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FEATURE EXTRACTION VIA HEAT FLOW ANALOGY 

by Cem Direkoğlu 

 

Feature extraction is an important field of image processing and computer vision. 

Features can be classified as low-level and high-level. Low-level features do not give 

shape information of the objects, where the popular low-level feature extraction 

techniques are edge detection, corner detection, thresholding as a point operation and 

optical flow estimation. On the other hand, high-level features give shape information, 

where the popular techniques are active contours, region growing, template matching 

and the Hough transform. 

 

In this thesis, we investigate the heat flow analogy, which is a physics based analogy, 

both for low-level and high-level feature extraction. Three different contributions to 

feature extraction, based on using the heat conduction analogy, are presented in this 

thesis. The solution of the heat conduction equation depends on properties of the 

material, the heat source as well as specified initial and boundary conditions. In our 

contributions, we consider and represent particular heat conduction problems, in the 

image and video domains, for feature extraction. The first contribution is moving-edge 

detection for motion analysis, which is a low-level feature extraction. The second 

contribution is shape extraction from images which is a high-level feature extraction. 

Finally, the third contribution is silhouette object feature extraction for recognition 

purpose and this can be considered as a combination of low-level and high-level feature 

extraction. 

 

Our evaluations and experimental results show that the heat analogy can be applied 

successfully both for low-level and for high-level feature extraction purposes in image 

processing and computer vision.  
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Chapter 1 Introduction 

Feature extraction is an area of image processing and computer vision, which involves 

algorithms to detect and isolate various desired portions of a digital image or video 

sequence. Feature extraction largely concerns finding shapes or their descriptors. By 

feature extraction, the input data is transformed into a small set of features, which are 

reduced representation of the original data. Features can be used for different purposes, 

such as classifying a detected object into different catagories or estimation of 

application dependent parameters (pose and size of the object). Feature extraction can 

be classified as low-level or high-level [1]. Low-level features are defined as basic 

features that can be extracted automatically from an image without any shape 

information. Well known low-level feature extraction techniques are thresholding (as a 

point operation), edge detection, corner (curvature) detection and optical flow 

estimation. Naturally, all of these techniques can be used within high level feature 

extraction. High-level feature extraction desires to find shapes. Well known high-level 

feature extraction techniques include the Hough Transform (HT), Generalized Hough 

Transform (GHT), pre-defined template matching, deformable template matching, 

region growing and active contours (snakes). 

Physics based analogies can be used for feature extraction in image processing and 

computer vision. Hurley et al. [2, 3] introduced a feature extraction for ear biometrics 

by using gravitational force field model. Liu and Nixon [4, 5] proposed a water flow 

model to extract complex shapes from still images. Recently, Nixon et al. [6, 7] 

described how physics based analogies can be used for low-level and high-level feature 

analysis, which also includes this research. In this research, we investigate heat flow as 

a new analogy for feature extraction and introduce new techniques. The first technique 

is moving-edge detection that is low-level feature extraction in motion analysis. The 

second technique is shape extraction from still images, which is high-level feature 

extraction. The final technique is silhouette object feature extraction for the purpose of 



 2

recognition, which can be considered as both low-level and high-level feature 

extraction.   

1.1 Using Heat Flow in Image Analysis 

The heat flow analogy has been deployed in various ways in image processing and 

computer vision. It has been used for: image smoothing and enhancement; region-based 

image segmentation; thinning; active contours; motion analysis and graph theory. 

Anisotropic diffusion, which was introduced to computer vision by Perona and Malik 

[8], is the state-of-art image enhancement technique. In [9], the anti-geometric heat 

flow model was introduced for the segmentation of regions. Here, anti-geometric heat 

flow is represented as diffusion through the normal direction of edges. In [10], a new 

thinning algorithm was introduced based on time-reversed isotropic heat flow. A 

geometric active contour [11, 12] is based on a curve moving in normal direction with 

its curvature dependent speed, which is also called level set method [13]. The curve 

movement in the level set approach is achieved with geometric heat flow [14]. In 

motion analysis, Makrogiannis and Bourbakis [15] proposed a spatio-temporal 

anisotropic heat diffusion for motion activity measurement. An extensive survey about 

the applications of heat flow in image processing and computer vision is given in 

Chapter 2. 

 

In addition, the Fourier series, which is actively involved in feature extraction and 

image processing, was first introduced for the purpose of solving the heat equations 

[16]. This connection also allows us to investigate Fourier theory for feature extraction.  

1.2 Contributions to Feature Extraction using Heat Flow Analogy 

We have three different contributions to feature extraction based on using the heat flow 

analogy.  

1.2.1 Moving-edge Detection  

In this research, a moving object edge detection algorithm is proposed based on the 

heat flow analogy. This algorithm starts with anisotropic heat diffusion in the spatial 

domain to remove noise and sharpen region boundaries for the purpose of obtaining 
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high quality edge maps. Once the enhanced edge maps are observed in three or more 

consecutive frames, isotropic and linear heat diffusion is applied in the temporal 

domain to calculate the total amount of heat flow. The moving-edge map is represented 

as the total amount of heat flow out (-) from the reference frames. The overall process 

is completed by non-maxima suppression for thinning and then hysteresis thresholding 

to obtain binary moving-edges. Evaluation results indicate that this approach has 

advantages in handling noise in the temporal domain because of the averaging inherent 

of isotropic heat flow. Results also show that this technique can detect moving-edges in 

image sequences without using the background image. This work has been published 

by International Symposium on Visual Computing in 2006 (ISVC 2006) [17]. 

1.2.2 Shape Extraction 

In this research, we introduce a novel evolution-based segmentation algorithm based on 

the heat flow analogy. Our model is new and different because of the evolution 

technique and organization of segmentation. The evolution is achieved with the heat 

conduction equations to gain practical advantages. Our model is also organized 

effectively to improve the segmentation.  

 

The proposed algorithm consists of two parts. In the first part, we represent a particular 

heat conduction problem in the image domain to roughly segment objects of interest. In 

this problem, we consider a two-dimensional conductive solid body that has uniform 

conductivity within an isotropic medium. Initial and boundary conditions are given, 

respectively, by ( ) 00, ==tT x  and  ( ) 0, =tT x , where T  represents the temperature at 

position ( )yx,=x  and time t . The given conditions mean that the temperature is 

initially zero inside the body and the boundary condition is “Dirichlet” that has 

specified temperature, zero, at the boundary layer for all time. If we initialize a 

continuous heat source (a positive constant) at any point inside the body, there will be 

heat diffusion to the other points from the source position as time passes and this will 

cause temperature increase within the body, except at the boundary layer. This concept 

is represented in the image domain by using a control function in the heat conduction 

equation. The control function is obtained from the region’s statistics of the source 

location, since we propose to segment the source located region. However, in noisy 

conditions, we can observe irregular boundaries and holes inside the segmented region. 
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These problems are solved in the second part of the algorithm, which is geometric heat 

flow. In this part, the segmented image is first converted to binary form and then 

geometric heat flow is applied to reduce curvature in the boundary, as well as to 

remove holes inside the segmented region. After a specified number of iterations, the 

resultant image is thresholded and the final segmentation is obtained. Experimental 

results indicate that the proposed algorithm works well in noisy conditions without pre-

processing. It can detect multiple objects simultaneously, if a heat source is located at 

the background. It is also computationally more efficient and easier to control and 

implement in comparison to active contour models. As such, by using physics based 

analogies, we can control the segmentation process so as to achieve a result which 

offers improved segmentation, by a better fit to the image data. This work has been 

published by international conference on Advanced Concepts for Intelligent Vision 

Systems in 2007 (ACIVS 2007) [18]. 

1.2.3 Object Recognition 

Solution of heat conduction problems can be achieved by using Fourier series or 

Fourier integrals [16, 19, 20]. Furthermore, the solution of linear and homogeneous 

heat equation in an infinite medium can be viewed as smoothing a signal with a 

Gaussian filter [19, 20], as we show in Chapter 2. This allows us to investigate Fourier 

series and Gaussian filtering for feature extraction as well. In our research, we use 

Fourier theory and the Gaussian filtering approach to introduce new and efficient 

silhouette object descriptors for recognition purposes. 

 

In shape recognition, a multiscale description provides more information about the 

object, increases discrimination power and immunity to noise. We develop new 

multiscale Fourier-based object descriptors in 2-D space. We investigate both the 

LPGF and the HPGF based multiscale representation separately. The LPGF applies 

smoothing to the object and as scale (standard deviation) decreases, it causes loss of 

boundary and exterior regions. Therefore using the LPGF at different scales focuses on 

the inner and central part more than on the boundary of an object. On the other hand, 

using the HPGF at different scales emphasizes the boundary and exterior parts of an 

object more than the central part. Our algorithm is organized to achieve size, translation 

and rotation invariance. First we apply size normalization of the silhouette image and 

we then compute a Fourier magnitude image that is translation invariant.  At this stage, 
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a LPGF or a HPGF with a selection of different scale parameters is applied to the 

Fourier magnitude image and produces different Fourier magnitude images. The 

Fourier magnitude images obtained at each scale vary with rotation and are not 

convenient for matching. To give rotation invariance, each Fourier magnitude image is 

polar mapped to convert rotation to translation and then Fourier transform of polar 

image is computed to obtain the Fourier magnitude. Finally, the obtained Fourier 

magnitude image is size, translation and rotation invariant and provides descriptors of 

an object at that scale. For classification, the Euclidean distance is calculated separately 

at each scale and then the average distance is computed for each object. By classifying 

with average distance, increase immunity to noise as well as increase correct 

classification rate is observed. Evaluation indicates that the HPGF based multiscale 

representation performs better than the LPGF based multiscale representation, and in 

comparison to Zernike moments and elliptic Fourier descriptors with respect to 

increasing noise. Multiscale description using HPGF in 2-D also outperforms Wavelet 

transform based multiscale contour Fourier descriptors and performs similar to the 

perimeter descriptors without any noise. Part of this work, which uses HPGF for 

multiscale generation, has been published by IEEE International Conference on Signal 

Processing in 2008 (ICSP 2008) [21]. Than the extended version, which includes both 

LPGF and HPGF based multiscale description, has been published by IEEE Indian 

Conference on Computer Vision, Graphics and Image Processing in 2008 (ICVGIP 

2008) [22].  

1.3 Thesis Overview 

This thesis describes three different contributions to feature extraction based on using 

the heat flow analogy. Chapters are organized as follows: Chapter 2 explains the basic 

concepts of heat flow and applications of heat flow in image processing and computer 

vision. Chapter 3 introduces novel low-level moving feature extraction that is moving-

edge detection based on heat flow. Chapter 4 introduces the new shape extraction 

technique by using the heat flow analogy. Chapter 5 introduces the new object 

recognition technique using the multiscale Fourier-based description in 2-D space. 

Finally, Chapter 6 is overall conclusions. A proof of the resulting shape extraction, 

related to Chapter 4, is given at the end of this report in Appendix A. Appendix B 

explains the active contour models, which are compared with our shape extraction 

technique in Chapter 4. 
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1.4 List of Publications related to this thesis 

We have six publications related to our contributions. The first contribution is moving-

edge detection, which is low-level feature extraction in motion analysis. The related 

publication of this work: 

• Cem Direkoğlu and Mark S. Nixon. Low Level Moving-Feature Extraction via 

Heat Flow Analogy, International Symposium on Visual Computing (ISVC 

2006), LNCS 4291: 243-252, November 2006. 

The second contribution is shape extraction (segmentation) from images that is high-

level feature extraction. The related publication is  

• Cem Direkoğlu and Mark S. Nixon. Shape Extraction via Heat Flow Analogy, 

International conference on Advanced Concepts for Intelligent Vision Systems 

(ACIVS 2007), LNCS 4678: 553-564, August 2007. 

The final contribution is Multiscale Fourier-based object description using Gaussian 

filter in 2-D space. We first propose HPGF based multiscale description and the related 

publication is  

• Cem Direkoğlu and Mark S. Nixon. Shape Classification using Multiscale 

Fourier-based Description in 2-D Space, IEEE International Conference on 

Signal Processing (ICSP 2008), 1: 820-823, October 2008. 

Than we extend this work with LPGF based multiscale description and compare it with 

the HPGF based multiscale description. The publication related to this extended version 

is given below, 

• Cem Direkoğlu and Mark S. Nixon. Image-based Multiscale Shape Description 

using Gaussian Filter, IEEE Indian Conference on Computer Vision, Graphics 

and Image Processing (ICVGIP 2008), pages: 673-678, December 2008. 

Later, we describe how physical analogies based on gravitational force, water flow and 

heat can be deployed to achieve feature extraction. This work also includes our 

research. The related publication is    

• Mark S. Nixon, Xin U. Liu, Cem Direkoğlu and David J. Hurley. On Using 

Physical Analogies for Feature and Shape Extraction in Computer Vision, 

British Computer Society Visions of Computer Science Conference (BCS 2008), 

pages: 163-177, September 2008. 

The publication given above is also identified as being one of the best papers that were 

accepted by the conference BCS 2008, and has been selected for submission to a special 
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issue of The Computer Journal. The Computer Journal is the BCS’s 50-year-old 

scientific journal. The submitted work is given below 

• Mark S. Nixon, Xin U. Liu, Cem Direkoğlu and David J. Hurley, On Using 

Physical Analogies for Feature and Shape Extraction in Computer Vision, 

British Computer Society, The Computer Journal, Submitted. 
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Chapter 2 Heat Flow in Image 

Processing and Computer Vision 

This Chapter explains the basic concepts of heat flow in Physics and then discusses the 

applications of heat flow in image processing and computer vision. 

2.1 Basic Concept of Heat Flow 

In Physics, heat is the form of energy transferred due to the temperature difference 

within or between bodies. Temperature is the measure of hotness or coldness of the 

body. Conduction, convection and radiation are three different modes of heat flow. 

Here, we chose to investigate use of a conduction model, which we found to operate 

well. Conduction is the flow of heat energy from high- to low- temperature regions due 

to the presence of a thermal gradient in a body [23]. According to Fourier’s law of heat 

conduction, the heat flow rate per unit area is,  
 

   ( )xTkf ∂∂−=                                      (2.1) 
 

Where, f  represents the heat-flow rate, k  is positive constant that is called the thermal 

conductivity of a material, xT ∂∂  is the temperature gradient and the minus sign 

indicates that heat flows in the opposite direction to the temperature gradient, satisfying 

the second principle of thermodynamics. 
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Figure 2.1 One-dimensional heat conduction 

 

If we consider a one-dimensional heat conduction system for an element of thickness 

dx  and area A  as shown in Figure 2.1, by the conservation of energy, the energy 

conducted in at the left face plus the energy generated within element should be equal 

to the change in internal energy plus the energy conducted out at the right face. These 

energy quantities are represented mathematically as follows: 

 

                     Energy in at the left face   ( )xTkAfx ∂∂−==                              (2.2) 

                    Energy generated within element   qAdx=                            (2.3) 

                 Change in internal energy        ( )dxtTcA ∂∂= ρ                (2.4) 

Energy out at the right face     ( )] dxxdxx xTkAf ++ ∂∂−==            (2.5) 

 

Where, q  is a heat source, which generates energy within element. c  is the specific 

heat of the material and  ρ  is its density. Combining these relations gives 
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and after simplification, we obtain the general heat conduction or diffusion equation, 
 

( ) QxTtT +∂∂=∂∂ 22α                            (2.7) 
 

Where, ck ρα =  is called thermal diffusivity of the material and a larger values of α  

indicate faster heat diffusion through the material. cqQ ρ=  is the source term that 

A 

dx   x 

 xf       dxxf +    

q 
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applies internal heating as a function of heat source. It can be uniformly or non-

uniformly distributed over material body.     

 
The two-dimensional heat conduction equation can also be derived by the process 

explained above and obtained as  

 

( ) QTQyTxTtT +Δ=+∂∂+∂∂=∂∂ αα 2222             (2.8) 
 

where Δ  represents the spatial Laplace operator. Here, we want to note that Equations 

2.7 and 2.8 are obtained by assuming the material has constant conductivity, k , which 

is called uniform conductivity and in this case the heat equation is linear. If the 

conductivity of a material varies from point to point as a function of position or 

temperature, the material has non-uniform conductivity and the heat equation is non-

linear [24]. Furthermore, if a material has conductivity which is same in all directions 

the material medium is called isotropic. Alternatively, a material medium is called 

anisotropic, which means there exists directional variation of conductivity. Equations 

2.7 and 2.8 are obtained by assuming that material has uniform conductivity and is an 

isotropic medium. The solution of Equation 2.8 provides the temperature distribution 

over the material body and it depends on time, distance, heat source, properties of 

material, as well as on specified initial and boundary conditions.  

 
Initial conditions specify the temperature distribution in a body, as a function of space 

coordinates, at the origin of the time coordinate ( )0=t . Initial conditions are 

represented as follows, 

 

                  ( ) ( )xx FtT == 0,                     (2.9) 
 

where, ( )yx,=x  is the space vector for the two-dimensional case and ( )xF  is the 

function that specifies the initial temperature inside the body. 

 

Boundary conditions specify the temperature or the heat flow at the boundaries of the 

body. There are three general types of boundary conditions: Dirichlet, Neuman and 

Robin. In the Dirichlet condition, temperature is specified along the boundary layer. It 

can be a function of space and time, or constant. The Dirichlet condition is represented 

as follows,   
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    ( ) ( )ttT ,, xx Φ=                                        (2.10) 

 

where ( )t,xΦ  is the function that specifies the temperature at the boundary layer.  
 
In the Neuman condition, the normal derivative of temperature, heat flow, is prescribed 

at the boundary surface, and it can be a function of space and time, or constant. The 

Neuman condition is given in the form 

  

 ( ) ( )t
n

tT ,, xx
Φ=

∂
∂

                                      (2.11) 

 

where, ( )t,xΦ  is the function that specifies the normal derivative of temperature at the 

boundary layer. 

 

In the Robin boundary conditions, a linear combination of the temperature and its 

normal derivative is prescribed at the boundary surface. These are usually used when 

the body is in a moving fluid. It is represented as follows, 

 

( ) ( ) ( )t
n

tTzthT ,,, xxx Φ=
∂

∂
+         (2.12) 

 

where, h and z are non-zero constants and ( )t,xΦ  is the function that represents the 

values of this linear combination. 

 

The heat equation or boundary condition is called homogeneous if its terms are the first 

degree of the function ( )tT ,x , derivatives of ( )tT ,x  or zero itself. Thus the heat 

equation, in Equation 2.7 and in Equation 2.8, is homogeneous, if it does not have 

source term. Equations 2.10, 2.11 and 2.12, which represent boundary conditions, are 

also homogeneous, if ( ) 0, =Φ tx . The heat conduction problem is referred to as a 

homogeneous problem when both the heat equation and the boundary conditions are 

homogeneous. 

  

The analytical solution of the linear homogeneous heat conduction problems can be 

achieved using Fourier series or Fourier integrals [19, 20]. The Fourier series was first 

introduced to solve heat conduction problems by Joseph Fourier [16]. Although his 
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motivation was heat conduction, the Fourier series is now applied in many 

mathematical and physical problems, including signal and image processing. The 

Fourier series is a method that represents periodic functions as a weighted sum of sine 

and cosine waves, where the weights are called Fourier coefficients. Given the initial 

and the boundary conditions of the linear homogeneous heat equation, the Fourier 

series or integral solution can be achieved by first applying separation of variables 

method and then applying the principle of superposition [19, 20].  

 

Consider a one-dimensional conductive solid body in Lx ≤≤0 , without any heat 

generation (heat source). Initial and boundary conditions respectively given by 

( ) ( )xFtxT == 0,  and ( ) ( ) 0,,0 == tLTtT , which means that the temperature is initially 

( )xF  inside the body and the boundary condition is Dirichlet that has specified 

temperature (zero) at the boundaries. The solution of this problem is achieved with 

Fourier sine series as given below, 
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b
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⎜
⎝
⎛=

0

sin2 π     (2.14) 

 

Here, ( )xF  is represented with Fourier sine series with respect to Fourier coefficients 

nb . ( )txT ,  is the solution that satisfies all conditions and it is again obtained with 

Fourier series, but with respect to Fourier coefficients weighted by exponential 

function, ( )222exp Ltn πα− , of time parameter t . 

   

If we consider same solid with initial and boundary conditions respectively given by 

( ) ( )xFtxT == 0,  and ( ) ( ) 0,,0 =∂∂=∂∂ ntLTntT , which means that the temperature 

is initially ( )xF  inside the body and the boundaries are insulated with Neuman 

boundary condition. The solution of this problem is achieved by Fourier cosine series 

as given below, 
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where, ( )xF  is represented with Fourier cosine series with respect to Fourier 

coefficients na  and ( )txT ,  is the solution that satisfies all conditions and again Fourier 

coefficients are weighed by ( )222exp Ltn πα−  to obtain the temperature distribution at 

specified time t . 

 

We now consider same type of solid in LxL ≤≤−  with initial condition 

( ) ( )xFtxT == 0,  and boundary conditions ( ) ( )tLTtLT ,, =− , 

( ) ( ) ntLTntLT ∂∂=∂−∂ ,, . These types of boundary conditions are called Periodic 

boundary conditions. The left boundary tends to be Lx −=  instead of 0=x . These 

boundary conditions are also homogeneous, which can be seen better by rewriting as 

( ) ( ) 0,, =−− tLTtLT  and ( ) ( ) 0,, =∂∂−∂−∂ ntLTntLT . The solution of this problem 

is given below, 
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Here, ( )xF  is represented by full Fourier series with respect to coefficients na  and  nb . 

( )txT ,  is the solution that satisfies all conditions, and both of the Fourier coefficients, 

na  and  nb , are weighed by ( )222exp Ltn πα−  to obtain the temperature distribution at 

specified time t .  

 

Finally, if we consider the one-dimensional solid in an infinite medium, ∞≤≤∞− x , 

which is initially at a temperature ( ) ( )xFtxT == 0, . No boundary conditions are 
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specified for the problem since the medium extends to infinity in both directions. The 

solution of this heat conduction problem is given below, 

 

( ) ( ) ( ) ( ) ( ) ( )[ ] βββββ
β

dxbxatxTxF ∫
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=

+===
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sincos0,                  (2.20) 

( ) ( ) ( ) ( ) ( ) ( )[ ] βββββαβ
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Where, 

( ) ( ) ( ) xdxxFa ′′′= ∫
∞

∞−

β
π

β cos1 ,  ( ) ( ) ( ) xdxxFb ′′′= ∫
∞

∞−

β
π

β sin1                 (2.22) 

 

β  is continuous variable and has values from zero to infinity. Here, ( )xF  is 

represented by the Fourier integral formula with respect to coefficients ( )βa  and  

( )βb . ( )txT ,  is the solution that satisfies all conditions, and both of the Fourier 

coefficients, ( )βa  and ( )βb , are weighed by ( )t2exp αβ−  to obtain the temperature 

distribution at specified time t . After substituting Equation 2.22 to the Equation 2.20 

and rearrangements [19, 20], the solution alternatively can be written as follows, 
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From this equation, we can observe that solution of heat equation in infinite space, 

∞≤≤∞− x , can be viewed as convolving a signal ( )xF  with a Gaussian function and  

the standard deviation of the Gaussian function is represented as tα2 .   

 

There are many heat conduction problems which do not have an analytical solution. 

These problems usually involve geometrical shapes that are mathematically unsuited to 

representing initial and boundary conditions. However, numerical techniques exist, 

such as finite differences and finite elements, which are able to handle almost all 

problems with any complex shapes. The numerical methods yield numerical values for 

temperatures at selected discrete points within the body and only at discrete time 
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intervals. Thus answers are obtained only for a given set of conditions, a given set of 

discrete points and discrete time intervals.  

 
The numerical heat conduction problem can be investigated in the image domain, since 

the image is formed by a set of points, as well as since the image is convenient for the 

finite difference technique. We will not consider the finite element methods further, 

since our aim is to use the heat analogy for feature extraction. As such, the finite 

element methods would become rather complex for this aim. 

2.2 Applications of Heat Flow in Image Processing and Computer Vision 

The heat flow analogy has been deployed in various ways in image processing and 

computer vision. Six applications are briefly surveyed here: image smoothing and 

enhancement; region-based image segmentation; thinning; active contours; motion 

analysis and graph theory. 

2.2.1 Image Smoothing and Enhancement 

Heat flow has first been used for image smoothing. Witkin [25] introduced scale-space 

theory which involves generating coarser resolution images by convolving the original 

image with a Gaussian kernel. Then Koenderink [26] and Hummel [27] pointed out that 

the family of derived images may be equivalently viewed as the solution of heat 

conduction or diffusion equation based on several criteria: causality, homogeneity and 

isotropy. According to homogeneity and isotropy, blurring is required to be spatially 

invariant which makes it difficult to obtain accurately the location of edges at coarse 

scales. Then, Perona and Malik [8] introduced anisotropic heat flow for selective image 

smoothing that avoids blurring and localization problems of the edges. In this process, 

the diffusion coefficient is allowed to vary according to the magnitude of the local 

image gradient in four nearest direction. In this way, high quality edge detection is 

observed. After that, many approaches and models have been developed alternative to 

Perona and Malik’s work. Some of them are: robust anisotropic diffusion [28], 

geometry driven heat flow [14], graph spectral model [29, 30], probabilistic view [31], 

regularization method [32], discrete image flux conduction model [33] and a global 

approach for solving evolutive heat transfer in images [34]. Recently, the geometrically 

stabilized reverse heat equation model has also been introduced for restoration of 
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blurred images [35]. The heat flow analogy is also used for vector field smoothing to 

recover surface normals and surface heights in shape-from-shading [36, 37, 38].    

2.2.2 Region-based Image Segmentation 

In [39], the anisotropic diffusion pyramid (ADP) was introduced for region-based 

segmentation. The pyramid is constructed using the scale space representation of 

anisotropic diffusion. Since anisotropic diffusion preserves edge locations as the scale 

increases, region boundaries in the coarse to fine ADP segmentation are accurately 

delineated. Recently, Manay and Yezzi [9] have proposed the anti-geometric heat flow 

model for adaptive thresholding and segmentation of regions. Here, anti-geometric heat 

flow is represented as diffusion through the normal direction of edges that smears 

rather than preserves them. As a result of this, regions on the opposite sides of 

prominent edges are captured in greyscale images. 

2.2.3 Thinning 

In [10], a new thinning algorithm was introduced based on time-reversed isotropic heat 

flow. Given an image, which is viewed as a thermal conductor, first the heat flow 

direction map is computed, then time-reversed heat conduction is simulated to get 

thinned a pattern. This algorithm can be applied to gray-scale or binary images.  

2.2.4 Snake or Active Contours 

Model-free active contours can be classified as Parametric Active Contours and 

Geometric Active Contours (Level Sets). The parametric active contour (PAC) is the 

first snake model, introduced by Kass et al. [40]. Problems associated with a PAC are 

initialization and poor convergence to concave regions. These problems were largely 

solved with the development of new external force model which is called Gradient 

Vector Field (GVF) [41]. It is computed as a diffusion of the gradient vectors of the 

grey level or binary edge map. This diffusion process arises from the heat conduction 

model. A geometric active contour (GAC) [11, 12] is based on a curve moving in 

normal direction with its curvature dependent on speed. This phenomenon is tackled 

with a level set method [13] in higher dimension by viewing the curve as the zero level 

set. The curve movement on the level set is achieved using geometric heat flow [14].  
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2.2.5 Motion Analysis 

Horn and Schunk [42] developed a method for optical flow (velocity vectors) 

computation from sequence of images. The concept includes two constraints which are 

change of brightness and smoothness of the velocity flow. An equation was developed 

whose progress is similar to the propagation effects in the solution of heat conduction 

equation. However, this method does not preserve optical flow discontinuities on the 

motion boundary because of the isotropy property of the smoothness constraint. Then 

some extensions have modified the smoothness constraint and observe anisotropic 

behaviour to preserve motion boundaries [43, 44]. Makrogiannis and Bourbakis [15] 

were the first to propose a spatio-temporal anisotropic heat diffusion for motion activity 

measurement. The motion activity measure is derived from the total amount of 

diffusion in the spatio-temporal domain. Then, this process is completed by kernel 

based density estimation and watershed-based segmentation of regions. 

2.2.6 Graph Theory 

The heat analogy has also been integrated with graph theory in computer vision for the 

purpose of graph and shape clustering [45, 46, 47]. Xiao and Hancock [46] use the 

spectrum of the Laplacian matrix to capture graph structure. The Laplacian spectrum 

has close relationship with the heat equation, which can be used to specify the flow of 

information with time across a network. The solution to the heat equation, or heat 

kernel, is obtained by exponentiation of Laplacian eigensystem over time. The solution 

is related to the distribution of path lengths between nodes. Then the heat content, 

which is the sum of the entries of the heat kernel over the nodes of the graph, is 

expanded as a polynomial in time. Finally, graph-clustering is performed by applying 

principal components analysis to vectors constructed from the polynomial coefficients.  

In [48], the heat kernel is obtained, similar to the explained before, to evolve minimum 

spanning tree of a graph for clustering purpose. In [49], a new probabilistic relaxation 

labelling was developed using the heat flow on graphs.            

2.3 Conclusions 

In this Chapter, we have reviewed the basic concepts of heat flow and applications of 

heat flow in image processing and computer vision. It is observed that solution of the 
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heat equation depends on properties of material, heat source as well as specified initial 

and boundary conditions. The heat flow analogy has been applied in various ways in 

image processing and computer vision. Six applications were briefly surveyed here: 

image smoothing and enhancement; region-based image segmentation; thinning; active 

contours; motion analysis and graph theory. 

  

An analytic solution of the linear and homogeneous heat conduction problem can be 

achieved using Fourier series theory. In addition, solving the linear and homogeneous 

heat equation in infinite medium can be viewed as smoothing a signal with a Gaussian 

filter. This relation also allows us investigate the Fourier series and Gaussian filtering 

for feature extraction. In Chapter 5, we introduce new and efficient silhouette object 

descriptors by using the Fourier series and Gaussian filtering for the purpose of 

recognition.  

 

Analytic solution techniques for the heat conduction problems are limited, because it is 

difficult to represent initial and boundary conditions of geometrically complex shapes. 

Numerical techniques, such as finite differences, are able to handle all problems with 

any complex shape. In Chapter 4, we extract objects shapes by representing particular 

heat conduction problems in the image domain, and the proposed heat conduction 

problems are solved using finite difference technique.  First, we solve a linear and non-

homogeneous heat equation in the image domain to roughly segment objects of interest. 

Then anisotropic diffusion (geometric heat flow) is applied to smooth extracted 

boundaries and remove possible noise inside the prior segmented region. 

  

In the next Chapter, we introduce a novel moving object edge detection technique. 

Here, we first solve anisotropic heat conduction problem in the spatial domain to 

remove noise and sharpen region boundaries. Then, linear and isotropic heat flow is 

applied in the temporal domain, with the proposed initial and boundary conditions, to 

calculate moving-edges. This problem is also solved using finite difference technique. 

As such, the heat equations described earlier are applied in a new way to detect the 

edges of moving object. 
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Chapter 3 Low Level Moving-

Feature Extraction via Heat Flow 

Analogy 

In this Chapter, a new intelligent and automatic moving object edge detection algorithm 

is proposed, based on using the heat flow analogy. This algorithm starts with 

anisotropic heat diffusion in the spatial domain, to remove noise and sharpen region 

boundaries for the purpose of obtaining high quality edge data. Then, isotropic and 

linear heat diffusion is applied in the temporal domain to calculate the total amount of 

heat flow. The moving-edges are represented as the total amount of heat flow out from 

the reference frame. The overall process is completed by non-maxima suppression and 

hysteresis thresholding to obtain binary moving-edges. Evaluation results indicate that 

this approach has advantages in handling noise in the temporal domain because of the 

averaging inherent of isotropic heat flow. Results also show that this technique can 

detect moving-edges in image sequences, without background image subtraction.   
 

This Chapter is organized as follows: Section 3.1 explains related works. Section 3.2 

discusses anisotropic heat flow for edge map enhancement. Section 3.3 introduces our 

novel moving-edge detection method. Section 3.4 concerns evaluation and 

experimental results, prior to conclusions. 

3.1 Related Works 

Segmenting moving objects is a challenging and important task in computer vision. It 

has many applications such as surveillance, video communication, traffic monitoring, 
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people tracking and content-based image coding. There are many moving object 

segmentation techniques, which are based on moving-edge detection. 

 

Kim and Hwang [50] segment moving objects based on extracted moving-edges. 

Moving-edge points are generated based on processing the frames difference edge map, 

current frame edge map, and background edge map. These spatial domain edge maps 

are obtained using the Canny edge detector, which involves Gaussian convolution to 

suppress noise.  

  

Ahn et al. [51] introduced a moving-edge detection algorithm to implement a home 

security system. Their algorithm extracts edge segments from the current image and 

eliminates the background edge segments by matching them with a reference edge list, 

where the reference edge list is generated from the set of training background images.  

 

Myerscough and Nixon [52] developed a moving-edge detector by extracting feature 

points and feature velocities from a sequence of images based on using phase 

congruency.  The benefits of using phase congruency are its illumination invariance 

and good localization. In addition, since phase congruency is illumination invariant, 

there is no need for threshold selection in edge detection.    

 

Kim [53] proposed a moving-edge detection algorithm by using entropy and cross-

entropy approaches. They calculate entropy in the current frame to determine spatial 

edges. Then, they apply cross-entropy between current and previous images to measure 

the dissimilarity. Finally, entropy and cross-entropy values are compared and 

thresholded to detect moving-edges.  

 

Zhang and Zhao [54] proposed a moving-edge detection algorithm using wavelets to 

overcome noise. First, they find change detection mask in the wavelet domain. Then 

they apply Canny edge detection on the change detection mask to obtain the difference 

edge map. Finally, the difference edge map is compared with current frame edge map, 

background edge map and previous frame’s moving-edges to obtain the current frame’s 

moving-edges.  
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Recently, Dewan et al. [55] introduced an algorithm, which utilizes the three most 

recent consecutive frames to isolate moving-edges for moving object detection. They 

first calculate two difference images using those three consecutive frames. Then, the 

Canny edge detection algorithm is applied to generate difference edge maps. In the 

difference edge maps, edge pixels are grouped together to represent edge segments. 

Finally, since the moving-edges of the middle frame are common in both difference 

edge maps, they apply matching algorithm by using the size, shape and position 

features of the edge segments. 

3.2 Anisotropic Heat Diffusion and Edge Enhancement 

Perona and Malik [8], proposed anisotropic diffusion for selective image smoothing 

that avoids blurring and localization problems of the edges. The anisotropic heat 

diffusion problem is given below,  

 

( ) ( )( )ttkdiv
t

,, xIxI
∇=

∂
∂  

( ) ( )xFxI == 0, t ,   initial condition 

( ) 0, =∂∂ ntxI ,   boundary condition               (3.1) 

 

Where, div  represents divergence operator, ∇  is a spatial gradient operator, ( )t,xI  is 

the grey level image that is a function of position ( )yx,=x  and time t , ( ) [ ]1,0, ∈tk x  is 

the conductivity function, which depends on direction. The original image, ( )xF , 

indicates the initial condition. The boundary of the image is insulated, which is 

represented with homogeneous Neuman condition. In this boundary condition, there is 

no heat flow in or out of the image from the boundary. The solution to Equation 3.1 can 

be discretized using four nearest neighbours of the Laplacian operator as given below, 
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where, λ  is a constant and 25.00 ≤≤ λ  for the numerical scheme to be stable in the 

two-dimensional case [23]. N∇ , S∇ , E∇  and W∇  indicate nearest neighbor differences 

respectively in the direction north, south, east and west as shown below,  
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The nearest neighbour differences are calculated for each image pixel position ( )yx,  

and at every iteration t . Nk , Sk , Ek  and Wk  are conductivity coefficients respectively 

in the north, south, east and west direction. The conductivity coefficients are also 

updated, for each position and at every iteration, as a function of the brightness gradient 

in each direction as given below,    
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Different functions are used for ( )I∇g , depending on the chosen aim. In our 

application, an exponential type is used, (see Equation 3.5), which prefers high-contrast 

edges to low-contrast ones.  

 

( ) ( )2/ Reg II ∇−=∇                  (3.5) 

 

R determines the rate of decay of the exponential function, and thus the rate of 

smoothing. Note that, if ( )I∇g  is constant (at all image locations), this leads to 

isotropic heat diffusion. In Figure 3.1, we illustrate the difference between isotropic and 

anisotropic diffusion operations. Figure 3.1(a) is a grey-scale image and Figure 3.1(b) 

is its Sobel edge map without any diffusion. Figure 3.1(c) is the Sobel edge map after 

isotropic diffusion, which causes loss of edge information. On the other hand, Figure 

3.1(d) is the Sobel edge map of the anisotropic diffused image with the conductivity 

function given by Equation 3.5 and it can easily be observed that high contrast edges 



 23

are enhanced while removing-edges due to noise, and thus important detail is 

preserved. 

  

           
                     (a) Grey-scale image                                      (b) Original Sobel edge map 

           
(c) Sobel edge map after isotropic diff.            (d) Sobel edge map after anisotropic diff. 

 

Figure 3.1: Difference between isotropic and anisotropic diffusion. 

3.3 Isotropic Heat Flow in Temporal Domain 

Here, we introduce a novel moving-edge detection technique. Assume that we have 

three or more consecutive frames. Once the enhanced Sobel edge maps are obtained in 

space, the isotropic and linear heat equation is applied in the temporal domain to 

calculate the total amount of heat flow. Assuming we have L consecutive frames, the 

discrete formulation of the proposed heat conduction problem is given below, 
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Where, 1−t
nE , 1

1
−
−

t
nE  and 1

1
−
+

t
nE  are Sobel edge mapped images respectively for the 

reference frame ( )n , the previous frame ( )1−n  and the next frame ( )1+n  at iteration t . 

Δ  is Laplacian operator. α  is thermal diffusivity and 5.00 ≤≤ α  for the numerical 

scheme to be stable in the one-dimensional case [23]. The original image sequences, 

nF , indicates the initial condition and the proposed boundary condition is Dirichlet with 

constant temperatures. In this boundary condition, the boundary frames always remain 

at the initial values and there will be heat flow in and out of the image sequences. Since 

we assume there are moving objects in the consecutive images, moving-edge positions 

in any interior frame are expected to have higher brightness than the same positions at 

the boundary frames. As a result of this, moving-edges diffuse out from the reference 

frame to the neighbour frames and then out of image sequences from the boundary 

frames.   

 

The diffusion (iteration) stops, when we reach the steady-state solution in the system, 

when there is no more heat flow. The total amount of heat flow, for each frame, is 

calculated as follows. Assume that the initial scale is 0 (zero) and final scale is t , then 

Equation 3.6 can be described as,  
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Then, the total amount of heat flow from the initial state to the steady-state is   
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However, this gives us total heat in (+) and heat out (-) together during diffusion. We 

are interested in total heat flow out ( )HFO  from the reference frame, nE  , which gives 

us the moving-edge map. This is obtained as,  
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               (a) 1nFrame +                               (b) nFrame                               (c) 1nFrame −  

       
          (d) 1n+E                                        (e) nE                                       (f) 1n−E  

           
             (g) Total heat flow                                          (h) Heat flow out ( )HFO  

 

Figure 3.2: Moving-edge map extraction. 
 

Figure 3.2 illustrates the process for three consecutive frames, where Figures 3.2 (a-c) 

show a walking human subject. First, anisotropic diffusion is applied in space with 

parameters values 2.0=λ , 4=R  and for 50 iterations. Figures 3.2(d-f) show enhanced 

Sobel edge maps of these frames after anisotropic diffusion. Then, isotropic diffusion is 

applied in temporal domain to calculate total amount of heat flow. This diffusion 

continues until we observe steady-state with 45.0=α , which needs 10 iterations in this 

experiment. Figure 3.2(g) shows total amount of heat flow in the reference frame, nE , 

and Figure 3.2(h) is total heat flow out from nE , which gives the moving-edge map. 

Only the moving-edges of the human subject and some slight shadows remain, whilst 

largely removing the edges introduced by the static background.      
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The overall process is completed by non-maxima suppression (thinning) and hysteresis 

thresholding to observe the binary moving-edges. The non-maxima suppressed and 

hysteresis thresholded images are shown respectively in Figures 3.3(a) and (b). Non-

maxima suppression has been developed by Canny [56]. In this approach, the edge 

point is defined to be a point whose strength is locally maximum in the direction of 

gradient. Non-maxima suppression ends up with an image settled zero except local 

maxima points. Local maxima points preserve their values. Hystresis thresholding 

involves two thresholds, upper ( )HT  and lower ( )LT , to convert the image into binary 

form. The pixels with a value higher then HT  are set to one, the pixels with value 

between HT  and LT  are set to one, if they are connected to the pixels higher than HT . 

The pixels with value lower than  LT  are zero.  

 

           
  a) Non-maxima suppressed image                    (b) Hysteresis thresholded image 

 

Figure 3.3: Binary moving-edge observation. 
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Figure 3.4: Moving-edge detection 

3.4 Evaluation and Experimental Results 

Performance evaluation is employed by comparing moving-edge detection with 2-D 

Sobel edge detection. However, anisotropic heat diffusion in the spatial domain is 

omitted in our algorithm to balance the 2-D Sobel and moving-edge detection 

algorithms. Figure 3.4 shows the proposed algorithm to obtain the moving-edges in the 

evaluation. Evaluation is performed using a white circle moving on a black background 

with varying normally distributed noise ( )2,σμdN . The Hough Transform (HT) is 

applied to the binary edge images to extract the circle centre parameters. A root mean 

square error (RMSE) is then employed to quantify the performance of each algorithm.  

 

( ) ( )( ) 222
yyxx ceceRMSE −+−=         (3.10) 

 

Where, ( )yx ee ,  are the extracted circle centre parameters and ( )yx cc ,  are the actual 

circle centre parameters. The quantity of noise is considered in terms of standard 

deviation σ  with zero mean. Hysteresis thresholding is used both for 2-D Sobel and 

moving-edges, after non-maxima suppression (thinning). The thresholds for the 2-D 

Sobel, to obtain the binary image, are determined by a root mean square (RMS) 

estimate of the noise. In this process, the gradient magnitude image is thresholded by 

Sobel edge map Sobel edge map Sobel edge map 

Isotropic heat flow in temporal domain (n) 

Heat flow in (+) Heat flow out (-) 

Non-Maxima suppression 

Hystresis thresholding 

Binary moving-edges 

Frame n +1 Frame n Frame n-1 
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its scaled mean value that is proportional to signal to noise ratio (SNR). The upper and 

the lower thresholds are determined as given below,  

 

∑∑
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Where, F  is the gradient magnitude reference frame of size NM ×  and Ts  is a scale 

factor for threshold selection, which is a positive constant with value 3 in this 

evaluation. The scale factor, Ts , was determined experimentally to achieve the best 

performance of the algorithm. The ratio between high, HT , and low, LT , thresholds is 

4. On the other hand, the thresholds of the moving-edge detection algorithm are based 

on mean heat flow out ( )HFO  from the reference frame,  
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Where, Tc  is a scale factor for threshold selection with value 11 and the ratio between 

the high, HT , and the low, LT , thresholds is again 4. Here, the scale factor, Tc , was also 

determined experimentally to achieve the best performance of the proposed algorithm. 

Figure 3.5 shows performance of moving-edge detection and 2-D Sobel algorithms. 

The graphs show error bars representing the mean and standard deviation obtained over 

5 applications of moving-edge detection and 2-D Sobel operator. In each application, 

the obtained graphs are smoothed by applying local averaging to the data points in 6 

nearest neighbourhoods. RMSE of the 2-D Sobel increases slowly until 130≅σ  and 

after that we observe rapid increase in RMSE. On the other hand, RMSE of the 

moving-edges increases slowly until 120≅σ  and after that it increases rapidly. It is 

observed that, the moving-edge detection technique has better performance than 2-D 

Sobel at all noise levels, which appears due to the averaging inherent in the new 

operator. Figure 3.6 shows some of the results for moving-edges (second row) and 2-D 

Sobel (third row). To visual inspection, the input images in Figure 3.6(c) and (d), are 

very noisy indeed. 

 



 29

0 20 40 60 80 100 120 140 160

0

1

2

3

4

5

6

R
oo

t M
ea

n 
S

qu
ar

e 
E

rro
r (

R
M

S
E

)

Standard Deviation of Gaussian Noise with Zero Mean

Moving Edges
2D Sobel

 
Figure 3.5: Performances of moving-edges and 2-D Sobel with respect to normal distributed 

noise trials. RMSE is plotted with mean and standard deviation values using error bars. 

 

   
                  (a) 0=σ               (b) 40=σ              (c) 80=σ               (d) 120=σ  

 

Figure 3.6: Results for moving-edges (second row) and 2-D Sobel (third row) with respect to 

increasing Gaussian noise. 
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Simulation results also show that our algorithm can detect moving-edges in image 

sequences, as shown in Figure 3.7. Figure 3.7(a) has eight consecutive frames and 

shows a human subject, while playing table tennis. Figure 3.7(b) shows Sobel edge 

maps, E , after the anisotropic diffusion in space. The selected parameters for 

anisotropic diffusion: 2.0=λ , 4=R  and the number of iterations is 20. It is observed 

that region boundaries are sharpened after anisotropic diffusion. Although almost all 

noise has been removed on the table, the wall behind the player still appears noisy. The 

reason for this is the textured structure of the wall and there are strong edges as well. 

The textured structure of the wall can bee seen in Figure 3.8(a), since this image is 

enlarged and also belongs to the same table tennis sequence. Figure 3.7(c) is the total 

amount of heat flow out ( )HFO  from each frame, after isotropic diffusion in the 

temporal domain. This diffusion needs 215 iterations with 45.0=α  to achieve steady-

state.  Here, the first and eighth frames are omitted since they are the boundary frames 

and their edge map values are constant, during the diffusion, to achieve the given 

Dirichlet boundary conditions. It is observed that almost all edges introduced by the 

static background and the noise arising from the textured wall is removed, while 

retaining the moving-edges of the human subject and the tennis ball. There are also 

slight edges of the human’s shadow in the HFO  images. Figure 3.7(d) shows the 

binary moving-edges at each reference frame after applying non-maxima suppression 

and hysteresis thresholding. It is seen that moving-edges were indeed detected.  

 

Figure 3.8 also shows some simulation results. Figures 3.8(a) shows the reference 

frame from table tennis (indoor) sequence and moving-edges of the arm and of the ball 

were detected. We should note that the upper part of the arm and the table are static and 

this is why they were not detected. Figures 3.8(b) is a reference frame from the flower 

garden (outdoor) sequence, where the camera is in motion. It is seen again that most of 

the moving-edges were detected. Some edges, such as part of the house roofs, were not 

detected, since the camera was moving along those edges.  
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  1frame                              2frame         3frame    4frame  

    
  5frame                               6frame    7frame    8frame  

(a) Input frames 

    
    1E                                   2E                      3E         4E  

    
      5E                                   6E                      7E         8E  

(b) Enhanced Sobel edge maps after anisotropic diffusion 

   
        2HFO                             3HFO                           4HFO     

   
           5HFO                            6HFO                         7HFO   

(c) Heat flow out (-) from reference frames until the steady-state 
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              2_ EdgeBinary                    3_ EdgeBinary                              4_ EdgeBinary       

   
              5_ EdgeBinary                               6_ EdgeBinary                             7_ EdgeBinary  

(d) Binary moving-edges after non-maxima suppression and hysteresis thresholding 

 

Figure 3.7: Moving-edge detection in the eight consecutive frames 

 

           
(a) Table tennis (indoor) image 

           
(b) Flower garden (outdoor) image, where the camera is in motion. 

 

Figure 3.8: Some of the simulation results for new operator on indoor and outdoor images. 
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3.5 Conclusions 

We have presented a novel low level moving-feature extraction technique based on 

using the heat flow analogy. Firstly, high quality Sobel edge maps are obtained based 

on anisotropic heat diffusion, in space. The conductivity function is the key point in 

this stage; we have chosen an exponential function which enhances high contrast edges 

and removes edges due to noise. In the next stage, isotropic and linear heat diffusion is 

applied in the temporal domain to determine the moving-edge map in the reference 

frame. To do this, the total amount of heat flow is calculated and then separated into the 

heat in (+) and heat out (-) parts, where the heat out (-) is the moving-edge map. 

Finally, non-maxima suppression and hysteresis thresholding is applied to obtain binary 

moving-edges. Evaluation indicates that this technique is better than 2-D Sobel at all 

levels of noise corrupted image, without anisotropic heat diffusion in space. This result 

appears to be due to the averaging inherent in the new operator. Results also show that 

this technique can detect moving-edges in image sequences, without using the 

background detection. 
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Chapter 4 Shape Extraction via 

Heat Flow Analogy 

In this Chapter, we introduce a novel evolution-based segmentation algorithm by using 

the heat flow analogy to gain practical advantage. The proposed algorithm consists of 

two parts. In the first part, we represent a particular heat conduction problem in the 

image domain to roughly segment the region of interest. Then we use geometric heat 

flow to complete the segmentation, by smoothing extracted boundaries and removing 

noise inside the prior segmented region. The proposed algorithm is compared with 

active contour models and is tested on synthetic and medical images. Experimental 

results indicate that our approach works well in noisy conditions without pre-

processing. It can detect multiple objects simultaneously. It is also computationally 

more efficient and easier to control and implement in comparison with active contour 

models.  

 

The Chapter is organized as follows: Section 3.1 discusses related works. Section 3.2 

represents the proposed heat conduction problem in the image domain, which is the 

first part of our algorithm. Section 3.3 explains the geometric heat flow. Section 3.4 

concerns evaluation and experimental results and finally Section 3.5 is conclusions.  

4.1 Related Works 

There are two main types of shape extraction method that evolve to the target solution: 

active contours and region growing techniques.  
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4.1.1 Active Contours 

In this section, we summarize the existing active contour models with their advantages 

and disadvantages. Extensive explanations of the commonly used active contour 

models are also given in Appendix B. Active contours (snakes) are curves that evolve 

to recover object shapes. Active contours can be classified as Parametric Active 

Contours (PAC) and Geometric Active Contours (GAC) according to their 

representation. These models mainly differ in their ability to handle multiple object 

detection, computational efficiency and complexity of implementation. 

 

Parametric Active Contours (PAC) 

 

A PAC is a parametric curve which is represented explicitly. There are internal and 

external forces acting on curve. The internal forces control the smoothness and rigidity 

of the curve with respect to selected parameters. The external force is image dependent 

and attracts the curve to the object boundary. The first PAC model was introduced by 

Kass et al. [40]. In this, segmentation is achieved by using gradient vectors of an edge 

map as an external force. Problems associated with this model are initialization and 

poor convergence to concave regions. A constant force, which is called the balloon 

force [57], was added with direction normal to curve, to accelerate the motion so that 

the initial curve can be placed far away from the desired object boundary. However, 

choice of the balloon force is a problem. If the balloon force is large, the contour can 

pass through weak object boundaries. If the balloon force is small, the contour may not 

move on narrow regions of the object. Initialization and convergence to concave region 

problems were largely solved with the development of a new external force model, 

which is called Gradient Vector Flow (GVF) [41]. GVF is computed as a diffusion of 

the gradient vectors of an edge map. However, PAC models can have difficulty with 

simultaneous detection of multiple objects, since they cannot handle the topological 

changes such as merging or splitting of the moving curve, because of the explicit 

representation. To solve this problem, GAC models have been introduced, where the 

curve is represented implicitly in a level set function (the zero set).  
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Geometric Active Contours (GAC) 

 

GAC use the level set method [13] for curve evolution. A level set is a real valued 

function of the two-dimensional space variables. The contour is represented implicitly 

in a level set function, which is the zero set. Caselles et al. [11] and Malladi et al. [12] 

proposed the first GAC model, which uses gradient-based information for 

segmentation. In this model, the curve evolves in the direction normal with its 

curvature and balloon force dependent speed, and stops depending on the gradient 

information obtained from the image. The curvature dependent speed has the effect of 

smoothing the curve, while the balloon force accelerates the motion. The gradient-

based GAC can detect multiple objects simultaneously but it has other important 

problems, which are boundary leakage, noise sensitivity, computational inefficiency 

and complexity of implementation. Some formulations, [58] [59], have been introduced 

to solve problems with boundary leakage and noise sensitivity by improving gradient-

based information. However, they can just increase the tolerance, since gradient-based 

information is always limited by noise. Xie and Mirmehdi [60] apply region 

segmentation to the original image and then find the Gradient Vector field (GVF) of the 

segmented image. This force is added to the GAC, but it can only provide more 

tolerance to toward weak edges. Several numerical schemes have been proposed to 

improve the computational efficiency of the level set method, including narrow band 

[61], fast marching [62] and additive operator splitting [63]. Despite substantial 

improvements in efficiency, they can be difficult to implement.  

 

Chen and Vese [64] introduced a new GAC model without using edge information. 

Their model is a particular case of the Mumford-Shah functional [65] and uses regional 

statistics for segmentation. In this work, the image is divided into two regions, interior 

and exterior, separated by a curve. The model minimizes the sum of the squares of the 

differences between the intensity values and the mean of the intensity values inside and 

outside of the surface of desired object. Their approach especially works well for 

bimodal images. It is good at handling initialization, noise and boundary leakage but 

still suffers from computational complexity and difficulty in implementation, because 

of the level set method. Later, Chen and Vese [66] extended this approach to the 

multiphase level set framework to segment more than two-phase (binary segmentation). 



 37

However, they need more level set functions for this process, which in turns increases 

complexity and difficulty.   

 

Different types of image forces can be combined with PAC or GAC (level set) models 

to overcome limitations and improve segmentation. In [67], the Mumford-Shah 

functional [65] based region force was adapted by PAC to handle noise and 

initialization problems. Paragios and Deriche [68] unified boundary- and region-based 

forces and implemented using level sets to improve segmentation and solve 

initialization and noise problems. Recently, Xie and Mirmehdi [69] proposed a 

magnetic force based on magnetostatic theory using level sets to handle problems with 

initialization and convergence to concave regions.  

4.1.2 Region Growing 

Region growing is a procedure that groups pixels or sub-regions into larger regions 

based on predefined similarity criteria for region growth. The basic approach starts with 

a seed point and merges neighboring pixels that have pre-defined properties similar to 

the seed, such as intensity [70] or texture [71]. Region growing was also combined with 

edge detection for segmentation [72]. Although, region growing techniques can detect 

multiple objects simultaneously and can be more efficient than active contour models, 

the main problem is selection of the similarity criteria. They also have to use 

connectivity information to define the neighboring pixels in each step of growth. In 

addition, they can achieve region segmentation with irregular boundaries and holes in 

the presence of high noise, since they omit smoothing. 

4.2 Proposed Heat Conduction Problem and Representation in Image 

Domain 

Consider a two-dimensional conductive solid body that has uniform conductivity and is 

an isotropic medium. Initial and boundary conditions respectively given by 

( ) 00, ==tT x  and ( ) 0, =tT x , where T  represents the temperature at position 

( )yx,=x  and time t . The given conditions mean that the temperature is initially zero 

inside the body and the boundary condition is Dirichlet that has a specified temperature 

(zero) at the boundaries. If we initialize a continuous heat source, which is a positive 
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constant, at a point inside the body, there will be heat diffusion to the other points from 

the source position. As a result of this, all the points inside the body will have 

temperature values exceeding zero, except the boundary points. This is then an ideal 

approach for object segmentation in computer images. Let us investigate the proposed 

problem on a square object that is inside the grey-level image ( )G , as shown in Figure 

4.1(a). Assume that all the temperature values of the objects and the background are 

stored in another image, which is represented by I , and the initial condition of whole 

image is zero, ( ) 00, ==txI . This assumption means that all objects have temperature 

initially zero inside, as well as at the boundaries. When we initialize a heat source at 

any pixel inside the square object, as shown in Figure 4.1(a), there will be heat 

diffusion to the other pixels from the source position, which will cause temperature to 

increase. However the temperature at the boundary layer must be kept at zero all the 

time to obtain the Dirichlet condition, where the boundary layer is defined at the 

external side of an object as shown in Figure 4.1(b). To achieve this, we use a control 

function in the heat conduction equation as given below,  

 

( ) ( ) ( )( ) ( )xQxIxCFxI
+Δ=

∂
∂ tt

t
t ,,, α                  (4.1) 

 

                          

                         (a)                                                                        (b) 

                    

                                                 (c)                                                (d) 

Figure 4.1: Heat conduction modeling in image domain of size 150150× . (a) Source position at 

0=t . (b) Boundary layer illustration. (c) TF at 30=t  (iterations). (d) Final TF at 69=t . 
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where ( )t,xI  represents an image pixel value in terms of temperature at each point and 

time, α  is the thermal diffusivity and 25.00 ≤≤α  for the numerical scheme to be 

stable in two-dimensional system [23], Δ  is Laplace operator for the spatial variables, 

( )xQ  is the source term and ( )t,xCF  is the control function. The control function is 

obtained from the region statistics of source location on a given grey-level image. The 

proposed region statistics model is similar to the one used by Chen and Vese [64]. In 

this model, the image is divided into two regions, interior and exterior, separated by a 

contour and the model minimizes the sum of the squares of the differences between the 

intensity values and the mean of the intensity values inside and outside of the surface of 

desired object. In our model, the contour is represented by a Temperature Front (TF), 

where the TF is the boundary of the region that has temperature values exceeding zero. 

The control function, ( )t,xCF , is formulated as follows,  

 

( ) 2)(, ininin t μλσ −= xGx                                     (4.2) 

        ( ) 2)(, outoutout t μλσ −= xGx                     (4.3) 

 

where, )(xG  is the given grey-level image, ( )tin ,xσ  is the weighted square of the 

difference between the intensity value and the mean, inμ , of the intensity values inside 

the TF, at each point and time. ( )tout ,xσ  is the weighted square of the difference 

between the intensity value and the mean, outμ , of the intensity values outside the TF, 

at each point and time. 0>inλ  and 0>outλ  are fixed parameters (constants) for 

regional statistics inside and outside the TF respectively. Then, the following logical 

decision is applied at each position and at each time interval.  

 

( ) ( ) ( )
⎩
⎨
⎧ ≤

=
otherwise

tt
t outin

,0
,,,1

,
xx

xCF
σσ

                                    (4.4) 

 

Therefore, the control function allows heat diffusion inside the object of interest and 

achieves the proposed Dirichlet condition on the boundary layer by keeping the 

temperature value at zero. However, it is better to start this process after a short 

diffusion time by assuming ( ) 1, =txCF  at all points. This increases the effective area 

of initialization, thereby better handling noisy images. In addition, the heat source must 
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be initialized onto a smooth surface of the object, since the source localization to the 

edge pixel will give the wrong region statistic for our purpose. Figure 4.1(c) and (d) 

respectively show the evolution and the final position of the TF. However, there is no 

need to continue diffusion, after the TF reaches its final position. For this reason, the 

position of the TF is controlled at each specified time interval and when there is no 

movement, diffusion is terminated. Here, we also note that the regional statistics 

parameters will be represented with their ratio outin λλ  in our experiments, and in this 

experiment (Figure 4.1) outin λλ =1. The analytical solution of the proposed heat 

conduction problem, on the square object shown in Figure 4.1, is given in Appendix A. 

Comparison of analytical and image domain results are also included in Appendix A. 

The main difference between [64] and our model, in using region statistics, we attempt 

to segment the region containing the source instead of whole image.   

 

One difficulty arises when the region containing the source intersects the image 

boundary. This problem can be solved by assuming that image is surrounded by a 

boundary layer, at its periphery, which has temperature value zero for all time 

(Dirichlet). Figure 4.2 shows the evolution and the final position of the TF, which has a 

source location within the background. The result, in Figure 4.2, also shows that 

multiple object detection can be achieved and the heat can diffuse through the narrow 

regions within the spiral object. As such, heat has been used to detect the background 

and therefore boundaries of objects. 

 

                 
                (a) Source position                      (b) 110=t                         (c) 221=t  (final) 
 

Figure 4.2: TF is moving on background in the image of size 150150× , and 1=outin λλ . 
 

It is also required to consider the control function when the given image is bimodal as 

shown in Figure 4.3(a). In this case, the control function attempts to segment the whole 

image while the TF segments the source located region. This is because, the control 

function assigns unity to the pixels that are similar to the inside of the TF, and assigns 
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zero to the pixels that are dissimilar. The process is illustrated in Figure 4.3. Figure 

4.3(a) shows the source position, Figure 4.3(b) is the final position of the TF and Figure 

4.3(c) is the control function at the end of the diffusion. 

 

                 
                 (a) Source position             (b) Final TF at 69=t                 (c) Final ( )xCF  
 
Figure 4.3: Illustration of the control function, ( )xCF , in a bimodal image of size 150150× , 
and 1=outin λλ . 

 

All the results so far have been on synthetic images without added noise. If we simulate 

this algorithm on noisy medical images, such as a magnetic resonance image of the left 

ventricle of a human heart shown in Figure 4.4(a) with the heat source location, we 

observe some drawbacks in segmentation. The drawbacks are irregular boundaries and 

holes inside the segmented region, as shown in Figure 4.4(b), where the outin λλ =1 in 

this experiment. These problems are solved by using the heat flow analogy again as 

described in the next section. 

4.3 Geometric Heat Flow 

Geometric Heat Flow (GHF) is a kind of anisotropic diffusion and is widely used for 

image denoising and enhancement [14]. It diffuses along the boundaries of image 

features, but not across them. It derives its name from the fact that, under this flow, the 

feature boundaries of the image evolve in the normal direction in proportion to their 

curvature. Thus GHF decreases the curvature of shapes while removing noise. GHF 

equation is obtained with the following considerations. 

 

Edge directions are related to the tangents of the feature boundaries of an image B . Let 

η  denote the direction normal to the feature boundary through a given point (the 

gradient direction), and let τ  denote the tangent direction. These directions can be 

written in terms of the first derivatives of the image, xB  and yB , as 
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Since η  and τ  constitute orthogonal directions, the rotationally invariant Laplacian 

operator can be expressed as the sum of the second order spatial derivatives, ηηB  and 

ττB , in these directions and the linear heat conduction equation can be written without 

using the source term,  

 

( )ττηηαα BBBB
+=Δ=

∂
∂

t
                                    (4.6) 

 

Omitting the normal diffusion, while keeping the tangential diffusion yields the GHF 

equation as  

 

    
( )

( )22
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yx
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t BB
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==

∂
∂ αα ττ            (4.7) 

 

The equation above can also be written as follows to show that feature boundaries of 

the image evolve in the direction normal in proportion to their curvature κ, 

 

( )
( )

( ) BBB
BB

BBBBBBB
BB

∇=+
+

+−
==

∂
∂ καα ττ

22

2
322

22 2
yx

yx
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           (4.8) 

 

In our model, GHF is used to decrease the curvature for the purpose of obtaining 

smooth boundaries and removing holes that appear because of noise. This is achieved 

as follows. Firstly, a segmented region is converted to a binary form as given below 

and also shown in Figure 4.4(c), 

 

     ( ) ( )
( )⎩

⎨
⎧

=
>

=
0,0
0,1

xI
xI

xF                                       (4.9) 
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where ( )xI  is the temperature distribution after terminating diffusion and ( )xF  is the 

binary form of the segmented image that assigns unity to the region of interest. This 

binary form represents initial condition for GHF, ( ) ( )xFxB == 0, t . The boundaries of 

the image are insulated with homogeneous Neuman condition, 0=dndB , which 

means there is no heat flow in, or out, from the boundaries. The GHF problem is 

defined below, 

   

( )
( )22

22 2

yx

xyyyxxyyxx

t BB
BBBBBBBB

+

+−
=

∂
∂ α  

( ) ( )xFxB == 0, t ,   initial condition 

( ) 0,
=

∂
∂

n
txB ,   boundary condition                                  (4.10) 

 

GHF is applied to the ( )xB  until the specified time (number of iterations) and finally 

the resulting image is thresholded to obtain the final segmentation. The process is 

formulated below,  

 

       ( ) ( )( )
( )( )⎩

⎨
⎧

<
≥

=
5.0,,0
5.0,,1

s

s

tGHF
tGHF

xB
xB

xS                              (4.11) 

 

where, st  is the number of iterations and ( )xS  is the binary form of the final 

segmentation, which assigns unity to the region of interest. The final segmentation is 

shown in Figure 4.4(d) and (e), where 50=st  for this illustration. The selection of st  

depends on the user and it is determined due to the noise level of the image. However, 

as  st  increases, extracted shape evolves to a circle, then to a point and then it is lost. 

For this reason, we should avoid using large values for st .  

 

Since the illustrated human heart image seems bimodal, we can also consider the final 

form of the control function as shown in Figure 4.4(f). To smooth boundaries and 

remove holes, we simply continue with Equation 4.10 and observe the result in Figure 

4.4(g) and (h).    
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                    (a)                      (b)                                               (c) 

        
                    (d)                                              (e)                                               (f)                                

                                       
                                        (g)                                                   (h)                          
 

Figure 4.4:  A magnetic resonance image of the left ventricle of a human heart and illustration 

of Geometric Heat Flow (GHF) for the purpose of obtaining smooth boundaries and removing 

holes inside the prior segmented regions. GHF is applied both to the binary form of the 

Temperature Front (TF) segmentation, ( )xB , and to the control function ( )xCF . The size of the 

image is 178177× , outin λλ =1 and st =50. (a)  Source position. (b) Final position of the TF at 

59=t . (c) Binary form of the segmentation by TF, ( )xB . (d) Binary form of the final 

segmentation, ( )xS , after GHF. (e) Final shape after GHF. (f) Final form of the control 

function, ( )xCF .    (g) Control function, ( )xCF , after GHF. (h) Final shape after GHF.                               



 45

4.4 Evaluation and Experimental Results 

In evaluation, our model is denoted by TF+GHF, since the TF roughly segments the 

region of interest and then the GHF is used to complete the segmentation. Similarly, the 

segmentation by the control function (CF) followed by the GHF is denoted by 

CF+GHF. Performance evaluation is employed both for segmentation by TF+GHF and 

segmentation by CF+GHF. In this section, we first present the evaluation of TF+GHF 

and CF+GHF on segmentation, then the evaluation for the computational efficiency of 

our algorithm; finishing with some illustrative examples on medical images. Note that 

in this section we are using many acronyms, so for convenience a list of abbreviations 

is given at the beginning of this thesis. 

 

Segmentation by TF+GHF is compared with the Active Contour Without Edges 

(ACWE) [64] and Gradient Vector Flow Snake (GVFS) [41]. The evaluation is done on 

a “harmonic” shape object [60] (the object boundary is a harmonic curve) and star 

shape object with varying normal distributed noise ( )2,σμdN , as shown respectively at 

the top rows in Figure 4.6 and 4.8. The sum of squared error (SSE) is employed to 

quantify the performance of each algorithm.  

 

( )∑∑
= =

−=
M

x

N

y
yxyxSSE

1 1

2
,, OS                               (4.12) 

 

Where, S  is the binary segmented image and O  is the actual (ground truth) binary 

segmented image of size NM × . The quantity of noise is considered in terms of 

standard deviation σ  with zero mean.  

 

ACWE is a region-based GAC model that is implemented by a level set function [64]. 

It applies global minimization to segment bimodal images as a whole. However, in this 

evaluation, we choose the biggest segmented region, since we are concerned with the 

harmonic shape object segmentation. Otherwise, it will cause very high errors in noisy 

conditions because of the noise outside the harmonic object. To evaluate ACWE, we 

use a Matlab implementation given in [73], and we note that this is a non-optimal 

Matlab framework. In this evaluation, the selected parameter values for ACWE are: 

1== outin λλ  (parameters for regional statistics), 0=Av  (the area parameter), 1=Ah  
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(the step space), 1.0=Δt  (the time space), 1=ε  (the parameter for the Heaviside and 

Dirac delta functions) and  2255*01.0=Aμ (the length parameter).  

 

GVFS is a gradient-based PAC model that uses GVF as an external force [41]. To 

evaluate GVFS, we use Matlab implementation given in [74], and this is also a non-

optimal Matlab framework. In this evaluation, the selected parameter values for GVFS 

are: 25.0=Gα  (smoothness parameter of the contour), 0=Gβ  (rigidity parameter of 

the contour), 6.0=Gγ  (external energy parameter of the contour), and 2.0=Gμ  (in 

diffusion of gradient vectors), 1=Δt  (the time interval). In addition, we use 80 

iterations to diffuse gradient vectors.    

 

Extensive explanations about ACWE and GVFS, which are compared with our model, 

are given in Appendix B. 

   

In our algorithm, we use an explicit scheme of finite differences in the first and in the 

second part. Our finite difference formulation can be found in Appendix A. We use 

Matlab for the implementation as well. In this evaluation, the selected parameter values 

for TF+GHF are: 25.0=α  (thermal diffusivity), outin λλ =1 (ratio of the parameters 

for regional statistics), 5=Q (the energy generated from the source position per unit 

time interval), 1=Δt  (the time interval), 1=Δ=Δ yx  (the spatial intervals), 10=st  

(specified time for GHF). In addition, we start to use regional statistics after 10=t  to 

increase the number of samples inside the TF and in each 10 iterations we control the 

movement of TF to determine the termination of the first part.   

 

In the evaluations for TF+GHF, the contours and the heat source are initialized inside 

the objects. Figure 4.5 shows the performance of TF+GHF, ACWE and GVFS for the 

harmonic object segmentation. The graphs are obtained over five applications of each 

algorithm, where the rectangle represents standard deviation from the mean value and 

error bar represents minimum and maximum values at each data point. In each 

application, the obtained graphs are smoothed by applying local averaging to the data 

points in 6 nearest neighbourhoods.   It is observed that TF+GHF and ACWE perform 

much better than GVFS. The main reason for this is that TF+GHF and ACWE use 

region-based algorithms, on the other hand GVFS uses a gradient-based algorithm, 
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which is very sensitive to the noisy conditions. TF+GHF and ACWE can also handle 

topological changes, which GVFS cannot. When we compare TF+GHF and ACWE, 

ACWE performs better than TF+GHF until 40≅σ . This appears to be due to the 

smoothing operation in TF+GHF. GHF attempts to smooth the original shape and cause 

errors in TF+GHF, when there is no noise or low noise in the image, since st  is fixed in 

the evaluation. However, from 40≅σ  to 80≅σ , TF+GHF segments better than 

ACWE. The main reason is again the smoothing operation. TF+GHF applies 

smoothing after rough segmentation without any relation to the regional statistic 

constraints, while ACWE uses smoothness constraint with regional statistic constraints 

during the segmentation. After 80≅σ , it is seen that ACWE shows better performance 

than TF+GHF. Because, ACWE segments many regions outside the harmonic region in 

the presence of high noise and then some of the segmented noise remains connected to 

the original region when we select the biggest region.  

 

GVFS has the highest variation of the SSE at the data points and the SSE starts to vary 

after 20≅σ . For ACWE, we observe variation in the SSE after 30≅σ , and the 

variation looks similar between 45≅σ  and 100≅σ . The variations of SSE of ACWE 

are less than other algorithms at the highest noise levels. For TF+GHF, the SSE starts 

to vary after 45≅σ , and in general the SSE increases as noise increases. Figure 4.6 

shows some of the results for TF+GHF (second row), ACWE (third row) and GVFS 

(fourth row). 
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Figure 4.5: Performance of TF+GHF, ACWE and GVFS on the harmonic shape object. The 

graphs show the rectangle representing standard deviation from the mean value and error bar 

representing minimum and maximum values of the SSE. 
 
 

 
              (a) 0=σ             (b) 40=σ           (c) 60=σ           (d) 80=σ          (e) 100=σ  

Figure 4.6: Results for TF+GHF (second row), ACWE (third row) and GVFS (fourth row) with 

respect to increasing Gaussian noise in the image of size 100100× . 
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Figure 4.7 shows the performance of TF+GHF, ACWE and GVFS for the segmentation 

of a star object. The graphs are obtained over five applications of each algorithm, 

where the rectangle represents standard deviation from the mean value and error bar 

represents minimum and maximum values at each data point. In each application, the 

obtained graphs are smoothed by applying local averaging to the data points in 6 

nearest neighbourhoods. The star object has branches, which narrow until they are one 

pixel wide. Half of the star object has different intensity, to create weak edges inside 

the object. It is again observed that TF+GHF and ACWE perform much better than 

GVFS. The reason for this is that TF+GHF and ACWE use region-based algorithms, on 

the other hand GVFS uses a gradient-based algorithm, which is very sensitive to the 

conditions there. It is also observed that GVFS has worse performance in the 

segmentation of the star object comparing to the segmentation of the harmonic object, 

because, GVFS cannot flow into the narrow regions of the star object. TF+GHF and 

ACWE can flow into the narrow regions. ACWE performs better than TF+GHF until 

30≅σ . This appears to be due to the smoothing operation in TF+GHF. GHF attempts 

to smooth the original shape and cause errors in TF+GHF, when there is no noise or 

low noise in the image, since st  is fixed in the evaluation. However, from 30≅σ  to 

80≅σ , TF+GHF segments better than ACWE. The main reason is again the 

smoothing operation. TF+GHF applies smoothing after rough segmentation without 

any relation to the regional statistic constraints, while ACWE uses smoothness 

constraint with regional statistic constraints during the segmentation. After 80≅σ , it is 

seen that ACWE shows better performance than TF+GHF. Because, ACWE segments 

many regions outside the star region in the presence of high noise and then some of the 

segmented noise remains connected to the original region when we select the biggest 

region.  

 

The SSE of GVFS starts to vary after 5≅σ , and the variations are very high between 

10≅σ  and 45≅σ  in comparison to the other algorithms. For ACWE, we observe 

variation in the SSE after 25≅σ , and the variations look similar at all the remaining 

noise levels. The variations of SSE of ACWE are less than other algorithms at high 

noise levels, which is consistent with the analysis in Figure 4.5. For TF+GHF, the SSE 

varies slightly between 40≅σ  and 60≅σ . After 65≅σ , we can observe significant 
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variation in the SSE. Figure 4.8 shows some of the results for TF+GHF (second row), 

ACWE (third row) and GVFS (fourth row). 
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Figure 4.7: Performance of TF+GHF, ACWE and GVFS on the star shape object. The graphs 

show the rectangle representing standard deviation from the mean value and error bar 

representing minimum and maximum values of the SSE. 
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       (a) 0=σ               (b) 40=σ               (c) 60=σ               (d) 80=σ            (e) 100=σ  

Figure 4.8: Results for TF+GHF (second row), ACWE (third row) and GVFS (fourth row) with 

respect to increasing Gaussian noise in the image of size 256256× . 

 

Segmentation by CF+GHF is evaluated by comparing with ACWE. Since both attempt 

to segment bimodal images as a whole, the evaluation is done on an image that has two 

harmonic objects with varying normal distributed noise, as shown at the top row in 

Figure 4.10. As before, SSE is employed to quantify the performance of each 

algorithm. We use the parameters as given before, however we do not choose the 

biggest segmented regions for ACWE. In this evaluation, the contour and the heat 

source are initialized into one of the harmonic objects. Figure 4.9 shows the 

performance of CF+GHF and ACWE. The graphs are obtained over five applications of 

each algorithm, where the rectangle represents standard deviation from the mean value 

and error bar represents minimum and maximum values at each data point. In each 

application, the obtained graphs are smoothed by applying local averaging to the data 

points in 6 nearest neighbourhoods. It is observed that until 40≅σ  ACWE performs 

better than CF+GHF, which appears because of the smoothing operation in CF+GHF. 

As explained before, GHF attempts to smooth original shape, when there is no noise or 

low noise in the image, since st  is fixed in the evaluation. However, after 40≅σ , 
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CF+GHF performs better than ACWE. The main reason is the smoothing operation, 

since the smoothing in CF+GHF is applied after the rough segmentation without any 

relation to the regional statistic constraints, while the smoothness constraint in ACWE 

is applied together with the regional statistic constraints during the segmentation. The 

SSE of ACWE starts to vary after 30≅σ , and the variations look similar after 40≅σ  

at each data point. The variations of SSE of CF+GHF are less than those for ACWE 

and the SSE starts to vary after 35≅σ  slightly. Figure 4.10 shows some of the results 

for CF+GHF (second row) and ACWE (third row). 
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Figure 4.9: Performance of CF+GHF and ACWE. The graphs show the rectangle representing 

standard deviation from the mean value and error bar representing minimum and maximum 

values of the SSE. 
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             (a) 0=σ              (b) 40=σ             (c) 60=σ           (d) 80=σ           (e) 100=σ  

Figure 4.10: Results for CF+GHF (second row) and ACWE (third row) with respect to 

increasing Gaussian noise in the image of size 100100× . 

 

Results also show the effectiveness and the computational efficiency of our algorithm 

in comparison to the GVFS and ACWE. The following evaluations results are obtained 

by using MATLAB 7.0 on a Pentium IV computer, which runs Windows XP operating 

system with 3.2 GHz CPU and 3GB RAM.  

 

First we investigate how the SSE of TF+GHF, of ACWE and of GVFS changes, on the 

original (no noise) and on the noisy star object, as iteration number increases (as the 

contour evolves). We initialize contours at the centre of the star object and arrange their 

sizes to have SSE≅ 8000 at the beginning. Figure 4.11 shows SSE of TF+GHF, of 

ACWE and of GVFS with respect to increasing iteration numbers on the original star 

object, shown in Figure 4.8 (a). Table 4.1 also shows the number of iterations required 

to stabilize SSE, remaining SSE after stabilization and CPU time required for 

stabilization for each algorithm on the original star object. The final segmentation by 

each algorithm can be seen in Figure 4.8 (a) as well. We observe that GVFS stabilizes 

at iteration≅ 170 with SSE≅ 1000 and CPU time=57.63 seconds. For further iterations 

GFVS remains at that SSE, because it cannot move through the narrow regions and can 

not achieve complete segmentation. ACWE achieves complete segmentation at 

iteration≅ 890 with SSE = 0 and CPU time=5.92 minutes. Finally, TF+GHF achieves 

segmentation at iteration≅ 180 with SSE≅ 93 and CPU time=7.17 seconds. There 

remains some error, because of the smoothing operation in TF+GHF. GHF is applied, 

at the end of first part in our algorithm, with fixed iteration number (10 iterations) and 

 

Original 

 

 

CF+GHF 

 

 

ACWE 
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causes errors when there is no noise on the object. It is also observed that TF+GHF 

achieves segmentation with the lowest CPU time. Although GVFS segments a smaller 

region, it requires CPU time more than TF+GHF. It must be noted that GVFS also 

needs 80 iterations to diffuse gradient vectors of the image, which is the image-

dependent force it uses, before contour evolution. There is an also big difference in 

CPU times of ACWE and TF+GHF. ACWE is computationally expensive since it uses 

the level set method for curve evolution.          
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Figure 4.11: SSE for TF+GHF, ACWE and GVF with respect to increasing iteration numbers 

from the initial positions to the final segmentations on the original star object. 

 

Table 4.1: Number of iterations required to stabilize, remaining SSE after stabilization and 

CPU time required to stabilize for TF+GHF, ACWE and GVFS on the original star object. 

Original Star Object (no noise ) 

Algorithm Num. of iteration to 

stabilize  
Remaining SSE CPU Time 

TF+GHF 180 93 7.17 seconds 

ACWE 890 0 5.92 minutes 

GVFS 170 1000 57.63 seconds 
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Figure 4.12 shows SSE of TF+GHF, of ACWE and of GVFS with respect to increasing 

iteration numbers on the noisy star object, shown in Figure 4.8 (b), which is corrupted 

by Gaussian noise of 40=σ . Table 4.2 also shows the number of iterations required to 

stabilize, remaining SSE after stabilization and CPU time required for each algorithm 

on the noisy star object. The final segmentation by each algorithm can be seen in 

Figure 4.8 (b) as well. It is observed that as the iteration number increases, GVFS 

stabilizes at iteration≅ 18 with SSE ≅ 6950 and CPU time 10.57 seconds. It achieves 

poor segmentation because of the limitation of the gradient-based information to the 

noise. ACWE achieves segmentation at iteration≅ 1100 with SSE ≅ 570 and CPU 

time=7.29 minutes. Finally, TF+GHF achieves segmentation at iteration≅ 180 with 

SSE ≅ 188 and CPU time=7.26 seconds. In TF+GHF, we observe sudden decrease in 

SSE before stabilizing. This is because, we apply a fixed number of iterations of GHF 

(10 iterations) to remove noise and smooth shape at the end of our algorithm. It is 

observed that TF+GHF achieves segmentation with minimum SSE and again with the 

lowest CPU time. Although GVFS has poor performance because of noise and 

segments small region, TF+GHF has slightly smaller CPU time than GVFS. There is 

again a big difference in CPU times of ACWE and TF+GHF, where TF+GHF performs 

much faster than ACWE. ACWE also has higher SSE than TF+GHF, which means 

TF+GHF performs better than ACWE in this segmentation.  
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Figure 4.12: SSE for TF+GHF, ACWE and GVF with respect to increasing iteration numbers 

from the initial positions to the final segmentations on the noisy star object. 

 

Table 4.2: Number of iterations required to stabilize, remaining SSE after stabilization and 

CPU time required to stabilize for TF+GHF, ACWE and GVFS on the noisy star object. 

Noisy Star Object ( 40=σ ) 

Algorithm Num. of iteration to 

stabilize  
Remaining SSE CPU Time 

TF+GHF 180 188 7.26 seconds 

ACWE 1100 570 7.29 minutes  

GVFS 18 6950 10.57 seconds 

 

It is important to note that rest of the experiments, in this Chapter, are conducted by 

same computer and using Matlab 7.0, as described before, except the RAM is 1GB. 

  

Figure 4.13 shows the segmentation of pulmonary arterial branches in the chest image 

by TF+GHF, GVFS and ACWE. The initial contour for GVFS and ACWE, and the 

source position for TF+GHF are shown in Figure 4.13(a). Figure 4.13(b) shows the 

segmentation by TF+GHF in the given image with black contour, however the 
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segmented arterial branches are not visible with this illustration and the segmentation is 

also shown with the binary form in Figure 4.13(c). Figure 4.13(d) and (e) show 

segmentation by GVFS respectively with the result superimposed as the black contour 

in the image and the binary form. Figure 4.13(f) and (g) show segmentation by ACWE 

respectively with black contour superimposed and the binary form. It is observed that 

TF+GHF segments the desired arterial branches better than GVFS. By this result, 

TF+GHF can easily handle topological changes and flow into the arterial branches with 

CPU=7.85s. However, GVFS cannot handle topological changes and cannot flow into 

the arterial branches. Although GVFS segments a smaller region than TF+GHF, the 

CPU=9.23s, which is more than for TF+GHF. If we look at segmentation by ACWE, 

we see that ACWE attempts to segment whole image. Here we focus on segmentation 

of desired region, which is pulmonary arterial branches, and compare with the 

TF+GHF. TF+GHF and ACWE have similar segmentation results on the desired 

region. However, ACWE achieves this segmentation in 24.75 minutes, while TF+GHF 

achieves in 7.85 seconds. This big difference in CPU time appears because of the 

computational complexity of ACWE that is implemented with level sets. The CPU 

times of the algorithms for the pulmonary arterial branches are also shown in Table 4.3.  
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(a) 

                 
(b)                                                                     (c) 

               
                             (d)                                                                  (e) 

               
                                        (f)                                                                 (g) 

Figure 4.13:  Segmentation of pulmonary arterial branches in the chest image of size 250259×  

by TF+GHF, GVFS and ACWE. (a) Initial contour and the source position. (b) Segmentation 
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by TF+GHF is shown by the black contour on the image. All the parameters are same as in 

evaluation except 5=st . (CPU=7.85 seconds). (c) Segmentation by TF+GHF is in binary form. 

(d) Segmentation by GVFS is shown with black contour on the image. All the parameters are 

same as in evaluation except the iteration to diffuse gradient vectors is 70. (CPU=9.23 

seconds). (e) Segmentation by GVFS is in binary form. (f) Segmentation by ACWE is shown 

with black contour on the image. All the parameters are same as in evaluation except the length 

parameter 225508.0 ×=μ . (CPU=24.75 minutes). (g) Segmentation by ACWE is in binary 

form. 

 

Table 4.3: The CPU times of the algorithms for the pulmonary arterial branches in the chest 

image 

Pulmonary Image 

Algorithm CPU Time 

TF+GHF 7.85 seconds 

GVFS 9.23 seconds 

ACWE 24.75 minutes 

 

 

Figure 4.14 shows the segmentation of a bimodal human lung image by TF+GHF, 

CF+GHF and ACWE, where the initial contour for ACWE and the source position for 

TF+GHF are shown in Figure 4.14(a). Figure 4.14(b) and (c) respectively show the 

segmentation by TF+GHF and CF+GHF with white contour in the image. Figure 

4.14(d) shows the segmentation by ACWE. It is observed that TF+GHF and CF+GHF 

achieves segmentation with CPU=1.96 seconds and ACWE achieves with CPU=15.92 

minutes. This big difference in CPU time appears because of the computational 

complexity of ACWE that is implemented with level sets. The CPU times of our 

algorithm and ACWE for the human lung image are also shown in Table 4.4. It is also 

observed that CF+GHF can extract feature boundaries better than ACWE especially at 

the middle and at the bottom of the lung image.  
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                                           (a)                                                          (b) 

               
                                            (c)                                                          (d) 

Figure 4.14: Segmentation of human lung image of size 118123×  by TF+GHF, CF+GHF and 

ACWE. (a) Initial contour and the source position. (b) Segmentation by TF+GHF is shown 

with white contour on the image. All the parameters are same as in evaluation except 15=st  

(CPU=1.96 seconds). (c) Segmentation by CF+GHF. 15=st . (CPU=1.96 seconds). (d) 

Segmentation by ACWE. All the parameters are same as in evaluation except the length 

parameter 225508.0 ×=μ . (CPU=15.92 minutes).  

 

Table 4.4: The CPU times of the algorithms for the human lung image 

Human lung image 

Algorithm CPU Time 

TF+GHF and CF+GHF 1.96 seconds 

ACWE 15.92 minutes 

 

 

We also discuss how the different regional statistic parameters ( )outin λλ  and the 

different iteration number for GHF ( )st  effect the segmentation. Figure 4.15 shows the 

segmentation of the magnetic resonance image of the left ventricle of a human heart by 

TF+GHF and CF+GHF with respect to the increasing outin λλ , while keeping 50=st . 

The heat source is located at the same position, as shown in Figure 4.4 (a). Earlier, 
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outin λλ =1 in the experiment shown in Figure 4.4. In this experiment,  the selected 

values for outin λλ = 0.25, 0.5, 2, 4 and the segmentation results by TF+GHF and 

CF+GHF are given in Figures 4.15 (a), (b), (c) and (d) respectively. We observe that as 

outin λλ  increases, the selectivity for segmentation increases with respect to the region 

of source location. 

 

      

       
                         (a)           (b)                               (c)                (d) 

Figure 4.15: A magnetic resonance image of the left ventricle of a human heart and illustration 

of the segmentation by TF+GHF and CF+GHF with respect to the increasing outin λλ (ratio of 

regional statistics parameters). (a) outin λλ =0.25, (b) outin λλ =0.5,  (c) outin λλ =2,  (d) 

outin λλ =4. 

 

Figure 4.16 shows the segmentation of the magnetic resonance image of the left 

ventricle of a human heart by TF+GHF and CF+GHF with respect to the increasing st , 

while keeping outin λλ =1. The heat source is located at the same position shown in 

Figure 4.4 (a) and st =50 in that experiment. In this experiment, the selected values for 

st = 20, 40, 60, 80 and the segmentation results by TF+GHF and CF+GHF are 

illustrated in Figures 4.16 (a), (b), (c) and (d) respectively. It is observed that as st  

increases, we obtain smoother segmentation and remove smaller regions. 

 

 

 

 

 

 

TF+GHF 

 

 

 

 

CF+GHF 



 62

    

    
                         (a)           (b)                               (c)                (d) 

Figure 4.16: A magnetic resonance image of the left ventricle of a human heart and the 

segmentation by TF+GHF and CF+GHF with respect to the increasing st  (iteration 

number of GHF). (a) st =20, (b) st =40, (c) st =60, (d) st =80.  

 

Figure 4.17 shows the segmentation of the human lung image by TF+GHF and 

CF+GHF with respect to the increasing outin λλ , while keeping st =15. The heat source 

is located at the same position shown in Figure 4.14 (a) and outin λλ =1 in that 

experiment. In this experiment, the selected values for outin λλ = 0.25, 0.5, 2, 4, 6 and 

the segmentation results by TF+GHF and CF+GHF are given in Figures 4.17 (a), (b), 

(c), (d) and (e) respectively. In Figure 4.17 (a), it is observed that TF+GHF moves out 

of desired region since selecting outin λλ =0.25 is too small with respect to region of 

source location. As outin λλ  increases from 0.5 to 6, the selectivity for segmentation 

increases, and TF+GHF does not flow outside desired region. 
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                        (a)                        (b)                        (c)                   (d)                        (e) 

Figure 4.17: Segmentation of human lung image by TF+GHF and CF+GHF with respect to the 

increasing outin λλ  (ratio of regional statistics parameters). (a) outin λλ =0.25, (b) 

outin λλ =0.5,  (c) outin λλ =2,  (d) outin λλ =4, (e) outin λλ =6 . 

 

Figure 4.18 shows the segmentation of the human lung image by TF+GHF and 

CF+GHF with respect to the increasing st , while keeping outin λλ =1. The heat source 

is located at the same position shown in Figure 4.14 (a) and st =15 in that experiment. 

In this experiment, the selected values for st = 5, 10, 20, 25 and the segmentation results 

by TF+GHF and CF+GHF are shown in Figures 4.18 (a), (b), (c) and (d) respectively. 

It is observed that as st  increases, we obtain smoother segmentation, as well as remove 

noise and smaller regions. 

 

       

       
                          (a)                                (b)                               (c)                               (d) 

Figure 4.18: Human lung image and segmentation by TF+GHF and CF+GHF with respect 

to the increasing st  (iteration number of GHF). (a) st =5, (b) st =10, (c) st =20, (d) st =25.  
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Finally, Figure 4.19 shows the segmentation in a human brain image by TF+GHF with 

respect to the different ratio of the regional statistic parameters. Figure 4.19 (a) shows 

the heat source position. Figure 4.19 (b) illustrates the segmentation result for 

outin λλ =1. In Figure 4.19 (c), outin λλ =5, which provides more selective 

segmentation in the brain image and in Figure 4.19 (d), outin λλ =8.3, which increases 

the selectivity comparing to in Figure 4.19 (c).  Note that st =7 in this experiment. 

 

             
(a)                                                (b) 

             
(c)                                                                   (d)         

Figure 4.19: Segmentation of human brain image of size 180216×  by TF+GHF with different 

regional statistic parameters. All the parameters are same as in evaluation except the regional 

statistic ones and 7=st . (a) Initial source position. (b) 1=outin λλ . (c) 5=outin λλ . (d) 

3.8=outin λλ .  

4.5 Conclusions 

We have presented a novel segmentation algorithm based on using the heat flow 

analogy. In the first part of the algorithm, we roughly extract the desired feature 

boundaries by representing a chosen heat conduction analysis in the image domain. The 

representation in image domain is achieved by using a control function (CF) in the heat 
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conduction equation. This formulation also provides advantage when the given image 

is bimodal, since CF attempts to segment whole image in this case. In the second part, 

we use geometric heat flow (GHF) to tune the curvature of the extracted feature 

boundaries and remove possible noise that arises from the first part of the 

segmentation. Evaluation results indicate that Temperature Front (TF) + GHF has 

better performance than gradient vector flow snake (GVFS) and active contour without 

edges (ACWE) with respect to increasing Gaussian noise. For the bimodal images, 

CF+GHF has better performance than ACWE. These improvements are achieved by 

effective organization of our algorithm, TF+GHF segments better than GVFS because 

of using region-based information instead of gradient-based, which is sensitive to noise. 

TF+GHF and CF+GHF segment better than ACWE because of the smoothing 

operation of shape. TF+GHF and CF+GHF apply smoothing after rough segmentation 

without any relation to the regional statistic constraints, while ACWE uses smoothness 

constraint with regional statistic constraints during the segmentation. In addition, 

TF+GHF and CF+GHF are computationally more efficient and effective than both 

GVFS and ACWE based on the simulation results. Especially, there are big differences 

between our model and ACWE in computational efficiency. The main reason is the 

complexity of the level set method in ACWE. As such, the heat analogy can be 

deployed with success for shape extraction in images.    
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Chapter 5 Shape Classification 

using Multiscale Fourier-based 

description in 2-D Space 

The solution to analysis of heat conduction can be achieved by using Fourier series or 

Fourier integrals [16, 19, 20]. Furthermore, the solution of linear and homogeneous 

heat equation in infinite medium can be viewed as smoothing a signal with a Gaussian 

filter [19, 20], as shown in Equation 2.23 in Chapter 2. In our research, we use Fourier 

theory and the Gaussian filtering approach to introduce new and efficient silhouette 

object descriptors for recognition purposes. 

 

In shape recognition, a multiscale description provides more information about the 

object, increases discriminatory power and immunity to noise. In this Chapter, we 

develop a new multiscale Fourier-based object description in 2-D space using a low-

pass Gaussian filter (LPGF) and a high-pass Gaussian filter (HPGF), separately. Using 

the LPGF at different scales (standard deviation) represents the inner and central part of 

an object more than the boundary. On the other hand using the HPGF at different scales 

represents the boundary and exterior parts of an object more than the central part. Our 

algorithms are also organized to achieve size, translation and rotation invariance. 

Evaluation indicates that representing the boundary and exterior parts more than the 

central part using the HPGF performs better than the LPGF based multiscale 

representation, and in comparison to Zernike moments and elliptic Fourier descriptors 

with respect to increasing noise. Multiscale description using HPGF in 2-D also 

outperforms Wavelet transform based multiscale contour Fourier descriptors and 

performs similar to the perimeter descriptors without any noise. 
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This Chapter is organized as follows: Section 5.1 discusses related works. Section 5.2 

explains the proposed multiscale Fourier-based object description with respect to LPGF 

and HPGF in 2-D space. Section 5.3 represents classification with multiscale Fourier-

based object description. Section 5.4 concerns evaluation and experimental results and 

finally Section 5.5 is conclusions. 

5.1 Related Works 

Silhouette based object description and recognition is an important task in computer 

vision. The descriptor must be invariant to size, translation and rotation, and it must be 

effective in adverse conditions such as noise and occlusion. There are two main types 

of shape description methods: boundary-based methods and region-based methods.  

5.1.1 Boundary-based Shape Descriptors 

In boundary-based methods only the boundary pixels of a shape are taken into account 

to obtain the shape representation. Boundary-based techniques have some limitations. 

First, they are generally sensitive to noise and variations of shape, since they only use 

boundary information. Second, in many cases, the object boundary is not complete with 

disjoint regions or holes. Region-based methods can overcome these limitations. The 

most common boundary-based shape descriptors are chain codes [75], Fourier 

descriptors [1], wavelet descriptors [76], Wavelet-Fourier descriptors [77, 78] and 

Curvature Scale Space (CSS) [79].  

 

Chain codes [75] are one of the oldest techniques in computer vision introduced for 

shape description. The algorithm starts with isolating the boundary pixels from a 

region. Given the boundary, which are connected points, start from one of the boundary 

pixel and go to the neighbour boundary pixel clockwise that is in one of the major 

compass direction. Directions can be in 4-way or 8 way connectivity depending on 

contour isolation. Each direction represents a number that becomes an element of chain 

code. This is repeated for each pixel until the start point is reached, when the closed 

shape is completely analysed. By encoding relative direction, rather than the position of 

the contour pixels, the representation becomes translation invariant. However, the code 

will be different when the start point changes. Start point invariance can be achieved by 

considering the code to constitute the digits in an integer. The digits are shifted 
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cyclically until the smallest integer is obtained. The smallest integer represents the start 

point invariant chain code. This code is also rotation and scale variant, which means 

not convenient for matching yet. Rotation invariance is achieved by expressing the 

code as a difference of chain code. Scale invariance is achieved by resampling the 

boundary before coding. The chain code is sensitive to noise that may appear because 

of the segmentation or resampling the boundary.   

       

Shape representation using Fourier descriptors is easy to compute and more robust. 

Fourier Descriptors are obtained from the Fourier transform on a shape signature. The 

shape signature is a 1-D function that represents the shape derived from the boundary 

points of a 2-D binary image. Many shape signatures exist such as, centroid distance, 

complex coordinates (position function), curvature and cumulative angle [80, 81]. 

Geometric invariance can be achieved at the shape signature extraction stage or after 

the Fourier transform by normalizing Fourier coefficients appropriately. This depends 

on the choice of shape signature type. The Fourier descriptors represent the shape of the 

object in a frequency domain. The lower frequency descriptors contain information 

about the general features of the shape and the higher frequency descriptors contain 

finer details of the shape. In general lower frequency components are selected for 

description to reduce dimension and since the higher frequency components do not add 

much to the shape description and are susceptible to noise.  

 

Wavelet descriptors are derived from wavelet transform on a 1-D shape signature. The 

wavelet transform can be considered as a signal decomposition onto a set of basis 

functions. It has multiresolution, denoising and feature extraction capabilities. Chang 

and Kuo [76] used 1-D discrete periodized wavelet transform to describe shapes. 

However, the matching schema was more complicated than for Fourier descriptors. 

Kunttu [77, 78] introduces multiscale Fourier descriptors using wavelet and Fourier 

transforms. The multiscale contour Fourier descriptors are obtained by applying the 

Fourier transform to the coefficients of the multiscale complex wavelet transform. 

 

Recently, McNeil and Vijayakumar [82] introduced perimeter and radial descriptors. In 

this work, shapes are represented by a large number of points from their boundaries.  

These points are selected at fixed intervals in terms of distance along the boundary 

(perimeter distance) or radial angle. Then, a probabilistic correspondence-based 
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algorithm, which also incorporates with scale, translation and rotation invariance, is 

applied for shape matching. They note that suitability of the perimeter distance or radial 

angle for description depends on the classes in the dataset and these two descriptions 

can also be combined to improve classification in some datasets. Later on, McNeil and 

Vijayakumar [83] improved their algorithm by segment-based shape matching, which 

can overcome limitations of global shape matching such as independent movement of 

parts or smooth deformations.  

 

Multiscale shape description is the most promising approach for recognition. Different 

features of the shape can be obtained at different scales and the combination of these 

features can increase discrimination power, so increasing the correct classification rate. 

In addition, it is more robust to noise since the dominant features are those which 

persist across scales. There are many boundary-based multiscale description techniques 

[77, 79, 84, 85, 86]. 

 

One of the most influential techniques is curvature scale space (CSS) introduced by 

Mokhtarian et al. [79]. This method uses the scale space framework in 1-D space [25]. 

The boundary of a shape is filtered by LPGF of varying scales (standard deviation). For 

each specific scale, the locations of those curvatures zero crossings designated as one 

and otherwise as zero. As the scale decreases, the shape becomes smoother. When the 

scale is small enough, there will be no curvature zero crossing any more. The binary 

CSS image is generated by the location and scale in the horizontal and vertical axes 

respectively. Finally, this binary image is used for matching.   

 

Adamek and O’Connor [84] proposed a multiscale representation for a single closed 

contour that makes use of both concavities and convexities of all contour points. It is 

called multiscale convexity concavity (MCC) representation, where different scales are 

obtained by smoothing the boundary with LPGF of different scales. Then, a new 

measure for the curvature was proposed that is based on the relative displacement of a 

contour point with respect to its position in the preceding scale level. This approach is 

motivated by the observations that when smoothing a closed contour, convex and 

concave points are moved inside and outside the contour, respectively. The matching is 

done using a dynamic programming approach.  



 70

There are also other boundary-based mutiscale description techniques such as graph-

based approach [85] and triangle-area based approach [86].  

5.1.2  Region-based Shape Descriptors 

In region-based methods, all the pixels within a shape are used to obtain the shape 

representation. Popular region-based shape descriptors include moments [1, 87] and 

generic Fourier descriptors (GFDs) [88]. There are different types of moments and they 

can be classified as non-orthogonal and orthogonal moments depending on the basis 

function used. Geometric moments [89] are the first and simplest type of moments, 

which has been used for character recognition. They use non-orthogonal basis functions 

called a monomial. Low order moments capture global description, while as the order 

increases, more detail is captured. The main problem with Geometric moments is the 

high degree of information redundancy, because of the non-orthogonal basis function 

used. If the basis functions are orthogonal then each moment should highlight 

independent features. Teague [90] proposed Legendre moments that use Legendre 

polynomials as basis functions. These polynomials are orthogonal and cause Legendre 

moments to extract independent features within the image, with no information 

redundancy. This property also provides good reconstruction capability. These 

moments are based on Cartesian coordinates but the image function has to be mapped 

to a specific range of values. Zernike moments were also first proposed by Teague [90] 

and are based on the complex valued Zernike polynomials. These polynomials are 

defined in polar coordinates, which help to achieve rotation invariance. Zernike 

moments were found to be the best performing type of moment in image analysis and 

description task in terms of noise resilience, information redundancy and reconstruction 

capabilities [91]. 

 

Generic Fourier descriptors (GFD) [88] are other popular region-based shape 

descriptors. A 2-D Fourier transform is applied on a polar raster sampled shape image. 

The obtained polar Fourier coefficients are translation invariant. Then rotation and 

scale invariance are achieved by normalizing these coefficients. GFDs capture features 

of the shape in both polar and radial directions. GFDs are simple to compute and 

efficient.   
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Although many boundary-based multiscale description techniques exist, there is no 

region-based multiscale description technique in the image space. It is important to note 

that moments and GFDs are multiscale approach in the feature space, but not in the 

image space. In our work, we introduce image-based multiscale description using 

LPGF and HPGF, separately. 

5.2 Fourier-based Description with Multiscale Representation in 2-D 

space 

We produce multiscale Fourier-based object descriptors in 2-D space. For this purpose, 

we investigate the LPGF and the HPGF, separately. The new algorithm starts with size 

normalization of an object using bilinear interpolation in an image. The object size (the 

total number intensity value) and the image size are determined experimentally 

depending on the database to locate each object in the image without occlusion.      

 

Interpolation is the problem of approximating the value for a new data point in some 

space, within the range of a discrete set of known data points. There are three common 

image interpolation techniques: Nearest neighbour, bilinear and bicubic interpolation. 

The nearest neighbour algorithm selects the value of the nearest point, and does not 

process the values of other neighboring points. It is the simplest algorithm to compute. 

In bilinear interpolation, image values of the four nearest points are weighted 

differently based on the distance from the desired point and average of those weighted 

values give the image value of that desired point. Bilinear interpolation achieves more 

accurate scaling and can produce smoother edges than nearest neighbour interpolation. 

However, bilinear interpolation is a little more complex than nearest neighbour 

algorithm. In bicubic interpolation, output pixel values are calculated from a weighted 

average of pixels in the sixteen closest neighbourhoods. Bicubic interpolation achieves 

the best scaling and produces the smoothest edges. However, it is more complex than 

others and not convenient, when the speed is issue. In our algorithm we choose bilinear 

interpolation, since it scales better than nearest neighbour interpolation and it is faster 

than bicubic interpolation.  

 

We also note that it is optional to centralize object in the image, since the next step is 2-

D Fourier transform, as given in Equation 5.1, which provides translation invariance. 
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Where ( )vu,FT  is Fourier transform of the silhouette image ),( yxI . NM ×  is the size 

of the silhouette image.  

We also note that there is no “windowing” operation before the Fourier transform. The 

Fourier transform treats an image as it is part of a periodically repeated set of images 

extending horizontally and vertically to infinity, which can cause strong edges between 

the neighbours of the periodic image. Therefore, the Fourier transform is the 

combination of the actual Fourier transform of the given image and that caused by the 

edge effects at image neighbours. These edge effects can be significantly reduced by 

using “windowing” operations, which in general makes image values zero towards 

edges. In our application, the given image is a pre-segmented object on a zero-valued 

background. Since the object does not occlude image edges, the image values are 

already zero towards image edges, and there is no need for a “windowing” operation.  

In general, the result of the Fourier transform is a complex number and the transform 

can be represented in terms of its magnitude and phase. The magnitude describes the 

amount of each frequency component and the phase describes timing, when the 

frequency components occur. Here, we choose to use the Fourier magnitude image, 

which is translation invariant. However, the phase also carries considerable information 

that is discarded here. Oppenheim and Lim [92] showed that if we construct synthetic 

images from the magnitude information of one image and the phase information of 

another, we perceive mostly the image corresponding to the phase data. We leave 

investigation of the phase information as future work and continue with the magnitude 

information.      

The computed Fourier magnitude image, ( )vu,FT , is translation invariant, however it 

retains rotation. Given the shift operation (the zero-frequency components are at the 

centre), multiscale generation is achieved at this stage. To represent the inner and 

central part of an object more than the boundary, a LPGF with a selection of scale 

parameters (standard deviation) is applied to the Fourier magnitude image as shown in 

Equation 5.2.  
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( ) ( ) ( )( )222 2,, svus evuvu σ+−= FTFT                                       (5.2) 

Where ( ) svu,FT and sσ  are Fourier magnitude and scale parameter of scale index  s , 

respectively. This method is generating the scale space [25] of the object in 2-D as 

shown in Figure 5.1. It is observed that the LPGF smoothes the object and as scale 

decreases, it causes loss of the boundary and exterior regions. The LPGF emphasizes 

lower frequency components, but retains some contribution of higher frequency 

components.  

 

     
                                   (a)                                  (b)                                   (c) 

       
                              (d)                                  (e)                                   (f) 

Figure 5.1: Horse object filtered by LPGF with respect to decreasing scale. (a) 201 =σ , (b) 

152 =σ , (c) 113 =σ , (d) 84 =σ , (e) 55 =σ , (f) 36 =σ . 

On the other hand, to represent the boundary and exterior parts of an object more than 

the central part, a HPGF with a selection of scale parameters (standard deviation) is 

similarly applied to the Fourier magnitude image as shown in Equation 5.3. 

 

( ) ( ) ( )( )222 21,, svus evuvu σ+−−= FTFT                               (5.3) 

 

Filtering with the HPGF at different scales is illustrated in Figure 5.2. It is observed 

that the HPGF detects the object boundary and as scale decreases, it represents exterior 

regions. The HPGF emphasizes higher frequency components, but retains a slight 

contribution of lower frequency components. 
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                             (a)                                 (b)                                  (c) 

    
                       (d)                                  (e)                                     (f) 

Figure 5.2: Horse object filtered by HPGF with respect to decreasing scale. (a) 151 =σ , (b) 

112 =σ , (c) 83 =σ , (d) 54 =σ , (e) 35 =σ , (f) 16 =σ  

 

The obtained Fourier magnitude images are not convenient for matching at this stage, 

since they still vary with rotation. To remove rotation variance, the coordinates of each 

Fourier magnitude image are polar mapped to make rotations appear as translations in 

the new image.  

 

Consider the polar coordinate system ( )θ,r , where ℜ∈r  denotes radial distance from 

the center of the Fourier magnitude image ( )cc yx ,  and πθ 20 ≤≤  denotes angle. Any 

point ( ) 2, ℜ∈yx  can be represented in polar coordinates as follows 

                                       

( ) ( )

⎟⎟
⎠

⎞
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⎝

⎛
−
−

=

−+−=

−

c

c

cc

xx
yy

yyxxr

1

22

tanθ
                                         (5.4) 

 

Equation 5.4 describes conversion from Cartesian to polar coordinates. The reverse 

process, which is the polar to Cartesian coordinates transform, is defined below, 

 

( )
( )θ
θ

sin*
cos*

ry
rx

=
=

              (5.5) 
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For every point ( )yx, , there is a unique point ( )θ,r . Rotating the Cartesian coordinate 

system about an origin, while preserving position and size, can be written with the 

following matrix notation, 
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⎡

1

1

2

2
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y
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y
x

ϕϕ
ϕϕ

          (5.6) 

 

Where, ( )11, yx  is the point before rotation and ( )22, yx  is the point after rotation by the 

angle ϕ . Assuming that ( ) ( ) ( )( )θθ sin*,cos*, 11 rryx =  and after substitution to 

Equation 5.6, we obtain the new coordinates as 

 

( )
( )ϕθ

ϕθ
+=
+=

sin*
cos*

2

2

ry
rx

        (5.7) 

 

Here, we can observe that rotation in Cartesian coordinates causes translation in polar 

coordinates, 

 

 
( ) ( )
( ) ( )ϕθ

θ
+↔

↔
,,
,,

22

11

ryx
ryx

         (5.8) 

 

There are two principal methods for mapping a rectangular image to a circle in polar 

transform. The image can either be fitted within the circle as shown in Figure 5.3(a) or 

the circle can be fitted within the boundaries of the image as shown in Figure 5.3(b). 

The main problem with fitting circle within the boundaries of the image is losing the 

information in the corners. Since we want to use all information in the Fourier 

magnitude image, we use the method that fits the image within a circle. In this method, 

all pixels will be taken into account but some invalid pixels will also be included, 

which fall inside the circle but outside the image. In our algorithm these invalid pixel 

values are set to zero. Figure 5.4 shows the polar transform of a Fourier magnitude 

image.    
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(a)                                                    (b) 

Figure 5.3: Alternative approaches for mapping a square image to the circle. (a) Fitting the 

image into the circle, where the shaded area shows parts of the circle ignored in the mapping 

process. (b) Fitting the circle to the square image, where shaded areas represent parts of the 

image lost in mapping. 

 

                 
                                                 (a)                                      (b) 

Figure 5.4: Cartesian to polar transform with fitting the image into the circle. (a) Fourier 

magnitude image of the horse object filtered by HPGF ( 3=σ ) and the image size is 151151× . 

(b) Polar transformed Fourier magnitude image of size 9090× , the invalid pixels are zero.   

  

Finally, another 2-D Fourier transform is applied, as given in Equation 5.9, to compute 

Fourier magnitude, which removes these translations.   

 

 ( ) ( )[ ]∑∑
−

=

−

=

+−=
1

0

1

0

2),(1,
C

r

E
ElCkrjss er

EF
lk

θ

θπθPFPT                          (5.9) 

 

Where ( )lks ,FPT  is the Fourier transform of the polar mapped image ),( θrsP  of size 

EC×  and at scale index s . Note that there is no “windowing” operation before the 

Fourier transform. Although it can remove edge effect between the neighbours of the 

periodic image, it may also cause loses of some important information in the polar 

mapped image.  
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The resultant Fourier magnitude image, ( ) slk,FPT , is translation, size and rotation 

invariant and represents object descriptors sOD  of a shape at scale index s. Figure 5.5 

shows the proposed algorithm to obtain multiscale Fourier-based object descriptors. 

 

 
Figure 5.5: Producing the proposed multiscale Fourier-based object descriptors 

 

The Fourier-Mellin transform is similar to our algorithm in terms of achieving rotation, 

size and translation invariance. The Fourier-Mellin transform is a method for rotation, 

size and translation invariant image feature extraction in 2-D space [93]. The first stage 

is a 2-D Fourier transform to calculate the Fourier magnitude image (|FT|), which 

removes translation variance while keeping scale and rotation variances, then the 

coordinates are log-polar transformed (LPT) to make scaling and rotation appear as 

translations, and finally another 2-D Fourier transform is applied to compute Fourier  

magnitude image (|FLPT|), which remove these translations. Figure 5.6 shows the 

Fourier-Mellin transform to obtain rotation, size and translation invariant image 

features. In the log-polar transform, converting scale change to translation is achieved 

by logarithmic scaling the radius coordinate of the polar map image [94]. The 

difference from our new approach is that we now have a filtering approach to create a 

multiscale representation, which must be applied to the objects of same size. Because 

of this, object size is normalized in the first step and we do not apply logarithmic 

scaling to the radius coordinate of the polar transformed image. 

 

|FT|2 |FT|3

Fourier Transform (FT)

|FT|1 |FT|s……

Polar Transform 

Fourier Transform 

|FPT|1 

Object size normalization 

|FPT|2 |FPT|3 …… |FPT|s 
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Figure 5.6: Fourier-Mellin transform to produce rotation, size and translation invariant 

image features.  

5.3 Classification with Multiscale Fourier-based Description 

Classification is achieved using the nearest neighbour algorithm. We are using a 

standard approach to allow comparison, though other classifiers are equally 

appropriate.  Euclidean distance (Ed) is used to measure similarity between objects and 

is computed separately in each scale as given below, 

 

( ) ( ) ( )( )∑∑
= =

−=
C

x

E

y

sss yxyxEd
1 1

2
,,, DT ODODDT                              (5.10) 

 

Where ( )DT,sEd  is the Euclidean distance between the object descriptors, s
TOD , of 

the test image T and object descriptors s
DOD  of an image from database D, at scale 

index s . Then average distance (Ad) is computed for each object. 

 

∑
=

=
Y

s

sEd
Y

Ad
1

1                                                       (5.11) 

 

Where Ad  represents average distance and Y is the number of scales. Classifying with 

average distance, instead of single scale distance, increase correct classification as well 

as increase immunity to noise. 

|FT|

Fourier Transform (FT)

Log-Polar Transform (LPT) 

Fourier Transform (FT)

|FLPT|
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5.4 Evaluations and Experimental Results 

For evaluation, we use MPEG-7 CE-Shape-1 Part B database. There are 1400 images in 

this dataset, which are pre-segmented and are in binary form. The objects are divided 

into 70 classes with 20 images in each class. The object classes are shown in Figure 

5.7. The appearance of these silhouettes changes due to  

 

• viewpoint with respect to objects (size, translation and rotation variance), 

• non-rigid object motion (e.g. people walking and fish swimming),  

• noise inside shape (e.g. digitization and segmentation noise).  

 

Some objects variations are shown in Figure 5.8. Leave-one-out cross-validation is 

applied to validate classification. The correct classification rate (CCR%) is measured as 

follows, 

 

( ) 100% ×=
o

o

t
cCCR                                                   (5.12) 

 

where oc  is the total number of correctly classified objects and ot  is the total number of 

classified objects.  

 

In evaluation, first we investigate and compare single scales (filtering at different 

scales) and average distance (with the method given in section 5.3) results of LPGF and 

HPGF based representation without any noise in silhouette images. Single scales and 

average distance results are also compared with the original (no filtering) result. 

Second, we experiment with the original, single scales and average distance 

performances with respect to increasing noise in the dataset. Finally, LPGF and HPGF 

based multiscale description (average distance performances) are compared with other 

object description techniques.   
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Figure 5.7: A sample from each object class in the database 

 

 
Apple 

 
Bat 

 
Beetle 

 
Bell 

 
Bird 

 
Bone 

 
Bottle 

 
Brick 

 
Butterfly 

 
Camel 

 
Car 

 
Carriage 

 
Cattle 

 
Cellular_phone 

 
Chicken 

 
Children 

 
Chopper 

 
Classic 

 
Comma 

 
Crown 

 
Cup 

 
Deer 

 
Device0 

 
Device1 

 
Device2 

 
Device3 

 
Device4 

 
Device5 

 
Device6 

 
Device7 

 
Device8 

 
Device9 

 
Dog 

 
Elephant 

 
Face 

 
Fish 

 
Flatfish 

 
Fly 

 
Fork 

 
Fountain 

 
Frog 

 
Glass 

 
Guitar 

 
Hammer 

 
Hat 

 
HCircle 

 
Heart 

 
Horse 

 
Horseshoe 

 
Jar 

 
Key 

 
Lizard 

 
Lmfish 

 
Misk 

 
Octopus 

 
Pencil 

 
Personal_car 

 
Pocket 

 
Rat 

 
Ray 

 
Sea_snake 

 
Shoe 

 
Spoon 

 
Spring 

 
Stef 

 
Teddy 

 
Tree 

 
Truck 

 
Turtle 

 
Watch 



 81

          

          
(a) Tree 

          

          
(b) Dog 

          

          
(b) Elephant 

Figure 5.8: Some objects variations 

5.4.1 Original, single scales and average distance results without any noise in the 

database  

We analyse the original, single scales and average distance performances of LPGF and 

HPGF based multiscale description without adding any noise to the database. We also 

remove existing noise in the database by filling object region (using morphological 

flood-fill operation), since there is noise only inside shapes.  

 

In a multiscale description using LPGF, the object size is normalized to be 2500, which 

is the total number of intensity value, in a 151151×  size image. 5 different scales are 

selected for multiscale representation. The selected scales are: 201 =σ , 152 =σ , 

113 =σ , 84 =σ  and 55 =σ . The size of the object descriptor matrix is 9090×  at each 

scale. These 5 scale values are determined experimentally to achieve the best 

performance of the proposed algorithm with LPGF. Note that as the number of scales 

increases, the computational complexity increases.     
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In a multiscale description using HPGF, the object size is similarly normalized to be 

2500, which is the total number of intensity value, in a 151151×  size image. 5 different 

scales are selected for multiscale representation. The selected scales are: 111 =σ , 

82 =σ , 53 =σ , 34 =σ  and 15 =σ . The size of the object descriptor matrix is 9090×  

at each scale. These 5 scale values are also determined experimentally to achieve the 

best performance of the proposed algorithm with HPGF. As the number of scales 

increases, the computational complexity increases.     

 

Table 5.1 shows the CCR% of the original, selected single scales using LPGF and 

average distance of selected scales. It is observed that the highest CCR% is achieved 

with the original that is without applying any LPGF. The CCR% of the original is 

92.6% and as we apply LPGF with decreasing scales, which means as the objects 

become smoother, CCR% decreases. Taking average distances from these selected 

scales, with the method given in section 5.3, results with 91.1%. This is not higher than 

the original result and some single scale results. Therefore using LPGF is not effective, 

when there is no noise in the database.  

 

Table 5.1: CCR% of the original, single scales using LPGF and average distance using LPGF 

LPGF Original 201 =σ  152 =σ  113 =σ  84 =σ  55 =σ  Average 

Distance 

 

CCR% 

92.6 % 92.2 % 

 

91.7 % 91.4 % 90.2 % 

 

88.5 % 

 

91.1 % 

 

 

Table 5.2 similarly shows the CCR% of the original, selected single scales using HPGF 

and average distance of selected scales. It is observed that applying HPGF with scales 

53 =σ , 34 =σ  and 15 =σ  perform better than the original (92.6 %). The highest 

CCR% is 95 % among the single scale results and is achieved at scale 34 =σ . This is 

the scale which represents the exterior parts of the object more than the boundary and 

the central part. The scales 15 =σ  and 53 =σ  give exactly the same result (93.9 %). 

After 53 =σ , as scale increases, the CCR% decreases. This is because we start to focus 

more on the boundary alone, which is more sensitive to shape variations. Averaging the 
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distances of these five scales, which represents the boundary and exterior parts of an 

object more than the central part, even increase CCR% more and makes it 95.7 %.  

 

Table 5.2: CCR% of the original, single scales using HPGF and average distance using HPGF 

HPGF Original 111 =σ  82 =σ  53 =σ  34 =σ  15 =σ  Average 

Distance  

 

CCR% 

92.6 % 92.2 % 

 

92.4 % 93.9 % 95 % 

 

93.9 % 

 

95.7 % 

 

 

5.4.2 Original, single scales and average distance results with added noise in the 

database 

We experiment with the original, single scales and average distance performances with 

respect to increasing salt and pepper noise in the database. Figure 5.9 illustrates salt and 

pepper noise corrupted binary images with increasing density. In this evaluation, we do 

not remove the existing noise in the database as well (no region filling). Although some 

objects in the dataset contain noise inside the shape, adding salt and pepper type noise 

cause noise outside the shape as well. Salt and pepper noise is added to all objects in 

the database; therefore noisy test image is matched with the noisy images from 

database. It is also important to note that the noise is added after the object size 

normalization stage.  
 

       

                     (a) D=0                 (b) D=0.1                 (c) D=0.2                  (d) D=0.3 

     
                                    (e) D=0.4                 (f) D=0.5                (c) D=0.6 

Figure 5.9: Fly object with increasing density (D) of salt and pepper noise 
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Table 5.3 and Figure 5.10 show the CCR% of the original images, LPGF filtered 

images at different scales and the average distance of these scales. The results represent 

mean values obtained over four applications of each scale at each noise level. In Figure 

5.10, the error bar represents minimum and maximum values at the data points. It is 

simpler to follow our explanations from the table, since the obtained results are very 

close to each other and cannot be seen well in the figure. It is observed that when there 

is no noise or small amounts of noise such as D=0.1 and D=0.2, applying LPGF at 

selected scales does not increase CCR% in comparison to the original. Even averaging 

the distances with selected scales does not effective. When there is noise more than 

D=0.2, applying LPGF at higher selected scales ( 201 =σ , 152 =σ and 113 =σ ) increase 

CCR% slightly. Averaging the distances from these selected scales, at noise levels 

D=0.3 and D=0.4, increases the original as well as the single scales performances 

slightly. However, at noise levels D=0.5 and D=0.6, we do not observe any increased 

performance by average distance in comparison to the original and some single sales 

(higher scales).     
 

 

Table 5.3: CCR% of the original, single scales using LPGF and average distance using LPGF 

with respect to the increasing density of salt and pepper noise.  

 Salt &  Pepper noise 

density (D) 

LPGF 

 

0 

 

0.1 

 

0.2 

 

0.3 

 

0.4 

 

0.5 

 

0.6 

Original 92.6 % 89.5 % 86.1 % 77.4 % 69.2 % 57.7 % 41.5 % 

201 =σ  91.7 % 88.1 % 84.0 % 78.7 % 69.2 % 59.4 % 44.2 % 

152 =σ  91.2 % 89.4 % 83.5 % 78.2 % 69.7 % 58.7 % 44.5 % 

113 =σ  90.7 % 89.0 % 82.5 % 79.0 % 69.6 % 57.8 % 43.7 % 

84 =σ  89.4 % 86.1 % 81.1 % 76.5 % 65.5 % 56.1 % 39.7 % 

55 =σ  88.1 % 84.3 % 77.2 % 69.2 % 58.7 % 48.1 % 34.4 % 

Average Distance 90.4 % 89.5 % 85.2 % 80.5 % 70.3 % 55.0 % 41.5 % 
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Figure 5.10: Classification performance of the original, the single scales and the average 

distance by LPGF based representation with respect to increasing salt and pepper noise in the 

database. CCR% is plotted with minimum and maximum values using error bars. 

 

Table 5.4 and Figure 5.11 show the CCR% of the original image, the single scales 

using HPGF and the average distance using HPGF based representation, with respect to 

increasing density of salt and pepper noise. The results represent mean values obtained 

over four applications of each scale at each noise level. In Figure 5.11, the error bar 

represents minimum and maximum values at the data points. It is observed that when 

D=0, lower scales ( 53 =σ , 34 =σ  and 15 =σ ) perform better than the original (92.6 

%). The best single scale result is achieved at 34 =σ , which is 94.7%. This scale 

represents the exterior regions of an object more than the boundary and the central part. 

Averaging the distances of the selected scales also improves the CCR% (95.5 %). 

When we add salt and pepper noise with increasing density, average distance always 

performs better than the original and the single scales. Only at D=0.6, which is very 

noisy and objects are not visible, the scale 15 =σ  performs slightly better than average 

distance. The scale 15 =σ  also performs better than the original at all noise levels. The 

scale 34 =σ , which achieves the best result without any added noise, performs better 
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than original until D=0.3. The performances of the higher selected scales goes down 

faster than lower selected scales, since the higher selected scales represent the boundary 

more than the exterior parts and the central part, and more sensitive to noise and shape 

variations.  

 

Applying HPGF at selected scales and computing average distance improve CCR% in 

the dataset. This result occurs because of representing more the boundary and the 

exterior parts, which are more discriminative, than the central part.  

 

Table 5.4: CCR% of the original, the single scales using HPGF and the average distance using 

HPGF with respect to the increasing density of salt and pepper noise.  

    Salt &  Pepper noise 

density (D) 

HPGF 

 

0 

 

0.1 

 

0.2 

 

0.3 

 

0.4 

 

0.5 

 

0.6 

Original 92.6 % 89.5 % 86.1 % 77.4 % 69.2 % 57.7 % 41.5 % 

111 =σ  91.7 % 59.1 % 25.4 % 10.2 % 3.7 % 2.6 % 2.4 % 

82 =σ  92.5 % 78.1 % 48.4 % 23.0 % 11.2 % 5.2 % 2.5 % 

53 =σ  93.8 % 89.3 % 77.4 % 56.7 % 34.7 % 15.2 % 4.7 % 

34 =σ  94.7 % 91.7 % 88.8 % 80.7 % 67.5 % 45.7 % 21.8 % 

15 =σ  93.7 % 92.1 % 90.9 % 86.6 % 80.3 % 69.0 % 52.3 % 

Average Distance 95.5 % 93.6 % 92.2 % 88.5 % 82.0 % 71.3 % 52.0 % 
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Figure 5.11: Classification performance of the original, the single scales and the average 

distance by HPGF based description with respect to increasing salt and pepper noise in the 

database. CCR% is plotted with minimum and maximum values using error bars. 

5.4.3 Comparison with other techniques 

Performance evaluation is also employed by comparing the multiscale description 

using LPGF (average distance) and multiscale description using HPGF (average 

distance) with each other as well as with elliptic Fourier descriptors (EFD) and Zernike 

moments (ZM). The evaluation is again achieved with respect to increasing salt and 

pepper noise in the database, and the noisy test image is matched with the noisy images 

from the database.  

 

EFD are fast and robust boundary-based shape descriptors. The contour is represented 

with complex coordinates (position function) and then the Fourier expansion is 

performed to obtain the EFD, where the number of descriptors is 80 in this evaluation. 

To evaluate EFD, we use a Matlab implementation given in [95], and note that this is a 

non-optimal Matlab framework. We describe the boundary of the biggest region in the 

image, since there will be many regions after noise has been added. 
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Zernike moments (ZM) are region-based shape descriptors. They are an orthogonal 

moment set, which makes optimal utilization of shape information and allows accurate 

recognition. It is a potent moment technique for shape description [96]. To evaluate 

ZM, we use the algorithm given in [96], which uses 36 moments for description. We 

use a Matlab implementation given in [97] that is also a non-optimal framework.  

 

Figure 5.12 and Table 5.5 show the correct classification rate (CCR%) of the multiscale 

description in 2-D using LPGF, of multiscale description in 2-D using HPGF, of EFD 

and of ZM, with respect to increasing salt and pepper noise. The results represent mean 

values obtained over four applications of each algorithm at each noise level. In Figure 

5.12, the rectangle on graphs represents standard deviation from the mean value and 

error bar represents minimum and maximum values at data point. It is observed that 

HPGF based multiscale description performs better than LPGF based multiscale 

description, EFD and ZM. HPGF based multiscale description achieves 95.5% correct 

classification rate, while LPGF based multiscale description achieves 90.4%, ZM 

achieves 90% and EFD achieves 82% without adding noise to the database. As noise 

increases, the performance of all algorithms decreases and their performances degrade 

similarly. It is also observed that LPGF based multiscale description and ZM have very 

close performances. The success of HPGF based multiscale description in 2-D appears 

due to emphasizing the boundary and exterior parts of objects and also allowing the 

central part contribute slightly to classification. Although we use a multiscale 

representation (LPGF or HPGF), the proposed algorithm is easer to compute in 

comparison to Zernike moments. To obtain the Zernike moments, Zernike polynomials 

are computed, which are difficult and complex. On the other hand, in our algorithm, we 

rely on a polar transform and two Fourier transforms that are computed by the Fast 

Fourier Transform.  
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Figure 5.12: Classification performance of HPGF and LPGF based multiscale description in 2-

D, ZM and EFD, with respect to increasing salt and pepper noise in the database. In graphs, the 

rectangle represents standard deviation from the mean value and error bar represents 

minimum and maximum values of the CCR%. 

 

Table 5.5: CCR% of HPGF and LPGF based multiscale description in 2-D, ZM and EFD, with 

respect to increasing salt and pepper noise in the database. 

    Salt &  Pepper noise 

density (D) 

Descriptions 

 

0 

 

0.1 

 

0.2 

 

0.3 

 

0.4 

 

0.5 

 

0.6 

Multiscale Description 

using HPGF 

95.5 % 93.6 % 92.2 % 88.5 % 82.0 % 71.3 % 52.0 %

Multiscale Description  

using LPGF 

90.4 % 89.5 % 85.2 % 80.5 % 70.3 % 55.0 % 41.5 %

Zernike Moments (ZM) 90.0 %  87.9 % 83.9 % 78.4 % 72.6 % 61.7 % 49.0 %

Elliptic Fourier 

Descriptors (EFD) 

82.0 % 78.9 % 73.0 % 65.9 % 55.8 % 43.5 % 30.2 %
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There are also other techniques, which used same database (MPEG-7 CE-Shape-1 Part 

B) for classification purpose. A subset of this shape database was used by Kunttu et al. 

[77]. Their descriptors are wavelet transform based multiscale contour Fourier 

descriptors, which is obtained by applying the Fourier transform to the coefficients of 

the multiscale complex wavelet transform. They applied classification for 30 classes 

without any noise in the dataset. The selected classes are: bone, bottle, brick, car, 

cellular phone, children, chopper, comma, deer, device0, device1, device2, device7, 

device8, face, fish, fountain, frog, glass, heart, key, lmfish, misk, octopus, pencil, 

personal car, pocket, shoe, teddy and truck. Using the leave-one-out classification with 

a nearest neighbour classifier, they achieve 94.2-96.3 % with respect to the length of 

descriptors.  

 

Same subset was also recently used by McNeil and Vijayakumar [82] for classification 

without any noise in the dataset. In their work, shape boundary is represented with a 

large number of equally spaced points either defined by perimeter distance (perimeter 

descriptors) or radial angle (radial descriptors). Then, a probabilistic correspondence-

based algorithm, which also incorporates with scale, translation and rotation invariance, 

is applied for shape matching. They note that suitability of the perimeter distance or 

radial angle for description depends on the classes in the dataset and these two 

descriptions can also be combined to improve classification in some datasets. They 

used the same testing procedure, leave-one-out classification with a nearest neighbour 

classifier, to compare with the wavelet-based multiscale contour Fourier descriptors 

described above. They only show the results of the perimeter descriptors, which 

performs 95.6-98.0 % with respect to the number of points selected on the boundary. 

They also evaluated their descriptors on the full dataset, which includes 70 classes, 

without any noise in the dataset. They achieved 95.7 % and 91.0 % with perimeter 

descriptors and radial descriptors respectively. They also combined perimeter and 

radial descriptors and achieved 96.2 % classification accuracy on the full dataset.  

 

On the other hand, HPGF based multiscale description in 2-D achieves 99.2 % on the 

same subset using the leave-one-out classification with a nearest neighbour classifier. 

This result show that our algorithm, with HPGF based mustiscale description, 

outperforms both perimeter descriptors and multiscale contour Fourier descriptors on 

the subset. We also evaluated other algorithms on the same subset and observe that 



 91

LPGF based multiscale description in 2-D achieves 95.8 %, ZM achieves 92.6 %, and 

EFD achieves 87.8 %. Table 5.6 shows CCR% of the algorithms on the subset without 

any noise.  

 

Table 5.6: CCR% of multiscale contour Fourier descriptors [77], perimeter descriptors [82], 

HPGF and LPGF based multiscale description in 2-D, ZM and EFD on the subset (30 classes) 

without any noise. 

 

Descriptors 

 

CCR % 

Multiscale Description 

using HPGF in 2-D 

99.2 % 

Perimeter Descriptors [82] 95.6-98.0 % 

Wavelet-based multiscale 

Contour Fourier Descriptors [77] 

94.2-96.3 % 

Multiscale Description  

using LPGF in 2-D 

95.8 % 

Zernike Moments (ZM) 92.6 % 

Elliptic Fourier Descriptors 

(EFD) 

87.8 % 

 

On the full dataset, HPGF based multiscale description in 2-D achieves 95.7 %, which 

is better than radial descriptors, same as perimeter descriptors, and slightly less then the 

combined perimeter and radial descriptors. LPGF based multiscale description in 2-D 

achieves 91.1 %, ZM achieves 90.2 %, and EFD achieves 82 %. Table 5.7 shows 

CCR% of the algorithms on the full dataset without any noise.  
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Table 5.7: CCR% of perimeter descriptors, radial descriptors, combined perimeter and radial 

descriptors [82]. HPGF and LPGF based multiscale description in 2-D, ZM and EFD on the full 

dataset (70 classes) without any noise. 

 

Descriptors 

 

CCR % 

Combined Perimeter-Radial 

Descriptors [82] 

96.2 % 

Multiscale Description 

using HPGF in 2-D 

95.7 % 

Perimeter Descriptors [82] 95.7 % 

Multiscale Description  

using LPGF in 2-D 

91.1 % 

Radial Descriptors [82] 91.0 % 

Zernike Moments (ZM) 90.2 % 

Elliptic Fourier Descriptors 

(EFD) 

82.0 % 

5.5 Conclusions and Future Work 

We have presented novel multiscale Fourier-based object descriptors in 2-D space for 

the purpose of recognition. We have used a low-pass Gaussian filter (LPGF) and a 

high-pass Gaussian filter (HPGF) for multiscale generation. Using the LPGF at 

different scales represents the inner and central part of an object more than the 

boundary. On the other hand using the HPGF at different scales represents the 

boundary and exterior parts of an object more than the central part. Our algorithm starts 

with object size normalization and we then compute a Fourier magnitude image that is 

translation invariant. At this stage, a LPGF or a HPGF with a selection of scale 

parameters is used to obtain multiscale Fourier magnitude images. To give rotation 

invariance, each image of different scale is polar mapped and then another Fourier 

magnitude image is computed to obtain the proposed object descriptors. For 

classification, the Euclidean distance is measured separately at each scale, and then the 

average distance is computed for each object. Multiscale description using HPGF, 

which represents the boundary and exterior parts of an object more than the central 
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part, outperforms multiscale description using LPGF, elliptic Fourier descriptors (EFD) 

and Zernike moments (ZM) with respect to increasing salt and pepper noise in the 

database. Multiscale description using HPGF in 2-D also performs better than Wavelet 

transform based multiscale contour Fourier descriptors and performs similar to the 

perimeter descriptors without any noise in the dataset. Classifying objects with this new 

multiscale Fourier-based object description using the HPGF in 2-D space increases 

immunity to noise and discrimination power.  

 

In the future work, we can find persistent features over scales using feature set 

selection, which may increase discrimination and also reduce the number of features. A 

new classifier can be used instead of nearest neighbour classifier to increase correct 

classification rate. The proposed object description can be applied for the image 

retrieval purposes, as well as more evaluation can be done on different databases both 

for classification and retrieval purposes. In addition, we can also investigate phase 

information of the Fourier transforms, which is currently discarded in our algorithm. 

The phase has significant information about the image and it could be beneficial to 

include it in object description.  
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Chapter 6 Conclusions and 

Future Work 

6.1 Conclusions 

In this thesis, we have presented three different contributions to feature extraction 

based on using the heat conduction analogy. The solution of the heat conduction 

equation depends on properties of material, heat source as well as specified initial and 

boundary conditions. In our contributions, we represent particular heat conduction 

problems in the image and video domains for feature extraction. The first contribution 

is moving-edge detection that is a low-level feature extraction. The second contribution 

is shape extraction from images, which is a high-level feature extraction. The final 

contribution is silhouette object feature extraction for recognition purpose and this can 

be considered as a combination of low-level and high-level feature extraction.    

 

In the first area of our research, we introduce a novel moving object edge detection 

technique. In this work, we first solve an anisotropic heat conduction problem in the 

spatial domain to remove noise and sharpen region boundaries for the purpose of 

obtaining high quality Sobel edge maps. Then, linear isotropic heat flow is applied in 

the temporal domain, with the proposed initial and boundary conditions, to calculate 

the total amount of heat flow. The moving-edge map is represented as the total amount 

of heat flow out from the reference frame. The overall process is completed by non-

maxima suppression and hysteresis thresholding to obtain binary moving-edges. 

Evaluation indicates that this technique performs better than 2-D Sobel at all levels of 

Gaussian noise, without anisotropic heat diffusion in space. This result appears to be 

due to the averaging inherent in the new operator. Results also show that this technique 
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can detect moving-edges in image sequences, without using background subtraction. 

As such, the efficient combination of anisotropic and isotropic heat equations, with the 

proposed initial and boundary conditions, is applied in a new way to detect the edges of 

moving object. 

 

In the second area of our research, a novel evolution-based segmentation algorithm is 

introduced using the heat flow analogy. We extract objects shapes by representing 

particular heat conduction problems in the image domain. First, we represent and solve 

a linear and non-homogeneous heat equation in the image domain to roughly segment 

objects of interest. Once the heat source is located at the region of interest, the 

segmentation is achieved by a temperature front (TF), which moves with the heat 

diffusing from the source. The representation in image domain is achieved by using a 

control function (CF) in the heat conduction equation. This formulation also provides 

advantage when the image is bimodal, since the CF attempts to segment whole image 

in this case, while the TF segments the region of source location. In the second part, an 

anisotropic diffusion, geometric heat flow (GHF), is applied to smooth the extracted 

boundaries and remove possible noise arising from the first part of the segmentation. 

Our algorithm is evaluated by comparing with popular active contour models, which 

are gradient vector flow snake (GVFS) and active contour without edges (ACWE). 

These models can also be defined as gradient-based parametric active contour (PAC) 

and region-based geometric active contour (GAC) respectively. Evaluation results 

indicate that TF+GHF can provide better performance than GVFS and ACWE with 

respect to increasing Gaussian noise. For the bimodal images, CF+GHF also has better 

performance than ACWE. These improvements are achieved by effective organization 

of our algorithm, TF+GHF segments better than GVFS by its basis on region-based 

information instead of gradient-based, which is sensitive to noise. TF+GHF and 

CF+GHF segment better than ACWE because of the smoothing operation of shape. 

TF+GHF and CF+GHF apply smoothing after rough segmentation without any relation 

to the regional statistic constraints, while ACWE uses smoothness constraint with 

regional statistic constraints during the segmentation. In addition, TF+GHF and 

CF+GHF are computationally more efficient and effective than both GVFS and ACWE 

based on the simulation results. Especially, there are big differences between our model 

and ACWE in computational efficiency. The main reason is the complexity of the level 

set method in ACWE. As a result, our approach works well in noisy conditions and it is 
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also computationally more efficient and easer to control and implement in comparison 

with active contour models. As such, the proposed heat conduction problems can be 

applied in the image domain with success for shape extraction. 

 

In the third area of this research, we introduce new and efficient silhouette object 

descriptors by using the Fourier series and Gaussian filtering for recognition purposes. 

We investigate Fourier series and Gaussian filtering for feature extraction, since they 

are related to the solution of the linear and homogenous heat conduction problems. 

Analytic solution of the linear and homogeneous heat conduction problem can be 

achieved using Fourier series theory. In addition, solving the linear and homogeneous 

heat equation in infinite medium can be viewed as smoothing a signal with a low-pass 

Gaussian filter (LPGF). We develop new multiscale Fourier-based object description in 

2-D space using a low-pass Gaussian filter (LPGF) and a high-pass Gaussian filter 

(HPGF), separately. A multiscale description provides more information about the 

object, increases discrimination power and immunity to noise. Using the LPGF at 

different scales (standard deviation) represents the inner and central part of an object 

more than the boundary. On the other hand using the HPGF at different scales 

represents the boundary and exterior parts of an object more than the central part. Our 

algorithm starts with object size normalization and we then compute a Fourier 

magnitude image that is translation invariant. At this stage, a LPGF or a HPGF with a 

selection of scale parameters is used to obtain multiscale Fourier magnitude images. To 

give rotation invariance, each image at a different scale is polar mapped and then 

another Fourier magnitude image is computed to obtain the proposed object 

descriptors. For classification, the Euclidean distance is measured separately at each 

scale, and then the average distance is computed for each object. Multiscale description 

using HPGF, which represents the boundary and exterior parts of an object more than 

the central part, outperforms multiscale description using LPGF, elliptic Fourier 

descriptors (EFD) and Zernike moments (ZM) with respect to increasing salt and 

pepper noise in the database. Multiscale description using HPGF in 2-D also performs 

better than Wavelet transform based multiscale contour Fourier descriptors and 

performs similar to the perimeter descriptors without any noise in the dataset. 

Classifying objects with this new multiscale Fourier-based object description using the 

HPGF in 2-D space increases immunity to noise and discrimination power.  
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6.2 Future Work 

We have future work in the third area of this research, which is multiscale Fourier-

based object description in 2-D space using a low-pass Gaussian filter (LPGF) and a 

high-pass Gaussian filter (HPGF). In the future work, we can find persistent features 

over the selected scales to increase discrimination and also reduce the number of 

features. A new classifier can be used instead of nearest neighbour classifier to increase 

correct classification rate. The proposed object description can be applied for the image 

retrieval purposes, as well as more evaluation can be done on different databases both 

for classification and retrieval purposes. In addition, we can also investigate phase 

information of the Fourier transforms, which is currently discarded in our algorithm. 

The phase has significant information about the image and it could be beneficial to 

include it in object description.  

 

In overall conclusion, the heat analogy has been deployed both for low-level and high-

level feature extraction purposes in image processing and computer vision successfully. 

It has given new insight to the feature extraction process and has led to techniques with 

attractive performance in terms of segmentation and computational requirement.  
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Appendix A 

Analytical Solution of Proposed 

Heat Conduction Problem and 

Comparison with the Numerical 

Solution in the Image Domain 

We present a direct comparison of the analytical solution of the proposed heat 

conduction problem with the solution derived in the image domain for segmentation. 

The analytical result is derived by using Green’s function. The image result is obtained 

by approximating finite difference operations in the image domain.  

A.1 Analytical Solution of the Proposed Heat Conduction Problem on a 

Square Object   

Consider the following boundary value problem for the temperature in a two-

dimensional conductive finite solid, which has uniform conductivity and isotropic 

medium. The solid is also shown in Figure A.1 with the coordinates of vertices 

superimposed. 
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 ( )
t
Ttyxq

ky
T

x
T

∂
∂

=+
∂
∂

+
∂
∂

α
1,,1

2

2

2

2
;   cx <<0 ;   dy <<0 ;   0>t       (A.1a) 

( ) ( )yxFtyxT ,0,, == ,     Initial Condition     (A.1b) 

( ) 1,,0 TtyxT ==                     (A.1c) 

                     ( ) 2,, TtycxT ==               , Boundary Conditions           (A.1d) 

( ) 3,0, TtyxT ==                      (A.1e) 

( ) 4,, TtdyxT ==                      (A.1f) 

 

 
Figure A.1: Coordinates of the two-dimensional conductive finite solid. 

Here we seek the temperature, ),,( tyxT , in a two-dimensional solid at position, ( )yx, , 

at time, t , caused by a specified energy generation function, ),,( tyxq , inside the body. 

Initially the temperature is a known function ),( yxF . The thermal properties are 

conductivity, k  and diffusivity, α . In the proposed model, the boundary condition is 

Dirichlet, which means the temperature is specified at each boundary point. The 

temperature that satisfies the above equations will be found in two steps. First, Green's 

function will be defined, and then this function will be used to construct the 

temperature. Green's function is a basic solution to a linear differential equation, a 

building block that can be used to construct many useful solutions. For heat conduction, 

Green's function is proportional to the temperature caused by a concentrated energy 

source. The exact form of the Green's function depends on the differential equation, the 

body shape, and the type of boundary conditions present. Green's functions are named 

in honor of English mathematician and physicist George Green (1793-1841). The 

Green's function, ( )τ,,|,, yxtyxG ′′ , associated with the above example obeys the 

following equations [20]:  
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⎝
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;  cx <<0 ;  dy <<0 ;  τ>t    (A.2a) 

                                    0=G   for  τ<t  ,                  Initial Condition          (A.2b) 

( ) 0,,|,,0 =′′= τyxtyxG                                          (A.2c) 

                           ( ) 0,,|,, =′′= τyxtycxG   , Boundary Conditions    (A.2d) 

                     ( ) 0,,|,0, =′′= τyxtyxG                             (A.2e) 

                    ( ) 0,,|,, =′′= τyxtdyxG                                                   (A.2f) 

 

Note that the boundary conditions are Dirichlet that is the same type as the temperature 

problem in Equation A.1, but homogeneous, and that the energy generation term has 

been replaced by a product of three Dirac delta functions, ( )( )( )τδ −′−′− tyyxx , two 

for space and one for time. The Green's function, ( )τ,,|,, yxtyxG ′′ , represents the 

temperature response observed at point ( )yx,  and time t  caused by an instantaneous 

concentrated heat source released at point ( )yx ′′,  and time τ . Green's functions are 

causal, since there is no response before the heat source is released:   0=G   for  τ<t . 

Finally, the thermal properties are constant, so the differential equation is linear; this is 

important since Green’s functions may only be found for linear differential equations. 

 

The temperature solution is constructed from a suitable distribution of the Green's 

function. The temperature for the problem in Equation A.1 and in Figure A.1 is given 

by [20]: 
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  (A.3) 

 

In this expression, the first additive term is constructed from the initial condition, the 

second is from the energy generation (heat source) and the others for each boundary 

condition. If we consider the proposed heat conduction problem for object 
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segmentation, which has initial condition  ( ) ( ) 0,0,, === yxFtyxT  and the boundary 

conditions 04321 ==== TTTT , Equation A.3 can be simplified to, 

 

( ) ( ) ( )∫ ∫ ∫
= =′ =′

′′′′′′=
t c

x

d

y

ydxddyxqyxtyxG
k

tyxT
0 0 0

,,,,|,,,,
τ

τττα   (A.4) 

 

which only includes the effect of the heat source. The next problem is determination of 

the Green’s function due to the proposed problem. To determine Green's function, we 

need to consider only the homogeneous version of the problem in Equation A.1, which 

does not include the source function and has boundary temperatures 

04321 ==== TTTT  as given below, 

t
T

y
T

x
T

∂
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=
∂
∂

+
∂
∂

α
1

2

2

2

2
;   cx <<0 ;   dy <<0 ;   0>t                 (A.5a) 

( ) ( )yxFtyxT ,0,, ==           (A.5b) 

( ) 0,,0 == tyxT ;  ( ) 0,, == tycxT                        (A.5c) 

( ) 0,0, == tyxT ; ( ) 0,, == tdyxT                             (A.5d) 

 

This homogeneous problem is solved by the method of separation of variables [20, 98, 

99] and the solution is expressed formally in the form 

 

( ) ( ) ( )∫ ∫
=′ =′

′′′′′′=
c

x

d

y

ydxdyxFtyxyxtyxT
0 0

,,,,,,, ψ           (A.6) 

 

For the problem in Equation A.5 [20] [98], 

 

( ) ( ) ( ) ( ) ( ) ( )yxyxe
cd

tyxyx nm
m
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n
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∞
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∞
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(A.7) 

where 

           
c

m
m

πβ = ,  
d

n
n

πλ =   with   ( ) ...4,3,2,1, =nm  
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Then Equation A.6 is compared with the first additive term of the Equation A.3 and 

( )0,,|,, =′′ τyxtyxG  is determined as  

 

( ) ( )tyxyxyxtyxG ,,,,0,,|,, ′′==′′ ψτ                     (A.8) 

 

However, for the proposed problem in Equation A.4, we need to know 

( )τ,,|,, yxtyxG ′′ . The desired Green’s function, ( )τ,,|,, yxtyxG ′′ , is determined from 

( )0,,|,, =′′ τyxtyxG  by replacing t  by ( )τ−t  [20], as given below                        
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∞

=

∞

=

−+− ′′=′′
1 1

sinsinsinsin4,,|,,
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n

t yxyxe
cd

yxtyxG nm λβλβτ τλβα  

(A.9) 

Where          

  

c
m

m
πβ = ,  

d
n

n
πλ =   with   ( ) ...4,3,2,1, =nm  

 

Then the analytical solution of the proposed problem is obtained in terms of the 

Green’s function according to the Equation A.4, as 
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after re-ordering, we obtain 

 

( ) ( ) ( ) ( )∑∑
∞

=

∞

=

+−=
1 1

sinsin4,,
22

m n
nm

t yxe
cdk

tyxT nm λβα λβα  

                   ( ) ( ) ( ) ( )∫ ∫ ∫
= =′ =′

+ ′′′′′′⋅
t c

x

d

y
nm ydxddyxqyxe nm

0 0 0

,,sinsin
22

τ

τλβα ττλβ           (A.11) 
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In our case, the heat source is located at a point ( )ba,  and independent of time, which 

can be represented as ( ) ( ) ( )byaxqtyxq c −−= δδ,, , where cq  is a constant. After 

substituting this heat source form into the Equation A.11, we find 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) τλλββα

τ

τλβαλβα debyaxe
kcd
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m n
nnmm

tc nmnm ∫∑∑
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=

∞

=

+−=
01 1

2222

sinsinsinsin4,,  (A.12) 

 

Then we simplify Equation A.12 and obtain the following equation 
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Where             

  (A.13) 

c
m

m
πβ = ,  

d
n

n
πλ =   with   ( ) ...4,3,2,1, =nm  

 

For the numerical solution in the image domain, we use the square object of size  

( ) ( )50,50, =dc  and the source position is ( ) ( )16,35, =ba , as shown in Figure A.2. In 

addition, we equate the source term to a constant as 5==
c

qQ c

ρ
 and the thermal 

diffusivity 25.0==
c

k
ρ

α . As a result of these assumptions for calculation in the image 

domain, 20
25.0
5

==
k
qc . After locating these constants into Equation A.13, we can 

calculate the temperature value at any point ( )yx,  and time t  by means of the analytic 

solution.  
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Where          

 (A.14) 
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πλ n

n =   with   ( ) ...4,3,2,1, =nm  
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The solution is achieved by iterating the series summation above until we reach the 

stable result. 

 

             
Figure A.2: Source Position 

    

Before the comparison of analytical and numerical results in the image domain, we 

explain the finite difference representation of the heat conduction equation in the image 

domain. 

A.2 Numerical Solution of the Proposed Heat Conduction Problem in the 

Image Domain by Using Finite Difference Representation 

Consider the heat conduction equation in the image domain as  
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tyxtyx
t

tyx ,,,,,,,,,,
2

2

2

2
QIICFI

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

+
∂

∂
=

∂
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where ( )tyx ,,I  represents an image pixel value in terms of temperature at each point 

and time, α  is the thermal diffusivity, ( )tyx ,,Q  is the source term and ( )tyx ,,CF  is 

the control function. The control function is obtained from the region statistics of the 

source location on a given grey-level image. The region of interest in the space domain 

is bounded as, cx ≤≤0 ,  dy ≤≤0 ,  and in the time domain extends from 0=t  to 

infinity. We construct a finite difference net from the pixels of object in the x  and y  

domain with constant mesh sizes xΔ  and yΔ . In the time domain, the step size is tΔ . 

Then, the space and time coordinates are denoted by  
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   xix Δ=         Li ,...,2,1,0=     with        xLc Δ=            (A.16a) 

yjy Δ=        Kj ,...,2,1,0=     with       yKd Δ=                     (A.16b) 

 tnt Δ=         ...3,2,1,0=n                     (A.16c) 

 

and the temperature ( )tyx ,,I  is represented by 

 

    ( ) ( ) n
jitnyjxityx ,,,,, III ≡ΔΔΔ=          (A.17) 

 

By using this notation, the finite difference representation of 22 x∂∂ I at the pixel 

( )ji, ( )yjyxix Δ=Δ= ,  for the thn  time step ( )tnt Δ=  is written with the central-

difference formula as [20] 
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and for 22 y∂∂ I , 
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The first derivative with respect to the time variable, t∂∂I , is represented in the finite 

difference form at the thn  time step using the forward-difference formula as 
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Introducing Equations A.18, A.19 and A.20 into the Equation A.15, the finite 

difference representation of the heat conduction equation in the image domain becomes 
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In the image domain, we use equal spacing  yx Δ=Δ  in both −x  and −y  directions 

and we obtain the solution of 1
,
+n
jiI  as 

 

( )( ) ( ) ( )( ) ( )njitrnjinjir n
ji

n
ji

n
ji

n
ji

n
ji

n
ji ,,,,,,41 1,1,,1,1,
1

, QIIIICFICFI Δ+++++−= +−+−
+   (A.22) 

 

where 
( )2x

tr
Δ
Δ

=
α  and 

( )
25.00 2 ≤

Δ
Δ

≤
x

tα  to achieve stability criterion for the two 

dimensional case [23, 20]. The finite difference representation given by the Equation 

A.22 is called the explicit form. Because the unknown temperature value 1
,
+n
jiI  at the 

time step ( )1+n  can be directly determined from the knowledge of temperatures n
ji ,1−I , 

n
ji ,1+I , n

ji 1, −I , n
ji 1, +I  and n

ji,I at the previous time step ( )n . In our proposed model, in the 

image domain 1=Δ=Δ=Δ tyx , which yields xi = , yj =  and tn =  from Equation 

A.16. In addition, 25.0=α  and  

 

( ) ( ) ( )
⎩
⎨
⎧ =

=
otherwise

feyx
tyx

0
,,,5

,,Q     (A.23) 

 

where, ( ) ( )2,1, offsetboffsetafe ++=  is the source position in the image domain. In 

analytic domain, the origin, ( )0,0 , was at the corner of the square object and the source 

position was at the ( )ba,  as shown in Figure A.2. However, in the image domain the 

origin is at the image corner, so that ( )2,1 offsetoffset  is the difference between the 

origin in analytic domain and the origin in the image domain. After locating the 

numerical values into the Equation A.22, we obtain a numerical solution in the image 

domain for the proposed problem as given below, 

 

( ) ( )( ) ( )tyxtyx t
yx

t
yx

t
yx

t
yx

t
yx

t
yx

t
yx ,,425.0,, ,1,1,,1,1,
1

, QIIIIICFII +−++++= +−+−
+     (A.24) 

 

Errors involved in numerical solutions 

The two-dimensional heat conduction equation is a partial differential equation, which 

includes first- and second-order continuous derivatives. In numerical solution, these 
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derivatives are approximated by finite differences using a Taylor series expansion. The 

error, in the approximation, is called the truncation error or the discretization error.  

A.3 Comparison of Analytical and Numerical Results in the Image 

Domain 

To compare analytical and numerical solutions, we choose one vertical and one 

horizontal line on the square object; these lines intersect at the centre of the square 

object, ( )25,25 , as well as they start from one boundary and end at the other boundary 

of the square object as shown in Figure A.3.  

 

 
Figure A.3: Selected horizontal and vertical line positions to compare analytical temperature 

values with the numerically obtained in the image domain. 

 

Figure A.4 shows analytical ( )A  and image domain ( )I  temperature values as well as 

absolute temperature error IA −  between them at the positions of selected vertical 

line. These results are calculated at 69=t , when all the temperature values inside the 

square object starts to exceed zero in image domain calculations, in other words when 

the segmentation of square object is achieved. It is observed that all the temperature 

values are higher than zero except the boundary points. The error occurs, between the 

analytical and numerical results, are because of the discretization process in the 

numerical solution. The important results to observe are at the boundary positions, 

which are ( )0,25  and ( )50,25  in this line. In the position, ( )0,25 , we observe that both 

analytical and numerical results are zero. In the other boundary position, ( )50,25 , we 

observe that numerical result is zero, and the analytical result is  zero within numerical 
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error. These results confirm that boundary temperature is kept at zero in the proposed 

problem. 
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Figure A.4: Analytical and numerical (in the image domain) temperature values at the positions 

of the selected vertical line (from the one boundary to the other) and at t=69, when all of the   

temperature values inside the square object starts to be higher than zero, in other words when 

the segmentation of square object is achieved. 

 

Figure A.5 shows analytical and numerical (in the image domain) temperature values at 

the positions of selected horizontal line at 69=t . It is observed that all of the 

temperature values inside the square object exceed zero except at the boundary 

positions. The error occurs, between the analytical and numerical results, because of the 

discretization process. The boundary positions, on the horizontal line, are ( )25,0  and 

( )25,50 . In the position, ( )25,0 , we observe that both analytical and numerical results 

are zero. In the other one, ( )25,50 , we observe that numerical result is zero, and the 

analytical result is zero within numerical error. These results also confirm that 

boundary temperature is kept at zero during the segmentation process. 
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Figure A.5: Analytical and numerical (in the image domain) temperature values at the positions 

of selected horizontal line (from the one boundary to the other) and at t=69, when the all of the 

temperature values inside the square object starts to exceed zero, in other words when the 

segmentation of square object is achieved. 

 

The temperature values at Figure A.4 and A.5 are observed at 69=t , when the 

segmentation of the square object is achieved in the image. At this time, our algorithm 

automatically stops, however if we continue diffusion until the steady-state solution, we 

can observe that temperature values increase, except at the boundary positions. 

Boundary temperature is always kept at zero. Figure A.6 shows the steady-state 

analytical and numerical temperature values at the positions of selected vertical line. 

For the numerical calculation in the image domain, we observed that steady-state is 

achieved after 16442=t . At this time, one of the boundary position, ( )0,25 , has 

analytical and numerical results zero. The other boundary position, ( )50,25 , has 

numerical result zero and the analytical result zero within numerical error. These results 

show that boundary temperature is always kept at zero until the steady-state and after 

the steady-state. 
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Figure A.6: Steady state analytical and numerical (in the image domain) temperature values at 

the positions of selected vertical line (from the one boundary to the other).  

Figure A.7 similarly shows the steady-state analytical and numerical temperature 

values at the positions of selected horizontal line. In this line, one of the boundary 

point, ( )25,0 , has analytical and numerical temperature values of zero. The other one, 

( )25,50 , has numerical result zero and the analytical result zero within numerical error. 

These results again confirm the proposed heat conduction problem in the image 

domain, which achieves segmentation. 
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Figure A.7: Steady state analytical and numerical (in the image domain) temperature values at 

the positions of selected horizontal line (from the one boundary to the other).  
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Appendix B 

Active Contours 

Active contours (snakes) are classified either Parametric Active Contours (PAC) or 

Geometric Active Contours (GAC), according to their representation. PAC and GAC 

differ in their ability to handle multiple object detection and computational complexity 

and efficiency. Here, we explain the commonly used active contour models including 

Gradient Vector Flow (GVF) based PAC [41] and region-based GAC (active contours 

without edges) [64], which are compared with our shape extraction model using heat 

flow analogy in Chapter 4.   

B.1 Parametric Active Contour (PAC) 

The PAC is a parametric curve ( ) ( ) ( )( )sssC yx ,= , [ ]1,0∈s , which is represented 

explicitly and moves through the spatial domain of an image. The first PAC model was 

introduced by Kass et al. [40]. It was formulated by minimizing the following energy 

functional,  

( ) ( ) ( )( )∫ +′′+′=
1

0

22 dssCsCsC extGGG ξγβαξ                         (B.1) 

 

Where, )(sC′  and )(sC ′′  are the first and second derivatives of the curve )(sC  and 

they impose smoothness and rigidity constraints, ( )( )sCextξ  is external energy function, 

which is obtained from the image and takes small values on the object boundaries, Gα , 

Gβ  and Gγ  are weighting parameters that control the smoothness, rigidity and external 
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energy of the curve respectively. A typical external energy function for a grey level 

image, ( )yx,I , is given below,   

 

( ) ( )[ ]yxyxGext ,, I∗∇−= σξ                                          (B.2) 

 

where ( )yxG ,σ  is Gaussian filter with standard deviation σ  and ∇  is the gradient 

operator. The solution to the Equation B.1 is obtained by first finding the Euler 

equation that minimizes the energy functional, ξ , and then making it dynamic with a 

partial derivative of ( )tsC ,  with respect to time t : 

 

( ) ( ) ( ) extGGGt tsCtsCtsC ξγβα ∇−′′′′+′′= ,,,                             (B.3) 

 

Where, ( ) ( )tsCtsC GG ,, ′′′′+′′ βα  is an internal force and extG ξγ ∇−  is external force 

acting on the snake. The internal force discourages stretching and bending, while the 

external force is image dependent and pulls the snake towards the desired object edges. 

When the contour attains steady state, ( ) 0, =tsCt , it achieves segmentation.  

 

Problems, associated with this classic model, are initialization and poor convergence to 

concave regions. A constant force, which is called the balloon force [57], was added 

with direction normal to curve, to accelerate the motion so that the initial curve can be 

placed far away from the desired object boundary. However, choice of the balloon 

force is a problem. If the balloon force is large, the contour can pass through weak 

object boundaries. If the balloon force is small, the contour may not move on narrow 

regions of the object. Initialization and convergence to concave region problems were 

largely solved with the development of new external force model, which is called 

Gradient Vector Flow (GVF) [41]. GVF consists of a two-dimensional vector field 

( ) ( ) ( )[ ]yxyxyx ,,,, vuV =  that minimizes the following energy functional, 

 

 ( ) ( ) dxdyyxyxG
222222, ∫ ∫ ∇−∇++++= FVFvvuuvu μξ                      (B.4) 

 

Where, F∇  is the gradient of the edge map ( )yx,F  that is derived from the image 

( )yx,I , ( )yx uu ,  and ( )yx vv ,  represent ( )yx ∂∂∂∂ uu ,  and ( )yx ∂∂∂∂ vv ,  respectively 
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and Gμ  is a regularization parameter between first and second part in the integrand. It 

can be seen that when F∇  is small, energy is minimized by sum of the partial 

derivatives of the vector field, which applies diffusion to the gradient vectors of the 

edge map F∇ . On the other hand, when F∇  is large, energy is minimized by the 

second part, which keeps V  nearly equal to the gradient vectors of edge map 

( ) ( )yxyx ∂∂∂∂==∇= FFFFFV ,, . The solution to the Equation B.4 is obtained with 

the following equations, 

 

( ) 2FFuuu
∇−−Δ=

∂
∂

xGt
μ  ,    ( ) 2FFvvv

∇−−Δ=
∂
∂

yGt
μ                (B.5) 

 

Where Δ  is the Laplacian operator. From these equations, it is also observed that when 

the image region, ( )yx,I , is homogeneous (constant), the second term in each equation 

is zero because the gradient of ),( yxF  is zero. Therefore in those regions, u  and v  are 

determined by Laplace’s equation, and the resulting GVF field is diffused from the 

object boundary vectors. In this way, GVF yields vectors that point into boundary 

concavities.   

 

To obtain the corresponding dynamic snake equation with a GVF based external force, 

we replace extξ∇−  in Equation B.3 with V , yielding 

 

( ) ( ) ( ) VGGGt tsCtsCtsC γβα +′′′′+′′= ,,,                                       (B.6) 

 

The parametric curve, which solves the above dynamic equation, is called the GVF 

snake (GVFS). Although, initialization and convergence to concave region problems 

were largely solved with the development of GVF, PAC models can have difficulty 

with simultaneous detection of multiple objects. This is because they cannot handle the 

topological changes such as merging or splitting of the moving curve, since the curve is 

represented explicitly. To solve this problem, GAC models have been introduced, 

where the curve is represented implicitly in a level set function (the zero set). 
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B.2 Geometric Active Contours (GAC) 

GAC uses the level set method [13] for curve evolution. In level set methods, a curve is 

represented implicitly by the zero level set ( ) ( ){ }0,,|,, == tyxtyxC φ  of the scalar 

function ( )tyx ,,φ . The level set function is the signed distance to the curve. This 

distance is arranged to be positive inside the curve and negative outside it. The curve 

itself is where the distance is zero, at the interface between two regions. The curve 

evolution using level sets can be briefly explained as follows: Assume we follow the 

curve as it propagates in a direction normal to itself with speed U , as shown below, 

 

( )
φ
φ

∇
∇

==
∂

∂ UnU
t

tsC r,                                                   (B.7) 

 

Where the normal vector nr  is given by 
φ
φ

∇
∇

=nr , which is pointing outward in the 

direction normal to the contour surface. The contour interface C  is the zero level set at 

all time,  

 

( )( ) 0, =ttCφ                                                         (B.8) 

 

Taking the derivative with respect to time by using the chain rules, yields 

 

0=
∂
∂

+
∂
∂
⋅

∂
∂

tt
C

C
φφ                                                   (B.9) 

 

Then, by rearrangement and substitution from Equation B.7, φ  is the solution to the 

following differential equation, 

 

φ
φ
φφφ

∇−=
∇
∇

⋅∇−=
∂
∂ UU

t
                                       (B.10) 

 

The contour evolves using the speed term U , which is particularly a function of 

curvature (a geometric measure). The curvature is obtained from the curve evolution 

itself that is independent of the curve’s parameterization. The level set method can 
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handle topological changes of the curve such as splitting and merging because of 

implicit representation. However, it is computationally more expensive than the explicit 

representation (PAC), since it evolves a level set surface instead of contour positions, 

as well as re-initialization of the curve is required at each step of the evolution for 

rescaling and regularization, which also prevents level set function to become too flat. 

Curve evolution with the level set method is achieved as follows: First, the initial 

implicit function (distance transform) is determined depending on the initial curve 

position. Then the curve is evolved, one iteration, according to the level set equation 

given in B.10. After that, the zero level set (curve position) is recovered from the 

resultant evolution. Finally, the curve is re-initialized again using the distance 

transform for the next evolution (iteration). Numerical approximation of the level set 

method is also important and needs optimization, since it affects segmentation results 

and the computational efficiency.   

 

The first GAC model was proposed by Caselles et al. [11] and Malladi et al. [12]. In 

this model, the curve evolves with its curvature and balloon force (expanding) 

dependent speed in the direction normal, and stops depending on a gradient information 

obtained from the grey-scale image I . The evolution of the gradient-based GAC is 

given by the following level set equation,  

 

( )( ) φκφ
∇+∇=

∂
∂

fbg
t

I ,     ( ) ( )yxtyx ,0,, 0φφ ==                          (B.11) 

 

where, ( ) ( ){ }0,|0,, 0 == yxyxC φ  defines the initial contour, ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∇
∇

=
φ
φdivκ  is the 

curvature term and has the effect of smoothing the curve,  div  means divergence, fb  is 

a constant that causes expanding (balloon force) and accelerates the motion, ( )I∇g  is 

the stopping function of curve and derived from the gradient of the image, I∇ , with 

the following formulation, 

 

( ) pG
g

I
I

∗∇+
=∇

σ1
1   ,       1≥p                                  (B.12) 
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The assumption is, the curve evolves on smooth regions of the image since 1≅g  and it 

stops on the edges since 0≅g . However, in practice g  has a range 10 ≤< g  and it can 

never become equal to zero. Therefore, if there is any weak edge because of noise, the 

curve can pass through the boundary of the object. This problem occurs mainly because 

of the balloon force term fb . Isotropic Gaussian smoothing may partially remove 

noise, but at the same time it smooth object edges and make them weaker.  

 

The gradient-based GAC can detect multiple objects simultaneously but it has other 

important problems, which are boundary leakage, noise sensitivity, computational 

inefficiency and complexity of implementation. Some formulations, [58, 59], have been 

introduced to solve problems with boundary leakage and noise sensitivity by improving 

the gradient-based information. However, they can just increase the tolerance, since 

gradient-based information is always limited by noise. Xie and Mirmehdi [60] apply 

region segmentation to the original image and then find the Gradient Vector field 

(GVF) of the segmented image. This force is added to the GAC, but it can only provide 

more tolerance to toward weak edges. Several numerical schemes have also been 

proposed to improve the computational efficiency of the level set method, including 

narrow band [61], fast marching [62] and additive operator splitting [63]. Despite 

substantial improvements in efficiency, they can be very difficult to implement.  

 

In [64], Chen and Vese introduced new GAC model without using edge information. 

They proposed to make the contour robust to initialization, noise and boundary leaking. 

Their model is based on Mumford-Shah functional for segmentation [65]. This model 

assumes that the image I  is divided into two regions of approximately piecewise-

constant intensities, of distinct values inI  and outI . The object to be detected is 

represented by the region with the value inI , and the background is represented by the 

region with value outI .  

 

Let the curve C  evolves in a bounded open subset Ω  of 2ℜ . ( )Cinside  denotes the 

region enclosed by C  and ( )Coutside  denotes the region outside of C . To extract the 

object boundary, B , they consider the following “fitting” term,  
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 ( ) ( ) ( )
( )

( )
( )
∫∫ −+−=+

Coutside
out

Cinside
in

outin yxyxCFCF 22 ,, μμ II                     (B.13) 

 

Where, the constant inμ  is the average brightness inside the curve C , depending on the 

curve position, and  outμ  is the average outside C . The boundary of the object B  is the 

curve C  that minimizes the fitting term, 

 

 ( ) ( )( )CFCFB outin

C
+= min                                              (B.14) 

 

If the curve C  is outside the object, then ( ) 0>CF in  and ( ) 0≈CF out . If the curve C  is 

inside the object, then ( ) 0≈CF in  and ( ) 0>CF out .  If the curve is both inside and 

outside the object, then ( ) 0>CF in  and ( ) 0>CF out . When the curve C  is at the 

boundary of the object, ( ) 0== BCF in  and ( ) 0== BCF out , and the minimum is 

achieved as shown below, 

 

( ) ( ) 0=+ BFBF outin                                              (B.15) 

 

In the their active contour model, they minimize the given fitting term as well as some 

regularization terms, such as length of C  or area of the region inside C . The proposed 

energy functional is defined below, 

 

( ) ( ) ( )( )
( )

( )
( )
( )
∫∫ −+−+

⋅+⋅=

Coutside
outout

Cinside
inin

AAoutin

dxdyyxdxdyyx

CinsideAreavCLengthC
22 ,,

,,

μλμλ

μμμξ

II                   (B.16) 

 

Where, 0,,0,0 >≥≥ outinAA v λλμ  are chosen parameters and in all their numerical 

calculations 1== outin λλ  and 0=Av . They consider the following minimization 

problem, 

 

( )CoutinCoutin

,,inf
,,

μμξ
μμ

                                                  (B.17) 
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In the level set formulation of the model, Ω⊂C  is represented by the zero level set of 

the function ℜ→Ω:φ , such as 

 

( ) ( ){ }
( ) ( ) ( ){ }
( ) ( ) ( ){ }⎪

⎩

⎪
⎨

⎧

<Ω∈=
>Ω∈=

=Ω∈=

0,:,
0,:,

0,:,

yxyxCoutside
yxyxCinside

yxyxC

φ
φ

φ
   (B.18) 

 

They use the Heaviside function H , and the one-dimensional Dirac delta function δ  as 

defined below respectively, to express the terms in the ξ . 

 

( ) ( ) ( )zH
z

zδ
zif
zif

zH
∂
∂

=
⎩
⎨
⎧

<
≥

= ,
0,0
0,1

                                 (B.19) 

 

After the level set formulation, the energy terms in ξ  can be written as follows 

 

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )( )∫∫

∫∫

ΩΩ

ΩΩ

−−+−+

+∇=

dxdyyxHyxdxdyyxHyx

dxdyyxHvdxdyyxyxδ

outoutinin

AAoutin

,1,,,

,,,,,

22 φμλφμλ

φφφμφμμξ

II
  (B.20) 

 

In order to compute the associated Euler-Lagrange equation for the unknown function 

φ , they consider slightly regularized versions of functions  H  and δ , denoted by εH  

and εδ  respectively. Keeping inμ  and outμ  fixed, and minimizing ξ  with respect to φ  

gives the following equation 

 

( ) ( ) ( ) 022 =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+−−−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∇
∇

=
∂
∂

outoutininAA vdivδ
t

μλμλ
φ
φμφφ

ε II            (B.21) 

 

Their approach especially works well for bimodal images and by its formulation, does 

not depend on boundary data. It is good at handling initialization, noise and boundary 

leakage but still suffers from computational complexity and difficulty in 

implementation, because of the level set method. Later, Chen and Vese [66] extended 

this approach to the multiphase level set framework to segment more than two-phase 
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(binary segmentation). However, they need more level set functions for this process, 

which means more complexity and difficulty.   

Different types of image forces can be combined with PAC or GAC (level set) models 

to overcome limitations and improve segmentation. In [67], the Mumford-Shah 

functional [65] based region force was adapted by PAC to handle noise and 

initialization problems. Paragios and Deriche [68] unified boundary- and region-based 

forces and implemented using level sets to improve segmentation and solve 

initialization and noise problems. Recently, Xie and Mirmehdi [69] proposed a 

magnetic force based on magnetostatic theory using level sets to handle problems with 

initialization and convergence to concave regions. 

 


