Morphing of ‘flying’ shapes for autonomous underwater and aerial vehicles

Turnock, S.R., Keane, A.J., Bressloff, N.W., Nicholls-Lee, R.F. and Boyd, S.W. (2009) Morphing of ‘flying’ shapes for autonomous underwater and aerial vehicles. In, NATO RTO Modelling & Simulation Conference 2009, Lisbon, Portugal, 2009. 19pp, 1-19.


[img] PDF - Accepted Manuscript
Download (1426Kb)


Autonomous vehicles are energy poor and should be designed to minimise the power required to propel
them throughout their mission. The University of Southampton’s School of Engineering Sciences is
actively involved in the development of improved designs for aerial and maritime autonomous vehicles.
The ability to adapt or ‘morph’ their shape in-flight offers an opportunity to extend mission
range/duration and improve agility. The practical implementation of such systems at small scale requires
detailed consideration of the number, mass and power requirements of the individual actuation elements.
Three approaches for minimising actuation requirements are considered. The first uses a combination of
push-pull actuators coupled with a snap-through composite lay-up to achieve alterations in shape. It is
proposed that such a system could be applied to the trailing edge of an autonomous underwater glider
wing instead of the more usual servo operated trailing edge flap. The anisotropy achieved through use of
different composite ply orientations and stacking can also be used to generate bend-twist coupling such
that fluid dynamic loads induce ‘passive’ shape adaptation. The third approach uses a detailed
understanding of the structural response of buckled elements to applied control moments to deform a
complete wing. At this stage of the research no definitive conclusions have been drawn other than that all
three approaches show sufficient promise and can now be applied to one of the autonomous vehicles.

Item Type: Conference or Workshop Item (Paper)
Subjects: V Naval Science > VM Naval architecture. Shipbuilding. Marine engineering
T Technology > TL Motor vehicles. Aeronautics. Astronautics
Divisions : University Structure - Pre August 2011 > School of Engineering Sciences > Computational Engineering and Design
ePrint ID: 66659
Accepted Date and Publication Date:
Date Deposited: 10 Jul 2009
Last Modified: 31 Mar 2016 12:52

Actions (login required)

View Item View Item

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics