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ABSTRACT
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Doctor of Philosophy
FEATURE EXTRACTION VIA HEAT FLOW ANALOGY

by Cem Direkoglu

Feature extraction is an important field of image processing and computer vision.
Features can be classified as low-level and high-level. Low-level features do not give
shape information of the objects, where the popular low-level feature extraction
techniques are edge detection, corner detection, thresholding as a point operation and
optical flow estimation. On the other hand, high-level features give shape information,
where the popular techniques are active contours, region growing, template matching

and the Hough transform.

In this thesis, we investigate the heat flow analogy, which is a physics based analogy,
both for low-level and high-level feature extraction. Three different contributions to
feature extraction, based on using the heat conduction analogy, are presented in this
thesis. The solution of the heat conduction equation depends on properties of the
material, the heat source as well as specified initial and boundary conditions. In our
contributions, we consider and represent particular heat conduction problems, in the
image and video domains, for feature extraction. The first contribution is moving-edge
detection for motion analysis, which is a low-level feature extraction. The second
contribution is shape extraction from images which is a high-level feature extraction.
Finally, the third contribution is silhouette object feature extraction for recognition
purpose and this can be considered as a combination of low-level and high-level feature

extraction.

Our evaluations and experimental results show that the heat analogy can be applied
successfully both for low-level and for high-level feature extraction purposes in image

processing and computer vision.
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Chapter 1 Introduction

Feature extraction is an area of image processing and computer vision, which involves
algorithms to detect and isolate various desired portions of a digital image or video
sequence. Feature extraction largely concerns finding shapes or their descriptors. By
feature extraction, the input data is transformed into a small set of features, which are
reduced representation of the original data. Features can be used for different purposes,
such as classifying a detected object into different catagories or estimation of
application dependent parameters (pose and size of the object). Feature extraction can
be classified as low-level or high-level [1]. Low-level features are defined as basic
features that can be extracted automatically from an image without any shape
information. Well known low-level feature extraction techniques are thresholding (as a
point operation), edge detection, corner (curvature) detection and optical flow
estimation. Naturally, all of these techniques can be used within high level feature
extraction. High-level feature extraction desires to find shapes. Well known high-level
feature extraction techniques include the Hough Transform (HT), Generalized Hough
Transform (GHT), pre-defined template matching, deformable template matching,

region growing and active contours (snakes).

Physics based analogies can be used for feature extraction in image processing and
computer vision. Hurley et al. [2, 3] introduced a feature extraction for ear biometrics
by using gravitational force field model. Liu and Nixon [4, 5] proposed a water flow
model to extract complex shapes from still images. Recently, Nixon et al. [6, 7]
described how physics based analogies can be used for low-level and high-level feature
analysis, which also includes this research. In this research, we investigate heat flow as
a new analogy for feature extraction and introduce new techniques. The first technique
is moving-edge detection that is low-level feature extraction in motion analysis. The
second technique is shape extraction from still images, which is high-level feature

extraction. The final technique is silhouette object feature extraction for the purpose of



recognition, which can be considered as both low-level and high-level feature

extraction.

1.1 Using Heat Flow in Image Analysis

The heat flow analogy has been deployed in various ways in image processing and
computer vision. It has been used for: image smoothing and enhancement; region-based
image segmentation; thinning; active contours; motion analysis and graph theory.
Anisotropic diffusion, which was introduced to computer vision by Perona and Malik
[8], is the state-of-art image enhancement technique. In [9], the anti-geometric heat
flow model was introduced for the segmentation of regions. Here, anti-geometric heat
flow is represented as diffusion through the normal direction of edges. In [10], a new
thinning algorithm was introduced based on time-reversed isotropic heat flow. A
geometric active contour [11, 12] is based on a curve moving in normal direction with
its curvature dependent speed, which is also called level set method [13]. The curve
movement in the level set approach is achieved with geometric heat flow [14]. In
motion analysis, Makrogiannis and Bourbakis [15] proposed a spatio-temporal
anisotropic heat diffusion for motion activity measurement. An extensive survey about
the applications of heat flow in image processing and computer vision is given in

Chapter 2.

In addition, the Fourier series, which is actively involved in feature extraction and
image processing, was first introduced for the purpose of solving the heat equations

[16]. This connection also allows us to investigate Fourier theory for feature extraction.

1.2 Contributions to Feature Extraction using Heat Flow Analogy

We have three different contributions to feature extraction based on using the heat flow

analogy.
1.2.1 Moving-edge Detection

In this research, a moving object edge detection algorithm is proposed based on the
heat flow analogy. This algorithm starts with anisotropic heat diffusion in the spatial

domain to remove noise and sharpen region boundaries for the purpose of obtaining
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high quality edge maps. Once the enhanced edge maps are observed in three or more
consecutive frames, isotropic and linear heat diffusion is applied in the temporal
domain to calculate the total amount of heat flow. The moving-edge map is represented
as the total amount of heat flow out (-) from the reference frames. The overall process
is completed by non-maxima suppression for thinning and then hysteresis thresholding
to obtain binary moving-edges. Evaluation results indicate that this approach has
advantages in handling noise in the temporal domain because of the averaging inherent
of isotropic heat flow. Results also show that this technique can detect moving-edges in
image sequences without using the background image. This work has been published

by International Symposium on Visual Computing in 2006 (ISVC 2006) [17].
1.2.2  Shape Extraction

In this research, we introduce a novel evolution-based segmentation algorithm based on
the heat flow analogy. Our model is new and different because of the evolution
technique and organization of segmentation. The evolution is achieved with the heat
conduction equations to gain practical advantages. Our model is also organized

effectively to improve the segmentation.

The proposed algorithm consists of two parts. In the first part, we represent a particular
heat conduction problem in the image domain to roughly segment objects of interest. In
this problem, we consider a two-dimensional conductive solid body that has uniform
conductivity within an isotropic medium. Initial and boundary conditions are given,

respectively, by T (X,t = 0) =0and T (X,t) =0, where T represents the temperature at
position X = (x, y) and time ¢. The given conditions mean that the temperature is

initially zero inside the body and the boundary condition is “Dirichlet” that has
specified temperature, zero, at the boundary layer for all time. If we initialize a
continuous heat source (a positive constant) at any point inside the body, there will be
heat diffusion to the other points from the source position as time passes and this will
cause temperature increase within the body, except at the boundary layer. This concept
is represented in the image domain by using a control function in the heat conduction
equation. The control function is obtained from the region’s statistics of the source
location, since we propose to segment the source located region. However, in noisy

conditions, we can observe irregular boundaries and holes inside the segmented region.



These problems are solved in the second part of the algorithm, which is geometric heat
flow. In this part, the segmented image is first converted to binary form and then
geometric heat flow is applied to reduce curvature in the boundary, as well as to
remove holes inside the segmented region. After a specified number of iterations, the
resultant image is thresholded and the final segmentation is obtained. Experimental
results indicate that the proposed algorithm works well in noisy conditions without pre-
processing. It can detect multiple objects simultaneously, if a heat source is located at
the background. It is also computationally more efficient and easier to control and
implement in comparison to active contour models. As such, by using physics based
analogies, we can control the segmentation process so as to achieve a result which
offers improved segmentation, by a better fit to the image data. This work has been
published by international conference on Advanced Concepts for Intelligent Vision

Systems in 2007 (ACIVS 2007) [18].

1.2.3  Object Recognition

Solution of heat conduction problems can be achieved by using Fourier series or
Fourier integrals [16, 19, 20]. Furthermore, the solution of linear and homogeneous
heat equation in an infinite medium can be viewed as smoothing a signal with a
Gaussian filter [19, 20], as we show in Chapter 2. This allows us to investigate Fourier
series and Gaussian filtering for feature extraction as well. In our research, we use
Fourier theory and the Gaussian filtering approach to introduce new and efficient

silhouette object descriptors for recognition purposes.

In shape recognition, a multiscale description provides more information about the
object, increases discrimination power and immunity to noise. We develop new
multiscale Fourier-based object descriptors in 2-D space. We investigate both the
LPGF and the HPGF based multiscale representation separately. The LPGF applies
smoothing to the object and as scale (standard deviation) decreases, it causes loss of
boundary and exterior regions. Therefore using the LPGF at different scales focuses on
the inner and central part more than on the boundary of an object. On the other hand,
using the HPGF at different scales emphasizes the boundary and exterior parts of an
object more than the central part. Our algorithm is organized to achieve size, translation
and rotation invariance. First we apply size normalization of the silhouette image and

we then compute a Fourier magnitude image that is translation invariant. At this stage,
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a LPGF or a HPGF with a selection of different scale parameters is applied to the
Fourier magnitude image and produces different Fourier magnitude images. The
Fourier magnitude images obtained at each scale vary with rotation and are not
convenient for matching. To give rotation invariance, each Fourier magnitude image is
polar mapped to convert rotation to translation and then Fourier transform of polar
image is computed to obtain the Fourier magnitude. Finally, the obtained Fourier
magnitude image is size, translation and rotation invariant and provides descriptors of
an object at that scale. For classification, the Euclidean distance is calculated separately
at each scale and then the average distance is computed for each object. By classifying
with average distance, increase immunity to noise as well as increase correct
classification rate is observed. Evaluation indicates that the HPGF based multiscale
representation performs better than the LPGF based multiscale representation, and in
comparison to Zernike moments and elliptic Fourier descriptors with respect to
increasing noise. Multiscale description using HPGF in 2-D also outperforms Wavelet
transform based multiscale contour Fourier descriptors and performs similar to the
perimeter descriptors without any noise. Part of this work, which uses HPGF for
multiscale generation, has been published by IEEE International Conference on Signal
Processing in 2008 (ICSP 2008) [21]. Than the extended version, which includes both
LPGF and HPGF based multiscale description, has been published by IEEE Indian
Conference on Computer Vision, Graphics and Image Processing in 2008 (ICVGIP
2008) [22].

1.3 Thesis Overview

This thesis describes three different contributions to feature extraction based on using
the heat flow analogy. Chapters are organized as follows: Chapter 2 explains the basic
concepts of heat flow and applications of heat flow in image processing and computer
vision. Chapter 3 introduces novel low-level moving feature extraction that is moving-
edge detection based on heat flow. Chapter 4 introduces the new shape extraction
technique by using the heat flow analogy. Chapter 5 introduces the new object
recognition technique using the multiscale Fourier-based description in 2-D space.
Finally, Chapter 6 is overall conclusions. A proof of the resulting shape extraction,
related to Chapter 4, is given at the end of this report in Appendix A. Appendix B
explains the active contour models, which are compared with our shape extraction

technique in Chapter 4.



1.4 List of Publications related to this thesis

We have six publications related to our contributions. The first contribution is moving-
edge detection, which is low-level feature extraction in motion analysis. The related
publication of this work:
e Cem Direkoglu and Mark S. Nixon. Low Level Moving-Feature Extraction via
Heat Flow Analogy, International Symposium on Visual Computing (ISVC
2006), LNCS 4291: 243-252, November 2006.
The second contribution is shape extraction (segmentation) from images that is high-
level feature extraction. The related publication is
e Cem Direkoglu and Mark S. Nixon. Shape Extraction via Heat Flow Analogy,
International conference on Advanced Concepts for Intelligent Vision Systems
(ACIVS 2007), LNCS 4678: 553-564, August 2007.
The final contribution is Multiscale Fourier-based object description using Gaussian
filter in 2-D space. We first propose HPGF based multiscale description and the related
publication is
e Cem Direkoglu and Mark S. Nixon. Shape Classification using Multiscale
Fourier-based Description in 2-D Space, IEEE International Conference on
Signal Processing (ICSP 2008), 1: 820-823, October 2008.
Than we extend this work with LPGF based multiscale description and compare it with
the HPGF based multiscale description. The publication related to this extended version
is given below,
e Cem Direkoglu and Mark S. Nixon. Image-based Multiscale Shape Description
using Gaussian Filter, /EEE Indian Conference on Computer Vision, Graphics
and Image Processing (ICVGIP 2008), pages: 673-678, December 2008.
Later, we describe how physical analogies based on gravitational force, water flow and
heat can be deployed to achieve feature extraction. This work also includes our
research. The related publication is
e Mark S. Nixon, Xin U. Liu, Cem Direkoglu and David J. Hurley. On Using
Physical Analogies for Feature and Shape Extraction in Computer Vision,
British Computer Society Visions of Computer Science Conference (BCS 2008),
pages: 163-177, September 2008.
The publication given above is also identified as being one of the best papers that were

accepted by the conference BCS 2008, and has been selected for submission to a special



issue of The Computer Journal. The Computer Journal is the BCS’s 50-year-old
scientific journal. The submitted work is given below

e Mark S. Nixon, Xin U. Liu, Cem Direkoglu and David J. Hurley, On Using

Physical Analogies for Feature and Shape Extraction in Computer Vision,

British Computer Society, The Computer Journal, Submitted.



Chapter 2 Heat Flow in Image

Processing and Computer Vision

This Chapter explains the basic concepts of heat flow in Physics and then discusses the

applications of heat flow in image processing and computer vision.

2.1 Basic Concept of Heat Flow

In Physics, heat is the form of energy transferred due to the temperature difference
within or between bodies. Temperature is the measure of hotness or coldness of the
body. Conduction, convection and radiation are three different modes of heat flow.
Here, we chose to investigate use of a conduction model, which we found to operate
well. Conduction is the flow of heat energy from high- to low- temperature regions due
to the presence of a thermal gradient in a body [23]. According to Fourier’s law of heat

conduction, the heat flow rate per unit area is,

f =—k(oT/ox) 2.1

Where, f represents the heat-flow rate, £ is positive constant that is called the thermal
conductivity of a material, 0T/0x is the temperature gradient and the minus sign

indicates that heat flows in the opposite direction to the temperature gradient, satisfying

the second principle of thermodynamics.
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Figure 2.1 One-dimensional heat conduction

If we consider a one-dimensional heat conduction system for an element of thickness
dx and area 4 as shown in Figure 2.1, by the conservation of energy, the energy
conducted in at the left face plus the energy generated within element should be equal
to the change in internal energy plus the energy conducted out at the right face. These

energy quantities are represented mathematically as follows:

Energy in at the left face = f, = —kA(0T/ox) (2.2)
Energy generated within element = gAdx (2.3)
Change in internal energy = pcA(@T / 6t)dx (2.4)
Energy out at the right face = f,,, = —kA(T/ ax)]x dr (2.5)

Where, ¢ is a heat source, which generates energy within element. ¢ is the specific

heat of the material and 0 is its density. Combining these relations gives

oT oT or o oT
—kA— + qAdx = pcA—dx — Al k— +—| k— |dx (2.6)
ox ot ox Ox ox ’

and after simplification, we obtain the general heat conduction or diffusion equation,
orjor = al0’T/ox* )+ 0 2.7)

Where, @ = k/ pc is called thermal diffusivity of the material and a larger values of «

indicate faster heat diffusion through the material. Q =¢q/pc is the source term that



applies internal heating as a function of heat source. It can be uniformly or non-

uniformly distributed over material body.

The two-dimensional heat conduction equation can also be derived by the process

explained above and obtained as

0T/t = al0°T/ox> +8°T /3y )+ 0 = aAT + 0 2.8)

where A represents the spatial Laplace operator. Here, we want to note that Equations
2.7 and 2.8 are obtained by assuming the material has constant conductivity, &k, which
is called uniform conductivity and in this case the heat equation is linear. If the
conductivity of a material varies from point to point as a function of position or
temperature, the material has non-uniform conductivity and the heat equation is non-
linear [24]. Furthermore, if a material has conductivity which is same in all directions
the material medium is called isofropic. Alternatively, a material medium is called
anisotropic, which means there exists directional variation of conductivity. Equations
2.7 and 2.8 are obtained by assuming that material has uniform conductivity and is an
isotropic medium. The solution of Equation 2.8 provides the temperature distribution
over the material body and it depends on time, distance, heat source, properties of

material, as well as on specified initial and boundary conditions.

Initial conditions specify the temperature distribution in a body, as a function of space
coordinates, at the origin of the time coordinate (¢=0). Initial conditions are

represented as follows,

T(x,t=0)=F(x) (2.9)

where, x=(x,y) is the space vector for the two-dimensional case and F(x) is the

function that specifies the initial temperature inside the body.

Boundary conditions specify the temperature or the heat flow at the boundaries of the
body. There are three general types of boundary conditions: Dirichlet, Neuman and
Robin. In the Dirichlet condition, temperature is specified along the boundary layer. It
can be a function of space and time, or constant. The Dirichlet condition is represented

as follows,
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T(x,1)=®(x,?) (2.10)

where CD(X,t) is the function that specifies the temperature at the boundary layer.

In the Neuman condition, the normal derivative of temperature, heat flow, is prescribed
at the boundary surface, and it can be a function of space and time, or constant. The

Neuman condition is given in the form

= d(x,¢) (2.11)

where, ®(x,¢) is the function that specifies the normal derivative of temperature at the

boundary layer.
In the Robin boundary conditions, a linear combination of the temperature and its

normal derivative is prescribed at the boundary surface. These are usually used when

the body is in a moving fluid. It is represented as follows,

= d(x,?) (2.12)

where, 4 and z are non-zero constants and <I)(X,t) is the function that represents the

values of this linear combination.

The heat equation or boundary condition is called homogeneous if its terms are the first
degree of the function T(x,), derivatives of T(x,z) or zero itself. Thus the heat
equation, in Equation 2.7 and in Equation 2.8, is homogeneous, if it does not have
source term. Equations 2.10, 2.11 and 2.12, which represent boundary conditions, are
also homogeneous, if @(X,t)zO. The heat conduction problem is referred to as a
homogeneous problem when both the heat equation and the boundary conditions are

homogeneous.

The analytical solution of the linear homogeneous heat conduction problems can be
achieved using Fourier series or Fourier integrals [19, 20]. The Fourier series was first

introduced to solve heat conduction problems by Joseph Fourier [16]. Although his
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motivation was heat conduction, the Fourier series is now applied in many
mathematical and physical problems, including signal and image processing. The
Fourier series is a method that represents periodic functions as a weighted sum of sine
and cosine waves, where the weights are called Fourier coefficients. Given the initial
and the boundary conditions of the linear homogeneous heat equation, the Fourier
series or integral solution can be achieved by first applying separation of variables

method and then applying the principle of superposition [19, 20].

Consider a one-dimensional conductive solid body in 0<x <L, without any heat
generation (heat source). Initial and boundary conditions respectively given by
T (x,t = 0) =F (x) and T (O,t) =T (L,t) =0, which means that the temperature is initially
F (x) inside the body and the boundary condition is Dirichlet that has specified

temperature (zero) at the boundaries. The solution of this problem is achieved with

Fourier sine series as given below,

0 0 2_2
T(x,0=0)=F(x)=Y b, sin[%) , T(x,0)=Yb, exp[— “”Lf ! Jsin(nzxj (2.13)
n=1 n=1

L
b, = %JF(x)sin[%)dx (2.14)

Here, F(x) is represented with Fourier sine series with respect to Fourier coefficients
b,. T(x,t) is the solution that satisfies all conditions and it is again obtained with
Fourier series, but with respect to Fourier coefficients weighted by exponential

function, exp(— anzﬂzt/ r ), of time parameter ¢.

If we consider same solid with initial and boundary conditions respectively given by
T(x,t=0)=F(x) and o7(0,¢)/on =T (L,t)/on =0, which means that the temperature
is initially F (x) inside the body and the boundaries are insulated with Neuman

boundary condition. The solution of this problem is achieved by Fourier cosine series

as given below,
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where, F(x) is represented with Fourier cosine series with respect to Fourier

coefficients @, and T'(x,?) is the solution that satisfies all conditions and again Fourier

coefficients are weighed by exp(— CZI’lzﬂ'zt/ Lz) to obtain the temperature distribution at

specified time 7.

We now consider same type of solid in —L<x<L with initial condition
T(x,t=0)=F(x) and boundary conditions T(-L,t)=T(L,1),
OT(~ L,t)/on =0T (L,t)/on. These types of boundary conditions are called Periodic

boundary conditions. The left boundary tends to be x=-L instead of x=0. These
boundary conditions are also homogeneous, which can be seen better by rewriting as
T(~L,t)-T(L,t)=0 and oT(~ L,t)/én—dT(L,t)/on=0. The solution of this problem

is given below,

T(x, Za cos( ]+ Zb sm( ] (2.17)
- oan*n’t nm) an’*z*t) . (nmx
T(x,t)— Zan exp| — 7 cos A + an exp| — 7 sin 7 (2.18)

n=1

L L L
%2% jLF(x)dx, an=% I F(x)cos(%}dx, b, % j Fx sm( f‘jdx (2.19)

Here, F(x) is represented by full Fourier series with respect to coefficients a, and b, .
T (x,t) is the solution that satisfies all conditions, and both of the Fourier coefficients,

a, and b,, are weighed by exp(— an27z2t/ L2) to obtain the temperature distribution at

specified time ¢.

Finally, if we consider the one-dimensional solid in an infinite medium, —co < x <0,

which is initially at a temperature T(x,#=0)=F(x). No boundary conditions are
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specified for the problem since the medium extends to infinity in both directions. The

solution of this heat conduction problem is given below,

F(x)=T(e.0=0)= J[a(B)eos() +b(B)sin(ae)ip .20
B=0
T(x,t)= Texp(— ot Ja(B)cos(fix) + b(3)sin () 2.21)
B=0
Where,
ap)=" [ F(x)cos( )i wp)= 1 [ F(c)sin(ae (2.22)

B is continuous variable and has values from zero to infinity. Here, F(x) is
represented by the Fourier integral formula with respect to coefficients a(ﬂ) and
b(B). T(x,t) is the solution that satisfies all conditions, and both of the Fourier

coefficients, a(ﬂ) and b(ﬂ), are weighed by exp(— aﬂzz‘) to obtain the temperature

distribution at specified time 7. After substituting Equation 2.22 to the Equation 2.20

and rearrangements [19, 20], the solution alternatively can be written as follows,
1 R , (x - x')2 ,
T(xt)=——5 [ F(¥)exp| -+ ldx (2.23)

From this equation, we can observe that solution of heat equation in infinite space,

—o0 < x<oo, can be viewed as convolving a signal F(x) with a Gaussian function and

the standard deviation of the Gaussian function is represented as /2at .

There are many heat conduction problems which do not have an analytical solution.
These problems usually involve geometrical shapes that are mathematically unsuited to
representing initial and boundary conditions. However, numerical techniques exist,
such as finite differences and finite elements, which are able to handle almost all
problems with any complex shapes. The numerical methods yield numerical values for

temperatures at selected discrete points within the body and only at discrete time
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intervals. Thus answers are obtained only for a given set of conditions, a given set of

discrete points and discrete time intervals.

The numerical heat conduction problem can be investigated in the image domain, since
the image is formed by a set of points, as well as since the image is convenient for the
finite difference technique. We will not consider the finite element methods further,
since our aim is to use the heat analogy for feature extraction. As such, the finite

element methods would become rather complex for this aim.

2.2 Applications of Heat Flow in Image Processing and Computer Vision

The heat flow analogy has been deployed in various ways in image processing and
computer vision. Six applications are briefly surveyed here: image smoothing and
enhancement; region-based image segmentation; thinning; active contours; motion

analysis and graph theory.

2.2.1 Image Smoothing and Enhancement

Heat flow has first been used for image smoothing. Witkin [25] introduced scale-space
theory which involves generating coarser resolution images by convolving the original
image with a Gaussian kernel. Then Koenderink [26] and Hummel [27] pointed out that
the family of derived images may be equivalently viewed as the solution of heat
conduction or diffusion equation based on several criteria: causality, homogeneity and
isotropy. According to homogeneity and isotropy, blurring is required to be spatially
invariant which makes it difficult to obtain accurately the location of edges at coarse
scales. Then, Perona and Malik [8] introduced anisotropic heat flow for selective image
smoothing that avoids blurring and localization problems of the edges. In this process,
the diffusion coefficient is allowed to vary according to the magnitude of the local
image gradient in four nearest direction. In this way, high quality edge detection is
observed. After that, many approaches and models have been developed alternative to
Perona and Malik’s work. Some of them are: robust anisotropic diffusion [28§],
geometry driven heat flow [14], graph spectral model [29, 30], probabilistic view [31],
regularization method [32], discrete image flux conduction model [33] and a global
approach for solving evolutive heat transfer in images [34]. Recently, the geometrically

stabilized reverse heat equation model has also been introduced for restoration of
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blurred images [35]. The heat flow analogy is also used for vector field smoothing to

recover surface normals and surface heights in shape-from-shading [36, 37, 38].

2.2.2 Region-based Image Segmentation

In [39], the anisotropic diffusion pyramid (ADP) was introduced for region-based
segmentation. The pyramid is constructed using the scale space representation of
anisotropic diffusion. Since anisotropic diffusion preserves edge locations as the scale
increases, region boundaries in the coarse to fine ADP segmentation are accurately
delineated. Recently, Manay and Yezzi [9] have proposed the anti-geometric heat flow
model for adaptive thresholding and segmentation of regions. Here, anti-geometric heat
flow is represented as diffusion through the normal direction of edges that smears
rather than preserves them. As a result of this, regions on the opposite sides of

prominent edges are captured in greyscale images.

2.2.3 Thinning

In [10], a new thinning algorithm was introduced based on time-reversed isotropic heat
flow. Given an image, which is viewed as a thermal conductor, first the heat flow
direction map is computed, then time-reversed heat conduction is simulated to get

thinned a pattern. This algorithm can be applied to gray-scale or binary images.

2.2.4 Snake or Active Contours

Model-free active contours can be classified as Parametric Active Contours and
Geometric Active Contours (Level Sets). The parametric active contour (PAC) is the
first snake model, introduced by Kass et al. [40]. Problems associated with a PAC are
initialization and poor convergence to concave regions. These problems were largely
solved with the development of new external force model which is called Gradient
Vector Field (GVF) [41]. It is computed as a diffusion of the gradient vectors of the
grey level or binary edge map. This diffusion process arises from the heat conduction
model. A geometric active contour (GAC) [11, 12] is based on a curve moving in
normal direction with its curvature dependent on speed. This phenomenon is tackled
with a level set method [13] in higher dimension by viewing the curve as the zero level

set. The curve movement on the level set is achieved using geometric heat flow [14].
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2.2.5 Motion Analysis

Horn and Schunk [42] developed a method for optical flow (velocity vectors)
computation from sequence of images. The concept includes two constraints which are
change of brightness and smoothness of the velocity flow. An equation was developed
whose progress is similar to the propagation effects in the solution of heat conduction
equation. However, this method does not preserve optical flow discontinuities on the
motion boundary because of the isotropy property of the smoothness constraint. Then
some extensions have modified the smoothness constraint and observe anisotropic
behaviour to preserve motion boundaries [43, 44]. Makrogiannis and Bourbakis [15]
were the first to propose a spatio-temporal anisotropic heat diffusion for motion activity
measurement. The motion activity measure is derived from the total amount of
diffusion in the spatio-temporal domain. Then, this process is completed by kernel

based density estimation and watershed-based segmentation of regions.

2.2.6  Graph Theory

The heat analogy has also been integrated with graph theory in computer vision for the
purpose of graph and shape clustering [45, 46, 47]. Xiao and Hancock [46] use the
spectrum of the Laplacian matrix to capture graph structure. The Laplacian spectrum
has close relationship with the heat equation, which can be used to specify the flow of
information with time across a network. The solution to the heat equation, or heat
kernel, is obtained by exponentiation of Laplacian eigensystem over time. The solution
is related to the distribution of path lengths between nodes. Then the heat content,
which is the sum of the entries of the heat kernel over the nodes of the graph, is
expanded as a polynomial in time. Finally, graph-clustering is performed by applying
principal components analysis to vectors constructed from the polynomial coefficients.
In [48], the heat kernel is obtained, similar to the explained before, to evolve minimum
spanning tree of a graph for clustering purpose. In [49], a new probabilistic relaxation

labelling was developed using the heat flow on graphs.

2.3 Conclusions

In this Chapter, we have reviewed the basic concepts of heat flow and applications of

heat flow in image processing and computer vision. It is observed that solution of the

17



heat equation depends on properties of material, heat source as well as specified initial
and boundary conditions. The heat flow analogy has been applied in various ways in
image processing and computer vision. Six applications were briefly surveyed here:
image smoothing and enhancement; region-based image segmentation; thinning; active

contours; motion analysis and graph theory.

An analytic solution of the linear and homogeneous heat conduction problem can be
achieved using Fourier series theory. In addition, solving the linear and homogeneous
heat equation in infinite medium can be viewed as smoothing a signal with a Gaussian
filter. This relation also allows us investigate the Fourier series and Gaussian filtering
for feature extraction. In Chapter 5, we introduce new and efficient silhouette object
descriptors by using the Fourier series and Gaussian filtering for the purpose of

recognition.

Analytic solution techniques for the heat conduction problems are limited, because it is
difficult to represent initial and boundary conditions of geometrically complex shapes.
Numerical techniques, such as finite differences, are able to handle all problems with
any complex shape. In Chapter 4, we extract objects shapes by representing particular
heat conduction problems in the image domain, and the proposed heat conduction
problems are solved using finite difference technique. First, we solve a linear and non-
homogeneous heat equation in the image domain to roughly segment objects of interest.
Then anisotropic diffusion (geometric heat flow) is applied to smooth extracted

boundaries and remove possible noise inside the prior segmented region.

In the next Chapter, we introduce a novel moving object edge detection technique.
Here, we first solve anisotropic heat conduction problem in the spatial domain to
remove noise and sharpen region boundaries. Then, linear and isotropic heat flow is
applied in the temporal domain, with the proposed initial and boundary conditions, to
calculate moving-edges. This problem is also solved using finite difference technique.
As such, the heat equations described earlier are applied in a new way to detect the

edges of moving object.
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Chapter 3 Low Level Moving-
Feature Extraction via Heat Flow

Analogy

In this Chapter, a new intelligent and automatic moving object edge detection algorithm
is proposed, based on using the heat flow analogy. This algorithm starts with
anisotropic heat diffusion in the spatial domain, to remove noise and sharpen region
boundaries for the purpose of obtaining high quality edge data. Then, isotropic and
linear heat diffusion is applied in the temporal domain to calculate the total amount of
heat flow. The moving-edges are represented as the total amount of heat flow out from
the reference frame. The overall process is completed by non-maxima suppression and
hysteresis thresholding to obtain binary moving-edges. Evaluation results indicate that
this approach has advantages in handling noise in the temporal domain because of the
averaging inherent of isotropic heat flow. Results also show that this technique can

detect moving-edges in image sequences, without background image subtraction.

This Chapter is organized as follows: Section 3.1 explains related works. Section 3.2
discusses anisotropic heat flow for edge map enhancement. Section 3.3 introduces our
novel moving-edge detection method. Section 3.4 concerns evaluation and

experimental results, prior to conclusions.

3.1 Related Works

Segmenting moving objects is a challenging and important task in computer vision. It

has many applications such as surveillance, video communication, traffic monitoring,
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people tracking and content-based image coding. There are many moving object

segmentation techniques, which are based on moving-edge detection.

Kim and Hwang [50] segment moving objects based on extracted moving-edges.
Moving-edge points are generated based on processing the frames difference edge map,
current frame edge map, and background edge map. These spatial domain edge maps
are obtained using the Canny edge detector, which involves Gaussian convolution to

suppress noise.

Ahn et al. [51] introduced a moving-edge detection algorithm to implement a home
security system. Their algorithm extracts edge segments from the current image and
eliminates the background edge segments by matching them with a reference edge list,

where the reference edge list is generated from the set of training background images.

Myerscough and Nixon [52] developed a moving-edge detector by extracting feature
points and feature velocities from a sequence of images based on using phase
congruency. The benefits of using phase congruency are its illumination invariance
and good localization. In addition, since phase congruency is illumination invariant,

there is no need for threshold selection in edge detection.

Kim [53] proposed a moving-edge detection algorithm by using entropy and cross-
entropy approaches. They calculate entropy in the current frame to determine spatial
edges. Then, they apply cross-entropy between current and previous images to measure
the dissimilarity. Finally, entropy and cross-entropy values are compared and

thresholded to detect moving-edges.

Zhang and Zhao [54] proposed a moving-edge detection algorithm using wavelets to
overcome noise. First, they find change detection mask in the wavelet domain. Then
they apply Canny edge detection on the change detection mask to obtain the difference
edge map. Finally, the difference edge map is compared with current frame edge map,
background edge map and previous frame’s moving-edges to obtain the current frame’s

moving-edges.
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Recently, Dewan et al. [55] introduced an algorithm, which utilizes the three most
recent consecutive frames to isolate moving-edges for moving object detection. They
first calculate two difference images using those three consecutive frames. Then, the
Canny edge detection algorithm is applied to generate difference edge maps. In the
difference edge maps, edge pixels are grouped together to represent edge segments.
Finally, since the moving-edges of the middle frame are common in both difference
edge maps, they apply matching algorithm by using the size, shape and position

features of the edge segments.

3.2 Anisotropic Heat Diffusion and Edge Enhancement

Perona and Malik [8], proposed anisotropic diffusion for selective image smoothing
that avoids blurring and localization problems of the edges. The anisotropic heat

diffusion problem is given below,

% = div(k(x,£)V1(x,7))

I(X,t = 0) = F(X), initial condition

8|(X,l‘)/8n =0, boundary condition (3.1)

Where, div represents divergence operator, V is a spatial gradient operator, I(X,t) is
the grey level image that is a function of position X = (x, y) and time ¢ , k(x,t) € [0,1] is
the conductivity function, which depends on direction. The original image, F(X),

indicates the initial condition. The boundary of the image is insulated, which is
represented with homogeneous Neuman condition. In this boundary condition, there is
no heat flow in or out of the image from the boundary. The solution to Equation 3.1 can

be discretized using four nearest neighbours of the Laplacian operator as given below,

1 =1, + Alky -Vl +kg -Vl +ky -Vl +ky, V] (3.2)

¢
X,y

where, A is a constant and 0 < A <0.25 for the numerical scheme to be stable in the

two-dimensional case [23]. V, V¢, V and V, indicate nearest neighbor differences

respectively in the direction north, south, east and west as shown below,

21



VNlic,y = I;,y—l o I;,y
VSlic,y = I;,y+1 - I;,y
vElic,y = I;—l,y - Iic,y
vW';,yEI;H,y_I;,y (33)

The nearest neighbour differences are calculated for each image pixel position (x, y)
and at every iteration ¢. ky, kg, kp and kj, are conductivity coefficients respectively

in the north, south, east and west direction. The conductivity coefficients are also
updated, for each position and at every iteration, as a function of the brightness gradient

in each direction as given below,

) (3.4)

Different functions are used for gQVI ), depending on the chosen aim. In our

application, an exponential type is used, (see Equation 3.5), which prefers high-contrast

edges to low-contrast ones.

(v1]/Rr)

g(Vl)=e (3.5)

R determines the rate of decay of the exponential function, and thus the rate of

smoothing. Note that, if gQVID is constant (at all image locations), this leads to

isotropic heat diffusion. In Figure 3.1, we illustrate the difference between isotropic and
anisotropic diffusion operations. Figure 3.1(a) is a grey-scale image and Figure 3.1(b)
is its Sobel edge map without any diffusion. Figure 3.1(c) is the Sobel edge map after
isotropic diffusion, which causes loss of edge information. On the other hand, Figure
3.1(d) is the Sobel edge map of the anisotropic diffused image with the conductivity

function given by Equation 3.5 and it can easily be observed that high contrast edges
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are enhanced while removing-edges due to noise, and thus important detail is

preserved.

(a) Grey-scale image (b) Original Sobel edge map

(c) Sobel edge map after isotropic diff. (d) Sobel edge map after anisotropic diff.

Figure 3.1: Difference between isotropic and anisotropic diffusion.

3.3 Isotropic Heat Flow in Temporal Domain

Here, we introduce a novel moving-edge detection technique. Assume that we have
three or more consecutive frames. Once the enhanced Sobel edge maps are obtained in
space, the isotropic and linear heat equation is applied in the temporal domain to
calculate the total amount of heat flow. Assuming we have L consecutive frames, the
discrete formulation of the proposed heat conduction problem is given below,

E,=E, ' +aAE, =E, ' +a(E,,, +E,} —2E,)

n+l
Effo =F Initial condition

n

E _,=E° E._ ,=E Boundary Conditions (3.6)
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Where, E;', E/”| and E.

.+ are Sobel edge mapped images respectively for the

reference frame (), the previous frame (7 —1) and the next frame (1 +1) at iteration .

A is Laplacian operator. o is thermal diffusivity and 0 <« <0.5 for the numerical
scheme to be stable in the one-dimensional case [23]. The original image sequences,

F,, indicates the initial condition and the proposed boundary condition is Dirichlet with

constant temperatures. In this boundary condition, the boundary frames always remain
at the initial values and there will be heat flow in and out of the image sequences. Since
we assume there are moving objects in the consecutive images, moving-edge positions
in any interior frame are expected to have higher brightness than the same positions at
the boundary frames. As a result of this, moving-edges diffuse out from the reference
frame to the neighbour frames and then out of image sequences from the boundary

frames.
The diffusion (iteration) stops, when we reach the steady-state solution in the system,
when there is no more heat flow. The total amount of heat flow, for each frame, is

calculated as follows. Assume that the initial scale is 0(zero) and final scale is ¢, then

Equation 3.6 can be described as,

t—1
E;, =E, +a) AE, (3.7)

i=0

Then, the total amount of heat flow from the initial state to the steady-state is

t 0
En - En

-1
- ai‘AE; (3.8)
i=0

However, this gives us total heat in (+) and heat out (-) together during diffusion. We

are interested in total heat flow out (HFO) from the reference frame, E, , which gives

us the moving-edge map. This is obtained as,

t—1
HFO =& |AE)|, VAE, <0 (3.9)
i=0

24



n+l

(g) Total heat flow (h) Heat flow out (H FO)

Figure 3.2: Moving-edge map extraction.

Figure 3.2 illustrates the process for three consecutive frames, where Figures 3.2 (a-c)
show a walking human subject. First, anisotropic diffusion is applied in space with
parameters values 4 =0.2, R =4 and for 50 iterations. Figures 3.2(d-f) show enhanced
Sobel edge maps of these frames after anisotropic diffusion. Then, isotropic diffusion is
applied in temporal domain to calculate total amount of heat flow. This diffusion
continues until we observe steady-state with « = 0.45, which needs 10 iterations in this

experiment. Figure 3.2(g) shows total amount of heat flow in the reference frame, E,,,
and Figure 3.2(h) is total heat flow out from E,, which gives the moving-edge map.
Only the moving-edges of the human subject and some slight shadows remain, whilst

largely removing the edges introduced by the static background.
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The overall process is completed by non-maxima suppression (thinning) and hysteresis
thresholding to observe the binary moving-edges. The non-maxima suppressed and
hysteresis thresholded images are shown respectively in Figures 3.3(a) and (b). Non-
maxima suppression has been developed by Canny [56]. In this approach, the edge
point is defined to be a point whose strength is locally maximum in the direction of
gradient. Non-maxima suppression ends up with an image settled zero except local
maxima points. Local maxima points preserve their values. Hystresis thresholding

involves two thresholds, upper (T};) and lower (T} ), to convert the image into binary
form. The pixels with a value higher then 7}, are set to one, the pixels with value
between 7, and 7, are set to one, if they are connected to the pixels higher than 7}, .

The pixels with value lower than 7, are zero.

a) Non-maxima suppressed image (b) Hysteresis thresholded image

Figure 3.3: Binary moving-edge observation.
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Frame n-1 Frame n Frame n +1

v v v

Sobel edge map Sobel edge map Sobel edge map

— T =

Isotropic heat flow in temporal domain (»)

4/\

Heat flow out (-) Heat flow in (+)

v

Non-Maxima suppression |

v

Hystresis thresholding

v

Binary moving-edges

Figure 3.4: Moving-edge detection

3.4 Evaluation and Experimental Results

Performance evaluation is employed by comparing moving-edge detection with 2-D
Sobel edge detection. However, anisotropic heat diffusion in the spatial domain is
omitted in our algorithm to balance the 2-D Sobel and moving-edge detection
algorithms. Figure 3.4 shows the proposed algorithm to obtain the moving-edges in the

evaluation. Evaluation is performed using a white circle moving on a black background
with varying normally distributed noise N, (,u, 0'2). The Hough Transform (HT) is

applied to the binary edge images to extract the circle centre parameters. A root mean

square error (RMSE) is then employed to quantify the performance of each algorithm.

RMSE = (e, —c,f +(e, —¢, P2 (3.10)

Where, (ex,ey) are the extracted circle centre parameters and (cx,cy) are the actual

circle centre parameters. The quantity of noise is considered in terms of standard
deviation o with zero mean. Hysteresis thresholding is used both for 2-D Sobel and
moving-edges, after non-maxima suppression (thinning). The thresholds for the 2-D
Sobel, to obtain the binary image, are determined by a root mean square (RMS)

estimate of the noise. In this process, the gradient magnitude image is thresholded by
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its scaled mean value that is proportional to signal to noise ratio (SNR). The upper and

the lower thresholds are determined as given below,

1 M N
Ty :sTxM—NZZFx,y, T,=T,/4 (3.11)

x=1y=1

Where, F is the gradient magnitude reference frame of size M x N and s, is a scale
factor for threshold selection, which is a positive constant with value 3 in this
evaluation. The scale factor, s;, was determined experimentally to achieve the best
performance of the algorithm. The ratio between high, T},, and low, 7), thresholds is
4. On the other hand, the thresholds of the moving-edge detection algorithm are based

on mean heat flow out (HFO) from the reference frame,

1 M N
TH:chMNZZHFOX’y, T, =T, /4 (3.12)

x=1y=I1

Where, c; is a scale factor for threshold selection with value 11 and the ratio between
the high, 7}, , and the low, 7}, thresholds is again 4. Here, the scale factor, ¢, , was also

determined experimentally to achieve the best performance of the proposed algorithm.
Figure 3.5 shows performance of moving-edge detection and 2-D Sobel algorithms.
The graphs show error bars representing the mean and standard deviation obtained over
5 applications of moving-edge detection and 2-D Sobel operator. In each application,
the obtained graphs are smoothed by applying local averaging to the data points in 6
nearest neighbourhoods. RMSE of the 2-D Sobel increases slowly until o =130 and
after that we observe rapid increase in RMSE. On the other hand, RMSE of the
moving-edges increases slowly until o =120 and after that it increases rapidly. It is
observed that, the moving-edge detection technique has better performance than 2-D
Sobel at all noise levels, which appears due to the averaging inherent in the new
operator. Figure 3.6 shows some of the results for moving-edges (second row) and 2-D
Sobel (third row). To visual inspection, the input images in Figure 3.6(c) and (d), are

very noisy indeed.
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Figure 3.5: Performances of moving-edges and 2-D Sobel with respect to normal distributed

noise trials. RMSE is plotted with mean and standard deviation values using error bars.
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(a) o=0 (b) o0=40 (c) o=80 (d) =120

Figure 3.6: Results for moving-edges (second row) and 2-D Sobel (third row) with respect to

increasing Gaussian noise.
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Simulation results also show that our algorithm can detect moving-edges in image
sequences, as shown in Figure 3.7. Figure 3.7(a) has eight consecutive frames and
shows a human subject, while playing table tennis. Figure 3.7(b) shows Sobel edge
maps, E, after the anisotropic diffusion in space. The selected parameters for
anisotropic diffusion: 4 =0.2, R =4 and the number of iterations is 20. It is observed
that region boundaries are sharpened after anisotropic diffusion. Although almost all
noise has been removed on the table, the wall behind the player still appears noisy. The
reason for this is the textured structure of the wall and there are strong edges as well.
The textured structure of the wall can bee seen in Figure 3.8(a), since this image is
enlarged and also belongs to the same table tennis sequence. Figure 3.7(c) is the total

amount of heat flow out (HFO) from each frame, after isotropic diffusion in the

temporal domain. This diffusion needs 215 iterations with & =0.45 to achieve steady-
state. Here, the first and eighth frames are omitted since they are the boundary frames
and their edge map values are constant, during the diffusion, to achieve the given
Dirichlet boundary conditions. It is observed that almost all edges introduced by the
static background and the noise arising from the textured wall is removed, while
retaining the moving-edges of the human subject and the tennis ball. There are also
slight edges of the human’s shadow in the HFO images. Figure 3.7(d) shows the
binary moving-edges at each reference frame after applying non-maxima suppression

and hysteresis thresholding. It is seen that moving-edges were indeed detected.

Figure 3.8 also shows some simulation results. Figures 3.8(a) shows the reference
frame from table tennis (indoor) sequence and moving-edges of the arm and of the ball
were detected. We should note that the upper part of the arm and the table are static and
this is why they were not detected. Figures 3.8(b) is a reference frame from the flower
garden (outdoor) sequence, where the camera is in motion. It is seen again that most of
the moving-edges were detected. Some edges, such as part of the house roofs, were not

detected, since the camera was moving along those edges.
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frame,

(a) Input frames

g e =

HFO, HFO, HFO,

(c) Heat flow out (-) from reference frames until the steady-state
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Binary Edge, Binary Edge, Binary Edge,

Binary Edge; Binary _Edge, Binary _Edge,

(d) Binary moving-edges after non-maxima suppression and hysteresis thresholding

Figure 3.7: Moving-edge detection in the eight consecutive frames

(b) Flower garden (outdoor) image, where the camera is in motion.

Figure 3.8: Some of the simulation results for new operator on indoor and outdoor images.
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3.5 Conclusions

We have presented a novel low level moving-feature extraction technique based on
using the heat flow analogy. Firstly, high quality Sobel edge maps are obtained based
on anisotropic heat diffusion, in space. The conductivity function is the key point in
this stage; we have chosen an exponential function which enhances high contrast edges
and removes edges due to noise. In the next stage, isotropic and linear heat diffusion is
applied in the temporal domain to determine the moving-edge map in the reference
frame. To do this, the total amount of heat flow is calculated and then separated into the
heat in (+) and heat out (-) parts, where the heat out (-) is the moving-edge map.
Finally, non-maxima suppression and hysteresis thresholding is applied to obtain binary
moving-edges. Evaluation indicates that this technique is better than 2-D Sobel at all
levels of noise corrupted image, without anisotropic heat diffusion in space. This result
appears to be due to the averaging inherent in the new operator. Results also show that
this technique can detect moving-edges in image sequences, without using the

background detection.
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Chapter 4 Shape Extraction via
Heat Flow Analogy

In this Chapter, we introduce a novel evolution-based segmentation algorithm by using
the heat flow analogy to gain practical advantage. The proposed algorithm consists of
two parts. In the first part, we represent a particular heat conduction problem in the
image domain to roughly segment the region of interest. Then we use geometric heat
flow to complete the segmentation, by smoothing extracted boundaries and removing
noise inside the prior segmented region. The proposed algorithm is compared with
active contour models and is tested on synthetic and medical images. Experimental
results indicate that our approach works well in noisy conditions without pre-
processing. It can detect multiple objects simultaneously. It is also computationally
more efficient and easier to control and implement in comparison with active contour

models.

The Chapter is organized as follows: Section 3.1 discusses related works. Section 3.2
represents the proposed heat conduction problem in the image domain, which is the
first part of our algorithm. Section 3.3 explains the geometric heat flow. Section 3.4

concerns evaluation and experimental results and finally Section 3.5 is conclusions.

4.1 Related Works

There are two main types of shape extraction method that evolve to the target solution:

active contours and region growing techniques.
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4.1.1 Active Contours

In this section, we summarize the existing active contour models with their advantages
and disadvantages. Extensive explanations of the commonly used active contour
models are also given in Appendix B. Active contours (snakes) are curves that evolve
to recover object shapes. Active contours can be classified as Parametric Active
Contours (PAC) and Geometric Active Contours (GAC) according to their
representation. These models mainly differ in their ability to handle multiple object

detection, computational efficiency and complexity of implementation.

Parametric Active Contours (PAC)

A PAC is a parametric curve which is represented explicitly. There are internal and
external forces acting on curve. The internal forces control the smoothness and rigidity
of the curve with respect to selected parameters. The external force is image dependent
and attracts the curve to the object boundary. The first PAC model was introduced by
Kass et al. [40]. In this, segmentation is achieved by using gradient vectors of an edge
map as an external force. Problems associated with this model are initialization and
poor convergence to concave regions. A constant force, which is called the balloon
force [57], was added with direction normal to curve, to accelerate the motion so that
the initial curve can be placed far away from the desired object boundary. However,
choice of the balloon force is a problem. If the balloon force is large, the contour can
pass through weak object boundaries. If the balloon force is small, the contour may not
move on narrow regions of the object. Initialization and convergence to concave region
problems were largely solved with the development of a new external force model,
which is called Gradient Vector Flow (GVF) [41]. GVF is computed as a diffusion of
the gradient vectors of an edge map. However, PAC models can have difficulty with
simultaneous detection of multiple objects, since they cannot handle the topological
changes such as merging or splitting of the moving curve, because of the explicit
representation. To solve this problem, GAC models have been introduced, where the

curve is represented implicitly in a level set function (the zero set).
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Geometric Active Contours (GAC)

GAC use the level set method [13] for curve evolution. A level set is a real valued
function of the two-dimensional space variables. The contour is represented implicitly
in a level set function, which is the zero set. Caselles et al. [11] and Malladi et al. [12]
proposed the first GAC model, which uses gradient-based information for
segmentation. In this model, the curve evolves in the direction normal with its
curvature and balloon force dependent speed, and stops depending on the gradient
information obtained from the image. The curvature dependent speed has the effect of
smoothing the curve, while the balloon force accelerates the motion. The gradient-
based GAC can detect multiple objects simultaneously but it has other important
problems, which are boundary leakage, noise sensitivity, computational inefficiency
and complexity of implementation. Some formulations, [58] [59], have been introduced
to solve problems with boundary leakage and noise sensitivity by improving gradient-
based information. However, they can just increase the tolerance, since gradient-based
information is always limited by noise. Xie and Mirmehdi [60] apply region
segmentation to the original image and then find the Gradient Vector field (GVF) of the
segmented image. This force is added to the GAC, but it can only provide more
tolerance to toward weak edges. Several numerical schemes have been proposed to
improve the computational efficiency of the level set method, including narrow band
[61], fast marching [62] and additive operator splitting [63]. Despite substantial

improvements in efficiency, they can be difficult to implement.

Chen and Vese [64] introduced a new GAC model without using edge information.
Their model is a particular case of the Mumford-Shah functional [65] and uses regional
statistics for segmentation. In this work, the image is divided into two regions, interior
and exterior, separated by a curve. The model minimizes the sum of the squares of the
differences between the intensity values and the mean of the intensity values inside and
outside of the surface of desired object. Their approach especially works well for
bimodal images. It is good at handling initialization, noise and boundary leakage but
still suffers from computational complexity and difficulty in implementation, because
of the level set method. Later, Chen and Vese [66] extended this approach to the

multiphase level set framework to segment more than two-phase (binary segmentation).
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However, they need more level set functions for this process, which in turns increases

complexity and difficulty.

Different types of image forces can be combined with PAC or GAC (level set) models
to overcome limitations and improve segmentation. In [67], the Mumford-Shah
functional [65] based region force was adapted by PAC to handle noise and
initialization problems. Paragios and Deriche [68] unified boundary- and region-based
forces and implemented using level sets to improve segmentation and solve
initialization and noise problems. Recently, Xie and Mirmehdi [69] proposed a
magnetic force based on magnetostatic theory using level sets to handle problems with

initialization and convergence to concave regions.
4.1.2 Region Growing

Region growing is a procedure that groups pixels or sub-regions into larger regions
based on predefined similarity criteria for region growth. The basic approach starts with
a seed point and merges neighboring pixels that have pre-defined properties similar to
the seed, such as intensity [70] or texture [71]. Region growing was also combined with
edge detection for segmentation [72]. Although, region growing techniques can detect
multiple objects simultaneously and can be more efficient than active contour models,
the main problem is selection of the similarity criteria. They also have to use
connectivity information to define the neighboring pixels in each step of growth. In
addition, they can achieve region segmentation with irregular boundaries and holes in

the presence of high noise, since they omit smoothing.

4.2 Proposed Heat Conduction Problem and Representation in Image

Domain

Consider a two-dimensional conductive solid body that has uniform conductivity and is
an isotropic medium. Initial and boundary conditions respectively given by
T(x,t=0)=0 and T(x,)=0, where T represents the temperature at position
X = (x, y) and time ¢. The given conditions mean that the temperature is initially zero

inside the body and the boundary condition is Dirichlet that has a specified temperature

(zero) at the boundaries. If we initialize a continuous heat source, which is a positive
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constant, at a point inside the body, there will be heat diffusion to the other points from
the source position. As a result of this, all the points inside the body will have
temperature values exceeding zero, except the boundary points. This is then an ideal
approach for object segmentation in computer images. Let us investigate the proposed

problem on a square object that is inside the grey-level image (G), as shown in Figure

4.1(a). Assume that all the temperature values of the objects and the background are
stored in another image, which is represented by |, and the initial condition of whole

image is zero, I(X,t = O) =0. This assumption means that all objects have temperature

initially zero inside, as well as at the boundaries. When we initialize a heat source at
any pixel inside the square object, as shown in Figure 4.1(a), there will be heat
diffusion to the other pixels from the source position, which will cause temperature to
increase. However the temperature at the boundary layer must be kept at zero all the
time to obtain the Dirichlet condition, where the boundary layer is defined at the
external side of an object as shown in Figure 4.1(b). To achieve this, we use a control

function in the heat conduction equation as given below,
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Figure 4.1: Heat conduction modeling in image domain of size 150x150. (a) Source position at

t=0. (b) Boundary layer illustration. (c) TF at t =30 (iterations). (d) Final TF at =69 .
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where I(X,t) represents an image pixel value in terms of temperature at each point and
time, « is the thermal diffusivity and 0<a <0.25 for the numerical scheme to be
stable in two-dimensional system [23], A is Laplace operator for the spatial variables,
Q(x) is the source term and CF(x,?) is the control function. The control function is
obtained from the region statistics of source location on a given grey-level image. The
proposed region statistics model is similar to the one used by Chen and Vese [64]. In
this model, the image is divided into two regions, interior and exterior, separated by a
contour and the model minimizes the sum of the squares of the differences between the
intensity values and the mean of the intensity values inside and outside of the surface of
desired object. In our model, the contour is represented by a Temperature Front (TF),
where the TF is the boundary of the region that has temperature values exceeding zero.
The control function, CF(X,t), is formulated as follows,
|2

(X, 1) = 2,|G(X) — 1, 4.2)

O-out (X7 t) = ﬂ”out |G (X) - luout |2 (43)

where, G(X) is the given grey-level image, o, (X,t) is the weighted square of the
difference between the intensity value and the mean, y;,, , of the intensity values inside
the TF, at each point and time. o,,(X,?) is the weighted square of the difference
between the intensity value and the mean, y,,,, of the intensity values outside the TF,
at each point and time. 4, >0 and A,, >0 are fixed parameters (constants) for

regional statistics inside and outside the TF respectively. Then, the following logical

decision is applied at each position and at each time interval.

1’ Oin (X’t)S Oout (X’t)

4.4
0, otherwise 49

CF(x,t)={

Therefore, the control function allows heat diffusion inside the object of interest and
achieves the proposed Dirichlet condition on the boundary layer by keeping the
temperature value at zero. However, it is better to start this process after a short

diffusion time by assuming CF(x,)=1 at all points. This increases the effective area

of initialization, thereby better handling noisy images. In addition, the heat source must
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be initialized onto a smooth surface of the object, since the source localization to the
edge pixel will give the wrong region statistic for our purpose. Figure 4.1(c) and (d)
respectively show the evolution and the final position of the TF. However, there is no
need to continue diffusion, after the TF reaches its final position. For this reason, the
position of the TF is controlled at each specified time interval and when there is no
movement, diffusion is terminated. Here, we also note that the regional statistics

parameters will be represented with their ratio 4,,/4,,, in our experiments, and in this

ut

experiment (Figure 4.1) A,,/4,,=1. The analytical solution of the proposed heat

ut
conduction problem, on the square object shown in Figure 4.1, is given in Appendix A.
Comparison of analytical and image domain results are also included in Appendix A.
The main difference between [64] and our model, in using region statistics, we attempt

to segment the region containing the source instead of whole image.

One difficulty arises when the region containing the source intersects the image
boundary. This problem can be solved by assuming that image is surrounded by a
boundary layer, at its periphery, which has temperature value zero for all time
(Dirichlet). Figure 4.2 shows the evolution and the final position of the TF, which has a
source location within the background. The result, in Figure 4.2, also shows that
multiple object detection can be achieved and the heat can diffuse through the narrow
regions within the spiral object. As such, heat has been used to detect the background

and therefore boundaries of objects.

96 06 005
HA HA HA

(a) Source position (b) t=110 (c) t=221 (final)

Figure 4.2: TF is moving on background in the image of size 150x150,and 4,,/4,,, =1.

It is also required to consider the control function when the given image is bimodal as
shown in Figure 4.3(a). In this case, the control function attempts to segment the whole
image while the TF segments the source located region. This is because, the control

function assigns unity to the pixels that are similar to the inside of the TF, and assigns
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zero to the pixels that are dissimilar. The process is illustrated in Figure 4.3. Figure
4.3(a) shows the source position, Figure 4.3(b) is the final position of the TF and Figure
4.3(c) is the control function at the end of the diffusion.

(a) Source position (b) Final TF at ¢ =69 (c) Final CF(X)

Figure 4.3: Illustration of the control function, CF(x), in a bimodal image of size 150x150,
and A, /2, =1.

mn

All the results so far have been on synthetic images without added noise. If we simulate
this algorithm on noisy medical images, such as a magnetic resonance image of the left
ventricle of a human heart shown in Figure 4.4(a) with the heat source location, we
observe some drawbacks in segmentation. The drawbacks are irregular boundaries and

holes inside the segmented region, as shown in Figure 4.4(b), where the 4,,/4,, =1 in

in ut
this experiment. These problems are solved by using the heat flow analogy again as

described in the next section.

4.3 Geometric Heat Flow

Geometric Heat Flow (GHF) is a kind of anisotropic diffusion and is widely used for
image denoising and enhancement [14]. It diffuses along the boundaries of image
features, but not across them. It derives its name from the fact that, under this flow, the
feature boundaries of the image evolve in the normal direction in proportion to their
curvature. Thus GHF decreases the curvature of shapes while removing noise. GHF

equation is obtained with the following considerations.

Edge directions are related to the tangents of the feature boundaries of an image B . Let

n denote the direction normal to the feature boundary through a given point (the
gradient direction), and let 7 denote the tangent direction. These directions can be

written in terms of the first derivatives of the image, B, and B ) as
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=2 (4.5)

Since n and 7 constitute orthogonal directions, the rotationally invariant Laplacian

operator can be expressed as the sum of the second order spatial derivatives, B, and

B,,, in these directions and the linear heat conduction equation can be written without

T2

using the source term,

Omitting the normal diffusion, while keeping the tangential diffusion yields the GHF

equation as

oB (8,B>-28,B,B,+B,B?)

XX X X X
-aB -« y Y hal

o B2 +B2)

(4.7)

The equation above can also be written as follows to show that feature boundaries of

the image evolve in the direction normal in proportion to their curvature «,

2 2
oB —aB_ =« (BxxBy ZBxyBng * BWBX)J‘B)% + Bi i: K|VB| (4.8)
or (B2+B2)

In our model, GHF is used to decrease the curvature for the purpose of obtaining
smooth boundaries and removing holes that appear because of noise. This is achieved
as follows. Firstly, a segmented region is converted to a binary form as given below

and also shown in Figure 4.4(c),

1, 1(x)>0
F(x) ={ 0 (4.9)
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where 1(x) is the temperature distribution after terminating diffusion and F(x) is the
binary form of the segmented image that assigns unity to the region of interest. This
binary form represents initial condition for GHF, B(x,¢=0)=F(x). The boundaries of
the image are insulated with homogeneous Neuman condition, dB/dn=0, which

means there is no heat flow in, or out, from the boundaries. The GHF problem is

defined below,

aB_a(B B2 -28B,B,B, +B, B2

b _ x—y xy = x e x
2 2
ot (B2 +8B2)
B(X,t = O) = F(X), initial condition
aBa(X’t) =0, boundary condition (4.10)
n

GHF is applied to the B(X) until the specified time (number of iterations) and finally

the resulting image is thresholded to obtain the final segmentation. The process is

formulated below,

S(x) = {1, GHF(B(x),z,)>0.5 @.1)

0, GHF(B(x)t,)<0.5

where, ¢, is the number of iterations and S(X) is the binary form of the final

A
segmentation, which assigns unity to the region of interest. The final segmentation is

shown in Figure 4.4(d) and (e), where ¢, =50 for this illustration. The selection of ¢,

depends on the user and it is determined due to the noise level of the image. However,

as t, increases, extracted shape evolves to a circle, then to a point and then it is lost.

For this reason, we should avoid using large values for ¢, .

Since the illustrated human heart image seems bimodal, we can also consider the final
form of the control function as shown in Figure 4.4(f). To smooth boundaries and
remove holes, we simply continue with Equation 4.10 and observe the result in Figure

4.4(g) and (h).
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Figure 4.4: A magnetic resonance image of the left ventricle of a human heart and illustration
of Geometric Heat Flow (GHF) for the purpose of obtaining smooth boundaries and removing
holes inside the prior segmented regions. GHF is applied both to the binary form of the
Temperature Front (TF) segmentation, B(X), and to the control function CF(x). The size of the
image is 177x178, 4,,/4,,, =1 and ¢,=50. (a) Source position. (b) Final position of the TF at

ut
t=59. (c) Binary form of the segmentation by TF, B(x). (d) Binary form of the final
segmentation, S(X), after GHF. (e) Final shape after GHF. (f) Final form of the control

function, CF(x). (g) Control function, CF(x), after GHF. (h) Final shape after GHF.
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4.4 Evaluation and Experimental Results

In evaluation, our model is denoted by TF+GHF, since the TF roughly segments the
region of interest and then the GHF is used to complete the segmentation. Similarly, the
segmentation by the control function (CF) followed by the GHF is denoted by
CF+GHF. Performance evaluation is employed both for segmentation by TF+GHF and
segmentation by CF+GHF. In this section, we first present the evaluation of TF+GHF
and CF+GHF on segmentation, then the evaluation for the computational efficiency of
our algorithm; finishing with some illustrative examples on medical images. Note that
in this section we are using many acronyms, so for convenience a list of abbreviations

is given at the beginning of this thesis.

Segmentation by TF+GHF is compared with the Active Contour Without Edges
(ACWE) [64] and Gradient Vector Flow Snake (GVFS) [41]. The evaluation is done on

a “harmonic” shape object [60] (the object boundary is a harmonic curve) and star
shape object with varying normal distributed noise N, (,u, o’ ), as shown respectively at

the top rows in Figure 4.6 and 4.8. The sum of squared error (SSE) is employed to

quantify the performance of each algorithm.

M N
SSE=Y"3(s,,-0,,F (4.12)

x=1y=1

Where, S is the binary segmented image and O is the actual (ground truth) binary
segmented image of size M x N. The quantity of noise is considered in terms of

standard deviation o with zero mean.

ACWE is a region-based GAC model that is implemented by a level set function [64].
It applies global minimization to segment bimodal images as a whole. However, in this
evaluation, we choose the biggest segmented region, since we are concerned with the
harmonic shape object segmentation. Otherwise, it will cause very high errors in noisy
conditions because of the noise outside the harmonic object. To evaluate ACWE, we
use a Matlab implementation given in [73], and we note that this is a non-optimal
Matlab framework. In this evaluation, the selected parameter values for ACWE are:

Aip = A, =1 (parameters for regional statistics), v, =0 (the area parameter), /4, =1
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(the step space), At =0.1 (the time space), € =1 (the parameter for the Heaviside and

Dirac delta functions) and gz, =0.01* 2557 (the length parameter).

GVEFS is a gradient-based PAC model that uses GVF as an external force [41]. To
evaluate GVFS, we use Matlab implementation given in [74], and this is also a non-
optimal Matlab framework. In this evaluation, the selected parameter values for GVFS

are: a; =0.25 (smoothness parameter of the contour), S, =0 (rigidity parameter of
the contour), y, =0.6 (external energy parameter of the contour), and y; =0.2 (in

diffusion of gradient vectors), At=1 (the time interval). In addition, we use 80

iterations to diffuse gradient vectors.

Extensive explanations about ACWE and GVFS, which are compared with our model,

are given in Appendix B.

In our algorithm, we use an explicit scheme of finite differences in the first and in the
second part. Our finite difference formulation can be found in Appendix A. We use
Matlab for the implementation as well. In this evaluation, the selected parameter values

for TF+GHF are: « =0.25 (thermal diffusivity), 4,,/4,,, =1 (ratio of the parameters

ut

for regional statistics), Q =5 (the energy generated from the source position per unit
time interval), Af=1 (the time interval), Ax = Ay =1 (the spatial intervals), ¢, =10

(specified time for GHF). In addition, we start to use regional statistics after £ =10 to
increase the number of samples inside the TF and in each 10 iterations we control the

movement of TF to determine the termination of the first part.

In the evaluations for TF+GHF, the contours and the heat source are initialized inside
the objects. Figure 4.5 shows the performance of TF+GHF, ACWE and GVFS for the
harmonic object segmentation. The graphs are obtained over five applications of each
algorithm, where the rectangle represents standard deviation from the mean value and
error bar represents minimum and maximum values at each data point. In each
application, the obtained graphs are smoothed by applying local averaging to the data
points in 6 nearest neighbourhoods. It is observed that TF+GHF and ACWE perform
much better than GVFS. The main reason for this is that TF+GHF and ACWE use
region-based algorithms, on the other hand GVFS uses a gradient-based algorithm,
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which is very sensitive to the noisy conditions. TF+GHF and ACWE can also handle
topological changes, which GVFS cannot. When we compare TF+GHF and ACWE,
ACWE performs better than TF+GHF until o =40. This appears to be due to the
smoothing operation in TF+GHF. GHF attempts to smooth the original shape and cause

errors in TF+GHF, when there is no noise or low noise in the image, since ¢, is fixed in

the evaluation. However, from o =40 to o=80, TF+GHF segments better than
ACWE. The main reason is again the smoothing operation. TF+GHF applies
smoothing after rough segmentation without any relation to the regional statistic
constraints, while ACWE uses smoothness constraint with regional statistic constraints
during the segmentation. After o =80, it is seen that ACWE shows better performance
than TF+GHF. Because, ACWE segments many regions outside the harmonic region in
the presence of high noise and then some of the segmented noise remains connected to

the original region when we select the biggest region.

GVES has the highest variation of the SSE at the data points and the SSE starts to vary
after 0 =20. For ACWE, we observe variation in the SSE after o =30, and the
variation looks similar between o =45 and o =100. The variations of SSE of ACWE
are less than other algorithms at the highest noise levels. For TF+GHF, the SSE starts
to vary after o =45, and in general the SSE increases as noise increases. Figure 4.6
shows some of the results for TF+GHF (second row), ACWE (third row) and GVFS
(fourth row).
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Figure 4.5: Performance of TF+GHF, ACWE and GVFS on the harmonic shape object. The
graphs show the rectangle representing standard deviation from the mean value and error bar

representing minimum and maximum values of the SSE.

Original

TF+GHF

(a) o=0 (b)o =40 (c)o =60 (d)o =80 (e)o =100
Figure 4.6: Results for TF+GHF (second row), ACWE (third row) and GVFES (fourth row) with

respect to increasing Gaussian noise in the image of size 100x100.
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Figure 4.7 shows the performance of TF+GHF, ACWE and GVEFS for the segmentation
of a star object. The graphs are obtained over five applications of each algorithm,
where the rectangle represents standard deviation from the mean value and error bar
represents minimum and maximum values at each data point. In each application, the
obtained graphs are smoothed by applying local averaging to the data points in 6
nearest neighbourhoods. The star object has branches, which narrow until they are one
pixel wide. Half of the star object has different intensity, to create weak edges inside
the object. It is again observed that TF+GHF and ACWE perform much better than
GVFEFS. The reason for this is that TF+GHF and ACWE use region-based algorithms, on
the other hand GVFS uses a gradient-based algorithm, which is very sensitive to the
conditions there. It is also observed that GVFS has worse performance in the
segmentation of the star object comparing to the segmentation of the harmonic object,
because, GVFS cannot flow into the narrow regions of the star object. TF+GHF and
ACWE can flow into the narrow regions. ACWE performs better than TF+GHF until
o =30. This appears to be due to the smoothing operation in TF+GHF. GHF attempts
to smooth the original shape and cause errors in TF+GHF, when there is no noise or

low noise in the image, since ¢, is fixed in the evaluation. However, from o =30 to

o =80, TF+GHF segments better than ACWE. The main reason is again the
smoothing operation. TF+GHF applies smoothing after rough segmentation without
any relation to the regional statistic constraints, while ACWE uses smoothness
constraint with regional statistic constraints during the segmentation. After o = 80, it is
seen that ACWE shows better performance than TF+GHF. Because, ACWE segments
many regions outside the star region in the presence of high noise and then some of the
segmented noise remains connected to the original region when we select the biggest

region.

The SSE of GVFS starts to vary after o =5, and the variations are very high between
0=10 and o =45 in comparison to the other algorithms. For ACWE, we observe
variation in the SSE after o =25, and the variations look similar at all the remaining
noise levels. The variations of SSE of ACWE are less than other algorithms at high
noise levels, which is consistent with the analysis in Figure 4.5. For TF+GHF, the SSE

varies slightly between o =40 and o = 60. After o =65, we can observe significant
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variation in the SSE. Figure 4.8 shows some of the results for TF+GHF (second row),
ACWE (third row) and GVFS (fourth row).
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Figure 4.7: Performance of TF+GHF, ACWE and GVFS on the star shape object. The graphs
show the rectangle representing standard deviation from the mean value and error bar

representing minimum and maximum values of the SSE.
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Figure 4.8: Results for TF+GHF (second row), ACWE (third row) and GVFS (fourth row) with

respect to increasing Gaussian noise in the image of size 256x 256 .

Segmentation by CF+GHF is evaluated by comparing with ACWE. Since both attempt
to segment bimodal images as a whole, the evaluation is done on an image that has two
harmonic objects with varying normal distributed noise, as shown at the top row in
Figure 4.10. As before, SSE is employed to quantify the performance of each
algorithm. We use the parameters as given before, however we do not choose the
biggest segmented regions for ACWE. In this evaluation, the contour and the heat
source are initialized into one of the harmonic objects. Figure 4.9 shows the
performance of CF+GHF and ACWE. The graphs are obtained over five applications of
each algorithm, where the rectangle represents standard deviation from the mean value
and error bar represents minimum and maximum values at each data point. In each
application, the obtained graphs are smoothed by applying local averaging to the data
points in 6 nearest neighbourhoods. It is observed that until o = 40 ACWE performs
better than CF+GHF, which appears because of the smoothing operation in CF+GHF.
As explained before, GHF attempts to smooth original shape, when there is no noise or

low noise in the image, since ¢, is fixed in the evaluation. However, after o =40,
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CF+GHF performs better than ACWE. The main reason is the smoothing operation,
since the smoothing in CF+GHEF is applied after the rough segmentation without any
relation to the regional statistic constraints, while the smoothness constraint in ACWE
is applied together with the regional statistic constraints during the segmentation. The
SSE of ACWE starts to vary after o =30, and the variations look similar after o =40
at each data point. The variations of SSE of CF+GHF are less than those for ACWE
and the SSE starts to vary after o =35 slightly. Figure 4.10 shows some of the results
for CF+GHF (second row) and ACWE (third row).
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Figure 4.9: Performance of CF+GHF and ACWE. The graphs show the rectangle representing
standard deviation from the mean value and error bar representing minimum and maximum

values of the SSE.
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Figure 4.10: Results for CF+GHF (second row) and ACWE (third row) with respect to

increasing Gaussian noise in the image of size 100x100.

Results also show the effectiveness and the computational efficiency of our algorithm
in comparison to the GVFS and ACWE. The following evaluations results are obtained
by using MATLAB 7.0 on a Pentium IV computer, which runs Windows XP operating
system with 3.2 GHz CPU and 3GB RAM.

First we investigate how the SSE of TF+GHF, of ACWE and of GVFS changes, on the
original (no noise) and on the noisy star object, as iteration number increases (as the
contour evolves). We initialize contours at the centre of the star object and arrange their
sizes to have SSE=8000 at the beginning. Figure 4.11 shows SSE of TF+GHF, of
ACWE and of GVFS with respect to increasing iteration numbers on the original star
object, shown in Figure 4.8 (a). Table 4.1 also shows the number of iterations required
to stabilize SSE, remaining SSE after stabilization and CPU time required for
stabilization for each algorithm on the original star object. The final segmentation by
each algorithm can be seen in Figure 4.8 (a) as well. We observe that GVFS stabilizes
at iteration= 170 with SSE= 1000 and CPU time=57.63 seconds. For further iterations
GFVS remains at that SSE, because it cannot move through the narrow regions and can
not achieve complete segmentation. ACWE achieves complete segmentation at
iteration= 890 with SSE=0 and CPU time=5.92 minutes. Finally, TF+GHF achieves
segmentation at iteration= 180 with SSE=93 and CPU time=7.17 seconds. There
remains some error, because of the smoothing operation in TF+GHF. GHF is applied,

at the end of first part in our algorithm, with fixed iteration number (10 iterations) and
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causes errors when there is no noise on the object. It is also observed that TF+GHF
achieves segmentation with the lowest CPU time. Although GVFS segments a smaller
region, it requires CPU time more than TF+GHF. It must be noted that GVFS also
needs 80 iterations to diffuse gradient vectors of the image, which is the image-
dependent force it uses, before contour evolution. There is an also big difference in
CPU times of ACWE and TF+GHF. ACWE is computationally expensive since it uses

the level set method for curve evolution.
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Figure 4.11: SSE for TF+GHF, ACWE and GVF with respect to increasing iteration numbers

from the initial positions to the final segmentations on the original star object.

Table 4.1: Number of iterations required to stabilize, remaining SSE after stabilization and

CPU time required to stabilize for TF+GHF, ACWE and GVFS on the original star object.

Original Star Object (no noise )
Algorithm Num. of iteration to Remaining SSE CPU Time
stabilize
TF+GHF 180 93 7.17 seconds
ACWE 890 0 5.92 minutes
GVEFS 170 1000 57.63 seconds
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Figure 4.12 shows SSE of TF+GHF, of ACWE and of GVFS with respect to increasing
iteration numbers on the noisy star object, shown in Figure 4.8 (b), which is corrupted
by Gaussian noise of o =40. Table 4.2 also shows the number of iterations required to
stabilize, remaining SSE after stabilization and CPU time required for each algorithm
on the noisy star object. The final segmentation by each algorithm can be seen in
Figure 4.8 (b) as well. It is observed that as the iteration number increases, GVFS
stabilizes at iteration= 18 with SSE=6950 and CPU time 10.57 seconds. It achieves
poor segmentation because of the limitation of the gradient-based information to the
noise. ACWE achieves segmentation at iteration= 1100 with SSE=570 and CPU
time=7.29 minutes. Finally, TF+GHF achieves segmentation at iteration= 180 with
SSE=188 and CPU time=7.26 seconds. In TF+GHF, we observe sudden decrease in
SSE before stabilizing. This is because, we apply a fixed number of iterations of GHF
(10 iterations) to remove noise and smooth shape at the end of our algorithm. It is
observed that TF+GHF achieves segmentation with minimum SSE and again with the
lowest CPU time. Although GVFS has poor performance because of noise and
segments small region, TF+GHF has slightly smaller CPU time than GVFS. There is
again a big difference in CPU times of ACWE and TF+GHF, where TF+GHF performs
much faster than ACWE. ACWE also has higher SSE than TF+GHF, which means
TF+GHF performs better than ACWE in this segmentation.
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Figure 4.12: SSE for TF+GHF, ACWE and GVF with respect to increasing iteration numbers

from the initial positions to the final segmentations on the noisy star object.

Table 4.2: Number of iterations required to stabilize, remaining SSE after stabilization and

CPU time required to stabilize for TF+GHF, ACWE and GVFS on the noisy star object.

Noisy Star Object (o =40)
Algorithm Num. of iteration to Remaining SSE CPU Time
stabilize
TF+GHF 180 188 7.26 seconds
ACWE 1100 570 7.29 minutes
GVFS 18 6950 10.57 seconds

It is important to note that rest of the experiments, in this Chapter, are conducted by

same computer and using Matlab 7.0, as described before, except the RAM is 1GB.

Figure 4.13 shows the segmentation of pulmonary arterial branches in the chest image
by TF+GHF, GVFS and ACWE. The initial contour for GVFS and ACWE, and the
source position for TF+GHF are shown in Figure 4.13(a). Figure 4.13(b) shows the

segmentation by TF+GHF in the given image with black contour, however the
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segmented arterial branches are not visible with this illustration and the segmentation is
also shown with the binary form in Figure 4.13(c). Figure 4.13(d) and (e) show
segmentation by GVFS respectively with the result superimposed as the black contour
in the image and the binary form. Figure 4.13(f) and (g) show segmentation by ACWE
respectively with black contour superimposed and the binary form. It is observed that
TF+GHF segments the desired arterial branches better than GVFS. By this result,
TF+GHF can easily handle topological changes and flow into the arterial branches with
CPU=7.85s. However, GVFS cannot handle topological changes and cannot flow into
the arterial branches. Although GVFS segments a smaller region than TF+GHF, the
CPU=9.23s, which is more than for TF+GHF. If we look at segmentation by ACWE,
we see that ACWE attempts to segment whole image. Here we focus on segmentation
of desired region, which is pulmonary arterial branches, and compare with the
TF+GHF. TF+GHF and ACWE have similar segmentation results on the desired
region. However, ACWE achieves this segmentation in 24.75 minutes, while TF+GHF
achieves in 7.85 seconds. This big difference in CPU time appears because of the
computational complexity of ACWE that is implemented with level sets. The CPU

times of the algorithms for the pulmonary arterial branches are also shown in Table 4.3.
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Figure 4.13: Segmentation of pulmonary arterial branches in the chest image of size 259x250

by TF+GHF, GVFS and ACWE. (a) Initial contour and the source position. (b) Segmentation
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by TF+GHF is shown by the black contour on the image. All the parameters are same as in

evaluation except ¢, =5. (CPU=7.85 seconds). (c) Segmentation by TF+GHF is in binary form.
(d) Segmentation by GVFS is shown with black contour on the image. All the parameters are
same as in evaluation except the iteration to diffuse gradient vectors is 70. (CPU=9.23
seconds). (e) Segmentation by GVEFS is in binary form. (f) Segmentation by ACWE is shown
with black contour on the image. All the parameters are same as in evaluation except the length
parameter u:0.08x2552. (CPU=24.75 minutes). (g) Segmentation by ACWE is in binary

form.

Table 4.3: The CPU times of the algorithms for the pulmonary arterial branches in the chest

image
Pulmonary Image
Algorithm CPU Time
TF+GHF 7.85 seconds
GVEFS 9.23 seconds
ACWE 24.75 minutes

Figure 4.14 shows the segmentation of a bimodal human lung image by TF+GHF,
CF+GHF and ACWE, where the initial contour for ACWE and the source position for
TF+GHF are shown in Figure 4.14(a). Figure 4.14(b) and (c) respectively show the
segmentation by TF+GHF and CF+GHF with white contour in the image. Figure
4.14(d) shows the segmentation by ACWE. It is observed that TF+GHF and CF+GHF
achieves segmentation with CPU=1.96 seconds and ACWE achieves with CPU=15.92
minutes. This big difference in CPU time appears because of the computational
complexity of ACWE that is implemented with level sets. The CPU times of our
algorithm and ACWE for the human lung image are also shown in Table 4.4. It is also
observed that CF+GHF can extract feature boundaries better than ACWE especially at
the middle and at the bottom of the lung image.
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Figure 4.14: Segmentation of human lung image of size 123x118 by TF+GHF, CF+GHF and
ACWE. (a) Initial contour and the source position. (b) Segmentation by TF+GHF is shown
with white contour on the image. All the parameters are same as in evaluation except ¢, =15
(CPU=1.96 seconds). (c) Segmentation by CF+GHF. ¢ =15. (CPU=1.96 seconds). (d)
Segmentation by ACWE. All the parameters are same as in evaluation except the length

parameter 1 =0.08x255%. (CPU=15.92 minutes).

Table 4.4: The CPU times of the algorithms for the human lung image

Human lung image
Algorithm CPU Time
TF+GHF and CF+GHF 1.96 seconds
ACWE 15.92 minutes

We also discuss how the different regional statistic parameters (1,,/4,,) and the
different iteration number for GHF (¢,) effect the segmentation. Figure 4.15 shows the

segmentation of the magnetic resonance image of the left ventricle of a human heart by

TF+GHF and CF+GHF with respect to the increasing 4,,/4,,, , while keeping ¢, =50.

The heat source is located at the same position, as shown in Figure 4.4 (a). Earlier,
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=1 in the experiment shown in Figure 4.4. In this experiment, the selected

values for A,,/4,,= 0.25, 0.5, 2, 4 and the segmentation results by TF+GHF and

ut
CF+GHEF are given in Figures 4.15 (a), (b), (¢) and (d) respectively. We observe that as
Z’in //’l
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increases, the selectivity for segmentation increases with respect to the region

of source location.

TF+GHF

CF+GHF

Figure 4.15: A magnetic resonance image of the left ventricle of a human heart and illustration
of the segmentation by TF+GHF and CF+GHF with respect to the increasing 4,,/4,,, (ratio of
regional statistics parameters). (a) 4, /4, =0.25, () A, /A =0.5, (©) A/ 2w =2, (d)

ut ut

//i’in ///i’out :4'

Figure 4.16 shows the segmentation of the magnetic resonance image of the left

ventricle of a human heart by TF+GHF and CF+GHF with respect to the increasing ¢,

while keeping 4,,/4,,=1. The heat source is located at the same position shown in
Figure 4.4 (a) and 7,=50 in that experiment. In this experiment, the selected values for
t,= 20, 40, 60, 80 and the segmentation results by TF+GHF and CF+GHF are
illustrated in Figures 4.16 (a), (b), (c¢) and (d) respectively. It is observed that as ¢,

increases, we obtain smoother segmentation and remove smaller regions.
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TF+GHF

CF+GHF

Figure 4.16: A magnetic resonance image of the left ventricle of a human heart and the

segmentation by TF+GHF and CF+GHF with respect to the increasing ¢, (iteration
number of GHF). (a) ¢,=20, (b) #,=40, (¢) #,=60, (d) ¢,=80.

Figure 4.17 shows the segmentation of the human lung image by TF+GHF and

CF+GHF with respect to the increasing 4, /4,,, , while keeping ¢, =15. The heat source
is located at the same position shown in Figure 4.14 (a) and 4,,/4,,=1 in that
=0.25,0.5,2, 4, 6 and

experiment. In this experiment, the selected values for 4,,/4,,

the segmentation results by TF+GHF and CF+GHF are given in Figures 4.17 (a), (b),
(c), (d) and (e) respectively. In Figure 4.17 (a), it is observed that TF+GHF moves out

of desired region since selecting A,,/4,,, =0.25 is too small with respect to region of
source location. As 4,,/4,, increases from 0.5 to 6, the selectivity for segmentation

increases, and TF+GHF does not flow outside desired region.
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TF+GHF

CF+GHF

(a) (b) (c) (d) (e)
Figure 4.17: Segmentation of human lung image by TF+GHF and CF+GHF with respect to the

(ratio of regional statistics parameters). (a) A,,/4,,=0.25, (b)

out

increasing  4,,/4,

ﬂ’m/ﬂ’

out

ut

:O'S’ (C) ﬂ’in/ﬂ’o :2’ (d) j'in /ﬂ'out :4’ (e) j'l‘n /ﬂ'out :6 °

ut

Figure 4.18 shows the segmentation of the human lung image by TF+GHF and
CF+GHF with respect to the increasing ¢, , while keeping 4,,/4,,, =1. The heat source

is located at the same position shown in Figure 4.14 (a) and ¢,=15 in that experiment.

In this experiment, the selected values for 7,= 5, 10, 20, 25 and the segmentation results

by TF+GHF and CF+GHF are shown in Figures 4.18 (a), (b), (c¢) and (d) respectively.

It is observed that as ¢, increases, we obtain smoother segmentation, as well as remove

noise and smaller regions.

TF+GHF

CF+GHF

Figure 4.18: Human lung image and segmentation by TF+GHF and CF+GHF with respect
to the increasing ¢, (iteration number of GHF). (a) ¢,=5, (b) ¢,=10, (c) #,=20, (d) ¢,=25.
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Finally, Figure 4.19 shows the segmentation in a human brain image by TF+GHF with
respect to the different ratio of the regional statistic parameters. Figure 4.19 (a) shows
the heat source position. Figure 4.19 (b) illustrates the segmentation result for

Ain/ Ao =1. In Figure 4.19 (c), 4,/4

out out

=5, which provides more selective

segmentation in the brain image and in Figure 4.19 (d), 4,,/4,,, =8.3, which increases

ut

the selectivity comparing to in Figure 4.19 (c). Note that 7,=7 in this experiment.

Figure 4.19: Segmentation of human brain image of size 216x180 by TF+GHF with different
regional statistic parameters. All the parameters are same as in evaluation except the regional
statistic ones and #,=7. (a) Initial source position. (b) A,/ =1. (©) A/ 2w =5 (d)

ﬂ“in/ﬁ’

O

=83,

4.5 Conclusions

We have presented a novel segmentation algorithm based on using the heat flow
analogy. In the first part of the algorithm, we roughly extract the desired feature
boundaries by representing a chosen heat conduction analysis in the image domain. The

representation in image domain is achieved by using a control function (CF) in the heat
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conduction equation. This formulation also provides advantage when the given image
is bimodal, since CF attempts to segment whole image in this case. In the second part,
we use geometric heat flow (GHF) to tune the curvature of the extracted feature
boundaries and remove possible noise that arises from the first part of the
segmentation. Evaluation results indicate that Temperature Front (TF) + GHF has
better performance than gradient vector flow snake (GVFS) and active contour without
edges (ACWE) with respect to increasing Gaussian noise. For the bimodal images,
CF+GHF has better performance than ACWE. These improvements are achieved by
effective organization of our algorithm, TF+GHF segments better than GVFS because
of using region-based information instead of gradient-based, which is sensitive to noise.
TF+GHF and CF+GHF segment better than ACWE because of the smoothing
operation of shape. TF+GHF and CF+GHF apply smoothing after rough segmentation
without any relation to the regional statistic constraints, while ACWE uses smoothness
constraint with regional statistic constraints during the segmentation. In addition,
TF+GHF and CF+GHF are computationally more efficient and effective than both
GVFS and ACWE based on the simulation results. Especially, there are big differences
between our model and ACWE in computational efficiency. The main reason is the
complexity of the level set method in ACWE. As such, the heat analogy can be

deployed with success for shape extraction in images.
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Chapter 5 Shape Classification
using Multiscale Fourier-based

description in 2-D Space

The solution to analysis of heat conduction can be achieved by using Fourier series or
Fourier integrals [16, 19, 20]. Furthermore, the solution of linear and homogeneous
heat equation in infinite medium can be viewed as smoothing a signal with a Gaussian
filter [19, 20], as shown in Equation 2.23 in Chapter 2. In our research, we use Fourier
theory and the Gaussian filtering approach to introduce new and efficient silhouette

object descriptors for recognition purposes.

In shape recognition, a multiscale description provides more information about the
object, increases discriminatory power and immunity to noise. In this Chapter, we
develop a new multiscale Fourier-based object description in 2-D space using a low-
pass Gaussian filter (LPGF) and a high-pass Gaussian filter (HPGF), separately. Using
the LPGF at different scales (standard deviation) represents the inner and central part of
an object more than the boundary. On the other hand using the HPGF at different scales
represents the boundary and exterior parts of an object more than the central part. Our
algorithms are also organized to achieve size, translation and rotation invariance.
Evaluation indicates that representing the boundary and exterior parts more than the
central part using the HPGF performs better than the LPGF based multiscale
representation, and in comparison to Zernike moments and elliptic Fourier descriptors
with respect to increasing noise. Multiscale description using HPGF in 2-D also
outperforms Wavelet transform based multiscale contour Fourier descriptors and

performs similar to the perimeter descriptors without any noise.
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This Chapter is organized as follows: Section 5.1 discusses related works. Section 5.2
explains the proposed multiscale Fourier-based object description with respect to LPGF
and HPGF in 2-D space. Section 5.3 represents classification with multiscale Fourier-
based object description. Section 5.4 concerns evaluation and experimental results and

finally Section 5.5 is conclusions.

5.1 Related Works

Silhouette based object description and recognition is an important task in computer
vision. The descriptor must be invariant to size, translation and rotation, and it must be
effective in adverse conditions such as noise and occlusion. There are two main types

of shape description methods: boundary-based methods and region-based methods.

5.1.1 Boundary-based Shape Descriptors

In boundary-based methods only the boundary pixels of a shape are taken into account
to obtain the shape representation. Boundary-based techniques have some limitations.
First, they are generally sensitive to noise and variations of shape, since they only use
boundary information. Second, in many cases, the object boundary is not complete with
disjoint regions or holes. Region-based methods can overcome these limitations. The
most common boundary-based shape descriptors are chain codes [75], Fourier
descriptors [1], wavelet descriptors [76], Wavelet-Fourier descriptors [77, 78] and
Curvature Scale Space (CSS) [79].

Chain codes [75] are one of the oldest techniques in computer vision introduced for
shape description. The algorithm starts with isolating the boundary pixels from a
region. Given the boundary, which are connected points, start from one of the boundary
pixel and go to the neighbour boundary pixel clockwise that is in one of the major
compass direction. Directions can be in 4-way or 8 way connectivity depending on
contour isolation. Each direction represents a number that becomes an element of chain
code. This is repeated for each pixel until the start point is reached, when the closed
shape is completely analysed. By encoding relative direction, rather than the position of
the contour pixels, the representation becomes translation invariant. However, the code
will be different when the start point changes. Start point invariance can be achieved by

considering the code to constitute the digits in an integer. The digits are shifted

67



cyclically until the smallest integer is obtained. The smallest integer represents the start
point invariant chain code. This code is also rotation and scale variant, which means
not convenient for matching yet. Rotation invariance is achieved by expressing the
code as a difference of chain code. Scale invariance is achieved by resampling the
boundary before coding. The chain code is sensitive to noise that may appear because

of the segmentation or resampling the boundary.

Shape representation using Fourier descriptors is easy to compute and more robust.
Fourier Descriptors are obtained from the Fourier transform on a shape signature. The
shape signature is a 1-D function that represents the shape derived from the boundary
points of a 2-D binary image. Many shape signatures exist such as, centroid distance,
complex coordinates (position function), curvature and cumulative angle [80, 81].
Geometric invariance can be achieved at the shape signature extraction stage or after
the Fourier transform by normalizing Fourier coefficients appropriately. This depends
on the choice of shape signature type. The Fourier descriptors represent the shape of the
object in a frequency domain. The lower frequency descriptors contain information
about the general features of the shape and the higher frequency descriptors contain
finer details of the shape. In general lower frequency components are selected for
description to reduce dimension and since the higher frequency components do not add

much to the shape description and are susceptible to noise.

Wavelet descriptors are derived from wavelet transform on a 1-D shape signature. The
wavelet transform can be considered as a signal decomposition onto a set of basis
functions. It has multiresolution, denoising and feature extraction capabilities. Chang
and Kuo [76] used 1-D discrete periodized wavelet transform to describe shapes.
However, the matching schema was more complicated than for Fourier descriptors.
Kunttu [77, 78] introduces multiscale Fourier descriptors using wavelet and Fourier
transforms. The multiscale contour Fourier descriptors are obtained by applying the

Fourier transform to the coefficients of the multiscale complex wavelet transform.

Recently, McNeil and Vijayakumar [82] introduced perimeter and radial descriptors. In
this work, shapes are represented by a large number of points from their boundaries.
These points are selected at fixed intervals in terms of distance along the boundary

(perimeter distance) or radial angle. Then, a probabilistic correspondence-based
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algorithm, which also incorporates with scale, translation and rotation invariance, is
applied for shape matching. They note that suitability of the perimeter distance or radial
angle for description depends on the classes in the dataset and these two descriptions
can also be combined to improve classification in some datasets. Later on, McNeil and
Vijayakumar [83] improved their algorithm by segment-based shape matching, which
can overcome limitations of global shape matching such as independent movement of

parts or smooth deformations.

Multiscale shape description is the most promising approach for recognition. Different
features of the shape can be obtained at different scales and the combination of these
features can increase discrimination power, so increasing the correct classification rate.
In addition, it is more robust to noise since the dominant features are those which
persist across scales. There are many boundary-based multiscale description techniques

[77,79, 84, 85, 86].

One of the most influential techniques is curvature scale space (CSS) introduced by
Mokhtarian et al. [79]. This method uses the scale space framework in 1-D space [25].
The boundary of a shape is filtered by LPGF of varying scales (standard deviation). For
each specific scale, the locations of those curvatures zero crossings designated as one
and otherwise as zero. As the scale decreases, the shape becomes smoother. When the
scale is small enough, there will be no curvature zero crossing any more. The binary
CSS image is generated by the location and scale in the horizontal and vertical axes

respectively. Finally, this binary image is used for matching.

Adamek and O’Connor [84] proposed a multiscale representation for a single closed
contour that makes use of both concavities and convexities of all contour points. It is
called multiscale convexity concavity (MCC) representation, where different scales are
obtained by smoothing the boundary with LPGF of different scales. Then, a new
measure for the curvature was proposed that is based on the relative displacement of a
contour point with respect to its position in the preceding scale level. This approach is
motivated by the observations that when smoothing a closed contour, convex and
concave points are moved inside and outside the contour, respectively. The matching is

done using a dynamic programming approach.
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There are also other boundary-based mutiscale description techniques such as graph-

based approach [85] and triangle-area based approach [86].

5.1.2  Region-based Shape Descriptors

In region-based methods, all the pixels within a shape are used to obtain the shape
representation. Popular region-based shape descriptors include moments [1, 87] and
generic Fourier descriptors (GFDs) [88]. There are different types of moments and they
can be classified as non-orthogonal and orthogonal moments depending on the basis
function used. Geometric moments [89] are the first and simplest type of moments,
which has been used for character recognition. They use non-orthogonal basis functions
called a monomial. Low order moments capture global description, while as the order
increases, more detail is captured. The main problem with Geometric moments is the
high degree of information redundancy, because of the non-orthogonal basis function
used. If the basis functions are orthogonal then each moment should highlight
independent features. Teague [90] proposed Legendre moments that use Legendre
polynomials as basis functions. These polynomials are orthogonal and cause Legendre
moments to extract independent features within the image, with no information
redundancy. This property also provides good reconstruction capability. These
moments are based on Cartesian coordinates but the image function has to be mapped
to a specific range of values. Zernike moments were also first proposed by Teague [90]
and are based on the complex valued Zernike polynomials. These polynomials are
defined in polar coordinates, which help to achieve rotation invariance. Zernike
moments were found to be the best performing type of moment in image analysis and
description task in terms of noise resilience, information redundancy and reconstruction

capabilities [91].

Generic Fourier descriptors (GFD) [88] are other popular region-based shape
descriptors. A 2-D Fourier transform is applied on a polar raster sampled shape image.
The obtained polar Fourier coefficients are translation invariant. Then rotation and
scale invariance are achieved by normalizing these coefficients. GFDs capture features
of the shape in both polar and radial directions. GFDs are simple to compute and

efficient.
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Although many boundary-based multiscale description techniques exist, there is no
region-based multiscale description technique in the image space. It is important to note
that moments and GFDs are multiscale approach in the feature space, but not in the
image space. In our work, we introduce image-based multiscale description using

LPGF and HPGF, separately.

5.2 Fourier-based Description with Multiscale Representation in 2-D

space

We produce multiscale Fourier-based object descriptors in 2-D space. For this purpose,
we investigate the LPGF and the HPGF, separately. The new algorithm starts with size
normalization of an object using bilinear interpolation in an image. The object size (the
total number intensity value) and the image size are determined experimentally

depending on the database to locate each object in the image without occlusion.

Interpolation is the problem of approximating the value for a new data point in some
space, within the range of a discrete set of known data points. There are three common
image interpolation techniques: Nearest neighbour, bilinear and bicubic interpolation.
The nearest neighbour algorithm selects the value of the nearest point, and does not
process the values of other neighboring points. It is the simplest algorithm to compute.
In bilinear interpolation, image values of the four nearest points are weighted
differently based on the distance from the desired point and average of those weighted
values give the image value of that desired point. Bilinear interpolation achieves more
accurate scaling and can produce smoother edges than nearest neighbour interpolation.
However, bilinear interpolation is a little more complex than nearest neighbour
algorithm. In bicubic interpolation, output pixel values are calculated from a weighted
average of pixels in the sixteen closest neighbourhoods. Bicubic interpolation achieves
the best scaling and produces the smoothest edges. However, it is more complex than
others and not convenient, when the speed is issue. In our algorithm we choose bilinear
interpolation, since it scales better than nearest neighbour interpolation and it is faster

than bicubic interpolation.

We also note that it is optional to centralize object in the image, since the next step is 2-

D Fourier transform, as given in Equation 5.1, which provides translation invariance.
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M-IN-1

FT(u,v)= ﬁ 3 S 1, y)el 2w Me/N) (5.1)
x=0y=0

Where FT(u,v) is Fourier transform of the silhouette image 1(x,y). M x N is the size

of the silhouette image.

We also note that there is no “windowing” operation before the Fourier transform. The
Fourier transform treats an image as it is part of a periodically repeated set of images
extending horizontally and vertically to infinity, which can cause strong edges between
the neighbours of the periodic image. Therefore, the Fourier transform is the
combination of the actual Fourier transform of the given image and that caused by the
edge effects at image neighbours. These edge effects can be significantly reduced by
using “windowing” operations, which in general makes image values zero towards
edges. In our application, the given image is a pre-segmented object on a zero-valued
background. Since the object does not occlude image edges, the image values are

already zero towards image edges, and there is no need for a “windowing” operation.

In general, the result of the Fourier transform is a complex number and the transform
can be represented in terms of its magnitude and phase. The magnitude describes the
amount of each frequency component and the phase describes timing, when the
frequency components occur. Here, we choose to use the Fourier magnitude image,
which is translation invariant. However, the phase also carries considerable information
that is discarded here. Oppenheim and Lim [92] showed that if we construct synthetic
images from the magnitude information of one image and the phase information of
another, we perceive mostly the image corresponding to the phase data. We leave
investigation of the phase information as future work and continue with the magnitude

information.

The computed Fourier magnitude image, FT(u,v)|, is translation invariant, however it

retains rotation. Given the shift operation (the zero-frequency components are at the
centre), multiscale generation is achieved at this stage. To represent the inner and
central part of an object more than the boundary, a LPGF with a selection of scale
parameters (standard deviation) is applied to the Fourier magnitude image as shown in

Equation 5.2.
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|FT(u, v]s = |FT(u,v)|(e7(”2 w2)2o? ) (5.2)

Where |FT(u,v1s and o, are Fourier magnitude and scale parameter of scale index s,

respectively. This method is generating the scale space [25] of the object in 2-D as
shown in Figure 5.1. It is observed that the LPGF smoothes the object and as scale
decreases, it causes loss of the boundary and exterior regions. The LPGF emphasizes
lower frequency components, but retains some contribution of higher frequency

components.

(a) (b) (c)
(d) (e) ®

Figure 5.1: Horse object filtered by LPGF with respect to decreasing scale. (a) o, =20, (b)

o,=15,(c) o;=11,(d) 0,=8,(e) o5=5,(f) o, =3.
On the other hand, to represent the boundary and exterior parts of an object more than
the central part, a HPGF with a selection of scale parameters (standard deviation) is

similarly applied to the Fourier magnitude image as shown in Equation 5.3.
s —(u2+v2 )/20',2
FT(,v) =FT(wv)l-e : (5.3)

Filtering with the HPGF at different scales is illustrated in Figure 5.2. It is observed
that the HPGF detects the object boundary and as scale decreases, it represents exterior
regions. The HPGF emphasizes higher frequency components, but retains a slight

contribution of lower frequency components.
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(®
Figure 5.2: Horse object filtered by HPGF with respect to decreasing scale. (a) o, =15, (b)

o,=11,(c) 05=8,(d) 0, =5,(e) 05=3,(f) o6 =1

The obtained Fourier magnitude images are not convenient for matching at this stage,
since they still vary with rotation. To remove rotation variance, the coordinates of each
Fourier magnitude image are polar mapped to make rotations appear as translations in

the new image.

Consider the polar coordinate system (r,6), where » € R denotes radial distance from

the center of the Fourier magnitude image (xc, yc) and 0<6 <2x denotes angle. Any

point (x,y)e R* can be represented in polar coordinates as follows

(e e

54
0= tanl[mj G4

X—Xx,

Equation 5.4 describes conversion from Cartesian to polar coordinates. The reverse

process, which is the polar to Cartesian coordinates transform, is defined below,

x =r*cos(6)

y =r*sin() (5:3)
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For every point (x, y), there is a unique point (r,@). Rotating the Cartesian coordinate

system about an origin, while preserving position and size, can be written with the

following matrix notation,

ey e

Where, (xl, yl) is the point before rotation and (xz, yz) is the point after rotation by the
angle @. Assuming that (x,,y,)=(r*cos(@),r*sin(@)) and after substitution to

Equation 5.6, we obtain the new coordinates as

X, =r* cos(H + go) 5.7)
y, = r*sin(@+ ) '
Here, we can observe that rotation in Cartesian coordinates causes translation in polar

coordinates,

(¥, 01) > (,0)

(52:32) > (. 0+0) >y
There are two principal methods for mapping a rectangular image to a circle in polar
transform. The image can either be fitted within the circle as shown in Figure 5.3(a) or
the circle can be fitted within the boundaries of the image as shown in Figure 5.3(b).
The main problem with fitting circle within the boundaries of the image is losing the
information in the corners. Since we want to use all information in the Fourier
magnitude image, we use the method that fits the image within a circle. In this method,
all pixels will be taken into account but some invalid pixels will also be included,
which fall inside the circle but outside the image. In our algorithm these invalid pixel
values are set to zero. Figure 5.4 shows the polar transform of a Fourier magnitude

image.
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(a) (b)
Figure 5.3: Alternative approaches for mapping a square image to the circle. (a) Fitting the
image into the circle, where the shaded area shows parts of the circle ignored in the mapping
process. (b) Fitting the circle to the square image, where shaded areas represent parts of the

image lost in mapping.

(b)

Figure 5.4: Cartesian to polar transform with fitting the image into the circle. (a) Fourier

magnitude image of the horse object filtered by HPGF (o =3) and the image size is 151x151.

(b) Polar transformed Fourier magnitude image of size 90x90, the invalid pixels are zero.

Finally, another 2-D Fourier transform is applied, as given in Equation 5.9, to compute

Fourier magnitude, which removes these translations.

1 C-1E-1

L P (1.0 [-j22(kr/C+16/E)] 59
i Z::,)Z,) (r,0)e (5.9)

FPT*(k,7)=
Where FPTS(k,l ) is the Fourier transform of the polar mapped image P°(r,6) of size
CxE and at scale index s. Note that there is no “windowing” operation before the
Fourier transform. Although it can remove edge effect between the neighbours of the

periodic image, it may also cause loses of some important information in the polar

mapped image.
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The resultant Fourier magnitude image,

FPT(k,IY, is translation, size and rotation

invariant and represents object descriptors OD® of a shape at scale index s. Figure 5.5

shows the proposed algorithm to obtain multiscale Fourier-based object descriptors.

Object size normalization

v

Fourier Transform (FT)

1

ET|" | | [FT)* | | [FT) | ...... IFT[*

‘ ' v '

Polar Transform

' ' v '

Fourier Transform

\ 4 \ 4 \ 4 \ 4

[FPT|' || [FPT/ || [FPT) | ...... IFPT|*

Figure 5.5: Producing the proposed multiscale Fourier-based object descriptors

The Fourier-Mellin transform is similar to our algorithm in terms of achieving rotation,
size and translation invariance. The Fourier-Mellin transform is a method for rotation,
size and translation invariant image feature extraction in 2-D space [93]. The first stage
is a 2-D Fourier transform to calculate the Fourier magnitude image (|FT|), which
removes translation variance while keeping scale and rotation variances, then the
coordinates are log-polar transformed (LPT) to make scaling and rotation appear as
translations, and finally another 2-D Fourier transform is applied to compute Fourier
magnitude image (|[FLPT|), which remove these translations. Figure 5.6 shows the
Fourier-Mellin transform to obtain rotation, size and translation invariant image
features. In the log-polar transform, converting scale change to translation is achieved
by logarithmic scaling the radius coordinate of the polar map image [94]. The
difference from our new approach is that we now have a filtering approach to create a
multiscale representation, which must be applied to the objects of same size. Because
of this, object size is normalized in the first step and we do not apply logarithmic

scaling to the radius coordinate of the polar transformed image.
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Figure 5.6: Fourier-Mellin transform to produce rotation, size and translation invariant

image features.

5.3 Classification with Multiscale Fourier-based Description

Classification is achieved using the nearest neighbour algorithm. We are using a
standard approach to allow comparison, though other classifiers are equally
appropriate. Euclidean distance (Ed) is used to measure similarity between objects and

is computed separately in each scale as given below,

Ed*(T,D)= \/ii(ODfr(x,y)—ODg(x,y))z (5.10)

x=1y=1

Where Ed*(T,D) is the Euclidean distance between the object descriptors, ODY, of

the test image T and object descriptors ODp, of an image from database D, at scale
index s . Then average distance (4d) is computed for each object.

Y
Ad =%2Eds (5.11)
s=1

Where Ad represents average distance and Y is the number of scales. Classifying with
average distance, instead of single scale distance, increase correct classification as well

as increase immunity to noise.
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5.4 Evaluations and Experimental Results

For evaluation, we use MPEG-7 CE-Shape-1 Part B database. There are 1400 images in
this dataset, which are pre-segmented and are in binary form. The objects are divided
into 70 classes with 20 images in each class. The object classes are shown in Figure

5.7. The appearance of these silhouettes changes due to

e viewpoint with respect to objects (size, translation and rotation variance),
e non-rigid object motion (e.g. people walking and fish swimming),

e noise inside shape (e.g. digitization and segmentation noise).

Some objects variations are shown in Figure 5.8. Leave-one-out cross-validation is
applied to validate classification. The correct classification rate (CCR%) is measured as

follows,

CCR(%):%xIOO (5.12)

o

where ¢, is the total number of correctly classified objects and ¢, is the total number of

classified objects.

In evaluation, first we investigate and compare single scales (filtering at different
scales) and average distance (with the method given in section 5.3) results of LPGF and
HPGF based representation without any noise in silhouette images. Single scales and
average distance results are also compared with the original (no filtering) result.
Second, we experiment with the original, single scales and average distance
performances with respect to increasing noise in the dataset. Finally, LPGF and HPGF
based multiscale description (average distance performances) are compared with other

object description techniques.
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Figure 5.7: A sample from each object class in the database
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Figure 5.8: Some objects variations

5.4.1 Original, single scales and average distance results without any noise in the

database

We analyse the original, single scales and average distance performances of LPGF and
HPGF based multiscale description without adding any noise to the database. We also
remove existing noise in the database by filling object region (using morphological

flood-fill operation), since there is noise only inside shapes.

In a multiscale description using LPGF, the object size is normalized to be 2500, which
is the total number of intensity value, in a 151x151 size image. 5 different scales are
selected for multiscale representation. The selected scales are:o, =20, o, =15,

oy =11, 0, =8 and o5 =5. The size of the object descriptor matrix is 90x 90 at each

scale. These 5 scale values are determined experimentally to achieve the best
performance of the proposed algorithm with LPGF. Note that as the number of scales

increases, the computational complexity increases.
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In a multiscale description using HPGF, the object size is similarly normalized to be
2500, which is the total number of intensity value, ina 151x151 size image. 5 different

scales are selected for multiscale representation. The selected scales are: o, =11,
o,=8, 0;=5, 0,=3 and o5 =1. The size of the object descriptor matrix is 90 x 90

at each scale. These 5 scale values are also determined experimentally to achieve the
best performance of the proposed algorithm with HPGF. As the number of scales

increases, the computational complexity increases.

Table 5.1 shows the CCR% of the original, selected single scales using LPGF and
average distance of selected scales. It is observed that the highest CCR% is achieved
with the original that is without applying any LPGF. The CCR% of the original is
92.6% and as we apply LPGF with decreasing scales, which means as the objects
become smoother, CCR% decreases. Taking average distances from these selected
scales, with the method given in section 5.3, results with 91.1%. This is not higher than
the original result and some single scale results. Therefore using LPGF is not effective,

when there is no noise in the database.

Table 5.1: CCR% of the original, single scales using LPGF and average distance using LPGF

LPGF Original o, =20 o, =15 oy =11 o, =8 o5 =5 Average
Distance
92.6 % 92.2 % 90.2 % 88.5 % 91.1 %

CCR%

-

wllw

-

Table 5.2 similarly shows the CCR% of the original, selected single scales using HPGF
and average distance of selected scales. It is observed that applying HPGF with scales

0;=5, 0,=3 and o5 =1 perform better than the original (92.6 %). The highest

CCR% is 95 % among the single scale results and is achieved at scale o, =3. This is
the scale which represents the exterior parts of the object more than the boundary and

the central part. The scales o5 =1 and oy =5 give exactly the same result (93.9 %).
After o, =35, as scale increases, the CCR% decreases. This is because we start to focus

more on the boundary alone, which is more sensitive to shape variations. Averaging the
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distances of these five scales, which represents the boundary and exterior parts of an

object more than the central part, even increase CCR% more and makes it 95.7 %.

Table 5.2: CCR% of the original, single scales using HPGF and average distance using HPGF

HPGF Original o, =11 o, =8 oy=5 o,=3 o5 =1 Average
Distance
92.6 % 92.2 % 93.9 % 95.7 %

CCR%

-

5.4.2 Original, single scales and average distance results with added noise in the

database

We experiment with the original, single scales and average distance performances with
respect to increasing salt and pepper noise in the database. Figure 5.9 illustrates salt and
pepper noise corrupted binary images with increasing density. In this evaluation, we do
not remove the existing noise in the database as well (no region filling). Although some
objects in the dataset contain noise inside the shape, adding salt and pepper type noise
cause noise outside the shape as well. Salt and pepper noise is added to all objects in
the database; therefore noisy test image is matched with the noisy images from
database. It is also important to note that the noise is added after the object size

normalization stage.

(a) D=0 (b) D=0.1 (c) D=0.2 (d) D=0.3

(e) D=0.4 (f) D=0.5 (c) D=0.6

Figure 5.9: Fly object with increasing density (D) of salt and pepper noise
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Table 5.3 and Figure 5.10 show the CCR% of the original images, LPGF filtered
images at different scales and the average distance of these scales. The results represent
mean values obtained over four applications of each scale at each noise level. In Figure
5.10, the error bar represents minimum and maximum values at the data points. It is
simpler to follow our explanations from the table, since the obtained results are very
close to each other and cannot be seen well in the figure. It is observed that when there
is no noise or small amounts of noise such as D=0.1 and D=0.2, applying LPGF at
selected scales does not increase CCR% in comparison to the original. Even averaging
the distances with selected scales does not effective. When there is noise more than
D=0.2, applying LPGF at higher selected scales (o, =20, 0, =15and o; =11) increase
CCR% slightly. Averaging the distances from these selected scales, at noise levels
D=0.3 and D=0.4, increases the original as well as the single scales performances
slightly. However, at noise levels D=0.5 and D=0.6, we do not observe any increased
performance by average distance in comparison to the original and some single sales

(higher scales).

Table 5.3: CCR% of the original, single scales using LPGF and average distance using LPGF

with respect to the increasing density of salt and pepper noise.

Salt & Pepper noise
density (D) 0 0.1 0.2 0.3 0.4 0.5 0.6
LPGF

Original 926% | 89.5% | 86.1% | 77.4% | 692% | 57.7% | 41.5%

o, =20 91.7% | 88.1% | 84.0% | 787 % | 692% | 59.4% | 442 %

o, =15 91.2% | 89.4% | 83.5% | 782% | 69.7% | 58.7% | 44.5%

oy =11 90.7% | 89.0% | 82.5% | 79.0% | 69.6% | 57.8% | 43.7%

o, =8 89.4% | 86.1% | 81.1% | 76.5% | 65.5% | 56.1% | 39.7%

os=5 88.1% | 843% | 77.2% | 69.2% | 58.7% | 48.1% | 34.4%

Average Distance 90.4% | 89.5% | 852% | 80.5% | 70.3% | 55.0% | 41.5%
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Figure 5.10: Classification performance of the original, the single scales and the average
distance by LPGF based representation with respect to increasing salt and pepper noise in the

database. CCR% is plotted with minimum and maximum values using error bars.

Table 5.4 and Figure 5.11 show the CCR% of the original image, the single scales
using HPGF and the average distance using HPGF based representation, with respect to
increasing density of salt and pepper noise. The results represent mean values obtained
over four applications of each scale at each noise level. In Figure 5.11, the error bar
represents minimum and maximum values at the data points. It is observed that when

D=0, lower scales (o;=5,0, =3 and o5 =1) perform better than the original (92.6

%). The best single scale result is achieved at o, =3, which is 94.7%. This scale

represents the exterior regions of an object more than the boundary and the central part.
Averaging the distances of the selected scales also improves the CCR% (95.5 %).
When we add salt and pepper noise with increasing density, average distance always
performs better than the original and the single scales. Only at D=0.6, which is very

noisy and objects are not visible, the scale o; =1 performs slightly better than average
distance. The scale o5 =1 also performs better than the original at all noise levels. The

scale o, =3, which achieves the best result without any added noise, performs better
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than original until D=0.3. The performances of the higher selected scales goes down
faster than lower selected scales, since the higher selected scales represent the boundary
more than the exterior parts and the central part, and more sensitive to noise and shape

variations.

Applying HPGF at selected scales and computing average distance improve CCR% in
the dataset. This result occurs because of representing more the boundary and the

exterior parts, which are more discriminative, than the central part.

Table 5.4: CCR% of the original, the single scales using HPGF and the average distance using

HPGF with respect to the increasing density of salt and pepper noise.

Salt & Pepper noise
density (D) 0 0.1 0.2 0.3 0.4 0.5 0.6
HPGF

Original 926% | 89.5% | 86.1% | 77.4% | 69.2% | 57.7% | 41.5%

o, =11 91.7% | 591% | 254% | 102% | 3.7% | 26% | 24%

c,=8 925% | 781% | 484% | 23.0% | 112% | 52% | 25%

o;=5 938% | 893% | 774% | 56.7% | 34.7% | 152% | 4.7 %

0,=3 94.7% | 91.7% | 88.8% | 80.7% | 67.5% | 45.7% | 21.8%

os=1 93 7% | 92.1% | 90.9% | 86.6% | 80.3% | 69.0% | 52.3%

Average Distance 955% | 93.6% | 922% | 88.5% | 82.0% | 71.3% | 52.0%
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Figure 5.11: Classification performance of the original, the single scales and the average
distance by HPGF based description with respect to increasing salt and pepper noise in the

database. CCR% is plotted with minimum and maximum values using error bars.

5.4.3 Comparison with other techniques

Performance evaluation is also employed by comparing the multiscale description
using LPGF (average distance) and multiscale description using HPGF (average
distance) with each other as well as with elliptic Fourier descriptors (EFD) and Zernike
moments (ZM). The evaluation is again achieved with respect to increasing salt and
pepper noise in the database, and the noisy test image is matched with the noisy images

from the database.

EFD are fast and robust boundary-based shape descriptors. The contour is represented
with complex coordinates (position function) and then the Fourier expansion is
performed to obtain the EFD, where the number of descriptors is 80 in this evaluation.
To evaluate EFD, we use a Matlab implementation given in [95], and note that this is a
non-optimal Matlab framework. We describe the boundary of the biggest region in the

image, since there will be many regions after noise has been added.
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Zernike moments (ZM) are region-based shape descriptors. They are an orthogonal
moment set, which makes optimal utilization of shape information and allows accurate
recognition. It is a potent moment technique for shape description [96]. To evaluate
ZM, we use the algorithm given in [96], which uses 36 moments for description. We

use a Matlab implementation given in [97] that is also a non-optimal framework.

Figure 5.12 and Table 5.5 show the correct classification rate (CCR%) of the multiscale
description in 2-D using LPGF, of multiscale description in 2-D using HPGF, of EFD
and of ZM, with respect to increasing salt and pepper noise. The results represent mean
values obtained over four applications of each algorithm at each noise level. In Figure
5.12, the rectangle on graphs represents standard deviation from the mean value and
error bar represents minimum and maximum values at data point. It is observed that
HPGF based multiscale description performs better than LPGF based multiscale
description, EFD and ZM. HPGF based multiscale description achieves 95.5% correct
classification rate, while LPGF based multiscale description achieves 90.4%, ZM
achieves 90% and EFD achieves 82% without adding noise to the database. As noise
increases, the performance of all algorithms decreases and their performances degrade
similarly. It is also observed that LPGF based multiscale description and ZM have very
close performances. The success of HPGF based multiscale description in 2-D appears
due to emphasizing the boundary and exterior parts of objects and also allowing the
central part contribute slightly to classification. Although we use a multiscale
representation (LPGF or HPGF), the proposed algorithm is easer to compute in
comparison to Zernike moments. To obtain the Zernike moments, Zernike polynomials
are computed, which are difficult and complex. On the other hand, in our algorithm, we
rely on a polar transform and two Fourier transforms that are computed by the Fast

Fourier Transform.
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Figure 5.12: Classification performance of HPGF and LPGF based multiscale description in 2-

D, ZM and EFD, with respect to increasing salt and pepper noise in the database. In graphs, the

rectangle represents standard deviation from the mean value and error bar represents

minimum and maximum values of the CCR%.

Table 5.5: CCR% of HPGF and LPGF based multiscale description in 2-D, ZM and EFD, with

respect to increasing salt and pepper noise in the database.

Salt & Pepper noise
density (D) 0 0.1 0.2 0.3 0.4 0.5 0.6
Descriptions
Multiscale Description 955% | 93.6% | 922% | 88.5% | 82.0% | 71.3% | 52.0%
using HPGF
Multiscale Description 90.4% | 89.5% | 852% | 80.5% | 70.3% | 55.0% |41.5%
using LPGF
Zernike Moments (ZM) | 90.0% | 87.9% | 83.9% | 784 % | 72.6% | 61.7% | 49.0 %
Elliptic Fourier 82.0% | 789% | 73.0% | 659% | 55.8% | 43.5% | 30.2%
Descriptors (EFD)
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There are also other techniques, which used same database (MPEG-7 CE-Shape-1 Part
B) for classification purpose. A subset of this shape database was used by Kunttu et al.
[77]. Their descriptors are wavelet transform based multiscale contour Fourier
descriptors, which is obtained by applying the Fourier transform to the coefficients of
the multiscale complex wavelet transform. They applied classification for 30 classes
without any noise in the dataset. The selected classes are: bone, bottle, brick, car,
cellular phone, children, chopper, comma, deer, device0, devicel, device2, device7,
device8, face, fish, fountain, frog, glass, heart, key, Imfish, misk, octopus, pencil,
personal car, pocket, shoe, teddy and truck. Using the leave-one-out classification with
a nearest neighbour classifier, they achieve 94.2-96.3 % with respect to the length of

descriptors.

Same subset was also recently used by McNeil and Vijayakumar [82] for classification
without any noise in the dataset. In their work, shape boundary is represented with a
large number of equally spaced points either defined by perimeter distance (perimeter
descriptors) or radial angle (radial descriptors). Then, a probabilistic correspondence-
based algorithm, which also incorporates with scale, translation and rotation invariance,
is applied for shape matching. They note that suitability of the perimeter distance or
radial angle for description depends on the classes in the dataset and these two
descriptions can also be combined to improve classification in some datasets. They
used the same testing procedure, leave-one-out classification with a nearest neighbour
classifier, to compare with the wavelet-based multiscale contour Fourier descriptors
described above. They only show the results of the perimeter descriptors, which
performs 95.6-98.0 % with respect to the number of points selected on the boundary.
They also evaluated their descriptors on the full dataset, which includes 70 classes,
without any noise in the dataset. They achieved 95.7 % and 91.0 % with perimeter
descriptors and radial descriptors respectively. They also combined perimeter and

radial descriptors and achieved 96.2 % classification accuracy on the full dataset.

On the other hand, HPGF based multiscale description in 2-D achieves 99.2 % on the
same subset using the leave-one-out classification with a nearest neighbour classifier.
This result show that our algorithm, with HPGF based mustiscale description,
outperforms both perimeter descriptors and multiscale contour Fourier descriptors on

the subset. We also evaluated other algorithms on the same subset and observe that
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LPGF based multiscale description in 2-D achieves 95.8 %, ZM achieves 92.6 %, and
EFD achieves 87.8 %. Table 5.6 shows CCR% of the algorithms on the subset without

any noise.

Table 5.6: CCR% of multiscale contour Fourier descriptors [77], perimeter descriptors [82],
HPGF and LPGF based multiscale description in 2-D, ZM and EFD on the subset (30 classes)

without any noise.

Descriptors CCR %
Multiscale Description 99.2 %
using HPGF in 2-D
Perimeter Descriptors [82] 95.6-98.0 %
Wavelet-based multiscale 94.2-96.3 %

Contour Fourier Descriptors [77]

Multiscale Description 95.8 %
using LPGF in 2-D
Zernike Moments (ZM) 92.6 %
Elliptic Fourier Descriptors 87.8 %
(EFD)

On the full dataset, HPGF based multiscale description in 2-D achieves 95.7 %, which
is better than radial descriptors, same as perimeter descriptors, and slightly less then the
combined perimeter and radial descriptors. LPGF based multiscale description in 2-D
achieves 91.1 %, ZM achieves 90.2 %, and EFD achieves 82 %. Table 5.7 shows
CCR% of the algorithms on the full dataset without any noise.
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Table 5.7: CCR% of perimeter descriptors, radial descriptors, combined perimeter and radial
descriptors [82]. HPGF and LPGF based multiscale description in 2-D, ZM and EFD on the full

dataset (70 classes) without any noise.

Descriptors CCR %
Combined Perimeter-Radial 96.2 %
Descriptors [82]
Multiscale Description 95.7 %
using HPGF in 2-D
Perimeter Descriptors [82] 95.7 %
Multiscale Description 91.1 %
using LPGF in 2-D
Radial Descriptors [82] 91.0 %
Zernike Moments (ZM) 90.2 %
Elliptic Fourier Descriptors 82.0 %
(EFD)

5.5 Conclusions and Future Work

We have presented novel multiscale Fourier-based object descriptors in 2-D space for
the purpose of recognition. We have used a low-pass Gaussian filter (LPGF) and a
high-pass Gaussian filter (HPGF) for multiscale generation. Using the LPGF at
different scales represents the inner and central part of an object more than the
boundary. On the other hand using the HPGF at different scales represents the
boundary and exterior parts of an object more than the central part. Our algorithm starts
with object size normalization and we then compute a Fourier magnitude image that is
translation invariant. At this stage, a LPGF or a HPGF with a selection of scale
parameters is used to obtain multiscale Fourier magnitude images. To give rotation
invariance, each image of different scale is polar mapped and then another Fourier
magnitude image is computed to obtain the proposed object descriptors. For
classification, the Euclidean distance is measured separately at each scale, and then the
average distance is computed for each object. Multiscale description using HPGF,

which represents the boundary and exterior parts of an object more than the central
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part, outperforms multiscale description using LPGF, elliptic Fourier descriptors (EFD)
and Zernike moments (ZM) with respect to increasing salt and pepper noise in the
database. Multiscale description using HPGF in 2-D also performs better than Wavelet
transform based multiscale contour Fourier descriptors and performs similar to the
perimeter descriptors without any noise in the dataset. Classifying objects with this new
multiscale Fourier-based object description using the HPGF in 2-D space increases

immunity to noise and discrimination power.

In the future work, we can find persistent features over scales using feature set
selection, which may increase discrimination and also reduce the number of features. A
new classifier can be used instead of nearest neighbour classifier to increase correct
classification rate. The proposed object description can be applied for the image
retrieval purposes, as well as more evaluation can be done on different databases both
for classification and retrieval purposes. In addition, we can also investigate phase
information of the Fourier transforms, which is currently discarded in our algorithm.
The phase has significant information about the image and it could be beneficial to

include it in object description.
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Chapter 6 Conclusions and
Future Work

6.1 Conclusions

In this thesis, we have presented three different contributions to feature extraction
based on using the heat conduction analogy. The solution of the heat conduction
equation depends on properties of material, heat source as well as specified initial and
boundary conditions. In our contributions, we represent particular heat conduction
problems in the image and video domains for feature extraction. The first contribution
is moving-edge detection that is a low-level feature extraction. The second contribution
is shape extraction from images, which is a high-level feature extraction. The final
contribution is silhouette object feature extraction for recognition purpose and this can

be considered as a combination of low-level and high-level feature extraction.

In the first area of our research, we introduce a novel moving object edge detection
technique. In this work, we first solve an anisotropic heat conduction problem in the
spatial domain to remove noise and sharpen region boundaries for the purpose of
obtaining high quality Sobel edge maps. Then, linear isotropic heat flow is applied in
the temporal domain, with the proposed initial and boundary conditions, to calculate
the total amount of heat flow. The moving-edge map is represented as the total amount
of heat flow out from the reference frame. The overall process is completed by non-
maxima suppression and hysteresis thresholding to obtain binary moving-edges.
Evaluation indicates that this technique performs better than 2-D Sobel at all levels of
Gaussian noise, without anisotropic heat diffusion in space. This result appears to be

due to the averaging inherent in the new operator. Results also show that this technique
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can detect moving-edges in image sequences, without using background subtraction.
As such, the efficient combination of anisotropic and isotropic heat equations, with the
proposed initial and boundary conditions, is applied in a new way to detect the edges of

moving object.

In the second area of our research, a novel evolution-based segmentation algorithm is
introduced using the heat flow analogy. We extract objects shapes by representing
particular heat conduction problems in the image domain. First, we represent and solve
a linear and non-homogeneous heat equation in the image domain to roughly segment
objects of interest. Once the heat source is located at the region of interest, the
segmentation is achieved by a temperature front (TF), which moves with the heat
diffusing from the source. The representation in image domain is achieved by using a
control function (CF) in the heat conduction equation. This formulation also provides
advantage when the image is bimodal, since the CF attempts to segment whole image
in this case, while the TF segments the region of source location. In the second part, an
anisotropic diffusion, geometric heat flow (GHF), is applied to smooth the extracted
boundaries and remove possible noise arising from the first part of the segmentation.
Our algorithm is evaluated by comparing with popular active contour models, which
are gradient vector flow snake (GVFS) and active contour without edges (ACWE).
These models can also be defined as gradient-based parametric active contour (PAC)
and region-based geometric active contour (GAC) respectively. Evaluation results
indicate that TF+GHF can provide better performance than GVFS and ACWE with
respect to increasing Gaussian noise. For the bimodal images, CF+GHF also has better
performance than ACWE. These improvements are achieved by effective organization
of our algorithm, TF+GHF segments better than GVFS by its basis on region-based
information instead of gradient-based, which is sensitive to noise. TF+GHF and
CF+GHF segment better than ACWE because of the smoothing operation of shape.
TF+GHF and CF+GHF apply smoothing after rough segmentation without any relation
to the regional statistic constraints, while ACWE uses smoothness constraint with
regional statistic constraints during the segmentation. In addition, TF+GHF and
CF+GHF are computationally more efficient and effective than both GVFS and ACWE
based on the simulation results. Especially, there are big differences between our model
and ACWE in computational efficiency. The main reason is the complexity of the level

set method in ACWE. As a result, our approach works well in noisy conditions and it is
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also computationally more efficient and easer to control and implement in comparison
with active contour models. As such, the proposed heat conduction problems can be

applied in the image domain with success for shape extraction.

In the third area of this research, we introduce new and efficient silhouette object
descriptors by using the Fourier series and Gaussian filtering for recognition purposes.
We investigate Fourier series and Gaussian filtering for feature extraction, since they
are related to the solution of the linear and homogenous heat conduction problems.
Analytic solution of the linear and homogeneous heat conduction problem can be
achieved using Fourier series theory. In addition, solving the linear and homogeneous
heat equation in infinite medium can be viewed as smoothing a signal with a low-pass
Gaussian filter (LPGF). We develop new multiscale Fourier-based object description in
2-D space using a low-pass Gaussian filter (LPGF) and a high-pass Gaussian filter
(HPGF), separately. A multiscale description provides more information about the
object, increases discrimination power and immunity to noise. Using the LPGF at
different scales (standard deviation) represents the inner and central part of an object
more than the boundary. On the other hand using the HPGF at different scales
represents the boundary and exterior parts of an object more than the central part. Our
algorithm starts with object size normalization and we then compute a Fourier
magnitude image that is translation invariant. At this stage, a LPGF or a HPGF with a
selection of scale parameters is used to obtain multiscale Fourier magnitude images. To
give rotation invariance, each image at a different scale is polar mapped and then
another Fourier magnitude image is computed to obtain the proposed object
descriptors. For classification, the Euclidean distance is measured separately at each
scale, and then the average distance is computed for each object. Multiscale description
using HPGF, which represents the boundary and exterior parts of an object more than
the central part, outperforms multiscale description using LPGF, elliptic Fourier
descriptors (EFD) and Zernike moments (ZM) with respect to increasing salt and
pepper noise in the database. Multiscale description using HPGF in 2-D also performs
better than Wavelet transform based multiscale contour Fourier descriptors and
performs similar to the perimeter descriptors without any noise in the dataset.
Classifying objects with this new multiscale Fourier-based object description using the

HPGF in 2-D space increases immunity to noise and discrimination power.
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6.2 Future Work

We have future work in the third area of this research, which is multiscale Fourier-
based object description in 2-D space using a low-pass Gaussian filter (LPGF) and a
high-pass Gaussian filter (HPGF). In the future work, we can find persistent features
over the selected scales to increase discrimination and also reduce the number of
features. A new classifier can be used instead of nearest neighbour classifier to increase
correct classification rate. The proposed object description can be applied for the image
retrieval purposes, as well as more evaluation can be done on different databases both
for classification and retrieval purposes. In addition, we can also investigate phase
information of the Fourier transforms, which is currently discarded in our algorithm.
The phase has significant information about the image and it could be beneficial to

include it in object description.

In overall conclusion, the heat analogy has been deployed both for low-level and high-
level feature extraction purposes in image processing and computer vision successfully.
It has given new insight to the feature extraction process and has led to techniques with

attractive performance in terms of segmentation and computational requirement.
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Appendix A

Analytical Solution of Proposed
Heat Conduction Problem and
Comparison with the Numerical

Solution in the Image Domain

We present a direct comparison of the analytical solution of the proposed heat
conduction problem with the solution derived in the image domain for segmentation.
The analytical result is derived by using Green’s function. The image result is obtained

by approximating finite difference operations in the image domain.

A.1 Analytical Solution of the Proposed Heat Conduction Problem on a
Square Object

Consider the following boundary value problem for the temperature in a two-
dimensional conductive finite solid, which has uniform conductivity and isotropic
medium. The solid is also shown in Figure A.1 with the coordinates of vertices

superimposed.
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o1 o

ax2+ay—2+%q(x,y,t):éaa—f; O<x<c; O<y<d; t>0 (A.la)
T(x,y,t = 0) = F(x,y), Initial Condition (A.1b)
T(x=0,,0)=T, (A.1c)
T(x = c,y,t) =T, , Boundary Conditions (A.1d)
T(x,y=0,t)=T, (A.le)
T(x,y=d,t)=T, (A.1f)

(c,d)
(0.d)

(©:0) (c0)

Figure A.1: Coordinates of the two-dimensional conductive finite solid.

Here we seek the temperature, 7(x, y,?), in a two-dimensional solid at position, (x, y),
at time, ¢, caused by a specified energy generation function, g(x, y,t), inside the body.
Initially the temperature is a known function F(x,y). The thermal properties are

conductivity, k£ and diffusivity, « . In the proposed model, the boundary condition is
Dirichlet, which means the temperature is specified at each boundary point. The
temperature that satisfies the above equations will be found in two steps. First, Green's
function will be defined, and then this function will be used to construct the
temperature. Green's function is a basic solution to a linear differential equation, a
building block that can be used to construct many useful solutions. For heat conduction,
Green's function is proportional to the temperature caused by a concentrated energy
source. The exact form of the Green's function depends on the differential equation, the
body shape, and the type of boundary conditions present. Green's functions are named
in honor of English mathematician and physicist George Green (1793-1841). The

Green's function, G(x, v, t|x, y',z'), associated with the above example obeys the

following equations [20]:
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a(%+§7€j+5(x—x’)(y—y’)(t—z'):%—(t;; O<x<c; O<y<d; t>1 (A.2a)
G=0 for t<7, Initial Condition (A.2b)

G(x =0,y,t|x",y, r) =0 (A.2¢)

G(x =c,y,tx, ), z') =0 , Boundary Conditions (A.2d)
Glx,y=0,t|x,y,7)=0 (A.2¢)

G(x, y=d,t|x,y, 2') =0 (A.21)

Note that the boundary conditions are Dirichlet that is the same type as the temperature
problem in Equation A.1, but homogeneous, and that the energy generation term has

been replaced by a product of three Dirac delta functions, 5(x—x"\y—y'ft—7), two
for space and one for time. The Green's function, G(x, v t|x, y',z‘), represents the
temperature response observed at point (x, y) and time ¢ caused by an instantaneous
concentrated heat source released at point (x',)') and time 7. Green's functions are

causal, since there is no response before the heat source is released: G =0 for <.
Finally, the thermal properties are constant, so the differential equation is linear; this is

important since Green’s functions may only be found for linear differential equations.

The temperature solution is constructed from a suitable distribution of the Green's
function. The temperature for the problem in Equation A.l and in Figure A.l is given
by [20]:

c d

T(oy,t)= [ [Glxy.t1x, ) =0)F(x,y Jx'dy’
x'=0y"'=0
a t ¢ d
ST fotonsiobteapasiar
r=0x"=0)'=
. . (A.3)
+aj]]—, a’f—on.T2 - dr
=0 Ox x'=0 =0 Ox x'=c
t t
+aj7§aci dr—aj]}aG, dt
=0 53} y'=0 =0 6y y'=d

In this expression, the first additive term is constructed from the initial condition, the
second is from the energy generation (heat source) and the others for each boundary

condition. If we consider the proposed heat conduction problem for object
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segmentation, which has initial condition 7(x,y,7=0)=F(x,y)=0 and the boundary

conditions 7, =7, =T, =T, =0, Equation A.3 can be simplified to,

T(x, y,t)="=- j | j Glx, .t | ¥, 7)o Hadx'dy’ (A4)

=0 x'=0 »'=0

which only includes the effect of the heat source. The next problem is determination of
the Green’s function due to the proposed problem. To determine Green's function, we
need to consider only the homogeneous version of the problem in Equation A.1, which
does not include the source function and has boundary temperatures

I, =T,=T,=T,=0 as given below,

82T aT 16T

8x2 8y aat; O<x<c; O<y<d; t>0 (A.5a)
T(x,y,t = 0)= F(x,y) (A.5b)

T(x =0, y,t) ( =c,),t ) (A.5¢)
T(x,y=0,t)=0; T'(x,y=d,t)=0 (A.5d)

This homogeneous problem is solved by the method of separation of variables [20, 98,

99] and the solution is expressed formally in the form

c d
T(x, y,t): I Il//(x,y,x',y',t)F(x',y')dx'dy' (A.6)

x'=0y'=0

For the problem in Equation A.5 [20] [98],

0

(¥, y’,t):%Zie_“(ﬂi”ﬁ)’sin(  )sin(4, y)sin(3, ' )sin(2, )

(A.7)

where
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Then Equation A.6 is compared with the first additive term of the Equation A.3 and
G(x,y,t |x", ', 7= O) is determined as

G(x,y,t |x', 't = O) = t//(x,y,x',y',t) (A.8)

However, for the proposed problem in Equation A.4, we need to know

G(x, y,t] X, y',r). The desired Green’s function, G(x, y,t] X, y',r), is determined from

G(x,y,t|x',y',r=0) by replacing ¢ by (t—r) [20], as given below

G(x, .t x',y',7) idiie alpn e i) 'sin(8,x)sin(4,y)sin(B, x")sin(4, ")
=1

c n=

(A.9)
Where

ﬂm:ﬂ’ 1’1:% with (m,n):1,2,3,4...
C

Then the analytical solution of the proposed problem is obtained in terms of the

Green’s function according to the Equation A.4, as

T(x,y,t)=" I j ]{ {idiie alfied i-s) Jsin(B, x)sin(4,y)sin(B, x")sin(4, y )}

7=0 x'=0 y'=0 m=1 n=1
. q(x’,y', T)drdx’dy' (A.10)
after re-ordering, we obtain
T y.)= 52305 e VA in(g, x)sin(2, )
k Cd m=1 n=1
t ¢ d ( , /12)1
: I I Ie“ Pt sin(B, x")sin(4,y )g(x', v, 2 M adx'dy’ (A.11)

7=0x'=0y'=0
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In our case, the heat source is located at a point (a,b) and independent of time, which
can be represented as ¢(x,y,t)=q,5(x—a)5(y—b), where ¢, is a constant. After

substituting this heat source form into the Equation A.11, we find

t

T(x, y,t)z—‘;fc“z; 31> e Vi sin(B,x)sin(8, a)sin(4,v)sin(4,5) [ e 2 Fdr (A12)

m=1 n=1 =0

Then we simplify Equation A.12 and obtain the following equation

ii sin(B, x)sin(8,a)sin(4, v )sin(4,b )1 V4 )

- kcd m=1 n=1 ﬂri + ;’“i
Where
(A.13)
ﬂm = nr , ﬂ’n = % with (m,n) =1,2,3,4...
C

For the numerical solution in the image domain, we use the square object of size

(c,d)=(50,50) and the source position is (a,b)=(35,16), as shown in Figure A.2. In

addition, we equate the source term to a constant as Q:£=5 and the thermal

pc

diffusivity o = LS =0.25. As a result of these assumptions for calculation in the image
oc

domain, %:%:20. After locating these constants into Equation A.13, we can

calculate the temperature value at any point (x, y) and time ¢ by means of the analytic

solution.

2 & si i ; : _—0as(p2e2)
T, y.t)= 00323 3 2 )5inG55, )Sln;ni);;n(l 62,J1-e )
m=1 n=1 m 3

Where
(A.14)

mr nr .
B =——, A =— with (m,n)=1273,4...
" 50 " 50 ( n)
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The solution is achieved by iterating the series summation above until we reach the

stable result.

(0,d)

@:0) (c,0)

Figure A.2: Source Position

Before the comparison of analytical and numerical results in the image domain, we
explain the finite difference representation of the heat conduction equation in the image

domain.

A.2 Numerical Solution of the Proposed Heat Conduction Problem in the

Image Domain by Using Finite Difference Representation

Consider the heat conduction equation in the image domain as

ol 5V, azl LV, aZI .7,
();ty f):CF(x,y,t{a{ fa;y 1), (a);zy I)B+Q(x,y,z) (A.15)

where I(x, y,t) represents an image pixel value in terms of temperature at each point
and time, « is the thermal diffusivity, Q(x, y,t) is the source term and CF(x, y,t) is

the control function. The control function is obtained from the region statistics of the
source location on a given grey-level image. The region of interest in the space domain

is bounded as, 0<x<c¢, 0<y<d, and in the time domain extends from =0 to
infinity. We construct a finite difference net from the pixels of object in the x and y
domain with constant mesh sizes Ax and Ay . In the time domain, the step size is Af.

Then, the space and time coordinates are denoted by
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X =iAx i=012,.,L with c=LAx (A.16a)
y=JjAy j=0,12,..,K with d = KAy (A.16Db)
t =nAt n=0,1,273.. (A.16¢)

and the temperature I(x, v, t) is represented by
1(x,y,)=1(iAx, jAy,nAt)= 17 (A.17)

By using this notation, the finite difference representation of &7l / ox? at the pixel

(i, j) (x:iAx, y=jAy) for the n" time step (t:nAt) is written with the central-
difference formula as [20]

2 1. 21" +1", .
8_! ~ licl 1,12 i+1,j (A.18)
ox”|. . (Ax)

1,].n
and for 82I/8y2 5

2 1 21" 1",
6_! ~ i,j-1 l,J2 i,j+1 (A19)
oy ijn (Ay)

The first derivative with respect to the time variable, 0l/0t, is represented in the finite
difference form at the n” time step using the forward-difference formula as
+1
ol I

— =z A20
Otl; i At ( )

Introducing Equations A.18, A.19 and A.20 into the Equation A.15, the finite

difference representation of the heat conduction equation in the image domain becomes

R L T, Y L L ECNRN, Y O Lo
— L =CF(, j,n)(a[ = (A;)]2+ Ly (Ay”)f; "]HBJrQ(i,j,n)

(A.21)
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In the image domain, we use equal spacing Ax=Ay in both x— and y— directions

and we obtain the solution of I ;1 as

1 = (1=4rCF (i, j,m)7 +CF(, jynel,, + 1, + 1 4100 )+ ARG, jon) (A22)

oAt oAt . . .
where r=—- and 0<——<0.25 to achieve stability criterion for the two

(Axy (ax)*
dimensional case [23, 20]. The finite difference representation given by the Equation
A.22 is called the explicit form. Because the unknown temperature value I:.’Jl at the

n

time step (n + 1) can be directly determined from the knowledge of temperatures I, ,

In

n
i+1,j I;

i 1> 17 ;41 and I ;at the previous time step (n) In our proposed model, in the
image domain Ax=Ay=Atr=1, which yields i=x, j=y and n=t from Equation

A.16. In addition, a =0.25 and

s)=f med w3
where, (e, f )= (a + offset1,b + oﬁfvetZ) is the source position in the image domain. In
analytic domain, the origin, (0,0), was at the corner of the square object and the source
position was at the (a,h) as shown in Figure A.2. However, in the image domain the
origin is at the image corner, so that (oﬁ%etl,oﬁ%etZ) is the difference between the

origin in analytic domain and the origin in the image domain. After locating the
numerical values into the Equation A.22, we obtain a numerical solution in the image

domain for the proposed problem as given below,

+1’

157 =14+ CF(x, y,2)0.25(1" oV =4 )+ Q) (A24)

x—1,y

Errors involved in numerical solutions

The two-dimensional heat conduction equation is a partial differential equation, which

includes first- and second-order continuous derivatives. In numerical solution, these
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derivatives are approximated by finite differences using a Taylor series expansion. The

error, in the approximation, is called the truncation error or the discretization error.

A.3 Comparison of Analytical and Numerical Results in the Image

Domain

To compare analytical and numerical solutions, we choose one vertical and one
horizontal line on the square object; these lines intersect at the centre of the square

object, (25,25), as well as they start from one boundary and end at the other boundary

of the square object as shown in Figure A.3.

(c.d)
(0,d)

(©:0) (c0)

Figure A.3: Selected horizontal and vertical line positions to compare analytical temperature

values with the numerically obtained in the image domain.

Figure A.4 shows analytical (A) and image domain (1) temperature values as well as
absolute temperature error |A— I| between them at the positions of selected vertical

line. These results are calculated at # =69, when all the temperature values inside the
square object starts to exceed zero in image domain calculations, in other words when
the segmentation of square object is achieved. It is observed that all the temperature
values are higher than zero except the boundary points. The error occurs, between the
analytical and numerical results, are because of the discretization process in the
numerical solution. The important results to observe are at the boundary positions,

which are (25,0) and (25,50) in this line. In the position, (25,0), we observe that both
analytical and numerical results are zero. In the other boundary position, (25,50), we

observe that numerical result is zero, and the analytical result is zero within numerical
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error. These results confirm that boundary temperature is kept at zero in the proposed

problem.

0.18 ‘ ‘ ‘ ‘ ‘
—c— Analytical result (A)
—+—— Image domain result (I)
—4— Absolute Error (JA-l])

0.16 -
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Positions on the selected vertical line

Figure A.4: Analytical and numerical (in the image domain) temperature values at the positions
of the selected vertical line (from the one boundary to the other) and at t=69, when all of the
temperature values inside the square object starts to be higher than zero, in other words when

the segmentation of square object is achieved.

Figure A.5 shows analytical and numerical (in the image domain) temperature values at
the positions of selected horizontal line at t=69. It is observed that all of the
temperature values inside the square object exceed zero except at the boundary
positions. The error occurs, between the analytical and numerical results, because of the

discretization process. The boundary positions, on the horizontal line, are (0,25) and
(50,25). In the position, (0,25), we observe that both analytical and numerical results
are zero. In the other one, (50,25), we observe that numerical result is zero, and the

analytical result is zero within numerical error. These results also confirm that

boundary temperature is kept at zero during the segmentation process.
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Figure A.5: Analytical and numerical (in the image domain) temperature values at the positions
of selected horizontal line (from the one boundary to the other) and at t=69, when the all of the
temperature values inside the square object starts to exceed zero, in other words when the

segmentation of square object is achieved.

The temperature values at Figure A.4 and A.5 are observed at =69, when the
segmentation of the square object is achieved in the image. At this time, our algorithm
automatically stops, however if we continue diffusion until the steady-state solution, we
can observe that temperature values increase, except at the boundary positions.
Boundary temperature is always kept at zero. Figure A.6 shows the steady-state
analytical and numerical temperature values at the positions of selected vertical line.
For the numerical calculation in the image domain, we observed that steady-state is

achieved after 7=16442. At this time, one of the boundary position, (25,0), has
analytical and numerical results zero. The other boundary position, (25,50), has

numerical result zero and the analytical result zero within numerical error. These results
show that boundary temperature is always kept at zero until the steady-state and after

the steady-state.
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Figure A.6: Steady state analytical and numerical (in the image domain) temperature values at

the positions of selected vertical line (from the one boundary to the other).

Figure A.7 similarly shows the steady-state analytical and numerical temperature

values at the positions of selected horizontal line. In this line, one of the boundary

point, (0,25), has analytical and numerical temperature values of zero. The other one,
(50,25), has numerical result zero and the analytical result zero within numerical error.

These results again confirm the proposed heat conduction problem in the image

domain, which achieves segmentation.
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Figure A.7: Steady state analytical and numerical (in the image domain) temperature values at

the positions of selected horizontal line (from the one boundary to the other).
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Appendix B

Active Contours

Active contours (snakes) are classified either Parametric Active Contours (PAC) or
Geometric Active Contours (GAC), according to their representation. PAC and GAC
differ in their ability to handle multiple object detection and computational complexity
and efficiency. Here, we explain the commonly used active contour models including
Gradient Vector Flow (GVF) based PAC [41] and region-based GAC (active contours
without edges) [64], which are compared with our shape extraction model using heat

flow analogy in Chapter 4.

B.1 Parametric Active Contour (PAC)

The PAC is a parametric curve C(s)=(X(s),y(s)), s<[0,1], which is represented

explicitly and moves through the spatial domain of an image. The first PAC model was
introduced by Kass et al. [40]. It was formulated by minimizing the following energy

functional,

1
£ =[aglCs) + Bo|C(s) + 76 (Cs))ds (B.1)
0

Where, C'(s) and C"(s) are the first and second derivatives of the curve C(s) and
they impose smoothness and rigidity constraints, &,,, (C(s)) is external energy function,
which is obtained from the image and takes small values on the object boundaries, «;,

B and y, are weighting parameters that control the smoothness, rigidity and external
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energy of the curve respectively. A typical external energy function for a grey level

image, I(x, y), is given below,

& =[G, (x,y)*1(x,y)] (B.2)

where Gg(x, y) is Gaussian filter with standard deviation o and V is the gradient

operator. The solution to the Equation B.1 is obtained by first finding the Euler

equation that minimizes the energy functional, &, and then making it dynamic with a

partial derivative of C(s,z) with respect to time ¢:
C,(5,t)= acC"(s5,0)+ BC""(5,8)~ ycVE,, (B.3)

Where, a;C"(s,t)+B;C""(s,¢) is an internal force and —y,V&,, is external force

acting on the snake. The internal force discourages stretching and bending, while the
external force is image dependent and pulls the snake towards the desired object edges.

When the contour attains steady state, C, (s,t) =0, it achieves segmentation.

Problems, associated with this classic model, are initialization and poor convergence to
concave regions. A constant force, which is called the balloon force [57], was added
with direction normal to curve, to accelerate the motion so that the initial curve can be
placed far away from the desired object boundary. However, choice of the balloon
force is a problem. If the balloon force is large, the contour can pass through weak
object boundaries. If the balloon force is small, the contour may not move on narrow
regions of the object. Initialization and convergence to concave region problems were
largely solved with the development of new external force model, which is called
Gradient Vector Flow (GVF) [41]. GVF consists of a two-dimensional vector field

V(x,y)=[u(x,y) v(x,y)] that minimizes the following energy functional,

£(uv)= [ [ uelu? +u2 +v2 + V2 )+ VRV - V] dxdy (B.4)

Where, VF is the gradient of the edge map F(x, y) that is derived from the image
1(x,y), (ux,uy) and (V v ) represent (8u/dx,0u/dy) and (6v/dx,dv/dy) respectively

x° "y
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and ; 1s a regularization parameter between first and second part in the integrand. It
can be seen that when |VF| is small, energy is minimized by sum of the partial

derivatives of the vector field, which applies diffusion to the gradient vectors of the

edge map VF. On the other hand, when |VF| is large, energy is minimized by the

second part, which keeps V nearly equal to the gradient vectors of edge map

V =VF =(F,,F, )= (6F/ax,0F /ay). The solution to the Equation B.4 is obtained with

x>y

the following equations,

%zyGAu—(u—FXXVFf, %:yGAV—(V—Fy}VF|2 (B.5)

Where A is the Laplacian operator. From these equations, it is also observed that when
the image region, I(x, y), is homogeneous (constant), the second term in each equation
is zero because the gradient of F(x,)) is zero. Therefore in those regions, U and v are
determined by Laplace’s equation, and the resulting GVF field is diffused from the
object boundary vectors. In this way, GVF yields vectors that point into boundary

concavities.

To obtain the corresponding dynamic snake equation with a GVF based external force,

we replace —V &, , in Equation B.3 with V, yielding
C,(5,¢)=a;C"(s,¢)+ BC""(s,8)+ sV (B.6)

The parametric curve, which solves the above dynamic equation, is called the GVF
snake (GVFS). Although, initialization and convergence to concave region problems
were largely solved with the development of GVF, PAC models can have difficulty
with simultaneous detection of multiple objects. This is because they cannot handle the
topological changes such as merging or splitting of the moving curve, since the curve is
represented explicitly. To solve this problem, GAC models have been introduced,

where the curve is represented implicitly in a level set function (the zero set).
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B.2  Geometric Active Contours (GAC)

GAC uses the level set method [13] for curve evolution. In level set methods, a curve is

represented implicitly by the zero level set C = {(x, y,t)\ ¢(x, y,t)=0} of the scalar
function @(x,y,t). The level set function is the signed distance to the curve. This

distance is arranged to be positive inside the curve and negative outside it. The curve
itself is where the distance is zero, at the interface between two regions. The curve
evolution using level sets can be briefly explained as follows: Assume we follow the

curve as it propagates in a direction normal to itself with speed U , as shown below,

_Ui=UuY? (B.7)

V—¢, which is pointing outward in the

V¢

direction normal to the contour surface. The contour interface C is the zero level set at

Where the normal vector n is given by 7 =

all time,
#(C(t).t)=0 (B.8)
Taking the derivative with respect to time by using the chain rules, yields

B.9
oC ot ot ®3)

Then, by rearrangement and substitution from Equation B.7, ¢ is the solution to the

following differential equation,

9 g YO
o = Uve 7z UV 4| (B.10)

The contour evolves using the speed term U, which is particularly a function of
curvature (a geometric measure). The curvature is obtained from the curve evolution

itself that is independent of the curve’s parameterization. The level set method can
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handle topological changes of the curve such as splitting and merging because of
implicit representation. However, it is computationally more expensive than the explicit
representation (PAC), since it evolves a level set surface instead of contour positions,
as well as re-initialization of the curve is required at each step of the evolution for
rescaling and regularization, which also prevents level set function to become too flat.
Curve evolution with the level set method is achieved as follows: First, the initial
implicit function (distance transform) is determined depending on the initial curve
position. Then the curve is evolved, one iteration, according to the level set equation
given in B.10. After that, the zero level set (curve position) is recovered from the
resultant evolution. Finally, the curve is re-initialized again using the distance
transform for the next evolution (iteration). Numerical approximation of the level set
method is also important and needs optimization, since it affects segmentation results

and the computational efficiency.

The first GAC model was proposed by Caselles et al. [11] and Malladi et al. [12]. In
this model, the curve evolves with its curvature and balloon force (expanding)
dependent speed in the direction normal, and stops depending on a gradient information
obtained from the grey-scale image |. The evolution of the gradient-based GAC is

given by the following level set equation,

%=g(JV||XK+bf)V¢

ot . P r=0)=¢(x.y) (B.11)

where, C={(x,7,0)|¢,(x,y)=0} defines the initial contour, K:div(v—¢J is the

v

curvature term and has the effect of smoothing the curve, div means divergence, b, is

a constant that causes expanding (balloon force) and accelerates the motion, gQVI|) is

the stopping function of curve and derived from the gradient of the image, |VI|, with
the following formulation,
1
gQVI|)=—p , p=>1 (B.12)
1+ VG, *|
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The assumption is, the curve evolves on smooth regions of the image since g =1 and it
stops on the edges since g = 0. However, in practice g has arange 0 < g <1 and it can
never become equal to zero. Therefore, if there is any weak edge because of noise, the
curve can pass through the boundary of the object. This problem occurs mainly because

of the balloon force term b, . Isotropic Gaussian smoothing may partially remove

noise, but at the same time it smooth object edges and make them weaker.

The gradient-based GAC can detect multiple objects simultaneously but it has other
important problems, which are boundary leakage, noise sensitivity, computational
inefficiency and complexity of implementation. Some formulations, [58, 59], have been
introduced to solve problems with boundary leakage and noise sensitivity by improving
the gradient-based information. However, they can just increase the tolerance, since
gradient-based information is always limited by noise. Xie and Mirmehdi [60] apply
region segmentation to the original image and then find the Gradient Vector field
(GVF) of the segmented image. This force is added to the GAC, but it can only provide
more tolerance to toward weak edges. Several numerical schemes have also been
proposed to improve the computational efficiency of the level set method, including
narrow band [61], fast marching [62] and additive operator splitting [63]. Despite

substantial improvements in efficiency, they can be very difficult to implement.

In [64], Chen and Vese introduced new GAC model without using edge information.
They proposed to make the contour robust to initialization, noise and boundary leaking.
Their model is based on Mumford-Shah functional for segmentation [65]. This model

assumes that the image | is divided into two regions of approximately piecewise-
constant intensities, of distinct values /™ and I°“. The object to be detected is
represented by the region with the value ™, and the background is represented by the

region with value 7.

Let the curve C evolves in a bounded open subset Q of R*. inside(C) denotes the
region enclosed by C and outside(C) denotes the region outside of C. To extract the

object boundary, B, they consider the following “fitting” term,
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F"(C)+F™(C)= [N0ey)= sl +  [N0r.2)= o (B.13)
inside(C) outside(C)

Where, the constant , is the average brightness inside the curve C, depending on the
curve position, and g, is the average outside C. The boundary of the object B is the
curve C that minimizes the fitting term,

B =min(F"(C)+ F™(C)) (B.14)

c

If the curve C is outside the object, then F™(C)>0 and F*(C)=0.If the curve C is
inside the object, then F™(C)~0 and F®(C)>0. If the curve is both inside and
outside the object, then F™(C)>0 and F°“(C)>0. When the curve C is at the

boundary of the object, F"(C=B)=0 and F*(C=B)=0, and the minimum is

achieved as shown below,
F™(B)+F™(B)=0 (B.15)

In the their active contour model, they minimize the given fitting term as well as some
regularization terms, such as length of C or area of the region inside C. The proposed

energy functional is defined below,

E(uty,y s 11, C) = 11, - Length(C)+v,, - Area(inside(C))
+ i ,”I(an’)_ ﬂin|2dXdy + Aot J.||(x,y)— ﬂou,|2 dxdy (B.16)

inside(C) outside(C)

Where, y,20,v,20,4,,4

>Min > Fout

> (0 are chosen parameters and in all their numerical
calculations A, =A4,,=1 and v,=0. They consider the following minimization

problem,

inf §(ll’lin ’ Iuout ’ C) (B 1 7)

Hins>Hour »
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In the level set formulation of the model, C — Q is represented by the zero level set of

the function ¢:Q — R, such as

C={(x.y)eQ:g(x.y)=0}
inside(C)={(x,y)e Q: ¢(x,y)> 0} (B.18)
outside(C)={(x,y)e Q: 4(x,y)< 0}

They use the Heaviside function H , and the one-dimensional Dirac delta function & as

defined below respectively, to express the terms in the &.

I, if z=0 _ 0 (.
0, if z<0 (Z)_GZH() (B.19)

H(z)= {
After the level set formulation, the energy terms in £ can be written as follows

s o> $) = 1 [ 585, )|V B,y Ylxdy + v, IH (¢(x, y)dxdy

(B.20)
+ 2y [1Ge,y) = a0, [ H (9, y ey + omfl %)=t (1= H($(x, )))exdy
Q

In order to compute the associated Euler-Lagrange equation for the unknown function
¢, they consider slightly regularized versions of functions / and J, denoted by H,
and o, respectively. Keeping 1, and x,,, fixed, and minimizing & with respect to ¢

gives the following equation

0
6_f = 5g(¢{ﬂ,4di\{%] -V, _ﬁ“in(l _’um) +/10ut(| _luom)z —0 (B.21)

Their approach especially works well for bimodal images and by its formulation, does
not depend on boundary data. It is good at handling initialization, noise and boundary
leakage but still suffers from computational complexity and difficulty in
implementation, because of the level set method. Later, Chen and Vese [66] extended

this approach to the multiphase level set framework to segment more than two-phase
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(binary segmentation). However, they need more level set functions for this process,

which means more complexity and difficulty.

Different types of image forces can be combined with PAC or GAC (level set) models
to overcome limitations and improve segmentation. In [67], the Mumford-Shah
functional [65] based region force was adapted by PAC to handle noise and
initialization problems. Paragios and Deriche [68] unified boundary- and region-based
forces and implemented using level sets to improve segmentation and solve
initialization and noise problems. Recently, Xie and Mirmehdi [69] proposed a
magnetic force based on magnetostatic theory using level sets to handle problems with

initialization and convergence to concave regions.
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