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UNIVERSITY OF SOUTHAMPTON 
ABSTRACT 

FACULTY OF ENGINEERING, SCIENCE & MATHEMATICS 
SCHOOL OF OCEAN & EARTH SCIENCES 

Doctor of Philosophy 
FACTORS AFFECTING THE RESPONSE OF MARINE AND ESTUARINE 

BACTERIAL COMMUNITIES TO TRACE METAL ENRICHMENT 
by Rachel Mary Jones 

 
Studies of the effects of trace metal perturbation on microbial communities have, to date, 

concentrated on contaminated environments, single phylotypes or single metals.  The 

effects of trace metals on bacterial communities in estuarine and marine environments 

have been largely overlooked.  The aim of this research was to advance the scientific 

knowledge in this area by the implementation of incubation experiments.  Experiments 

were designed to determine the effects of trace metal enrichment and aggregate formation 

on the structure and function of bacterial communities.  Environmental samples included 

bacterioplankton from a pristine estuary (Erme, Devon), a moderately contaminated 

estuary (Tamar, Devon), a contaminated estuary (Fal, Cornwall), a coastal station (M1) 

and a truly marine station off the continental shelf (M2).   

Key factors influencing the response of bacterial communities to trace metal enrichment 

were identified.  In marine communities the most influential factors were; environmental 

parameters, such as type and concentration of organic matter; initial community 

composition and ambient concentration of zinc.  The addition of trace metals resulted in a 

decrease in diversity in the bacterial community from the Tamar Estuary, however, 

bacterial association with aggregates appeared to reduce this effect.  Community 

dynamics of bacteria from a pristine estuary (Erme) demonstrated remarkable bacterial 

resilience under trace metal stress, particularly in samples dominated by bacteria from the 

Rhodobacteraceae.  Some metals were shown to have a more profound effect on 

community dynamics than others, resulting in the division of trace metals into Type 1 and 

Type 2 categories as a function of bacterial response.  RNA derived community 

fingerprints were more different between incubation conditions than DNA derived 

fingerprints, and were thus a more sensitive indication of response to trace metal 

enrichment.  The wider implications of the effects of trace metals on bacterial 

communities in estuarine and marine environments are discussed, along with possible 

future research directions.  Recommendations are made for future investigations of the 

effects of metal contamination in light of the results presented here.
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1  Introduction 

This thesis will present multi-disciplinary research encompassing molecular 

microbial ecology and the effects of aggregate formation and trace metal enrichment on 

bacterial communities.  This chapter gives an overview of why the study of bacterial 

communities is necessary and summarises methodologies and research areas of direct 

relevance to the research performed. 

1.1 Bacteria 

1.1.1 Why study the effects of trace metals on marine bacterial community structure? 

The study of bacteria in aquatic environments is essential to determine how 

impacts on their numbers and diversity, particularly through anthropogenic activities, will 

affect the cycling of organic matter and nutrients.  This study focuses on the effects 

observed with trace metal contamination and spans aquatic environments from estuaries 

to coast and the open sea. 

1.1.1.1 Importance of bacteria in aquatic environments 

 The importance of bacteria in aquatic environments has been recognised since the 

early eighties when the elegant paradigm ‘the microbial loop’ was proposed by Azam et 

al., (1983).  The microbial loop described the role played by bacteria in recycling and 

repackaging of organic matter in terms of the phytoplankton based marine food web and 

is updated progressively as new links and pathways are identified.  The role of bacteria in 

the flux and cycling of carbon and nutrients in aquatic environments is still a subject of 

intense scientific activity (Cho and Azam, 1988; Turley and Mackie 1994; Azam 1998; 

Ploug and Grossart, 1999; Ducklow 2000; Zubkov et al., 2001; Sherr and Sherr 2003; 

Zehr et al., 2003; van Mooy et al., 2004) and as such has prompted the development of 

improved methodologies.  As a result of improved methodologies for measurement of 

parameters such as microbial biomass, metabolic activity, growth rate and production, 

microbial ecology remains one of the most exciting and important fields in modern 

science.   

Bacteria are amongst the most abundant and diverse organisms in aquatic 

environments.  They vary in numbers from 105 mL-1 in oligotrophic regions of the open 

ocean, to 106 mL-1 in coastal regions, to 107 mL-1 in eutrophic and estuarine regions (Li, 
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1998).  This variation in bacterial numbers, controlled predominantly by nutrient levels, 

is also apparent in phytoplankton (Li et al., 2004).  However, the decrease in abundance 

observed in low nutrient environments is not as extensive in bacteria, which are able to 

utilise lower levels of nutrients than phytoplankton.  This means that, in extreme cases, 

production by bacteria can contribute more significantly to marine food webs than that of 

phytoplankton (Del Giorgio et al., 1997; Cotner and Biddanda, 2002). 

1.1.1.2 Bacteria play an essential role in biogeochemical cycles 

Carbon, hydrogen, oxygen, nitrogen, phosphorus and sulphur are the major 

elements of life and bacteria play an important role in the cycling of all of these elements 

(Cho and Azam, 1988; Turley and Mackie, 1994; Azam 1998; Ploug et al., 1999; 

Ducklow 2000; Zubkov et al., 2001; Sherr and Sherr 2003; Zehr et al., 2003; van Mooy 

et al., 2004).  Bacterial metabolism can take many forms e.g. aerobic respiration, 

anaerobic respiration, oxygenic photosynthesis, anoxygenic photosynthesis, fermentation, 

lithotrophy and photoheterotrophy.  As a result of this metabolic diversity bacteria are 

able to use a wide variety of dissolved organic matter as a substrate.  The metabolic 

processes of bacteria always require an energy source and an electron acceptor and 

different types of bacteria are frequently grouped together based on the energy source or 

electron acceptor they use.  Examples of aerobic respiration include nitrifying bacteria 

which gain energy (electrons) by oxidising NH3
+

 to NO2
- or NO2

- to NO3
2- , sulphur 

oxidisers via oxidation of H2S or S to SO4
2- and iron bacteria from the oxidation of Fe2+ 

to Fe3+.  These bacteria are also all lithotrophic i.e. they use inorganic compounds as a 

source of energy.  Anaerobic respiration is more common in sediments, although it has 

been detected in the water column usually associated with regions of intense productivity.  

Anaerobic respiration includes the metabolism of sulphate reducing bacteria which 

reduce SO4
2- to H2S or S and denitrifying bacteria which reduce NO3

2- to NO2
-
 or NH3

+. 

Photoheterotrophs use energy provided by sunlight to reduce organic carbon.  

Photosynthesis in bacteria is either oxygenic, which uses electrons derived from light 

harvesting to reduce carbon dioxide to oxygen, or anoxygenic, which uses an external 

reducing agent such as H2S to reduce carbon dioxide (or an alternative carbon source).   

 

 Bacteria are of crucial importance in the carbon and nitrogen cycles where they 

perform unique functions through these diverse metabolic activities.  Particularly in the 

nitrogen cycle they alone can transform both excretory products and atmospheric 
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nitrogen to NO3
2-, a form of nitrogen which is available to phytoplankton (Capone, 2001; 

DeLorenzo et al., 2001).  

1.1.2 Methods used to study microbial ecology 

1.1.2.1 Traditional 

 Bacterial ecology as a discipline was confounded in the early days by the high 

degree of visual similarity of bacteria with extremely different phenotypic characteristics.  

Accordingly bacteria of similar appearance were commonly grouped together.  To 

discover more about the roles played by bacteria in ecosystems, conventional approaches 

relied heavily on cultivation techniques.  Enrichment and isolation techniques were 

typically used for bacterial identification and characterisation. However it has been 

estimated that less than 1% of marine bacteria have been cultured using these methods 

(Amann et al., 1995), making assemblage dynamics and composition difficult to assess 

(Murray et al., 1998).  The low proportion of species successfully cultivated could be 

because traditional culture techniques do not successfully mimic real environmental 

conditions, under which natural populations flourish (Ward et al., 1990). Alternatively, 

the physiological state of the cell, as few as 10% of cells may be active at any one time 

(Bernard et al., 2000), may affect their culturability.  It has been estimated that only half 

of the known major bacterial phylogenetic groups have members in cultivation (Rappe & 

Giovannoni 2003).  Nold et al., (1995; 1996) contributed, in part, to reducing the 

discrepancies between cultivated and molecular retrieval via the use of more relevant 

incubation temperatures, substrate types and substrate concentrations.  Comparison of 

bacterial populations detected by traditional and molecular approaches have described the 

communities present as completely different (Santegoeds et al., 1996).  As recently as 

five years ago isolation procedures were still failing to adequately investigate microbial 

diversity (Nübel et al., 1999). 

More recent approaches, based on reflecting environmental conditions and 

targeting bacteria which grow more slowly, have been more successful.  Connon and 

Giovannoni (2002) achieved the culture of 14% of cells from coastal seawater via 

dilution to extinction in very low nutrient medium (this is an improvement of between 14 

and 14 000% depending on the initial estimate i.e. 0.01 or 1%).  They also pioneered the 

use of microtiter plates as incubation vessels (enabling the analysis of nearly 2 500 

extinction cultures over a three year period) to create a high throughput methodology to 
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speed up the laborious process of dilution to extinction.  Zengler et al., (2002) have 

derived a gel microdroplet system which encapsulates single cells from environmental 

samples.  These droplets can be incubated together in a variety of flowing media for a 

minimum of 5 weeks after which time analysis by flow cytometry allows the droplets 

containing colonies to be selected for further study.  The beauty of this technique is that 

nutrient levels are controlled by diffusion through the gel matrix and growth factors and 

other signalling molecules are present.  Thus, environmental conditions which are 

impossible to mimic under any other conditions are reflected, whilst still allowing 

isolation in pure culture.  High throughput techniques which limit nutrient availability 

have also been used to isolate and cultivate bacteria from the Oligotrophic Marine 

Gammaproteobacteria, a group only known to exist because of clone library construction 

(Cho and Giovannoni 2004).   

1.1.3.2 Molecular techniques 

 Molecular phylogenetic approaches, based on cloning, the polymerase chain 

reaction (PCR) and comparative analysis, have alleviated many of the limitations placed 

on bacterial ecology.  They have been shown to detect microbial species consistent with 

microscopic detection in the same environments, and have also brought to light many 

novel species.  New insights on phylogenetic diversity and characterisation of naturally 

occurring non-cultured organisms via 16S rRNA cloning, amplification and sequencing 

(Pace et al., 1986; Wise et al., 1997; Nübel et al., 1999) have proved invaluable.  A 

further advantage of molecular techniques is that isolation of rRNA genes for 

phylogenetic analysis is less selective and thus provides a more representative view of 

microbial community structure than classical techniques (Reysenbach et al., 1992) .  

These advantages over conventional methodologies have been demonstrated in the 

analysis of natural samples from fresh, coastal and marine waters, (Ward et al., 1990; 

Britschgi and Giovannoni 1991; Øvreas et al., 1997; Bernard et al., 2000).  Indeed, to 

demonstrate the importance of molecular techniques, it is worth noting that it was the 

application of DNA sequencing which brought to light the basic phylogenetic split 

between the Archaea and Bacteria and resulted in the introduction of the domains 

Archaea, Bacteria and Eucarya (Woese 1990).  It was also these techniques that allowed 

the further classification of the bacteria into 11 major divisions (Woese et al., 1990). 

However, to gain greater understanding of the physiology and ecology of bacterial 

species their isolation in pure culture remains an essential part of microbial ecology.  
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Indeed it has been observed (Ellis et al., 2003)  that the cultivable portion of the 

community may give greater clues to the effects of contaminants than analyses of 

diversity.   

Variability in the efficiency of PCRs is a common observation (Suzuki and 

Giovannoni 1996), and can arise for a number of reasons. One reason is the phenomenon 

known as PCR drift.  PCR drift can result in different PCR products from the same 

template and is attributed to stochastic variations in the early stages of PCR.  Mutations 

introduced in the early stages of a PCR reaction can become established during the 

exponential phase, this phenomenon is thought to occur more frequently in samples 

containing low concentrations of template.  Drift may also occur due to variations in the 

thermal profile and variable ramping characteristics in different areas of the thermocycler 

used.  A second consideration when using PCR is the possibility of bias (Reysenbach et 

al., 1992; Wagner et al., 1994).  Bias, in this case, is where certain parts of the starting 

template are amplified preferentially and so make up a greater proportion of the resulting 

product than of the original template.  Bias can arise for a number of reasons; firstly, the 

proportional guanine and cytosine content of template DNA.  Secondly, differential 

binding energies derived from primer degeneracy (Suzuki and Giovannoni 1996) and 

thirdly, the influence conferred by template folding, i.e., secondary structure formation of 

templates in the annealing stage of the process.  These factors combined mean that it is 

likely that the bias could be against certain groups of bacteria.   

It is possible to minimise the effects of PCR bias by using the minimum number 

of cycles and appropriate template concentrations.  Another consideration is the 

formation and subsequent analysis of hybrid or heteroduplex molecules, a problem 

common to all conserved phylogenetic markers.  Critical analysis of derived sequences is 

essential for detection of any chimeric sequences.  This analysis can be done in two ways, 

by checking the secondary structure of highly conserved helices or by calculation of 

separate phylogenetic trees for individual domains of the sequences concerned.  The 

RDP-II website (http://rdp.cme.msu.edu/) provides an interface designed to aid with the 

latter.   A simple experimental methodology applied to detect heteroduplex formation is 

the subsequent excision from a denaturing gradient gel electrophoresis (DGGE) gel and 

re-amplification of the relevant bands, followed by a repeat DGGE analysis and 

identification of the component phylogenies (Ferris and Ward 1997).   

Despite these limitations molecular techniques are currently the best tool available 

for studies of bacterial diversity.  Exciting and versatile methods are constantly being 
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developed for this purpose and have been successfully applied to the questions facing 

microbial ecologists, one of the most important being how bacterial communities change 

in response to perturbation. 

1.1.3 Detection of community change in response to perturbation 

Bacteria play an essential role in the majority of biogeochemical cycles (Section 

1.1.1).  They are ubiquitous, inhabiting even the most extreme environments and 

furthermore, as a result of short generation times, they respond rapidly to environmental 

perturbations.  In light of these characteristics it seems logical that they should be 

included in ecological risk assessment.  Whilst bacteria are regularly utilised in this 

manner it is generally as pure cultures (e.g. Microtox®) which clearly do not reflect the 

diversity of tolerance levels and substrate use observed in environmental bacterial 

communities.  Whilst such toxicity tests are undoubtedly useful indicators of 

environmental effects of pollutants they do not necessarily encompass the full range of 

effects of such pollutants on biogeochemical cycling.  Traditional methods of assessing 

bacterial community diversity also share this fundamental flaw as a result of inherent 

selection for cultivable bacterial phylotypes.  In contrast molecular methods can detect 

subtle changes in environmental bacterial populations and as a result have been suggested 

as more relevant measures of the ecological harm caused by perturbation (Ellis et al., 

2001). 

1.1.3.1 Molecular methods used to track changes in bacterial communities as a result of 

perturbation 

The most useful methodologies appear to be those which can be used to compare 

multiple samples and which give a rapid profile or fingerprint of the community under 

investigation.  High throughput molecular methods which fit these criteria include:  

Terminal restriction fragment length polymorphism (T-RFLP), a technique which 

exploits sequence differences to provide distinct patterns of terminal (identified by 

fluorescent marker) fragment lengths following treatment of the DNA with restriction 

enzymes;  Automated ribosomal intergenic spacer analysis (ARISA), an automated 

method for comparing the ribosomal intergenic spacer region between the 16S-23S rRNA 

genes;  Amplified ribosomal restriction analysis (ARDRA), analysis of amplified 

ribosomal DNA restriction sites (analogous with RFLP);  Denaturing / Temperature 

gradient gel electrophoresis (D/TGGE), separation of DNA fragments according to 
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denaturing / melting characteristics conferred by sequence of bases;  Single-strand 

conformation polymorphism (SSCP), analysis of secondary structure and migration of 

single stranded DNA.  The advantages and disadvantages of each method and 

environments in which these techniques have been applied are given in Appendix A 

(Table A.1).  Despite a number of caveats regarding the use of DGGE it is the most 

widely used and accepted methodology for the rapid fingerprinting of dominant 

phylotypes from complex microbial assemblages, particularly in aquatic systems, and as 

such is utilised in this study. 

1.1.4 Molecular methods used in this study 

1.1.4.1 Polymerase Chain Reaction (PCR) 

The polymerase chain reaction (PCR) utilises two opposing oligonucleotides to 

exponentially amplify fragments of DNA.  PCR is particularly suited to the analysis of 

evolutionarily conserved genes, e.g. highly conserved regions of the genes encoding 

ribosomal RNA (rRNA).  Oligonucleotides (primers) are available which are 

complementary to the rRNA genes of a broad range of even distantly related organisms 

(Britschgi and Giovannoni 1991).  These allow the amplification of a broad spectrum of 

rDNA types (Giovannoni et al., 1990) and can be applied to a mixed microbial 

community (Suzuki and Giovannoni 1996). This technique is especially powerful for 

those organisms which cannot be grown as pure cultures and for the detection of 

molecular diversity of microbial populations (Liesack et al., 1991).   

1.1.4.2 Denaturing gradient gel electrophoresis (DGGE) 

To reduce the analysis time required to characterise complex microbial 

communities fingerprinting techniques have been developed which separate amplified 

genomic DNA fragments based on sequence characteristics (section 1.1.3.1, Appendix 

A.1).  One such example is denaturing gradient gel electrophoresis (DGGE) of PCR 

amplified 16S rRNA genes, a molecular technique used to study the dynamic behaviour 

of complex microbial assemblages (Muyzer et al., 1993), and to determine genetic 

diversity of natural microbial communities (Teske et al., 1996a,b ; Moeseneder et al., 

1999; Casamayor et al., 2002; Gillan 2004; Ovreas et al., 2003a,b; Cummings et al., 2003; 

Gillan 2004; Massieux et al., 2004).  DGGE has been used to resolve PCR-amplified 16S 

rDNA based solely on differences in nucleotide sequence (Øvreas et al., 1997).  As the 

name suggests DGGE is an electrophoretic technique where DNA molecules migrate into 
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a gradient of ascending concentration of denaturants, in this case formamide and urea, 

forming distinctly different bands based on the specific sequence of base pairs.  The 

denaturant gradient is equivalent to a corresponding gradual increase in temperature at 

which the lower-melting temperature domain of the double stranded DNA helix melts.  

The melting occurs in ‘discrete melting domains’ (Muyzer et al., 1993) and results in 

branching, i.e. transition of helical to partially melted strands, thus decreasing fragment 

mobility (Sheffield et al., 1989).  The DNA molecules undergo this abrupt decrease in 

mobility (compared to completely helical molecules) at a characteristic depth which 

corresponds with their melting temperature.  This results in positions and patterns that 

change little if application of the electrical field is continued (Fischer and Lerman 1983).  

The retardation depth in the gradient is determined by the least stable part of the 

molecule, i.e. the part of the molecule with the lowest ‘melting’ temperature, and is 

relatively insensitive to other parts of the sequence or to the overall fragment length.  

This method is extremely sensitive within denaturant concentrations corresponding to the 

lowest melting domains and can distinguish between fragments with a single base 

substitution.  The melting temperature is altered even at this high resolution due to 

differences in stacking interactions between adjacent bases in each DNA strand 

(Sheffield et al., 1989).  However, higher melting domains cannot be separated due to 

complete strand separation at higher denaturant concentrations.  To increase the 

resolution of DGGE to include these higher melting domains (i.e. expand the least stable 

part of the molecule to encompass regions with greater stability) a GC Clamp can be 

applied, or the lowest melting domain excised.   

The GC clamp was introduced by Myers et al., (1985) working with mouse DNA, 

they found that, if a 300bp sequence rich in Guanine and Cytosine was added to the DNA 

fragments during PCR amplification, resolution increased from detection of roughly 40% 

of all mutations to a minimum of 95%.  Later work combined with theoretical 

considerations indicated that a GC Clamp 40-45bp long would be adequate to increase 

the resolution a comparable amount (Sheffield et al., 1989).  Use of a GC Clamp is now 

routinely applied in an increasing number of studies.  Most of these studies are 

qualitative, aimed at determining species richness for calculations of diversity, or 

elucidating community composition of natural assemblages of microorganisms in both 

aquatic (Moeseneder et al., 1999; Gillan 2004; Ovreas et al., 2003a,b ; Cummings et al., 

2003, Massieux et al., 2004) and terrestrial (Nakatsu et al., 2000; Sandaa et al., 2001; 

Nicol et al., 2003) environments.  
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1.1.4.3 Does DGGE of rRNA derived products give us more information about the active 

portion of the population? 

The presence of large numbers of ribosomes within cells and the regulation of 

their bio-synthesis in proportion to cell growth make these molecules ideally suited to 

ecological studies (Britschgi and Giovannoni 1991).  DGGE of 16S rRNA derived PCR 

product is semi-quantitative in that the production of rRNA is directly related to the 

cellular growth rate of the microbial population (Britschgi and Giovannoni 1991).  The 

other important aspect of this relationship to consider is that metabolically active cells 

contain more rRNA than those which are resting or dormant and thus DGGE of reverse 

transcribed, PCR amplified 16S rRNA ‘conceptually represents the metabolically active, 

rRNA rich, bacterial populations’ (Teske et al., 1996a).  These variations in abundance / 

activity can be assessed by scanning and integrating staining intensity of bands, a 

function of the relative abundance of a phylotype (Teske et al., 1996; Øvreas et al., 1997; 

Zhongtang and Mohn 2001; Casamayor et al., 2000).  However, recent work has shown 

that band intensity may not be directly representative of relative abundance between 

populations.  This can be attributed primarily to variations in PCR efficiency, possible 

PCR bias (Wagner et al., 1994; Suzuki and Giovannoni 1996; Konopka et al., 1999; 

Zhongtang and Mohn 2001), and also to variations in proportion of rRNA to cell 

numbers.  This factor is dependant on both species and growth rate (Giovannoni et al., 

1994; Kemp 1994).  Band intensity indicates instead the relative differences between 

populations, thus giving an indication of an organism’s ecological importance 

(Giovannoni et al., 1994).  Other examples argue that the status of organisms within an 

environment has little or no effect on the appearance of DGGE gel patterns, with 

comparison between active portion, as determined by CTC reduction and flow cytometry 

(Sherr et al., 1999), and whole assemblage rRNA gels showing high levels of similarity.  

This similarity suggests that at least some populations include both active and inactive 

cells (Bernard et al., 2000) a possibility strongly supported by recent work regarding 

nucleic acid content (Lebaron et al., 2001).  The application of RNA- derived DGGE 

fingerprinting has been demonstrated in a number of environments including; 

rhizospheres (Duineveld et al., 2001); an aquatic mesocosm (Schafer et al., 2001); marine 

waters (Teske et al., 1996a); soil (Griffiths et al., 2000; Norris et al., 2002; Girvan et al., 

2003) and wastewater (Ebie et al., 2004).  All these studies compared results obtained 

using DNA and RNA derived fingerprints and in most cases considered the RNA derived 
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fingerprint to represent the active portion of the microbial community (Teske et al., 

1996a; Griffiths et al., 2000; Duineveld 2001; Ebie et al., 2004).  In the majority of 

studies the diversity, i.e. the complexity of the fingerprint, was lower in the RNA derived 

DGGE.  Furthermore the bands present in the RNA derived profiles were invariably also 

apparent in the DNA derived profile.  Girvan et al., (2003) found that the RNA derived 

profile was more indicative of short-term management change effects i.e. they were able 

to distinguish between samples from different farms c.f. different soil types using DNA 

derived fingerprints. 

It is important to note possible pitfalls of the DGGE technique concerned with 

estimation of diversity.  It is possible that the formation of heteroduplex or chimeric 

sequences during PCR, which are not detected by the methods described above, may lead 

to overestimation of species richness, i.e. the number of species present.  It is also a 

possibility that if sequences are not amplified equitably, i.e. undergo PCR selection or 

drift, or share melting temperatures then species richness may be under-estimated 

(Wagner et al., 1994).   

1.1.4.4 Sequencing 

In the past fifteen years the extensive use of 16S rRNA gene sequences in studies 

of microbial systematics, evolution and ecology has lead to the creation of large computer 

databases, e.g. RNA Data Base Project (Maidak et al., 2001), which encompass the 

phylogenetic diversity found both within culture collections and environmental samples. 

Following sequence analysis sequences can be compared with known sequences from 

such databases.  This gives an indication of what kind of prokaryotes are present within 

any given sample whether they are held in culture or not.  If they are novel species or 

strains, comparison will also give a distance matrix and their relative position to known 

individuals on a phylogenetic tree, thus providing information about likely growth 

conditions and substrate requirements.    

Up until ten years ago it was common to use cloning and sequencing of PCR 

products to facilitate diversity assessment.  This approach is time consuming in that 

extensive analysis of large numbers of clones is required, followed by sequencing of 

selected individual populations.  Also, organisms which make up only a small percentage 

of the population are not adequately or readily detectable by this method.  Sequencing of 

selected components of the community can however give insight into the dominant 

phylogenies (as determined by DGGE) in any given sample.  
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1.1.4.5 The importance of a multifaceted approach when investigating response of 

bacterial communities to perturbation 

The use of molecular techniques provides useful data regarding the organisms 

which are present in a particular environment and change in diversity shows which 

bacteria are impacted most strongly by perturbations.  However, it is important to also 

understand what affect such perturbations have on the metabolic capability of the 

bacterial community.  A number of techniques are available which can be used to 

determine changes in metabolism of bacterial communities.  In this study the ability of 

bacteria to incorporate 3H-Leucine into cellular protein (Kirchman, 1993) has been used 

as a measure of the production of the bacterial community and will be referred to as 

bacterial production in the remainder of the text. 

In the early stages of the ‘molecular revolution’ in bacterial ecology large 

numbers of researchers used molecular approaches in isolation to document bacteria 

present in a wide variety of environments and/or how a bacterial community changed in 

response to perturbation (e.g. Moffett et al., 2003; Sandaa et al., 2001; Toms-Petersen et 

al., 2003; Nakatsu et al., 2000; Beaulieu et al., 2000; Santegoeds et al., 1996; Crump et 

al., 1999).  More recently the desire to link structure of bacterial communities with their 

function has become a key part of microbial ecology.  The measurement of metabolic 

activity indicators such as growth, protein production and enzyme production in 

conjunction with measurements of bacterial community diversity allow inferences 

regarding the bacterial types responsible for such metabolic activities to be made.  It also 

allows the researcher to better assess the implications of and reasons for changes in 

community composition.  Simek et al., (2001) attributed changes in community 

composition to a shift in balance between population specific growth and mortality rates.  

A second study showed that a change in bacterial community resulted in higher protein 

content per cell  (Beardsley et al., 2003).
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1.2 Trace Metals 

1.2.1 Presence and sources of trace metals in aquatic environments 

Trace metals can be defined as those metals occuring in minute quantities, often 

at concentrations less than picomoles per litre (Chester 1990).  Essential metals such as 

iron (Fe), copper (Cu), zinc (Zn), nickel (Ni) and molybdenum (Mo) are required in 

minute quantities to support many biochemical processes involved in the metabolic 

functioning of the cell (Nies 1992).  They act as micronutrients, are utilised in redox 

processes, stabilise molecules through electrostatic interactions, regulate osmotic 

pressure and are essential co-factors for a number of enzymes (Bruins et al., 2000). 

Trace metals are found naturally occurring in rocks, soils and sediment and are released 

gradually through natural phenomena such as weathering and erosion. Typical 

concentrations of metals found in relevant environments are given in Table 1.1. 

 

Metal Estimated dissolved 

oceanic 

concentrationsA 

Range of dissolved 

oceanic 

concentrationsB 

Concentration of 

dissolved metals in 

the Tamar EstuaryC 

Cadmium 620 pmol.kg-1 0.1-1 nmol.kg-1 4.3 ng.L-1 

Copper 2.4 nmol.kg-1 1-10 nmol.kg-1 2.5 µg.L-1 

Lead 13 pmol.kg-1 0.01-0.1 nmol.kg-1 0.2 µg.L-1 

Nickel 8.2 nmol.kg-1 1-10 nmol.kg-1 1.1 µg.L-1 

Zinc 5.4 nmol.kg-1 1-10 nmol.kg-1 7.4 µg.L-1 

 

Table 1.1 Concentration of relevant metals in the ocean (ABruland 1980; BLibes 1992) 

and Tamar Estuary (Devon, UK; CDEFRA 2003). 

    

Anthropogenic activity introduces trace metals into aquatic environments at 

comparable concentrations to natural inputs.  However, anthropogenic sources are 

likely to be more localised and thus result in elevated concentrations c.f. naturally 

derived background levels.  Dominant sources of metals to aquatic environments vary 



 
 

13 

with distance from land.  Anthropogenic sources of metals are discussed in further 

detail below. 

1.2.1.1 Sources of trace metals in estuarine and coastal environments 

The majority of trace metal inputs to estuarine and coastal environments are of 

anthropogenic origin (e.g. Cobelo-Garcia et al., 2004).  Point-source origins include 

storm drains, sewage work discharge, industrial effluent from activities such as mining; 

smelting and other metal purification methods and the manufacture and use of metallic 

products.  More diffuse sources stem from agricultural use of pesticides and fertilizers 

in the catchment area of the estuary in question.  Metals in these environments are 

found predominantly associated with suspended particulate matter or sediment and 

concentrations vary according to other physico-chemical factors in the immediate 

environment (Section 1.3.2.2).  For example the amount of suspended particulate matter 

can be directly linked with removal of trace metals as a result of abiotic and biotically 

enhanced adsorption onto surfaces (Section 1.3.2.2).  This process is enhanced further 

if conditions are favourable for the formation of iron or manganese hydroxides which 

act as attractants and speed up precipitation of other metals (Millward and Moore, 

1982).  

1.2.1.2 Sources of trace metals in open ocean environments 

Inputs to open ocean environments are usually more natural in origin with 

dominant sources being atmospheric deposition of dust and desert sands (depending on 

location).  Other atmospheric sources include volcanic products and airborne 

contamination resulting from the burning of fossil fuels.  Non-atmospheric sources of 

trace metals in oceanic regions may originate from hydrothermal vents, coastal regions 

as a result of currents and diffusion, and dissolution of ship associated metal and 

wastes.  In oceanic environments the majority of metals are present as metal-ligand 

complexes (Sunda and Huntsman 1991; Ellwood and Van den Berg 2000; Ellwood and 

van den Berg 2001; Ellwood 2004). 

1.2.2 Toxicity of trace metals 

Metals which are required for metabolic functioning of the cell (e.g. zinc; 

Blindauer et al., 2002)  can become toxic at high concentrations and those for which no 

biological use has yet been determined (such as lead) are likely to be toxic at lower 
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concentrations. The range of minimum concentrations at which an effect on microbial 

metabolism is seen (Sandrin 2003) is strongly influenced by factors such as contents of 

experimental media, pH and the form in which the metal is added i.e. its bioavailabilty 

(see section 1.2.3.2).  To understand the affects of trace metals in different 

environments it is first necessary to understand how trace metal toxicity occurs at the 

cellular level and how physicochemical factors influence toxicity. 

1.2.2.1 Modes of action of trace metal toxicity.  

The first mode of toxicity is an effect on the redox state of the cell which results 

in oxidative stress.  One example of this is the production of hydroxyl (OH-) ions 

within the cell.  Solioz and Stoyonov (2003) demonstrated that an influx of cupric 

(Cu2+) ions can create OH- excess via redox reactions with H2O2.   Redox inactive 

metals can also induce oxidative stress by displacing redox active metals from their 

binding sites.  Reactive oxygen species can damage phospholipids and reduce the 

fluidity of the cell membrane via peroxidation.  They also target DNA base and sugar 

moieties resulting in single and double-stranded breakage.  Furthermore proteins 

(including enzymes) can be damaged via oxidation of sulfhydryl groups and reduction 

of disulphides.  Effects of oxidative stress and protein damage by reactive oxygen 

species are examined in Cabiscol et al., (2000) along with bacterial defence 

mechanisms. 

The second mode of toxicity is via substitution of metabolically active metal 

anions with non-required anions in enzymes.  For example if Zn2+ is replaced by Cd2+ 

the enzyme function is compromised.  This action is frequently seen associated with 

sulfhydryl (-SH) containing enzymes which bind strongly to metals and are essential 

for a number of metabolic activities.  A similar effect is observed when metal 

oxyanions such as arsenate replace structurally similar non-metal oxyanions such as 

phosphate compromising nutrient transport systems (Nies 1999).  In summary the 

overall effect of metal toxicity is damage of cell membranes, DNA structure, alteration 

of enzyme specificity and general disruption of cellular function (Bruins et al. 2000). 

1.2.3.2 Influence of physicochemical parameters on metal toxicity 

Speciation of toxic metals plays a crucial role in their impact on the organisms 

being studied.  Metal species can be broadly divided into two categories; the solution 

phase which approximates the bioavailable fraction, and the solid phase which may be 
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present as sediment-adsorbed, particulate, colloidal or complexed states, all of which 

are less available to and are therefore less toxic to the cell.  The distribution of metals 

between these phases is affected by a number of physicochemical parameters. 

 

1)  Ionic strength:  The availability of H+ ions has been shown to influence the toxicity 

of metals, particularly within aquatic systems.  Variation in pH can result in increased 

precipitation of trace metals as particulate oxides or phosphates thus decreasing 

availability.  For example, minimum solubility of metal hydroxides ranges from pH 8.1 

for copper to pH 11 for cadmium.  Thus, increased pH frequently results in the removal 

of metal ions from solution, a phenomenon traditionally utilised in the remediation of 

acid mine drainage.  The effect of ionic strength is particularly apparent in artificial 

microbiological media where phosphate is routinely used as a buffer, because the use of 

such media reduces the free metal ion concentration.  Also related to media for bacterial 

growth is the addition of adsorbing surfaces such as those observed in yeast extract 

which again reduce bioavailability.  Villaescusa et al., (2000) observed a decrease in 

toxicity of trace metals with the addition of NaCl to incubation medium, measurements 

showed that this decrease in toxicity corresponded to a decrease in the proportion of 

zinc present as 2+ ions.  A similar phenomenon is observed in the presence of 

substances associated with water hardness. 

 

2)  Organic matter:  The production of biological polymers such as those released by 

bacteria in sewage sludge systems (Rudd et al., 1984) can be a response to increased 

metal concentrations.  Complexation of metals with such polymers prevents them from 

binding with the active sites on cell membranes or enzymes within the cell, thus 

decreasing toxicity. Chen et al. (1995) championed the use of bacterial polymers as 

agents of metal complexation / removal for bioremediation of contaminated sites.  A 

second biological derivative known to influence metal toxicity is humic acid (Pandey et 

al., 2000). Humic acids tend to be terrestrially derived in aquatic systems and highly 

refractory.  Koukal et al. (2003) demonstrated that the presence of humic acids 

decreased metal toxicity by forming complexes which were stable with regard to metal 

exchange and hence reducing bioavailability.   A second effect was adsorption of humic 

acids onto cell surfaces forming a barrier which reduced influx of free metal (Cd2+ and 

Zn2+) ions.  It should be noted that the stability and strength of complexation is a key 

factor when determining the availability of metal ions to biota.  Tubbing et al. (1994) 
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have shown that concentrations of intermediately labile copper (retained on Chelex-100 

columns) correlated significantly with inhibition of bacterial growth and algal 

photosynthesis. 

1.2.3 Mechanisms of trace metal tolerance in bacteria 

Metal resistance can be a by-product of cellular metabolism and result from 

redox processes such as oxidation of metals to obtain energy or conversely from 

reduction of metals which act as terminal electron acceptors (dissimilatory reduction).  

In addition, a number of bacteria have evolved specific metal resistance strategies (e.g. 

Choudbury and Srivastava 2001) which can be divided into two categories, avoidance 

and sequestration (Nies 1999). 

 

1) Avoidance: Metal influx can be prevented or decreased by a permeability barrier 

external to the cell, e.g. extracellular capsular polymers (Chen et al., 1995), or via 

plasmid encoded changes to cell wall structure.   Structural changes which decrease 

permeability of metal (Cd2+) ions have been observed in Staphylococcus aureus 

(McEntee et al., 1986).  A second mechanism of avoidance is active transport of excess 

metal ions out of the cell by cation transporting ATPases.  Some of which can switch 

between influx and efflux depending on the intracellular metal concentration (Table 

1.2).  Characterised metal transporting ATPases belong to five main groups: ABC 

(ATP-Binding Cassette), P-type, A-type, RND (Resistance-Nodulation-cell Division), 

and CDF (Cation Diffusion Facilitator).  A third mechanism involves transformation 

(reduction) by enzymes which convert metals to a less bioavailable form, however, this 

mechanism is only well characterised for enzymes which detoxify mercury and arsenate 

(which becomes more toxic prior to removal by an efflux pump (Bruins et al., 2000).   

 

2) Sequestration: Sequestration by exopolysaccharides or other biopolymers (e.g. 

proteins and enzymes) prevents or reduces metal toxicity by forming stable complexes 

either inside or outside the cell.   For example, metallothioneins, whilst more often 

associated with eukaryotic cells, have been induced in cells of the cyanobacterium 

Synechococcus (Ybarra and Webb 1999) following exposure to divalent metal ions.  

Genes encoding metallothioneins have also been identified in bacteria (Blindauer et al., 

2002)   Post-efflux binding has been suggested as a mechanism to prevent expelled ions 

returning to the cell (Bridge et al., 1999), thus reducing the energetic cost of 
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detoxification.  Citrobacter have been shown to utilise phosphate to complex cadmium, 

presumably for this purpose (McEntee et al., 1986).   

 

 

Table 1.2 Protein families involved in metal transport (efflux) across the bacterial 

cell membrane.  Table adapted from Nies (2003). 

 

1.2.4 Bacterial diversity in metal contaminated environments 

1.2.4.1 Experimentally contaminated environments 

Most experimental studies of the response of microbial communities to metal 

contamination focus on effects of single metals.  One exception is a study performed by 

Stephen et al. (1999) who observed an increase in the relative abundance of sequences 

belonging to the C cluster of the AmoA gene in soil bacteria, (a structural gene 

involved in the production of the ammonia monooxygenase gene) thus metal 

contamination may have implications for the cycling of nitrogen in soil environments. 

Sandaa et al. (2001) detected a change in the proportion of the community DNA 

binding with primers specific to different bacterial groups (community change) as a 

result of metal rich sludge amendment.  Although these effects will not translate 

directly to the environments in which this study was performed (i.e. estuarine and 

marine), due to differences in organic matter, ionic strength and salinity of the media, 

they do give an indication of the spectrum of effects which may be observed in such 

Family Direction of 

transport 

Energy source Metal ions transported 

ABC Uptake / efflux ATP Mn2+, Zn2+, Ni2+, Fe2+ 

P-type Uptake / efflux ATP Mg2+, Mn2+, Ca2+, K+, Cu2+, 

Zn2+, Cd2+, Pb2+, Ag+ 

A-type Efflux ATP Arsenite 

RND Efflux Proton gradient Co2+, Zn2+, Cd2+, Ni2+ 

CDF Efflux Chemiosmotic Zn2+, Cd2+, Co2+ 
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systems.  Recent work investigating the effects of acute exposure to copper (a 2.5 fold 

increase in bioavailable copper in the sediment phase) in North Sea sediment 

microcosms, indicated no significant affect on genetic diversity or cell density (CFUs) 

of the bacterial community (Gillan 2004).  However, a significant increase in chitin 

metabolism was observed after 12 days.  Laboratory experiments investigating the 

effects of metals on Desulfovibrio desulfuricans (a representative strain of sulphate 

reducing bacteria) showed a reduction of 25% in maximum specific growth rate at a 

concentration of 6 µM Cu2+, reduction in cellular protein was also observed at this 

concentration.  The same study found that addition of 16 µM Zn2+ and 5 µM Pb2+ 

increased lag time by 48-72 hours but had no significant affect on the amount of cell 

protein produced when compared to the control (Sani et al., 2001).   Few experiments 

of this kind have looked at marine or estuarine microbial communities.  Possibly 

because in other environments contamination is easier to control, one such example, 

which is well-researched for obvious reasons, is agricultural soil.    

Moffett et al., (2003) examined the effect of zinc-enriched sewage solids on the 

bacterial diversity of agricultural soil communities.  They observed a decrease in 

operational taxonomic units (OTUs), which correspond with species richness, of 

approximately 25% with the addition of zinc-enriched sludge when compared with 

addition of sludge alone.  This finding was accompanied by a decrease in evenness 

indicating an overall decrease in diversity, probably a result of selection processes for 

phylotypes which were more able to cope with the additional zinc.  The authors noted 

that the dominant phylotypes emerging as a result of treatment with zinc enriched 

sludge were also detected in the sludge-only treatment.  This indicates that the ability of 

these bacteria to cope with zinc addition was also beneficial in the presence of sludge.  

A second experimental study used soil microcosms to investigate how the microbial 

community was affected by a one time zinc addition.  After 15 days of incubation a 

decrease of 85% in viable bacteria was observed (Kelly 1999). This incubation was 

continued for a total of 420 days after which time viable counts in zinc enriched and 

control microcosm populations were not significantly different.  This information alone 

would suggest recovery of the bacterial population, however, development of colour on 

BIOLOG plates was slower in zinc amended samples and dehydrogenase activity was 

significantly reduced.  Furthermore a shift in community, presumably to favour zinc 

tolerant bacteria, was detected using both phospholipid-fatty acid (PLFA) profiles and 

BIOLOG data.  The observed shift suggests that the community had adapted.  This 
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study illustrates the importance of incubation length and the use of a multifaceted 

approach.   A shift in community from sensitive to less sensitive was also detected by 

Baath et al. (1998) following the addition of copper (8 g.kg of soil-1), nickel (4 g.kg of 

soil-1) and zinc (16 g.kg soil-1), again working in agricultural soil.  Conversely Hemida 

et al. (1997), also working with copper and zinc in soil (200µg and 2mg kg-1 in both 

cases), only detected reduced cell density (as determined by the number of CFUs) in the 

copper enriched conditions, possibly as a result of the much lower concentrations 

added.  Notably the authors also detected a decrease in urease activity (Hemida et al., 

1997), again indicating that the effects of metals on bacterial communities may have 

implications for the cycling of nitrogen by bacteria in soil.  The addition of copper (0-1 

mg.g-1) to soil (Ekelund et al., 2003) resulted in a shift in bacterial community from 

Gram -ve to Gram +ve as determined by analysis of phospholipids fatty acids.  Despite 

these notable changes in community the authors observed only slight changes in overall 

bacterial abundance and activity, again demonstrating the importance of measurement 

of metabolic or functional potential of a community. 

In addition to studies of how bacterial communities change with metal 

perturbation the ability of bacterial communities to adapt (adaptive response) to 

elevated metal concentrations has been investigated.  Ganguly and Jana (2002) 

observed a more profound negative effect of cadmium perturbation on ammonia 

oxidising bacteria and denitrifying bacteria than on cellulose decomposing bacteria in 

an aquatic environment.  Measurement of tolerance using thymidine incorporation of 

acclimated bacterial communities (long-term incubations over 28 months) showed two 

mechanisms of tolerance development of bacterial communities.  Firstly, the initial 

mortality of metal sensitive species (first 48 hours of exposure) left behind a 

community consisting of bacteria more able to tolerate metals. Secondly, a more long-

term response attributed to different adaptation and competitive abilities of the 

remaining bacteria was observed (DiazRavina and Baath 1996).  The authors also 

observed increased tolerance as a result of glucose addition.     

1.2.4.2 Historically contaminated environments 

Studies carried out on effects of multiple metals tend to be opportunistic and 

focus on environments which are historically impacted.  Studies of native microbial 

populations in metal-rich or impacted environments are few, with the exception of acid 

mine or rock drainage (AMD/ARD) which has been researched by a number of workers 
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(e.g. Gray 1997; Johnson et al., 2001; Johnson and Hallberg 2003; Edenborn 2004 and 

references therein) as a result of its relevance to bioremediation (Antsuki et al., 2003).  

Such studies rarely have a control site or sample for comparative purposes.   

Stein et al.,  (2002) investigated diversity of microbial communities associated 

with metal rich particles in a fresh-water reservoir.  Construction and analyses of a 

clone library utilising 16S DNA from the extractable portion of the community showed 

dominance of 16S genes closely related to those from a single cluster within the 

candidate division OP10 (Geobacteraceae). Previous detection of this OP10 cluster in 

question was derived from genes cloned from sludge systems.  The dominance of 

Geobacteraceae in this environment provided a reference point for work carried out by 

Cummings et al. (2003).  The authors found evidence that Geobacteraceae inhabited 

metal-polluted fresh-water lake sediments using group specific 16S gene targeting 

primers suggesting an important role of this group of bacteria in metal polluted 

anaerobic sediment environments.  This is one of the few studies which made reference 

to a control site and although some overlaps were identified only two phylotypes were 

found exclusively in the pristine sediments whereas six of the phylotypes identified 

from the polluted sites were absent from the pristine communities, suggesting they had 

a competitive advantage under metal-stressed conditions. 

Labrenz (2004) used molecular methods to determine diversity of bacterial 

biofilms which precipitate ZnS in a mine drainage system (approx. neutral pH).  

Microbial clusters belonging to the �-, ϒ- and ε-proteobacteria, CFB, 

Planctomycetales, Spirochaetales, Clostridia and green non-sulphur bacteria were 

detected.  Desulfobacteriaceae (SRB) were discovered to be a significant proportion of 

the established biofilms.   

The geothermal fluid released in hydrothermal vent systems creates an area of 

highly concentrated metals when contrasting with surrounding seawater.  Holden and 

Adams (2003) give an overview of micro-organisms found in such environments and 

describe the ways in which they detoxify the metals therein.  They divide the micro-

organisms into four groups based on habitat i.e. those found in pore spaces and cracks 

below the surface; those who gain their nutrition from sulphide deposits and form mats; 

those existing in symbiosis with invertebrates; and those within the plume itself. 

With the exception of the first group most of the microbes isolated from these 

environments are mesophillic aerobic bacteria including members of the 
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Thermatogales, Bacillus, Pseudoaltermonas, Shewanella, Geobacter, Thermococcus, 

Thermotoga, and Thermanaerobacter.  Micro-organisms isolated from the first habitat 

are more likely to belong to the anaerobic hyperthermophillic archea as a result of 

temperatures typically exceeding 100°C.   
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1.3  Aggregates 

1.3.1 Contrasting nature of estuarine and marine aggregates 

Aggregates can be defined as rapidly sinking particles > 0.5 mm in diameter and 

can be responsible for 7-45g C m-2 yr-1 of total organic material flux in aquatic 

environments (Walsh and Gardner 1992).  Aggregation of such substances takes place 

via coagulation which comes about through processes such as Brownian motion, fluid 

shear and particle settling.   The nature and formation of aggregates is highly dependant 

on the materials available and the types of physical forcing within specific 

environments.  

1.3.1.1 Marine snow formation 

Marine snow is a term used to describe oceanic aggregates >0.5 mm in diameter 

(Alldredge and Silver 1988).  Marine snow has been extensively researched and is of 

critical importance for the determination of flux of organic matter between the upper 

mixed layer and the deep sea (Silver and Alldredge 1981; Lochte and Turley 1988). 

Formation of marine snow tends to be biologically mediated (reviewed by Turley 

1992), one such example is particle formation as a result of phytoplankton cell lysis.  

This leads to release of extracellular enzymes by colonising bacteria and subsequent 

release of polysaccharides, proteins and other exopolymers which act as flocculating 

agents (Busch and Stumm 1968; Biddanda 1988; Vandevivere and Kirchman 1993).  

Furthermore, production of bacterial and diatom fibrils (Heissenberger et al., 1996), 

capsular material (Heissenberger et al., 1996), and transparent exopolymer particles 

(TEP) (Logan et al., 1994) also contribute.  These processes affect particle size, 

composition and surface characteristics.  In addition, sticky carbohydrates / 

exopolymers originating from biological sources such as diatom blooms (Passow et 

al.1994; Passow and Wassmann 1994) significantly increase the likelihood of 

aggregation.  Free DNA can also serve as a flocculation agent (Alldredge and Silver 

1988).  Increase in particle size as a result of enhanced stickiness (Biddanda 1988; 

Jenkinson et al.1991) results in increased probability of collision (Stolzenbach 1993) 

and also contributes to increased sinking velocities.   

Larger scale organisms, which hold a place higher in the food chain, also 

contribute to formation of marine snow via the excretion of faecal pellets (Pomeroy et 
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al., 1984; Turner 2002).  Faecal pellets provide large amounts of relatively labile 

material and are rapidly colonised as they move through the water column.  These 

pellets also introduce an additional dimension to the food chain by concentrating 

bacteria in substrate large enough to be consumed by grazing organisms (Lampitt et al., 

1993).  Another biological process important for aggregate formation is the production 

of mucus by various organisms including foraminifera and coral, coelenterates and 

phytoplankton (Alldredge and Silver, 1988) and the creation of aggregates through 

abandoned larvaecean houses (Alldredge 1972; Hansen et al., 1996). 

1.3.1.2 Turbidity maxima formation 

 Whilst oceanic aggregate (marine snow) formation is dominated by biological 

mechanisms estuarine aggregate formation is strongly influenced by abiotic factors.  

For aggregation to take place smaller, component particles must first come into contact.  

Once the component particles have collided they must be sticky enough to adhere to 

one another.  Elevated concentrations of suspended particulate matter are frequently 

encountered at the fresh-water/salt-water interface (FSI) of estuaries, which are termed 

turbidity maxima zones (TMZs).  One major factor contributing to the formation of 

TMZs is surface charge.  For example, colloidal clay particles are coated by negatively 

charged organic matter resulting in repellant activity which needs to be overcome at the 

point of collision to result in cohesion.  This is not possible in freshwater, however, 

upon reaching water with a salinity of 1-3 these forces are weakened and overcome, 

usually by Van der Waal forces, and aggregates are formed (the processes involved are 

described in Gregory and Duan (2001)).  Thus a TMZ is generally associated with the 

FSI.  Similarly, negatively charged particles can be linked by bridging divalent cations 

which enhance attraction and cohesion (Pers comm. P. Statham, Southampton 

Oceanography Centre; Gregory and Duan 2001).  The boundary layer between the 

sediment and the overlying estuarine water is rich in mucopolysaccharides produced by 

benthic diatoms which enhance the stickiness of particles which, in turn, increases the 

likelihood of the formation of aggregates.  These factors combined with the biotic 

factors responsible for aggregate formation in marine systems result in enhanced 

aggregate formation in estuaries.  The TMZ is formed and maintained by 

predominantly physical factors such as reduced turbulence due to stratification (induced 

by saline intrusion, Geyer 1993), topography of the estuary (decreasing depth can result 

in residual current in the landward direction, Jay and Musaik, 1994), tidal forcings 
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(Weir and McManus 1987) and shear forces which are responsible for the resuspension 

of the ‘fluffy’ layer at the boundary between sediments and estuarine water.  These 

shear forces change over the tidal cycle and result in gravitational circulation:  

‘settling during slack tide, resuspension during the early ebb and early flood, 

flocculation of fine particles into large ones during most of the tide, and deflocculation 

of large flocs into smaller particles during or after settling to the bottom’ (Eisma and Li 

1993).    

1.3.2 Importance of aggregates in aquatic environments 

1.3.2.1 Bacterial cycling of organic matter 

Affect of aggregate association on bacterial abundance and production 

The micro-environment associated with aquatic particles has long been 

acknowledged to provide an area of increased nutrient availability when compared to 

the surrounding water (Shanks and Trent 1979, Table 5 in Simon et al., 2002). 

Therefore it is no surprise that the abundance of bacteria associated with aggregates 

tends to be enriched c.f. surrounding water column of equal volume (e.g. Caron et al., 

1986).  The extent of this phenomenon depends primarily on the size and composition 

(Turley and Mackie 1994) of the aggregates and enrichment factors range from 0.6 to 

5,700 (Turley and Mackie 1994; Simon et al., 2002).  The number of bacteria per 

aggregate shows positive correlation with aggregate size, however, enrichment factors 

relative to surrounding water decrease with increasing aggregate size (Simon et al., 

2002).  Bacteria associated with aggregates can be as little as 5% of the total bacterial 

numbers in oligotrophic marine environments and as much as 90% of total bacterial 

numbers in estuarine environments with high SPM concentrations (Crump et al., 1998). 

The contribution of aggregate association to bacterial biomass is clearly highly variable 

depending on aggregate number, size and composition. 

Bacterial production rates on aggregates have been correlated with aggregate 

size (Alldredge and Gotschalk 1990; Grossart and Ploug 2000) and, when calculated on 

a per cell basis, values tend to be equal to or slightly exceeding those of their free-living 

counterparts, possibly as a result of increased substrate availability (Turley and Stutt 

2000).  Aggregate associated bacterial production has been estimated to range from 

0.39% of total bacterial productivion in the subtropical Atlantic Ocean (Alldredge and 

Youngbluth 1985), 3-12% of production in the surface water (70m) of the 
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Mediterranean (Turley and Stutt 2000) to 53% of total bacterial production in the 

Columbia River Estuary (Crump and Baross 1996).  The discrepancy between values is 

a result of both different sampling environments and methodology used.  As a rule, 

aggregate associated bacterial production in pelagic marine and lake environments 

comprises <14% of the total while in eutrophic and estuarine environments production 

can exceed 30% of the total (Simon et al., 2002).   It has been shown that production on 

settled aggregates is lower than that on suspended aggregates hence the development of 

rolling bottle and upflow incubation techniques.  It should be noted that upflow type 

incubations can provide more favourable oxygen conditions than would be encountered 

in the field and thus may overestimate in situ production values.  These techniques are 

nevertheless more representative of field measurements than incubations in which 

aggregates are allowed to settle.   

Affect of aggregate association on respiration and hydrolysis 

Respiration by aggregate associated bacteria has been shown to increase with 

aggregate size.  However, respiration determined on a per cell basis is lower on larger 

aggregates (Ploug 2001), a phenomenon attributed to reduced lability of substrate 

(Grossart and Ploug 2000).  Respiration has also been found to correlate positively with 

particulate organic carbon (POC) in riverine environments (Grossart and Ploug 2000; 

Ploug and Grossart 2000).  The age of aggregates also has implications for bacterial 

respiration and indeed growth efficiency (Grossart and Ploug 2000).  In the first three 

days of incubation high growth efficiencies were noted in samples taken from the 

Weser Estuary.  The authors concluded that in the early stages of aggregate formation 

transfer of organic matter is both rapid and efficient.  From day 3 onwards ectoenzyme 

production exceeded the direct requirement of aggregate associated bacteria for 

substrate and a net export of hydrolysed organic matter was observed which is believed 

to contribute to substrate demand of free-living bacteria. 

Bacteria associated with aggregates have ‘higher potential ectoenzymatic 

hydrolysis rates per cell’ (Simon et al., 2002), as a result, labile aggregate associated 

biopolymers are rapidly hydrolysed by enzymes including aminopeptidase, phosphatase 

and glucosidase produced by such bacteria (Smith et al., 1992; Unanue et al., 1998; 

Grossart and Ploug 2001; Lehman and O' Connell 2002).  By measuring enzymatic 

activity and incorporation of radiolabelled amino acids Grossart and Ploug (2001) 

showed that 87% of the decrease in particulate organic nitrogen (PON) could be 

explained by turnover of particulate combined amino acids (PCAA) by the aggregate 
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associated food web and that PCAA were preferentially decomposed when compared to 

particulate organic carbon (POC).  They concluded that significant transformation and 

remineralization was performed by the aggregate associated food web.  In an earlier 

study (Grossart and Ploug 2000) variability in bacterial production and respiration was 

attributed to a changing bacterial community.  This change comprised a shift in 

community from �- and �-proteobacteria dominance to cytophaga and �-bacteria 

dominance.  This suggests a shift in food source from labile to more refractory as the 

aggregate ages.   

The determination of the differences between aggregate associated and free-

living bacterial communities in terms of these metabolic activities highlights the 

important role aggregate associated bacteria play in the recycling and remineralization 

of organic matter in aquatic environments (Fowler and Knauer 1986; Alldredge and 

Silver 1988; Turley and Mackie 1994; 1995; Grossart and Simon 1998).  Coexistence 

of bacteria, phytoplankton and microzooplankton (Patterson et al., 1993) associated 

with aggregates creates a micro-environment with enhanced nutrient cycling and thus 

growth and biomass production capacity.  In addition to these functions, the 

colonisation of aggregates by bacteria and other micro-organisms provides a short-cut 

in the food chain in a similar manner to faecal pellets (Baylor and Sutcliffe 1963; 

Lampitt et al., 1993).  As a result detritus and/or grazing organisms can obtain nutrition 

from bacterial biomass which would otherwise be unavailable due to their small size.  

1.3.2.2 Trace metals removal / transport 

Particles are known to play a dominant role in controlling the trace element 

distribution in riverine environments (Trefry et al., 1985; Ellwood 2004), the open 

ocean (Morris 1986), and they have also been shown to influence the behaviour of trace 

elements in estuaries (Luoma and Davis 1983; Valenta et al., 1986; Turner 1996) and 

coastal seas (Balls 1989).  However, these studies do not account for biological 

influence on trace metal dynamics.  Further details of the affects of sediment and 

biology on trace metal dynamics in aquatic systems are discussed below.   

 

Adsorption to iron oxyhydroxides / co-variance with salinity 

One theory suggests that the uptake of trace metals by suspended particulate 

matter (SPM) is a result of adsorption to iron oxyhydroxide, a highly efficient trace 

metal scavenger (Millward and Moore 1982).  This theory indicates that uptake of 
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manganese and zinc is directly related to salinity i.e. ‘adsorption onto fresh iron 

(oxyhydroxide) precipitates will (also) be favoured for manganese and zinc in the 

freshwater above the salt-wedge’ and that the relative partitioning of these metals 

between the solid and dissolved phases is dependant mainly on salinity.  The 

relationship is not apparent for copper which will adsorb onto such precipitates at all 

pH and salinity ranges expected within a brackish water region such as an estuary 

(Millward and Moore 1982).  Removal of copper has been observed in the low salinity 

regions of both the Tamar (Morris et al., 1986) and the Rhine (Duinker et al., 1978).  

Interactions between iron oxyhydroxides and trace metals are well documented, 

however, it is important to note that the low salinity/ fresh water above the salt-wedge 

where such interactions are frequently observed may also be an area of high biological 

activity.  An area of low dissolved oxygen was located downstream from the TMZ in 

the Tamar estuary (Morris et al., 1986) indicating a high degree of biological activity 

the effects of which on trace metal distribution are unaccounted for within this theory.  

Influence of biology on trace metal removal / transport 

Work carried out in the Dover Strait supports the direct relationship between 

metal removal and salinity (discussed above), although it states that no clear 

relationship is evident for manganese in channel waters (James et al., 1993).   In this 

study biological activity is accounted for, the authors suggest that partitioning of a 

metal between the dissolved and particulate forms may vary according to both 

biological activity and particle exchange processes (James et al., 1993).  This theory 

also concludes that copper is one of the most conservative trace metals, with a 

pronounced affinity for biogenic matter during estuarine mixing and states that nickel 

shows ‘distinct similarities’ (James et al., 1993).  Cadmium has also been shown to 

have an affinity for biogenic material (Valenta et al., 1986). 

Influence of suspended particulate matter (SPM) on trace metal removal / transport 

James et al., (1993) considered the size of SPM present as another factor that 

can influence trace metal removal/transport.  They suggest that there is proportionally 

more metal (specifically nickel and copper) associated with the finer fractions of the 

SPM and that particle size is probably an important variable in determining trace metal 

concentration in the SPM.  Cobalt and manganese showed a linear relationship to SPM 

on a mass/volume of seawater basis.  It should be noted that these conclusions are 

drawn from studies on channel waters which, despite varying salinity, were not 

specifically ‘estuarine’ in nature.  In addition, extensive laboratory work has shown that 
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for each metal the partition co-efficient decreases with increased SPM loading (Zhou et 

al., 2003), it was also shown that scavenging under high particle concentrations was 

more efficient (Zhou et al., 2003).  Again these studies do not satisfactorily include 

biological aspects.  Another important factor requiring consideration is the fact that 

maintenance of a non saturated state with regards to trace metals is essential to allow 

prolonged removal of those metals by sorption to particulate matter.  This requirement 

is to a degree fulfilled by the constant turnover of resuspendable particles within the 

estuary and subsequent removal of both metals and SPM to the marine environment or 

by longer-term settling processes.  It should be noted however that these relationships 

have been shown to break down in the presence of decreased pH, a condition common 

to many metal impacted environments (Achterberg et al., 2003) 

1.3.2.3 Artificial aggregates for laboratory studies 

Artificial substrates 

Artificial substrates used for laboratory experiments have the advantage of 

being clearly defined.  For example Kiorboe et al., (2002) designed experiments to 

determine mechanisms and rates of bacterial colonisation of aggregates.  The use of 

agar droplets approximately 0.2cm in diameter with varied enrichments allowed the 

authors to determine that colonisation of enriched (Marine broth and DMSP) spheres 

was increased by a factor of 5 to 10 in ‘tumbling’ bacterial strains and not affected in 

non-tumbling strains.  This indicated that the tumbling behaviour was effective for 

location of food source.  Numerous other conclusions were drawn regarding the nature 

of attachment and detachment demonstrating the usefulness of such studies.  These 

included; the discovery of rapid exchange between attached and unattached bacterial 

assemblages; the observation that motility plays a crucial role in attachment to particles 

and that bacterial may be able to survive with aggregates as a sole food source.   

 

 

Natural substrates 

Artificial aggregates can be formed using either inorganic or organic particles.  

The first laboratory produced aggregates were created by Shanks and Edmondson 

(1989).  Since then the use of rolling bottles to simulate differential settling and shear 

forces has been adopted by a number of researchers.  For example a study carried out 

by Grossart and Ploug (2000) created aggregates by rolling water taken from the Weser 
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River (W. Germany) for assessment of bacterial growth efficiency and metabolism in 

relation to bacterial community structure.  This study showed that bacterial production 

and respiration was dependant on community composition rather than availability of 

nutrients.  A second relevant study by the same authors (Grossart and Ploug 2001) 

utilised three diatom species, Thalassiosira weissflogii, Skeletonema costatum and 

Chaetocerous debilis to form aggregates in the laboratory.  These aggregates were used 

to investigate the impact of aggregation on cycling of organic matter by bacteria, 87% 

of the total decrease in particulate organic nitrogen over the time course of the 

experiment was attributed to transformation and remineralization of particulate 

combined amino acids by the aggregate associated food web.  Unanue et al. (1998) 

working with autoclaved diatom cultures investigated aminopeptidase production and 

leucine incorporation by aggregate associated bacteria.  They found that attached 

bacteria support growth of free-living bacteria via production of aminopeptidase 

enzymes, they determined that this wasn’t a result of excessive enzyme production, 

rather a result of lower uptake rates in attached bacteria c.f. free-living counterparts.  

Similar results were obtained using aggregates formed by rolling lake water, a study in 

which identity of aggregate colonisers was also determined using fluorescent in situ 

hydridisation (FISH)(Ploug 2001; Schweitzer et al.,  2001).  Diatom cultures were also 

utilised in an investigation of the effects of flow and diffusion of oxygen on 

remineralization by aggregate associated bacteria.  Chaetocerous debilis and 

Skeletonema costatum cultures and faecal pellets originating from cultures of Acartia 

tonsa were aggregated by incubation in aged or artificial seawater (1.5 L) on roller 

tables.  Oxygen micro-electrode measurements through artificial aggregates showed 

that remineralization was determined by substrate quality and quantity rather than 

oxygen transport limitation.    
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1.4 Aims and objectives 

 The overall aim of this study was to investigate, using molecular and cell 

specific methods, the interactions between bacteria, aggregates and trace metals in 

aquatic systems.  Specific research objectives were as follows: 

 

Objective I) To determine the effects of trace metal enrichment on bacterial  

  community structure and function (Chapters 3, 5 and 6). 

Objective II) To compare the ability of bacterial consortia from different marine  

  environments to tolerate elevated concentrations of zinc (Chapter 3) 

Objective III) To assess the affect of incubation strategy including artificial aggregate 

formation on bacterial community structure and function under trace 

metal impacted conditions (Chapter 4). 

Objective IV) To determine the capacity of bacterial consortia derived from a pristine 

  environment to tolerate trace metals (Chapter 5). 

Objective V) To investigate bacterial communities associated with different sizes 

  classes of aggregates originating from estuarine systems (Chapter 6). 

Objective VI) To assess the suitability of different nucleic acids for the detection of 

changes in bacterial communities as a result of trace metal enrichment 

(Chapter 6). 
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2  Materials and Methods 

2.1 Materials 

Material Supplier 

Microbiological materials  

Ampicillin Sigma-Aldrich UK 

Bactoagar Difco Laboratories 

Bactopeptone Difco Laboratories 

L-[4,5-3H]-leucine Amersham Pharmacia Biotech 

Optiphase Hisafe III Perkin Elmer 

SYBR Gold II Molecular probes Inc. 

Tryptone Difco Laboratories 

Yeast Extract Difco Laboratories 

  

Strains and plasmids  

E. coli DH5�  Invitrogen, UK 

E.coli XL1-Blue MRF’  Stratagene, UK 

pGEM-T Promega, UK 

  

Nucleic acid materials  

100bp markers Promega UK Ltd 

ABI Big-dye reagents Applied Biosystems  

Acrylamide:bis-acrylamide (40%) Sigma-Aldrich UK 

Bromophenol Blue Sigma-Aldrich UK 

Custom oligonucleotides (Primers) MWG-biotech UK 

dNTPs Promega UK Ltd 

Formamide Fluka (Sigma-Aldrich UK) 

Hi-Dye Formamide Applied Biosystems 

Hind III Promega UK Ltd 

Magnesil Green Promega UK Ltd 

pGem-T Promega UK Ltd 

Rain-X Halfords (UK) 
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SYBR Green I Molecular probes Inc. 

Taq DNA polymerase Promega UK Ltd 

TEMED Promega UK Ltd 

TSR Amersham Biosciences UK Ltd 

Wizard SV Miniprep kit Promega UK Ltd 

X-Gal Promega UK Ltd 

Xylene Cyanol Promega UK Ltd 

� DNA Promega UK Ltd 

  

All reagents were of an appropriate grade (i.e. Analar, microbiological or molecular 

biology grade) and obtained from VWR unless listed above. 
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2.2 Water collection and manipulation  

2.2.1  Water collection and precautions for preventing contamination 

At each site the salinity, pH and temperature were determined prior to water 

collection.  Marine water was collected from RRS Discovery (cruise D261) using trace-

metal clean externally closing Niskin bottles on Kevlar® hydroline.  Estuarine water 

was collected in trace metal clean containers at a salinity of approximately 15 as 

determined using the YSI salinometer.  Water was transferred to low density acid 

washed, sterile polycarbonate bottles (2 L, 4 L, 10 L or 20 L capacity) and incubated in 

the dark for up to 41 days.  All collection and manipulation containers were made trace 

metal clean by acid washing and sterilised by autoclaving (121°C, 20 minutes) or 

rinsing with ethanol (100%).  Prior to sample collection containers were thoroughly 

rinsed with water from the target environment.  Sampling was routinely performed 

upstream of the sampler and collection vessels were completely and rapidly submerged 

to minimise air-borne and surface micro-layer metal contamination.  Non-talc 

disposable gloves were worn throughout initial sampling and subsequent sub-sampling.  

All sample manipulation was performed using metal-free apparatus (e.g. pipettes and 

aggregate sampler). 

2.2.2  Incubation strategies 

2.2.2.1 Marine stations 1 and 2 

Water was collected from the marine stations 1 (M1) and 2 (M2) on the 2nd and 

4th of April 2002 from the RRS Discovery (for details see Chapter 3).  Externally 

closing Niskin bottles were used to collect water (>6 L) which was then decanted into 

and incubated in 2 L polycarbonate bottles.  One bottle from each environment was 

enriched with 100nM zinc, a second bottle with 1�M zinc and the third bottle was left 

untreated as a control.  Bottles were incubated at ambient sea temperature (Table 2.1) in 

the dark for a total of 41 days.  Samples were stirred continually for the duration of the 

experiment on magnetic stirrers with a sterile magnetic bar. Sub-samples were taken 

regularly throughout the incubation period (Table 2.1).     
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2.2.2.2 The Fal Estuary  

 The Fal Estuary was sampled at high tide on the 24th of March 2003.   Bulk 

water (60 L) with a salinity of 15 PSU was collected in six 10 L polycarbonate bottles.  

Samples were transferred to a controlled temperature (CT) laboratory at Plymouth 

Marine Laboratory (PML) for manipulation.  Bottles were incubated on an aggregate 

roller (Figure 2.1) to enhance the formation of coherent aggregates.  A second bottle 

was incubated with stirring (as per the marine samples) and a third bottle was incubated 

without agitation.  Samples were incubated in the dark at ambient estuarine temperature 

(Table 2.1) in a CT laboratory and sub-sampled (Table 2.1) over a total duration of 21 

days. 

2.2.2.3 The Erme Estuary 

 The Erme estuary was sampled at high tide on the 9th of June 2003. Water was 

bulk sampled at a salinity of 15 in a large volume container (40 L) and 4 litres decanted 

into eight bottles.  Samples were transferred to a CT laboratory at PML for 

manipulation.  Metal additions to sample bottles were made within 2 hours of sample 

collection (details of metal concentrations and addition protocols are given in Table 2.1 

and Chapter 5 respectively).  All samples were incubated in the dark at ambient 

estuarine temperature (Table 2.1) for a total of 21 days.  Sub-samples were taken at 

regular intervals (Table 2.1). 

2.2.2.4 The Tamar Estuary 

 The Tamar estuary was sampled from the PML research vessel Tamaris on the 

16th of March 2004.  Water was pumped directly into four 20 L low density, acid 

washed, sterile polycarbonate bottles at a salinity of 15.  Samples were transferred to a 

CT laboratory at PML for manipulation.  Metal additions were made to two sample 

bottles within 2 hours of sample collection, details of metal concentrations and addition 

protocols are given in Table 2.1 and Chapter 6 respectively.  The third bottle was 

treated with antibiotics and the fourth bottle was unamended as a control.  All samples 

were incubated in the dark at ambient estuarine temperature (Table 2.1) for a total of 21 

days.  Sub-samples were taken at regular intervals (Table 2.1). 
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2.2.3 Sub-sampling 

 The parameters measured for each experiment are given in Table 2.1.  Briefly, 

for each experimental condition and each time point sub-samples were taken for the 

analysis of bacterial diversity, bacterial numbers and bacterial production.  Samples 

were either fixed or processed immediately using a combination of microbiological and 

molecular methods for analysis of the natural bacterioplankton communities (Sections 

2.5 and 2.6 respectively). 

Throughout sub-sampling and incubations all manipulations were performed 

using trace metal clean techniques.  Powder free gloves and lab-coat were worn when 

collecting sub-samples which were decanted from the bottles to prevent contamination 

from metal components of pipettes, filter apparatus or pumps.  Aggregates, when 

collected, were retrieved using plastic 10mL pipette tips connected to a syringe with 

silicon tubing.  

 

Figure 2.1 ‘Aggregate roller’ system showing two 10 l polycarbonate bottles 

containing water from Restronguet Creek (Cornwall, UK). 
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2.3 Established microbiological methods 

2.3.1 Media for microbiology  

2.3.1.1 Media for cell culture 

Luria-Bertani (LB) medium 

  Tryptone     10.0 g 

  Yeast Extract     5.0 g 

  NaCl      10.0 g 

  MilliQ water      to 1 L  

 

LB/ Ampicillin (LB/Amp) 

 LB medium was prepared as above.  Following sterilisation and cooling to 

approximately 50°C 250 µL of filter sterilised, 100 mg.mL-1 ampicillin stock was 

added per 250 mL LB medium (final concentration of 100 µg.mL-1).  [Ampicillin stock 

solution was prepared by dissolving ampicillin in MilliQ water to a final concentration 

of 50 mg.mL-1 followed by filter (0.22 µm) sterilisation.  Stocks were stored in 200 µL 

aliquots at -20°C]. 

 

210 Sea water yeast peptone medium (210) 

  Yeast extract     3.0 g  

  Bactopeptone     5.0 g 

  FAA water     750 mL  

  Milli RO water     to 1 L 

  pH adjusted to 7.3 using concentrated NaOH 

 

Solid media 

Plates were prepared by adding 1.5 g Bactoagar to 100 mL media (final 

concentration 1.5%) prior to autoclaving.  Following sterilisation, plates were poured 

using standard aseptic techniques in a laminar flow hood, 20 mL medium was used per 

plate (90mm diameter).  Plates for lac selection were treated with 2 µl isopropyl �-D-1-

thiogalactopyranoside (IPTG) and / or 20 µl of 5-bromo-4-chloro-3indoyl �-D-

galactopyranoside (X-Gal). IPTG and X-Gal were spread onto the surface of the plate 

and dried in a laminar flow hood.  IPTG is not required for selection of DH5� cells.   
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2.3.1.2 Media for preparation and transformation of chemically competent cells 

SOB       SOC  

Bacto-tryptone  20 g.L-1   SOB   4.825 mL 

Yeast extract  5 g.L-1               2M MgCl2  25 µL 

NaCl   0.5 g.L-1   1M Glucose  100 µL 

KCl   0.186 g.L-1  1M MgSO4  50 µL 

 

TFBI      TFBII 

0.1 M RbCl  12.9 g.L-1  10 mM MOPS pH 8  0.418 g.200mL-1 

50 mM MnCl2  9.9 g.L-1  75 mM CaCl2  2.2 g.200mL-1 

 35 mM KOAc 3.43 g.L-1  10 mM RbCl  0.24 g.200mL-1 

10 mM CaCl2  1.47 g.L-1  15% Glycerol  30 ml.200mL-1 

15% Glycerol   150 mL  Filter sterilised (0.22 µm pore size) 

pH adjusted to 5.8 using dilute acetic acid. 

Filter sterilised (0.22µm pore size).   

 

All the above solutions and media were sterilised by autoclaving at 121°C for 

20 minutes unless stated otherwise. 

2.3.2 Preparation of chemically competent cells (E. coli XL1-BLUE MRF’) 

E. coli cells were taken from -70°C glycerol stocks, streaked onto LB plates and 

incubated overnight at 37°C.  A single colony from this plate was used to inoculate 5 

mL of LB medium and incubated overnight at 37°C with shaking (225 rpm).  This pre-

culture was added to 50 mL of pre-warmed (37°C) LB medium and incubated with 

shaking (225 rpm) until early exponential growth phase was reached i.e. when an OD600 

of between 0.6 and 0.8 was recorded.  The 50 mL culture was added to 250 mL pre-

warmed (37°C) LB medium and incubated with shaking (225 rpm) until exponential 

growth phase (OD600 0.6-1.0) was achieved.  The culture was transferred to 4 chilled, 

sterile Oakridge tubes and incubated on ice for 15 minutes.  Aliquots were centrifuged 

(RCF = 2 500)  for 4 minutes at 0°C (Eppendorf benchtop centrifuge), the culture 

medium removed and cells resuspended in 25 ml of ice cold TFBI (Section 2.3.1.2).  

Resuspended cells were pooled in two Oakridge tubes and centrifuged (RCF = 2 500, 4 

minutes, 0°C).  The supernatant was discarded and cells resuspended in 50 mL TFBI 

(total 100 ml).  The cell suspension was incubated on ice for 30 minutes prior to 
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centrifugation (RCF = 2 500, 4 minutes, 0°C).  The supernatant was discarded, cells 

resuspended in 6 mL ice cold TFBII (Section 2.3.1.2) and 500 µL aliquots placed into 

chilled microcentrifuge tubes using chilled pipette tips.  Aliquots were immediately 

snap frozen in liquid nitrogen and stored at -70°C.  

On occasions competent cells (DH5�) were purchased from a commercial 

supplier (Invitrogen).  These were stored at -70°C in 50µL aliquots according to the 

manufacturer’s instructions.   

2.3.3 Transformation of chemically competent cells 

2.3.3.1 Laboratory stock E. coli XL1-BLUE MRF’ 

 Aliquots (500 µL) of competent E. coli were thawed on ice and 100µL aliquots 

added to individual pre-chilled Falcon 2059 tubes on ice.  Ligation mixture (1-5 µL) 

was added to a 100 µL aliquot of cells and mixed gently using the pipette tip.  As a 

positive control 1-5 µL of supercoiled plasmid was added to a second aliquot.  A 

negative control using the same volume of MilliQ water was added to a third aliquot.  

The cell suspensions were incubated on ice for 30 minutes, followed by heat shock in a 

42°C water bath for 45 seconds.  Cells were returned to ice for 2 minutes.  SOC 

medium (900 µL) (Section 2.3.1.2) was added to each tube and the cell suspensions 

incubated (37°C) with shaking (225rpm) for 1 hour.  A 250µL aliquot of the cell 

suspension was spread onto an LB/Amp plate (Section 2.3.1.1) treated with IPTG and 

X-Gal.  Plates were incubated at 37°C overnight.   

2.3.3.2 Invitrogen sub-cloning efficiency E. coli DH5� competent cells 

A 50 µL aliquot of chemically competent DH5� cells was thawed on ice for 

approximately 5 minutes.  Ligation mixture (2 µL) was added and stirred using a 

pipette tip.  Positive and negative controls were prepared as above.  The resulting 

mixture remained on ice for 30 minutes prior to heat shock treatment at 37°C for 20 

seconds.  Following heat shock the cell mixture was returned to ice for 2 minutes.  LB 

medium (450 µL) (Section 2.3.1.1) was added to the mixture and incubated at 37°C 

with shaking at 225 rpm for 30 minutes.  The incubated mixture (50 µL) was spread 

onto an LB/Amp plate surface treated with X-gal and incubated at 37°C overnight.   
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2.3.3.3 Selection and storage of successfully transformed cells. 

 Following overnight incubation single colonies containing recombinant plasmid 

were selected based on the X-Gal/IPTG/LacZ blue/white selection system (i.e white 

colonies selected).  Colonies were first resuspended in 10 µL of MilliQ water, streaked 

onto LB/Amp plates and inoculated into 5 mL LB/Amp. The liquid culture was 

incubated overnight at 37°C with shaking (225 rpm).  An aliquot (500 µL) was 

combined with 30% sterile glycerol in a sterile cryovial to give a 15% glycerol stock, 

snap frozen in liquid nitrogen and placed at -70°C for long term storage.  The LB/Amp 

plates were incubated at 37°C overnight and stored at 4°C for short term storage. 
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2.4 Established molecular methods 

2.4.1 Buffers and solutions for DNA extraction and manipulation 

2.4.1.1 Lysis buffer 

 Proteinase K (10 µL of 20 mg.mL-1 filter sterilised stock) was added to 10 mL 

pre-warmed (55°C) 0.5% sodium dodecyl-sulphate (SDS) in a sterile 20 mL universal 

container and mixed by gentle inversion.  Lysis buffer was always prepared 

immediately before use.  

2.4.1.2 TAE buffer (50x stock solution) 

  Tris base     242 g 

  Acetic acid (glacial)    57.1 mL 

  0.5M EDTA (pH 8.0)   100 mL 

  MilliQ water     to 1 L  

The buffer was sterilised by autoclaving and stored at 4°C. 

2.4.1.3 Loading dyes 

DGGE (2×) Loading dye  

Bromophenol blue (2%)   0.25 mL 

  Xylene cyanol (2%)    0.25 mL 

  Glycerol (100%)    7.0 mL 

  MilliQ water     2.5 mL 

Agarose (6×) Loading dye 

  Bromophenol blue (2%)   1.25 mL  

  Xylene cyanol (2%)    1.25 mL 

  Glycerol (100%)    3.0 mL 

  MQ water     4.5 mL 

  

Loading dyes were sterilised by filtration (0.2 �m), aliquotted (1 mL) and stored at -

20°C.  Dyes in use were stored at 4°C.  Stock solutions of xylene cyanol (2%) and 

bromophenol blue (2%) were stored at room temperature. 
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2.4.1.4 DGGE solutions  

0% denaturant solution  

  40% Acrylamide:bisacrylamide (37.5:1)  15 mL  

  50× TAE     2 mL  

  MilliQ water     to 100 mL 

All components were combined in a measuring cylinder and decanted into a light 

protected bottle.   

80% denaturant solution  

  40%   Acrylamide:bisacrylamide (37.5:1)  15 mL  

  50x TAE     2 mL  

  Urea      33.6 g   

  Deionised formamide    32 mL 

  MilliQ water      to 100 mL 

All components except for MilliQ water were combined in a glass beaker.  The 

mixture was placed on a magnetic stirrer/heater and stirred with a magnetic bar with 

gentle heating to dissolve the urea.  When the urea had dissolved the solution was 

transferred to a measuring cylinder, MilliQ water added to a final volume of 100 mL 

and the solution transferred to a light protected bottle.  Both the 0% and 80% solutions 

were degassed under vacuum for approximately one hour to prevent inhibition of 

setting due to oxidation of the gel components.  Solutions were stored at 4°C for up to 1 

month. 

2.4.2 Extraction and amplification of DNA 

2.4.2.1 CTAB extraction of bacterial DNA 

 Bacterial cells were lysed in 500 µL Lysis buffer (Section 2.4.1.1) and 

incubated for 30 minutes at 55°C with gentle mixing at 10 minute intervals. CTAB 

(100 µl of 10% stock solution) and 80µL of 5 M NaCl were added and inverted to mix.  

A second incubation of 10 minutes at 65°C was performed.  The lysate was then 

extracted once with chloroform: isoamyl alcohol (Section 2.4.2.2).  For each 

environment, the efficiency of alternative precipitation methods was tested and the 

aqueous phase precipitated with either 2.5 volumes of ethanol (Section 2.4.2.3) or 1 

volume of isopropanol (Section 2.4.2.4) accordingly (see individual chapters for 
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details).  The pellet was resuspended by the addition of 25 µL MilliQ water and 

incubation at 4°C overnight.   

2.4.2.2 Chloroform extraction of DNA 

 An equal volume of chloroform:iso-amyl alcohol (24:1) was added to the DNA 

solution and the mixture vortexed briefly until the phases combined.  This mixture was 

then centrifuged (RCF =16 000, 5 minutes) to separate the two phases.  The upper 

aqueous phase was transferred to a clean 1.5 mL microfuge tube for precipitation. 

2.4.2.3 Ethanol precipitation of DNA 

 Ethanol (2.5 volumes) was added to the aqueous phase and mixed by gentle 

inversion.   Following incubation for 2 hours at -70°C the DNA was collected by 

centrifugation (RCF = 16 000, 10 minutes).  The supernatant was removed and the 

pellet washed using 70% ethanol.  Following a second centrifugation (RCF = 16 000, 8 

minutes) the pellet was dried in a laminar flow hood.  When all traces of ethanol had 

been removed the pellet was resuspended in 25 µL of MilliQ water. 

2.4.2.4 Isopropanol precipitation of DNA 

 Isopropanol (1 volume) was added to the aqueous phase and mixed by gentle 

inversion.   Following incubation for 20-30 minutes at room temperature the DNA was 

collected by centrifugation (RCF = 16 000, 10 minutes).  The pellet was washed, dried 

and resuspended as per ethanol precipitation (Section 2.4.2.3). 

2.4.2.5 PCR amplification of DNA 

Master mix:  

dNTPs (2 mM)    5 µL 

  Forward primer (100 pmol.mL-1)  1 µL 

  Reverse primer (100 pmol.mL-1)  1 µL 

  Taq polymerase 10 x buffer   5 µL 

  Taq DNA polymerase enzyme  0.5 µL 

  Template     �10 ng  

  MilliQ water      to 50 µL 

 

General cycling parameters:  
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 An initial denaturation step of 94°C for 4 minutes was followed by an annealing 

step (x°C depending on primer set used see Table 2.2) for 30 seconds, an extension step 

of 72°C for 1 minute and a denaturation step of 94°C for 1 minute.  These three steps 

were repeated a further 34 times, followed by a subsequent 2 minute annealing step and 

final 5 minute extension (72°C) step. 

2.4.3 Electrophoresis of DNA 

2.4.3.1 Agarose gel electrophoresis 

 To determine presence and quality samples of extracted DNA and PCR 

products were electrophoresed on agarose gels (1% or 1.4% agarose respectively).  

Agarose was dissolved in an appropriate volume of 1x TAE by heating and allowed to 

cool to approximately 50°C.  A final concentration of 0.5 µg.mL-1 of ethidium bromide 

was added and mixed gently by swirling.  The solution was then poured into a gel 

former with comb and allowed to set.  The comb was removed and the gel submerged 

in an electrophoresis tank containing 0.5µg.mL-1 ethidium bromide in 1× TAE. 

Samples were mixed with an appropriate volume of 6 × loading dye (Section 2.4.1.3) 

and 6 µL of sample mixture loaded per well.  Samples were electrophoresed with either 

a � Hind III for DNA (markers at sizes: 23.1kb, 9.4kb, 6.6kb, 4.4kb, 2.3kb, 2.0kb, 

0.5kb, 0.125kb) or 100bp for PCR product (100-1000bp in 100bp increments) marker.  

Electrophoresis was performed at a constant voltage of 10 V.cm-1. The gel was 

visualised by ethidium bromide fluorescence on a UV transilluminator and 

photographed using the SynGene GeneGenius gel documentation system. 

2.4.3.2 Denaturing Gradient Gel Electrophoresis 

 Glass plates were de-greased using a detergent wash followed by an acetone 

wash.  To enhance gel removal plates were cleaned using IMS and treated with Rain-X 

according to the manufacturer’s instructions. Plates were clamped together separated by 

1 mm spacers.  High and low concentration denaturant solutions (15 mL) were made up 

(see Table 2.3) and 18 µL of TEMED and 120 µL of APS added.  Solutions were 

inverted four times to mix and transferred to individual 30 mL syringes which were 

then attached to a gradient pourer (Bio-Rad DCode DGGE system).  Gels were poured 

and a 16 or 25 well comb placed in the top.  Gels were allowed to solidify for a 

minimum of 1 hour.  The gels were clamped into place and lowered into pre-heated 

buffer (1 × TAE, 60°C) to pre-heat.  After 15-30 minutes well-forming combs were 
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removed and the wells rinsed with warm buffer to remove excess denaturants and 

unpolymerised acrylamide.  PCR products at equal concentrations (determined using a 

spectrophotometer) were mixed with equal volumes of 2 × loading dye (Section 

2.4.1.3) prior to loading.  Electrophoresis was performed for 5 minutes at 200V (to 

allow DNA to migrate into the gels) after which the buffer circulation pump was 

activated and electrophoresis continued at 60V for 18-20 hours. 

2.4.4 Cloning of amplified bacterial DNA 

2.4.4.1 Vector 

  The pGEM-T vector (Promega™) was routinely used for the cloning of PCR 

products.  This vector is supplied pre-cut with EcoR V and has an additional terminal 3’ 

thymidine on both strands (Figure 2.2).  This improves the efficiency of ligations of 

PCR product into the vector by preventing recircularisation.  Also, the use of Taq DNA 

polymerase for PCR results in the addition of a terminal adenosine on the 3’ end of the 

PCR product, enhancing compatibility with the vector.   

 

 

 
 

Figure 2.2 Promoter and multiple cloning sequence of the pGEM-T Easy Vector.  

Primer regions are highlighted in pink, multiple cloning sequence highlighted in pale 

blue.   

    

5’ . . .TG TAAAA CGACG GCCAG TGAAT TGTAA TACGA CTCAC TATAG  GGCGA ATTGG         
3’  . . AC ATTTT GCTGC  CGGTC ACTTA ACATT  ATGCT GAGTG ATATC  CCGCT TAACC 
 
          GCCCG ACGTC GCATG CTCCC GGCCG CCATG GCGGC CGCGG GAATT CGAT-T      PCR   
          CGGGC TGCAG CGTAC GAGGG CCGGC GGTAC CGCCG GCGCC CTTAA GCTA A- 
 
Product   -A ATCAC TAGTG AATTC GCGGC CGCCT GCAGG TCGAC CATAT GGGA GAGCT  
                   T-TAGTG ATCAC TTAAG CGCCG GCGGA CGTCC AGCTG GTATA CCCT CTCGA 
 
          CCCAA CGCGT TGGAT GCATA GCTTG AGTATTCTAT AGTGT CACCT AAATA GCTTG  
          GGGTT GCGCA ACCTA CGTAT CGAAC TCATAAGATA TCACA GTGGA TTTAT CGAAC  
 
           GCGTA ATCAT GGTCA TAGCT GTTTC C . . . 3’ 
           CGCAT TAGTA CCAGT ATCGA CAAAG G . . .5’ 

M13f 

M13r 

  T7 promote             T7 transcription 
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2.4.4.2 DNA Ligations 

 Ligations were performed using the pGEM-T easy vector system.   The mix was 

made up on ice in 0.5 mL microfuge tubes and mixed using a pipette tip.  

Reaction mix: 

  2 × Rapid ligation buffer   5 µL 

  pGEM-T (50 ng)    1 µL 

  PCR product (30 ng) / control insert DNA x µL 

  T4 DNA Ligase (3 U.µL-1)   1 µL 

  MilliQ water     to 10 µL 

 

Reactions were incubated at room temperature for 1 hour or overnight at 4°C.  Vectors 

containing inserts were transformed into E. coli strains DH5� or XL1-Blue MRF’ 

(Section 2.3.3) by heat shock at 42°C for 45 seconds or 37°C for 20 seconds 

respectively.  Successful transformations were identified by blue/white lac selection 

(Section 2.3.3.3), confirmed by colony PCR (Section 2.4.4.3) and insert containing 

plasmids prepared for sequence analysis as described below (Section 2.4.4.4). 

2.4.4.3 Colony PCR 

 To confirm presence and size of insert, white colonies were picked using a 1 µL 

disposable loop, suspended in 10 µL MilliQ water and subjected to PCR analysis.  

Colonies were also streaked onto LB/Amp plates and incubated at 37°C overnight in 

preparation for plasmid purification.  

Reaction mix: 

dNTPs (2mM)     2 µL 

10 × Taq DNA Polymerase buffer  2 µL 

Primer M13F     0.5 µL 

Primer M13R     0.5 µL 

Taq DNA polymerase    0.2 µL 

Cell suspension    10 µL 

MQ water     4.8 µL 

Cycling parameters: 

 Reactions were subjected to 94°C for approximately 10 minutes and amplified 

over 25 cycles at a denaturing step of 94°C for 1 minute, an annealing temperature of 



 
 

47 

50°C for 1 minute and subsequent 1 minute extension at 72°C. Products were 

electrophoresed on 1.4% agarose gels and visualised to confirm presence of an insert.  

Successfully transformed colonies were selected for plasmid preparation and 

sequencing. 

2.4.4.4 Plasmid preparation (Promega Wizard® Plus SV miniprep DNA purification 

system) 

 Following overnight incubation of streaked colonies (2.4.4.3), a single colony 

was used to inoculate 5 mL of LB/Amp medium and incubated overnight at 37°C.  The 

resulting culture (3 mL) was centrifuged (RCF = 13 200, 5 minutes) to pellet the cells, 

and the pellet resuspended in 250 µL of cell suspension solution (50 mM Tris-HCl, 10 

mM EDTA, 100 µg.ml-1 RNase A).  Cell lysis solution (250 µL, 0.2 M NaOH, 1% 

SDS) was added and the mixture incubated at room temperature for a maximum of 5 

minutes.  Alkaline protease solution was then added and the mixture incubated at room 

temperature for 5 minutes.  Cell neutralisation solution (350 µL, 4.09 M guanidine 

hydrochloride, 0.759 M potassium acetate, 2.12 M glacial acetic acid) was added and 

inverted repeatedly until the solution became clear.  The clear lysate was transferred to 

a spin column and centrifuged (RCF = 16 000, 1 minute) to separate plasmids from 

eluate, and eluate discarded.  Column wash solution (500 µL, 162.8 mM potassium 

acetate, 22.6 mM Tris-HCl (pH 7.5), 0.109 mM EDTA (pH 8.0)) was added and 

centrifuged as above (RCF = 16 000, 1 minute).  The wash solution was discarded and 

the wash repeated with 250 µL of column wash solution (RCF = 16 000, 1 minute).  

The column was then transferred to a sterile microfuge tube and MilliQ water (100 µL) 

added.  The column was centrifuged (RCF = 16 000, 2 minutes) and discarded.  The 

eluted DNA in the microfuge tube was stored at -20°C until cycle-sequencing.  

2.4.5 DNA Sequencing  

2.4.5.1 Cycle sequencing reaction 

Reaction mix:  

ABI BigDye 3.1 RR mix   2 µL  

  Dilution Buffer    3 µL 

  M13f / 341f (3.2 pmol.µL-1)    2 µL  

  Plasmid prep / PCR Fragments  ~200 ng 

  MilliQ water      to 20 µL 
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Cycling parameters: 

 The reaction mix was denatured at 96°C for 3 minutes followed by 25 cycles of 

96°C for 15 seconds, 50°C annealing for 10 seconds and 60°C extension for 2 minutes.  

The reaction was stored at -20°C until clean-up prior to sequencing (see below).   

2.4.5.2 Cycle sequencing clean-up 1 (single capillary sequencer) 

   This method was used when a small number (<10) of samples were being 

processed.  Removal of unincorporated dye terminators was achieved using Wizard® 

MagneSil™ GREEN according to the manufacturer’s instructions.  Briefly, 20 µL of 

sequencing reaction was added to 180 µL of Wizard® MagneSil™ GREEN particles 

and the mixture incubated at room temperature for 5 minutes.  The solution was vortex 

mixed at the beginning and half way through the incubation.  Particles were trapped 

using a magnetic stand and the overlying liquid removed.  The particles were 

resuspended in 100 µL of 90% ethanol, incubated at room temperature with vortexing 

as before (ethanol wash 1).  The liquid was then removed and the ethanol wash step 

repeated (ethanol wash 2).  Pellets were air dried for five minutes at room temperature 

in a laminar flow hood and the dry DNA eluted in 20 µl of Template Suppressing 

Reagent (TSR).  Following incubation at room temperature for two minutes the 

particles were again trapped and the DNA-containing TSR transferred to clean tubes.   

2.4.5.3 Cycle sequencing clean-up 2 (multi-capillary sequencer) 

 Unincorporated dye terminators must be removed prior to sequencing using the 

ABI multi capillary automated sequencer.  This was achieved using precipitation of 

labelled DNA using ethanol and EDTA using a modification of the BigDye® Cycle 

Sequencing Kit protocol.  Briefly, 5 �L of EDTA (125 mM) and 60 µL of 100% 

ethanol were added to 20 µL sequencing reactions in 0.2 mL PCR tubes (or 96 well 

plate).  The tubes / plate were sealed and inverted 4 times to ensure thorough mixing 

and incubated at room temperature for 15 minutes.  Reactions were centrifuged (RCF = 

3 000, 30 minutes) at 4°C in a pre-cooled bench-top centrifuge fitted with a swing out 

rotor.  The supernatant containing the dissolved dye terminators was decanted, 

removing as much supernatant as possible.  Ethanol (60 µL, 70%) was added and the 

reaction centrifuged (RCF = 1 650, 15 minutes).  The supernatant was removed and the 

pellet dried in the dark.  Once dry, the pellet was resuspended in 20 µL of Hi-dye 
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formamide and stored at -20°C until sequencing.  This method was preferable for 

higher throughput sequencing efforts. 

2.4.5.4 Automated sequencing and sequence analysis 

 Sequence detection and analysis was performed using an ABI 310 (or ABI 

3100) capillary sequencer and accompanying DNA Sequencing Analysis Software.  

Sequences were aligned using the Seqman (Lasergene) software package.  Plasmid and 

primer sequences (Figure 2.2) were removed and the remaining sequence manually 

checked for misreads.  The edited sequences were submitted to the HGMP BLAST 

interface using the prokaryote search option. Sequences were manually checked for 

ambiguous base calls, and where misreads occurred sequencing was repeated using the 

reverse complement to confirm base identity. 
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2.5 Microbiological methods for natural community analysis 

2.5.1 Bacterial enumeration 

2.5.1.1 Fixation 

 For each station and time-point triplicate 900 µL sub-samples were fixed with 

100 µL of 0.2 µm filtered 25% gluteraldehyde (2.5% final concentration).  Samples 

from the marine stations were stored at 4°C prior to analysis.  Estuarine samples were 

incubated at 4°C for 24 hours and stored at -20°C prior to analysis. 

2.5.1.2 Direct counts 

 Aliquots (5 mL) of filtered, autoclaved sample water (FASW) were placed in 

the filtration manifold and 1 mL fixed sub-samples added.  Staining of bacterial cells 

was performed by adding 0.6 ml 50 µg.mL-1 diamidino-2-phenyindole (DAPI) (5 

µg.mL-1 final concentration) and incubating for 7 minutes at room temperature.  Cells 

were then filtered under low vacuum onto 25 mm diameter, 0.2 µm pore size, black 

Nuclepore track-etched polycarbonate membranes and rinsed with 2-3 mL FASW. The 

membranes were air-dried and mounted onto microscope slides using non-fluorescing 

immersion oil.  Filters were stored in the dark until examination.  Slides were examined 

within one week.   

Observation was carried out under 1 250 × magnification (10 × ocular, 100 × 

objective) with an epifluorescence microscope (OLYMPUS BH-2) fitted with a UV 

(340-380 nm) excitation filter. Using an ocular grid the number of DAPI stained 

bacteria in 10-15 random fields were counted per slide (approximately 300 cells per 

slide in total).  Cell density per ml was calculated using the following formula: 

 

Bacteria.mL-1 = (Membrane conversion factor* × N) / D 

 

When N = average no. of bacteria per field and D = volume (mL) of sample filtered.  

*conversion factor = number of large quadrats per effective filter area = 56533.717 

i.e for 25 mm filters on 25 mm sartorius filter units with 100 × objective lens the large 

quadrat area is 82 µm × 82 µm (6724 µm2), and the effective filter area = 380 133 mm2   

(effective filter area = (	d2 ) / 4 when d = effective diameter.  The effective diameter for 

the filtration scenario described above is 22 mm).   



 
 

51 

2.5.1.3 Flow cytometer counts 

 Triplicate sub-samples (900 �L) were stained for 1 hour at room temperature 

using 10 µL 100 × SYBR Green I stain (Marie et al., 1997) (9 × 10-5 final dilution of 

commercial stock), 100 µL potassium citrate (24.5 mM final concentration) was added 

as per Zubkov et al. (2000). 

 Prior to sample counts Beckman-Coulter™ Flow-Set™ fluorosphere solution 

containing a known concentration (1.214 × 105.mL-1) of (singlet, doublet and triplet) 

3.6 µm polystyrene beads stained with a wide emission fluorochrome was run through 

three sample cycles on the flow cytometer.  The resulting counts for all sets of beads 

were used in the following formula to calculate flow rate: 

 
Total count =  (1 × singlet) + (2 × doublet) + (3 × triplet) 

Flow rate  = (Total count / 1.214 × 105.mL-1) × 1000) / number of minutes 

   analysed 

 
Cells were counted on the basis of SYBR Green fluorescence (measured at 530 +/- 15 

nm) forward and side scatter parameters on a Perkin Elmer FACSort flow cytometer.  

The original sub-sample was subject to dilution by both fixation and staining 

procedures and thus counts were corrected based on the calculation below: 

 
Fixed sample = 1000 µL original sample + 100 µL fixative ∴90.9% is original sample. 

The analysed sample = 900 µL fixed sample + 110 µL stain etc ∴89.1% is fixed 

sample thus 80.99% ((89.1/ 100) x 90.9) is original sample. 

2.5.2 Determination of bacterial protein synthesis (Smith and Azam 1992) 

 Four replicate 1.7 mL live and two 1.7 mL TCA (Trichloro-acetic acid) killed 

control sub-samples were spiked with 20 nM final concentration L-[4,5-3H]-Leucine 

(Amersham Pharmacia Biotech) and incubated at ambient water temperature in the dark 

for 1 hour.  Activity in the samples was terminated by addition of 89 µL 100% TCA 

(5% final concentration) and samples were stored at 4°C until extraction. 

 Protein extractions were carried out after 1 hour precipitation of TCA insoluble 

material at 20°C.  TCA insoluble material including protein was concentrated using 20 

minute centrifugation (RCF = 9 200) and the supernatant was discarded.  The pellet 

was resuspended in 500 µL of 5% TCA and the washing processes (i.e. centrifugation 

20 minute, RCF = 9 200, supernatant removal and re-suspension) was repeated.  The 
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remaining material was resuspended in 1 mL scintillation cocktail (Optiphase HiSafe 

III).  Radioactivity, in the form of counts per minute (CPM), incorporated into bacterial 

protein was counted at Plymouth Marine Laboratory by Dr. Joanna Dixon.  Counts 

were obtained using a Perkin-Elmer Winspectral 1414 advanced liquid scintillation 

counter system.   

Counting efficiency was determined using the external standards method: 

Efficiency  = ((sample and spike CPM) - sample CPM) / known spike DPMs 

   
Counts per minute were corrected to disintegrations per minute (DPMs): 

Total DPM  = Sample CPM / Efficiency 

Sample DPM  = Total DPM - control DPM 

 
DPMs were then converted into the rate of leucine incorporation into cellular protein. 

pmol uptake  =  (Sample DPM × (4.5×10-13)) / specific activity  

pmol. hr-1  = pmol uptake / incubation time (hr)  

pmol.hr-1.mL-1 = pmol.hr-1 / sample volume in mL 

pmol.hr-1.L-1    =  pmol.hr-1.mL-1 × 1000 

 
Leucine incorporation was converted into µgC.L-1.day-1 using a conservative estimate 

of 1 × 10-14 gC per cell and 1 × 1018 cells per mole of leucine incorporated: 

 
µgC.L-1.day-1  = pmol leu ×10-12 (pmoles/mole) ×24 (hours/day) × 2 (dilution factor) × 

1018 (cells per mole of leucine) ×10-14 (grams carbon per cell) × 109 (cells per mL∗∗∗∗) 

2.5.3 Bacterial diversity 

 Bacterial diversity was assessed using variation in the gene encoding the small 

sub-unit ribosomal RNA (16S rRNA).  Biomass was collected from a range of 

environments and incubated in polycarbonate bottles (Table 2.1).  Throughout the 

incubations sub-samples were filtered through 0.2 µm, 25 mm diameter Nuclepore 

polycarbonate filters and stored at -20°C prior to CTAB extractions (as per Section 

2.4.2.1).  Simultaneously 6 mL sub-samples were concentrated by centrifugation and 

stored in 100 µL MilliQ water at -20°C for freeze/thaw extractions (Section 2.6.1).  

Extracted DNA was amplified (Section 2.6.2) and the product subjected to DGGE 

(Section 2.6.3) and sequencing where appropriate.   

                                                 
∗ mL used in place of L to allow use of µg units for carbon. 
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2.6 Molecular methods for natural community analysis 

2.6.1 Collection of biomass and extraction of DNA from natural samples 

2.6.1.1 Collection of biomass from natural samples 

 Bacteria not strongly associated with temporarily suspended particles (TSP, i.e. 

those particles not in suspension after a 30 minute settling period) were sampled by two 

methods.  Firstly, TSP were allowed to settle out prior to removal of 250 mL of the 

remaining water which was then filtered under vacuum through a 0.2 µm pore size, 47 

mm diameter,  track-etched Nuclepore polycarbonate filter.  Secondly, 6 mL of sample 

water was centrifuged (Eppendorf microcentrifuge) (RCF = 16 000, 20 minutes).  The 

supernatant was removed and the pellet resuspended in 100 µL of MilliQ water.  Filters 

and concentrates were stored at -20°C until DNA extraction.  Bacteria incorporated into 

or attached to the surface of TSP were harvested following gravity induced settlement.  

A slurry of TSP and surrounding water was sampled to a final volume of 10 mL and 

filtered and stored as above. 

2.6.1.2 Extraction of DNA from natural samples 

 Bacterial cells were lysed in 500 µL Lysis buffer (2.4.1.1) and incubated for 30 

minutes at 55°C with gentle mixing at 10 minute intervals. The lysate was extracted 

with CTAB (Section 2.4.2.1) and extracted once with chloroform: isoamyl alcohol.  

The aqueous phase was precipitated with either 2.5 volumes of ethanol or 1 volume 

isopropanol as appropriate (see Section 2.4.2.3 and 2.4.2.4 and individual chapters for 

details).  The pellet was resuspended by addition of 25 µL MilliQ water and incubated 

overnight at 4°C.  Alternatively, bacterial cells concentrated by centrifugation were 

subjected to freeze-thaw extraction.  Cells were removed from storage and thawed at 

room temperature. Cell suspensions were then subjected to three cycles of -70°C for 2 

hours followed by 100°C for 5 minutes.  Presence of high molecular weight genomic 

DNA was established by agarose gel electrophoresis of samples with a � Hind III 

marker (Section 2.4.3.1). 

2.6.2 Primers used for amplification of bacterial DNA 

 A number of PCR primer pairs were utilised to amplify bacterial DNA extracted 

from natural samples.  The most commonly used primer pair was 341f (GC) and 907r.  
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The forward primer 341f is specific to bacterial 16S rDNA and has a GC-rich ‘clamp’ 

attached at the 5’ end for use in DGGE analysis (Muyzer 1993).  The reverse primer 

907r is a degenerate universal primer which corresponds to positions 907-926 of the 

Escherichia coli 16S rRNA gene.  These primers are designed to amplify a DNA 

fragment of 566 base pairs.  Nested PCR was used to obtain amplification product from 

challenging environments or low DNA content samples.  External primers for nested 

PCR (indicated by * Table 2.2) were designed to amplify a fragment of 1338 base 

pairs.  Internal amplifications were performed using 341f (GC) and 907r as described 

above.  DGGE bands were re-amplified prior to sequencing using stringent PCR 

parameters (57°C annealing temperature, 25 cycles) to increase specificity.  The 

internal primer pair for re-amplification of DGGE bands was designed to fall inside 

341f (GC) and 907r.  For sequencing primers compatible with the pGEM-T vector were 

used.  M13f and M13r are designed to target the cloning vector just outside the T7 

promoter region (Figure 2.2). Primer sequences are given in Table 2.2 (overleaf).  

Details of primer pairs and annealing temperatures are given in individual chapters. 

The presence of appropriately sized PCR product was established by agarose 

gel electrophoresis of samples using 100bp marker (Section 2.4.3.1) for approximate 

size determination.
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∗ External primer for nested PCR 
∗2 Post DGGE primers sequenced bands only 
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2.6.3 Denaturing gradient gel electrophoresis (DGGE) of amplified DNA 

2.6.3.1 Gel preparation and running conditions 

 Generally a gradient of 20-60% was used.  Briefly, solutions of 20% and 60% 

were made up as shown in Table 2.3 and 18 µL of TEMED and 120µL of APS added to 

polymerise the gels.  Gels were allowed to polymerise for a minimum of two hours and 

electrophoresis performed at 60 volts overnight (gel, solution and buffer preparation 

given in Section 2.4.3.2). 

 

Denaturant concentration 20%  (low) 60% (high) 

Volume of 0% stock 11.25 mL 3.75 mL 

Volume of 80% stock 3.75 mL 11.25 mL 

 

Table 2.3 Volumes utilised to prepare the denaturant concentrations at extremes of 

the denaturing gradient. Stock solution components are shown in Section 2.4.1.4 

 

After electrophoresis DGGE gels were stained using 1µL stock SYBR GOLD I 
(10,000×) in 10 mL TAE (1×) buffer. 
 

2.6.3.2 Staining and band excision 

The stain was spread evenly over the surface of the gel using a sterile pipette 

tip and incubated in the dark for 1 hour.  The gel was then rinsed with MilliQ water and 

transferred onto a dark-reader (Clare Chemical Research Inc. USA).  Gel images were 

documented using the GeneGenius gel documentation system (SynGene) both before 

and after band excision.   

Bands of interest were excised using Harris Unicore gel cutters. This gave a 

cylindrical cutting surface with an internal diameter of approximately 1.2 mm.  The gel 

plug was placed into a pre-labelled microfuge tube and overlaid with 20 µL of MilliQ 

water.  Plugs were incubated at 4°C overnight to elute the DNA by diffusion.  

Following elution the DNA solution was either stored at -20°C or subjected to PCR as 

described above (Section 2.6.2; primers 16S_nested1_f and 16S_nested1_r) prior to 

cloning and sequencing. 
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3 How do diversity, production and population dynamics 

of bacterioplankton from two contrasting marine 

environments (coastal and oceanic) change in response to 

manipulated zinc conditions? 

3.1 Introduction                                                                  

3.1.1 Trace metals in the marine environment  

 In biological systems, trace metals can be defined as those metals which occur 

as natural constituents of living organisms or tissues and may be required in minute 

quantities to support biochemical processes within the cell (Outten 2000).  In marine 

systems trace metals are generally present at concentrations below 1µmol.kg-1 (P. 

Statham Pers. Comm.). Zinc, and other trace metals, are present naturally in rocks, soils 

and sediments and are released gradually through natural processes such as weathering 

and erosion.  Marine sources of trace metals including zinc are summarised in Section 

1.2.1.  Although zinc is required in the cell for essential enzymes (including DNA 

polymerases) (Hase and Finkelstein, 1993; Panina et al., 2003) it can in certain states 

and concentrations be toxic and has been shown to bioaccumulate in the flesh of 

various filter feeding organisms (Lin and Hsieh, 1999; Ke and Wang, 2001).  Zinc 

toxicity is primarily a result of oxidative damage or the substitution of zinc for other 

essential metal cations (which prevents the normal function of enzymes) and thus 

consumption of contaminated shellfish may have implications for human health (e.g. 

Nriagu and Pacyna, 1988; Kasprzak, 1995).  This in turn has implications for the 

viability of oyster fisheries in waters receiving trace metal contaminated industrial 

effluent (e.g. Lin and Hsieh, 1999) 

 Anthropogenic activities have increased metal release into the environment 

since the industrial revolution (Ayres, 1992).  The threat of metal pollution to aquatic 

ecosystems (and human health) due to greater volumes of biological waste and 

industrial activity is now widely recognised (Nriagu and Pacyna, 1988).  As a result, 

government legislation regarding inputs to aquatic systems have been introduced e.g. 

EU Directive on Integrated Pollution Prevention and Control, 1996 (IPCC), Urban 

Wastewater Treatment Directive, 1994, and more recently the Water Policy Framework 

Directive, 1997.  Such legislation has resulted in reduced contamination of UK 
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waterways via reduction of pesticide, fertiliser and sewerage inputs (EA report, 2002).  

The requirement for reduced levels of contamination from industrial sources has also 

directed the development of bioremediation techniques, the majority of which rely on 

the ability of bacteria to utilise a wide range of substrates, including metals, in their 

metabolic processes (Lovley, 1995; Lovley and Coates, 1997; Malik, 2004).  This 

ability also confers a certain level of metal tolerance, the mechanisms of which are well 

documented in a small number of organisms (Nies, 1999). Metal tolerance is most often 

apparent in bacteria from seriously contaminated environments such as acid mine 

drainage (e.g. Bhagat et al., 2004) whereas the ability of coastal and oceanic bacteria to 

tolerate large inputs of zinc is largely undetermined.  It is crucial to understand the 

affects of zinc and other metal influx on bacterial communities to enable accurate 

estimates of the implications of such contamination on cycling of essential elements 

such as carbon and nitrogen.  

3.1.2 Bacterial Diversity 

 Bacteria are an essential part of many (marine) biogeochemical cycles (see 

Section 1.1.1.1 and references therein) and as such their diversity can have implications 

for the magnitude and rates of processes in such cycles (e.g Taroncher-Oldenburg et al., 

2003).  It has been shown that perturbations can affect the diversity of a bacterial 

community (Øvreas et al., 1998; Beaulieu et al., 2000; Hemida et al., 1997; Baath et 

al., 1998; Kelly 1999; Stephen et al., 1999; Sandaa et al., 2001) and observation of 

reductions in bacterial diversity under increased contaminant conditions support the use 

of bacterial diversity as an indicator of ecosystem ‘health’ (Ford 2000). Historically the 

assessment of bacterial diversity has been fraught with difficulty, largely due to the 

morphological simplicity of bacteria despite very different roles of different phylotypes 

in their environment. More recently, the widespread use of molecular techniques has 

alleviated some of the constraints on microbial ecology (Section 1.1.3) and allowed 

scientists to establish and monitor changes in genetic diversity (Ward et al., 1990) and 

place previously indistinguishable bacteria accurately into phylogenetic trees (Woese et 

al., 1990; Ludwig et al., 1998; Rossello-Mora and Amann, 2001; Rappe and 

Giovannoni, 2003).  

 Molecular phylogenetic approaches have been shown to consistently detect 

different microbial phylotypes in many environments, and have facilitated the 

discovery of many novel, as yet uncultured, bacteria (Ward et al., 1990; Giovannoni et 
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al., 1990; Suzuki et al., 2001; Nedashkovskaya et al., 2003; Macian et al., 2005).  

Limitations of such approaches are well documented (Section 1.1.2.2), but despite these 

limitations they remain the best tools available to bacterial ecologists for rapid 

assessment of bacterial diversity and can be applied in a wide range of environments 

(Giovannoni et al., 1990; Fuhrman et al., 1993; Murray et al., 1996; Øvreas et al., 

1997; Wise et al., 1997; Zimmermann 1997; Øvreas et al., 1998; Rath et al., 1998; 

Konopka et al., 1999; Zhongtang and Mohn 2001) A particularly powerful tool applied 

to microbial ecology is Denaturing Gradient Gel Electrophoresis (DGGE) (Santegoeds 

et al., 1996; Teske et al., 1996; Øvreas et al., 1997; Wise et al., 1997; Fandino et al.,  

2001; Zhongtang and Mohn 2001). DGGE allows microbial ecologists to consistently 

separate strands of amplified DNA at the level of single nucleotide changes on an 

acrylamide gel (Sheffield et al., 1989) and by doing so determine the minimum number 

of different phylotypes present in any given sample.  This enables bacterial community 

structure to be tracked over both spatial and temporal scales (Muyzer et al., 1993).  The 

use of cell specific measurements such as leucine incorporation (Section 2.5.2) in 

concert with molecular techniques gives a clearer picture of how a bacterial community 

is behaving in terms of dominant bacterial phylotypes and the effect of variability in 

community composition on productivity. 

 The aim of the study described here was to determine the effects of the addition 

of typical estuarine (100 nM) and elevated (1 µM) concentrations of zinc on marine 

bacterial diversity, abundance and production.  The zinc concentrations (100 nM and 1 

µM) represent an increase of one and two orders of magnitude respectively when 

referenced against zinc concentration measured in the English Channel (Tappin et al., 

1993).  The relative increase is nearer two to three orders of magnitude c.f. the Western 

North Atlantic (Bruland and Franks, 1983).  This was achieved by sampling naturally 

occurring bacterial consortia from two contrasting marine environments (Section 2.2) 

which were incubated with the elevated zinc concentrations described above (100 nM 

and 1 µM).  Response of the bacterial community to zinc enrichment was assessed by 

following temporal changes in bacterial abundance, bacterial production, and variation 

in the distribution of dominant bacterial phylogenies within the samples.   
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3.2 Methods 

3.2.1 Sampling regime 

 
Figure 3.1 Map of sample sites showing depth contours at 100 m, 200 m, 500 m 

and 500 m intervals to 2500 m.  Position of Stations M1 (50 m) and M2 (30 m) are 

shown by red circles.  Parentheses indicate depth at which the water body was sampled. 

  

Water samples were collected during R.R.S Discovery cruise D261.  The cruise 

took place in the English Channel and Celtic Sea region and was conducted between 

the 1st and 14th of April 2002.  Two contrasting water bodies were sampled: Station M1, 

a shallow, coastal site, 16km south of Plymouth sampled on the 2nd of April and Station 

M2 an off-shelf, deep water site (Figure 3.1), approximately 300 km from land sampled 

on the 4th of April.  When on station, CTD profiles were used to establish the degree 

and depth of stratification.  Chlorophyll fluorescence was used to determine the depth 

of the chlorophyll maximum.  Water collection was performed using externally closing 

Niskin bottles (10 L) on Kevlar hydroline.  Both stations were sampled in the surface 

waters, Station M1 at 50 m and Station M2 at 30 m.  Following deployment, the Niskin 

bottles were transferred to a trace metal clean containerised laboratory for 

manipulation.  Incubations were initiated immediately after sampling with all 

manipulations performed using trace metal clean laboratory techniques.   
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3.2.2 Sample manipulation 

 Sterile 2 L pre-acid washed polycarbonate bottles were filled directly from the 

Niskin bottle taps and maintained at ambient sea temperature (10.7 and 12.1 ± 0.5oC 

Station M1 and M2 respectively) in Thermotote portable incubators prior to the 

addition of dissolved zinc.  For each sample one bottle was enriched with 1 µmol.L-1 

Zn2+, a second bottle with 100 nmol.L-1 Zn2+ and a third was untreated as a control.  

Zinc was added in the 2+ form dissolved in nitric acid (Spectrosol standard 1000 mg.L-

1).  The pH was monitored prior to and following zinc additions and adjusted back to 

ambient levels, where necessary, with 0.1 M sodium hydroxide (AristaR).  The bottles 

were incubated with stirring at ambient sea temperature (Table 2.1) in the dark.  Sub-

samples were taken immediately (T0) and treated as follows for bacterial enumeration, 

production and diversity.  Further sub-samples were taken over a period of 41 days 

(Table 2.1). 

 Samples for bacterial enumerations were fixed with 2.5% (final concentration) 

0.2 �m filtered glutaraldehyde and stored at 4°C until counting.  Samples were stained 

with 1 x SYBR Green I DNA stain in potassium citrate (Marie, 1997; Zubkov, 2001) 

and counted on the basis of SYBR Green fluorescence and forward and side scatter 

parameters on a Perkin Elmer FACSort flow cytometer (section 2.5.1).    

Bacterial productivity was assessed using the rate of 3H-leucine incorporation 

into bacterial protein.  Incorporation rate was determined following the method of 

Smith and Azam (1992) with 20 nM tritiated leucine as substrate and 1 hour incubation 

at ambient temperature (Section 2.5.2). 

 Cell harvesting for molecular analyses was performed on 100 mL aliquots by 

filtration through 47 mm diameter, 0.2 µm pore size Nuclepore polycarbonate filters. 

DNA was extracted (Section 2.6.1.2) and precipitated from the aqueous phase using 

isopropanol (Section 2.4.2.4).  DNA was resuspended in 25 µL of sterile ultrapure 

water (MilliQ) and stored at -20°C.  PCR was performed on resuspended DNA 

template using the primers 341f (GC) and 907r (see Table 2.3 for sequence, reference 

and target regions) and an annealing temperature of 57°C.  Presence and estimated size 

of PCR product was confirmed by 1% agarose gel electrophoresis (Section 2.4.3).  PCR 

products were subjected to DGGE (Section 2.4.3.2) with a gel gradient of 20-60% at 60 

V for 18-20 hours and stained with SYBR Gold II (Section 2.6.3).   
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3.2.3 Statistical analyses 

 The Students T-Test was used to determine the significance of variations in 

bacterial production and numbers between incubation conditions.  One dimensional (1-

D) gel analysis using the Genetool software package, was performed.  Briefly, 

background correction was performed using a rolling disc and the number and position 

of individual bands / operational taxonomic units (OTUs) in sample fingerprints were 

determined. Multi-dimensional scaling was performed using this data to determine the 

similarity between samples from different time points and incubation conditions.  
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3.3 Results 

3.3.1 Station Characteristics 

3.3.1.1 Physico-chemical characteristics  

 The two stations were strikingly different in terms of physical and chemical 

characteristics.  Station M1 was coastal, shallow and occasionally influenced by 

terrestrial run-off whereas Station M2 was deep, off the continental shelf and beyond 

influence from land (Figure 3.2).  Both stations were mixed throughout the upper water 

column and showed little sign of stratification (Figure 3.3). Temperature at the stations 

varied from 10.7°C at Station M1 to 12.1°C at Station M2 (Figure 3.3). Nutrient data 

showed winter characteristics at Station M1 (figure 3.4) and slight depletion in nitrate 

and silicate consistent with pre-bloom conditions were detected at station M2.   

 
Figure 3.2 Remotely sensed enhanced true colour image showing position of 

sampling sites.  Water leaving radiance at 555, 510, and 443 nm are displayed as the 

red, green and blue components of the image. Water leaving radiance was detected by 

the NASA Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite in November 

2003 (Peter Miller pers. comm.).  Areas coloured black are where measurement was 

prevented by cloud cover or land (outlined in white), blue indicates areas of low 

turbidity, brown/green shows areas of high turbidity.  Image provided by the Remote 

Sensing Group at Plymouth Marine Laboratory. 
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Figure 3.3 Temperature, salinity and chlorophyll a CTD profiles for stations M1 

and M2.  Chlorophyll a data obtained using the in-situ fluorometer chlorophyll method 

(BODC calibration number 2205 applied).   
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Figure 3.4  Profiles of nutrient concentration throughout the photic zone at stations 

M1 (coastal) and M2 (off-shelf).  Station M1 shows typical winter characteristics. 

Depleted nitrite and silicate indicate pre-bloom conditions at Station M2. 

 

Blondeau-Patissierre et al. (2004) measured chromophoric dissolved organic 

matter (CDOM) levels in samples taken on the same research cruise (D261).  They 

found approximately twice the operational units of CDOM at Station M1 (1A in 
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reference: 0.103 m-1) compared with station M2 (Station 620 in reference: 0.048 m-1).  

Station M2 is typically influenced by CDOM from phytoplankton degradation products 

(fulvic acid – SCDOM slope 0.014 m-1 nm-1) whereas Station M1 is likely to contain 

CDOM from both humic and fulvic acid origin (SCDOM slope 0.017 m-1nm-1) (Pers. 

Comm. G.Tilstone, PML).  In addition Station M1 showed significantly higher SPM 

levels than Station M2 although these levels were below 5 µg/L (Pers. Comm. G. 

Tilstone and V. Martinez, PML).   

3.3.1.2 Biological characteristics  

  The contrasting nature of these stations, in terms of physicochemical 

parameters, was also reflected by variation in phytoplankton standing stocks (as 

indicated by chlorophyll a concentration).  Chlorophyll a concentration was 

significantly different between the two stations (T-Test, P value = 8.18 ×10-10).  In 

addition pigment analysis (Figure 3.5) suggested that different phytoplankton classes 

dominated each station (Pers. Comm. Denise Cummings, PML).  At Station M1 

fucoxanthin (Fuc) made up a large proportion of the pigment present, indicating the 

dominant algal class to be the diatoms.  At Station M2 hexanoyloxyxanthin (Hex) and 

chlorophyll b (Chl b) dominated indicating the presence of a large proportion of 

prymnesiophytes (Hex) and green algae (Chl b) in the algal community at this station.  

 

 
Figure 3.5 Dominant pigments detected at the sample depth from each station. 

Table A.2 (Appendix A) shows the marker pigments for the ten main algal classes.   

 

 Bacterial and primary production (Figure 3.6) show distinctly different 

distributions at each station.  Station M1 showed maximum bacterial and primary 
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production in the upper water column (5 m) with rates decreasing rapidly with depth.  

In contrast station M2 showed high bacterial production in the surface 10 m with a 

second peak at 30 m (Figure 3.6).  Primary production at Station M2 showed greatest 

production at 15 m and was notably higher than Station M1 at comparable depths in the 

water column.   

 
 

Figure 3.6 Variation in bacterial and primary production rates in the photic layers 

of stations M1 (coastal) and M2 (off-shelf).  Bacterial production was determined using 

the leucine incorporation method and primary production determined using the standard 

JGOFS protocol (Susana Barquero-Molina, PML) 
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3.3.2 The effect of zinc addition on bacterial production 

3.3.2.1 Station M1 

  Examination of the incubation time series data (Figure 3.7) showed different 

degrees and rates of effect depending on the concentration of zinc added.  In the early 

stages of incubation (0 – 7 days), all samples followed a similar trend in bacterial 

production i.e. an initial increase followed by a decrease.  Comparison of 

bacterioplankton production at each time point showed that the bacterial responses to 

the different concentrations of zinc were significantly different except for during the 

first 24 hours and at day 7 (Students T-test values p�0.05).  Throughout the majority 

(except T0 and Tend) of the incubation period production in the 100 nM Zn2+ condition 

was not significantly different to that observed in the control samples.  It was only in 

the final stages of incubation that any significant effect on bacterial production was 

observed with the addition of 100nM Zn2+.  Enhanced rates of leucine incorporation 

were observed between days 20 and 40 in the 1 µM Zn2+ incubation when compared to 

the control (Students T-Test, p�0.05).  
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Figure 3.7  Production rates over time for bacterioplankton from Station M1 

(coastal) incubations with and without additional Zn2+. Error bars show standard 

deviation between replicates. 
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 Integration of bacterial production (Figure 3.8) over the duration of the 

incubation showed that the addition of zinc resulted in an increase in bacterial 

production in both of the amended conditions.  However this increase was only 

statistically significant in the 1µM Zn2+ condition (p
 0.05). 

 

 
Figure 3.8  Bacterial production for samples from Station M1 (coastal) integrated 

over the duration of the incubation.  Integrated values show the total amount of carbon 

fixed by bacteria over the duration of the incubation (42 days). Error bars show 

standard deviation. 

3.3.2.2 Station M2 

 At station M2 the temporal trend of bacterial production observed in the 

enriched conditions differed from that observed in the control (Figure 3.9).  In the 

control condition production increased until day 20.  Following a subsequent decrease 

(similar to that observed at Station 1) a second, smaller increase was observed. With the 

addition of zinc however, an initial increase and subsequent plateau was observed. 

During the first week of incubation no significant difference was observed between the 

experimental conditions.  By day 20 bacterial production in the control condition was 

significantly higher than in the zinc enriched conditions (Students T-test, P
0.05).  

However, the high level of production observed at day 20 in the control was 

unsustainable and a rapid decrease was observed by day 27.  Day 27 is the only 
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occasion when both enriched conditions were significantly more productive than the 

control (P
0.05). 
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Figure 3.9   Production rates over time for bacterioplankton from Station M2 

incubated with and without additional Zn2+.  Error bars show standard deviation 

between replicates.  Key shows concentrations of zinc added. 

 

  
 

Figure 3.10  Bacterial production for samples from Station M2 (coastal) integrated 

over the duration of the incubation.  Integrated values show the total amount of carbon 

fixed by bacteria over the duration of the incubation. Error bars show standard 

deviation. 
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The low bacterial production observed in the 100nM zinc enriched condition 

throughout the incubation was reflected by lower integrated (total) values of production 

than observed in the control (Figure 3.10).  Conversely the total production in the 1µM 

zinc enriched condition was not significantly different to the control. 

3.3.3 The effect of zinc on bacterial numbers 

3.3.3.1 Station M1 

 Bacterioplankton in all experimental conditions from Station M1 followed the 

same general trend i.e. an initial increase in abundance in the first 5 days, followed by a 

sharp decrease and subsequent plateau (Figure 3.11).   In the control condition 

abundance decreased further until day 27 at which time abundance slightly exceeded 

that originally observed.  In the zinc amended conditions the decrease in abundance 

levelled slightly earlier (day 20) and in the 100 nM Zn2+ condition remained elevated 

when compared to the control for the remainder of the incubation.  In the 1µM Zn2+ 

condition bacterial numbers were consistently lower than the control and 100 nM Zn2+ 

condition throughout the incubation.  Conversely in the 100 nM Zn 2+ condition 

bacterial numbers were enhanced relative to the control from day 27 onwards.   
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Figure 3.11  Variation in bacterioplankton abundance in samples from Station M1 

over the duration of the incubation.  Error bars show standard deviation between 

replicates. 
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Figure 3.12 Bacterial numbers in samples from Station M1 integrated over the 

duration of the incubation.  Error bars show standard deviation 

 Integration of bacterial numbers over the duration of the experiment confirmed 

that the addition of 1µM zinc resulted in overall suppression of bacterial numbers 

(Figure 3.12).  In addition, despite elevated bacterial numbers c.f. control towards the 

end of the incubation period in the 100 nM Zn2+ condition, integration showed that the 

difference between overall numbers in the control and 100nM Zn2+ conditions was 

insignificant. 

3.3.3.2 Station M2 

 The pattern observed in bacterial numbers at Station M2 was similar to Station 

M1 in that an increase in bacterial abundance was observed in the first seven days of 

incubation.  The observed increase was followed by a decrease in numbers and 

subsequent plateau in the control and 1 µM Zn2+ condition. However, in the 100 nM 

Zn2+ condition bacterial numbers reached a plateau immediately following the increase 

and the numbers were maintained for the duration of the experiment (Figure 3.13).  

Bacterial numbers in the 1µM Zn2+ condition were suppressed throughout the 

incubation but again showed a similar temporal trend to the control. 
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Figure 3.13  Variation in bacterioplankton abundance in samples from Station M2 

over the duration of the incubation.  Error bars show standard deviation between 

replicates. 
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Figure 3.14 Bacterial numbers in samples from Station M2 integrated over the 

duration of the incubation.  Error bars show standard deviation. 
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Integration of bacterial numbers over the duration of the experiment again confirmed 

that the addition of 1µM zinc resulted in overall suppression of bacterial numbers 

(Figure 3.14).  In addition, consistent with the observation of elevated bacterial 

numbers c.f. control towards the end of the incubation period in the 100 nM Zn2+ 

condition, integration confirmed that the overall numbers in the 100nM Zn2+ conditions 

were higher than those in the control. 

3.3.4 The effect of zinc on bacterial diversity 

 Fingerprints (DGGE) of samples from stations M1 and M2 (Figure 3.15 and 

3.16 respectively) were analysed and presence and absence of bands migrating to a 

similar depth determined for each sample at each station.  This data was used to create a 

similarity matrix and also to calculate the total number of bands per sample. 

3.3.4.1 Number of phylotypes 

   Trends observed in phylogenetic richness at Station M1 (Figure 3.15) were 

different in both the 100nM and 1µM Zn conditions when compared to the control.  

The number of dominant phylotypes was similar in all conditions for the first five days 

of the incubation.  The total number of phylotypes was generally higher in the Zn2+ 

enrichments in the first 20 days with the exception of a decreased number of phylotypes 

present at day 0 in the 1 µM Zn2+ condition (Figure 3.15), although the difference is 

negligible (1 band).  At day 27 this pattern changed and the number of phylotypes 

present in the control increased and remained higher than the Zn2+ enriched conditions 

for the remainder of the experiment.  By the end of the incubation (41 days) 

phylogenetic richness in all conditions had increased to levels greater than those 

observed at the beginning of the incubation except for the 100 nM Zn2+ condition.   

At Station M2 DGGE analyses showed that after the first 24 hours the number 

of dominant bacterial phylotypes in the 100 nM Zn2+ condition was consistently equal 

to or greater than the control with the exception of the final time point (Figure 3.16).  

Phylogentic richness in the 1 µM Zn2+ condition was more variable in the later stages of 

the incubation (day 27 onwards) but lower than that observed in the other conditions. 
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Figure 3.15 Number of dominant DGGE bands observed over the duration of the 

experiment in samples from Station M1.  Upper image shows the DGGE gel, lower 

image shows graphical representation of the number of bands in each fingerprint.  
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Figure 3.16 Number of dominant DGGE bands observed over the duration of the 

experiment in samples from Station M2.  Upper image shows the DGGE gel, lower 

image shows graphical representation of the number of bands in each fingerprint.  
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3.3.4.2 Distribution of bands 

 Investigation of the presence of major bands in the control and enriched 

conditions at any time during the incubation showed that at Station M1 the majority of 

bands were distributed between the control and 1 µM zinc conditions. None of the 

dominant bands were present solely in the 100 nM zinc condition (Figure 3.17A).   

However at Station M2 the bands were distributed more evenly between the conditions 

with the appearance of 4 bands specific to 100 nM Zn2+.  In addition there were fewer 

bands present in the 1 µM Zn2+ conditions (Figure 3.17B) at Station M2 than observed 

at Station M1. 

3.3.4.3 Similarity of communities in each condition 

 Multi-dimensional scaling (MDS, PrimerE statistical package) indicated that the 

community at Station M1 had changed over the time course of the experiment, and that 

the communities from the different conditions overlapped (Figure 3.18).  Furthermore, 

similarity matrices indicated that time may have been a more important factor than 

metal addition.  The community present at the end of the incubation with 100nM Zn 

was more like the T0 control samples than the Tend control.  Samples from Station M2 

clustered more firmly within the experimental conditions indicating that the treatment 

was the more important factor (Figure 3.18) controlling community dynamics 

throughout the incubation.  
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Figure 3.17 The number of dominant DGGE bands observed in each incubation 

condition, stations M1 and M2.  Overlaps indicate presence of bands in multiple 

conditions. 
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Figure 3.18 Ordination plots (MDS) showing the similarity between banding 

patterns of DNA fragments retrieved from A) Station M1 and B) Station M2. 
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3.4 Discussion 

The response of marine bacterioplankton communities to elevated zinc 

concentration has been investigated in a coastal and an oceanic environment.  The 

influence of zinc concentration, initial bacterial community composition and 

physicochemical conditions on bacterial response to zinc enrichment is discussed.   

3.4.1 Direct effects 

3.4.1.1 Zinc tolerant bacteria 

Bacterial assemblage structure may change in the presence of elevated 

concentrations of zinc, both as a result of the presence of zinc tolerant phylotypes and 

the degree of zinc tolerance (or not) displayed by the remainder of the community.  The 

different zinc tolerances observed at the two sites correspond with different bacterial 

abundance.  One example of this is the different response of bacterioplankton to the 100 

nM Zn enrichment; at Station M1 numbers are similar to the control in the 100 nM Zn 

condition until day 27 (Figure 3.11).  In addition no phylotypes were unique to this 

condition (Figure 3.17A). In samples from Station M2 however, phylotypes specific to 

the 100 nM Zn2+ condition were observed (Figure 3.17B) combined with increased 

numbers c.f. control (Figures 3.13 and 3.14).  At Station M1 the addition of 1 µM Zn2+ 

resulted in a comparatively large number of phylotypes (13 c.f. 4 at Station M2, Figure 

3.17).  The increase in phylotypes was accompanied by a decrease in bacterial numbers 

(Figure 3.11 and 3.12).  Conversely, it also corresponded with increased leucine 

incorporation (Figure 3.9) throughout much of the incubation.  This may indicate that 

the addition of 1 µM Zn2+ resulted in the death of less zinc tolerant bacteria which may 

previously have dominated the bacterial community.  This would provide extra 

substrate and alleviate competitive inhibition of more tolerant bacteria thus explaining 

both the increase in diversity and productivity. At Station M2 there was a greater 

degree of overlap in conditions in which different phylotypes were detected (Figure 

3.17B).  In addition, fewer phylotypes were detected in the 1 µM Zn condition, possibly 

indicating that phylotypes detected at this station were generally less tolerant to zinc. 

Leucine incorporation data indicates that whilst bacteria are present and 

incorporating leucine into cellular protein in the 1µM Zn2+ condition at Station M2 

(Figure 3.9) those in the control were able to incorporate substantially more i.e. were 

more productive.  This suggests that energy which would otherwise be used for creation 
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of cellular biomass may be required to support the zinc tolerance mechanisms of these 

bacteria under zinc stress.  The patterns observed in leucine incorporation also suggest 

that in metal amended samples a period of incubation is required before a changed 

incorporation rate is observed, this hypothesis being supported by the gradual nature of 

the change in bacterial community observed by DGGE.  DGGE images also indicate 

that the rate of community change is greater in the 1 µM Zn condition at both sites i.e. 

selection for certain bacteria occurs more rapidly (Figures 3.15 and 3.16).   

However, it is generally in the second half of the incubation that increased 

leucine incorporation or indeed numbers are observed.  This indicates a lag period, or 

perhaps acclimation period, after which the bacteria are able to tolerate and function 

under elevated Zn conditions.  This theory is supported by work carried out by Bender 

et al. (1994) who showed that microbial mats incubated with elevated zinc were able to 

remain active in the presence of greater concentrations of metals than those without an 

equivalent acclimation period.  So, whilst putatively metal tolerant phylotypes 

emerging here may always have been present, it is only due to the prolonged incubation 

that they have been able to become dominant members of the bacterioplankton 

community. 

  It is also possible that the background concentrations of zinc, i.e. pre-

enrichment levels, affect the ability of bacterial consortia to tolerate elevated zinc.  The 

concentrations of zinc previously encountered would be very different in the two 

environments sampled and this may explain the different tolerance regimes observed at 

the two sites. Coastal bacteria, particularly from a site such as Station M1, influenced 

sporadically by terrestrial run-off, would have been previously exposed to zinc levels 

approaching those observed in estuarine environments, whilst a degree of dilution 

would be expected these bacteria would certainly experience elevated zinc 

concentrations compared to those encountered by truly marine bacteria.  Coastal zinc 

concentrations of 7.6nM have been detected in the English Channel (Tappin et al., 

1993) whereas truly marine concentrations are more likely to be an order of magnitude 

lower than coastal values (Bruland and Franks, 1981). Previous work has shown that 

pre-exposure to metals can influence bacterial tolerance levels (Lehman et al., 1999; 

Diaz-Ravina and Baath 2001).  Lehman et al. (1999) indicated that ‘pollution adapted’  

bacterial consortia emerged when incubated with zinc above a threshold concentration 

of 1µM. This supports the designation of phylotypes present in the 1 µM zinc condition 

alone as zinc tolerant, it also implies that the 100 nM Zn concentration may have been 
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too low to elicit a response as was observed at Station M1 (Figures 3.7 and 3.11).  

Bacterioplankton from a truly marine site would be influenced more greatly by 

atmospheric deposition and more dilute concentrations of metals depending on currents 

and prevalent wind direction, this lack of ‘pre-conditioning’  may help to explain the 

distribution of phylotypes between conditions observed at Station M2 (Figure 3.17).  It 

is possible that the bacterial consortia have evolved different coping strategies as a 

result of low environmental zinc concentrations and as such are less able to tolerate 

concentrations which are comparatively extreme.  Analysis of DGGE gels indicates that 

different coping strategies are employed in the two environments.  Oceanic bacterial 

communities are thought to be able, under zinc limiting conditions, to concentrate 

required zinc within the cell.  It is possible that a similar strategy may be utilised in 

times of zinc stress to control the toxicity of zinc to the cell by removed damaging 

cations from the cytoplasm and exporting them from the cell (Nies, 1999). 

3.4.1.2 Carbon source and enzymatic digestion 

 The availability of carbon sources may be critical in determining how a 

bacterial community responds to zinc amendment.  For example humic material, which 

was highest at Station M1, is less available than freshly excreted phytoplankton derived 

carbon, which is the major source of DOC in oceanic regions such as Station M2 

(Grossart and Ploug, 2000; Cherrier and Bauer 2004).  Humic substances may affect the 

response to elevated zinc in a number of ways.  They may complex with the zinc ions 

added in the experiment and make them less biologically available (Koukal et al., 

2003).  Alternatively humic substances may be a source of organic material which can 

be utilised for growth.  The complex nature of the majority of humic molecules means 

they are highly refractory and thus not readily metabolised.  It is usually assumed that 

the humic molecules have structures which are not accessible to degrading enzymes.  

However it is possible that, in metal-limited conditions, essential enzymes capable of at 

least partially digesting humic molecules may be inactive due to lack of essential metal 

co-factors.  If zinc was limiting in these conditions the addition of zinc may result in 

greater microbial enzymatic activity and a greater proportion of such molecules may be 

metabolised.  

 Zinc is known to be an essential trace element (Madigan et al., 2003) and can be 

taken into the cell passively or via active uptake mechanisms (Nies, 1999).  It is 

probable that elevated zinc concentrations would increase the rate and amount of 
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passive uptake.  This would reduce the energy expended in producing zinc binding 

proteins thus making the formation of enzymes less energetically expensive.  This 

theory is supported by the different rates of leucine incorporation in response to zinc 

enrichment observed at the two sites.  It should also be noted that primary production 

was notably higher at Station M2, this would result in a greater pool of labile organic 

carbon, again reducing the requirement of the bacteria at this site for the production of 

energetically expensive enzymes, and thus their requirement for zinc. 

 Whilst carbon availability satisfactorily accounts for the increased production at 

Station M1 in the 1 µM Zn condition it does not explain why no such dramatic increase 

was noted in the 100 nM Zn condition.  However, in conjunction with the possibility of 

humic material acting as ligands it is plausible that it is only in the presence of higher 

concentrations of zinc that it becomes available for potentially zinc limited bacteria. 

3.4.2 Indirect effects 

3.4.2.1 Reduced grazing 

 The effect of added zinc on the bacterial community may not be direct.  

Variations in both bacterial numbers and leucine incorporation may be influenced by 

the effect of zinc on bactivorous grazers.  In fresh-water systems, Daphnia species have 

been shown to graze less when exposed to elevated zinc (Allen et al., 1995).  It is 

reasonable to assume that a similar effect may be observed with marine 

microzooplankton.  Reduced grazing could account for the constant bacterial numbers 

observed in the 100 nM Zn condition at both stations.  The control samples show 

typical bacterial growth curves followed by a decrease in bacterial numbers commonly 

associated with ‘predator-prey’  interactions.  The constant bacterial numbers could be 

achieved by one of two mechanisms.  The first could be the achievement of a steady 

state between growth and mortality (possibly due to increased growth as a result of zinc 

tolerance or alleviation of zinc limitation) and the second the possible inhibition of 

bactivorous grazers.  The latter mechanism is supported by the relative numbers of 

bacteria remaining in the 100nM zinc treated conditions at both stations.  The depleted 

number of bacteria observed in the 1 µM Zn conditions suggests that if grazing pressure 

was being reduced it would have to be coupled with reduced bacterial growth to explain 

the substantial reduction in bacterial numbers c.f. control.  It may be that the 100 nM 

concentration of Zn had little or no negative affect on bacteria but had a deleterious 
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effect on the grazing community and that 1 µM Zn had a negative effect on both the 

grazers and their prey.    

3.4.2.2 Phytoplankton viability 

 A second indirect effect may be that high concentrations of zinc affect 

phytoplankton viability.  This may lead to release of labile carbon and nutrients either 

as a result of cell damage (or increased growth in photic conditions).  Sunda and 

Huntsman (1992) showed that some phytoplankton species are tolerant of elevated zinc 

concentrations.  A further factor influencing phytoplankton viability may be the 

incubation strategy.  As described previously the incubations were carried out in the 

dark.  It is possible that this played a more important role in this scenario than zinc 

tolerance.  Different phytoplankton genera have different dark survival strategies. 

Diatoms were dominant at Station M1 as evidenced by a combination of microscopy 

and pigment analysis (C. Widdecombe pers. comm.).  A study carried out using Diatom 

species from the North Sea showed that they had the ability to ‘survive’  without spore 

formation for up to 10 months and more than 80% of individuals remained active for as 

long as two months under similar incubation conditions (Peters, 1996; Murphy and 

Cowles, 1997).  The observed differences in phytoplankton community may therefore 

affect the bacterial community response via either zinc tolerance or dark tolerance or a 

combination of the two i.e. whilst the phytoplankton may not be actively 

photosynthesising only those susceptible to zinc toxicity would senesce and leak 

nutrients into the surrounding media. 

3.4.2.3 Incubation effects 

 In any incubation experiment such as this it is important to note that 

confinement within a small volume can affect the dynamics both between and within 

trophic levels.  One example of this is the introduction of a surface, this can result in the 

formation of bacterial biofilms, this may be particularly important in the study of 

effects of trace metals.  Biofilms are often associated with large quantities of 

exopolysaccharides, which can act as ligands and thus reduce toxic effects of metals.  

This would result in an increased difference in the response to the zinc concentrations 

investigated here.  Thus the effects here should be considered minimal response to zinc 

enrichment.  A second incubation consideration is the influence of stirring on grazing 

pressure.  Grazing has been shown to be reduced in turbulent environments (Peters et 
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al. 2002; Malits et al.2004), which could account for some of the effects previously 

attributed to metal toxicity to grazing organisms.  However, if this was the controlling 

factor the same response would be observed in both the 1 µM Zn2+ and Control 

conditions.  This discrepancy suggests that the effects of Zinc addition play a more 

important role in controlling bacterial community dynamics than the incubation 

conditions.  Stirring may also increase availability of nutrients (Malits et al. 2004; 

Delaney 2003), this may alter the dynamics between bacteria which are able to survive 

at low nutrient concentrations and those which rely on a feast or famine approach to 

nutrition.  However, because comparisons discussed here are between conditions 

incubated in the same manner, conclusions drawn still show merit and improve the 

current knowledge of effects of zinc on bacterial communities in marine environments.  

The effect of incubation technique is explored in more detail in Chapter 4 by comparing 

variation in bacterial production and abundance over time with different incubation 

strategies.  

 

3.5 Conclusions 

 The results presented here suggest that pre-exposure environmental conditions, 

including zinc concentration and the concentration and type of organic matter present, 

had a strong influence on the response of the bacterial community to zinc enrichment.  

It was also apparent that the spectrum of response varied depending on the initial 

composition of the bacterial community exposed to elevated zinc concentrations.  

Bacterial communities from the coastal environment (M1) were either tolerant or 

intolerant to zinc, independent of concentration, whereas bacteria from the oceanic 

environment (M2) displayed a range of tolerance levels dependant on the concentration 

of zinc added.  In both environments a decrease in ‘species’  richness was observed with 

the addition of 1 µM zinc (although an initial increase was observed at Station M1), 

furthermore the richness of the bacterial community changed more rapidly in this 

condition.  Conversely, the addition of 100 nM zinc resulted in increased species 

richness throughout the majority of the incubation at Station M2.  In the oceanic 

samples (M2) the addition of 100 nM also resulted in increased productivity throughout 

the incubation, suggesting a degree of zinc limitation in this environment. 
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4 How do bacterial communities respond to incubation 

strategies inducing aggregate formation? 

4.1 Introduction 

4.1.1 Formation and importance of aggregates  

 Aggregates form as a result of the interactions between particles and both 

biological and physical parameters.  Variation in salinity affects the formation and 

strength of ionic charges between particles and thus the probability of aggregation, this 

phenomenon is particularly important in terms of the formation of estuarine turbidity 

maxima zones (TMZ) (Section 1.2.1.2; Gregory and Duan 2001).  Aggregate formation 

can also be positively influenced by biological processes such as production of 

mucopolysaccharides by bacteria and higher organisms (Busch and Stumm 1968; 

Alldredge and Silver 1988; Biddanda 1988; Vandevivere & Kirchman 1993; 

Heissenberger et al., 1996).  These and other extracellular polymeric substances (EPS), 

including those secreted by benthic diatoms on the surface of intertidal regions (Austen 

et al., 1999) and free DNA (Alldredge and Silver 1988) increase particle stickiness, 

which further increases particle size, which in turn increases frequency or likelihood of 

collisions.  A second biological mechanism involves the production of faecal pellets by 

higher organisms (reviewed by Turner 2002) which are essentially ready-made 

aggregates which provide a rich source of nutrients for microbial organisms as they 

sink through the water column.  A third biological influence on aggregation is the 

production of Larvacean houses which provide an ideal starting point for aggregate 

formation (Alldredge 1972; Hansen et al., 1996).  

 Aggregate formation in estuaries has a number of implications for the 

remineralisation of organic carbon (Section 1.3.2.1).  Firstly, the colonisation of 

particles by bacteria creates a short-cut in the food chain for grazing organisms by 

providing suitably sized substrate (Lampitt et al., 1993), secondly, the formation of 

particles results in increased residence time of organic matter in the estuarine system 

(Geyer 1993; Jay and Musaik 1994; Uncles et al., 1994) and thirdly, the colonisation of 

those particles (which are not ingested) results in an increase in the proportion of 

organic matter mineralised before it is flushed from the estuary (Grossart and Ploug 

2001; Simon et al., 2002).  Furthermore, particles released from the confines of the 
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TMZ (and become marine aggregates) contribute significantly to the removal of carbon 

from said systems via the biological pump. 

4.1.2 The effects of aggregate formation on estuarine bacterial communities 

 The formation of aggregates in aquatic environments affects bacterial 

communities dramatically.  Aggregates provide a microhabitat rich in organic matter 

and nutrients (Shanks and Trent 1979; Simon et al. 2002) and support the development 

of mutually beneficial bacterial consortia.  Phytoplankton and microscopic organisms 

associated with aggregates develop a highly efficient nutrient transfer process in the 

early stages of colonisation (Patterson et al., 1993).  In addition, the production of 

hydrolytic enzymes by aggregate associated bacteria can benefit free-living bacteria via 

the provision of labile organic matter in the surrounding water mass (Patterson et al., 

1993, Unanue et al., 1998).  Bacterial production on aggregates is generally equal to or 

in excess of the production of their free-living counterparts (Turley and Stutt 2000).  

This, in combination with increased numbers of bacteria on aggregates, where 

enrichment factors vary from 0.6 to 5 700 (Simon et al. 2002), can result in aggregate 

associated bacteria being responsible for upwards of 30% of total bacterial production 

in estuaries (e.g. Crump and Baross 1996).  Furthermore, in estuaries with high 

concentrations of suspended particulate matter (SPM) as much as 90% of the bacterial 

community can be associated with aggregates (Simon et al. 2002).   

 Studies of artificial aggregate formation support the use of natural substrates for 

assessment of aggregate effects. Whilst they do not have the advantage of being clearly 

defined in terms of organic matter and nutrient content they do provide useful and 

relevant information regarding bacterial communities (Unanue et al., 1998; Grossart 

and Ploug 2000; 2001).  The majority of such studies have utilised rolling bottles or up-

flow systems to simulate environmentally relevant conditions.  This study was 

performed using an ‘aggregate roller’  designed to stimulate the formation of aggregates 

from natural substrates found in the Fal Estuary (Cornwall, UK).     

4.1.3 The Fal estuary 

 The Fal Estuary is tidal for a distance of 18 km inland and has a shoreline 

totalling approximately 115 km in length.  The estuary has historically been a site of 

trace metal contamination due, initially, to influx from active tin mines and, more 

recently, from old mine adits and spoil heaps.  The Fal Estuary is also currently still 
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affected by residual metal contamination from a pollution incident originating from the 

abandoned ‘Wheal Jane’  tin mine in 1992.  Trace metal concentrations in the sediments 

of Restronguet Creek are extremely high in comparison to other estuaries in the 

Southwest (Grossart 2001).  Despite this contamination the Fal has been designated a 

site of special scientific interest (SSSI) and an area of outstanding natural beauty 

(AONB) by English Nature.  The area has also been designated a special area of 

conservation (SAC) (http://www. cornwall.gov.uk/Environment/sachome.htm) on the 

basis of the habitats provided by the estuary complex for marine wildlife.  The estuary’ s 

mudflats and salt-marshes provide a feeding ground for a number of species of wading 

birds.   

 The purpose of this study was to investigate the effects of incubation strategy on 

bacterial community structure and activity.                                                         
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4.2 Methods 

4.2.1 Water collection and incubation strategy 

 Water (60 L) was collected at a salinity of 15 from Restronguet Creek, a tidal 

tributary of the Fal Estuary, on the 24th of March 2003.  Collection was performed 

directly into sterile, 20 L polycarbonate carbuoys which were rinsed twice with water 

from the target environment prior to sampling.  Bottles containing water were 

transferred to a CT lab set to ambient estuarine water temperature (12°C) at Plymouth 

Marine Laboratory within two hours of collection and samples taken immediately for 

analysis of T0 parameters.  Bottles were incubated either on aggregate rollers (‘Rolled 

condition’  - Section 2.4.4), stirred on magnetic stirrers (‘Stirred’  condition) or 

incubated without agitation (‘Still’  condition).  Samples were incubated in the dark and 

sub-samples collected for assessment of bacterial abundance, productivity and diversity 

at 8 time-points over a total duration of 21 days.  Visible aggregates were present in the 

rolled sample from day 2 onwards (Figure 4.1).  No visible aggregates were detected in 

either the Stirred or the Still conditions.  Aggregates were amorphous and fragile, thus 

attempts to sample intact aggregates for image analysis were unsuccessful. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Visible aggregates formed in the Rolled condition, present from day 2.  
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4.2.2 Analyses of bacterial community dynamics and diversity 

 Triplicate sub-samples (900 �L) for determination of bacterial abundance were 

stained using SYBR Gold II (Section 2.2.4.2) and cell numbers determined using flow 

cytometry.  Replicate (4 × 1 mL) sub-samples were used to determine productivity 

using the incorporation of tritiated leucine into cellular protein (Section 2.2.4.2). Bulk 

bacterial biomass was collected by filtration of 100-250 mL aliquots of incubated 

samples through 47mm, 0.2µm pore size polycarbonate filters.  In addition particles 

(slurried aggregates) were harvested at each time point for aggregate associated 

diversity analyses (Section 2.6.1.1).  DNA was retrieved from the filters and particles 

using the CTAB method, extracted with chloroform:iso-amyl alcohol and precipitated 

with isopropanol (Section 2.6.1).  In some cases co-precipitation with Pellet Paint™ 

was performed to ensure maximum recovery of precipitated DNA.  Diversity analyses 

were performed using PCR-DGGE (Sections 2.4.2 and 2.4.3).  

4.2.3 Statistical analyses 

 Statistical analyses were performed using PRIMER-E (5) software.  Briefly, a 

Bray-Curtis similarity matrix was created and one-way analysis of similarity 

(ANOSIM) performed to determine the significance of differences between conditions.  

Descriptive statistics in the Excel package were used to identify trends in bacterial 

abundance and production. DGGE gels were analysed using Genetool software.  

Background correction was performed using a rolling disc and the number and peak 

height of individual bands (operational taxonomic units; OTUs) determined.  This 

information was used to determine relative band intensity and Shannon diversity 

indices for each sample.  Shannon diversity (H’ ) was calculated using the following 

formula: 

H’  = -� (Pi [lnPi]) 

When Pi is the proportion of the total peak height contributed by each band (OTU) to 

the total peak height. 
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4.3 Results 

4.3.1  Effects of incubation technique on bacterial abundance 

 Bacterial abundance increased in all incubation conditions in the first 24-48 

hours (Figure 4.2).  In the Stirred and Rolled conditions the increase was described by 

exponential growth in the first 24 hours (R2 = 0.998 and 0.997 respectively).  In the still 

condition the increase in the first 48 hours was linear (R2 = 0.993).  The similarity in 

trend observed in the Rolled and Still conditions continued for the remainder of the 

experiment (Figure 4.2) with a decrease followed by a slight increase after which the 

abundance in both conditions decreased until it was very similar to T0 values.  Bacterial 

abundance in the Stirred condition, however, was significantly different from the other 

conditions from 4 days where it peaked, until the end of the incubation.  Abundance in 

the Stirred condition remained high until 7 days, after which it decreased to 

approximately half the T0 value.  Minimum and maximum abundance were both 

observed in the Stirred condition (0.504 ± 0.001 × 106 and 3.14 ± 0.054 × 106 cells mL-

1 respectively).  No significant difference between conditions was observed over the 

total duration of the incubation (ANOSIM, P = 0.36, PrimerE analysis of similarity 

between multiple samples). 
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Figure 4.2 Changes in bacterial abundance over time with different incubation 

strategies.  Error bars indicate standard deviation between replicates. 

4.3.2  Effects of incubation technique on bacterial productivity 

 An increase in production was detected in all conditions in the first 1-2 days 

(Figure 4.3).  In the first day (24 hours) production in all conditions increased in the 

same way, thereafter the pattern of increase was more similar in the Rolled and Stirred 

conditions up to and including 2 days of incubation.  Production increased more rapidly 

between days 1 and 2 in the Still condition c.f the remaining conditions. Following the 

initial increase bacterial production decreased in both the Rolled and the Still 

conditions (Figure 4.3) until day 14 at which point the production in the Still condition 

started to increase and the production in the Rolled condition continued to fall.  

Production in the Stirred condition remained high until day 7 after which point it 

decreased to approximately double the 0 hour value.   
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Figure 4.3 Changes in bacterial production over time with different incubation 

strategies.  Points show averages of replicates, error bars indicate standard deviation. 

 

Minimum and maximum production (not including T0) was observed in the Still 

condition (31.1 ± 2.0 and 237.3 ± 16.22 µgC. L-1 hour-1
 respectively).  No significant 
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difference was observed between conditions over the duration of the incubation 

(ANOSIM, P = 0.71).  However, production was significantly different between all 

conditions at 7 days (T-tests, all P values below 0.01). 

4.3.3 Normalised bacterial production  

When production data is normalised to cell numbers the extent of the effect of 

incubation technique becomes more apparent (Figure 4.4).  Cell specific production 

was similar in all conditions for the first 4 days of incubation. A rapid initial increase in 

production per cell was observed in the first 6 hours in all cases.  Production rates 

remained stable and roughly equal (± 15%) between 6 hours and day 4 in all conditions 

after which the cell specific production trends diverged.  Production in the Rolled 

condition doubled within 72 hours then decreased slowly for the remainder of the 

incubation.  In the Still condition production per cell decreased initially and then varied 

around the 0 hour value (± 45%) for the remainder of the incubation.  Production in the 

Stirred sample increased exponentially (R2 = 0.97) between day 4 and day 14 after 

which production decreased until day 21. 
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Figure 4.4 Bacterial production per cell over time with different incubation 

strategies. 
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Cell specific production integrated over the duration of the experiment (Figure 

4.5) showed that bacteria in the Stirred condition were more productive on a cell to cell 

basis than the bacteria in the Still condition (T-test P <0.01), this was particularly 

apparent during the latter part of the experiment.  No significant difference was 

observed between the Rolled and Stirred cell specific production over the total duration 

of the experiment, nor between the Rolled and Still conditions.  However when 

assessed for day 4 onwards a significant difference was detected between the Stirred 

and Still conditions (T-test, P<0.05). 
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Figure 4.5 Bacterial production normalised to bacterial abundance and integrated 

over time.  Comparison of production between the first four days and the remainder of 

the experiment (see key for time period represented).  Error bars show standard 

deviation. 
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4.3.4 Denaturing gradient gel electrophoresis analyses 

   DGGE of PCR-amplified DNA was performed to determine changes in 

diversity over the time-course of the experiment (Figure 4.6).  DGGE showed that there 

was little variation in the number of operational taxonomic units present between 1 and 

7 days (Figure 4.6a, b and c).   Furthermore, the dominant bands remained the same 

throughout the majority of the incubation. Diversity increased over time - the average 

Shannon statistic (diversity, H’ ) was 1.1 at the beginning of the incubation whereas at 

the end of the incubation the average diversity was 2.76.  Comparatively small 

variations in diversity (H’ ) were observed in the early stages of incubation (between 

day 1 and day 7) in the Stirred and Still conditions (H’  = 1.81 - 2.41 and 2.06 - 2.77 

respectively).  Diversity indices for samples from the Rolled condition increased from 

H’  = 1.30 to 1.45 (day 1 and day 2 respectively) in the early stages of incubation.  

However, after 4 days diversity in this condition was almost double (H’  2.25).   

Diversity in the rolling bottle was assessed on a whole water basis 

(encompassing free-living and attached communities) for the purposes of initial 

comparisons between incubation methods, in addition, bacterial communities 

associated with aggregates within the bottle (Figure 4.6d) were assessed. The DGGE 

profile of the aggregate associated bacterial community appeared to remain fairly 

consistent throughout the incubation although some variation in relative band intensity 

was observed (Figure 4.6d).  Diversity indices calculated for the bacterial community 

associated with aggregates at each time point varied between a minimum of H’  = 2.35 

and maximum of H’  = 2.75. 
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a) Still        b) Stirred                     

                                       
c) Rolled             d)  Rolled (aggregate attached) 

Figure 4.6  DGGE images showing 0 day to 21 days community profiles for Still, 

Stirred and Rolled conditions (a-c). DGGE image showing the community profile for 

bacteria associated with temporarily suspended particles in the Rolled condition (d).  

Incubation time in days is shown by the text at the bottom of individual gels.
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4.4 Discussion 

 The presence of aggregates is a key feature of many estuarine environments. 

Incubation strategies simulating the formation of aggregates have been widely used 

since the seminal use of aggregate rollers by Shanks and Edmondson (1989). However, 

in light of the effects on bacterial communities attributed to containment of bacteria 

(Chapter 3), the primary goal of this experiment was to determine changes in bacterial 

community structure and function induced by such incubation strategies.  

4.4.1 Effects of incubation strategy on bacterial community dynamics. 

 Bacterial abundance (Figure 4.2) followed similar trends in the Still and Rolled 

conditions.  The pattern of abundance suggests an initial affect, possibly due to 

alleviation of nutrient limitation (Lochte and Turley 1988).  This is attributed to 

phytoplankton mortality arising from incubation in the dark.  This initial increase was 

short-lived in both the Rolled and Still conditions, whereas bacterial abundance not 

only increased most in the Stirred condition but it also remained elevated for longer 

than the analogous increase observed in the Rolled and Still conditions.  One 

explanation for this difference comes from the study of effects of turbulence on 

bacterioplankton.  Turbulence has been shown to affect bacterial numbers both directly, 

via increased nutrient availability (Malits et al., 2004; Delaney 2003) or indirectly, 

through alleviation of grazing pressure (Peters et al., 2002; Malits et al., 2004).  The 

increase observed in the Rolled and Still conditions occurred after 48 hours suggesting 

a rapid response to the increased availability of nutrients.  The equally rapid decrease 

(within 24 hours) to levels approximating those observed at 0 hours suggests that the 

effect was short-lived and that the grazing population was able to respond equally 

rapidly to increased food availability. This theory is supported by work performed by 

Beardsley et al. (2003) who observed a similar pattern of abundance with confined, 

untreated bacterioplankton communities.  The authors also noted a subsequent increase 

in heterotrophic nanoflagellates, similar to the grazing population which is likely to be 

present in our samples.  This theory is also supported by the sustained elevation of 

bacterial abundance in the more turbulent (Stirred) condition previously suggested to 

have a more relaxed grazing pressure (Peters et al., 2002; Malits et al., 2004).  A 

second explanation for this clear difference between incubation techniques is the 

putatively more favourable oxygen diffusion conditions resulting from the agitation of 

the sample.  This possibility is supported by the elevated bacterial production observed 
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in both the Stirred and Rolled conditions c.f. the Still condition. Further support for this 

theory is provided by Ploug (2001) who noted that increased bacterial production 

values detected in upflow incubations of aquatic aggregates were likely to be a result of 

favourable diffusion conditions.  

  Cell specific production (figure 4.4) in the first part of the incubation (up to and 

including day 4) was similar in all conditions.  This could be attributed to the strength 

of the response to possible increased nutrient levels as a result of confinement and 

incubation conditions.  Only after the effects of this initial nutrient influx had 

diminished (approximately 4 days) did the longer term differences between conditions 

become apparent (Figure 4.4).  Bacterial production remained comparatively constant 

in the Still condition whereas an increase in per cell production was observed in both 

the Rolled and Stirred conditions.  In addition to the favourable oxygen diffusion 

conditions suggested by Ploug (2001) it is well documented that the formation of 

aggregates can result in increased bacterial production (for a review see Simon et al., 

2002).  One suggested reason for this phenomenon is the increased production of 

extracellular enzymes.  Visible aggregates (e.g. Figure 4.1) were first seen in the Rolled 

condition at day 2, and an increase in cell specific bacterial production was observed 

between days 4 and 7.  Bacteria associated with aggregates are able to utilise products 

resulting from their enzyme activity efficiently during the early stages of aggregate 

formation, following which the enzymatic digestion of organic matter is thought to 

provide substrate for free-living bacteria in the surrounding water column (Unanue et 

al., 1998a; Grossat and Ploug 2000).  This suggests that the observed increase may have 

been related to the production of enzymes by aggregate associated bacteria.  

Furthermore, because bulk water samples were taken for the analysis of bacterial 

production it is likely that the increased bacterial productivity and hydrolysis associated 

with aggregate formation (Section 1.3.2.1; Turner 2002) would contribute to the 

observed increase in production in this condition.  It is also likely that the increase in 

diversity observed after 4 days of incubation in the Rolled condition was linked to the 

formation of aggregates.   
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4.4.2   Diversity change over time 

4.4.2.1 Incubation effects 

Little change in diversity (Figure 4.6) was detected in the early stages of 

incubation (up to day 7) in the Still and Stirred conditions.  Massana et al. (2001) 

observed a decrease in bacterial assemblage diversity following a ten day incubation 

having removed grazers from the initial samples by filtration.  Bactivorous grazers have 

been shown to play an important role in controlling dominance of certain groups of 

bacteria (Gasol et al., 1999) and it is thus not surprising that the authors found the final 

bacterial assemblages to be dominated by rapidly growing opportunistic organisms.  A 

similar phenomenon has been observed as a result of substrate enrichment (Pernthaler 

et al., 2001), suggesting another mechanism of community change resulting from pre-

filtration.  The samples from the incubation experiment described here were not pre-

filtered and thus were not exposed to such selective pressures in the early stages of 

incubation.  Bacterial diversity in the Rolled samples increased at day 4 when 

compared to the remaining conditions, it is possible that the formation of aggregates 

contributed to this increase by providing a suitable surface for bacterial attachment.  

This would enable biofilm forming bacteria to become more dominant and thus 

detectable by PCR-DGGE. 

Towards the end of the incubation (days 14 and 21) diversity was seen to 

increase in all conditions with the dominant phylotypes remaining fairly constant.  The 

long term nature of the increase in diversity suggests that it may result from increased 

numbers of slow growing bacteria to detectable levels.  Certainly in both the Rolled and 

Stirred conditions the homogenous distribution of nutrients throughout the sample 

would support the growth of these types of bacteria (Pernthaler et al., 2001).  One 

widely acknowledged flaw in the use of DGGE as a tool for analysing diversity is the 

inability to detect numerically minor parts of the community (<0.5-1% of the 

community, Muyzer et al.,, 1993; Casamayor et al.,, 2000).  The constancy of the 

dominant bands further supports the suggestion that the variation in diversity was 

attributable to the minor components of the bacterial community. 

Throughout the incubation the dominant bands remained constant (Figure 4.6), 

the constancy observed may be a result of the elevated metal concentrations observed in 

this estuary exerting a more powerful selection pressure than the effects of confinement 

or indeed incubation strategy.  Incubation experiments performed to assess the effects 
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of metal enrichment on bacterial communities have historically resulted in decrease of 

phylogenetic and/or phenotypic diversity (Hemida et al. 1997; Baath et al., 1998a,b ; 

Kelly et al., 1999; Stephen et al., 1999; Sandaa et al., 2001).  This supports the 

suggestion that the effects of the incubation strategies employed here have less impact 

on bacterial community than is expected to occur with metal enrichment.  Furthermore, 

because the initial affect of substrate enrichment is believed to be short-lived (<2 days), 

longer term enrichment incubations should enable valid conclusions about the effects of 

trace metals on bacterial communities to be drawn. 

4.4.2.2 Bacterial community fingerprints associated with particles from rolling 

 bottles 

Denaturing gradient gel analysis of the bacterial community associated with 

temporarily suspended particles showed a more stable bacterial community fingerprint 

in the aggregate attached portion of the community. Although a change in relative band 

intensity was observed, which implies a shift in dominant phylotypes, diversity indices 

stayed fairly constant (H’  = 2.35-2.75) throughout the incubation.  A similar 

phenomenon has been observed in situ (Crump et al., 1999) where 75% of clones 

associated with estuarine aggregates were specific to that environment whereas a 

similar proportion of the free-living bacterial community consisted of a mixture of 

marine and terrestrially derived clones.  The authors suggested that this could be 

attributed to the physical dynamics of such particles within estuaries. An alternative 

reason for the small variation in diversity over time observed here could be the 

mechanisms by which bacteria locate and attach to aggregates.  The micro-

environments associated with aggregates provide comparatively stable conditions in 

terms of substrate availability (when compared to patchy nutrient availability in aquatic 

environments).  Thus following a period of community development, little change in 

community is apparent over short time scales.  Longer term studies, however, have 

shown a shift in the bacterial community on aggregates as the organic matter associated 

with them becomes more refractory (Grossart and Ploug 2000).  The small variations 

observed here support the suggestion that the effects of incubation and indeed substrate 

type are likely to exert a smaller selection pressure than the established effects of metal 

enrichment (Chapters 5 and 6).   
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4.5 Conclusions 

 The results of this study demonstrated a marked increase in both bacterial 

abundance and productivity at the beginning of the incubation, probably a result of 

confinement and incubation in the dark.  It was also shown that stirring of the sample 

resulted in enhanced productivity and numbers for a longer duration than the initial 

increase, a phenomenon attributed to a more favourable oxygen distribution. 

Whilst a change in bacterial community composition and community dynamics 

were observed as a result of incubation technique, our results showed that the dominant 

bacterial community (particularly within aggregates) was relatively stable for the 

duration of the experiment.  Some change in bacterial community would be expected to 

occur over such time scales as that employed here even in situ.  Furthermore, because 

the remainder of this study investigates the effects of metals on the bacterial community 

the effects conferred by metal toxicity are expected to outweigh any changes occurring 

as a result of confinement.  These conclusions suggest that the incubation of 

experimental samples on aggregate rollers is a suitable approach for the investigation of 

effects of trace metals on natural bacterioplankton communities.  It has also become 

apparent that the role of aggregates in mediating the response of bacterial communities 

to change should be investigated with regards to trace metals.  In addition this study 

supports suggestions (Chapter 3) that the length of the incubation may play a crucial 

role in the assessment of trace metal effects and suggests that the incubations performed 

be no shorter than 7 days to elucidate changes in the less dominant bacterial 

community. 
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5 Can the bacterial community from a pristine estuarine 

environment adapt to changes in trace metal concentration? 

5.1 Introduction 

5.1.1 Importance of bacteria in estuarine systems 

 Estuarine systems are biologically, chemically and physically dynamic 

(Almeida et al., 2002, Uncles et al. 2002).  Constant changes in salinity and nutrient 

availability occur over tidal cycles as a result of saline intrusion, and seasonal cycles 

due to river flow variability (Josselyn and West, 1985).  Bacterial communities in 

estuaries can be divided into two categories, as demonstrated by work performed in the 

Columbia River Estuary (Crump et al., 1999).  The first are the free-living bacteria, a 

highly variable portion of the community influenced by influx of bacteria from coastal, 

riverine and terrestrial sources which can account for as much as 48% of the diversity 

of the free-living community (Crump et al. 1999).  The second, comparatively stable, 

portion of the estuarine community is made up of bacteria associated with aggregates 

(Crump et al. 1999).  Phylotypes associated with estuarine aggregates in the Columbia 

River Estuary tended to be poorly represented in either the particle attached or free-

living bacteria from the riverine and marine communities (Crump et al. 1999).  Whilst 

this indicates the development of communities specific to aggregate environments, 

these two communities are not distinct and aggregate associated bacteria can also 

contribute to the free-living communities via disaggregation and detachment processes 

(and vice versa) (Riemann and Winding 2001).  Aggregates are created by shear forces 

within estuaries (Law et al., 1997) and are believed to enhance bacterial numbers and 

production (Crump and Baross 2000).  In estuaries with high particulate loadings an 

estimated 90% of the bacterial community can be associated with aggregates (Simon et 

al., 2002).  These authors have also suggested that more than 30% of total bacterial 

production in estuaries is consistently associated with aggregates.  The sinking and re-

suspension of aggregates in the tidal cycle extends their residence time in the estuarine 

system (Jay and Musiak, 1994).  Consequently the particulate organic matter, nutrients 

and associated colonies of bacteria and microzooplankton remain in the estuary for 

longer periods (Crump and Baross 2000; Uncles et al. 2002).   
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 Bacterial activity is believed to enhance remineralisation processes on 

aggregates (Smith et al., 1992; Turley 1992) via the production of extracellular 

enzymes which break down the biological ‘glue’  (e.g. transparent exopolymeric 

particles) responsible for enhancing aggregation (Smith et al. 1992; Grossart and Simon 

1998; Engel 2000).  The production of extracellular enzymes such as aminopeptidases, 

phosphatases and glucosidases results in the rapid hydrolysis of aggregate associated 

biopolymers and can account for up to 87% of the decrease in particulate organic 

nitrogen (Grossart and Ploug 2001) observed in estuaries as a result of biological 

activity.  The reduction in stickiness, as a result of enzyme activity, may prevent further 

aggregation or result in the disaggregation of large particles.  The latter may extend the 

length of time aggregates remain suspended in the water column.  These processes also 

provide substrate for free-living bacteria (Grossart and Simon, 1998; Kiorboe et al. 

2001; Kiorboe and Jackson 2001), and food for the estuarine grazing community 

(Alldredge and Silver 1988).  The extended residence time of particles facilitates the 

bacterial remineralisation of a significant proportion of the organic matter in estuarine 

systems before it meets the sea.  Furthermore, aggregate-associated bacteria enhance 

the ability of an estuary to support higher trophic levels (Lampitt et al. 1993, Grossart 

et al. 1998) and are responsible for significant recycling of organic matter in such 

environments.   

5.1.2 Relationships between bacteria and trace metals 

 Investigations into the relationship between bacteria and trace metals have 

concentrated predominantly on single cultures of bacteria (for a review see Nies, 1999) 

or specific environments such as contaminated sediments (Cummings et al., 2003), 

sewerage sludge treatment plants (Rudd et al. 1984) or sewage treated agricultural soils 

(Moffett et al., 2003) which are historically metal impacted.  In addition, extensive 

research has been carried out to determine the action and identification of bacteria 

relevant to acid mine drainage and tailings treatment (Garcia et al. 2001; Bhagat et al. 

2004) where the influence of bacteria can have commercial advantages for both 

retrieval ( Rawlings 2002; Chen, 2004) and remediation (Barkay and Schaefer 2001; 

Valls and de Lorenzo 2002; Gadd 2004) of metals.  Bacteria which are renowned for 

their ability to remove metals from solution such as Sulphate Reducing Bacteria (SRB) 

have been studied extensively and information regarding their mechanism(s) of action 

is widely available (e.g. Garcia et al. 2001; Bhagat et al. 2004).  Conversely, the ability 
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of bacteria found in natural aquatic environments to tolerate and/or respond to an influx 

of elevated concentrations of trace metals is largely unknown, despite the obvious 

ecological importance. 

 Although a number of metals are required for the effective functioning of 

bacterial cells (Madigan et al. 2003), the presence of functional metals (in high 

concentrations) or non-functional metals can be detrimental or indeed toxic to bacteria 

(e.g. Knight et al., 1997; Stephen et al., 1999) and have been shown to influence a 

number of microbially mediated processes (Babich and Stotzky, 1985).  Modes of 

toxicity include displacement or substitution of non-functional metal ions for functional 

ions, resulting in compromise of cell membranes, enzyme function and nutrient 

transport systems (Sunda, 1988; Bruland et al., 1991).  A second mode of toxicity is the 

alteration of the redox state of the cell resulting in oxidative stress (Bruins et al., 2000).   

5.1.3 The Erme estuary 

    The Erme estuary located in the South Hams of Devon is a pristine environment 

named as one of the four cleanest estuaries (with regard to trace metals) in the U.K. 

(EA report 2001).  It has been designated as an area of outstanding natural beauty 

(AONB) and is classified as a site of special scientific interest (SSSI) 

(www.southdevonaonb.org.uk).  The only large discharges into the estuary originate 

from Holbeton sewerage works, which were updated recently to include secondary 

treatment and ultraviolet disinfection.  A smaller input originates from the Flete estate 

which surrounds the estuary.   The estuary is described as a ‘drowned ria’  and has large 

expanses of sandy bed exposed at low tide.  A saline intrusion extends approximately 

5.6 km upriver. 

 The main goal of this research was to examine the response of bacteria from a 

‘pristine’  environment to exposure to comparatively high concentrations of trace 

metals.  The response has been characterised in terms of change in bacterial numbers, 

production, and phylogenetic diversity.   
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5.2  Methods 

5.2.1 Water collection and manipulation 

 Samples were collected from the Erme Estuary (Devon, UK) at a salinity of 

14.9.  At the time of sampling (June, 2003) water temperature was 16.6°C and pH was 

7.8.  The estuarine water was collected directly into a large volume container (40 L) 

and distributed into eight (4 L) polycarbonate bottles.  The bottles were transported 

back to the laboratory and transferred (within 2 hours of sampling) to a constant 

temperature room set to ambient estuarine water temperature (16.6°C) and allowed to 

equilibrate (approx 1 hour).   

5.2.2 Metal addition 

 The addition of trace metals to water samples taken from the Erme Estuary was 

designed to be representative of the concentrations detected in heavily contaminated 

estuarine systems such as the Fal Estuary (Chapter 4).   Trace metals (Spectrosol 

standards 1000 mg.mL-1) were added to the sample bottles in the concentrations and 

volumes shown in Table 5.1.  Bottles were mixed by repeated inversion and the pH 

adjusted to ambient estuarine equivalent (7.8) with NaOH where necessary. A final  

 

Table 5.1 Conditions 1-8 showing type and species of metal added to each bottle.  

Concentration increase in nmoles L-1 given in parentheses.  Condition 3 (15000 nM 

Zn2+) was selected to reflect highly contaminated conditions with regard to zinc.  

Condition 8 will be described as the ‘cocktail’  hereafter. 

 

Condition 1 2 3 4 5 6 7 8 

Metal 
(nmoles.L-1) 

 
 

Control 
(0) 

 
 

Zn2+ 

 (1000) 

 
 

Zn2+ 
(15000) 

 
 

Cd2+ 
(18) 

 
 

Cu2+ 
(950) 

 
 

Ni2+ 
(200) 

 
 

Pb2+ 
(300) 

Zn2+ (15000) 
Cd2+ (18) 

Cu2+ (950) 
Ni2+ (200) 
Pb2+ (300) 

Volume of 
standard 

added (µL) 

 
0 

 
261.6 

 
3 920 

 
8.1 

 
248.4 

 
47 

 
248.6 

 
As per  

conditions 
3-7 

pH 
adjustment 

 
no 

 
no 

 
yes 

 
no 

 
no 

 
no 

 
no 

 
yes 
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bottle was left unenriched as a control.  Sub-samples (section 2.1.2) were taken 

immediately for analysis of initial parameters.  The bottles were incubated on aggregate 

rollers at ambient temperature (16±1°C) in the dark for a total of 21 days. Sub-samples 

were collected at eight time-points during that period. 

5.2.3 Sub-sampling and analyses 

 Triplicate aliquots of 1 mL were fixed with gluteraldehyde (2.5% final 

concentration) and stored at -20°C for determination of bacterial numbers.  

Enumeration was achieved using flow cytometry (Section 2.5.1).  Bacterial production 

was determined using incorporation of  3H-leucine into protein (Section 2.5.2). 

  Bacterial biomass was collected by filtration of 250 mL aliquots of incubated 

samples through 47mm, 0.2µm pore size polycarbonate filters.  DNA was retrieved 

from the filters using the CTAB method, extracted with chloroform:iso-amyl alcohol 

and precipitated with isopropanol (Section 2.6.1).  The resulting DNA was amplified 

using nested PCR with the external primers 8f and 1346r and internal primers 341f 

(GC) and 907r (Section 2.6.2).  DNA fragments were analysed by DGGE (Section 

2.6.3).  Bands of interest were extracted from the gel (section 2.6.3), cloned and 

sequenced (sections 2.4.4 and 2.4.5 respectively) and sequences submitted to the 

BLAST search programme of the NCBI website to ascertain closest matches.  Chimeric 

sequences were identified using the RDP-II check chimera facility and excluded from 

further analyses.  Phylogenetic analysis and tree construction was accomplished using 

the RDP-II website Phylip interface.  

 Aggregates were collected using a wide bore 10 mL pipette tip and allowed to 

settle into a 90mm Petri dish containing sample water.  Digital photographs were taken 

and analysed using image analysis of parameters pertaining to aggregate size and shape 

(Image ProPlus imaging system). 

 T-tests were performed to determine the significance of differences between 

conditions (Minitab).  A similarity matrix was created using bacterial production and 

abundance data which was then subjected to multi-dimensional scaling (MDS) to 

examine the relationship between samples.  MDS is an ordination technique which 

separates samples on the basis of the level of similarity (i.e. the distance between 

samples) which is determined using the Bray Curtis similarity co-efficient.  MDS and 

similarity calculations were performed using PRIMER-E software. 
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5.3 Results 

5.3.1 The effect of trace metal addition on bacterial numbers 

 The response to metal addition elicited two modes of observed response:  

• Type 1 response to metal addition was broadly similar to the control (Figure 5.1).  

Bacterial numbers in the control and condition 2 (1 µM Zn2+), 4 (Cd2+) and 6 (Ni2+) 

either increased or remained static in the first 6 hours of the incubation and were 

maximal at day 3.  Bacterial numbers decreased to levels approximating those 

observed at T0 in all conditions (except for condition 4 (Cd2+) in which bacteria 

were approximately half as abundant) in the latter stages of the incubation.   

• Type 2 is characterised by the increase in bacterial numbers in conditions 3 (15 µM 

Zn2+), 5 (Cu2+), 7 (Pb2+) and 8 (cocktail) towards the end of the incubation (Figure 

5.2).  Bacteria in Type 2 samples either decreased in abundance or remained at 

approximately T0 values in the first 24 hours of incubation. 

 

An increase in abundance from T0 was observed within the first three days of 

incubation in all cases (Figures 5.1 and 5.2).  The pattern preceding this increase varied 

between conditions.  In condition 2 (1 �M Zn2+) an initial increase in numbers was 

followed by a decrease and a second increase of greater magnitude than the first. This 

closely resembled the trend observed in the control condition (Figure 5.1).  In 

conditions 4(Cd2+), 6 (Ni2+) and 7 (Pb2+) (Figures 5.1, 5.1 and 5.2 respectively) a single 

peak in abundance was observed. Thirdly in conditions 3 (15 µM Zn2+), 5 (Cu2+) and 8 

(cocktail) an initial decrease was observed in the first 24 hours (Figure 5.2).  In the 

latter stages of the incubation (from day fourteen) bacterial abundance decreased (Type 

1) or increased (Type 2) to levels approximating the T0 value. 

Bacterial numbers ranged from 1.2 ± 0.05 to 6.84 ± 0.66 x106 mL-1 in control 

incubations.  Overall the minimum bacterial numbers were observed in the cocktail at 

day eleven (0.15 ± 0.03 x 106 mL-1) and maximum numbers were achieved in the 15 

µM Zn condition at day three (7.19 ± 0.72 x 106 mL-1), both of which displayed Type 2 

patterns of abundance.  Minimum and maximum values observed in Type 1 samples 

were 1.13 ± 0.14 x 106.mL-1 (Condition 4, Cd2+) and 5.98 ± 0.60 x 106 mL-1 (Condition 

6, Ni2+) respectively.  Bacterial numbers in conditions 2 (Zn2+ [1 µM]) and 8 (cocktail) 

were significantly lower than the control (P<0.05). 
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Figure 5.1 Type 1 effects of metal addition on bacterial abundance patterns over the 

duration of the incubation experiment.  Points are averages of replicate measurements.  

Error bars show standard deviation. 
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Figure 5.2 Type 2 effects of metal addition on bacterial abundance patterns over the 

duration of the incubation experiment.  Points are averages of replicate measurements.  

Error bars show standard deviation. 
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5.3.2 The effect of trace metal addition on bacterial production 

 The same distinct responses were apparent in the change in bacterial 

productivity in response to metal addition.  Bacteria displaying a Type 1 response 

reached maximum production, or within 5% of their maximum productivity, in the first 

24 hours (Figure 5.3).  Bacteria from the Type 2 group demonstrated a peak in 

productivity at day 3 following varying degrees of inhibition in the first 24 hours of the 

incubation. 

Bacterial production in control incubations ranged from an initial rate of 205.1 

(±16.0) µg C.L-1.d-1 to a maximum of 2216.5 (±184.5) µg C.L-1.d-1 and a subsequent 

minimum of 37.8 (±5.0) µg C.L-1.d-1 in the final stage (21 days) of the incubation.  This 

minimum at 21 days was also observed in all Type 1 conditions and the Pb2+ (300 nM) 

condition (Type 2).  
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Figure 5.3 Type 1 effects of metal addition on bacterial production over the 

duration of the incubation experiment.  Points are averages of replicate measurements.  

Error bars show standard deviation. 

 

In the first 24 hours of incubation the response of the bacterial community to 

Type 2 metal addition was clearly more profound than to any of the Type 1 metals 

(Figure 5.4).  No increase in production was observed in the first 6 hours in the Zn2+ 

(15 µM), Cu2+ or cocktail conditions c.f. >100% increase in the control condition (inset, 

Figure 5.4; Lag phase Table 5.2).  After 1 day of incubation production in the Zn2+ (15 
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µM) and Cu2+ conditions had increased to 44% and 60% of the control value 

respectively, in contrast production in the cocktail condition at this point had not 

increased (Table 5.2).  After 3 days of incubation production maxima in the Pb2+, Zn2+ 

(15 µM) and Cu2+ conditions exceeded that of the control condition whereas production 

in the cocktail had reached a maximum of 60% of the control value.    

 

Condition Control Zinc (15�M) Copper Lead Cocktail 

Length of  lag phase (days) 0 0.25 0.25 0 1 

Production at day 1 (% of 

control production) 
100 44 60 87 1 

 
Table 5.2 Type 2 bacterial production in the first 24 hours of incubation. 

 
Following the peak in production at day 3 a decrease was observed in all 

conditions except for the cocktail.  Notably, the rate of decrease in bacterial production 

between days 3 and 11 was slower (c.f. control) in the Ni2+ condition (Type 1) and to a 

lesser extent in the Pb2+ condition.   
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Figure 5.4 Type 2 effects of metal addition on bacterial production over the 

duration of the incubation experiment.  Inset shows the first 3 days of incubation.  

Points are averages of replicate measurements.  Error bars show standard deviation.  
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The minimum and maximum productivity was observed in type 2 samples (as 

observed in bacterial numbers).  The minimum production rate was observed in the 

cocktail (7.3 ±1.9 µgC.L-1.d-1) and maximum production (2545.2 ±144.5 µg C L-1 d-1) 

in the 300 nM Pb2+ condition.  

5.3.3 The relative importance of metal additions / incubation effects 

  The measured bacterial abundance and production parameters were used to 

create ordination plots to assess the degree of similarity between conditions.  Time of 

incubation was shown to be the most important factor when describing the similarity 

between conditions (Figure 5.5).  At T0 (immediately following metal addition) all 

conditions plotted within the same cluster.  At 6 hours the control and condition 2 (1�M 

Zn2+) samples differed from the remainder of the conditions.  At day 1 samples from 

conditions 3 (15�M Zn2+), 5 (Cu2+) and 8 (cocktail) clustered separately, these samples 

displayed the Type 2 response in terms of bacterial production and numbers.  At day 3 

the majority of conditions were closely related with the notable exception of condition 

8 (cocktail) which was consistently different to the other conditions from this point 

until the end of the incubation (Figure 5.5).  After seven days conditions 6 (Ni2+), 7 

(Pb2+) and 8 (cocktail) plotted separately from the remainder of conditions.  From day 

14 onwards most samples grouped closely together.  The samples which showed the 

greatest difference to the control (as highlighted by MDS analysis) were selected from 

samples taken at three and seven days for further investigation focusing on bacterial 

diversity (DGGE). 

5.3.4 Denaturing gradient gel electrophoresis of samples showing the greatest 

response to trace metal enrichment. 

 Denaturing gradient gel electrophoresis was performed to identify the bacterial 

populations present in samples which were distinct from time groupings (see above).  

The gel image (Figure 5.6) shows the dominant bands (phylotypes) in these samples.  

At day three, a particularly tight MDS cluster (Figure 5.5), the bacterial community 

from condition 8 (cocktail) was clearly different to the control and condition 3 (15 �M 

Zn2+) communities.  Dominant bands observed in the upper half of the control lane 

became insignificant in the cocktail condition.  The community which emerged in the 

cocktail condition after 3 days was dominated by a number of phylotypes observed with 

low intensity in the control condition (bands 1, 2, 3 and 5, cocktail, day 3).  At day 7 
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samples from conditions 6 (Ni2+), 7 (Pb2+) and 8 (cocktail) were distinct from time 

grouping of samples (Figure 5.5 A).  However at this time differences between sample 

and control DGGE profiles were only observed in the less dominant bands.  Bands 

indicated were excised for sequencing to identify the dominant phylotypes. 

0.042 0.25

1 3

7 11

14 21

Stress: 0.01

 

control Cd

Cu Cocktail

Pb Zn - 1µM

Ni Zn - 15µM

Stress: 0

 
 

Figure 5.5   Multi dimensional scaling (MDS) plots showing spatial representation 

of the relationship between samples.  The spatial arrangement i.e. distance between 

points is based on differences in production and numbers between samples taken from 

each time point in hours (A) and from each condition (B). The points on each plot are 

the same and the symbols represent either the time or the condition (shown in the key).  

A 

B 
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The stress levels show the likelihood of any other ordination result based on the number 

of iterations performed. 

 

Figure 5.6 DGGE profiles of samples showing greatest response to trace metal 

enrichment.  Image labels show conditions and incubation time, arrows show bands 

taken for phylogenetic analysis.  Note, cocktail, 3 days, band 2 (*) was identified as a 

possible chimera and not included in further analysis. 
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 All bands indicated in Figure 5.6 were successfully sequenced.  One band 

(Cocktail, T3, band 2) was identified as a possible chimera and as such has not been 

included in these analyses.  All remaining sequences belonged to a single group within 

the alpha-proteobacteria family; the Rhodobacteraceae (Figure 5.7).  Dominant 

phylotypes after 3 days in condition 8 were shown to be most closely related to 

Ruegeria and uncultured marine alpha proteobacteria by BLAST analysis (Altschul et 

al., 1990).  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 Phylogenetic tree showing the relationship between bands selected from 

samples showing greatest response to trace metal enrichment. Scale bar shows 

substitutions per base. Labels refer to condition, duration and DGGE band number. 
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5.3.5 The effect of metal addition on aggregate formation 

 The appearance of aggregates was different with the addition of different metals 

(Figure 5.8).  Image analysis showed that the size distribution parameters and shape 

(roundness) were the parameters affected most by the addition of metals.  In all metal 

enrichments the percentage of large particles (>1000µm) was lower than in the control.  

Roundness of the particles was similar in the control and most metal conditions (Figure 

5.8 A-G), however with the addition of a cocktail of metals the roundness was much 

higher (approximately 40 ×) than the control and remaining conditions (Pers. comm. J. 

Dixon, PML). 

 
Figure 5.8 Images of aggregates formed after 5 days incubation.  Scale bars show 

10mm. 

A) Control B)  Zinc (1 µM) C) Nickel (200nM) D) Cadmium (18nM) 

E) Copper (950 nM)     F) Zinc (15 µM) G) Lead (300 nM) H) Cocktail 
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5.4 Discussion 

The effect of a suite of trace metals on bacterial communities from a pristine 

estuary was determined.  Effects were identified based on changes observed in 

community dynamics and diversity of the bacterioplankton in response to metal 

enrichment.  As was observed in both chapters 3 and 4 an immediate increase in 

bacterial numbers was apparent, presumably in response to confinement (see Sections 

3.4.2.3 and 4.4).  Nevertheless, as concluded previously, the differences observed 

between the experimental conditions in the corresponding time period (0-2 days) 

indicate differential response depending on metal added.  This emphasises the impact of 

metal enrichment on the ability of the bacterial community to take advantage of the 

presumptive pulse of nutrients.  The remainder of this discussion accounts for the 

differences observed between metal enriched bacterial populations on short and long 

time scales. 

5.4.1 Community dynamics of bacteria exposed to metals. 

 Analyses of time series data have suggested two distinct patterns of response to 

metal enrichment in terms of bacterial community dynamics.   These are referred to in 

the results section as Type 1 and Type 2, and appear to be differentiated by the toxicity 

level of the metals to which they were exposed.  Dynamics in the Type 1 conditions 

show greater similarity to the control conditions indicating a low level of toxicity 

whereas Type 2 conditions appear to elicit a more significant change in community 

dynamics (c.f. control).  The response to Type 1 and Type 2 metals can be further 

categorised as short (<24 hours) and long term (>7days) effects. 

5.4.1.1 Short term effects 

 In the first 6 hours bacterial numbers in Type 1 conditions (Figure 5.1) either 

increased as per the control (1µM Zn2+) or remained within 5% of initial (T0) values 

(Ni2+ and Cd2+).  This suggests that 1µM Zn2+ is too low to cause a response within this 

time frame.   This suggestion is supported by MDS analysis (Figure 5.5) which showed 

that the bacterial communities in the control and 1�M Zn conditions were different to 

the remaining conditions and similar to each other in the early stages of incubation.  

Diaz-Ravina (1996) showed that soil bacteria did not respond to added zinc 

concentrations below 2mmol. Kg -1 soil (dry weight) and it is possible that the 1�M 
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concentration added here was too low to have any noticeable effect.  This is supported 

by the similarity between temporal trends in bacterial numbers and production between 

control and 1�M Zn condition and thus placement of the 1�M samples close to the 

control and within time groups (Figure 5.5).  However, the comparatively high numbers 

of bacteria and concentration of organic matter in soil c.f. estuarine water makes 

comparison between these studies speculative. Bacterial numbers in samples in which 

(little) change was detected (Ni2+ and Cd2+) increased to approximately control values 

within the first 24 hours.  This short time lag suggests a minimal toxic effect which was 

quickly overcome, furthermore, bacterial numbers in all Type 1 conditions showed 

similar trends to those observed in the control from this point onwards.  Production in 

Type 1 conditions (Figure 5.3) was equal to that in the control during the first 24 hours 

again suggesting a minimal inhibitory effect within this time frame. 

One possible explanation for differences observed in the first 24 hours between 

the Type 1 and 2 responses is that members of the phytoplankton community of the 

Erme may have been affected differently by the metals added.  Type 1 conditions 

(Cd2+, Zn2+ (1 µM) and Ni2+) introduced metals which are known to be biologically 

required by phytoplankton cells.  Both Zn2+ (Morel et al. 1994) and Cd2+ (Cullen et al. 

1999; Lane and Morel 2000) are known to be components of carbonic anhydrase 

enzymes which are required for uptake of inorganic carbon.  Ni2+ is also instrumental in 

phytoplankton production via its role in the enzyme urease which is essential for 

nitrogen uptake when urea is the sole source of nitrogen (Price and Morel 1991; Morel 

et al. 1991).  The introduction of these biologically required metals may have resulted 

in an increase in the production of biological polymers designed to sequester such 

metals internally or within the immediate area of phytoplankton cells (Croot et al., 

2000). This would support the initial increase in bacterial numbers and production 

observed in this study which, with the exception of the Zn2+ (15µM) condition, were 

greater (abundance) or observed earlier (production) in the Type 1 conditions.  This 

theory is put forward with particular reference to the early stages of incubation (first 24 

hours) after which point it is likely that the influence of incubation in the dark would 

result in phytoplankton productivity being reduced to maintenance levels (0.5<10%; 

Jochem 1999).  This hypothesis is supported by an increase in production of 

extracellular polysaccharides observed when diatoms and dinoflagellates were 

incubated in the presence of Cd2+ (Pistocchi et al. 2000).  The same authors also noted 

no reduction in growth of phytoplankton at concentrations of Cd2+ up to 2 mg L-1 (an 
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order of magnitude higher than the concentration employed in this study), indicating 

that phytoplankton mortality was not a factor in the increased growth observed in this 

condition.    

 Type 2 conditions elicited a greater response than Type 1 conditions, this was 

apparent in both the bacterial numbers and production.  In the first 6 hours bacterial 

numbers increased slightly (Zn2+ 15µM and Pb2+) or decreased (Cu2+ and cocktail).  In 

the conditions where an increase was observed the increase amounted to 10% and 20% 

of the increase observed in the control (Pb2+ and Zn2+ respectively).  This suggests 

inhibition of bacterial growth by these metals.  In those conditions where a decrease 

was observed (Cu2+ and cocktail) bacterial abundance was reduced by 20-25%, 

indicating an immediate toxic response (e.g mortality or reduced growth) to these 

conditions.  The reduction in numbers was greater in the cocktail indicating that it was 

not only the Cu2+ content of the cocktail mixture that was responsible for the observed 

response.  Assessment of the response of bacterial communities to Type 2 metals is 

further complicated by an increase in bacterial numbers observed between 6 and 24 

hours in the Cu2+ condition (15% c.f. T0) which is not reflected in the cocktail condition 

in which numbers decreased a further 15% (c.f. T0).  This suggests a delayed effect of 

some components of the metal mixture, a decrease in numbers of 60% in the Zn2+ 

(15µM) condition was also observed in this time period.  This may implicate zinc 

toxicity in the decrease in numbers in the cocktail condition.  However, the magnitude 

of the decrease is smaller in the cocktail suggesting a possible antagonistic affect of 

other metals within the mixture. This possibility supports observations made by Ince et 

al. (1999) who found that antagonistic interactions between binary mixtures of metals 

were the most common ‘toxic interactions’  observed when pairs of metals were tested 

for toxicity using standard toxicity tests (prokaryotic). 

Bacterial production rates also indicate toxicity of Type 2 metals (Figure 5.4). 

With the exception of the Pb2+ condition, production rates were maintained at T0 levels 

for the first 6 hours (Table 5.2).  Production subsequently increased in the Cu2+ and 

Zn2+ (15µM) conditions, albeit to less than 60% of that observed in the control, after 1 

day of incubation.  The bacterial community in the cocktail condition again showed the 

greatest inhibition with no increase in production detected for the first 24 hours of 

incubation (Table 5.2).  After three days of incubation production in all Type 2 

conditions exceeded that in the control with the exception of the cocktail which, at its 

peak, achieved only approximately 65% of the production observed in the control.  It is 
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possible that after this time the bioavailability of the metals was reduced, perhaps as a 

result of ligand production by either bacteria or phytoplankton present in the bottles 

(Gordon et al., 2000).  This theory is supported by the results of laboratory experiments 

using cultures of Emiliania huxleyii and algal exudates which showed that metal 

impacted (increased Cu, Pb, Cd, Zn, Fe, Mn, Ni and Co) E. huxleyii were able to 

reproduce more successfully when exudates from Enteromorpha were added to the 

culture medium (Vasconcelos et al 2002).    

It is also possible that metal toxicity was reduced as a result of phytoplankton 

mortality which would release cellular components into the surrounding media. One 

such example is that Cu2+ has been shown to reduce growth of phytoplankton (Pistocchi 

et al. 2000) at concentrations as low as 0.01mg L-1 (significantly lower than the 

concentration utilised in this study). Resulting cell debris would not only complex a 

proportion of the free metal ions it would also provide the extra substrate required for 

the increased production c.f. the control observed after 3 and 7 days of incubation.  The 

theory that the addition of trace metals in this study may have resulted in the death of 

and subsequent release of organic matter from less metal tolerant algal species found in 

the Erme estuary is supported by work carried out in the Tinto and Odiel rivers (Spain).  

The authors suggest that trace metals may play a role in determining the composition of 

algal or phytoplankton communities (Lopez-Archilla and Amils 1999), the metal rich 

portion of the Tinto and Odiel rivers was found to be home to a considerably different 

phytoplankton community to other similar but non-metal-impacted rivers. However, it 

should be noted that the rivers discussed were also of consistently low pH which would 

favour acidotolerant/philic algal species irrespective of trace metal conditions.  

Rijstenbil and Gerringa (2002) demonstrated, using laboratory cultures, that copper 

concentrations above 157 nM stimulated production of phytochelatins and increased the 

cell-wall and internal copper binding capacity in a diatom (Ditylum brightwellii).  This 

suggests that in addition to the release of organic substrate discussed above 

phytoplankton may also act to reduce the availability of non-required metals in 

surrounding water.    

Both MDS (Figure 5.5) and DGGE (Figure 5.6) analyses showed 

incontrovertibly that the addition of a cocktail of trace metals had a more profound 

effect on bacterial communities than the addition of individual metals in the first 3 

days. MDS showed that samples from the cocktail condition clustered separately from 

the remaining conditions from 24 hours until 11 days after the start of the incubation 
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and DGGE supported this observation and demonstrated dominance by a different 

group of bacteria in samples taken at day 3 from the cocktail condition when compared 

to the control and 15µM Zn2+ conditions.  This indication of an enhanced response to 

multiple metals is supported by work performed by Wei et al (2003) using marine 

phytoplankton cultures and a natural algal assemblage from a pristine coastal site.  Wei 

et al (2003) added Cd, Cu and Zn both singly and as a mixture and followed the 

production of phytochelatin (a metal toxicity response).  Phytochelatin production 

varied considerably between metals and concentrations, however, the addition of a 

mixture of trace metals resulted in greatly suppressed phytochelatin production.  The 

concentration produced closely resembled particulate phytochelatin observed in the 

field suggesting that investigations of mixtures of metals have greater environmental 

relevance. 

A further consideration in this study is the formation of aggregates from the 

natural substrate found in the Erme Estuary.  Previous work (Grossart and Ploug 2001) 

has shown that in the first stages of aggregate formation bacteria associated with 

aggregates are able to remineralize organic matter extremely efficiently.  It is possible 

that the initial rapid increase in bacterial numbers and production was related to the 

formation of such aggregates and the production of extracellular enzymes by associated 

bacterial consortia.  However, the toxic effects of metals would be likely to reduce the 

hydrolytic activity of bacteria associated with aggregates in the Type 2 conditions. 

These suggestions; firstly that an efficient hydrolysis of organic matter was occurring in 

the early stages of aggregate formation in Type 1 conditions and secondly, that 

hydrolysis is likely to be inhibited in Type 2 conditions, may be supported by the 

appearance of the aggregates formed (although it is difficult to interpret the appearance 

of the aggregates in a meaningful way without the aid of more detailed measurements).   

In Type 1 conditions the aggregates appear pale and less dense than those formed in 

Type 2 conditions (Figure 5.8).  This may suggest reduced coherence of the aggregates 

in the Type 1 conditions c.f the Type 2 conditions.  This could also be due to 

extracellular enzyme production, which may be inhibited in Type 2 conditions.  The 

aggregates observed in the cocktail condition were amorphous and much larger (Figure 

5.8).  This could be attributed to a decrease in the amount of extracellular ‘glue’  

produced by bacteria (Engel 2000) most likely as a result of metal toxicity.  

Alternatively, because visible particles are the product of aggregation of smaller 

particle, it is possible that the adsorption of metals to the surface of smaller particles in 
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the cocktail condition has resulted in the formation of metal bridges between the 

smaller particles. Conversely, the particles in the other conditions are likely to be 

cemented by sticky biological polymers.  

5.4.1.2 Long term effects of metal enrichment 

 The affects of metal enrichment in the first 3 days of incubation provide 

important information about the immediate response of bacterial communities to metal 

stress.  This information would be of greatest importance for assessment of implications 

of metal contamination in closed systems which rely on bacteria for remediation of 

waste such as sewage.  It is likely that assessment of impacts on ecosystem health 

would be better informed by the long term effects which are of importance in terms of 

loss of functional groups and implications for the cycling of organic matter and 

nutrients.  Long term response of bacterial communities in this study to enrichment 

with Type 1 metals were assessed in terms of bacterial production and numbers.    

In all Type 1 conditions bacterial production was lower than observed in the 

control condition from day 11 onwards (Figure 5.3).  This could be a result of 

decreased efficiency of nutrient assimilation, possibly as a result of metal substitution 

in active sites of enzymes.  Alternatively the decreased production could be due to toxic 

effects of metals following the release of metals from ligands / aggregate surfaces by 

the hydrolytic action of bacteria (Chen et al.,1995b )  This suggestion is supported by 

the magnitude of the initial increase in production matching the subsequent decrease 

observed.  This suggests that the labile nutrient supply induced as a result of 

confinement has been exhausted and thus more refractory organic molecules become 

the main source of substrate.  The digestion of such molecules may release metals 

which were previously sequestered leading to reduced productivity of the bacterial 

populations.  

 Bacterial production in Type 2 conditions decreased in all conditions between 

days 13 and 21.  However, in contrast to Type 1 conditions, bacterial production was 

similar to the control with the exception of the Cu2+ condition which was greater than 

the control and the Pb2+ condition which was lower than the control.  The production in 

the Pb2+ condition had been higher than the control from day 3 until day 11 hence the 

subsequent lower production may simply be due to the relative amount of substrate 

available towards the end of the incubation.  The Cu2+ condition however was elevated 

from day 11 until the end of the incubation (c.f. control).  This could be due to 
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decreased grazing activity as a result of metal toxicity, a phenomenon previously 

observed in freshwater microbial food webs (Havens, 1994).   

Bacterial abundance in Type 1 conditions (Figure 5.1) decreased from day 13 

until the end of the incubation, with the possible exception of the 1µM Zn2+condition in 

which bacterial numbers remained more or less static.  A similar decrease was observed 

in the control condition.  This decrease in numbers is most likely to be a result of the 

activity of grazers on a population of bacteria which has become nutrient limited.  The 

bacterial response to the addition of Cd2+ is notable due to the predominantly lower 

numbers observed c.f. the control throughout the incubation, particularly from day 7 

onwards (Figure 5.1).  This suggests decreased growth as a result of cadmium addition, 

an observation supported by congruent lower production observed in this condition.  

This strongly suggests that a significant part of the bacterial community was sensitive 

to Cd2+.  Furthermore, the difference observed between the Cd2+ enriched and control 

condition suggests that no opportunistic growth occurred to take advantage of substrate 

made available as a result of the demise of this group of bacteria.  This suggests that the 

Cd2+ sensitive bacteria may have been utilising substrate which was refractory to the 

remaining community, thus indicating the possible loss of a functional group. 

In the latter stages of incubation an increase in bacterial abundance in Type 2 

conditions was observed.  This phenomenon may be a result of the formation of 

bacterial biofilms either on the surfaces provided by aggregates or alternatively the 

internal surface of the incubation vessels.  The formation of biofilms and associated 

EPS creates a diffusive gradient which enables bacteria within the inner layers of the 

biofilm to escape toxic effects of metals (Tietzel and Parsek, 2003).  However, the 

nature of such biofilms means it is necessary to assess the likelihood of bacteria within 

the biofilms being enumerated by the methods utilised here.  It is possible that the 

movement of water within the incubation bottles could disrupt the biofilms resulting in 

the inclusion of component bacteria in bacterial counts, it is also acknowledged that a 

constant process of attachment and detachment occurs between aggregates and the 

surrounding water column which would also influence bacterial counts.   

Furthermore, it is possible that the production of EPS by biofilm forming 

bacteria and subsequent digestion thereof would provide an additional source of labile 

substrate which would support growth by the free-living bacterial community.  Such a 

phenomenon has been observed previously associated with aggregate associated 

bacteria (Unanue et al., 1998a.b).  This theory is supported by sequence analysis which 
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confirmed the presence of bacteria commonly associated with biofilm formation in the 

incubation vessels.   

Whilst it is likely that bacteria would also associate with surfaces under control 

conditions, it is feasible that the addition of Type 2 metals stimulated the formation of 

biofilms as a mechanism to avoid metal toxicity thus accounting for the different 

temporal trends observed in the control and Type 2 metal conditions.  An alternative 

explanation for the latter stage increase in bacterial numbers is that a period of 

acclimation is required before bacteria are able to demonstrate tolerance to trace metals.  

One possible reason for this is sequestration of Type 2 metals in a different way to 

Type 1 metals. Copper and lead can be biologically transformed to oxalate crystals with 

low solubility (zinc can also form oxalates but they are far more soluble than the lead 

oxalate (Elliott and Shastri 1999).    Nickel also forms oxalate crystals and is frequently 

present as phosphate.  Cadmium is biologically precipitated as sulphides (anoxic 

environments), phosphates and carbonates and zinc removal from solution is 

predominantly by biosorption.   It is possible that the formation of more refractory 

crystalline precipitates may remove metals from solution more efficiently and for 

longer than the comparatively more labile precipitates formed by Cd, Ni and Zn.  This 

discrepancy could account for the increase in abundance observed in the latter stages of 

the incubation in Type 2 conditions via alleviation of metal toxicity and, in addition, 

may explain why production in the Ni2+ enrichment did not decrease at the same rate 

observed with the addition of other Type 1 metals. 

  MDS and DGGE analysis suggest that over longer time periods the bacterial 

communities became more similar to the original community in terms of abundance, 

productivity and composition.  MDS (Figure 5.5) showed that from 7 days onwards 

sample attributes were similar to those observed in the early stages of the incubation 

with the exception of samples from the Ni2+, Pb2+ and cocktail conditions (7 days).  

DGGE analysis showed that the bacterial community from the exceptions listed above 

were dominated by phylotypes which migrated to a similar depth in the DGGE gel as 

those which dominated in the control condition.  Comparison between the DGGE 

profiles of samples from the cocktail condition at days 3 and 7 indicated recovery of 

phylotypes which were inhibited in the early stages of the incubation (Figure 5.6). The 

reversion of the bacterial community to one more similar to the control indicates that 

the initial toxicity levels had decreased by day 7, possibly through sequestration of free 

metal ions as discussed previously or via the formation of biofilms associated with 
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particle or incubation vessel surfaces.  It is also possible that bacterial metal tolerance 

levels increased over time, perhaps through expression of genes involved in metal 

tolerance or selection for tolerant individuals within phylotypes. 

5.4.1.3 Dominant bacteria in samples most impacted by metal enrichment.  

Analysis of phylogeny (Figure 5.7) showed that all dominant bacteria found in 

DGGE separated samples (selected by virtue of their differences to control conditions) 

belonged to the Rhodobacteraceae clade of the �-proteobacteria.  Surprisingly these 

bacteria also dominated in the control condition suggesting that it was the less dominant 

bacterial community which varied with the addition of trace metals. This theory is 

suggested by the marked increase in dominance of phylotypes previously present at low 

levels in the cocktail condition (day 3, Figure 5.6).  All samples were dominated by a 

small number of bacterial phylotypes whose closest relatives include; Sagittula stellata, 

a bacterium capable of transforming lignin and hydrolysing cellulose (Gonzalez et al. 

1999);  Rhodobacter sphaeroides, a bacterium able to photosynthesize, utilise aerobic 

and anaerobic modes of respiration, fix molecular nitrogen and detoxify a number of 

metal oxides and oxyanions (Moore and Kaplan, 1992); Roseobacter, a bacterial genus 

instrumental in the degradation of dimethylsulfoniopropionate (DMSP) and other 

organic and inorganic sulphur compounds in marine environments (Gonzalez et al. 

1999).   This bacterial family (Rhodobacteraceae) can utilise a wide variety of 

substrates including sulphite, methanesulphonic acid, DMSP, methylamine, methyl 

bromide, lignin and aromatic compounds (Gonzalez et al. 1997; 1999; Pukall et al., 

1999).  It is clear that this group of bacteria are important in terms of carbon and 

sulphur cycles and as such their apparent ability to maintain productivity in the 

presence of elevated metals has implications for the biogeochemical cycling of such 

elements.  Whilst this bacterial group is frequently found in marine or estuarine 

environments it is important to note that only a small proportion of the total bands were 

sequenced (based on their apparent dominance) and it should not be assumed that this 

bacterial group was present to the exclusion of other groups.  Nonetheless this study 

suggests that members of the Rhodobacteraceae are more able to tolerate a cocktail of 

trace metals than other estuarine bacteria.    

     



 125 

5.5 Conclusions 

 The observations presented in this chapter allowed the division of the metals 

added into two groups based on the response of the bacterial community.  Observed 

differences in response (both in bacterial production and numbers) supported the 

division into Type 1 and Type 2 metals.  This study also demonstrated that there are 

two major time-scales of response, short-term (<24 hours) and long term (>7 days), 

suggesting that the length of incubation has important implications for assessing 

response of bacterial communities to metal enrichment.  The dominance of the 

Rhodobacteraceae (in the communities which responded differently to their temporal 

counterparts in different conditions) suggests a degree of metal tolerance common to 

members of this metabolically diverse group of bacteria.  Particularly in light of the 

ability the bacteria in these communities to maintain comparable levels of production to 

that observed in the control.  The formation of aggregates with very different 

appearances in the different conditions suggested an impact of metal enrichment on 

aggregate formation.  The importance of aggregates in estuarine and marine systems 

suggests that this phenomenon should be investigated further. 

It was apparent that the effects of metal enrichment on bacterial community 

were not adequately investigated using the techniques used in this study.  Whilst this 

study provides a general picture of the effects of Type 1 and Type 2 metals on bacterial 

communities in a pristine estuary, information pertaining to substrate use, changes in 

metal concentration / speciation, numbers and activity of bacteria associated with 

aggregates, would enhance our understanding of the effects of metal enrichment. 
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6 Effects of trace metals on bacterial community structure 

associated with size-fractionated suspended particulate matter 

(SPM) - does RNA give a clearer picture of community change 

than DNA? 

6.1 Introduction 

6.1.1 Trace metals in estuaries 

 Anthropogenic sources of trace metal contamination in estuarine environments 

are many and varied (Cobelo-Garcia et al. 2004).  They range from diffuse sources 

such as the use of fertilisers on agricultural land, to point source industrial inputs from 

industries such as smelting.  The distribution and toxicity of trace metals once within an 

estuary is highly dependant upon a number of physicochemical variables including 

salinity, pH and suspended particulate matter (Achterberg et al. 2003; Hatje et al. 

2003).  The relationship between metals and particulate matter has been shown to 

depend on the size and composition of the particles in question.  For example, metal 

sorption is dependant upon the organic matter content of the particle (Turner et al. 

2004).   Furthermore, the formation of iron and manganese oxides / oxyhydroxides on 

the surface of particles can subsequently increase the deposition of other metals 

(Millward and Moore 1982; Turner et al. 2004).  The association of metals with SPM 

and ligands is thought to reduce their biological availability and in doing so reduce 

toxic effects (Chen et al. 1999).  It is reasonable to hypothesise that the metal 

compliment of each size fraction of estuarine particulate matter will be different, thus 

bacteria within each size fraction are likely to respond differently to increased metal 

concentrations. 

6.1.2 Analysis of aggregate associated microbial communities 

 The bacteria associated with aggregates, particularly in estuarine environments, 

have been shown to play an important role in the cycling and remineralisation of 

organic matter (Section 1.3).  A number of studies have been performed to investigate 

the bacterial communities on and off estuarine aggregates (e.g. Delong et al. 1993; Rath 

et al. 1998; Acinas et al. 1999; Bidle and Fletcher 1995; Crump et al. 1999).  Such 

studies tend to conclude that the aggregate associated community is different to the 

free-living community but with some overlaps.  These may be attributed to either 
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insufficient separation due to sampling technique or to attachment and detachment 

processes.  Experimental determination of aggregate association ranges from sampling 

of individual aggregates to size fractionation by filtration.  The division of SPM into 

size fractions is arbitrary as particles are present in a spectrum of sizes.  However 

sampling by filtration is less labour intensive than collection of individual aggregates in 

situ and does not require specialised equipment such as SCUBA (used for collection of 

visible aggregates such as marine snow).   

6.1.3 Comparisons of rRNA and rDNA derived denaturing gradient gel fingerprints 

 Denaturing gradient gel electrophoresis is a technique which has been 

successfully employed in numerous aquatic environments to determine the diversity of 

bacterial communities (Section 1.1).  The main benefit of fingerprinting methods such 

as DGGE is the ability to analyse a large number of samples in a relatively short period 

of time and at relatively low expense (c.f. clone library preparation and sequencing, see 

Table A.2 for a more comprehensive list of advantages and disadvantages of the DGGE 

method).   

 DGGE is routinely performed on PCR amplified fragments of the 16S rRNA 

gene (rDNA), although more recently a number of workers have investigated the 

application of DGGE using reverse transcribed rRNA and compared it with DNA-

derived DGGE (e.g. Teske et al., 1996a,b ; Griffiths et al., 2000; Duineveld et al. 2001; 

Norris et al., 2002; Girvan et al. 2003; Ebie et al., 2004).  Such investigations have, 

with few exceptions, attributed the bacterial population elucidated by rRNA derived 

DGGE as being the more active fraction of the community.  This assumption has been 

based on the observations that i) all phylotypes represented in the cDNA fingerprint are 

also present in the DNA fingerprint and ii) the rRNA derived fingerprint is generally 

less complex than the fingerprint derived from rDNA.  

6.1.4 The Tamar estuary  

 The Tamar estuary complex (location indicator: 50:26:114 N, 04:11:42 W) is a 

drowned river (Ria) which is tidal to approximately 30kM, the lower reaches form 

extensive tidal mudflats which border on saltmarsh communities.  The estuary was 

classified as a special protection area in the summer of 1997 due to a wide variety of 

infaunal communities and the role of the estuary as a feeding and roosting area for large 

numbers of wintering and passage birds.  The most notable metals present are lead, 
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arsenic and copper, derived from abandoned mines and waste tips in the mineralised 

part of the catchment (Environment Agency, 1999).  As a result of tidal resuspension of 

bed sediments the Tamar has a pronounced turbidity maxima zone (TMZ; Uncles et al., 

1994).  Within that TMZ the loading of suspended solids ranges from 100 to 1000mg 

per litre.  

 The aims of this study were two-fold.  Firstly to determine if bacterial 

communities associated with different size fractions of the suspended particulate matter 

responded differently to trace metals.  Secondly to compare inferences about 

community change drawn from DNA and RNA derived DGGE community profiles.  

To achieve this, the effect of metal addition on bacterial community diversity has been 

analysed using cDNA and DNA template for PCR-DGGE of different size fractions.  

These were operationally defined as aggregates (>20 µm), microaggregates (2 - 20 µm) 

and free-living (0.2 - 2 µm).   
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6.2 Methods 

6.2.1 Water collection and incubation strategy 

 The Tamar estuary was sampled from the PML research vessel Tamaris on the 

16th of March 2004.  Water from the surface of the estuary (salinity 15) was pumped 

directly into three 20 L low density, acid washed, sterile polycarbonate bottles.  

Samples were transferred to a CT (10±1°C) laboratory at PML for manipulation.  Metal 

additions were made to two sample bottles within 2 hours of sample collection.  The 

first addition was zinc (1µM) and the second was the same cocktail of metals used in 

Chapter 5 (Erme estuary: Zn2+ (15 µM), Cu2+ (950 nM), Cd2+ (18 nM), Ni2+ (200 nM) 

and Pb2+ (300 nM)).  The third bottle was unamended as a control.  All samples were 

incubated on aggregate rollers, in the dark, at ambient estuarine temperature (10±1°C).  

Sub-samples were collected at T0, and days 5 and 9 of the incubation (hereafter T5 and 

T9 respectively). 

6.2.2 Sub-sample collection  

 Sub-samples for determination of initial diversity were collected by filtration of 

250 mL aliquots through a 0.2 µm pore size polycarbonate filter.  Sub-samples were 

collected at subsequent time ponts for size fractionated analysis of bacterial diversity.  

Aliquots (250 mL) were sequentially filtered under low pressure through 20 µm, 2 µm 

and 0.2 µm pore size polycarbonate Nuclepore filters.  Filters were snap frozen in 

liquid nitrogen and stored at -80°C.  Sub-samples (100 mL) for analysis of absorbance 

were taken at two time points by decanting into 250 mL plastic beakers which were 

covered using aluminium foil. The filter sizes were selected to represent the fraction of 

the estuarine bacterial community associated with aggregates (>20 µm), 

microaggregates (20-2 µm) and the colloidal / free-living (2-0.2 µm) fraction of the 

community. 

6.2.3 Analysis of sub-samples 

6.2.3.1 Absorbance 

 Measurement of absorbance was used to quantify the difference in DOM 

absorbance of the sample water after 5 days and 9 days of incubation.  Samples were 

collected by decanting into plastic beakers and covered using foil to prevent 
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contamination.  Blanks were prepared by centrifugation (RCF= 16 000, 60 minutes, 

4°C) to remove temporarily suspended particles. The supernatant was decanted into 

plastic containers and samples and blanks processed immediately for cDOM analysis 

according to the method of Tilstone et al. (2002).  Briefly, quartz cuvettes were rinsed 

using approximately 10 mL sample blank (supernatant) at room temperature and the 

absorbance of the blank measured between 350 nm and 800 nm.  The cuvette was then 

filled with the corresponding sample and scanned for absorbance over the same 

absorbance range.  The equipment stability was checked by performing a scan with 

room temperature MilliQ water.  The remaining samples were analysed as described 

above alternating blank and sample scans with MilliQ scans. 

6.2.3.2 Nucleic acid extraction 

 Samples for diversity analyses were defrosted on ice prior to nucleic acid 

extraction.  The CTAB method had previously been shown (data not presented here) to 

successfully extract good quality RNA and so was applied as described previously 

(Section 2.4) with RNase free reagents, plastic and glassware (see appendix 1).  Nucleic 

acids were precipitated with 2.5 volumes of ethanol with Pellet Paint® (Novagen, 

Merck Biosciences, UK) as co-precipitant to maximise recovery.  Following a 70% 

ethanol wash the dry nucleic acids were resuspended in RNase free Milli Q water (40 

µL).  Presence of nucleic acids was confirmed using agarose gel electrophoresis or 

analysed using a micro-chip reader (Agilent 2100 Bioanalyzer; performed by Mike 

Allen, PML).  Samples for DNA analysis were stored at -80°C prior to PCR.  Samples 

for RNA analysis were treated with RNase free DNase prior to first strand synthesis.   

6.2.3.3 DNase treatment and first strand synthesis. 

 Aliquots (40 µL) of total nucleic acids were incubated for 30 minutes with 

RNAse free DNAse RQ1 (5µL) and 10 × reaction buffer (5 µL) at 37°C.  The DNase 

was deactivated by addition of provided stop solution (5 µL) and incubation at 65°C for 

10 minutes prior to PCR.  Aliquots (5 µL) were used to confirm degradation of DNA 

by agarose gel electrophoresis prior to synthesis of cDNA. Reagents for DNase 

treatments were obtained from Promega. 

cDNA first strand synthesis was achieved by combining aliquots (2µg) of RNA 

with 0.5µg random hexamers in 0.5 µL PCR tubes on ice. The mixtures were made up 
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to a maximum volume of 15µL with RNase free Milli Q and heated to 70°C for 5 

minutes to melt secondary structure prior to transfer to ice. 

 

Master mix: 

  5µL   M-MLV 5x reaction buffer 

  5µL  10mM dNTPs 

  25U RNasin Ribonuclease inhibitor 

  200U M-MLV RT 

  + RNase free water to 25µL final volume. 

 

Master mix (25 µL) was added to each sample on ice, and mixed well prior to 

incubation at 37°C for 60 minutes.  A control reaction without enzyme was run in 

parallel. The resulting product was then used as template in PCR. 

6.2.3.4 Polymerase chain reaction - denaturing gradient gel electrophoresis 

The polymerase chain reaction (PCR) was performed to amplify cDNA and 

DNA template using primers 341f (GC) and 907r (see Table 2.3 for sequence, reference 

and target regions) and an annealing temperature of 57°C .  Products were 

electrophoresed (1% agarose) to confirm presence and size of product and assess the 

efficacy of the DNase treatment (Section 6.2.3.3).  DGGE was performed to compare 

the RNA derived and DNA derived PCR products for each condition, each size class 

and each time point.  Gels were stained and visualised (Section 2.5.4), and bands were 

selected for cloning and sequencing. 

6.2.3.5 Cloning and sequencing 

 Excised fragments were reamplified using primers 16S_nested 1_f and 

16S_nested 1_r (Table 2.3) and an annealing temperature of 57°C.  Products were 

ligated into pGEM-T Easy vector, transformed into E. coli (DH5 �) and sequenced 

(sections 2.4.4 and 2.4.5 respectively).  Sequences were submitted to the BLAST search 

programme of the NCBI website to identify phylogenetic affiliation of the fragments.  

Chimeric sequences were identified using the RDP-II check chimera facility and 

excluded from further analyses.   
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6.2.3.5 Statistical analysis 

 Statistical analyses were performed using PRIMER-E (5) software.  Briefly, 

MDS and cluster analyses (Bray-Curtis similarity coefficient) were performed to 

determine the similarity of results obtained from DNA and cDNA derived DGGE gels 

(initial analysis using Genetool software) and also to compare the response of bacteria 

in different size fractions to metal enrichment.  Background correction was performed 

using a rolling disc and the number and peak height of individual bands (OTUs) 

determined.  This information was used to determine relative band intensity and 

Shannon diversity indices (H’ ) for each sample. 
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6.3 Results 

6.3.1 Molecular analyses 

6.3.1.1 Analysis of DGGE derived from samples collected at the beginning (T0) of the 

incubation 

 DGGE analysis of samples from T0 showed that both the extraction and 

amplification of nucleic acids were reproducible between samples (Figure 6.1).  Within 

each template type the same bands were present in replicate amplifications.  The cDNA 

fingerprints were less complex than analogous DNA fingerprints and some variation in 

intensity was apparent.  

 Multi-dimensional scaling was used to show the similarity of fingerprints 

derived from samples taken at T0 (Figure 6.2).  Samples clustered according to template 

type, with the DNA derived fingerprints showing greater similarity to each other than 

the cDNA derived fingerprints (Figure 6.2A, >72% and >40% Bray Curtis similarity 

respectively).  No clustering according to incubation conditions was apparent at this 

time with either template (Figure 6.2 B). 

 Diversity at T0 was invariably higher in DNA derived fingerprints than those 

obtained from cDNA.   This is supported by diversity statistics (H’ ) which were always 

higher from DNA derived fingerprints than those derived from cDNA, regardless of 

incubation condition (Figure 6.3).  Some variation in diversity was observed between 

replicates. 
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Figure 6.1 DGGE fingerprint of PCR products of samples taken from the Tamar 

estuary (T0).  Samples in lanes 1 and 4 were taken from the control; lanes 2 and 5 taken 

from the 1µM Zn condition; lanes 3 and 6 taken from the cocktail condition.  Arrows 

indicate sequenced bands.  DNA / cDNA indicate template for PCR. 
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A) Template

DNA

cDNA

Stress: 0

B) Condition

Control

1µM Zn2+

Cocktail

Stress: 0

 
Figure 6.2 Multi dimensional scaling plots showing similarity between DGGE 

fingerprints at T0 displayed as A) cDNA and DNA and B) Incubation conditions (see 

key for details). 
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Figure 6.3 Diversity indices of T0 samples.  Samples were taken from the >0.2µm 

fraction following experimental additions and prior to initiation of incubation. 

 

6.3.1.2 Analysis of DGGE derived from samples collected after 5 days of incubation 

 DGGE analysis of samples from T5 showed that a small number of phylotypes 

were present in all conditions and all size fractions (Figure 6.4).  As was observed in 

the T0 samples, RNA derived fingerprints were generally less complex than their DNA 

derived counterparts.  It was observed that bands present in the cDNA fingerprints were 

also present in the DNA derived fingerprints  Both RNA and DNA derived fingerprints 

were more complex at T5 than at the beginning of the incubation.  Furthermore it was 

observed that ‘new’  bands i.e. those not present at T0 were consistently present in both 

the DNA and RNA derived fingerprints (Figure 6.4).   At T5 differences between the 

size classes are beginning to become apparent.  For example the regions between bands 

6 and 8 (Figure 6.4) appear to be more populated in the >20µm fraction (Figure 6.4, A) 

than in either the 20µm>2µm (Figure 6.4, B) or 2µm - 0.2µm (Figure 6.4, C) fraction. 

A further difference is the comparative simplicity of the fingerprint in samples from the 

2µm - 0.2µm (Figure 6.4, C) fraction of the ‘cocktail’  incubation when compared to the 

other conditions.   
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Figure 6.4 DGGE fingerprints of PCR products of samples taken from the Tamar 

estuary (T5 days).  Samples in lanes 1-6 were taken from the control, lanes 7-12 taken 

from the 1µm Zn condition and lanes 13-18 taken from the cocktail condition.  Arrows 

indicate sequenced bands.  Sample lanes with odd numbers were created with DNA as 

template (except for 19 which is the -ve reverse transcription (RT) control); sample 

lanes with even numbers were created with cDNA template.  Letters indicate size 

fraction: A = >20µm, B = 20µm - 2µm, C = 2µm - 0.2µm. 
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6.3.1.3 MDS Analysis of DGGE derived from samples collected after 5 days of 

incubation 

 MDS analysis of DGGE fingerprints from each template between size fractions 

supported the visual assessment (Figure 6.5C) that the >20µm fraction was detectably 

different to the remaining fingerprints (although only in the DNA derived samples).  

Analysis of both the combined template (6.5A) and cDNA (6.5B) did not differentiate 

between the size fractions.    

 MDS analysis of DGGE fingerprints from each size fraction between incubation 

conditions showed that samples in the 2µm-0.2µm fraction clustered according to the 

incubation condition from which they were derived (Figure 6.6B). A high degree of 

similarity was calculated between DNA and cDNA derived fingerprints (Bray-Curtis 

similarity co-efficient values were: 73.0, 93.9, and 85.4 for the Control, 1µm Zn2+, and 

Cocktail respectively).  Conversely, both the 20µm-2µm and >20µm fraction derived 

fingerprints clustered according to whether they were control or amended samples 

(Figure 6.6C and D).  When all size fractions were analysed together, whilst some 

groupings according to incubation condition were apparent, it was not possible to 

distinguish definitively between conditions (Figure 6.6A).   

 MDS analysis of DGGE fingerprints from each template between incubation 

conditions showed that products derived from cDNA clustered according to incubation 

conditions (Figure 6.7B).  Analysis of DNA derived fingerprints however, only 

distinguished between control and amended samples (Figure 6.7C).  As observed 

previously all templates together did cluster according to incubation conditions but 

without the required definition to definitively distinguish them. 
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6.3.1.4 Analysis of DGGE derived from samples collected after 9 days of    incubation 

 Visual analysis of DGGE fingerprints suggest that there was greater complexity 

at T9 than was observed at either T0 or T5 in both the DNA and cDNA derived 

fingerprints (Figure 6.8).  At T9 it became apparent that there were greater differences 

between fingerprints from different size fractions than between fingerprints derived 

from different templates in both the control and 1µm Zn2+ conditions.  However in the 

Cocktail condition differences between template types were more noticeable.  In 

addition to the newly populated region observed in T5 (tentatively suggested to be 

analogous to between bands 11 and 17, Figure 6.8), the region between band 1 and 

band 7 (Figure 6.8) showed a number of new bands.  Again, these new bands were 

observed in both the DNA and cDNA derived fingerprints.  As observed previously 

fingerprints derived from both DNA and cDNA were dominated by a small number of 

bands.  However, the fingerprints derived from cDNA appeared to be more complex 

than previously observed.   

6.3.1.5 MDS Analysis of DGGE derived from samples collected after 9 days of 

incubation 

 MDS analysis of DGGE fingerprints from each size fraction indicated that 

fingerprints from the 0.2-2µm fraction clustered separately (Figure 6.9B) according to 

incubation condition.  This phenomenon was also observed at T5.  Furthermore, the 

trend observed in the similarity indices (Bray-Curtis co-efficient) at T5 (i.e. Control < 

Cocktail < 1µm Zn2+) was also apparent here although the actual similarity values were 

lower (54.4, 58.6 and 72.1 respectively).  Fingerprints from the 2-20µm fraction were 

not sufficiently different to distinguish between conditions (Figure 6.9C).  Similarly, 

significant overlap between conditions was observed in the >20µm size fraction (Figure 

6.9D), the differences were however large enough to separate the control and cocktail 

conditions effectively.  When all size fractions were analysed together (Figure 6.9A), 

although groupings according to incubation condition were apparent (in a similar 

manner to the corresponding T5 analysis) it was not possible to distinguish definitively 

between conditions. 
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     Control          Zinc (1µM)        Cocktail 

Figure 6.8 DGGE fingerprint of PCR products of samples taken from the Tamar 

estuary (T9 days).  Samples in lanes 1-6 were taken from the control, lanes 7-12 taken 

from the 1µm Zn condition and lanes 13-18 taken from the cocktail condition.  Arrows 

indicate sequenced bands.  Sample lanes with odd numbers were created with DNA as 

template (except for 19 which is the -ve reverse transcription (RT) control); sample 

lanes with even numbers were created with cDNA template.  Letters indicate size 

fraction: A = >20µm, B = 20µm-2µm, C = 2µm-0.2µm.  Bands present in the -ve RT 

control were excluded from further analyses. 
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 MDS analysis of DGGE fingerprints from each template between incubation 

conditions showed that fingerprints derived from cDNA clustered for the most part 

according to incubation condition (Figure 6.10B).  The exception to this was the 

fingerprint from the 20µm 1µM Zn2+ sample which showed greater similarity to the 

fingerprints from the Cocktail incubation condition than the remaining Zn2+ fingerprints 

(Figure 6.10B).  In contrast to the cDNA derived fingerprints, analogous DNA derived 

fingerprints were as similar between conditions as they were within conditions (Figure 

6.10C).  When all size fractions were analysed together (Figure 6.10A) groupings 

according to incubation condition were apparent with only two exceptions: >20µm 

Cocktail and 0.2-2µm Zn2+, both of which were more similar to the Control fingerprints 

than those derived from their respective incubation conditions.  

 MDS analyses of DGGE fingerprints from each template between size fractions 

showed no discrete clusters according to size fractions in any of the analyses performed 

i.e. all templates (Figure 6.11A), cDNA (Figure 6.9B) or DNA (Figure 6.11C).  

However, cluster analyses (Figure 6.12) of individual conditions showed that in the 

Control and  1µM Zn2+ conditions the size fraction explained more of the similarity 

between fingerprints than did the template type (Figures 6.12A and B respectively).  In 

the control the largest differences were observed between the >20µm and 2-20µm size 

fractions (Figure 6.12A).  In the 1µM Zn2+ condition the greatest differences were 

observed between the fingerprints from the >20µm fraction and the remaining 

fingerprints (Figure 6.12B).  Conversely in the Cocktail condition fingerprints were 

discretely separated into template type (Figure 6.12C).  
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Figure 6.12 Cluster analysis for each condition displaying relationships between 
samples.  Labels shown according to most influential factor (given in parentheses). 
A) Control (size fraction); B) Zinc (size fraction); C) Cocktail (PCR template type).  
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6.3.2 Diversity analyses 

 Diversity indices (Shannon diversity H’ ) were calculated based on the DGGE 

fingerprints from Figure 6.4 and Figure 6.8.  DNA derived fingerprints from T5 (Figure 

6.4) indicated that, with the exception of the > 20µm fraction from the Zn2+ incubation, 

bacterial diversity was higher than the control in both experimental conditions (Figure 

6.13A).   Conversely fingerprints derived from DNA for T9  samples (Figure 6.8) 

showed that, with the same exceptional sample ( > 20µm fraction, Zn2+ incubation) 

bacterial diversity was lower in the experimental samples than in the control (Figure 

6.13C). 

 Fingerprints derived from cDNA template (T5, Figure 6.4) showed a similar 

result to DNA derived fingerprints with two exceptions; firstly diversity in the 2 - 20 

µm fraction of the Zn2+ incubation was lower than control; secondly, diversity in the 

0.2 - 2 µm fraction of the cocktail incubation was the similar the control (Figure 

6.13B). Conversely at T9 fingerprints from all experimental samples (Figure 6.8) were 

noticeably less diverse than the control (Figure 6.13D).   

 

 

 

Figure 6.13 Shannon diversity indices (H’ ) calculated for each incubation condition, 

template type and size fraction. A) T5 DNA; B) T5 cDNA; C) T9 DNA; D) T9 cDNA. 
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6.3.3 Sequence analysis 

 Sequence analysis of the bands extracted from the gel in Figure 6.1 showed that 

the bacterial community was dominated by bacteria from the � division of the 

proteobacteria.  Closest known relatives are given in Table 6.1.  All sequences had 

closest relatives previously detected in marine or estuarine environments.  Band 5 

(DNA) and Band 1(cDNA) which migrated similarly through the gel were both 99% 

similar to the same � proteobacterium.  However, it should be noted that two other 

sequenced bands also showed this level of similarity with that particular �-

proteobacterium despite differing patterns of migration.  Sequence analysis of bands 

extracted from gels in figures 6.4 and 6.8 (T5 and T9) also showed dominance by the � 

proteobacteria.  In all cases sequenced bands were observed at least once in all 

conditions within a given timepoint.  From a total of 34 bands sequenced, only two 

sequences were represented in each of the three gels and both were � proteobacteria 

clones (specifically WB11-28 and Pl 4d7g).  Three sequences were only detected in the 

T0 gel (Figure 6.1); Roseobacter NAC11-7,  � proteobacteria clone Pl-4m3h and an 

unidentified Rhodobacteraceae bacterium.  Only one sequence was detected solely in 

the T5 gel (Figure 6.4); a sulfitobacter KMM6006.  Two sequences were represented in 

both the T5 and the T9 gels (Figures 6.4 and 6.8); Sulfitobacter SIMO-672 and 

Rhodobacteraceae SIMO-669.  A total of five sequences unrepresented in the other 

time points were dominant in the T9 gel (Figure 6.8).  These were: sulfitobacter dubious 

strain KMM 3554T; bacterium clone Milano-WF2B-23; Sulfitobacter F2C84; 

Bacterium ARK10207 and Loktanella rosea. 

6.3.4 Absorbance analysis 

 Measurements of absorbance showed that the absorbance of water taken from 

bottles after both 5 and 9 days of incubation were much higher in the Cocktail condition 

(Figure 6.14) than in either the Control or the 1µm Zn2+ condition.  Conversely there 

was very little difference between the absorbance detected in the Control and 1µm Zn2+ 

condition.  Furthermore, absorbance in the Cocktail condition was lower in the T9 

sample than in the T5 sample.
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Figure 6.14 Absorbance curves for samples taken from the Tamar Estuary at T5 days 

and T9 days.  Absorbance determined across the visible spectrum (350-700 nm). A) 

Measured after 5 days of incubation; B) Measured after 9 days of incubation.  
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6.4 Discussion 

 The effect of metal addition on bacterial community diversity has been analysed 

using PCR-DGGE of different size fractions.  The results obtained using rRNA and 

rDNA and the different inferences drawn from each set of results are discussed.  Multi-

dimensional scaling (MDS) has been used to assess the similarity between samples 

based on their DGGE fingerprints, that is, the closer the samples are to one another on 

the ordination plot the more similar their DGGE fingerprints are.  

6.4.1 Influence of aggregate association on changes in bacterial community in 

response to trace metals  

6.4.1.1 Short term incubation effects: T5 

 Bacterial communities amended with either 1µM Zn2+ or a cocktail of trace 

metals were shown to be different to the control after 5 days of incubation (MDS) 

(Figure 6.6 B-D).  The differences were most apparent in the 0.2 - 2 µm size fractions 

after 5 days of incubation in both DNA and cDNA derived fingerprints (Figure 6.6B) 

which successfully separated incubation conditions.  The analysis of the diversity of 

bacterial communities from this size fraction support this observation, indeed in the 

experimental condition variations between cDNA and DNA derived diversity were 0.08 

and 0.07 for Zn2+ and the cocktail respectively (Figure 6.13 A and B).  Furthermore this 

was the only size fraction in which the pattern of diversity was consistent between 

template types (Zn> Cocktail � Control).  Analysis (MDS) of the 2 - 20 µm and > 20 

µm size fractions successfully distinguished between control and experimental 

conditions (Figure 6.6 C and D).  One possible reason for these differences in 

resolution between the free-living and particle associated fractions is a mediating effect 

of particulate matter on metal toxicity.  Particles have been shown to reduce the toxicity 

of metals by providing binding sites for free metals (Hatje et al. 2003).  Furthermore 

the extracellular enzymes produced by bacteria associated with particles may act as 

ligands, again reducing toxic effects (Chen et al. 1999).  Thus, attached bacteria may be 

less impacted by trace metals than free-living bacteria.  

 Diversity analyses also showed that at T5 bacterial diversity was generally 

higher in experimental conditions than in the control (Figure 6.13 A and B).  One 

possible explanation is that the introduction of metals resulted in mortality of 
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previously dominant bacterial phylotypes, allowing bacteria which were previously at a 

competitive disadvantage to become more dominant.  A second possibility, and one 

which has been hypothesized for the other estuaries studied here (Chapters 4 and 5), is 

that the addition of metals resulted in a pulse of nutrients due to phytoplankton 

mortality or toxic effects.  Diatom cultures exposed to metals have previously been 

shown to produce excess carbohydrates, presumably as a chelating agent, as a response 

to copper toxicity (e.g. Pistocchi et al., 1997).  The release of carbohydrates would 

alleviate nutrient limitation.  A third possibility is that the introduction of metals would 

favour bacteria with metal tolerance capabilities and thus enable them to constitute a 

detectable fraction of the community following a period of incubation. 

6.4.1.1 Longer term incubation effects: T9 

In contrast to the results discussed above, after 9 days of incubation bacterial 

diversity was, with a single exception, lower in experimental conditions than in the 

Control condition.  This suggests that, following an initial increase in bacterial diversity 

attributable to the factors listed above, bacterial diversity is negatively affected by trace 

metals both in single and mixture form.  The effect was more pronounced in the 

cocktail of metals than with the addition of zinc alone (with two exceptions).  This 

indication by diversity analysis (H’ ) is strongly supported by the ordination of samples 

by MDS which showed that the bacterial community in the 1µM Zn2+ condition was 

more similar to the Control than the community from the Cocktail condition after 9 

days.  The reduction in diversity reflects work performed by other authors who state 

that perturbation of bacterial communities may reduce diversity (Ø vreas et al.,1998; 

Beaulieu et al., 2000).  As was noted previously the fingerprints from communities in 

the 0.2 - 2 µm size fractions showed the greatest differentiation between conditions.  

This may be due to more recent formation and colonisation by bacteria directly exposed 

to the influence of metals.  Furthermore, a larger surface area to volume ratio in this 

size class would result in greater diffusion of metals into the immediate area of the 

bacterial community c.f. larger aggregates.  In addition, the nature of aggregation would 

result in the formation of communities within the matrix of the aggregate. This would 

protect the bacteria from the effects of metal toxicity by enhancing the diffusion 

gradient relative to that experienced by bacteria associated with small / young 

aggregates.  Accordingly, the 2 - 20 µm size fractions showed no distinct groupings 

according to incubation condition.  Analysis of the > 20 µm fraction did, however, 
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differentiate between the control and cocktail conditions.  This was reflected by a large 

difference between the diversity indices of these two conditions.  One explanation for 

the difference between the aggregate associated fractions is the presumed age of the 

aggregates therein.  As an aggregate ages bacterial production has been shown to 

decrease (Grossart and Ploug 2000; Ploug 2001), this includes the production of 

extracellular enzymes and other biopolymers i.e. ligands which would reduce metal 

toxicity (Chen et al. 1999; Guibaud et al. 2005; Iyer et al. 2005).  As a result bacteria 

associated with older aggregates would be less protected from metal toxicity than those 

associated with younger aggregates. 

6.4.2 Determination of suitability of DNA and cDNA derived DGGE fingerprints 

for the analysis of bacterial response to metals.  

At T0 comparison of the resolution of DNA and cDNA derived fingerprints 

suggested that the DNA derived fingerprints gave a more consistent result.  However, 

to confer a degree of environmental relevance to results it is also necessary to 

determine the response of the active fraction of the bacterial community.  The active 

part of the bacterial community was defined as the portion of the community actively 

synthesising rRNA.  Bacterial rRNA is typically broken down within minutes-hours of 

synthesis (c.f. hours-days depending on environmental conditions for DNA; Paul et al., 

1987) thus the use of rRNA to create cDNA enables the investigation of which of the 

phylotypes present are active under the conditions described above.  This was achieved 

by comparison of DNA and cDNA derived community fingerprints. 

6.4.2.1 Comparison of short term response: T5 

   Comparison of MDS ordination plots to investigate the effect of incubation 

conditions at T5 suggested that cDNA was the more appropriate template i.e gave 

greatest resolution between incubation conditions.  DNA was able to distinguish 

between the control conditions and incubations which had been treated with metals, 

whereas cDNA derived fingerprints clustered according to incubation condition.  The 

cDNA (rRNA) derived fingerprint has been suggested to represent the active fraction of 

the bacterial community (Schafer et al., 2001; Koizumi et al., 2003), thus it is likely 

that the differences observed are a result of the effect of incubation conditions on the 

bacterial community. Furthermore it is likely that these effects would impact directly on 

bacterial production because they pertain to the active fraction of the community.   
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 The increased resolution between conditions with cDNA as template was not 

reflected by analyses of diversity.  The nature of the Shannon diversity index results in 

simplification of what is frequently complex data into a single number which could 

explain the loss of distinguishing power when compared to MDS analysis.  A further 

reason could be that the Shannon diversity index also encompasses the evenness of 

members of a given community hence domination by a small number of phylotypes, as 

observed here can overpower the significance of changes in the minor fraction of the 

community, a phenomenon which is also shared by the DGGE technique.  It is probable 

that more extreme, less variable effects would be identified more consistently by the 

Shannon diversity index and as such it may be applicable in other studies if interpreted 

with caution. 

6.4.2.2 Comparison of longer term responseT9 

 At T9 it was also apparent from MDS analysis that cDNA derived DGGE 

fingerprints differentiated between conditions with the exception of the >20 µm 

fraction of the Zn2+ incubation which showed greater similarity to the Cocktail 

condition than the remaining Zn2+ conditions.  Conversely the DNA derived 

fingerprints did not cluster according to incubation condition, indeed the >20 µm 

fraction of the Cocktail and 0.2 - 2 µm fraction of the Zn2+ condition were more similar 

to the Control fingerprints than fingerprints from the same condition.  Diversity 

analyses confirmed that cDNA derived fingerprints provided more evidence for 

differences between conditions than did those derived from DNA.  In all size fractions 

the diversity calculated from cDNA fingerprints followed the same general trend i.e. 

Control > Zn2+ > Cocktail.  This suggests that under these conditions increased 

incubation time fulfils the pre-requisites for successful application of the Shannon 

diversity index (H’ ).  In addition this result supports the possibility that the addition of 

a cocktail of trace metals has a more profound affect on bacterial community structure 

than addition of zinc alone.  This conclusion has been discussed previously (Chapter 5) 

with supporting bacterial production and abundance data and appears to hold true in the 

moderately contaminated estuary studied here.    
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6.4.3 Is the effect of aggregate association on bacterial community structure more 

important than effects conferred by metal addition?  

6.4.3.1 Comparison of influence of trace metals and aggregate association on 

 bacterial community structure; T5 

 Comparison (MDS) of fingerprints from different size fractions at T5 showed as 

much variation within size fractions as was observed between size fractions, although 

there did appear to be greater similarity between samples from the > 20µm size 

fraction.  This suggests that the influence of metal toxicity on bacterial community 

structure was greater than effects conferred by size fraction.  It is possible that at this 

early stage of aggregate formation, the aggregate (and micro-aggregate) associated 

bacterial community is still undergoing exchange with the surrounding water column, 

furthermore the formation of aggregates is an ongoing process by which micro-

aggregates are assimilated into larger aggregates and as such numerous overlaps 

between communities would be apparent.  This could also account for the apparent 

similarity observed in the > 20µm fraction.  The theory that there would be exchange 

between the two smaller size fractions is supported by the similarity of the dominant 

bands observed in the 2 - 20 µm and 0.2 - 2 µm size fractions within conditions.  

Previous studies of differences between diversity on and off estuarine particles (Acinas 

et al. 1999; Bidle and Fletcher 1995; Crump et al. 1999; Delong et al. 1993; Rath et al. 

1998) have shown distinct differences between aggregate associated and free-living 

bacteria.  They have also shown that some overlap exists between the two distinct 

communities, attributable to attachment and detachment processes.  However, these 

studies were performed without any additional influencing factors (e.g. metal addition) 

and thus are not directly comparable with the results presented here.  Differences 

observed between size fractions within experimental conditions in this study are 

supported by evidence presented in such papers. 

 6.4.3.2Comparison of influence of trace metals and aggregate association on 

 bacterial community structure; T9 

  Comparison of MDS between size fractions at T9 showed no size specific 

grouping in either the cDNA or DNA derived fingerprints.  Groupings were observed 

according to incubation condition suggesting that the effects of metals on bacterial 

community structure were greater than those conferred by aggregate association.  When 
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analyses were performed on each condition it was apparent that the effects of aggregate 

association were more important than the effects of template type in both the Control 

and Zn2+ condition.  This suggests that whilst the dominant factor controlling bacterial 

community structure was incubation condition, aggregate association also played a role.  

This pattern does not hold true for the Cocktail condition in which template type had a 

greater effect on bacterial community structure than aggregate association.  This 

supports the suggestion that the influence of incubation condition is more important 

than aggregate association in highly contaminated conditions. 

6.4.4 Affect of incubation time on dominant bacterial phylotypes 

6.4.4.1 Short-term changes in dominant phylotypes due to incubation conditions 

 Sequence analysis of dominant phylotypes shows that, whilst the community is 

still dominated by a number of the same phylotypes as observed in the T0 samples, a 

single phylotype appears which is not apparent in either the T0 or T9 samples and four 

more phylotypes appear which remain after 9 days of incubation.  These phylotypes are 

closely related to two uncultured salt marsh bacteria, a protease producing arctic 

bacterium and a bacterium associated with particles in the Weser Estuary.  It is 

suggested that the incubation technique used here provided a suitable environment for 

these phylotypes to become dominant.  Their presence in all conditions implies that it is 

the formation of aggregates which lead to their dominance, however, their ubiquity at 

this time point also suggests a certain level of metal tolerance.  

6.4.4.2 Longer term changes in dominant bacterial phylotypes as a result of 

 incubation conditions  

 Analysis of sequence data from bands taken from the gel shown in Figure 6.8 

(T9) shows that a number of bacterial phylotypes, which were previously present as 

minor parts of the community, and as such were not sequenced, became dominant after 

9 days of incubation.  These phylotypes were most closely related to a marine biofilm 

bacterium (Loktanella rosea), Antarctic rRNA derived sequences (Sulfitobacter strains 

F4C85 and F2C84), a seagrass associated bacterium (Sulfitobacter dubious 

KMM3554T), a microbial mat bacterium (Milano-WF2B-23) and an Arctic sea ice 

associated �-proteobacteria clone (ARK 10207), the majority of which are associated 

with surfaces.  This observation supports the theory that these bacteria have become 

dominant through the process of aggregate formation.  As mentioned previously their 
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presence in experimental conditions also suggests a level of metal tolerance.  This 

could be a result of biofilm formation which would create a diffusive barrier thus 

providing protection against the toxic effects of metals.  It has been shown that the 

formation of biofilms by Pseudomonas aeruginosa (Teitzel et al. 2003) confers greater 

metal tolerance when compared to free-swimming Pseudomonas aeruginosa supporting 

this theory.  Furthermore, the internal surface of the bottle may be a suitable surface for 

biofilm formation suggesting that formation of aggregates is not the sole reason for the 

development of these communities. 

6.5 Conclusions 

 The results presented here clearly indicate that change in bacterial communities 

is detected more readily through the use of rRNA derived DGGE than rDNA derived 

DGGE.  This conclusion is supported by the different nature and longevity of the 

nucleic acids in question.  It was also apparent that the effects of metals on bacterial 

communities are more profound in the bacteria associated with the smaller (0.2-2 µm) 

fraction of the suspended particulate matter and the free-living community.  This 

implies that the formation of and association with both micro- and macro-aggregates 

can reduce the negative impacts on bacterial communities associated with metal 

toxicity.  Studies regarding the distribution of metals and bacterial communities within 

aggregates would significantly enhance our understanding of this phenomenon.  
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7 Conclusions and future work 

 The response of bacterioplankton communities to trace metals has been 

investigated using a combination of molecular and microbiological methods in a 

number of aquatic environments, encompassing a range of background trace metal 

concentrations with different compositions and concentrations of organic matter.  This 

chapter summarises these responses, describes the wider implications thereof and 

outlines recommendations for future research. 

7.1 Response of bacteria from a diverse range of environments to trace metal 

enrichment; controlling factors and key observations 

The results obtained in chapters 3, 5 and 6 have demonstrated that it is difficult 

to generalise regarding the effects of trace metals on the bacterial communities from a 

wide range of environments such as those studied here.  However, it is possible to reach 

the following conclusions.  The addition of metals (concentrations one or two orders of 

magnitude higher than expected under normal in situ conditions) invariably resulted in 

a change in the diversity / species richness and community dynamics of the bacterial 

community (chapters 3, 5 and 6).  The degree and nature of the change was dependant 

on the environmental conditions, bacterial community present, concentration of metal 

added (chapters 3 and 5), and mediation of effects through association with suspended 

particulate matter (Chapter 6). Furthermore, the work presented here (Chapter 5) 

showed that the metals added could be split into two broad types (Type 1 and Type 2) 

based on bacterial response in terms of production and abundance.   

Bacterial communities from coastal and oceanic environments appeared to have 

different zinc tolerance regimes (Chapter 3).  In the coastal environment bacteria were 

either tolerant or intolerant, regardless of concentration.  In contrast, bacteria from the 

oceanic environment had a range of threshold levels above which they were intolerant. 

The bacterial community from a pristine estuary was remarkably resilient to the 

effect of trace metal contamination (Chapter 5) in terms of maintaining productivity 

levels comparable to the control.  Bacteria in the cocktail condition were the most 

inhibited with regards to both production and numbers both pristine and moderately 

impacted estuarine environments.  Nevertheless, in all environments and conditions 

studied, bacteria were present with ribosomal activity (Chapter 6) or with the ability to 
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incorporate leucine into cellular protein (chapters 3, 4 and 5), even with the addition of 

a cocktail of trace metals (chapters 5 and 6). 

The addition of trace metals was shown to result in decreased diversity of 

bacterial communities from a moderately contaminated estuary (Chapter 6) when 

compared to the control.  In addition, sequence analysis of dominant bacterial 

phylotypes from estuarine samples (chapters 5 and 6) showed that metal impacted 

bacterial communities were dominated by members of the Rhodobacteraceae family of 

the alpha-proteobacteria.  

The incubation of natural samples on aggregate rollers resulted in the formation 

of aggregate associated bacterial communities which were comparatively stable (in 

terms of dominant phlotypes) when compared to the free-living bacterial communities 

(chapters 4 and 6), even under trace metal stress (Chapter 6).  Further investigation of 

bacterial communities associated with different size fractions of the SPM (Chapter 6) 

showed that free-living communities were more susceptible to trace metal toxicity, as 

demonstrated by reduced diversity in the 0.2-2 µm fraction (Chapter 6).  It was also 

apparent that association with aggregates >2 µm in size conferred a measure of metal 

resistance on the bacterial community.  Furthermore, this study demonstrated the 

increased sensitivity of an rRNA based approach (when compared to an rDNA 

approach) to following change in bacterial communities resulting from trace metal 

enrichment. 

7.2 Implications of trace metal contamination in natural environments 

7.2.1 Influence of metal contamination on cycling of major elements. 

 The changes in bacterial communities summarised above, namely reduced 

diversity and altered bacterial abundance and production is of critical importance in the 

cycling of major elements on a local scale.  The likelihood of sufficient metal 

contamination to have a global affect is low, nevertheless, the effect of metal 

perturbation can have serious ramifications on a local scale due to bacterial roles in the 

cycling of both carbon and nitrogen.  Decrease in bacterial productivity and diversity 

may have localised implications for the recycling of organic matter, transformation of 

greenhouse gases and transfer of carbon through food chains, out of estuaries and from 

the photic zone to the deep sea.  Reduction in phylogenetic diversity can also reduce the 

metabolic diversity of a bacterial community which may have serious implications for 
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the removal of certain forms of organic matter from a system.  Furthermore, reduced 

bacterial nitrogen fixation would affect the provision of nutrients in an available form 

to phytoplankton, thus reducing the capacity to fix carbon dioxide and produce oxygen. 

7.2.2 Considerations for determination of metal toxicity in aquatic environments  

The studies described here have clearly demonstrated that insufficient length of 

incubation can result in an overestimation of long term affects of trace metal 

enrichment on bacterial communities.  Investigations performed here showed that in 

terms of bacterial numbers and production estuarine bacterial communities as a whole 

are remarkably resilient, even when they originate from pristine environments (Chapter 

5).  However, analysis of bacterial production and numbers observed in the early stages 

of incubation indicated serious inhibition of bacterial communities as a result of the 

addition of trace metals.  The majority of single-species toxicity tests using bacteria 

(reviewed by Bitton and Koopman, 1992) are selected, aside from economic and 

practical considerations, based on fulfilment of the following criteria:  Firstly, response 

time to toxicants, e.g. Microtox® is commonly performed over durations of up to 30 

minutes (e.g. Kaiser and Palabrica, 1991), and thus enables high throughput of samples.  

The requirement for longer incubations to determine the toxicity of a number of trace 

metals (specifically zinc, copper and cadmium) by such methods has been highlighted 

previously (Preston et al., 2000).  Secondly, sensitivity to the substance under 

observation, however, the diversity of the bacterial communities in most environments 

is likely to consist of bacteria with variable levels of resistance to toxic effects of any 

given contaminant.  Single ‘indicator species’  give a good indication of the worst case 

scenario thus providing a useful starting point for the protection of ecosystems 

(Versteeg et al., 1999), however, detrimental effects may be overestimated and thus not 

necessarily environmentally relevant.  The next best way to determine affects of 

contaminants on receiving systems is through ecosystem modelling, however, the lack 

of environmentally relevant data hampers the ability of modellers to create accurate 

predictive models of the effects of contaminants on aquatic ecosystems.  Furthermore, 

single species tests do not take into account the affects of contaminants on the diversity 

of bacterial communities and the associated myriad different substrates utilised by 

bacteria under in situ conditions.  This is arguably more important when assessing the 

impact of a contaminant on an ecosystem in terms of function.  
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 A further consideration when assessing the effects of metal toxicity on bacterial 

communities is the apparent role played by aggregates in mediating community change 

as a result of metal enrichment.  Analysis of the diversity of bacteria associated with 

aggregates demonstrated that this portion of the community was less variable, over the 

time scales investigated, than the free-living portion of the community.  This suggests 

that the physical environment may ameliorate the diversity reducing affects of metal 

toxicity, and may imply that the effects of metals should be assessed separately for the 

attached and free-living communities.  Furthermore, the relative proportions of the 

bacterial community associated with aggregates should be assessed to give a clearer 

indication of the likely impacts of metal toxicity on nutrient cycles in contaminated 

environments.   

7.2.3 Relationship between metal resistance and antibiotic resistance 

The response of bacterial communities to trace metal enrichment may also 

affect the proportion of the community which are able to resist the effects of antibiotic 

treatment.  It has become more apparent in recent years that the ability of commonplace 

bacteria to withstand treatment by antibiotics has serious implications, particularly in 

the sick, very young or elderly people.  As early as 1977, bacteria which were resistant 

to metals were discovered to also harbour resistance to antibiotics (Allen et al., 1977, 

cited in Calomiris et al., 1984; Timoney et al., 1978).  The genes responsible for 

antibiotic resistance have been found to be located on a plasmid clustered with genes 

which conferred metal tolerance on the bacteria, thus introduction of metals into aquatic 

environment is suspected to increase selection pressure for bacteria with the ability to 

tolerate antibiotics (Baquero et al., 1998).  This relationship between metal and 

antibiotic resistance should be taken into account when legislating contaminant inputs 

into aquatic environments, particularly those used for bathing and recreational 

purposes. 

7.3 Future directions 

7.3.1 Screening of isolates for determination of metal resistance 

 During the course of the studies presented here a number of putatively metal 

tolerant bacteria / consortia have been isolated (methods and data not presented here).  

Preliminary examination of randomly selected representatives indicated enhanced 
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growth under metal enriched conditions c.f. identical media without metal enrichment 

(Appendix A, Figure A.1).  Identification and screening of these isolates / consortia for 

a) degree of metal tolerance, b) metal tolerance genes and c) metal binding ligands / 

proteins would be the next logical phase of this research.  

To clarify the importance of the type (and amount) of organic matter present in 

determining the degree of bacterial response to trace metal enrichment, the isolates 

would provide a good starting point for laboratory studies.  One possible study would 

involve the enrichment of actively growing bacterial cultures with controlled amounts 

of different types of organic matter, in concert with exposure to metal stress.  This 

would indicate to what degree metal toxicity is mediated by different components of the 

environmental matrix and allow determination of the most influential substances. 

7.3.2 Identification of key genes involved in metal resistance 

 A number of key metal tolerance genes have been identified in bacteria 

commonly associated with metal rich environments (reviewed by Nies, 1999), in 

addition the entire genome of a key metal tolerant species Ralstonia metallidurans has 

been sequenced and screened for metal resistance genes (Mergeay et al., 2003).  These 

genes have been subjected to a proteomics approach to allow characterisation of the 

proteins involved in metal resistance.  The use of data presented and bioinformatics 

approaches to create primers with appropriate degeneracy may enable the amplification 

and identification of genes present in the environment which confer metal tolerance on 

the native bacterial community.  Use of DNA based approaches would facilitate the 

identification of metal tolerance genes and give an indication of the potential of bacteria 

in a given environment to tolerate trace metals.  However the information that could be 

gleaned from this approach is limited by the longevity of DNA in the environment, an 

RNA based approach would provide greater insight into which functional genes are 

expressed and therefore likely to play a significant role in metal tolerance in a given 

environment / metal stress level. 

 The use of an RNA based approach introduces a new set of limitations, 

particularly when working with genes expressed in response to a narrow range of 

environmental stimuli.  This is one of the factors which make the use of 16S rRNA, 

which is expressed whenever a cell is actively producing protein, so attractive.  It is 

likely that a large volume of environmental sample or high density of cells would be 

required to obtain sufficient RNA to analyse which genes are being expressed and 
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when.  Despite these limitations there is potential for the molecular approaches 

described here to lead to the identification of marker genes which would indicate metal 

stress in different functional (and possibly phylogenetic) groups of bacteria, thus 

providing a more environmentally relevant indication of the effects of trace metal 

contamination on bacteria. 

 An extension of the genomic approach described above would involve 

examination of the environmental metagenome via the creation of fosmid libraries.  

This approach involves the extraction of nucleic acids from the environment and 

insertion of fragments (usually around 40 kb) into appropriate fosmid vectors.  There is 

potential for the same fragment to carry functional and phylogenetic information which 

would clarify which bacteria were the origins of which metal tolerance genes.  This 

would then enable the researcher to identify which bacteria were responsible for the 

maintained function of the bacterial community in terms of metabolic activity (as 

observed in Chapter 5). 

7.3.3 Investigations of effects of metals on cycling of major elements 

Bacteria are clearly implicated in the cycling of major nutrients in aquatic 

systems, and are particularly involved in carbon and nitrogen cycles.  The activity of 

bacteria in aquatic environments supports the productivity of phytoplankton and 

therefore the majority of the aquatic food web.  Whilst it is acceptable to hypothesise 

about the likely effects of metal toxicity on bacterial function, there are a number of 

methodologies available which would clarify the effects of decreased bacterial diversity 

(in response to trace metal enrichment) on bacterial activities which influence the 

cycling of major nutrients / elements.  One example is the use of labelled (fluorogenic / 

radiolablelled / stable isotope) substrates to determine change in the rate of substrate 

uptake by bacteria.   

Stable isotope probing would also facilitate downstream applications such as 

identification of active bacteria using 16S rRNA.  Alternatives would include the use of 

Biolog ® plates to determine substrate utilisation by bacteria subjected to trace metal 

stress.  The investigation of such factors, ideally in concert with genomic analysis, 

would give a more informative picture of the potential effects of trace metal enrichment 

on the ability of bacteria to recycle major nutrients.  A further possible mechanism for 

the analysis of the effects of trace metals on nutrient cycles would be via the analysis of 

expression of key genes (such as rubisco or nif genes involved in carbon and nitrogen 
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cycles).  Determination of the change in expression, perhaps via RT-real time PCR, 

would demonstrate the degree of inhibition or enhancement of the bacterial contribution 

to relevant cycles.  

7.3.4 Collaboration between disciplines 

 The interpretation of data presented here would have been greatly facilitated by 

the availability of data regarding changes in metal speciation / dissolved concentration, 

composition of aggregates, aggregate associated bacterial production and numbers of 

bacteria associated with particles.  This highlights the importance of collaboration 

between disciplines when investigating systems of this level of complexity. 
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Method Advantages Disadvantages Environments Publications 
DGGE continued equipment Only detects dominant species 

(>1%) 
Hypersaline solar salterns 
Fresh water 
 
Review 

Ovreas et al. 2003 
Cummings et al. 2003; 
Massieux et al. 2004 
Muyzer 1999 

Single strand 
conformation 
polymorphism 
SSCP 

Same as DGGE/TGGE 
No GC clamp 
No gradient 

Same as DGGE/TGGE 
Reannealing during 
electrophoresis 
Some ssDNA can form more 
than one stable conformation 
Short DNA fragments (150-
400bp)  

Rhizosphere 
 
Activated soils 
Compost 

Schweiger and Tebbe 
1998 
Beaulieu et al. 2000 
Peters et al. 2000 

Amplified ribosomal 
DNA restriction 
analysis 
ARDRA (also known 
as RFLP) 

Detect structural changes 
in microbial community 
 

Banding patterns often too 
complex 
Multiple bands from single 
bacterial type 
 

Plant root 
microenvironments 
Agricultural soil 
Estuary 

Moenne-loccoz et al. 
2001 
Moffett et al. 2003 
Crump et al. 1999 
Liu et al. (1997) 

 
 
Table A.1 Examples of molecular fingerprinting methods used to assess the effects of perturbation on microbial communities and the 

environments in which they have been successfully applied. Table adapted from Kirk et al. (2004). 
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Table A.2 Signature pigments useful as indicators of algal class. 

Pigment Algal Class 
19’  Butanoyloxyxanthin Some prymnesiophytes, one crysophyte, several 

dinoflagellates 
19’  Hexanoyloxyxanthin Prymnesiophytes, several dinoflagellates 
Alloxanthin Cryptophytes 
Chlorophyll a All photosynthetic microalgae except prochlorophytes 
Diadinoxanthin Diatoms, dinoflagellates, prymnesiophytes, 

chrysophytes, raphidophytes, euglenophytes 
DV Chlorophyll a Prochlorophytes 
Fucoxanthin Diatoms, prymnesiophytes, chrysophytes, 

raphidophytes, several dinoflagellates 
Lutein Green algae: chlorophytes, prasinophytes 
Peridinin Dinoflagellates 
Violaxanthin Green algae: chlorophytes, prasinophytes, 

eustigmatophytes 
Zeaxanthin Cyanophytes, prochlorophytes, rhodophytes, 

chlorophytes, eustigmatophytes 
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Figure A.1 Examples of response of bacterial isolates to different trace metal 
enrichments.  Cultures grown over 3 days in 210 medium enriched with trace metals 
as indicated. 


