the data set of breakdown
duration for machine ML08. Red curve indicates the 5% sigaifte limits for the
autocorrelations.

Figure 3.6 gives the autocorrelation of lage, . . . , 60 for the breakdown du-
ration data set of machine MLO7, and it can be seen that oelyatp1 value is
suggested to be significantly higher than zero. We make tagesplot of the
two lag 1 stochastic process given in Figure 3.7. There ishwioas correlation
between the majority of points in the two time series thatlwaseen in this scatter
plot. It is possible that the two outliers circled in Figur& 3night be the reason
that the lagl autocorrelation of MLO7 is relatively big. Thus, we delet®de
two outliers and get the new scatter plot in Figure 3.8, inctihere seems to be

no obvious correlation. After deleting the two outlierse g-value result of the
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Pearson correlation statistic test for the two stochastcgsses of lag is 0.826,
which suggests that there is no significant correlation betwthe two stochastic

processes.
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Figure 3.6: Autocorrelation of lagk 2, . . ., 60 within the data set of breakdown
duration for machine MLO7. Red curve indicates the 5% sigaiioe limits for the
autocorrelations.

Since it is illustrated that the lagautocorrelation for machine MLO7 is rela-
tively high because of the two outliers, we believe that westdl assume that the
breakdown duration data for machine MLO7 are independesgmvtions, i.e. the
time to repair the current failure of machine MLO7 does nohany effect on the
time to repair the next failure of MLO7. We also believe thas due to the impact
of only one outlier in the data set for machine ML36 that theoearrelations are
statistically non-zero, as after deleting that outlieg kg1 autocorrelation drops
dramatically from0.193 to 0.028.

Therefore, from the analysis of the autocorrelation vakmsd testing results,

we are able to assume that there is neither obvious coorlb&tween the failure
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Figure 3.7: Scatter plot of observatiowvs. observation + 1 in the breakdown
duration data set for machine MLO7. The circled points aeafified as outliers.

durations of one machine and that of any other machine ingkerably line nor
apparent correlation between the current repair duratahtlae next repair dura-

tion for the same machine; i.e. the breakdown durationsratependent of each

other.

We also wish to check whether there is any correlation betweebreakdown
durations of a machine failure and the time this failure ol e.g. durations
may be longer at the end of a week. The time series plot for tiierbreakdown
duration data set df9 machines shown in Figure 3.9 shows no apparent correla-
tion between the two. Similar results can be drawn from time tseries plots for
individual machines. Thus, it is believed that the time &ufai happens does not

have any impact on the time that it takes to repair it.

Based on the above analysis of correlations for the breakdwation data,
we may assume that the breakdown durations are indeperateddm variables

and furthermore have no obvious correlation with the tingeféilures occur.
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Figure 3.8: Scatter plot of observatiows. observation + 1 in the breakdown
duration data set for machine MLO7, after deleting the twthiens circled in the
previous scatter plot in Figure 3.7.
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3.3.3 Data Transformation

After removing the invalid data points, the data has a widweaof values. We
transform the data in order to reduce its range so as to inegt@/accuracy of the
fitting process. We considered two transformations: (lialogs; and (2) taking

the square root.

When taking logs, durations of less than one minute are wamsfd to nega-

tive values. This limits the choice of component distribatthat can be used.

Taking the square root of the original data shrinks the dataige and ensures

all of the transformed data are positive.

Here we show the advantage of the data transformation usiegample. We
fit mixture distributions for a sample of valid breakdown alion data and also
for the transformed data of the same sample and then compautsvo fittings.
We here assume the components of the mixture model are loghdrstributions.
We obtain the best-fit lognormal mixture distribution foethalid untransformed
data first, which ha8 components. The histogram of the original data and the plot
of the fitted model’s Probability Density Function (PDF) gieen in Figure 3.10.
Plots of the original data’s Empirical Distribution Furari (EDF) and the fitted
mixture model’s Cumulative Distribution Function (CDF) onufdifferent scales

are given in Figure 3.11 (a, b, c, d).

Both Figure 3.10 and Figure 3.11 show that the fitted mixturdehis not very
accurate. In Figure 3.11, (a) and (b) show that the fitted ifitdehe part where
data are greater tham minutes quite well; (c) and (d) suggest that the distributio
is a poor fit to the data that are smaller tilaminutes. More tham7% of the
data in this example is smaller th&@minutes, which means that the fitted mixture

model appears to fail to fit the majority of the sample well.
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Figure 3.10: Histogram of the valid untransformed data datlqs the PDF of the
fitted 3-component lognormal mixture model.
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Figure 3.11: Plots of the EDF and the best-fit CDF of the unfoansed data on
four different scales. Red line for EDF and black line for CDRlfour plots.
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We then obtain the best-fit lognormal mixture model for tlEmsformed data
(square roots of the same data). This fitted mixture model ltasnponents. The
histogram of the transformed data and the plot of the bestifiture model’'s PDF,
and plots of the transformed data’s EDF and the fitted mixtooelel's CDF are
given in Figure 3.12.

Both of the charts in Figure 3.12 show that the best-fit digtidm is a rea-
sonably good fit to the transformed data, which means thaffitiung method
deals with the transformed data set better than with theanostormed one. Also
for the implementation in simulation models, the transfioigrs straightforward;
simulations first generate the transformed data from thedfithodels and then

transform back to the breakdown duration data by taking gwiares.
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Figure 3.12: The first chart includes the histogram of thadf@med data and
the PDF of the fitted 4-component lognormal mixture modele $hcond chart
includes the EDF of the transformed data and the CDF of thelfitgnormal
mixture distribution; red line for EDF and black line for CDF.
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3.4 Component Distribution Selection

In order to get an adequately fitted mixture distributiors itnportant to choose an
appropriate component distribution. In our program fomeating fitted mixture

distribution, there are seven choices for component tigion: extreme, negative
extreme, Weibull, normal, lognormal, gamma and inversesSian distributions.
The most appropriate distribution for representing the ponent distributions is

selected from within these seven types.

The histogram of the transformed breakdown duration datargdly skews to
the right and has a long talil, therefore normal or negatiteeexe are considered
to be inappropriate distributions as the PDF curve of theméaris symmetric and
that of the latter distribution skews to the left. The renragndistributions: ex-
treme, Weibull, lognormal, gamma and inverse Gaussiam sede reasonable
choices, as the PDF curves of these five distributions ak lzasimilar shape to
the breakdown duration data. To find the best distributiamscomponents out
of the remaining five choices, we fit mixture distributionsngsthe five different
component distributions for the same sample of transforbmredkdown duration

data used in Section 3.3.3 and then compare the five fittedbditbns.

The histogram and EDF plot of the data and the plots of thedfitéxture
models’ probability density functions and cumulative dgnfinctions using the
five different component distributions: lognormal, Welbgiamma, extreme and

inverse Gaussian are shown in Figures 3.12, 3.13, 3.14aBd 8.16, respectively.

Comparing the five fitted distributions, it appears that tidiséributions: the
extreme, inverse Gaussian and lognormal mixture distahst are the most robust
as their best-fit distributions contain onlycomponents each and fit the data very
well. The Weibull mixture distribution contairsscomponents and gamma mixture
distribution containg and both still seem to fail to fit the highest peak in the data.

Furthermore, as the mixture distributions are ultimatelguired to be input into
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the simulation models built in the WITNESS software, it isezgsl to choose a
distribution that is convenient and simple to code in thévgarfe language. Thus,
the lognormal distribution is selected to be the componesttibution to analyse
the breakdown duration data as it is the only one of the tregeaming types of

distributions that can be easily input into the WITNESS medel
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Figure 3.13: The first chart includes the histogram of theesaample of trans-
formed data shown in Figure 3.12 and the PDF of the fitted 8pmorant Weibull

mixture model. The second chart includes the EDF of the toamed data and
the CDF of the fitted Weibull mixture distribution; red linerf@DF and black line
for CDF.
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Figure 3.14: The first chart includes the histogram of theesaample of trans-
formed data shown in Figure 3.12 and the PDF of the fitted 6pmomant gamma
mixture model. The second chart includes the EDF of the toamed data and
the CDF of the fitted gamma mixture distribution; red line f@MEand black line
for CDF.
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Figure 3.15: The first chart includes the histogram of theesaample of trans-
formed data shown in Figure 3.12 and the PDF of the fitted 4pcorant extreme
mixture model. The second chart includes the EDF of the toamed data and
the CDF of the fitted extreme mixture distribution; red line ®DF and black line

for CDF.
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Figure 3.16: The first chart includes the histogram of theesaample of trans-
formed data shown in Figure 3.12 and the PDF of the fitted 4pmorant inverse
Gaussian mixture model. The second chart includes the EDReafransformed
data and the CDF of the fitted inverse Gaussian mixture digioi; red line for
EDF and black line for CDF.
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3.5 Relating Components with Faults

The motivation of this section is to investigate whetherthea@mponent in the fit-
ted mixture distribution for the breakdown duration datalbffaults reflects one
particular fault or one particular group of similar faulidle here use a sample of
breakdown durations data collected within a period of thmeaths for machine
MLO1 as an example to show the relations between the groufaaildé and com-
ponents in the fitted mixture distribution for the data. Tlaadset include$70
failures that are caused by the occurrenca2lifferent faults. In this data set,
repair duration varies frori2 seconds up to a maximum &9 minutes for all fail-
ures. For failures caused by the same fault, the duratiansviodifferent repairs

can differ by more thamn0 minutes.

We obtain the best-fit lognormal mixture distribution foethreakdown du-
ration data set of MLO1, which hascomponents: 2 distinct components with
means at 0.93 and 1.81, and one with a fairly flat shape sprdaul/er the whole
data range. The probability histograms for the repair domatof failures that are
caused by each of the different faults and the PDF plot of the fitted lognormal
mixture distribution are given in Figure 3.17, where thdtfaare distinguished by
different colours. As shown in this figure, the repair timasadfor thel 2 different
faults are fairly spread out. Nevertheless, it can be sesrittia histograms of some
faults have only one peak corresponding to either compch@&ntcomponent 2;
while the histograms of some other faults, such as 18998239621, have two

peaks corresponding to both components 1 and 2.

On the whole, it is reasonable to say that there are no reflarkalations
between the components in the fitted mixture distributiartiie data and the in-

dividual faults that cause the failures recorded in the.data
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Figure 3.17: Histogram of breakdown duration data for maetL01; the dif-
ferent colours represent different groups of faults, arddiot of the PDF of the
fitted 3-component lognormal mixture distribution.
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Estimating the Similarity Matrix

Before classifying the machines, we measure their simyldoyt calculating the
goodness of fit statistic between the two sets of breakdowatidn data. The
breakdown duration data sets have uneven numbers of dates poid we do not
wish to assume distributions for the data at this stage. Tiwe Sample Crai@r-

von Mises goodness of fit statistic [5] can cope with theseatttaristics of the
data, although p-values are only tabulated for a few exasn@®otstrap resam-
pling allows estimation of the sample distribution of almasy statistic using only
very simple methods. We therefore use bootstrap resamf@idjgo estimate the

p-values for each comparison.

We first give a brief literature review in Section 4.1. Sectib?2 gives an in-
troduction of the Cram@r-von Mises statistic as well as some other goodness of
fit statistics. The basic process of bootstrapping and msngon applications are
introduced in Section 4.3. We then describe the methodadllogtywe have used
to generate the similarity matrix in Section 4.4. An explstudy of the method
is given in Section 4.5 by testing on random samples gercefeden known dis-
tributions. The method is applicable in a wide range of situnes, not strictly for
analysing breakdown duration data. Two real-life examplesgiven in Section

4.6: (1) assessing similarities between six machines usieig real breakdown

62
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duration data; (2) analysing the similarities between habprocedures based on

patients’ lengths-of-stay in a group of private hospitdls]|

4.1 Index of Similarity

The raw data matrix is an x p matrix, X, that consist of observations,, where
x;, denotes the value of thigh variable observed for thigh object. The raw data
matrix is required to be transformed into ank n matrix of pairwise dissimilari-
ties or pairwise similarities for many classification metho The dissimilarity or
similarity matrix consists of;;, whered,; denotes the dissimilarity or similarity
between théth and;jth objects. Twelve similarity structures, are listed in [79].
A large number of empirical studies have proposed diffeneetthods of proceed-
ing from X to S ([48], [30], [22], [24], [148], [121], [59], [117], [31], [DO], [72],
[20] and [91)).

One of the most commonly used similarity structures is theiBean distance.
When all variables are quantitative, it can be measured luleding the sum of
the Euclidean distances between the data points from algeckthose from object
j. Other similarity structures tend to work on a similar piple but different
distance measures are used. Exceptions are where the rawndaix is not an
n X p matrix, where the number of data points of objéc not necessarily the

same as the number of data points of objecuch as in the data we have.

We measure the similarity of the breakdown duration datangfta&vo ma-
chines using the Two-Sample Crarvon Mises goodness of fit statistic [5]. Boot-
strapping is used to determine the p-value, i.e. the sigmife level, of the statistic
of the pair of machines, which gives the probability that bheakdown duration
data for these two machines are drawn from the same disorbuhe similar-
ity matrix is then made up of the p-values of every pair of niaes and thus is

symmetric and real-valued.
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4.2 Goodness of Fit Statistics

Generally, the goodness of fit problem is to test the null tiypsis that a sample
comes from a population defined by a distribution functiomeig a random sample
and a distribution function. The goodness of fit statisticasnpared with tabu-
lated criterion values to describe how well the distribatfds the given sample.
For most commonly used tests for this problem, such agthests, information
about the underlying distribution is required before corgding the test [151]. We
use the Crarar-von Mises statistic to test whether two samples of breakddur-
ation data from two machines come from the same unspecifgdhdition. The
advantage of the Cran-von Mises statistic is that it is distribution-free ahéite-
fore there is no need to make any assumptions about thebdisbms of the data

sets being analysed [5]. It also allows for the data setigawneven sizes.

The most obvious contenders to the Céraon Mises statistic are three non-
parametric statistics: the Kolmogorov-Smirnov [151], Swoi®m D concordance
statistic [153] and Mann-Whitney tests [114]. The Mann-Wéytriest aims to
determine whether the data points in one set of data areegréen those in
the other, whereas we wish to establish whether the datangpfrom two ob-
jects could have been drawn from the same distribution; therWhitney test
is therefore less appropriate here. In the general situsitiee consider here, the
data sets may have different number of data points; thusSdneer’s D concord-
ance statistic, which describes the strength of concongdaions between pairs
of variables and deal with data sets with identical sizesss lpplicable here. The
Kolmogorov-Smirnov statistic is the closest in form andeabive to the Crar@r-
von Mises statistic but has been shown in simulation studibave a lower power
([151] and [42]).

Given two samples of breakdown duration d&fa= (zy,zs,...,z,), and

Y = (y1,v2, - - ., ym) for machines\/, andM, respectively, the Craér-von Mises
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T criterion for testing that the two samples,andY’, come from the same unspeci-

fied continuous distribution is

e}

T = fam/(n + m)] / (Fu(0) — G (0) P dH (1), (4.1)

— 00

whereF,, (v) is the EDF of the first sample; that i8;,(v) = (no. ofz; < v)/n;
G (v) is the EDF of the second sample ahf},,(v) is the EDF of the two
samples together; that i8; + m)H,, 1, (v) = nk,(v) + mG,,(v).

As H,.,(v) gives each observation in the pooled sample a weighy of +

m), Equation 4.1 can be calculated by

7 = o+ m)? {Z[FM Gl + Y Pl - Gm@w} ,
- = 4.2)

Letr; ands; be the ranks in the pooled sample of the ordered observatfons
the two sampleX andY’, respectively, where=1,2,... , nandj =1,2,...,m.
Then

F.(v) = Gn(v) =i/n— (r; —1)/m, (4.3)

wherev = z;, theith z-observation and
EFy(v) = Gr(v) = (s; — j)/n—j/m, (4.4)

wherev = y;, the jth y-observation. Thus we can write the criteribras

T U _4nm—17 (4.5)
nm(n+m)  6(n+m)

where

n m

U:nZ(Ti—i)2+mZ(sj—j)2. (4.6)

i=1 j=1
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To test the null hypothesis that the two samples are drawn the same dis-
tribution, all of the observations are ordered, the ranks. r, < ... < r, of the
n observations from the first sample and the ranks: s, < ... < s, of them
observations from the second sample are then determined adomputed. If
T is too large, we reject the null hypothesis, that the samgrlesirawn from the

same distribution.

Generally, tabulated criterion values are used to decidesigmnificance level
of the goodness of fit statistic. However, for the Two-Santpianer-von Mises
goodness-of-fit test, tabulated criterion values are npt egtensive and do not
cover the samples that we are dealing with: for example, stagdard criterion
values for samples with up tdata points and that for samples both with infinite
number of data points are given in Anderson [5], while the hanof data points
of breakdown duration data sets for machines varies #am1310. Therefore,
bootstrapping is used to determine the p-values of the Eranaon Mises statistics

for the breakdown duration data sets of each possible painashines.

4.3 Basic Bootstrapping

Bootstrapping is a practical and effective method for edimgahe standard error,
the confidence intervals or the distribution of statistiestimates of variables by
resampling ([44] and [34]). Efron and Tibshirani [50] stdlwat bootstrap is a
computer-based implementation of basic statistical qotsceSuppose we have
a random sample that is generated from a unknown probadistyibution. We

have calculated a statistic of interest such as the meantfrerabserved data and
we wish to know the statistic’s behaviour, for example itstiibution. A number

of bootstrap samples can be drawn from the empirical digioh of the observed
data and thus the same number of replications of the statiah be calculated

to form a distribution of the statistic, the process of whishdescribed in the
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following.

Let s(Y) denote the statistic calculated from sampfes= (Y3,Y5,...,Y,).
Assume that thé&; are mutually independent samples, i¥éis a random vector.
Bootstrapping is a numerical method for findi6gs), the distribution of the sta-
tistic s(Y'). Generally,F'(y), the distribution ofY’, is unknown, butt;, (y|y), the
EDF of the observed data= (y1, v, - . .,y,) iS available. We generate a sample
from F,,(y|y) instead off'(y), which is equivalent to drawing a sample of the same
sizen from the original set of)’s with replacement, ag is a set of observations
that can be assumed to be independent and identicallyldistd. We call such
a sample @ootstrap sampleand write it asy* = (y'*,y*,...,y"). Asin the
basic process aboveé? numbers of such bootstrap samples are drawn, and the
statistics’* = s(y’*) is calculated from each bootstrap sample. Therethpirical

distribution function(EDF) of the bootstrap statistiss = (s'*, s>*, ..., s%*) given

by
(no. of s7* < s)

Gp(sls’) = B

4.7)

is our estimate of+(s), as it will converge td~(s) with probability one as3 tends
to infinity ([50] and [34]).

The Bootstrap Sampling Processs then:
Given a random sample= (y1, ya, . . ., y,) from F(y)
Form the EDFF, (y|y)
Forj=1toB

Fori=1ton

Drawy’* from F), (y|y)

Nexts

Calculates’™ = s(y’*)
Next j
FormGp(s|sf)
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Bootstrapping may also be used for constructing hypothests {34]. Efron
and Tibshirani [50] describe the application of the boaistio hypothesis testing
on a two-sample problem, where there are two random samplestivo proba-
bility distributions and we wish to test the null hypothesiat the two distributions
are identical. Bootstrapping can be used to estimate thedison of the test sta-
tistic # and hence the significance level of the test. The value ofttestatistic is
initially calculated for the two samples of observationsoBtrap samples are then
drawn from the two empirical distributions for the two obs=t random samples,
and for each pair of bootstrap samples, the test statistelesilated. We can draw
as many bootstrap samples as we want and hence we can @aksilaiany boot-
strap replications of the statistic of interest as we wahus the distribution of the
statistic can be determined in a direct and intuitive wayvikig observed and
the distribution off, the significance level of the test can be computed straight-
forwardly. This problem is similar to the problem we considethis thesis and
we use a similar bootstrapping method to estimate the signife level of the

Craner-von Mises statistics.

4.4 Bootstrapping for Estimating the Similarity Ma-
trix

We wish to measure the similarity of the two samples of breakdduration data

X = (21,22,...,2,), andY = (y1, ya, . .., yn) for machines\/, and M, respec-
tively by estimating the significance level of the Two-Saen@ranér-von Mises
goodness of fit statisti¢. As we mentioned earlier, tabulated criterion values are
not very extensive and do not cover the samples that we atmgledth. Thus,

in order to assess whether the Céa&amon Mises goodness of fit statisfit is

too large, we need to estimate its p-value by using bootsingdo determine the
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distribution of ', ®(T"). The p-value gives the probability that the breakdown dura-
tion data for the two machines are drawn from the same digioib and therefore

is considered to indicate the similarity between these twohimes. The p-values
of any two of the machines are stored in gimilarity matrix This is then input
into the Arrows classification method to group the machimésch is discussed

in the next chapter.

For each pair of machine&/, and M,, we combine the breakdown data,

X andY, in order to form the pooled sample of the breakdown duratiata,

Z = (21,22, ., Zn+m). The EDF ofZ is denoted byH,,,,(z). In each iteration

of the bootstrapping, we generate two samples out of thénatigooled set of ob-
servations/Z, with replacement: one of size written asX™ = (z7],25,...,2}),

and the other of size:, written asY™ = (y7,vs, ..., y;,); this is called one pair

of bootstrap samplesWe calculate the Cra@n-von Mises statistic]™, for each
pair of bootstrap samplex* andY*. In order to estimaté(7"), we generate3
pairs of bootstrap samples frof: (X*! Y*) (X*2 Y*2) ... (X*B Y*B) and
calculate the statisti¢™/ for each pair of these samples. The EDF of the sample

T* = (T*, T+, ..., T*P) is then written as

o1 = (MO Ofg 9<T) (4.8)

Since the bootstrap distributiohz(7") will converge to the true distribution
®(T) with probability one as3 tends to infinity ([50] and [34]), we can ude;(T)

as our estimate cb(7).

The Bootstrapping Process can be briefly described as:
Forj=1toB
Fori=1ton
Draw z*/ from Z (with replacement)

Next:
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Fori=1tom
DraWyjj from Z (with replacement)
Next:
Calculatel™ by comparingX */ with Y*/
Next j
Form the EDF ofl™, ®5(T).

The p-value describing the fit of data from machiWfe to data from machine
M, is then obtained by checking the calculatédith (7). The whole process
of estimating the p-value is illustrated in Figure 4.1. Tjmiecedure is carried out

for all pairs of machines to form the similarity matrix.

As a measure of the similarity between machitle and machineV/,, the
higher the p-value, the greater the possibility that theakdewn duration data
of the two machines have been drawn from the same distribatia thus the
more similar the two machines. For example, Figure 4.2 shbatsthe p-value
corresponding t@’ is under0.10, which means that the data from the two machines
being compared are significantly different at a similarigeshold level 06.10 and
have not been drawn from the same distribution. In contFagtire 4.3 shows that
the p-value off" is over0.90, which means that the data from the two machines
being compared can be assumed to have been drawn from thedsstintmition,

with a probability of more than.90.
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(@)

X
T
Y

Figure 4.1: (a) The bootstrapping process used to deterimeneull distribution of
T, ®(T), and (b) the evaluation of the Cré&mvon Mises statistic for the original
samples, which is compared widi7") to determine the p-value for the similarity
of the two machines.

(b)
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4.5 Testing the Estimation of Similarity

The testing procedure consists of five phases:

e Phase 1. Assess the impact of the number of bootstrappnagides on the

p-value results and find an appropriate number of bootsaaypkes to run.

e Phase 2. Check the influence of the sample size, i.e. the nuohllata

points in the sample, on the resultant p-value.

e Phase 3. Examine the performance of the method when dealtimgamples
that are drawn from the same type of distribution with thesaariance but

different mean.

e Phase 4. Investigate the method using samples that areageshdrom the

same type of distribution with equal means but differeniarazes.

e Phase 5. Test the method with samples generated from diffeypes of

distributions.

4.5.1 Phase 1: the impact of the number of bootstrap iterations

We can use the EDF of the bootstrap sample$',ob(7") as an estimateof the
true distribution®(7") when B is big enough. We here investigate how lafge
should be ford(T') to be a good approximation (7). In general, there are
three types of data sets in terms of their similarities: @y\similar samples, (b)
neither very different nor very similar and (c) distinctlyffdrent. We randomly
generate four samples of siz@0 from the3 different distributions given in Table
4.1 below: two samples from distribution N1 and one each fiZrand N3. We
choosel00 as the sample size as it is of a similar order to the machinatidar

data sets we analyse in the assembly lines. An investigafidthe influence of
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the sample size on the resultant p-value is given in the nexse of this testing

process.

We examine three pairs of samples corresponding to the tipes of data
sets listed above: (a) very similar - N1S100a and N1S1000b,gmmples both
from N1; (b) neither very similar nor very different - N1SE)@nd N2S100, one
sample from N1 and the other from N2; and (c) distinctly dife - N1S100a
and N3S100, one sample from N1 and one from N3. With each paanaom
samples, we use seven different and widely spread numbet$tioapping num-
bers: B = 50, 100, 200, 300, 500, 1000, 2000. For each of the three pairs of
samples, we run the comparison seven times, once for Baébr each of these
seven comparisons, we repeat the mettisdtimes, which give§ sets of p-values
for the comparison of each pair of samples. The inter-geaidinges of the total

21 sets of p-values are given in Table 4.2.

Code Distribution Notation Mean Variance Sample ID

N1S100a
N1 Normal  N(5.0,1.0) 5.0 1.0 & N1S100b
N2 Normal  N(5.1,1.0) 5.1 1.0 N2S100
N3 Normal  N(7.0,1.0) 7.0 1.0 N3S100

Table 4.1: The different distributions from whicl random samples in total are
generated.

We then study the influence of the choicelby comparing the inter-quartile
ranges of the p-value results using all the differBntAs shown in Table 4.2, aB
increases, the results for the comparison of the two paissimiples become more
stable, and the variability decreases, as the inter-dgaeinge tends to shrink as

B gets larger.

As the two samples, N1S100a and N1S100b, are generated fi®msaime
distribution N1, in theory, they should be very similar taeclkather and thus the

comparison should give very high p-value results. The igteartile ranges of the
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N1S100a vs.
B N1S100b N2S100 N3S100
50 (0.940,0.975) (0.000,0.159)  (0,0)
100 (0.935,0.964) (0.007,0.113)  (0,0)
200 (0.947,0.976) (0.029,0.119)  (0,0)
300 (0.953,0.972) (0.043,0.114)  (0,0)
500 (0.955,0.969) (0.063,0.105)  (0,0)
1000  (0.958,0.971) (0.062,0.105)  (0,0)
2000 (0.958,0.969) (0.070,0.105)  (0,0)

Table 4.2: The inter-quartile ranges of each set ofltiep-values resulting from
100 random runs with each different number of iterations of btvapping when
comparing each of th& pairs of random samples.

p-values using th& choices ofB for this pair of samples are within the range of

(0.935,0.976), which shows that the two samples are very similar, as egpect

The two distributionsNVormal (5.0, 1.0) and Normal(5.1,1.0) are not iden-
tical, but are very close, therefore, in theory, the two das)pN1S100a and
N2S100, should be neither very similar nor very differend &mus the p-values
for the comparison should be neither very high nor very lowie Tnter-quartile
ranges for this pair of samples given in Table 4.2 show thatntiajority of the
p-values are within the range @, 0.159), which is as expected. Samples of this
type are neither very similar nor very different and thugitembe on the edge of
groups in classification analysis, i.e. they are fairly &amio a large number of
other data sets but not very similar to any. Assuming we(ukeas the threshold
significance level in classification analysis, such that tdata sets with p-value
smaller thar0.10 can not be placed in the same group, samples such as N1S100a
and N2S100 might be put in two different groups with one ruthadbtstrapping
process and then be placed in the same group with a subsegoeas the p-value
might be smaller thaf.10 with one run and then might become larger tlaro
with a subsequent run. Although N1S100a and N2S100 are diranntwo dif-

ferent distributions, N1 and N2 are so close that it wouldlm®unreasonable to
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place them in the same group. Nevertheless, the differencdvstill be distin-
guished as the p-value would be relatively low. Moreoves Higher similarity
level within the final groups is required, a threshold siguaifice level higher than

0.10 can be set for the classification analysis process to acthate

For the third comparison, since the two distributiabisrmal(5.0,1.0) and
Normal(7.0,1.0) are very different, the two generated samples N1S100a and
N3S100 should be very different and thus the p-values foctimeparison should
be very low. The inter-quartile ranges for this pair of saespjjiven in Table 4.2
are all equal to zero, which shows that these two samples&neneely different,

as expected.

To conclude, the method provides sensible p-values fohedkettypes of sam-
ples even for small values @. The p-values do, however, become more stable
when more bootstrap samples are run. The bootstrappinggsaethB = 2000
will take much longer than that witly = 50, especially when a large number
of data points are involved. Nevertheless, while runningerimotstrap samples
may improve the stability of the p-values, the resultantapsgs when using a
bootstrapping number as small@sare quite reasonable. Therefore, to reduce the

computational cost, we uge = 100 to estimate the p-values in this work.

4.5.2 Phase 2: the influence of the sample size

As the method has been derived to estimate the similarityd®at data sets with
uneven numbers of data points, we design this phase to issaltiity. Since
our comparison method is a distribution-free approachdiita sets in question
may be drawn from any distribution. Hence, we use samplesrgéd from four
different types of distributions. A set of six samples, twiesize 20, two of size
100 and two of size00, is randomly generated from each of the four distributions

listed in Table 4.3 below. In this phase, we only compare diistributions.
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Code Distribution Notation Mean Variance
N1 Normal N(5.0,1.0) 5.0 1.0
Gal Gamma  Ga(10.0,0.5) 5.0 2.5
E1  Exponential E(0.2) 5.0 25.0

LN1 LogNormal LN(1.109,1.0) 5.0 43.0

Table 4.3: Thet different distributions from whicR4 random samples in total are
generated.

N1520a N1S20b N1S100a N1S1000 N15200a N1S200b

N1520a — 0.69 0.91 0.95 0.84 0.78
N1520b 0.69 — 0.76 0.79 0.75 0.70
N15100a  0.91 0.76 — 0.97 0.73 0.70
N1S51006  0.95 0.79 0.97 — 0.87 0.56
N15200a  0.84 0.75 0.73 0.87 — 0.25
N152006  0.78 0.70 0.70 0.56 0.25 —

Table 4.4: Similarity Matrix for the six generated samplesni distribution
N(5.0,1.0).

For each set of the three pairs of samples drawn from disimistV (5.0, 1.0),
Ga(10.0,0.5), £(0.2) or LN(1.109,1.0), we run100 bootstraps for each pair of
samples to determine the p-values. The p-values in eacle ébtin resultant simi-
larity matrices are fairly high and are all greater tibart, which is what we would
expect as the samples for each matrix are indeed drawn fresatine distribution.
All four p-value matrices show a similar tendency, that theafues between the
samples witl200 data points are much smaller than the other p-values. Fonexa
ple, in the p-value matrix for the samples generated fromiddrgn Table 4.4, the
p-value between N1S200a and N1S200b, the two samples witlarttest size, is
0.25, while the smallest of the rest of the p-value8.is6. The reason for this range
is likely to be that the more data points, the more possislithat a statistical test
will find dissimilarities between the data sets. Nevertbglehe four smallest p-
values from the four matrices are all still higher tham0. Overall, the method

manages to provide reasonable p-value results for datavghtdifferent sizes.
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4.5.3 Phase 3: distinguishing samples with different means

In this phase, we check the performance of the method imdisishing samples
that are drawn from the same type of distribution with theesaariance but differ-
ent means. We also test it on four different distributionetypThe9 distributions
we generate samples from are listed in Table 4.5. As the @@ distribution
has only one parameter, the two exponential distributiomsast on have different

means and variances.

Code Distribution Mean Variance Sample ID

N1 Normal 5.0 1.0 N1S100
N2 Normal 5.1 1.0 N2S100
N3 Normal 7.0 1.0 N3S100
Gal Gamma 5.0 2.5 GalS100
Ga2 Gamma 7.0 2.5 Ga2S100
E1  Exponential 5.0 25.0 E1S100
E2  Exponential 7.0 49.0 E2S100

LN1 LogNormal 5.0 43.0 LN2S100
LN2 LogNormal 7.0 43.0 LN2S100

Table 4.5: The) different distributions with the same variance but diffdrmeans,
from which9 random samples are generated.

We generate one random sample of si@e out of each of thé distributions.
Then, we runl00 bootstraps for each pair of samples that are drawn from tine sa
type of distribution to get the p-values shown in Table 4.8l oA the p-values
exceptp(N15100, N25100) are extremely small, which is sensible as the distri-
butions that the pairs of samples come from are clearlyraistiThe p-value for
the comparison between N1S100 and N2S1Q@01is8, greater than our suggested
threshold of0.10. Therefore, we would assume that these two samples had been
drawn from the same distribution. Although this is not theezahe distributions
are so close that it would not be an unreasonable assumptigcomparison was

included to test the method and the fact that the p-value ¢dose to the threshold
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is encouraging.

Distribution Samples p-value

Normal N1S100 vs. N2S100 0.118
N1S100 vs. N3S100 0.000
N2S100 vs. N3S100 0.000

Gamma GalS100 vs. Ga2S1000.000
Exponential E1S100vs. E2S100 0.041
LogNormal LN1S100vs. LN2S100 0.000

Table 4.6: The& p-values comparing thepairs of random samples.

4.5.4 Phase 4: distinguishing samples with different variances

In this phase, we check the performance of the method imdisighing samples
that are drawn from the same type of distribution with thesamean but different
variances. As we have considered the exponential disiwibbut Section 4.5.3, we
do not include it in this test. Thé distributions we generate samples from are

listed in Table 4.7.

Code Distribution Mean Variance Sample D

N1 Normal 5.0 1.0 N1S100
N4 Normal 5.0 4.0 N4S100
Gal Gamma 5.0 2.5 GalS100
Ga3 Gamma 5.0 5.0 Ga3S5100

LN1 LogNormal 5.0 43.0 LN2S100
LN3 LogNormal 5.0 415.9 LN2S100

Table 4.7: The different distributions with the same mean but differentasaces,
from which6 random samples are generated.

We generate one random sample of gi#2e from each of the distributions.
We run 100 bootstraps for each pair of samples that come from the sape ty

of distribution to get the p-values given in Table 4.8. Aswhdn this table,
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p(N15100, N45100) andp(LN15100, LN3S5100) are both very small, which is

sensible as the distributions that the two pairs of sampbesecfrom are differ-

ent. Howeverp(GalS5100, Ga35100) is 0.210, which indicates the two samples

appear to be quite similar. The PDF curves for these twoibligions and the his-

tograms for these two samples are given in Figure 4.4, and #iat distributions

Gal and Ga3 are not that different. Therefore, it is unssirggithat the p-value

for samples GalS100 and Ga3S100 is greater than the thaesitiol 0.

Distribution Samples p-value
Normal N1S100 vs. N4S100 0.007
Gamma GalS100 vs. Ga3S1000.210

LogNormal LN1S100 vs. LN3S100 0.000

Table 4.8: The3 p-values comparing thepairs of random samples.

0.5 T

L

10.5

I Sample Ga1S100 B Sample Ga3S101

- Gamma a=10.0, f=0.5 Gamma 0=5.0, B=1.0

Figure 4.4: Plots of the PDF a@famma(10,2.5) and Gamma(5.0,1.0) and the
histograms of the two random samples, GalS100 and Ga3S&06raged from

each of the two distributions respectively.
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4.5.5 Phase 5: distinguishing samples generated from different

types of distributions

We wish to assess the method’s ability to find the similessitietween samples
with similar mean but different distribution shapes. Wedamly generate one
sample of sizel00 from each of thet different distributions listed in Table 4.3
above, which gives a collection dfrandom samples in total. The plots of prob-
ability density functions for these distributions are give Figure 4.5. We run
100 bootstraps for each pair of samples to determine the p-sand hence the

similarity matrix given in Table 4.9.

0.9

0.6

0.3 A

e,
0 1 \‘.‘ T """mE..—‘_‘ 1

0 2 4 6 8 10 12
- Normal py=5.0, 0=1.0 - Gamma a=10.0, =0.5
—— Exponential A=1/5 - Lognormal p=1.109, 0=1.00

Figure 4.5: Plots of the PDF curves of thalifferent distributions listed in Table
4.3.

The p-values given in Table 4.9 are all extremely low, as etquk except that
between the exponential and the lognormal. Both have thetlesiclose to or at
zero and then decline, and so although the lognormal hasvieigsht in the tails
of the distribution, the general shapes are similar. Funtloee, it is seen from

the histograms shown in Figure 4.6 that the two particuladoan samples are
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N15100 GalS100 E15100 LN1S100

N15100 — 0.00 0.00 0.00
GalS100 0.00 — 0.00 0.00
E15100 0.00 0.00 — 0.12
LN15100  0.00 0.00 0.12 —

Table 4.9: Similarity Matrix for the four random samples gemted from
distributions Normal(5.0, 1.0), Gamma(10.0, 0.5), Exponential(0.2) and
LogNormal(1.109, 1.0) respectively.

fairly close and so it is not unreasonable to have a p-valghbts} higher than the

threshold).10.

1,
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Figure 4.6: Plots of the PDF dfzponential(0.20) and Lognormal(1.109, 1.0)
and the histograms of the two random samples, E1S100 and 1001 §enerated
from each of the two distributions respectively.

4.6 Examples

Although this method of measuring similarity was origigadlerived to analyse
machine breakdown duration data, it is widely applicabla. this section, we

consider two examples:
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e breakdown duration data collected over a period ehonths for six ma-

chines.

¢ hospital length-of-stay data for patients recovering froadical procedures.

4.6.1 Breakdown Duration Data

We here consider real breakdown duration data sets for schimes: MLO1,
MLO2, ML0O3, MLO4, MLO5, MLO6, in an engine assembly line ateoaf Ford’s
plants. The size of these six data sets Hre, 319, 112, 113, 60 and 460 data
points, respectively. They come from machines with diffiiereinctionalities in
different stations. The histograms of the breakdown domadiata for the six ma-
chines are given in Figure 4.7. We wish to group the machimsed on their
breakdown duration data and so we need to produce the dimitaatrix for the

siXx machines.

We run 100 bootstraps for each pair of machines to determine the pesalu
matrix given in Table 4.10. The p-value between machine M&o& MLO6 is the
highest value in the matrix, the p-values between any onbeset two machines
and any machine of the other four machines are extremelyl,swiath tells that
these two machines are very similar to each other and notasita any other
machines in terms of their breakdown behaviour. Within ttreeofour machines:
machine MLO1 has &.21 similarity to MLO4 and &).11 similarity to MLO2 but
a similarity of less thar.10 to ML0O3; Machine ML0O2 seems to be significantly
similar to MLO1 and MLO4, especially similar to ML0O4 as thegve a much higher
p-value, but has a nearly zero similarity to MLO3; machine MLhas high p-
values for the comparison with ML02, MLO1 and MLO3; and MLOBIyhas a
significant p-value (greater thanl 0) for its comparison with MLO4. Referring to
the histograms in Figure 4.7, both of the histograms for nmeshMLO05 and MLO6

have high peaks around60 while the histograms for the other four machines
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MLO1 MLO2 MLO3 MLO4 MLO5 MLO6

MLO1 — 0.11 0.08 0.21 0.01 0.00
MLO2 0.11 — 0.03 0.51 0.00 0.00
MLO3 0.08 0.03 — 0.20 0.00 0.00
MLO4 0.21 0.51 0.20 — 0.00 0.00
MLO5 0.01 0.00 0.00 0.00 — 0.89

MLO6 0.00 0.00 000 0.00 0.89 —
Table 4.10: Similarity Matrix for six machines in a Ford emgiassembly line,
based on their breakdown duration data.
have high peaks within the range @©.60, 1.30); and both histograms have more
symmetric shapes than the other four. These features ofisheghams confirm

the reliability of the p-value results.

4.6.2 Length-of-Stay Data

The method of estimating similarity presented here has imeglemented to calcu-
late the similarity between medical procedures based ondbgital length-of-stay
data of the corresponding patients, where the data comesdrgroup of private
hospitals [41]. More information about the data and the giogi process will be
described in Section 5.5. We here use a small example of tigghlef-stay data

of five procedures to illustrate our method.

The five procedures are coded as Q13.1, Q20.2, Q38.3, W37.Wd2dl
(the codes are called OPCS-4 codes and are used by NHS). Tiries pro-
cedures are procedures on the uterus and fallopian tube:1 @Limplantation
of fertilised egg into uterus, Q20.2 is a biopsy of lesion td@rus, and Q38.3 is
therapeutic endoscopic operations on fallopian tube; hadast two procedures
are joint replacements: W37.1 is hip joint replacement and W&Xknee replace-

ment.

We run100 bootstraps for each pair of procedures to determine thdyesa

The similarity matrix is given in Table 4.11. The p-valuesvizeen any pair of
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Q13.1 Q202 Q38.3 W37.1 W42.1

Q13.1 091 0.46  0.00 0.00
220.2 091 0.60  0.00 0.00
@383 046  0.60 0.00 0.00
w371 0.00 0.00 0.00 0.31

w421 0.00 0.00 0.00 0.31

Table 4.11: Similarity Matrix for five procedures based oeitlpatients’ length-
of-stay data.

the procedures Q13.1, Q20.2 and Q38.3 are all larger @h#n which suggests
the length-of-stay data of these three procedures havedraam from the same
distribution with a high probability. This seems to reflelee treal situation be-
cause these three procedures are similar operations darsomgans. In particular,
the similarity between Q13.1 and Q20(291, is much higher than the similarity
between Q13.1 and Q38.3 and that between Q20.2 and Q384) miakes sense
intuitively as both Q13.1 and Q20.2 are operations on theustand Q38.3 is a
procedure on the fallopian tubes. The matrix also showsthiese are significant
differences between the set of procedures Q13.1, Q20.2 88d3@nd the set
of procedures W37.1 and W42.1 as the p-value between any pnacédm the
former set and any from the latter set is zero, which is sémbibcause the former
set of procedures are very distinct from the joint replacesieThat the p-value
between procedures W37.1 and W42.1 is larger thaf is also reasonable as
there are definite similarities between the recovery timenfa hip joint replace-
ment and a knee replacement. Overall, the resultant sitgilaatrix of the five

procedures appears to be reflecting the real situation gyeite

Since the p-value demonstrates the probability of the dets lsaving been
drawn from the same distribution, it shows the similaritytloé corresponding
distributions of the data sets. The histograms of the lenfj$tay data for the five
procedures given in Figure 4.8 add more confidences to thasiymnresults. For

instance, the way the histograms for procedures Q13.1,22@ Q38.3 distinct
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from those for W37.1 and W42.1 clearly supports the extremmaiglissimilarity

between the two sets of procedures.

These two examples show that the method we have describédsiohapter
is an appropriate distribution-free method for estimating similarity between
data sets that may be of different sizes. Although this neeties been derived
to estimate the similarity index between breakdown duratiata sets, it is also

applicable to other data sets, such as the hospital lerfegtap data in Example 2.
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Figure 4.7: Histograms of the breakdown duration data fersilk machines.
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Figure 4.8: Histograms of the patients’ hospital lengtfstaly data for the five
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Chapter 5

Classification of Machines

Having found the similarity matrix of the machines, we dssthe classification
method we propose to use for grouping the machines in thigtehaThe group-
ing is such that two machines with statistically signifidamtifferent breakdown
duration data cannot be placed in the same group. We carfildieite mixture

distributions to the grouped breakdown duration data. Timeisito use the fitted
finite mixture models for groups to represent the breakdowatibn inputs for all

of the machines in the same group.

A review of the literature on classification methods is giwerSection 5.1.
Then, in Section 5.2 we present a description of the Arroassification method.
Section 5.3 gives an example 2Zif machines involved in an engine assembly line

to demonstrate the Arrows classification process.

The Arrows method has similarities with cluster analysid ancomparison
with the cluster analysis method is given in Section 5.4gisome standard data as
examples and using the same example considered previdusig 20 machines.
A study of the features of the Arrows method is also includethis section. The
classification process described in this chapter could Ipiempto classify data

from a wide range of applications, in addition to manufacigr We present an

89
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example of the classification of hospital procedures byrthatients’ length-of-
stay data in Section 5.5. A short conclusion drawing togette main ideas of

this chapter is given in Section 5.6.

5.1 Classification

Classification is normally understood as the activity of @dlitng objects into a
smaller number of classes so that objects in one class ailarsicmone another. It

is also calleddentificationor assignmenf38].

There are a large number of classification methods, Sectloh §ives suggest-
ed categorisations for these methods. We introduce two taggets of classifica-
tion methods in Section 5.1.2. We then go on to describe ttimgastrategies and
algorithms of the procedure generally used for finding €lssin Section 5.1.3. A

brief comparison of different sorting strategies is giversection 5.1.4.

5.1.1 Types of Classification

Two general types of classification methods can be speciisddon distinction
of the classification process (see for example, GrabmemrRamolph [74] and

Fielding [55]):

(i) Hierarchical Classification:
Generally known as being able to transform a raw data magimijlarity
matrix or dissimilarity matrix into a dendrogram.

(i) Partitioning:

The result is a partition of the set of objects.
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In addition to these two types, Cormack [38] indicates thatehs another ma-
jor type: clumping, where the resultant classes can oveillapre are other types
such as model-based, density-based, factor analysismt&@aad graph theoretic
methods (see for example, Aldenderfer and Blashfield [2],ekberg [3], Everitt
[53] and Fielding [55]).

Another categorisation of classification made based on igtenction of the

process is given by Kendall [93]:

(a) Classification

Objects in one class are needed to be isolated from objeatsoither class.

(b) Dissection

Objects in one class are not necessarily isolated from tsbjacanother

class.

Gengerelli [62] gives an example to demonstrate the diffegs: “If there are
two dense clusters of buildings separated by much emptyespachave no diffi-
culty in perceiving the existence of two villages; wherdasvillage by one name
coalesces with a village by another name, we feel that tharagpn is artificial
and that there exist not two entities, but one”. It seems tarierstandable that

all sets of objects can be dissected but not all can be clkedsifi

It is emphasized by Cormack [38] that different methods o$siféecation can
be achieved by one algorithm; for example, a sorting styateith a particular
algorithm gives a hierarchical classification but prodwpartition or clump when
a stopping rule is applied. The Arrows classification methvaich we introduce
in Section 5.2, can be described as a combination of an blecal classification
method and a partitioning method. A dendrogram is formedlbsters merging

at different similarity levels but a threshold, whose valkiehosen by the user, is
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used as a stopping rule: any amalgamation of two clustehsangtmilarity smaller

than the chosen similarity threshold is not allowed.

5.1.2 Method Targets

Methods strive to maximize either internal cohesion or ekisolation or some
combination of the two, where internal cohesion can be défueh that an object
should be added into an existing cluster if its smallestIsinty with any mem-
ber in the cluster is larger than some chosen threshold [@®katernal isolation
focuses on the isolation between clusters such that therddshe a clear distinc-
tion between clusters, and similar objects shall not belddtinto different clusters
[137]. S£kely and Rizzo [152] state that many standard clusteringguhares aim
only at within cluster distance minimization, i.e. intekrsahesion maximization,
or at between cluster distance maximization, i.e. extaswddtion maximization.
Cormack [38] states that often both are included in one d¢leason method. For
example, Gengerelli [62] discusses a method satisfyingehjairement that the
distance between any two objects in one group is less thadiskence between
any object in the group and any not in it. Needham [121] dbssra method in
which the sum of the similarities of any object to the othejeots in one group
should exceed the sum of its similarities to objects in otreups and vice versa

for objects in other groups. Our method also is a combinaifdhe two ideas.

5.1.3 Obtaining Classes

Cormack [38] indicates that there are three types of proeegenerally used for

finding clusters:

e Agglomerative: merging objects into classes.
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¢ Divisive: dividing one initial class containing objects into a larger number

of classes.

e Clustering: reallocating objects between sets of somalrmlasses.

The first two types: agglomerative and divisive, are suggkesly a number of
authors to be the two major types of hierarchical classiboatwhich is gener-
ally known as the procedure for transforming the raw datarimyagimilarity or
dissimilarity matrix into a dendrogram. There are otheretypf algorithms of
hierarchical classification methods; for example, Gordt] [dentifies two addi-
tional types: constructive and direct optimization algjons. The former progress
by “successively adding new objects to a hierarchical diaaion of a smaller
data set” and algorithms have been introduced by Sibson b Defays [46]
to update single linkage and complete linkage dendrograrhs. latter has been

advocated by Hartigan [79], Carroll [26] and De Soete [45].

Grabmeier and Rudolph [74] give a diagram of a taxonomy ofsdiaation
methods and clustering algorithms and a simpler versiohisfdiagram is shown
in Figure 5.1, reproduced from Fielding [55]. Hierarchickdssification methods
are considered to be the most popular classification methbus agglomerative

and divisive algorithms will be further described below.

Agglomerative

There aren single-object classes initially, and the most similar diclasses is
merged at each stage. Different sorting strategies arimgiisshed by their way
of determining the similarity between two classes of olgedhere is a general
agglomerative algorithm proposed by Lance and William®[1®1], in which the

measures of dissimilarity between cld@ssand a new clas§';;) that is formed by
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Classification Methods

Hierarchical classification Partitioning

Divisive Agglomerative

Algorithms Algorithms

Monothetic Polythetic User-defined Data-driven

Figure 5.1: A Taxonomy of classification methods and sordilggrithms. Repro-
duced from [55].

combining clasg’; and clasg’; can be defined as:

di(i) = Qidyi + ajdij + Bdig + v |dri — dij] (5.1)

A similar but more general form for Equation 5.1 was proposgdambu [87],

with three new parameters introduced,

dk(ij) = ;dy; + Oéjdkj + Bdlj + 7y ’dk,‘z — dkj’ + 0;h; + (thj + €ehy, (52)

whereh; is the height of clas€’; in the dendrogram representing the clustering

process.

Gordon [70] states “an advantage of the general formulasidhat the initial
matrix of pairwise dissimilarities need not be retained, ¢éan be overwritten as

the amalgamation proceeds”.

The values of the parameters for a number of well-known elugg strategies
are given in Table 5.1, reproduced from Gordon [70]. In thldew; is the weight

of classC;, and is set equal to the number of objectg’ini.e. w; = n;.

The single linkage clustering strategy is also referredstthanearest neigh-
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Method
& References o B v v €

Single linkage
(Sneath [147];
Sokal and Sneath [149])

Complete linkage
(McQuitty [116];
Sokal and Sneath [149])

Group average linkage v
(Sokal and Michener [148]; 5o, O 0 0 0

DN | —

N |+
=)
N
)
(@]

McQuitty [118])
Weighted average linkage .
(McQuitty [118], [118]) s 0 0 00

Table 5.1: Values of the parameters for clustering stragkegReproduced from
Gordon [70].

bour method. Forsingle linkageclusters, the distance between two clusters is
defined as the distance between the two most similar objedtseitwo clusters
[53]. It is said to be “the simplest agglomerative sortinggadure” [38]. An
advantage of this strategy is that consecutive mergingyaswecurs at lower levels

of inter-cluster similarity.

One drawback of single linkage is that clusters may be fotodae merged
due to only one object from one cluster being similar to aeotibject from the
other cluster, even if many other objects in each clustevangdistant from each
other: a situation described as ttteining phenomenominother pitfall identified
by Hodson in [82] is that when there are “transitional” oltgebetween distinct
clusters, single linkage cannot provide reasonable essitch transitional objects
were referred to as “intermediates” and suggested to biett@a noise in Cormack
[38]. Wishart [170] and Baron and Fraser [9] propose methodsiminate noise
from objectives and from variables respectively. Sheplard Willmott [145]

suggest an extra constraint that an object is allowed togoatuster only if its
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similarities to a certain number of members of that clusteradl larger than some

chosen threshold and this can be used to break the chainampptenon.

Complete linkage is also known as thethest neighbousorting method. Itis
the opposite of single linkage; the distance between twsteta here is specified
as the distance between the two farthest objects in the twaierk [53]. Thus,
one feature of theomplete linkagenethod is that it gives compact clusters [3].
However, the outliers greatly affect the merging procedss $trategy is not ap-
propriate if random noise is present in the data, but is lgehe expected clusters
are very distinct in the multi-dimensional space. Simitesingle linkage, merging

occurs “monotonically with inter-cluster similarity” [38

Group average linkagandWeighted average linkagaeethods define the sim-
ilarity between two clusters as the unweighted and weightentaged similarity
between the objects from one cluster and those from the fBBgand both there-
fore need numerical calculations. Accordingly, their tdumg effect is in-between
the single linkage and complete linkage. Both methods p@duanotonic cluster
trees. The two methods are almost identical, the only diffee is that with the
weighted average linkage, the numbers of objects contamdae two clusters
are used as weight [53]. Sokal and Sneath [149] formulatsithgarity between

clustersC; andC; as:

Zaeci ZbeC’j (Sabwawb)

T S S w,

(5.3)

wheres,, is the similarity index between objectsfrom C; andb from C;. So

for the group average linkage strategy is equal tol and for the weighted av-
erage linkage strategy, = n;. Therefore, the weighted average linkage method
is suggested to be applied if the cluster weights are exgdotbe significantly

uneven.

For the agglomerative hierarchical part, our Arrows methasl similarities to
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the complete linkage and average linkage methods, with amaalditional con-
straint that the similarities of every pair of objects in gveluster should all be

greater than or equal to some specified threshold.

Divisive

Divisive algorithms start with one big class including albbjects. At each stage
of the algorithm, the current class is divided into two seratllasses. The divisive
hierarchical method can be thought of as the opposite of ggéomerative hie-
rarchical method. It is stated by Fielding in [55] that it istrwidely used as it
appears to have computational difficulties. This methodhmudivided into two
types: monothetic and polythetic [55]. The former divides tlass on the basis of
the possession of only a single variable and often leads‘intsclassify” [167],
while the latter uses the values taken by more than one Var{fi®25] and [80]).
Chipman and Tibshirani [36] have proposed a hybrid methotidbmbines the
solutions of agglomerative hierarchical clustering andsiie hierarchical clus-

tering.

5.1.4 Strategy Comparison

Jardine and Sibson [88] and many other authors have idehtifeg methods and
algorithms can have distinct meanings. For example, RoBB]has proved that

the single linkage method can be achieved by a number oféliftalgorithms.

Gower [73] believes that if there is a huge distinction betwebjects and clear
distinct clusters any useful clustering strategy wouldsify the objects correctly.
However, different clustering methods can and do genertiggeht classification
solutions to the same data set when the distinction is less cut ([53] and [70]).
The single linkage method has been proposed by Jardine hedrSin [88] to be

the method that satisfies a number of desirable propertigstiere is no single
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method believed to be uniquely suitable for any data setrefbee, it is important
to choose the appropriate clustering methods for diffedatd sets and a number

of approaches have been proposed to do so.

There are simulation studies investigating the behavibalustering methods.
Milligan [120] gives a review of this type of study. Althougletailed information
about the clustering procedures can be accumulated in gwesgation studies,
they provide little guidance on the most appropriate metiooc particular data
set without knowing its characteristics. A second appraac¢b obtain a number
of requirements that it is desirable to see in the analysésdsta set and examine
various sorting strategies to ascertain whether the reognts can be satisfied.
Fisher and Van Ness [56] and Van Ness [154] have proposedipioach and
provided a list of properties. An example is given in GordaA]] if a clustering
method is required to b@monotone admissiblghat is, if a monotone transforma-
tion is made on the entire similarity or dissimilarity magrihe clustering solution
stays the same.) Single linkage and complete linkage metamthe only two
strategies in Table 5.1 that satisfy this requirement. Aeofpproach is to use
more than one clustering method to classify the data set wmnitiesize the ob-
tained results so that the combined solution may “repregamiine structure in the
data” [70]. Rohlf [138] has proposed an adaptive agglomeratorting algorithm
to adapt the index of dissimilarity corresponding to theadstucture. Diday and
Moreau [49] have used the information obtained from a trajrisiet whose clusters
are given by the analyser to choose suitable values of theers in formula-
tion 5.2 for analysing a new data set of a larger size. It igsated by Gordon [70]
that the adaptive agglomerative clustering algorithm &editaining set strategies
can be applied to specify the structure in the data set argdtthinelp in selecting

suitable clustering methods for it.
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5.2 Arrows Classification Method

We aim to classify the machines involved in the assemblyititeea smaller num-
ber of groups, based on their breakdown duration data, $uatmb pair of ma-
chines in a group has sampled breakdown duration data wgtifisiantly different
distributions. The similarity matrix that is used to clég$ihe machines into groups
is made up of the p-values describing the probabilities ofpe samples having

been drawn from the same distribution as described in Sedtia

First, we define two terms that we associate with the nameeofnithod. Ma-
chines)M; and M, have adouble-arrow connectioif p;;, the p-value comparing
their corresponding sets of data, is the highest in bothiraiad row; of the simi-
larity matrix andp;; is greater than the specified threshpld Machines)/; and
M, have asingle-arrow connectiofif p;; is the highest in only one of the rows

or k andp;,, is greater than the specified threshpid

We follow the steps below to determine the groups.

1. Choose the threshold p-valug,, for assuming that two sets of data are
similar enough to be grouped together. If the p-value forfitheetween the
breakdown duration data of a pair of machines is greater thaqual to
po then they can be put in the same group; otherwise, the datsavened
to be significantly different. We currently ugel0 as a threshold p-value.
Increasing the p-value threshold to, e.9.20, may increase the average

similarities within groups but may also increase the nunabgroups.
2. Search the similarity matrix,

(a) If M, and)M; are not grouped and they have the greatest double-arrow
connection in the pool of ungrouped machines, put machare ma-

chinej into one group, say grou,.
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(b)

(©)

(d)

Place all ungrouped machines that have double-arrowestiions or

single-arrow connections to machiher machinej in groupCl,,.

Place inC, all ungrouped machines that have double-arrow connec-
tions or single-arrow connections to any of the machinessddod
groupC, in step 2(b). Continue until there are no more possible ma-

chines to be grouped together.

Start to find a new group from step 2(a). Search the whohdagii-
ty matrix, until no more new machine groupings can be madas It

possible that some groups are made up of only one machine.

3. Check the p-values of all pairs of machines in each group, fer group

C,: if the values are all greater than or equapgothe threshold we choose,

keepC,; otherwise, for pairs with p-values less thay use the following

decision process to determine which machine in the pair ép lesnd which

machine should be deleted from group.

(@)

(b)

If M; and M; have a double-arrow connection keep both of the ma-
chines inC, as machines with double-arrow connections form the core
of the groups. This also reduces the number of machines tnaeed

to search over in the following step of the algorithm.

Take out the machine with the weakest connection withothers in
the group and repeat this until there are no pairs of machubsp-
values undep, in C,, where the strength of a connection of an machine

M; to its groupC, is measured by itmside connectionlefined as

- Dij .
p(i,a) = ]\fza—]l s Mj S Ca and] % 1, (54)

where N, is the number of machines in grodp,. This is effectively

the average of the p-values between machifieand the other ma-
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chines inC,.

4. For each possible pair of groups, check the p-values leetwe= machines
in the first group and those in the second group. If all pairmathines in
groupC, and groupC', have p-values greater than or equapgpthese two
groups can be combined into a new group. If we can combinepgfQu
with groupC;, or with groupCy;, combine the groups which have the greater
average connectiobetween them, where the average connection between

groupsC, andC}, is defined to be

_ _ ZM,L-ECG ZMker Dik

p(a7b) Na Nb Y (5' 5)

wherep;; is the similarity between machinefrom groupC, and machine
k from groupC}, and N, and N, are the numbers of machines in group
and groupC}, respectively. This is effectively the average of the p-ealu
for the comparisons between the machines in groy@and those in group
Cy. Search until all of the groups have been processed and nehkihere

possible, including groups formed during step 4.

The above classification procedure has been implementediraM3asic for
Applications. Although this method has been devised tosdiasnachines, it is
widely applicable. We next consider its application to a bemof example data

sets.

5.3 An Example of Machine Classification

We illustrate the classification method using an examplevehty machines in-
volved in one of Ford’s engine assembly lines. We currergg0ul 0 as the thresh-

old p-value for assuming two sets of breakdown duration degasimilar enough
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to be grouped together. Increasing the threshold may inepiteey homogeneity of
the groups but also would increase the number of groupstheigfore necessary
to set the threshold for p-values to achieve a balance battireetwo conflicting
aims of homogeneity and a small number of groups. A study @frtluence of
the threshold on grouping results using the Arrows methdidbeigiven in Section
5.4. Using the groups found by the Arrows method we then fitfargint mixture
distribution for each group, and in the simulation use tisishee breakdown dura-
tion distribution for all of the machines in the group. Th#uence of the choice of
threshold for machines grouping on the resultant outpuirofition models us-
ing fitted mixture distributions for different groups wilebnvestigated in Section
7.3.



MO1 M02 MO03 MO04 MO5 MO06 MO7 M08 M09 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20

MO01 — 0.02 0.00 0.00 0.11 0.00 0.03 0.00 0.09 0.14 0.50 0.50 0.06 0.00 0.04 0.00 0.06 0.00 0.13 0.13
MO02 0.02 — 0.62 0.00 0.03 0.00 0.00 0.00 0.08 0.22 0.02 0.03 0.00 0.00 0.17 0.00 0.00 0.01 0.01 0.07
MO03 0.00 0.62 — 0.00 0.03 0.00 0.00 0.00 0.01 0.05 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.02 0.08
MO04 0.00 0.00 0.00 — 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MO05 0.11 0.03 0.03 0.00 — 0.00 0.00 0.03 0.00 0.19 0.15 0.16 0.57 0.00 0.12 0.00 0.14 0.00 0.85 0.93
MO06 0.00 0.00 0.00 0.00 0.00 — 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
MO7 0.03 0.00 0.00 0.00 0.00 0.00 — 0.17 0.00 0.36 0.00 0.00 0.31 0.01 0.00 0.00 0.82 0.00 0.18 0.01
MO8 0.00 0.00 0.00 0.00 0.03 0.00 0.17 — 0.00 0.29 0.00 0.00 0.20 0.00 0.00 0.00 0.63 0.00 0.32 0.01
M09 0.09 0.08 0.01 0.00 0.00 0.00 0.00 0.00 — 0.02 0.05 0.08 0.00 0.00 0.01 0.00 0.00 0.00 0.02 0.01
M10 0.14 0.22 0.05 0.01 0.19 0.00 0.36 0.29 0.02 — 0.27 0.26 0.82 0.03 0.14 0.02 0.23 0.07 0.53 0.36
M11 0.50 0.02 0.00 0.00 0.15 0.00 0.00 0.00 0.05 0.27 — 0.38 0.29 0.00 0.06 0.00 0.01 0.00 0.38 0.25
M12 0.50 0.03 0.00 0.00 0.16 0.00 0.00 0.00 0.08 0.26 0.38 — 0.26 0.00 0.09 0.00 0.01 0.00 0.30 0.30
M13 0.06 0.00 0.00 0.00 0.57 0.00 0.31 0.20 0.00 0.82 0.29 0.26 — 0.02 0.05 0.00 0.62 0.02 0.57 0.48
M14 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.03 0.00 0.00 0.02 — 0.00 0.00 0.37 0.00 0.06 0.00
M15 0.04 0.17 0.12 0.00 0.12 0.00 0.00 0.00 0.01 0.14 0.06 0.09 0.05 0.00 — 0.00 0.00 0.10 0.38 0.45
M16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 — 0.07 0.00 0.01 0.00
M17 0.06 0.00 0.00 0.00 0.14 0.00 0.82 0.63 0.00 0.23 0.01 0.01 0.62 0.37 0.00 0.07 — 0.00 0.30 0.11
M18 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.02 0.00 0.10 0.00 0.00 — 0.51 0.15
M19 0.13 0.01 0.02 0.00 0.85 0.01 0.18 0.32 0.02 0.53 0.38 0.30 0.57 0.06 0.38 0.01 0.30 0.51 — 0.71
M20 0.13 0.07 0.08 0.00 0.93 0.00 0.01 0.01 0.01 0.36 0.25 0.30 0.48 0.00 0.45 0.00 0.11 0.15 0.71 —

Table 5.2: Similarity Matrix for th0 machines based on their breakdown duration data.
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For these20 machines the Arrows classification process proceeds asvill

1. Stepl
Choose the p-value threshqlg = 0.10.

2. Step 2 (see Figure 5.2)
Form 8 groups based on identifying the single-arrow and ealrow con-
nections, which are displayed in Figure 5.2 as black arrovtis heads at
either one end (single-arrow connections) or both endshleearrow con-
nections). For example, machines M0O1 and M11 have a doulde+&on-
nection as the p-value for the comparison between these awebimes is the

greatest in row 1 and row 11 of the similarity matrix and isagee tharp,.

3. Step 3 (see Figure 5.2)
Identify 6 pairs of machines i groups that are formed in step 2 that have
significantly different breakdown duration data. The caioms between
these pairs are coloured red in Figure 5.2. Decide which maabr ma-
chines to remove from the corresponding groups to ensutétibige are no
groups containing pairs of machines with p-values less thane. no red
connections. The three groups with red connections arepgrau3 and 4.

We consider each of the three groups in turn:

(a) Group 2: The priority is to keep pairs of machines with ldetarrow
connections in the same group; therefore, M09 is removed tie

group to eliminate the red connection.

(b) Group 3: M05 and M20 have a double-arrow connection awdlsh
be kept in the same group. M18 has the weakest inside coonestd

is discarded. The resultant group has no red connections.

(c) Group 4: MO7 and M17 have a double-arrow connection armdlsh

be kept in the same group. Of the remaining machines, M14Hes t
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weakest inside connection and is deleted. The resultingpghas no

red connections.

4. Step 4 (see Figure 5.3)
Combine groups 4 and 5 after step 3 as no pairs of members arfcsigtly
different, i.e. there are no red connections after the aamaggion. This is

the only merging that can take place without creating reacheotions.

Finally 10 groups are obtained, as shown in Figure 5.3, the largespgrou

containss machines and there aéegroups that contain only one machine.
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Figure 5.2: Steps 1 and 2 of the example of 20 machines, sogvipups with
double-arrow and single-arrow connections and the stheafjthe connections
within each group. Red curve< - - — -): p-value of the two connected machines
is significantly different; yellow curve ( ): p-value of the two connec-
ted machines is on the borderline; green curve-{———): p-value of the two
connected machines is not significantly different.



CHAPTERS 107

MO2 |« >  MO03

MI19 M15

MO04
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M09

M14
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MI18

Figure 5.3: Step 4 of the example of 20 machines in which wéotgombine the
primary groups without red connections
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5.4 Comparison with Cluster Analysis

In this section, we compare the Arrows method with clustedysis. The Arrows
classification method has similarities with complete lig&&lustering and average
linkage clustering methods. The complete linkage clustafyais algorithm pro-
ceeds iteratively, combining the two most similar machimegroups of machines
at each iteration, where the distance between any two grisugefined to be the
greatest distance (in this case, the smallest p-value) dmnmember of one group
to any member of the other group. The average linkage clastysis algorithm
is the same as the complete linkage except the distance dxetang two groups is
now defined to be the average of the distances from any menlbeeayroup to

any member of the other group.

The Arrows classification method uses a threshold distancanalarity to
ensure that all of the objects in a group have significantlanties. It is thus
very easy to control the similarity level in the final grouplsem using the Arrows
method. Where the two methods differ is that the clusterinthotesearches the
whole matrix to find the most similar groups to merge while Areows method
aims to keep together objects that have what we term an dautdes connection.
Two objects have a double-arrow connection if one objectthagyreatest simi-
larity to the other object and vice versa for the other obgext thus keeping these
objects together is a way to enhance the internal cohesigroaps resulting from

the Arrows method.

The following gives a comparison between the complete aedage linkage
cluster analysis methods and the Arrows method by first tsingxkample distance
matrix from a text book and then extending this example téebétighlight the
features of the Arrows method. Finally, we show how the Asanethod works

in practice, using the0 machines example that has been described in Section 5.3.
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1 2 3 4 )
0.0 20 6.0 10.0 9.0
20 00 50 9.0 8.0
6.0 50 00 4.0 5.0
10.0 9.0 40 0.0 3.0
9.0 80 50 3.0 0.0

Uk~ W N+~

Table 5.3: Distance Matrix of Example 1 from Everitt [53] P9.

5.4.1 Examplel

We use a distance matrix obtained from Everitt [53] (P9) asxample; the dis-
tance matrix is given in Table 5.3. We apply complete linkage average linkage
clustering methods, and the Arrows method. The groupingltsefor the cluster
analyses are presented in the two dendrograms given ind=gdir For the Arrows
method, we set a distance threshold @b0 with the purpose of getting a complete
dendrogram, as shown in Figure 5.5. (In all of the dendrograinown in Section
5.4, the first column of numbers is the corresponding dig@amsimilarity level at
each amalgamation, and the second column of numbers démoteder of each
amalgamation only.) As the opposite of setting a simil@piyalue threshold, a
distance threshold is set so that a pair of objects can beplgisame group only
when the distance between them is less than or equal to stende threshold.
So, in this case, a distance threshold @f)0 is equivalent to a similarity threshold

of zero.

The dendrograms of this example resulting from the thredotstare all seen
to be similar in shape. Such is not always the case, as wileba g1 Sections
5.4.2 and 5.4.3. Moreover, it may not be possible for the iksranethod to show
the grouping results of different similarity levels by a tonous and complete
dendrogram such as Figure 5.5, since the merging of sometslogegroups might
change when the threshold is set to a different value, whittlalso be illustrated

in Sections 5.4.2 and 5.4.3.
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DIS 1 2 3 4 5 DIS 1 2 3 4 5
2.00 1 LJ 2.00 1 LJ
3.00 2 3.00 2
5.00 3 450 3
1000 4 7.83 4
(a) (b)

Figure 5.4: Dendrograms of the grouping results for objetis the distance mat-
rix given in Table 5.3: (a) from the complete linkage clustealysis; (b) from the
average linkage cluster analysis. The first column of nusisgthe corresponding
distance between the objects or groups at each amalgamation

Distance 1 2 3 4 5
Threshold

2.00 1

3.00 2

5.00 3

10.00 4

Figure 5.5: Dendrogram of the grouping results from the weonethod for ob-
jects with distance matrix given in Table 5.3. The first cotuaf numbers is the
distance threshold.

In this example, objects 1 and 2, and objects 4 and 5 have el@autdw con-
nections and are also the closest and second closest gaandtherefore the
merging of these two pairs of objects will occur first usingadlthe three meth-
ods. Although at the dissimilarity level 6f00, object 3 is in the same group with
(4, 5) rather than with (1, 2) using all of the three methotls, driteria and pro-
cess of getting the group (3, 4, 5) differs between the threhads. For complete
linkage clustering and average linkage clustering, thg difference is the way

of calculating the distance from object 3 to the existing tyvoups (1, 2) and (4,
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5). For the former method, the distance between object 3 eoupd1, 2) is6.00,
which is larger than the distance between object 3 and gréup)( so with com-
plete linkage object 3 will be combined with group (4, 5). Beerage linkage,
the distance between object 3 and group (4, 3).38, which is smaller than the
distance between object 3 and group (1, 2J0, so the next merging is again

between object 3 and group (4, 5).

The Arrows method gives objects with single-arrow conrgrsisome priority
by combining all objects with single-arrow and double-ar@nnections at the
beginning of the grouping process, right after the thresials been set. In this
case, objects 3 and 4 have an single-arrow connection, adistece between
3 and 4 is the smallest in column 3 and row 3 of the distanceixpatnd the
distances between objects 3 and 4 and objects 4 and 5 arerballersthan the
chosen distance threshold; thus the Arrows method combiniest 3 with group
(4, 5) rather than with group (1, 2) at the second step of thssdication process
described in Section 5.2, when the chosen distance thie&D0.

5.4.2 Example 2

We extend Example 1 by changing the distances between sHjestd 3 and ob-
jects 2 and 3, and adding two new objects. The new set up igriebsto highlight
the features of the Arrows method and the distance matrixvengn Table 5.4.
The new dendrograms of grouping results from the completeage clustering
and average linkage clustering are given in Figure 5.6. Bmeldbgram of groups
resulting from the Arrows method using a distance thresbbléss tharb.00 is
given in Figure 5.7; it is not possible to show the groupingufes of similarity
levels that are greater than or equab @) properly in the same dendrogram, since
the merging of object changes when the threshold is seb ) or greater, which

will be illustrated later in this section.
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1 2 3 4 ) 6 7
1 00 20 55 100 9.0 11.0 11.0
2 20 00 31 90 &80 11.0 11.0
3 55 31 00 40 50 46 46
4 100 90 4.0 0.0 3.0 11.0 11.0
5 90 80 50 3.0 0.0 11.0 11.0
6 11.0 11.0 4.6 11.0 11.0 0.0 3.5
7 11.0 11.0 46 11.0 11.0 3.5 0.0

Table 5.4: Distance Matrix of Example 2.

DIS 1 2 4 5 3 6 7 DIS 1 2 3 4 5 6 7
200 1 LJ 200 1 LJ

300 2 300 2

350 3 350 3

460 4 430 4

10.00 5 750 5

11.00 6 9.72 6

(a) (b)

Figure 5.6: Dendrograms of the grouping results for objadtis distance matrix
given in Table 5.4: (a) from the complete linkage clusterlysis; (b) from the
average linkage cluster analysis. The first column of nusisgthe corresponding
distance between the objects or groups at each amalgamation

Using the new distance matrix, objects 1 and 2, objects 4 amad objects
6 and 7 have double-arrow connections and are the closest gdabbjects and
therefore the merging of these three pairs of objects makbaifirst three amal-
gamations. At the dissimilarity level d@f60, the complete linkage clustering and
the Arrow method differ from the average linkage clusteorgr where they place
object 3. For the complete linkage clustering, the distédretereen object 3 and
group (6, 7) is4.60, which is smaller than the distances between object 3 and

group (1, 2) or group (4, 5); and so object 3 is combined withugr(6, 7). For
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Distance 1 2 4 5 3 6 7
Threshold

2.00 1

3.00 2

3.50 3

4.60

<5.00 |

Figure 5.7: Dendrogram of the grouping results from the wesranethod using
distance threshold lower tha)0 for objects with distance matrix given in Table
5.4. The first column of numbers is the distance threshold.

the Arrows, object 3 is amalgamated with group (6, 7) rathantwith group (1,
2) or group (4, 5) because the distances between object 3lgadi® 1 or 5 are
both higher than the specified distance threshold. WhileHeraverage linkage
clustering, the distance between object 3 and group (1,£230s which is smaller
than the distances between object 3 and group (4, 5) or g®up){ the next

merging is therefore object 3 and group (1, 2).

For the Arrows method, multiple criteria are used to decidertext merging.
First it ensures that no objects that are further apart thathreshold distance can
be placed within the same group, then it ensures that obygattisdouble-arrow
connection are placed in the same group. The Arrows methefdngrto keep ob-
jects with single-arrow connections together, if all reletvdistances are below the
threshold distance, even when there are other potentidgamations satisfying
the first criterion. If there are no objects with single-armonnections involved, it
allows the merging of objects or groups with lower or the lstneverage distance

(i.e. higher or the highest average connection).

It is possible that one object or group may be combined wifierdint groups

or objects when the distance threshold changes. This mghiras a result of
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the method’s intention of keeping objects with single-arrmonnections in the
same group, while satisfying the condition that every pélgects in the same
group should have a distance that is below the thresholdraist For example, the
grouping results for object 3 are different when the dis¢aticeshold is changed
from 5.50 t0 5.00, as shown in Table 5.5. When there is no relevant influence from
single-arrow connections, one object may also be groupéd different groups
or objects when a different distance threshold is selectedd the method’s aim
to merge objects or groups with higher average connectwhiie satisfying the
condition that every pair of objects in the same group shbaige a distance that
is below the selected threshold distance. An illustratibth@s situation is also
shown in Table 5.5: the different merging for object 3 whemdistance threshold
is changed fron%.00 to 4.60.

Distance bi
Threshold Group  Objects

5.50 3

1,
4,
6

5.00

2
5
7
1,2
3,4
6,7
1,2
4,5
3,6,7

5

1
2
3
1
2
3
4.60 1
2
3

Table 5.5: Grouping results of Example 2 using the Arrowdmoeétith a distance
threshold o#.60, 5.00 or 5.50.

Selecting a distance threshold®$0, object 3 is placed in the same group as
objects (1, 2) in step 2 of the Arrows classification processcdbed in Section
5.2, because object 3 has a single-arrow connection wittcobBjand the distance
between objects 3 and 1 is no greater thdi, the distance threshold. However,

when the distance threshold is set tos@), object 3 can no longer be put in the
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same group with (1, 2) because the distance between objeais Bis now larger
than the distance threshold; thus, object 3 is grouped wibthig (4, 5) in step
4 of the classification process described in Section 5.2haslistances between
object 3 and object 4 or object 5 are both no greater than therdudistance
threshold and the average distance between object 3 ang ¢40%) is smaller
than the average distance between object 3 and group (6,afedver, when the
threshold is changed to He60, the grouping result for object 3 is different again;
object 3 is amalgamated with group (6, 7) rather than withugr@, 5) because
the distance between objects 3 and 5 is now higher than thafispedistance
threshold and hence object 3 cannot be merged with group &em though the
average distance between object 3 and group (4, 5) is snthderthe average

distance between object 3 and group (6, 7).

Since using different thresholds means the grouping eéoiitobject 3 may
be different, it is not possible for the Arrows method to shbe grouping results
of different similarity levels by a continuous and compldendrogram; only the
incomplete dendrogram of using a distance threshold oftless5.00 shown in
Figure 5.7 can be drawn, from which the grouping results earebd straightfor-

wardly when a distance threshold is set to be any value lessth0.

Itis seen that the three methods give similar results; ftaince, the core of the
groups, (1, 2), (4, 5) and (6, 7), stay the same. From the gngapesulting from
the Arrows method using different distance thresholdsenss that when a lower
similarity level is required within the groups, the Arrowsethod appears to be
more similar to the average linkage clustering, howeveemd higher similarity
level needs to be achieved, the Arrows method tends to berdioshe complete

linkage clustering.
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5.4.3 Example 3

It is seen from the previous two examples that the Arrowssdiaation method
has similarities with the complete linkage and averageagghierarchical cluster
analysis [3]. We here use a more complicated example to shelgifferences
between the methods as well as the influence of the threshdliearesults of the
Arrows method; the similarity matrix is given in Table 5.2h& dendrograms of
the grouping process of ti#) machines using the complete linkage and average
linkage clustering are given in Figures 5.8 and 5.9, respadgt The dendrogram
resulting from the Arrows classification method for p-valbbeesholds, > 0.046

is given in Figure 5.10. When the threshold is set to be lessdhaqual td).046,
group (M10, M13) may be combined with different machines mugs of ma-
chines and thus the corresponding grouping results camptdperly displayed

in the same dendrogram.

For the machines data, we generally assume that two machitiea p-value
smaller thar0.10 are considered to be significantly different and therefamnot
be combined in to one group. Thus, it is reasonable to igriiergtouping results

obtained at a similarity level beloa046.
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M01 M11 M12MO05M20 M19M02 MO3 M15M09 MO4M06 MO7 M17M10 M13M08 M14 M16M18
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Figure 5.8: Dendrogram from the complete linkage clusteryais for the ex-
ample of 20 machines. The first column of numbers is the cporeding similarity
level at each amalgamation.



CHAPTERS 118

M01 M11 M12M05 M20M19 M10 M13M15 M18 MO7 M17M08 M14 M02MO3 M09 M16M06 MO4

|

-

0.927
0.822
0.819
0.783

0.623
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0.451

0.442

0.371

o ©O© O N o o b wWwN

0.227 1

0.187 11 |

0.126 12

0.094 13

0.084 14 |

0.043 15

0.027 16 |

0.007 17 |
0.001 18
0.000 19

Figure 5.9: Dendrogram from the average linkage clustéyaisafor the example
of 20 machines. The first column of numbers is the correspnsimilarity level
at each amalgamation.
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P-value M12 MO1M11 MO9MO2 MO3M19M0O5M20 M15MO8MO7 M17 M10 M13M04 MO6M14 M16M18

Threshold 1 LJ
0.822
0819
0.715

0.623

0502

0.383

0.235

© 0O N oo o B~ W N

0.121
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0.049

-
—_

>0.046

Figure 5.10: Dendrogram from the Arrows clustering methsdhg similarity
thresholdp, > 0.046 for the example of 20 machines. The first column of numbers
is the corresponding p-value/similarity threshold.
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We compare the classification methods by examining the gngupsults at a
similarity level of0.10 as we assume that two sets of data are similar enough to be

grouped together when their p-value is abOvig).

We consider the average linkage clustering initially. Teadfogram is given
in Figure 5.9, and this shows that the 12th merging happesisraarity level of
0.126 while the 13th amalgamation happengd@94. Thus, at a similarity level
of 0.10, it gives8 groups, as listed in Table 5.6. Since the average linkage clu
tering uses the average similarity between groups as themeasure to decide
groups, there are pairs of machines with very low p-valuasdre included in the
same groups. For example, in the first group in Table 5.6, ithéasity between
M15 and M13 ig0.046; in the third group, MO7 and M14 have an extremely small
similarity p-value of0.009, while MO8 and M14 has a even lower p-value of zero,
which statistically means there is zero possibility thatlheakdown duration data
of MO8 and M14 are drawn from the same distribution. Thualgh the final
number of groups at the similarity level 0f10 is fewer than the number of groups
resulting from the other two methods, the homogeneity ofgtteeips is not suffi-
ciently high. Hence, in the following we focus on comparinhg Arrows method

with the complete linkage clustering.

Group  Machines

AL1 MO01, MO5, M10, M11, M12, M13, M15, M19, M20
AL2 MO02, M03
AL3 MO7, M08, M14, M17

AL4-AL8 (Single machine groups) M04, M06, M09, M16, M18

Table 5.6: Grouping results of the 20 machines at a simyléitel of 0.10 using
the average linkage clustering method.

In the complete linkage clustering dendrogram shown in feidu8, the 11th
merging happens at a similarity level @fi09, while the 12th amalgamation hap-

pens at a p-value equal 006. Therefore, there arg groups, listed in Table
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5.7, at a similarity level of).10. Figure 5.3 and the dendrogram in Figure 5.10
show that using the Arrows method with a threshold).ab produceslO groups,
as listed in Table 5.8.

, Average Similarit
Group  Machines g Y

within Group
CL1 MO01, MO5, M11, M12, M19, M20 0.385
CL2 MO02, M03, M15 0.303
CL3 MO7, M08, M10, M13, M17 0.420
CL4-CL9 (Single machine groups) M04, M06, MQ9, -
M14, M16, M18

Table 5.7: Grouping results of the 20 machines at a simyléitel of 0.10 using
the complete linkage clustering method.

Average Similarit
Group Machines g y

within Group
AR1 MO01, M11, M12 0.462
AR2 MO02, M03 0.623
AR3 MO5, M15, M19, M20 0.574
AR4 MO07, M08, M10, M13, M17 0.420

AR5-AR10 (Single machine groups) M04, MOG6, -
MQ9, M14, M16, M18

Table 5.8: Grouping results of the 20 machines at a simyléitel of 0.10 using
the Arrows classification method.

It can be seen from Tables 5.7 and 5.8 that the results arasifor example,
the single machine groups are exactly the same; the reasahi$osimilarity
between the two classification methods appears as both deémsure that every
pair of objects within the same group has a similarity thattieve the similarity
level, 0.10: for complete linkage clustering, it is achi@u®y using the smallest
p-value within one group as the similarity level of that gopwvhile for Arrows
method, it is achieved by setting a p-value threshold as btieeanain features of

this classification method.
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The differences between the two grouping results come frioendifferent
groupings of machine M15 only and this demonstrates oneeofrtjor features
of the Arrows method, that is, it aims to keep together obj@ath single-arrow
connections when possible. Using the Arrows method, M15ahsisgle-arrow
connection with machine M20 and has above-threshajd= 0.10) similarities
with MO5 and M19. Therefore it is amalgamated with group (MPB9, M20)
during the second step of the process described in Secfoibe complete link-
age clustering method uses the furthest distance as thenatgy for grouping, in
this case, the smallest p-value. Using complete linkagé iglinerged with (M02,
MO03) instead of (M05, M19, M20) because the smallest p-vhkteveen M15 and
(M02, M03) is higher than the smallest between M15 and (MOR9MVI20). The
differences between the grouping results coming from threptete linkage and
the Arrows method can be seen in Tables 5.7 and 5.8: CL1 and CL2ARY,
AR2 and AR3. The average similarities within the three growgslting from
the Arrows method are all higher than those within the twaigsoresulting from
the complete linkage clustering. Thus, it is believed thatArrows classification
method achieves more homogeneity within the resultantpgdoan the complete
linkage clustering at the similarity level 6f10, although the latter method gives a

slightly smaller number of groups.

At similarity levels 0f0.20, 0.30, ..., 0.90, all of the grouping results of the
Arrows method and complete linkage clustering are the sdespite their differ-
ent methods for merging groups. The results are shown in ¢nerdgrams in
Figures 5.8 and 5.10 and are listed in Appendix A. It is seahlili increasing the
threshold p-value the homogeneity of the groups is imprdugtcthe number of

groups needed to describe the data increases.

On the whole, it seems that the proposed Arrows classificatiethod pro-
duces similar results to the hierarchical cluster analygise major difference

between the two is that the clustering method searches thkewratrix to find the
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most similar groups to merge while the Arrows method preferkeep together
objects with double-arrow and single-arrow connectionise Tise of a threshold
distance or similarity is also a characteristic of the Arsawethod, which ensures
that any two objects whose similarity is less than the setesimilarity threshold
will not be allowed to be put in the same group. The Arrowssifacation method
therefore allows us to control the similarity level in theuétiant groups more eas-

ily than cluster analysis.

5.5 Classification of Hospital Length-of-Stay Data

The Arrows classification method is a general method anddcbal applied to
classify data from a wide range of applications, in additemanufacturing. We
here include an example involving a health care applicatibere it has also been
applied. This example comes from [41], where the ultimatgpse was to use
Gallivan and Utley’s linear programming approach for seftup optimal sched-
ules for hospital procedures [61]. As we mentioned in 4.6:2,wish to group

procedures based on the similarity of their patients’ lbraftstay data.

This classification of procedures into groups before themaping process has
three benefits [41]. First, the schedules output by the ogéition program have
more flexibility. Instead of insisting that a set number afgedures of a particu-
lar type X need to be performed on a certain day, the schedules outpuaibée
to suggest that a set number of procedures of GiGypneed to be performed
on a certain day, where Groupy may include more than one type of proced-
ure. Therefore, if a cancellation or a last minute requesafprocedure occurs,
substitution is relatively easy. Second, the number ofades in the optimisation
program can be reduced by the grouping and the subsequepttation time re-
quired to find the optimal schedule can be decreased. Thisgsean be signific-

ant when setting up a schedule of a large number of procetturesveral weeks.
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Third, the demand for a group of procedures will be more aely forecast than

the demand for individual procedures.

We have length-of-stay data fdf, 929 different episodes recorded over a
period of7 months coming fron655 different procedures. There are a large num-
ber of rare procedures for which we have little data. Afterphimary analysis of
the data (see [41] for details), there dry procedures or procedure groups that
we wish to classify into a smaller number of groups. The airthidf example is
to group these47 different procedures or procedure groups based on thejttien
of-stay data; which means that two procedures or procedorgg can be put in
the same group if there is no statistically significant défece between the distri-
butions of their length-of-stay data. Beforehand, we neeaubtain the similarity
matrix of the procedures using the method we introduced ati@e4.4. We run
100 bootstraps for each pair of procedures or procedure graudstermine the
p-values. Here, we again 9et 0 to be the p-value threshold for the Arrows clas-

sification procedure.

The results of the Arrows method suggest that there should lgeoups, and
these are given in Table 5.9 (the codes are called OPCS-4 aodesre used by
NHS; www.hesonline.nhs.uk provides a facility for decafihese codes). The
largest group containsprocedures and there are four group§ @iroceduresj4
groups contain only one procedure. Overall, the groups nsakese intuitively.
For example, group9 is mainly made up of rare inpatients procedures; grziip
includes only endoscopic procedures on the fallopian tabesuterus; and group

28 contains hip and knee replacements.

Group Procedures

1 25120, A52.1, F09.5, S0O8.2, Ear, nose and throat Outpstien
2 A57.3,E35.2,0Q18.1, W92.4, Anaesthetics Mixed, Paedmtri
Outpatients, Gynaecology Outpatients
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Group Procedures

3 25012, A57.6, A57.7,C71.2, S64

4 A65.1, A65.8, S70.1

5 B27.8, C13.4, F34.4, F34.8, L85.8, T20, T21, W08.1

6 B28, C13.2, W78, Urology Mixed

7 B28.2, B28.8, H51, M79.4

8 B31, J18.3, SO01

9 B31.3, W79.1

10 C13.3, N18.1, Q17, W85

11 C17,C18.1, N30.3, W82

12 D03.3, S06.4, S25, W90.4, ultrasound guided biopsy

13 B31.2, E02.6, W86

14 E03.6, E14.3

15 F34,185.2,1.85.3, T27, W81.9

16 H55.1, Q38, S62.2, T24, W87, Orthopaedics Mixed, Ear,
Nose and Throat Mixed

17 J18.8, M11.1, W03, W08.6, Plastic Surgery Inpatients

18 L85.1, W77.1, Paediatrics Mixed

19 M42.1, Orthopaedics Inpatients, General Surgery |apt]
Urology Inpatients

20 M42.3, W08.5, W28.3, W82.8, General Surgery Mixed,
Plastic Surgery Mixed, Ophthalmology Mixed, General
Medicine Mixed

21 N13.4,0Q48.1

22 D15.1, F09.1, H20, P27.3, T80.5, Anaesthetics Outpatien
Urology Outpatients

23 Q13.1,0Q20.2,Q38.3
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Group Procedures

24 B31.2, E02.3, S01.4, T79.1, Ophthalmology Inpatients, Ea
Nose and Throat Inpatients

25 C22.2, S06, Ophthalmology Outpatients, Plastic Surgeity O
patients, Oral Surgery Outpatients

26 T59,T72.3

27 B27.4,T85.2, V33.6

28 W37.1, W42.1

29 Medical admission, Non-procedure related admission

30 G65, H25

31 Q07.4,T41.3, W37.15

32 M45.1, Orthopaedics Outpatients

33 T20.1,T21

34 W90.3, General Medicine Outpatients

35t0 48 (Single procedure groups) C12.3, K65.1, M14, M65.39,Q

S02.1, S06.3, S60.4, V25.4, W74.2, W82.3, W86, Gynaeco-
logy Inpatients, Gynaecology Mixed

Table 5.9: Grouping results of the hospital procedures.

5.6 Conclusion

The Arrows classification method has been demonstrated assimple distance
matrix from a text book as well as practical and more compdasimilarity

matrices. The method is widely applicable and we have dastiits use in the
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classification of medical procedures [41], as well as thesifeation of machines.
When a larger similarity threshold is set, the homogeneityefgroups improves
but the number of groups generally increases. The balarneebe the competing
requirements of homogeneity within groups and having alsmuahber of groups

therefore can be achieved by selecting an appropriatehthicep-value.

The Arrows method gives groupings similar to those resgitrom complete
linkage and average linkage hierarchical cluster analysigeneral, when a lower
similarity level is required within the groups the Arrows tined tends to be more
similar to the average linkage clustering, while when a érghmilarity level needs
to be achieved the Arrows method performs more similarlyhtodomplete link-
age clustering. This flexibility in the Arrows method allowse same algorithm
to be used to satisfy different aims by simply changing timeilarity threshold,
whereas with cluster analysis it can be necessary to svatalifferent algorithm.
Moreover, the Arrows classification method has been impleetein Visual Basic
for Applications in Excel, allowing it to be used by a non-expfor example, the

engineers at Ford.

In the case of classifying machines based on their breakadhwation data,
the target might be to use fewer groups to gain a greatergavirthe time spent
estimating fitted mixture models. Using the Arrows methodoaa set a lower
threshold and using cluster analysis, we may choose to @sevrage linkage
clustering. Ifitis necessary to be cautious with the cfassion, and only to group
machines with fairly high similarities we can use a higheesinold to achieve this
in the Arrows method, but using cluster analysis, we migletdi® switch to the

complete linkage clustering.
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Simulation

Discrete-event simulation is commonly used in the manufaag industry to in-
vestigate the design and operation of different produdiimes ([89] and [140]).
Ford has been using discrete-event simulation modellireyéduate new designs
for assembly and machining lines and to improve the effigiasfexisting lines
since 1982. Engine Assembly lines produce saleable enfginassembling com-
ponents together, most of which are manufactured on auiotnasfer lines. We
focus on the study of the machine breakdown modelling psoéassimulating
an existing engine assembly line. The line will be refer@dg ‘DuntonL01’. In
this case, the simulation is used to perfect the design ofay®ut in line Dun-
tonLO1. For example, the layout design department maydnuice a new design
for a particular part of this line. If the new design is lauadhthe buffer sizes, con-
veyor length or number of machines may need to be adjustads, Thrresponding
changes are made in the simulation model to generate nevesiatuoutputs, e.g.
line yield and costs, which are used to verify the feasipiit the new design and

to estimate its effectiveness.

In this chapter we first briefly introduce the engine asserhibgés and transfer
lines in Ford manufacturing plants in Section 6.1 and thestidee the construc-

tion process of simulation models in Section 6.2. In Sedfi®)the modelling for
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machine breakdowns, engine repairs and operator stoppegggroduced briefly
and the maintenance settings are described. We then fodhe omachine break-

down modelling process in Section 6.4.

As the simulation models are built by Ford using the WITNESS8usation
software (Lanner Group) [102], one of the major steps of themme breakdown
modelling process is to select a breakdown mode in the sodtteadecide the
method for modelling the machine breakdown behaviour, hrgdi$ discussed in
Section 6.5. As the whole cycle of a machine during manufagwonsists of a
sequence of cycles of two segments [103]: up segment wheraalchine is busy,
blocked or idle and down segment where the machine is brogen destimating
distributions for machine breakdown data thus containgaarts as well: deciding
the distributions for representing the time between fasuais the machine up seg-
ment modelling and estimating the distributions for repréhg the breakdown
durations as the machine down segment modelling. We do nosfon modelling
the up segment in this work. A brief description of the madelimethod for the
machine up segment is given in Section 6.6. Finally, theeeaanumber of issues

concerned with the simulation settings, these are destnb8ection 6.7.

6.1 Manufacturing and Engine Assembly Lines

The engine assembly process generally involves autonssij-automatic and
manual machines, material handling and machine linkingesys, human services
including operators, engineers and maintenance operatar®ther facilities in-
cluding electrical and coolant materials, tool and partsest and computerised
support and monitoring systems ([97] and [135]). The majandardized engine
components that are required for the assembly process arefactured in auto-
matic transfer lines [21]. A transfer line consists of maatg facilities including

different machines for various tasks, material handlingtesyis that connect the
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machines such as powered conveyors, gantries or palldispd, manual serv-
ices and the other facilities mentioned above for assenndgl Rough parts are
processed and machined into completed components in ddrdime. The ap-

propriate engine components are later transported to ergisembly lines, where
they are assembled together in a defined sequence and firisteedaleable en-

gine.

The number of machines in an engine assembly line variesllmaséhe type
of engines being assembled and the quantity required. €3gbrl and 6.2 are
layout diagrams of the DuntonLO1 engine assembly line satmrh model built
in WITNESS that we are working on. The former shows the whosswof the
assembly line but no details are legible as therel@2emain operations and over
200 machines involved in this line; the latter shows the detafila small part of
this line where the yellow blocks with the print of “OP” on iedte machines and
the other yellow blocks with small image of conveyor on irdéecthe conveyors

that link the machines together.
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Figure 6.1: Layout diagram of the whole view of the Duntonlebiyine assembly

line built in the WITNESS 2008 version software.
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Figure 6.2: Layout diagram of a part of the DuntonL01 engsgeanbly line built

in WITNESS 2008 version software.
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6.2 Construction of Simulation Systems

Ford Motor Company have developed several interfaces usilcgobbft Excel
so that simulation models can be created automatically dreengineers have
filled all required entries in the spreadsheets [162]. Th&lnnterface was called
FIRST standing for Fast Interactive, Replacement Simulafol [98]; created

for easier and quicker use by Ford manufacturing engineers.

The interfaces have being used as replacements for desaifedation con-
struction. These tools enable manufacturing engineersnstauct a simulation
model by simply inputting required data that is marked anglared clearly in
the spreadsheets. Generally, operation numbers, maatemification names,
cycle times, setup rates, breakdown settings for machghf$ patterns and a lot
of other data are required to be added into these spreadshisng Visual Basic
macros inside these spreadsheets, all the data can themdukdieectly into the
WITNESS system and simulation models with the specified desij be auto-

matically created.

The simulation models constructed through these spreatisiterfaces mostly
have 2D schematics of the whole production line layouts sagthat shown in
Figure 6.1. Every entry into the spreadsheets by engineerssponds to their
design for the model. For example, positioning data of itaed can be specified
in the spreadsheets so that the next facility in the prodadine is automatically

placed in a position relative to the current facility in thélbmodel [162].

A model built through the Excel interface is no different tsiulation model
that is built directly on the WITNESS simulation system ifaee. Figure 6.3
shows a simple conveyor system and a machine details sdititag. All details
included in the dialog are built in when the simulation moehutomatically
created by the spreadsheet in which the engineers havelwlmgaut all details

that are required to define the machines and other elemetiits model.
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Figure 6.3: A sample WITNESS layout diagram from a Ford sinmotamodel
showing a typical simulation dialog which contains conttides and timings for
the each operation and facility within the plant using the WESS software,
given in [162].

The DuntonLO1 engine assembly line model whose layout drags shown
in Figure 6.1 is built through an Excel interface called FAShere arel 92 main
operations and ove200 machines involved in this line. Building a simulation
model as complicated as this, the use of spreadsheet tootausly appear to be a
much simpler way and saves considerable time. In additimallschanges to the
created simulation models can be made on the WITNESS systerfaice as well

as through the spreadsheets interface.

6.3 Breakdown and Maintenance Logic

The simulation model of the complete engine assembly lirgeiseloped in the
WITNESS simulation system. As we mentioned in Chapter 1, tlaeeethree
major causes of production loss: the machine repairs, erngpairs and operator
stoppages. This work focuses on the modelling of machinakidl@vn durations

and we propose to use finite mixture distributions fitted tougied breakdown
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duration data as the simulation inputs for machines invblengine repairs are
simply modelled using the percentage of engines with procliguality issues,
since there are no available data for more detailed analysisoperator who is
attending the machine may suddenly fail to perform the jolrame occasions.
Human breakdown modelling for machines is included to mduede rare cases,
where generally an Erlang distribution is used to repretfemtime of operator
stoppages, and an extremely low percentage is used to nmualélequency of

occurrences.

The maintenance logic for machine repairs in the model agsuhat an imme-
diate repair will be made when a machine fault occurs and aradgr or mainten-
ance operator is available [135]. The failure’s duratiohjol is generated from
the machine breakdown duration input distribution, is usedetermine the skill
level of the maintenance staff required to complete theirepar example, when
the time to repair a failure is generated to be longer tiiaminutes, the highly
skilled maintenance operator will be called; otherwisedperator attending the

machine will carry out the repair.

The assumption made is that the generated repair time ieslin@ time to wait
for maintenance to become available and also the maintengperator’s travel
time. In the design of the simulation model, the waiting tiflmemaintenance to
become available is generated separately in situationsevellleof the maintenance
staff are busy. In order to meet the assumption of the waitfaintenance being
included in the repair time, while still using standard r&ees settings, a bypass
designed in the model is to set a large number of resourcémsthere are always

maintenance staff available for attending a repair whene@ma failure happens.
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6.4 Machine Breakdown Modelling Process

The machine breakdown modelling process for engine asgelimbl simulation
models is considered to be the typical breakdown modellisthodology at Ford
and is the one to be used in all production models such asféraitee models.
The general process used to model breakdowns includes &ixstegs as shown

in Figure 6.4, and is described below.

Develop

Collect Distributions

Historical for Time between

Breakdown Repairs & for Execute

Data Repair Times Model
Decide on Input Verify
Breakdown Breakdown Breakdown
Mode Data Input

Figure 6.4: Diagram of the machine breakdown modelling wediogy.

1. Collect historical data:

When building a simulation model for an existing line, colleaw break-
down duration data for all machines from that line; whendiag a simula-
tion model for an in-planning new line, collect raw breakdosuration data
from existing machines which will be involved in the new lioieare similar
to the machines that will be placed in the new line. We use @&onaatic
on-line monitoring system to collect breakdown data (seti®@e 2.4 for
details). The raw data collected directly from the moniigrsystem need
to be validated and checked (see Sections 3.3.1 and 3.8}han can be

used in the subsequent analysis.

2. Decide on breakdown mode:
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An appropriate breakdown mode in the WITNESS simulatiornvg® must
be chosen as the method for modelling the machine breakdewavipur
during simulation runs, i.e. the way that the WITNESS sofenwealculates
the time between successive repairs. This step will be ggsmliin Section
6.5.

3. Develop distributions for representing time between mree failures and

repair times:

In order to use the models to reflect the real-world situaticiormation re-
lating to the breakdowns of the machines must be entered. i3 hiormally
in the form of a downtime distribution and a time betweenufia@t distri-
bution [21]. An exponential distribution has been used fesent the time
between failures, to parameterise which only the value @mtiene between
failures (MTBF) needs calculation; MTBF is calculated usiogriulations
that have been established by Ford engineers and will bedunded in Sec-
tion 6.6. To represent the breakdown durations, Ford usuak empirical
distributions; we propose to use the finite mixture modelgfoups of ma-

chines, for which the fitting process has been discussed ipt€ha.

4. Input breakdown data:

Input the empirical distributions or finite mixture distudons that repres-
ent the machine failure durations and negative exponetisaibutions that

represent the time between failures.

5. Execute model;

It is usually executed for a warm up of one day and a lengthOadays in
Ford due to time limitation. An investigation of choosingappriate warm

up period will be explained in Section 6.7.1.

6. Verify breakdown input:
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Initially, this is to check whether the target machine damet levels were
met. The simulation evaluation process will be introducetthé next chapter,
Chapter 7.

6.5 Using WITNESS to Model Breakdowns

There are three methods for modelling machine breakdowaviedr in the WIT-

NESS simulation software:

1. Available Time Mode:

This method is also referred to as Calendar Time Mode [103highmode,
machines can break down whether they are operating or nduréscan
occur when a machine is idle, busy, blocked, being setupglreipaired or
waiting for labour. The time between failures refers to thtaltelapsed time
that the machine has spent in any of the above listed stelté&]([[150],

[97], [103] and [102]).

Two drawbacks of the available time method have been idedtby Law
[103]. One is that it may not be realistic for machines to kréawn when
they are in the idle state. The other is the problem that whepeaified
machine is in two different systems with a number of othermraas. Since
there is the same distribution of time between failures fits thachine in
both systems, the generated time between failures will beséime in both
systems. Due to different operating times and conditiorthéntwo simu-
lations, this particular machine may have significanthslbeeakdowns for

one system than for the other. Thus, this approach may natyaealistic.

2. Busy Time Mode:

Using this option, machines can only break down while theyagerating.

In other words, a failure can only happen when the machineoisgssing at
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least one part. The time between failures here refers tolépsed time the
machine has spent only in the busy state ([141], [150], [@0j3] and [102]).

Itis generally believed to be a more natural approach thaavhilable time
mode [103].

3. Number of Operations Mode:

This method is referred to as number of completed parts i8][1®electing
this mode, a machine will break down after a certain numbepeiations
([141], [150], [97], [103] and [102]). The time between fais is expressed
as the number of operations that a machine has completed gieclast
failure. Many manufacturing machines do not follow thiskof breakdown

pattern; therefore this method is not as well-known as therdivo.

Ladbrook [97] also suggested that care should be taken wéiag the Avail-
able Time mode. It was noticed that some scheduled brealsioxegre delayed
since both the time to the next failure and the repair timenhd tailure are gen-
erated from the input distributions at the start of a breakdoWe use the Busy

Time mode in this work.

6.6 Time Between Failures

We do not focus on modelling the time between failures in thisk and use
the standard method employed by Ford’s engineers. Thisressthat the time
between failures follows an negative exponential distrdsy with mean equal
to the mean time between failures (MTBF), which is the way three tbetween
failures are currently modelled in the simulation modelline DuntonLO1. The
WITNESS simulation model will then generate the time of thgtriailure on a
machine from the negative exponential distribution at ttaetdime of a break-

down.
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This method for modelling the time between failures is vedfin some of the
research undertaken in Ford’s Engineering Department [&7is believed that
the averaged line yield produced by the simulation modéi tie use of negative
exponential distribution as the inputs of the time betwesdnffes is “as accurate as
using historical data” [21]. Nonetheless, itis also intiéckthat in [21] the negative
exponential distribution can not represent the time betviadures accurately for
all of the machines. Without available data and furtheraed® this is believed to
be the best representation of the time between failures.vigubelieve there may

be a better representation and further suggestions arglusa Section 8.5.

We calculate the MTBF for a machine to be

Tl —TTR
MTBF = 6.1
No.of Failures’ (6-1)

where TT is the time period over which the raw breakdown domadata are col-
lected, and"T'R is the total time a machine is broken down during the datacell
tion period. To calculat& TR, we split the breakdown duration data intdins
with threshold9, b, . . . , b, where the bins do not necessarily need to have the

same width. Thus,

n—1
TTR=Y MF (6.2)
=1

whereF;,i = 1,...,n is the number of observations in binThe MTBF is then

used as the parameter in the exponential distribution.

6.7 Issues with Model Execution

In order to carry out our analysis of the simulation outputgdeve need to be able
to assume that we have a setrafependent and identically distribut€dD) obser-

vations. For this to be true, the stochastic process musobariance-stationary
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and demonstrate no autocorrelations. An output stochpsticess beginning at
time zero in a simulation is unlikely to be covariance-stadiry and is likely
to present autocorrelations [103]. We therefore wish torege the appropriate
warm-up period when executing the simulation to ensuretti@butput process
of the engine assembly line simulation is in a steady stagw¥e start collecting
results. We then need to check that the steady-state outpilits no autocorrel-

ations.

We letyy, s, ..., y, denote a sequence of throughput observations of a simu-
lation run of the assembly line model, which is known as ardisctimestochastic

process It is said to becovariance-stationaryf

i =, for i=12...nand —oo < u < oo (6.3)

ol =0* fori=1,2,... nand o* < 00 (6.4)

wherey; ando? denote the mean and variancewef respectively; and’; ;. ; =

Cov(y;, yit;) is independent offor j = 1,2,...,n — .

The definition of covariance-stationary means that the awee between two
observationg;; andy,,; depends only on the time interval, lag Therefore, the
lag j autocorrelation of stochastic processys, . . ., y, IS

Civg _ G _ G ’
- ’ =—==—= for j=0,1,2,...,n
bi 2 2 o2  C J

0
0;0i4;

where(C; andp; denote the covariance and correlation betwgeandy;, ;, re-
spectively. With autocorrelated simulation output da$hmple meafi(n) re-
mains the unbiased estimator of the distribution meabut the sample variance
S%(n) is a biased estimator of ([103] and [4]):
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ST (L= /n)p;

n—1

E[S*(n)] =0* [1 -2 (6.5)

Hence, ify:, ys,...,y, are autocorrelated, i.ep; > 0, then E[S?(n)] will be
smaller tharv?. However, as shown in Equation 6.5, when— 0, F[S?(n)] —
o%. Thus, we can assume that a covariance-stationary stacpestess is a set of

IID random variables ip; is significantly small.

If y1,92,...,y, IS @n output stochastic process of jobs completed per hour
(JPH) of a simulation run beginning at time zero, it is urnljkid be covariance-
stationary. Howevery,.1,yiio, ..., y, could reach asteady-state distribution
([103] P488) and can be assumed to be covariance-statidrarg large enough.
The lengthk is the warm-up period and its estimation will be describedhim

following Section 6.7.1, using two different methods.

Before we can assume the covariance-stationary outputesticiprocessg; 1,
Ykao, - - -, Yn IS COMposed of 11D observations, we need to estimate theatre-
ations. The calculation of the autocorrelations is disedss Section 6.7.2. Only
if the autocorrelation is small enough can we assumeithat .2, ...,y, are a
set of IID random variables and perform our analysis of theusation output data

later in the next chapter.

6.7.1 The Influence of the Initial Transient

In order to remove any initialisation bias in the simulatmutput, we only wish
to collect results when it has reached a more stable statereTib an elaborate
discussion of initial transient and steady-state distiins in [164], and a list of
relevant papers and books can be found in [67]. If the sedleeswrm-up period
is too short, the output stochastic process has not reaclkezhdy-state, which
can cause misleading data to be presented in the collectpdtolOn the other

hand, if we select a very long warm-up period, it is a wasténoétand resources.
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Therefore, we need to estimate an appropriate warm-upge@wer the last 40
years of research into estimating warm-up periods for diseevent simulation
models, various methods have been proposed. There are findypas of warm-
up estimating methods ([132], [133], [134] and [81]):

1. Graphical Methods:

A visual inspection of time-series of the simulation outpthis set of meth-
ods can be implemented simply but relies on the expertisbefanalyst
for a proper decision ([71], [164], [7], [133] and [103]). &limplest and
most popular methods are simple Time-series Inspectiat] gAd [133])
and Welch’s method ([164] and [103]).

2. Heuristic Approaches:

Rules for determining the length of the stabilising procédsese methods
have the advantage of easy implemention. Compared to thaigemeth-
ods, the use of rules reduces the risk factor of human judge(f&], [58],
[60], [126] and [165]).

3. Statistical Methods:
Statistical principles are applied. These methods are wmrglicated and
require more specific knowledge ([103] and [172]).

4. Initialisation Bias Tests:

These tests are strictly speaking tests for determininghvenenitialisation
bias exists in a series of data. Therefore, these methodbecanmbined
with the above methods to verify whether the selected wagpnperiod is
long enough. These tests can lack accuracy for certain kihdata ([143],
[144], [155] and [69]).

5. Hybrid Methods:
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A combination of initialisation bias tests with any of thestithree methods
([126] and [86]).

A table of 42 warm-up methods found in currently publishéer&iture is given in
[81].

There is little research evaluating the performance of #r®us methods. The
only few papers we found were: [168], [169], [60], [126], [2BL12], [166] and
[113]. Although the advantages and disadvantages of thedi@sethods are ob-
served and some warm-up estimation methods are recommérdese on some
types of simulation models, no single method is found to weel for all types
of models. It is suggested that we apply several methodsdardo achieve an

accurate estimate of the warm-up length.

We applied two widely used methods, simple time-seriesdaospn method

and Welch’s method, to determine the warm-up period of auukition models.

6.7.1.1 Simple Time-Series Inspection

Only one replication is required to carry out this graphicathod. Thus, we
made a replication of the assembly line modekod hours. We plot the hourly
throughputs of the engine assembly line model for hio& . . ., 200. The time-
series appears to be quite randomly distributed @fdrours, as shown in Figure
6.5.

6.7.1.2 Welch's Method

This graphical technique requires multiple replicatiovéelch’s method [164] is

carried out in the following four steps as given in [103] (BE0

1. Make15 replications of the simulation of equal length= 200 hours. Let
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Figure 6.5: Hourly throughputs (Jobs completed per houptbnLO1 model.

N;; denote JPH in thgth hour from theith replication: = 1,2, ..., 15 and
j=1,2,...,200.

2. LetN; = S21° N;;/15forj = 1,2,...,200. The averaged proced§, N,
..., Ny has the same mean as the original but dnly5th of the variance.

The plot of the averaged process is shown in Figure 6.6.

3. To highlight the long-run trend of interest, we smoothtbethigh-frequency

oscillations in the averaged process by using the movingpgee

r—1 N
Yoy Nrs

¥, (1) = - 27%1 , fr=1,...,w
s=—w VT ts 1 .
— sutl Ifr—w—l—l,...,QOO—w

wherew is termed thevindowand is an integer satisfying< w < 50. We

calculate the moving averages for= 5 andw = 10.

4. PlotN,(w)forr =1,2,...,200—w for bothw = 5 andw = 10 and choose
the warm up lengtlt to be that value of beyond which the plot seems to
have converged. The plots are shown in Figures 6.7 and 6.8&chdese a

warm-up period of: = 48 hours from the smoother plot far = 10.



CHAPTERG 146

T 45 ¢
g
o
()
[=2)
o
g 30 - [lVM\/A\MVMM‘W\MWV\J’WMMWWW
15 |7
0
0 50 100 150 200

Hour j

Figure 6.6: Averaged process for hourly throughputs (Jabspteted per hour),
DuntonL0O1 model.

Both methods suggested a warm-up period®lours, i.e. 2830 minutes.
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Figure 6.7: Moving averages(= 5) for hourly throughputs (Jobs completed per
hour), DuntonL01 model.
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Figure 6.8: Moving averagesv(= 10) for hourly throughputs (Jobs completed
per hour), DuntonL01 model.
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6.7.2 Checking for Dependence

We can only apply standard statistical analysis method®tdata. Therefore, we
need to calculate the autocorrelatipn,of the simulation output data to determine
whether the data are independent. Consider random variahles, ..., z, as a
covariance-stationary stochastic process. The autdatioep; can be estimated
by Equation 6.6 ([103] P231):

¢, - 2 X = XOXey = X)L g

Whenn is very large, we can use — 1 instead ofn — j in Equation 6.6 and use

the autocorrelation function in Equation 6.7 [18]:

~

5 S = X)X, — X ()]

S [Xi — X (n)]? 6.7)

We make one replication of the engine assembly simulatiodainghe LION
model) of lengthm = 259, 200 minutes {80 working days, excluding the warm-
up period) and collect the averaged JPH of evedays as one observation of the
output, which gives36 observations. We then calculgte for all possible lags
of the output stochastic process of the3e®bservationsX;, X,,..., X35 . The
plot of the autocorrelation function generated by Minitiel) is given in Figure
6.9. Approximate).05 critical bands for the hypothesis that the correlations are
equal to zero are included on the plot. As shown in this figilne@autocorrelations
forall lagsl1, 2, ..., 35 of the simulation output are small and can be considered as

zero according to the 5% significance limits.

According to the plot of the autocorrelations, there appede no significant
inter correlations within the output of the engine asserfibeemodel. Therefore,
as the simulation output &6 JPH observations is obtained when the simulation

model has reached a steady-state, it can be assumed to befal§erandom
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Figure 6.9: Autocorrelation of all possible lags within théH output of the simu-
lation run. Red curve indicates the 5% significance limitsii@rautocorrelations.

variables. Thus, we may carry on the simulation evaluatgssuming that, which

is given in Chapter 7.
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Simulation Evaluation

In this chapter, we evaluate our method for modelling breakddurations us-
ing a simulation model of an engine assembly line. We compae different

representations of breakdown duration inputs:

(i) empirical distributions for individual machines;
(i) fitted mixture distributions for individual machines;

(iii) fitted mixture distributions for groups of machinesritked using the Arrows

classification method.

The methodology for evaluating the inputs compares the lsimon outputs of
the simulation models with the different breakdown dumaiigputs using several

different methods: graphical comparison, paired-T tedtl@otstrapping.

The results of the evaluation process suggest that theghpau of the simula-
tion model is not particularly sensitive to the machine kdeavn durations, which
is confirmed by further investigation of the causes of thaltotoduction loss. The
engine repairs and operator stoppages seem to be respofusibl larger portion
of the line loss and their impact on the simulation model puerers the effect of

the machine breakdowns and effectively masks any diffe@®icoutput resulting

150
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from different breakdown duration inputs. However, altgbun this case the sim-
ulation output shows only a light dependence on the breakdbwation inputs,
the methodology for the evaluation that we introduce in thapter is still of in-
terest and could be applied in other simulations to evaltngeffect of different

inputs on simulation output statistics.

We also further investigate the impact of the choice of p@dhreshold for the
Arrows grouping by evaluating the simulation outputs ofiti@dels with different
collections of fitted mixture distributions of differenttsef groups obtained using

the Arrows classification method with different p-valueetinolds.

We describes the three types of input in Section 7.1. The odelbgy of
assessing the three different representations of breakdavations are described
in Section 7.2, including an investigation of the sourcessaag the line production
loss. In Section 7.3 we investigate the impact of the thrgsfar grouping the
machines on the simulation performance. A discussion ofakelts of the study

and a conclusion is given in Section 7.4.

7.1 Breakdown Input for Simulation Model

The simulation model we use describes the DuntonL01 engisenably line, one
of Ford’s lines used for the assembly of engines, which isemaa of over200
machines, but for the modelling of breakdown durations, ams@er only 39 of
these. Among the other machines, some are small piecesipheept and thus are
not linked to the on-line monitoring system, therefore koeavn duration data for
these machines are not available. For these small mactireeliability data in-
cluding the frequency of failures and the average breakdhwation provided by
the machine manufacturers are used to model their breaktetaviours within

the simulation model. The rest of the machines such as lsuffied conveyors,
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are thought to be very reliable machines, and Ford make thexgsion that they

rarely break down.

We use WITNESS (Lanner Group 2008) [102] to simulate the asbeptant
using Busy Time breakdown mode, assuming that machines dabi@ak down
when they are working. An exponential distribution is usedimulate the time
between failures, to parameterise which we calculate trenrtime between fail-

ures (MTBF) for a machine using the method described in Seé&ti6.

Meanwhile, the modelling of the other two factors that camsuction loss
is described in Section 6.3. Engine repairs are simply niedeising the percent-
age of engines with quality issues. The modelling of operstoppages is also
included in the simulation model, where generally an Erldisgribution is used to
represent the time of operator stoppages, and an extreovelydrcentage is used

to model the frequency of occurrences.

The three different methods for generating breakdown cnsitwe compare
initially are: (1) sampling from historical data, i.e. using empirical distition
functions (EDF);(2) sampling from the fitted mixture distributions (FMD) for
individual machines;(3) sampling from the fitted mixture distributions for the
groups of machines obtained using the Arrows classificatiethod with a spe-
cified threshold (we here ugg = 0.10); the similarity matrix for the 39 machines

being modelled and the grouping results are given in AppeBdi

7.2 Output Evaluation

We set the warm-up period to 2880 minutes as discussed in Section 6.7.1 and
make10 independent runs, where the length of each rus6isveeks, for each of
the three different models. We mak&observations in each run, each observation

being the averaged number of jobs shipped per hour (JPHrmafahe36 weeks.
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Thus, we obtair360 averaged JPH observations for each model.

We can compare these JPH outputs with the real line yield;mihcludes a set
of 36 weekly averaged JPH observations. This set of real linelyabkervations
has a mean df8.306 with a95% Confidence Interval (Cl) of27.828, 28.783) and
a median o28.000 with a95% CI of (28.000, 29.000), though the actual values of
the observations are not provided for reasons of confid@ntiAll of the 95% Cls
in this chapter are calculated using the standard formuladsyming normality

within the data.

7.2.1 Graphic Comparison

We first use a graphical method to compare the outputs visaatl statistically.
The boxplot and 95% confidence interval plot of the three eét3PH outputs
for the engine assembly line simulation model using theetltiferent methods
for sampling breakdown durations, together with the re&l diata, are given in

Figures 7.1 and 7.2 respectively.

As we can see from the two plots, the inter-quartile range®9a#t confidence
intervals of the three JPH data sets overlap, showing a hegine@ of similarity
between the outputs. The medians of the three sets of JPER&I®S, 28.604
and28.608, which are all within thed95% CI for the median estimated from the
real JPH data set. MoreovéX;% confidence intervals for the means of the three
sets of JPH outpu(:28.578, 28.636), (28.581, 28.638) and(28.578, 28.635) all fall
within the95% CI for the mean in the real JPH data set. Itis also noticeahbldtie
spread of the real JPH data is much wider than the simulatddidB, indicating
that the observations obtained from the simulations asevasable than the real
data. The reason for this, suggested by Ford, is that theretaer sources of
variability in real world that are not modelled (or rathee &amo complicated to be

modelled) in the simulation model. For example, in real @potthere are situations
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Figure 7.1: Boxplot of simulation output JPH using the threxthods for sampling
breakdown durations. The central line shows the median laadbdx spans the
inter-quartile range.

where operators have team meetings during shifts, or hale leaches or late

start or are absent; which would give lower averaged JPH. dtso possible for
the operators to accumulate overtime work to give the negkveehigher averaged
JPH.

7.2.2 Paired T-Test

We use a paired t-test for testing the mean difference betwared observations
of the JPH outputs of simulation models using the differareakdown duration

input methods. The null hypothesis is

Hy : pg = pio,
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Figure 7.2: Interval plot of the set of real JPH observatiandg simulation output

JPH using the three methods for sampling breakdown dusatiime central circle

shows the mean and the interval describes%t& confidence interval for the
mean.

where i, is the population mean of the differences angdis the hypothesized
mean of the differences. Since this test is comparing tlierdiice between paired
observations of the outputs, it is applied to evaluate theukition performance
at approximately the same time while using three differeetkdown duration

inputs.

The results of the paired t-tests are given in Table 7.1. Bnéidence intervals
for the mean difference between any two output process ofniba@el using any
two breakdown duration inputs all include zero, which siggéhere is no obvious
difference between any two of the simulation outputs. Ty lp-values further

suggest that the data are consistent lith: 1., = po = 0, that is, any two outputs
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do perform equally.

95% ClI for

Paired T-Test Mean Differences

T-Value P-Value

empirical data input vs.
individual FMD input

empirical data input vs.
group FMD input(.10)

individual FMD input vs.
group FMD input(0.10)

(—0.00868,0.00497)  —0.53 0.594
(—0.00451,0.00618) 0.31 0.759

(—0.00405,0.00942) 0.78 0.433

Table 7.1: The results of the paired t-tests between theutsigd models using the
three breakdown duration inputs.

7.2.3 Bootstrapping Analysis

We have investigated the differences between the mediahsaans of the JPH
outputs and the differences between paired JPH obsersatiging the graphical
method and the statistical test. We here wish to study theluisonal proper-

ties of the simulation JPH outputs, i.e. to examine the sirnties between the
underlying distributions of the JPH outputs of the modelagithe three different
breakdown duration inputs, where the similarities are messby the possibilities
that any two sets of the JPH observations have been drawrtlfi@same distribu-
tion. The larger the possibility, the more similar the tweéssef JPH outputs and
thus the more similar the two breakdown duration inputs. dé&the method de-
scribed in Chapter 4 to calculate the p-value similarity lBemwthe distributions of
the JPH outputs of simulation models using the three diffidsecakdown duration

inputs.

The resultant p-values are given in Table 7.2. As shown m ttible, the p-
values are all quite high, which indicates that the distrdns of the JPH outputs

of the three simulation models using different breakdovpute are all very similar
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to each other and thus suggests the three representatitims lofeakdown dura-
tions as simulation input have a similar effect on the whetgem’s production

performance.

Bootstrapping Process of Comparison P-Value

empirical data input vs. individual FMD input 0.371
empirical data input vs. group FMD inpat(0) 0.536
individual FMD input vs. group FMD inpu®(10)  0.736

Table 7.2: The p-values obtained from the bootstrappinggs® of comparison
between the outputs of models using the three breakdownicluiaputs.

7.2.4 Further Investigation

As discussed in the previous three sections, the evaluegguits all suggest that
the JPH outputs of models using the three breakdown duratuts are very

similar. The outputs are so close that it appears that théimabreakdowns may
have only a small impact on the throughput. We therefore Ichigis inference

by comparing the output of the model using the group FMD inyith two other

possible input distributions: (1) using one lognormalmisition and (2) using one
FMD for the whole data set of all machines. The differencawben these three
breakdown duration inputs are statistically significamigl &0 we would expect
there to be significant differences in the outputs. The babgohd 95% confidence
interval plot of the three sets of JPH outputs are given iufeg .3, and suggest
that the JPH again appears to be insensitive to the changds tmahe machine

breakdown duration inputs, which confirms our inference.
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mean.
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Therefore we investigate the causes of production loskdurSince there are
three main causes of production loss: the machine breaksj@mgine repairs and
operator stoppages, we shut down the engine repairs anatopereakdowns, and
run the simulation models with only the factor of machinegaowns on to gain
a better and clearer picture of the solo impact of the madhiaakdowns on the

system throughput.

The boxplot and interval plot of the JPH outputs of modelsiite factors
of engine repairs and human breakdowns taken out and usimgrfethods for
describing the machine breakdown durations: historicéh,dadividual FMD,
group FMD with a threshold di.10 in the grouping process and one FMD for alll
machines, are shown in Figures 7.4 and 7.5. It is seen thah#uhine repairs
are only responsible for a small portion of the loss, as thé d&#tputs are much
higher than the outputs when all of the three factors: machreakdowns, engine
repairs and operator stoppages, are included in the silmlatodel. Thus, it
seems that the engine repairs and operator stoppages poaside for a larger
portion of the production loss and when all three factorsfaretioning, their
impact on the simulation model overpowers the effect of tlaeimme breakdowns
and effectively masks any differences in output resultmogfdifferent breakdown

duration inputs.

Although the simulation model with the engine repairs anerafor stoppages
turned off is not a complete model, the outputs show the tngact of the machine
breakdowns on the line throughput, without the interactuath other factors that
are also affecting the total loss in real world. From Figufesand 7.5, it is seen
that the inter-quartile ranges afd% confidence intervals of the four outputs all
overlap, which suggests that there are similarities batwtae four breakdown
duration inputs. Another interesting observation to be enadthat as we move
to more general models, i.e. from individually fitted modetsfitted models for

groups of machines, to a model for all of the machines, the @8tidence interval



CHAPTER Y 160

34.850 1
| ' | |
34.800 1
T
o
S 34.7501 ‘
3 | %
£ 34700 %06 *
§ %% % ®
£ 34650 %
l—
> * o
[
3 34.600
I
34.550 1
%
34.500 - : : : .
X X N X
& R O &
Q\ N @
S o S 4
R & .
30 RS N
& < ©
& Q
)
A\ ‘$0

Figure 7.4: Boxplot of simulation output JPH using four diéfet methods for
sampling breakdown durations: EDF, individual FMD, groud¥ (p, = 0.10)
and one FMD for all 39 machines; while the engine repairs goeitaior stoppages
are set to be turned off. The central line shows the mediarttemtlox spans the
inter-quartile range.

for the output increases.

We focus on the models using the first three methods for reptieg) the ma-
chine breakdown durations: historical data, individualMjroup FMD with a
threshold of0.10. It can also be seen in the interval plot given in Figure 7& th
using empirical distributions results in a slightly lowdH than the output using
FMD inputs. We use the breakdown duration data of machine®8<Lan example
to study a possible reason of these differences. Figurehb@ssthe histogram
of the breakdown duration data for MLOG6, the fitted mixtured®lofor machine
MLOG6 only and the fitted mixture model for GO3, the group of imaes including
MLOG6 (see Appendix B for more details). It can be seen in tséolgram that there
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Figure 7.5: Interval plot of simulation output JPH usingrfdifferent methods for
sampling breakdown durations: EDF, individual FMD, groud (p, = 0.10)
and one FMD for all 39 machines; while the engine repairs gmetraior stop-
pages are set to be turned off. The central circle shows tl med the interval
describes th65% confidence interval for the mean.

is one extreme outlier for which the breakdown duration@siad133 minutes (i.e.
nearll.5 in the X-axis, as the data shown in the plot is the transfordagd of the
real breakdown durations), resulting in the whole asserintdybeing down for a
relatively long period. The fitted mixture model for MLOG6 atie fitted mixture
model for GO3 are both much smoother than the empiricalibigton for MLOG6,
and by using a continuous curve are unlikely to sample caratof133 minutes
or greater as often as when using the empirical distribatibtence, the JPH with

the EDF inputs could be lower than that with the mixture distion inputs.

Since the cycle time of the assemblyl i seconds, if a repair for any machine

needs a long time to be fixed all machines need to stop afterle;whierefore long
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Figure 7.6: Histogram of the transformed breakdown dumatlata of machine
MLOG6 and plots of its fitted mixture distribution’s PDF and group fitted mixture
distribution’s PDF.

repair durations have a greater effect on the line prodncts the high value out-
liers of breakdown durations have a significant impact onglsaltant JPH output,
we calculated the frequency of generating long breakdowatuuns (greater than
50 minutes) in the WITNESS models using the three differeptasentations of
breakdown durations for machine MLO6. The results are gimerable 7.3. The
frequency of long breakdowns is the highest when using thareral distribution
as the breakdown duration input. Moreover, the three maatelsising the same
distribution to simulate time between two successive fagdyuso the fact that when
running for the same amount of time, the model using the eagpdistribution as

its input has the lowest efficiency is quite reasonable.
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TTR Input P(TTR > 50mins)
Empirical distribution 0.002632
FMD for MLO6 0.000609
FMD for GO3 0.000611

Table 7.3: Frequency of generating long breakdown durst{gneater thars0
minutes) for machine MLO6 using the three different disttibns. TTR is short
for time to repair.

7.3 Impact of the Threshold

The grouping results of the Arrows classification methoq Var different thresh-
olds, and so we here study the influence of the choice of thfeésin the output
of simulation models using fitted mixture distributions fiifferent groups. We
consider the following threshold$).05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70,
0.80, 0.90. Most of the corresponding grouping results are differeith viwo
exceptions: the groupings withh = 0.50 match those witlp, = 0.60; and the
groupings withp, = 0.70 match those wittp, = 0.80; therefore, we have
different sets of fitted mixture distributions f8rdifferent sets of groups. We use
theses sets of group fitted mixture distributions as the breakdowration inputs
of the same engine assembly line simulation model and makedependent runs

of 36 weeks for the models to get 8 sets of JPH observations.

The boxplot and interval plot of the sets of JPH output forghgine assembly
line simulation model using the individual FMD breakdowpumtogether with the
groups FMD breakdown input at different threshold levetsgiven in Figures 7.7
and 7.8 respectively. As shown in both plots, there are nifsignt differences
between the JPH outputs of models using FMD for groups trebhatained at

different threshold levels.

The similarities can be further confirmed by the paired t#tesults and boot-

strapping analysis, as described in Sections 7.2.2 and, Which are shown in
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Figure 7.7: Boxplot of simulation output JPH using the FMD ifodividual ma-
chines together with the FMD for groups classified at diffetareshold levels us-
ing the Arrows method for sampling breakdown durations. déwral line shows
the median and the box spans the inter-quartile range.

Tables 7.4 and 7.5, respectively. All of the confidence wraksrin Table 7.4 in-
clude zero, and the p-values are all quite high; both of wkiglgest that there is
no apparent difference between any pair of the simulatidpuis and thus all of
the 8 simulation outputs perform equally. All of the p-values iable 7.5 are all
quite high, which indicates that the distributions of théldRitputs of thes simu-
lation models are all very similar to each other and thusisterstly suggests the
representations of the breakdown duration inputs have #esigffect on the sys-
tem production performance. Therefore, it is believed thatchoice of threshold
in finding the groups of machines does not have a significapaahon the sim-

ulation performance when using group FMD as breakdown ouratputs. This
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Figure 7.8: Interval plot of simulation output JPH using #dD for individual
machines together with the FMD for groups classified at diffie threshold levels
using the Arrows method for sampling breakdown durationse @entral circle
shows the mean and the interval describes%& confidence interval for the
mean.

suggests that, = 0.05 may be chosen as it is the smallest value of the thresholds
and thus provides the smallest number of groups; and herweades the time
spent estimating the fitted distributions for all machined also reduces the time

spent inputting the breakdown settings.

We next investigate the impact of the threshold using thauksition models
with the engine repairs and operator stoppages turned lo# plots of outputs are
shown in Figures 7.9 and 7.10, and these also suggest thatisHgtle difference

in the outputs for the different thresholds.
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Paired T-Test

individual FMD input 95% Cl for T-Value P-Value
Mean Differences

VS.

group FMD input(.10) (—0.00405,0.00942)  0.78 0.433

group FMD input(.05) (—0.00520, 0.00802) 0.42 0.675

group FMD input(.20) (—0.00509,0.00819)  0.46 0.646

group FMD input(.30)  (—0.00650,0.00603) —0.07  0.941

group FMD input(.40) (—0.00170,0.01223) 1.49 0.138

group FMD input

(0.50/0.60) (—0.00295,0.01125)  1.15 0.251

group FMD input

(0.70/0.80) (—0.00265,0.01151)  1.23 0.219

group FMD input(.90) (—0.00246,0.01124)  1.26  0.209

Table 7.4: The results of the paired t-tests comparing tinelsition output of the
model using individual FMD and those of models using FMD fifiedent groups
of machines resulting from the Arrows method using difféténesholds.

individual FMD input vs. P-Value
group FMD input(.10) 0.736
group FMD input(.05) 0.695
group FMD input(.20) 0.637
group FMD input(.30) 0.691
group FMD input(.40) 0.896
group FMD input(.50/0.60) 0.779
group FMD input(.70/0.80) 0.603
group FMD input(.90) 0.803

Table 7.5: The p-value results obtained from the bootstrapprocess comparing
the simulation output of the model using the individual FMiiahose of models
using FMD for different groups of machines resulting frone thrrows method

using different thresholds.
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Figure 7.9: Boxplot of simulation output JPH using the FMDdooups classified
at different threshold levels using the Arrows method fampbng breakdown
durations in the model with the engine repairs and operatppsges turned off.
The central line shows the median and the box spans theqotatile range.

7.4 Discussion

The first observation to be made is that the machine breakslbawve only a small
impact on the JPH, and the engine repairs and operator gep@ae respons-
ible for a much greater portion of the total loss than the rrecthreakdowns.
Therefore, it is reasonable that the JPH outputs of the maglel the three dif-
ferent machine breakdown inputs appear to be similar, wimialy indicate why
this topic has not been discussed much before. The evalyattiwess was carried
out to investigate the influence of the machine breakdowuatgpn the simulation

throughput and the fact that the outputs are so similar evemwhe engine repairs
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Figure 7.10: Interval plot of simulation output JPH using EMD for groups clas-
sified at different threshold levels using the Arrows metfadsampling break-
down durations in the model with the engine repairs and apestoppages turned
off. The central circle shows the mean and the interval dessithed5% confid-
ence interval for the mean.

and operator stoppages are turned off, is encouraging.

The results of the comparison of the simulation outputs @kimulation mod-
els that have only the machine breakdowns functioningwiith the engine repairs
and operator stoppages turned off, show that when FMD irgretsised, the JPH
output by the model is higher than the output when empiricgttidution inputs
are used. It is believed that the reason for this is that tissipiity of getting ex-
tremely high breakdown durations in the WITNESS models ukistprical data
is greater than that of the model using individual FMD or gr&MD inputs; and

the very long breakdown durations have a significant impa¢he JPH of the line.
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Nevertheless, as suggested by the analysis, the simutaiiputs using the three

different breakdown duration representations are alkggirilar.

The use of mixture distributions for representing simolainputs has advant-
ages over using EDF inputs. Since the EDF is estimated froam@om sample,
it may contain irregularities and have a limitation thatadgenerated from it can
only be within a certain range. A mixture distribution is aniauous distribution
that copes well with the multimodality present within theajahus can smooth
out the irregularities in the data. It is a compact way toespnt the duration data

and also makes it simpler to make changes for experimerasbres.

On the whole, the similar simulation performance using FND group FMD
strongly suggests that the classification of machines basettheir breakdown
duration data is good enough for this purpose. Moreovergthee a number of
advantages of using grouped FMD instead of individual FMDstFless fitting
processes need to be carried out; and the number of datanseta@ables in the
simulation can be reduced by the grouping and thus the subsemput time re-
quired for all machines can be decreased. The total savitighefis significant,
even when taking into account the time spent implementiegAtitows method.
Second, in the situations that a machine needs to be modelige there is no
available data for it or it is a new machine, an experiencegiheer could probably
help with identifying which groups of machines the no-da¢s¥ machine belongs
to and so the FMD for that group could be used to representrdrektdlown dura-
tion input of this new machine. The accuracy of identifyihg machine as being
similar to a group of machines should be higher that thatefidying a similarity

with one particular machine whose breakdown duration da&tawaailable.

While the different thresholds suggest different groupjngappears that the
simulation outputs of models using different collectioriggooup fitted mixture
distributions for different sets of groups are not signifita different, with or

without the factors of engine repairs and operator stoppagdée paired t-tests
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and bootstrapping analysis that compares the simulatitpubaf the model using
individual machine FMD and that of the models using FMD foougrs obtained
using different thresholds confirm this. Thus, it is conelddhat the choice of
threshold for the Arrows grouping process does not haverdgfsignt influence on
the simulation throughput of models using correspondigigfitted distributions
in this example. Therefore, we could use a relatively loveshold for the classi-
fication analysis to gain a greater saving on the time for ttiedi and inputting

processes.



Chapter 8

Conclusions and Future Research

Simulation modelling is used widely within manufacturingdustry to evaluate
new designs for production lines and to improve the effigiarf@xisting lines. As
an important source of variability in many manufacturingteyns [103], machine
breakdowns need to be modelled correctly in manufacturimgilation models.
Our work has focused on an existing engine assembly lineiwgh~ord manu-
facturing plant, where over two hundred different machiags involved in the
assembly process. Although many authors have consideeethéichine failure
rates occurring on a production line ([64], [128], [99], BI6[171] and [68]),

we have found little work in the literature on modelling theration of machine
breakdowns ([97] and [103]). A review of the literature onami@e breakdown

modelling in manufacturing simulation models has beenrgiweChapter 2.

In this thesis we have described a modelling process to septanachine
breakdown durations in engine assembly line simulation etfeodWe use finite
mixture distributions to model machine breakdown duratjailowing us to de-
scribe the multimodality present within the data. Since sheulation models
generally contain a large number of machines and can be wenplex, we have
derived the Arrows classification method to group machinis svmilar distribu-

tions of breakdown durations, where the Two-Sample @ravon Mises statistic
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is used to measure the similarity of two sets of breakdowitthur data for two
machines, with bootstrapping being used to assess thdisagige of the similar-
ity. The grouping is such that two machines with statistycsignificantly different
breakdown duration data cannot be placed in the same gronigpe Fixture dis-
tributions are fitted to the grouped breakdown duration data and one fitted
mixture distribution for the group is used in the simulatimodel to model the

breakdown durations for all of the machines in the group.

We have implemented the breakdown duration modelling nuetlogy with
the simulation model of the engine assembly line and haVveated the classifica-
tion and mixture distributions fitting procedure by compgrihe throughput of the
simulation model when running with three different machimeakdown duration
inputs: mixture models fitted to individual machine breakdalurations; mixture
models fitted to group breakdown durations; and historieghd Three different
methods have been used for the outputs comparison and thiesregggest that
the modelling methodology successfully produced an apjataprepresentation

of machine breakdown duration inputs for the simulation elod

8.1 Finite Mixture Models

Finite mixture models are multimodal and have been foundetar appropriate
statistical model of the breakdown durations of machinengine assembly lines.
Their use has advantages over the historical data and corimaoretical distribu-

tions for modelling the breakdown durations. Historicatedaay contain irregu-
larities and have strict upper and lower boundaries. Comynosgd theoretical
distributions may be worse representations of breakdowatiduns as most break-
down duration data sets are not unimodal, while common #tat distributions

are. In comparison, finite mixture distributions are paitcly appropriate as they

can cope with the multimodality present in most of the breakd duration data
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sets and adequately fitted mixture distributions can smoatfthe irregularities
within the historical data, represent extreme events arkkentasimpler to make
changes for experimental reasons. From a practical poiniewf, fitted mixture
distributions are found suitable as well as they contaimmaters with intuitive

meanings and can be input into simulation models in a simple w

Since the original data has a wide range of values, we fousiduiging a data
transformation could help in getting more accurately fitteietture distributions
by reducing the range of the data so that the fitting procgssdtbetter. By taking
the square root of the original data, the range of the trams#d data shrinks and
all of the transformed data stay positive. We found that tgmbrmal mixture
distribution was most robust for representing the machieakdown duration data

sets.

8.2 Method for Estimating Similarity

A new method for estimating the similarities between maetibased on the
breakdown duration data sets was described in Chapter 4. Ehwchuses the
Two-Sample Crarar-von Mises goodness of fit to compute a statisticpf two
data sets by testing the null hypothesis that the two sangpkeglrawn from the
same distribution, and then applies bootstrap resamptirggtimate the signific-
ance level of the statistic by determining the distributdr’, &(7"). The Cranér-
von Mises goodness of fit statistic was used as it has adwesitagen dealing
with the machine breakdown duration data sets, compardd atfiter goodness
of fit statistics. For other goodness of fit statistics, sustihe y? statistic and
the Anderson-Darling statistic, information about the emying distribution of
the data is required before constructing the goodness esti$ {151]. In compar-
ison, computing the Cra@m-von Mises statistic is relatively straightforward, &s i

distribution-free and therefore there is no need to makeaasymptions about the
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distributions of the data sets being analysed [5]. In adijtihe Crarar-von Mises
goodness of fit statistic copes well with the fact that thewdats contain very un-
even numbers of data points. The tabulated criterion veiorethe Crangr-von
Mises test are not very extensive and do not cover the saniaewe are dealing
with and so we use bootstrap resampling to produce thellison of Crangr-von
Mises goodness of fit statistics. The similarity of the twanpées of breakdown
duration data is then measured by the significance level,tihe p-value, off’,

which is obtained by simply comparifgwith & (7).

We tested the new method on samples drawn from (a) identisiibaitions;
(b) distributions with the same variance but different mdahdistributions with
equal means but different variances; and (d) differentsygfedistributions. The
method is especially successful when applied to cases whesamples are clearly
distinct or are identical to each other, where extremelyllsonaigh p-values were
obtained as expected. It is more difficult to calculate psgalfor samples drawn
from close although not identical distributions. In theases the method gives p-
values that are not extremely low but are close to our sugdehkteshold. Given
how close the distributions used are for some examplesnibtisinreasonable to
sometimes obtain a result suggesting that the samples aeeaged from the same

distribution.

We applied the method to estimate the similarity matrix fibmeachines in-
volved in the engine assembly line we focused on. An examipsexanachines
was given in Section 4.6.1 and the reliability of the p-valweas confirmed by
the check of the features of the breakdown duration data sEte method is
widely applicable and we have demonstrated its applicat@stimating the sim-
ilarity between medical procedures based on the patientpital length-of-stay
data [41]; an example of five procedures was given in Secti6r24where the
similarity results made sense intuitively. This method als® been used to eval-

uate the similarities between simulation outputs of modsiag the current and
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the proposed breakdown duration modelling. Overall, theshod appears to be
an appropriate distribution-free method for estimating shmilarity between data

sets that may contain different numbers of data points.

8.3 Arrows Classification Method

The Arrows classification method was derived to group mashinased on the
similarity matrix, consisting of the similarities betwearachines. The similar-
ity between two machines is assumed to be the p-value for theérvon Mises
goodness of fit test for the comparison between their breskdiuration data sets,
as described in the previous section. We found that thisifieation method per-
formed well for a simple distance matrix from a text book, aslas for practical
and more complicated similarity matrices such as the madtrieakdown duration
data. The method could be applied to classify data from a wadge of applic-
ations and it also gave sensible results when we appliedgtdaping medical
procedures based on the similarities between their patieaspital length-of-stay

data.

There are three main features of the Arrows method: (1) terssthat objects
with similarities below a specified threshold are not placatie same group; (2) it
ensures that objects with double-arrow connections argghé same group; and
(3) it prefers to keep objects with single-arrow connedimnthe same group when
possible. Two machines have a double-arrow connectionsibtiieir similarity
is greater than the specified threshold and is the highesh@urtiee similarities
between the two machines and all of the other machines; twehimes have a
single-arrow connections if their similarity is greateaththe specified threshold
and is the highest among the similarities between eitherobtige two machines
and all of the other machines. One characteristic of thewsrmethod resulting

from the multiple criteria is that it is possible that one eatijor group may be
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combined with different groups or objects when the thredloblanges. This can
occur as a result of the method’s intention of keeping obj&gth single-arrow
connections in the same group, while satisfying the coowlithat every pair of
objects in the same group should have a p-value that is ahew@iteshold. When
there is no relevant influence from single-arrow connestitimis can also happen
as a result of the method’s intention of merging objects @ugs with higher
average connections, while satisfying the condition tivatye pair of objects in

the same group should have a p-value that is above the sktacsshold.

The method has similarities with complete linkage and ayetankage hier-
archical cluster analysis. The Arrows method places objedth double-arrow
connections in the same group and prefers to keep togetleetslwvith single-
arrow connections, which is different from cluster anaysiwhich the clustering
method searches the whole similarity matrix to find the maowsilar groups to
amalgamate. The results from the three methods suggeshéhArrows method
seems to give more similar results to average linkage clagtevhen a lower sim-
ilarity level is required, but when a higher similarity léve required the Arrows
method tends to be more similar to complete linkage clusgerAn advantage of
the Arrows method over the two forms of cluster analysis mw@red here is that it
allows us to control the similarity level in the resultanbgps more easily through
the use of a threshold, such that any two objects whose sityila less than the

threshold will not be placed in the same group.

8.4 Evaluate Breakdown Duration Input Modelling

In Chapter 7 we described the methodology used to evaluataddelling of the
machine breakdown durations, by comparing the system giwmut of the same
engine assembly model using three different breakdowntidaranputs. The

methodology could be useful for comparing system configomat by evaluat-
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ing the similarities between the stochastic outputs corfrimy the corresponding

simulation models.

The evaluation process revealed that the machine breakdovation settings
did not affect the system throughput significantly. Furtiwerk on investigating
the causes of production loss was carried out and it was fthatdhe main sources
of variability in the line yield are the engine repair prog@sid operator stoppages,
and these mask the effect of changes in machine breakdowti@hs on the sys-
tem throughput. The three representations of the machie&kdown durations
considered here (empirical distributions, fitted mixtuigtributions for individual
machines, and fitted mixture distributions for the groupsathines obtained us-
ing the Arrows classification method) generated simulatiotputs that were all
within the 95% confidence interval of the real line yield data, suggestimg af
them could be used as input models. The mixture distributteed to groups of
machines is likely to be the most appropriate represemtatithe breakdown dur-
ation inputs for several reasons. First, it overcomes sdrmog@mings of the use
of empirical distributions as simulation inputs as disealss Section 8.1. Further-
more, comparing the use of group fitted mixture distribwgitm using individual
fitted mixture distributions, the former has a couple of adages over the latter:
(a) the total saving of time for the fitting processes andnipaiting of breakdown
setting is considerable, even when taking into accounihe $pent implementing
the Arrows method for the grouping; (b) for situations wharsmachine without
available data or a new machine is being modelled, an expezieengineer could
probably help with identifying which group of machines theeaata/new machine
belongs to and so the fitted mixture distribution for thatugroould be used to rep-
resent the breakdown duration input of this machine; an@ticeracy of identify-
ing the machine as being similar to a group of machines sHmeilugher that that
of identifying one particular machine whose breakdown tloredata are available

as a similar machine. In addition, the similar simulationfpenance using inputs
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of individual FMD and group FMD strongly justified the use bétclassification

method.

The choice of threshold for the Arrows grouping process diciippear to have
a significant influence on the simulation throughput of medeing corresponding
group fitted distributions in this model. The impact of usthiferent values for the
threshold in the Arrows classification method on the systaoughput was stud-
ied. In this case, we adjusted the simulation model so thahima breakdown was
the only major source of variability in the system throughfthe engine repairs
and operator stoppages were turned off) and the resultseshihat the simulation
outputs of models using different group fitted mixture dlgttions are not signi-
ficantly different. Therefore, a relatively low threshofitpducing a low number
of groups, can be chosen for the purpose of using group fittetira distribution

for representing the machine breakdown duration inputratiation models.

8.5 Future Work

We have considered only a small part of the total breakdowness in this thesis
and we would like to develop a complete model of breakdownsiléVhachine
breakdown durations are important, the current method afietiog the time
between failures may also be influencing the model outpufprdwing the rep-
resentation of the time between failures could use the basthodology with
most of the additional work probably being the collectiordata of time between

failures.

The breakdown duration data provided by Ford included nét tive actual
repair time but also some waiting time for some resourcegs,reaintenance team
or parts. In this work we focused on developing a statisticatlel of the total
breakdown duration. Splitting the breakdown duration up its constituent parts

and modelling them separately would allow a better desonipif breakdowns in
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the simulation model. The methodology would not need to ghaubstantially
and most of the work to make this extension would be involvedistinguishing

and recording the data for the actual repair stage and foréiteng stage.

Engine repairs and operator stoppages, which are es$gptiadluct quality is-
sues and human behaviour breakdowns, are responsible feagpart of the total
loss of the line productions in the engine assembly planérdfore, it is important
that they are modelled accurately. As MODAPTS, a technoiiegylved in record-
ing all motions required for a person to complete a task ardlyars for methods
improvement, has been introduced and used in more mantifegttompanies,
human behaviour can also be recorded more accurately. éiogby it should
be possible to extend the methodology to incorporate miodetif human break-
downs and response times. This would allow a complete aedrated model of
machine breakdown behaviour to be developed including theetiing of time to
repair failures, waiting time for resources, time betwestufes, human response
times and human breakdowns. In the future we should alsadeEmisnplement-
ing the methodology described in this thesis to model theneniggpairs process.
Together with the extensions of modelling machine breakdaosiscussed above,
this would result in a complete system for modelling the Ittdas in manufac-
turing processes due to machine breakdowns, operatorrpenieces and product

guality issues.

Simulation input modelling is an important part of simubsticonstruction.
The methodology for modelling breakdown durations preseit this thesis could
be extended to model variable inputs in other simulatiorieg@ions, where the

inputs are multimodal, outside of the manufacturing area.

The Arrows classification of machines has been examinedukacollected
historical breakdown duration data and we would like to ble &b validate the
classification using the machines’ future performance. Mesakdown duration

data may provide more confidence in the methods or may ledwtgroups being
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updated. It would be useful to devise an update procedutedtes not involve
a complete recalculation of the similarity matrix and reafithe Arrows method.
We have suggested that when modelling the breakdown of neshines, exper-
ienced engineers may decide they may be similar to a groupaohimes. It may
also be useful to collect their real breakdown duration daténg a period when
they are used in the actual production, which can then be/sedlto assess the

engineers’ decision.

The Arrows method could be extended to classify objectshermdpplications.
The distribution-free method for estimating the similafitetween data sets that
may be of different sizes has the scope to be useful in fieldsrahan manufac-
turing. For example we have shown their applications to tloeging of medical

procedures in this thesis.

8.6 Discussion

We have demonstrated the modelling of machine breakdovatidas in an engine
assembly line simulation model. We found that fitted finitextonie distributions
for groups of machines were suitable for representing nme&chreakdown dura-
tions as simulation inputs, and used parameters with aitiv@meaning. Group-
ing like machines serves to decrease the total time speritiog the input models
considerably, as well as simplifying the breakdown duraiigputs required for the
simulation model. The Arrows classification of the machibased on the simil-

arities between their breakdown duration data sets semisepurpose well.

The method for estimating similarity that we have introdiican be used to
calculate the similarity between data sets with uneven reusbf data points and
being a distribution-free method, its application is rekly simple and widely

applicable.
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We introduce the Arrows Classification procedure in Chaptend tasted it
on a textbook example as well as two different sets of datarggfinom widely
different applications (manufacturing and health cardje Tesults suggest that it
produces similar results to cluster analysis, while makinguch easier to control
the similarity level in each resultant group in order to aehkidifferent classifica-

tion targets.

Ford have been using the program we developed for the datiatiah, which
has achieved a huge saving on the data process time. Meantkey have showed
interest in using the proposed method for modelling machieakdown durations.
However, as Ford use Excel interfaces to generate simalatmdels, these inter-
faces need to be upgraded, in order to allow the engineersimuuthation modellers

to use fitted mixture distributions to model the machine kdeavn durations.

In conclusion, if there is multimodality present in a datg 8ee machine break-
down duration modelling process described in this thegisbeaused to obtain a
representation of the random inputs for simulation moda#s have demonstrated
its use on machine breakdown duration modelling in the matufing simulation
model of an engine assembly line. The calculation of sintylaand the Arrows
Classification method introduced in this thesis would beiapple in a wide range
of situations, not simply for analysing machine breakdowration data. We have
demonstrated their use on grouping machines and medicadquoes. The meth-
odology of simulation evaluation has been successfully dse evaluating the
machine breakdown duration inputs and could also be apphiexvaluate other

sources of variability in simulation models.



Glossary

Arrows Classification Procedure A classification method we have derived. It
has a setting of similarity threshold that can be specifiethbyuser, which allows
the user to easily control the similarity level in the reanttgroups.

Available Time Mode: In this mode, machines can break down whether they are
operating or not.

Breakdown Duration: The whole period of a machine breakdown, which is also
generally referred to as thepair timeor thetime to repair(TTR) or themachine
downtime

Busy Time Mode In this mode, machines can only break down while they are
operating.

CDF: Cumulative Distribution Function.

Double-Arrow Connection: A definition of similarity between objects that asso-
ciate with the Arrows Classification method. Obje€isand O; have adouble-
arrow connectiorif p;;, the p-value comparing their corresponding sets of data, is
the biggest in both rowand row; of the similarity matrix ang,; is greater than
the specified thresholg),.

EDF: Empirical Distribution Function.

FMD: Fitted finite Mixture Distribution.

Forman: A generic title of a supervisory person in a manufacturitagpand can

be a male or female.

JPH: Jobs completed Per Hour for a machining or engine assernialy |
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Maintenance Operator. A worker who has been trained to obtain the required
skills to identify and rectify the faults of equipment thatl$ to function.

Major Repair : A machine failure that takes longer than 15 minutes to regadl
generally requires a highly skilled maintenance operatdixt

Minor Repair : A machine failure that takes less than 15 minutes to repar a
generally only require a basic level of skill to fix.

Monitoring system: An automatic data record system that keeps track of allstop
pages that occur on machines that are connected to the system

MTBF : An acronym stands for Mean Time Between Failure.

MTTR : An acronym stands for Mean Time to Repair.

Number of Operations Mode In this mode, machine breaks down after a certain
number of operations.

Operator: A worker who is responsible for ensuring the efficient fumeing of
equipment in the assigned department.

PDF: Probability Density Function.

Productivity Engineering Department: A department usually known as Indus-
trial Engineering department which used the skills of Timd ®lethod Study. But
due to changes in operating philosophy the name was changed.

Single-Arrow Connection: A definition of similarity between objects that associ-
ate with the Arrows Classification method. Obje@sandO,, have asingle-arrow
connectionif p;., the p-value comparing their corresponding sets of datthes
biggest in only one of rowor row & of the similarity matrix ang;;. is greater than
the specified thresholgl,.

TTR: An acronym stands for Time to Repair.



Appendix A

Grouping Results of the 20 Machines

For the 20 machines with Similarity Matrix given in Table 5i2e Arrows Classi-
fication method and complete linkage clustering give theesgrouping results at
similarity levels 0f0.20, 0.30, ...,0.90. These grouping results are given in Table

Al
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P-value

Arrows Method or Complete Linkage

Threshold Group Clustering Method

0.20 1
2
3
4
-1

5-12

MO01, M11, M12

M02, M03

MO05, M19, M20

MO07, M10, M13, M17

(Single machine groups) M04, M06, M08, M09, M14,
M15, M16, M18

0.30

MO01, M11, M12

MO02, M03

MO05, M19, M20

MO7, M17

M10, M13

(Single machine groups) M04, M06, M08, M09, M14,
M15, M16, M18

0.40/0.50 1

MO01, M11

MO02, MO3

MO05, M19, M20

MO7, M17

M10, M13

(Single machine groups) M04, M06, M08, M09, M12,
M14, M15, M16, M18

0.60

5w N

M02, MO3
MO05, M19, M20
MO7, M17
M10, M13
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P-value

Arrows Method or Complete Linkage

Threshold Group Clustering Method

5-15 (Single machine groups) M01, M04, M06, M08, M09,
M11, M12, M14, M15, M16, M18
0.70 1 MO05, M19, M20
2 MO07, M17
3 M10, M13
4-16  (Single machine groups) M01, M02, M03, M04, MO06,
M08, M09, M11, M12, M14, M15, M16, M18
0.80 1 MO05, M20
2 MO7, M17
3 M10, M13
4-17  (Single machine groups) M01, M02, M03, M04, M06,
M08, M09, M11, M12, M14, M15, M16, M18, M19
0.90 1 MO05, M20
2-19  (Single machine groups) M01, M02, M03, M04, MO6,

MO7, M08, M09, M10, M11, M12, M13, M14, M15,
M16, M17, M18, M19

Table A.1: Grouping results of the 20 machines with Similar-

ity Matrix given in Table 5.2, using the Arrows Classification

method and complete linkage clustering.



Appendix B

Similarity Matrix and Grouping
Results of the 39 Machines in

DuntonLO1 Engine Assembly Line

The estimated Similarity Matrix of the 39 machines invohiadthe engine as-
sembly line, DuntonLO01, is given in Tables B.1 and B.2. The lgirties are es-
timated using the method descrined in Chapter 4. The mats)blan split across

the two tables for presentation purposes.

The grouping results of the 39 machines using the Arrows Gikestson method

with a specified threshold of 0.10 are given in Table B.3.
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ML01 ML02 ML03 ML04 MLO5 ML06 MLO7T MLO8 ML09 ML10 ML11 ML12 ML13 ML14 ML15 ML16 ML17 ML18 ML19 ML20
— 0.12 0.0 0.21 0.00 0.00 0.02 0.00 0.00 0.00 093 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.07 O

MLO1 . . .00
ML02 0.12 - 0.03 0.48 0.00 0.00 0.00 0.00 0.00 0.00 0.87 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.01 0.00
MLO03 0.07 0.03 — 0.20 0.00 0.00 0.01 0.00 0.00 0.00 0.36 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.18 0.00
ML04 0.21 0.48 0.20 - 0.00 0.00 0.00 0.00 0.00 0.02 089 0.02 0.00 0.00 0.00 0.15 0.00 0.00 0.03 0.00
MLO5 0.00 0.00 0.00 0.00 — 0.89 0.00 0.00 0.01 0.02 021 000 0.00 030 000 023 062 0.06 0.00 0.00
MLO6 0.00 0.00 0.00 0.00 0.89 - 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.18 0.01 0.00 0.00 0.00
MLO7 0.02 0.00 0.01 0.00 0.00 0.00 — 0.00 0.00 0.00 0.09 0.00 0.16 0.00 0.00 0.00 0.00 0.00 049 0.06
MLO8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 0.01 0.00 0.00 0.01 0.23 033 0.00 0.00 0.00 0.00
ML0O9 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 — 0.00 0.07 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00
ML10 0.00 0.00 0.00 0.02 0.02 0.00 0.00 0.00 0.00 - 0.94 0.01 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.00
ML11 093 087 036 089 021 0.10 0.09 0.01 0.07 0.94 — 0.73 0.00 0.12 0.00 0.29 0.15 0.02 0.16 0.00
ML12 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.73 — 0.00 0.00 0.00 0.14 0.00 0.00 0.00 0.00
ML13 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.00 0.00 — 0.00 0.00 0.00 0.00 0.00 0.02 0.26
ML14 0.00 0.00 0.00 0.00 0.30 0.00 0.00 0.01 0.00 0.00 0.12 0.00 0.00 — 0.00 0.37 0.00 0.00 0.00 0.00
ML15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.23 0.00 0.00 0.00 0.00 0.00 0.00 — 0.06 0.00 0.00 0.00 0.00
ML16 0.07 0.10 0.04 0.15 0.23 0.18 0.00 033 0.12 0.16 029 0.14 0.00 0.37 0.06 — 0.20 0.10 0.02 0.00
ML17 0.00 0.00 0.00 0.00 0.62 0.01 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.00 0.20 . 0.00 0.00 0.00
ML18 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.10 0.00 — 0.00 0.00
ML19 0.07 0.01 0.18 0.03 0.00 0.00 049 0.00 0.00 0.00 0.16 0.00 0.02 0.00 0.00 0.02 0.00 0.00 — 0.01
ML20 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 000 0.00 0.26 0.00 0.00 0.00 0.00 0.00 0.01 -

ML21 0.00 0.00 020 0.03 0.00 0.00 0.00 0.00 0.00 000 0.13 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.04 0.00
ML22 0.24 0.05 042 0.11 0.00 0.00 0.37 0.00 0.00 0.00 0.33 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.87 0.00
ML23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00
ML24 0.04 0.00 0.29 0.03 0.00 0.00 0.21 0.00 0.00 000 032 0.00 0.00 0.00 0.00 001 0.00 0.00 0.84 0.00
ML25 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.00 0.01 0.00 061 0.00 0.00 0.00 0.00 0.00 0.03 047
ML26 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.18 0.00 0.06 0.00 0.00
ML27 0.00 0.00 0.00 0.01 001 0.00 0.00 0.00 0.00 000 064 0.00 0.00 0.00 0.00 033 0.00 0.00 0.00 0.00
ML28 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.72 0.00
ML29 039 046 004 0.38 0.00 0.00 0.00 0.00 0.00 0.00 091 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.01 0.00
ML30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.01 0.00 0.00 0.01 0.04 068 0.00 0.00 0.00 0.00
ML31 0.28 0.14 0.86 0.23 0.00 0.00 0.20 0.00 0.00 0.00 0.36 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.50 0.00
ML32 036 0.12 051 0.29 0.00 0.00 0.14 0.00 0.00 0.00 049 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.28 0.00
ML33 0.00 0.00 0.04 0.01 0.00 0.00 0.02 0.00 0.00 0.00 047 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.16 0.00
ML34 0.05 0.11 0.06 0.23 0.02 0.00 0.00 0.00 0.00 0.12 0.53 0.27 0.00 0.00 0.00 0.25 0.00 0.00 0.00 0.00
ML35 0.00 0.00 0.00 0.00 0.00 0.00 0.23 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.8 0.01
ML36 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.17 0.00 0.22 0.00 0.00
ML37 0.13 0.09 0.05 029 006 0.03 0.00 0.06 000 018 058 0.12 0.00 0.05 0.00 068 0.02 0.01 0.02 0.00
ML38 0.00 0.00 0.00 0.01 001 0.00 0.00 0.04 0.0 000 0.19 0.00 0.00 0.00 0.00 062 0.00 0.00 0.00 0.00
ML39 0.06 0.18 0.03 041 0.02 0.00 0.00 0.00 0.00 035 094 0.13 0.00 0.00 0.00 0.19 0.00 0.00 0.00 0.00

Table B.1: Part a of the Similarity Matrix of the breakdown atimn data for thes9 machines involved in DuntonL01 engine
assembly line, estimated using the method described in €hédpt
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ML21 ML22 ML23 ML24 ML25 ML26 ML27 ML28 ML29 ML30 ML31 ML32 ML33 ML34 ML35 ML36 ML37 ML38 ML39
MLO1 0.00 0.24 0.00 0.04 0.00 0.00 0.00 0.00 039 000 028 0.36 0.00 0.05 0.00 000 0.13 0.00 0.06
MLO2 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 046 0.00 0.14 0.12 0.00 0.11 0.00 0.00 0.09 0.00 0.18

ML17 0.00 0.00 0.00 0.00 0.0 0.00 0.00 000 000 000 000 000 000 000 000 0.00 002 000 0.00
ML18 0.00 0.0 0.0 0.00 000 006 000 000 000 000 000 000 000 000 000 022 00l 000 000

ML19 0.04 087 0.01 084 0.03 0.00 0.00 072 0.01 0.00 050 0.28 0.16 0.00 0.8 0.00 0.02 0.00 0.00
ML20 0.00 0.00 0.00 0.00 047 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
ML21 — 0.07 0.17 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.05 0.00 0.01 0.00 0.00 0.04 0.00 0.00
ML22 0.07 — 0.00 099 0.00 0.00 0.00 0.19 0.08 000 086 079 052 001 037 0.00 0.03 0.01 0.02
ML23 0.17 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ML24 0.01 0.99 0.00 - 0.00 0.00 0.00 0.05 0.00 0.00 0.63 062 0.11 0.00 0.08 0.00 0.02 0.00 0.00
ML25 0.00 0.00 0.00 0.00 — 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ML26 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00
ML27 0.00 0.00 0.00 0.00 0.00 0.00 — 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.44 0.00 0.02
ML28 0.00 0.19 0.00 0.05 0.00 0.00 0.00 — 0.00 0.00 0.02 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00
ML29 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 - 0.00 0.17 0.17 0.00 0.05 0.00 0.00 0.09 0.00 0.17
ML30 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 — 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.06 0.00
ML31 0.11 086 0.00 0.63 0.00 0.00 0.00 0.02 0.17 0.00 - 096 0.63 0.05 0.10 0.00 0.04 0.00 0.05
ML32 0.05 079 0.00 0.62 0.00 0.00 0.00 0.00 0.17 0.00 0.96 — 0.87 0.04 0.01 0.00 0.07 0.01 0.03
ML33 0.00 0.52 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.63 0.87 - 0.00 0.00 0.00 0.03 0.00 0.00
ML34 0.01 0.01 0.00 0.00 0.00 0.00 0.15 0.00 0.05 0.00 0.05 0.04 0.00 — 0.00 0.00 0.08 0.01 049
ML35 0.00 037 0.00 008 0.00 0.00 0.00 0.07 000 000 0.10 0.01 0.00 0.00 - 0.00 0.00 0.00 0.00
ML36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 — 0.01  0.00 0.00
ML37 0.04 0.03 0.00 0.02 0.00 0.03 044 0.00 0.09 0.06 0.04 0.07 0.03 0.08 0.00 0.01 - 0.82  0.20
ML38 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.0 006 000 0.01 0.00 0.01 0.00 0.00 0.82 — 0.00
ML39 0.00 0.02 0.00 0.00 0.00 0.00 0.02 0.00 0.17 0.00 0.05 0.03 0.00 049 0.00 0.00 0.20 0.00 -

Table B.2: Part b of the Similarity Matrix of the breakdown diion data for thed9 machines involved in DuntonLO1 engine
assembly line, estimated using the method described in €hépt
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Group  Machines
GO01 MLO1, MLO2, MLO4, ML29
G02 MLO3, ML21
GO03 MLO5, MLO6
G04 MLO7, ML19, ML35
GO05 MLO8, ML15
GO06 ML10, ML11, ML34, ML39
GO7 ML13, ML20, ML25
GO08 ML16, ML37, ML38
GO09 ML18, ML36
G10 ML22, ML24, ML31, ML32, ML33
G11-G19 (Single machine groups) ML09, ML12, ML14, ML17,

ML23, ML26, ML27, ML28, ML30

Table B.3: Grouping results of the 39 machines based on

the Similarity Matrix given in Tables B.1 and B.2, using the

Arrows Classification method with threshqglg = 0.10.
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