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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

Adaptive Detection in Ultrawide Bandwith Wireless Communication Systems

by Qasim Zeeshan Ahmed

The main motivation of this thesis is to design low-complexity high-efficiency pulse-based ultra-

wide bandwidth (UWB) systems with reasonable bit-error-rate (BER) performance. The thesis starts

with proposing a new pulse-based UWB system, namely the hybrid direct-sequence time-hopping

(DS-TH) UWB system. This novel pulse-based UWB system is capable of inheriting the advantages

of both the pure direct-sequence (DS)-UWB and pure time-hopping (TH)-UWB systems, while avoid-

ing their disadvantages. Furthermore, this hybrid DS-TH UWB scheme can be easily converted to the

pure DS-UWB or pure TH-UWB scheme. The BER performance of thehybrid DS-TH UWB sys-

tems employing either correlation or minimum mean-square error (MMSE) detection is investigated.

From our studies it can be found that both the correlation andMMSE detectors have the capability

to make use of the multipath diversity. The correlation detector does not have the capability to re-

move multiuser interference (MUI) and inter-symbol interference (ISI), while the MMSE detector is

capable of mitigating efficiently both the ISI and MUI. Whilefor single-user scenario the correlation

detector is near-optimum and has low-complexity, it is shown that for multi-user scenarios the MMSE

detector must be employed in order to achieve a reasonable BER performance. However, in this case

the complexity of the hybrid DS-TH UWB system is found to be extreme. Furthermore, in order to

implement MMSE detection, the signature waveforms, delaysand complete channel knowledge of all

the active users are required to be known by the receiver, which make the MMSE detection impracti-

cal. In practical channels obtaining the channel knowledgeis highly challenging, since the received

UWB signals usually consist of a huge number of resolvable multipaths and the energy conveyed by

each resolvable multipath is usually very low.

In order to mitigate the above mentioned problems of the MMSEdetection, then, in this thesis a

range of training-based adaptive detectors are investigated in the context of the hybrid DS-TH UWB

systems. In detail, in this thesis a brief introduction to the literature of adaptive detection is first

provided, followed by the philosophies of least mean-square (LMS), normalised least-mean squares

(NLMS) and recursive least square (RLS) algorithms. In our study decision directed (DD) approaches

are also introduced to the adaptive detectors to improve theBER performance and spectral-efficiency
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of the hybrid DS-TH UWB systems. Our studies show that the complexity of the adaptive LMS and

adaptive NLMS detectors may be even lower than that of the conventional correlation detector. For

the RLS adaptive detector, our studies show that, if it is initialised properly, it is capable of attaining

a faster convergence rate than the LMS and NLMS adaptive detectors. In this case, the RLS adaptive

detector requires less number of training bits, and hence provides higher spectral-efficiency than the

LMS and NLMS adaptive detectors for the hybrid DS-TH UWB systems. Furthermore, the RLS

adaptive detector is more robust and has more degrees of freedom than the LMS and NLMS adaptive

detectors. However, the complexity of the RLS adaptive detector is still too high to be implemented

in practical UWB systems.

In order to further reduce the complexity of the RLS adaptivedetector, rank-reduction techniques

are introduced. With the aid of reduced-rank techniques, the filter size can be efficiently reduced,

which in turn reduces the number of parameters required to beestimated. Consequently, the conver-

gence speed, tracking ability and robustness of the RLS adaptive detector can be improved. In this

thesis, three classes of reduced-rank techniques are investigated associated with the RLS adaptive

detector, which are derived based on the principles of principal components analysis (PCA), cross-

spectral metric (CSM) and Taylor polynomial approximation(TPA), respectively. Our study and sim-

ulation results show that, given a sufficient rank of the detection subspace on which the RLS adaptive

detector is operated, the reduced-rank RLS adaptive detector is capable of achieving a similar BER

performance as the corresponding full-rank RLS adaptive detector, while with a detection complexity

that is significantly lower than that of the full-rank RLS adaptive detector. Furthermore, our studies

shown that the TPA-based reduced-rank RLS adaptive detector constitutes one of the highly efficient

detection schemes for the pulse-based UWB systems. The TPA-based reduced-rank RLS adaptive

detector is usually capable of attaining the full-rank BER performance with a very low rank, which is

typically in the range of5 − 8, regardless of the system size in terms of the spreading factor, number

of resolvable multipaths and the number of users supported by the UWB systems.

Finally, in this thesis we summarise our discoveries and provide discussion on the possible future

research issues.
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Chapter 1
Introduction

1.1 Research Background and Motivation

With the development of consumer electronics, personal computing and wireless communications,

people have become more and more interested in connecting together different devices to form a net-

work [1–5]. For example, a personal area network (PAN) can now easily be formed by using cables

to connect all the devices, in order to achieve communications between them. However, in the cable-

connected networks the mobility, flexibility and scalability of the connected devices are very low,

since the devices are required to be connected at particularpositions with special interface plugs [5].

For this sake, in recent years wireless techniques have drawn great attention for implementation of

certain networks in order to improve their mobility, flexibility and scalability. Among the various

wireless techniques, UWB technique is the one which has beenproposed for future short-range in-

door wireless communications [1, 6–8], in order to achieve the integration of consumer electronics,

personal computing and mobile devices [1–5]. Specifically,the applications of the UWB techniques

can be broadly divided into the following three categories.

• High data rate (HDR) services:For supporting HDR services, the UWB systems are expected

to support a data rate in the range from110 Mbps to more than1 Gbps [5,6]. The HDR UWB

systems are operated in the frequency band from3.1 GHz to 10.6 GHz. They can be built

at low-cost with a coverage range less than10 m. The major applications of the HDR UWB

systems include file transfer, video streaming, high quality audio streaming, etc. Recently, Or-

thogonal Frequency-Division Multiplexing (OFDM)- based UWB schemes have been adopted

for providing HDR services [3,6].

1
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• Low data rate (LDR) services: When considering LDR services, low complexity and low

power consumption are usually the main concern of the UWB systems. In this type of UWB

systems, the amount of data transfered is usually very small, while the battery life of the devices

is of great importance [6, 9]. The LDR applications of UWB include wireless sensor networks

and tagging [10,11], as well as the communications scenarios where, exact location is particular

significant [11]. It has been recognized that the pulsed-based UWB schemes are well suitable

for the LDR applications [6].

• Imaging: Imaging is also one of the major applications of UWB systems.The major charac-

teristics of imaging include accurate ranging and high-precision geolocation. The applications

of UWB systems for imaging include ground penetration radar, through and in-wall imaging,

security devices, etc. [6,12]. These applications are suitable for providing alternatives for some

harsh environments, where global positioning system (GPS)fails [6]. Additionally, the UWB

techniques can provide imaging applications for medical instruments, such as x-rays and body

screening scans.

Although the research for the theory and applications of UWBcommunications has been car-

ried out for many years, however, design of a practical UWB system still faces a lot of challenges.

Specifically, when designing UWB systems demanding high spectral-efficiency and high flexibility,

the following issues should be considered with emphasis.

• In UWB communications, a low-complexity receiver that is capable of achieving a reasonable

bit-error-rate (BER) performance is highly important, since UWB devices are usually required

to be simple and light weight. In UWB communications, the multipath delay profile (MDP)

is generally sparse [13], resulting in that a large number oflow-power resolvable multipaths

are required to be processed at the receiver, in order to makethe UWB radio energy-efficient

and achieve a good BER performance. The UWB receivers are required to be able to mitigate

efficiently the ISI. They are required to be efficient when theUWB system supports multiple

users, which generate MUI. Furthermore, the UWB receivers are expected to be able to cope

with the interfering signals generated by the other existing UWB systems, narrowband and

wideband interferers;

• In UWB communications channel estimation becomes highly challenging [14], not only be-

cause the number of resolvable multipaths is high, but also because each multipath channel

conveys very low power. Furthermore, the number of parameters, such as delays, amplitudes,
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phases, etc. associated with each resolvable multipaths, required to be estimated at the re-

ceiver is extremely high, which makes the channel estimation unaffordably complex for a low-

complexity UWB device;

• Since UWB signals usually have very wide bandwidth, they areunavoidably overlapping with

the other existing radios. Hence, the interference inflicted by the UWB systems on the existing

wireless systems operated in the same frequency-band should be as low as possible;

• Synchronization is another major issue for UWB systems. Thehuge bandwidth of the UWB

signals make them have a fine time resolution, which results in that a large space is required to

be searched during the synchronization stage. Generally, an UWB system requires a fast and

accurate synchronization step. However, due to the large search space, low power constraint,

huge number of low-power multipaths and very low duty cycle,the synchronization process

in UWB communications becomes slow and complicated. In addition to the above-mentioned

synchronization issues, in UWB systems a very fast analog-to-digital converter (ADC) is also

required to sample the received signals constituted by nano-second pulses, which also makes

the implementation of UWB system highly challenging [15];

• Finally, in UWB communications the characteristics of the basic UWB pulses are much more

complicated than that of the basic pulses used in narrowbandsystems. The basic UWB pulses

characteristics strongly affect the design of transmitterand receiver filters, signal bandwidth,

BER performance of the UWB system in Gaussian and/or multipath fading environments.

Due to the above-mentioned issues, this thesis motivates topropose and investigate a generalized

pulse-based UWB scheme, namely the hybrid direct-sequencetime-hopping UWB (DS-TH UWB)

system. As our forthcoming discourse shown, both the pure direct-sequence UWB (DS-UWB) and

time-hopping UWB (TH-UWB) constitute special examples of our proposed hybrid DS-TH UWB

scheme. In this thesis, we focus on studying the achievable performance of the hybrid DS-TH UWB

systems, when the UWB systems are operated in Gaussian or multipath fading environments. We

motivate to design the low-complexity receivers for the hybrid DS-TH UWB systems. These low-

complexity receivers are expected to be free from channel estimation and are operated without re-

quiring the knowledge, such as the number of resolvable multipaths, the multipaths’ strength, etc.

Furthermore, these low-complexity receivers are expectedto be capable of achieving a reasonable

BER performance in the presence of MUI and ISI, when communicating over UWB channels. To be

more specific, the work carried out in this thesis can be summarised as follows.
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1.2 Thesis Outline

In this thesis, pulse-based UWB systems, namely the pure TH-UWB, pure DS-UWB and hybrid

DS-TH-UWB systems are investigated. The thesis is structured as follows:

✦ Chapter 2: In this chapter an overview is provided for the various UWB systems in the con-

text of their advantages and disadvantages. Specifically, the UWB systems reviewed include

the TH-UWB, DS-UWB, multiband OFDM-UWB, etc. Additionally, in this chapter the time-

domain pulses proposed for UWB communications are reviewedand their characteristics are

compared. The stochastic tapped-delay-line (STDL) channel propagation model for modelling

UWB indoor channels is analyzed. The differences between the UWB channels and the con-

ventional narrowband/wideband channels are addressed. Furthermore, the Saleh-Valenzuela

(S-V) channel model for UWB indoor wireless communicationsis discussed in detail. Note

that, in this thesis the S-V UWB indoor channel model is invoked for the BER performance

evaluation of the various pulse-based UWB systems in the following chapters.

✦ Chapter 3: Since both the TH-UWB and DS-UWB schemes have their unique advantages and

disadvantages, a hybrid DS-TH UWB scheme using both DS spreading and TH is proposed in

Chapter 3, in order to take the advantages of both the DS-UWB and TH-UWB schemes, while

avoiding simultaneously their disadvantages. It can be shown that the hybrid DS-TH UWB

systems are capable of providing more degrees-of-freedom than the pure DS-UWB or pure TH-

UWB systems. Specifically, in this chapter the error performance of the hybrid DS-TH UWB

systems is investigated associated with various low-complexity detection schemes, which in-

clude the conventional correlation detector and minimum mean-square error (MMSE) detector,

respectively, when communicating over UWB indoor wirelesschannels. The complexity of the

hybrid DS-TH UWB systems employing both the correlation detector and MMSE detector are

analyzed. From the simulation results obtained in this chapter, we can find that there is a trade-

off between the DS spreading and TH spreading invoked in the hybrid DS-TH UWB systems,

especially, when the single-user correlation detector is considered. The best BER performance

of a hybrid DS-TH UWB system can be achieved by appropriatelychoosing the DS and TH

spreading factors. Furthermore, when the hybrid DS-TH UWB systems support multiple users,

multiuser receiver, such as MMSE receiver, is required for enhancing the BER performance,

but at a cost of increase of system complexity.
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✦ Chapter 4: In this chapter we first demonstrate that the MMSE multiuser detector is difficult

to be implemented practically in a pulse-based UWB system, due to its high computational

complexity and requiring that the receiver has the ideal knowledge about the channel state in-

formation (CSI) associated with all the users as well as the spreading sequences of all the users,

which may not be available in practical communication environments. For this sake, in this

chapter we propose to employ adaptive detection for the pulse-based UWB systems with the aid

of training sequences. In this chapter different training-based adaptive detectors are proposed

and also studied in the context of different UWB systems. Specifically, the adaptive detectors

based on the algorithms of least mean-square (LMS), normalised least mean-squares (NLMS)

and recursive least-square (RLS), etc., are investigated in conjuction with the hybrid DS-TH

UWB systems. Furthermore, in this chapter the complexity ofthese adaptive detectors are

analyzed when considering communications over UWB channels.

✦ Chapter 5: Since in UWB systems a high spreading factor might be used andsince there

usually exists a large number of multipaths in UWB channels,the filter length of the adaptive

detectors considered in Chapter 4 may hence be very long, yielding high complexity of de-

tection. Furthermore, according to the adaptive filtering theory, a large number of filter taps

makes the convergence of an adaptive filter slow [16]. Therefore, in this chapter rank-reduction

techniques are employed for further reducing the complexity of detection in UWB systems, in

order to make the UWB systems practically implementable. Specifically, in this chapter three

classes of reduced-rank techniques are investigated, which are derived based on the principles

of principal components analysis (PCA), cross-spectral metric (CSM) and Taylor polynomial

approximation (TPA), respectively. Our study and simulation results in this chapter show that,

given a sufficiently high rank of the detection subspace, theabove-mentioned reduced-rank

detection schemes are capable of achieving a similar BER performance as the correspond-

ing full-rank detection scheme, while with a detection complexity that is significantly lower

than that of the full-rank detection scheme. Furthermore, it can be shown that the TPA-based

reduced-rank detection scheme results in a better BER performance than the PCA- or CSM- as-

sisted reduced-rank detection, when the same rank of detection subspace is assumed, provided

that the rank of the detection subspace is lower than that of the signal subspace, as defined in

Chapter 5.

✦ Chapter 6: Finally, in Chapter 6 we summarise our conclusions obtainedin this thesis and

present possible future research directions.
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1.3 Novel Contributions

The novel contributions of this thesis can be summarised as follows.

• A hybrid DS-TH UWB scheme is proposed for the pulse-based UWBsystems. This novel

pulse-based UWB scheme is capable of inheriting the advantages of both the pure DS-UWB

and pure TH-UWB schemes, while simultaneously circumventing their disadvantages. Fur-

thermore, it can be shown that the hybrid DS-TH UWB scheme is capable of providing more

degrees-of-freedom than the pure DS-UWB or pure TH-UWB system. The increased degrees-

of-freedom of the hybrid DS-TH UWB can be exploited for enhancing the UWB system’s

performance and/or for providing flexibility for design andreconfiguration of UWB systems.

In this thesis one of our major objectives is to design low-complexity detectors with accept-

able detection performance in UWB communications. Therefore, in this thesis the detection

schemes considered are the low-complexity detection schemes, which are the single-user cor-

relation detector and minimum mean square error multiuser detectors (MMSE-MUD).

✦ Single-User Correlation Detector: It has the lowest complexity. However, when it is

employed for detection in UWB systems, the complexity of thecorrelation detector in-

creases at least linearly with the number of multipaths collected at receiver. Further-

more, as the number of users increases, the BER performance of the UWB systems using

correlation detector becomes worse, as the correlation detector does not have the capa-

bility to mitigate MUI and ISI. However, given the channel conditions, signal-to-noise

ratio (SNR) value and the total spreading factor, there exist optimum combinations of DS

and TH spreading factors, which result in that the hybrid DS-TH UWB system achieves

the lowest BER.

✦ Multiuser MMSE Detector: MMSE detector is one of the multiuser detectors, which has

a higher complexity than the correlation detector. The complexity of the MMSE detector

can be maintained to be a constant, since the MMSE detector has the ability to combine

automatically all the multipaths falling in the same window. Furthermore, the MMSE

detector has the capability to mitigate both the MUI and ISI.Our study in this thesis

shows that the BER performance of the pure DS-UWB, pure TH-UWB and hybrid DS-

TH UWB systems is similar, when the MMSE detector assuming ideal CSI and signature

codes is employed.

• Generally, ideal channel knowledge is very hard to acquire in the pulse-based UWB commu-
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nications systems, since the received UWB signals are usually constituted by many multipath

components and each multipath component conveys very low energy. Furthermore, the com-

plexity of the MMSE detector is mainly determined by the inversion opeartion of the auto-

correlation matrix, which might be very large due to the employment of a high spreading factor

and existance of a large number of multipaths. According to the principles of adaptive filtering,

adaptive detectors may be employed for solving the complexity issue in UWB systems, since

the adaptive detectors can be operated without requiring toinvert the autocorrelation matrix.

Furthermore, with the help of training sequences, the adaptive detectors can also be operated

without requiring the knowledge about the user signatures as well as the UWB channels. There-

fore, in Chapter 4 a range of adaptive detectors operated based on the principles of LMS, NLMS

and RLS are proposed and investigated in the context of the pulse-based UWB systems. The

performance of the adaptive detectors are investigated andcompared in terms of their conver-

gence speed, BER performance, robustness and computational complexity. From our study and

performance results, the following main conclusions can bederived.

✦ LMS-Aided Adaptive Detector: The complexity of the LMS-aided adaptive detector is

lower than that of the RAKE-receiver. The BER performance ofthe LMS-aided adaptive

detector at higher SNR value is similar as that of the ideal MMSE detector, which employs

perfect CSI. However, the LMS-aided adaptive detector doesnot perform well in the low

SNR region. In comparison with the NLMS- and RLS-aided adaptive detectors, our study

shows that the LMS-aided adaptive detector has a relativelylower convergence speed.

✦ NLMS-Aided Adaptive Detector: The NLMS-aided adaptive detector has a slightly

higher complexity than the LMS-aided adaptive detector. However, its complexity is

still lower than that of the RAKE receiver. By contrast, the BER performance of the

NLMS-aided adaptive detector is better than that of the LMS-aided adaptive detector.

Furthermore, the NLMS-aided adaptive detector is more robust to noise amplification

problem than the LMS-aided adaptive detector. Additionally, the NLMS-aided adaptive

detector converges faster than the LMS-aided adaptive detector.

✦ RLS-Aided Adaptive Detector: The RLS-aided adaptive detector has lower complexity

than the MMSE-MUD using full channel knowledge, but has significantly higher com-

plexity than the single-user RAKE receiver. Our study and performance results show

that the BER performance of the RLS-aided adaptive detectoris much better than the

LMS- or NLMS-aided adaptive detector. Furthermore, the RLS-aided adaptive detec-
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tor has more degrees-of-freedom than the LMS- or NLMS-aidedadaptive detector. These

degrees-of-freedom may be used for controlling the convergence rate and the mean square

error (MSE) of the RLS-aided adaptive detector. It can be shown that the RLS-aided

adaptive detector is generally more robust and also converges faster than the LMS- and

NLMS-aided adaptive detectors.

• Finally, in this thesis reduced-rank techniques are proposed and investigated in the context of

the adaptive detectors for the hybrid DS-TH UWB systems. It can be shown that the reduced-

rank techniques are capable of providing a flexible trade-off between the achievable BER per-

formance and the computational complexity. Specifically, the effects of the reduced-rank tech-

niques on the performance of the hybrid DS-TH UWB systems canbe summarised as follows.

✦ Convergence Speed:For the training-based adaptive detectors, it is desirablethat the

convergence speed is high, so that the overhead incurred forthe training could be min-

imised. As analysed previously, in pulse-based UWB systems, the length of the adaptive

detector affects the convergence speed: the convergence speed increases as the length of

the adaptive filter becomes short. When the reduced-rank techniques are employed, the

length of the adaptive filters can be shortened. Hence, employing the reduced-rank tech-

niques may enhance the convergence speed of the adaptive filters invoked. Furthermore,

faster convergence results in shorter training sequences,hence enhancing the spectral-

efficiency of the UWB systems.

✦ BER Performance: In conventional adaptive detectors, there exists a trade-off between

the convergence speed and the MSE achieved, where higher convergence speed usu-

ally leads to higher MSE and ultimately results in worse BER performance. As above-

mentioned, applying reduced-rank techniques enhances theconvergence speed of the

adaptive detectors. However, in the reduced-rank adaptivedetectors faster convergence

usually does not lead to higher MSE value. The reduced-rank adaptive detectors are ca-

pable of achieving the same MSE performance as the adaptive detectors without using

reduced-rank techniques. Furthermore, the reduced-rank adaptive detectors are capable

of achieving similar BER performance as the full-rank adaptive detectors.

✦ Robustness:With the employment of reduced-rank detections, the numberof parameters

to be estimated is reduced. Hence, the reduced-rank adaptive detectors are more robust to

MUI and ISI than the conventional adaptive detectors without using reduced-rank tech-

niques.
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✦ Computational Complexity: The number of parameters need to be updated in a reduced-

rank adaptive detector is significantly lower than that of a corresponding conventional

adaptive detector. Hence, the complexity of the adaptive detector may be reduced by

employment of reduced-rank techniques.

In this thesis, a range of reduced-rank schemes are investigated, which are derived based on the

principles of PCA, CSM and TPA, respectively. From our studyand simulation results, we can

have the following observations.

✦ Principal Component Analysis (PCA):PCA is derived based on the eigen-decomposition

technique. In this technique,U , which is a value that may be significantly lower than the

rank of the original observation space, eigenvectors corresponding to theU number of

largest eigen-values of the autocorrelation matrix concerned are used to form a detection

subspace. Our study shows that, if the rankU of the detection subspace is lower than the

rank of the signal subspace determined by the number of signals invoked, BER floors are

likely to occur. However, when the rankU of the detection subspace reaches the rank of

the signal subspace, full-rank BER performance of the UWB systems can be achieved.

✦ Cross Spectral Metric (CSM): CSM is also derived based on the eigen-decomposition

technique. Our study and simulation result show that, if therankU of the detection sub-

space is lower than the rank of the signal subspace, the CSM-based rank-reduction scheme

outperforms the PCA-based rank-reduction scheme. However, CSM-based reduced-rank

adaptive detectors cannot approach the BER performance of the corresponding full-rank

adaptive detector. This performance loss is mainly the result of time-varying channels,

since in this case the detection subspace cannot be updated correspondingly with the time-

varying channels.

✦ Taylor Polynomial Approximation (TPA): The TPA-based reduced-rank scheme does

not depend on the eigen-decomposition and can achieve a similar BER performance as

a corresponding full-rank scheme with a rank that is significantly lower than that of

signal subspace. Given a rank of the detection subspace, theTPA-based reduced-rank

scheme is usually capable of achieving the lowest BER among the three types of reduced-

rank schemes considered. Furthermore, the implementationcomplexity of the TPA-based

reduced-rank scheme does not scale with the size of the UWB system, including the total

spreading factor and the number of users supported.



Chapter 2
Overview of Ultrawide Bandwidth

Communications and Systems

Channel capacity of a communications system depends on the bandwidth occupied and the signal-

to-noise ratio SNR achieved at the receiver. According to Shannon [17], channel capacity increases

linearly with the increase of bandwidth but increases only logarithmically with the increase of SNR.

Furthermore, according to [18], the channel capacity increases linearly with the SNR, if the channel

bandwidth is infinite. Therefore, in order to achieve a higher channel capacity without incurring a

higher SNR, wider bandwidth can be employed by the communications systems. For this sake, in re-

cent years a lot of attention in wireless communications hasbeen drawn to the UWB communications,

where the instantaneous bandwidth is significantly higher than the minimum bandwidth required to

deliver the information [1,19]. According to the Federal Communications Commission (FCC) in the

United States [1, 7, 8, 19], a wireless system can be referredto as an UWB system, either when the

frequency bandwidth of the system is at least20 percent of the center frequency, or when the sys-

tem’s frequency bandwidth is higher than500 megahertz (MHz) and the center frequency is above6

gigahertz (GHz).

In recent years UWB techniques have drawn a lot of interest inboth research and industry com-

munities [1, 3, 7, 8]. The potential strength of UWB techniques lies in their use of extremely wide

transmission bandwidth, which results in that the UWB radios employ a range of merits when com-

pared against the conventional narrowband and wideband radios. Specifically, the UWB radios em-

ploy the merits, such as, accurate position location and ranging [7, 10, 20–22], lack of significant

fading [13, 23], high multiple-access capability [24], high data rate [13, 19, 21], covert communica-

10
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tions [19,23,25,26], possibly easier material penetration [24,27,28], etc. However, due to the highly

dispersive UWB channels, UWB communications may be mainly suitable for short-range commu-

nications, such as for applications in wireless sensor networks (WSN) and PAN [29]. One of the

major applications of UWB techniques is for alleviating theproblem of increasingly scarce spectrum

resources by re-using the spectrum already allocated to theother systems without degrading their

quality-of-services (QoS) noticeably [30].

2.1 A Brief History of UWB Communications

The history of UWB communications goes back to the first wireless transmission made on12 Decem-

ber1901 by Marconi with the help of a Spark Gap Emitter, which actually generated UWB signals,

as the instantaneous bandwidth of the sparks was significantly higher than the data rate transmit-

ted [1, 31, 32]. However, the actual work in UWB communications was not started until the early

1960s. The research of UWB communications in1960s was led by Harmuth at Catholic University

in America, Ross and Robins at Sperry Rand Corporation and van Etten at the United States Air

Force (USAF) Rome Air Development Center [1, 33]. In UWB communications, matched-filtering

(MF) was first introduced by Harmuth, Ross and Robbins [33] and the UWB was referred to as

baseband radio [1]. The system design and antenna concept were developed based on Van Etten’s

empirical testing [33]. The fundamental concept in UWB communications was to characterize the

UWB system as a linear time-invariant (LTI) system with the aid of time-domain response rather than

frequency-domain response. However, until1960, there was no convenient means to observe and

measure the waveforms that had a duration of sub-nanoseconds [31]. The major break through in

UWB communications was achieved, when the sampling oscilloscope was invented by Tektronix and

Hewlett-Packard in1960s [1,31,33]. The sampling oscilloscope helped to display and integrate UWB

signals, which made it possible to design simple circuits necessary for generation of sub-nanosecond

pulses [1, 33]. During the same period, in Lawrence Livermore National Laboratories (LLNL) and

Los Alamos National Laboratories (LANL) research in pulse transmitters, receivers and antennas

was performed [33]. In1970s the basic design for UWB systems was available along with the de-

sign of the basic components such as, pulse train generator,pulse train modulator, pulse receiver and

wideband antennas, etc. However, the commercial success for UWB communications did not come

into practice until1974, when Moray designed an impulse radar, which was capable of penetrating

the ground and was used by Geophysical Survey System [33]. In1994, McEwan at LLNL devel-

oped the first Micropower Impulse Radar, which was a compact,inexpensive and low-power UWB
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system [1,33].

According to literature, UWB systems can be implemented by pulse-based or multi-carrier-based

techniques. In the forthcoming section, a brief discussionof these two approaches is provided.

2.2 Pulse-Based UWB System

Pulse-based UWB system is also referred to as an impulse radio [34]. It is a carrier-less or a base-

band modulation system, where signals are transmitted withthe assistance of trains of time-shifted

pulses [1, 34, 35]. As the pulse-duration of UWB signals is onthe order of nano-seconds (ns), the

bandwidth occupied by the pulse-based UWB signals transmitted is typically several GHz. In UWB

communications, pulses should be designed properly in order to improve the efficiency of communi-

cations. Hence, the basic pulses proposed in literature arereviewed in Section 2.2.1. In this Section

the basic requirements for the UWB pulses are also discussed. In Section 2.2.2 different types of

UWB pulses are analyzed, which include the Gaussian pulses (GP), Traingular enveloped sinusoidal

monocycle (TESM), pulses based on Prolate spheroidal (PS) functions, Modified hermite polyno-

mial based pulses (HP) and Gaussian modulated sinusoidal pulses (GMSP). Section 2.2.3 presents

the typical UWB signals transmitted. In Section 2.2.4 we discuss the advantages and disadvantages

of different types of modulation schemes that may be employed by UWB systems. Finally, in Sec-

tion 2.2.5 different kinds of multiple access (MA) schemes available for pulse-based UWB system

are considered. Let us first review the basic pulses for UWB communications.

2.2.1 Basic Signal Pulses for UWB Communications

The basic UWB signal pulseψ(t) is usually defined in the time-domain. Let the duration or thewidth

of the pulse beTψ. It has been found that the UWB system’s performance is related to the width

Tψ of the basic pulse and the performance usually degrades, when the pulse width increases [36].

This is mainly because, when using a wider pulse, the corresponding UWB system may suffer higher

interference from narrowband systems, if there are narrowband systems overlaying with the UWB

systems. For example, a Gaussian pulse withTψ = 1 ns has a center frequency of1 GHz, while a

Gaussian pulse withTψ = 2 ns has only a center frequency of500 MHz. In this case, when decreas-

ing the pulse durationTψ, the UWB spectrum moves towards higher frequencies, which eventually

expand beyond the range of the interfering frequencies [36]. Let the energy of a basic signal pulse is

denoted byEψ, which is given by

Eψ =

∫ ∞

−∞
[ψ(t)]2dt (2.1)
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The auto-correlation function of a basic signal pulseψ(t) is defined as

γψ(τ) ,
1

Eψ

∫ ∞

−∞
ψ(t)ψ(t − τ)dt (2.2)

whereτ is assumed to be in the interval[0, Tψ ]. Let us below discuss the requirements for design of

basic UWB pulses.

2.2.1.1 Requirements for Design of Basic UWB Pulses

The shape of the basic UWB pulse strongly affects the design of transmitter and receiver filters,

signal bandwidth, BER, performance in Gaussian and/or multipath fading environments [37–39].

The basic pulse may be selected from a range of time domain-pulses, including rectangular pulses,

raised-cosine pulses, prolate spheroidal function based pulses, Gaussian pulses, sinusoidal pulses,

etc. However, the pulse shape and width determine the spectrum of the transmitted signal, which

should be optimised in some sense. Specifically, when designing the basic pulses for UWB systems

the following requirements should be satisfied.

• No DC Component: In UWB systems, the transmitted pulse is differentiated after passing

through antenna [40]. Therefore, the first major requirement for the UWB basic pulse is that the

transmitted UWB signals should contain no DC component. This implies that the integration

of a basic pulse over its duration, should go to zero [41], yielding

∫ Tψ

0
ψ(t)dt = 0 (2.3)

Since there is no DC component, the transmitted power may hence be decreased [42].

• Radiation or High Power Efficiency: Radiation efficiency is defined as the ratio of the power

radiated to the total power supplied to the radiator at a given frequency [40]. For achieving

effective radiation, the basic pulse should not contain a DCcomponent as above-mentioned.

Note that, this requirement may not be necessary for the systems using carrier frequencies [40].

It is well-known that one of the main advantages of UWB systems is that they can co-exist

with the conventional narrowband or wideband systems. Specifically, by spreading the trans-

mitted power as wide in frequency as possible, the power spectral density (PSD) of UWB

signals can be very low. Consequently, UWB systems impose little interference on the other

narrowband/wideband systems. Therefore, UWB pulses must have high power efficiency. The
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conventional Nyquist pulse shaping requires linear amplifiers, which are usually not power ef-

ficient [43]. Therefore, the Nyquist pulses such as rectangular and raised cosine pulses have

not been considered for UWB applications. Additionally, inUWB communications the pulses,

which have their main lobes containing the majority of signal power are preferred. In this

case, the side lobes have relatively lower power, and thus causing less adjacent channel inter-

ference [37].

• Derivative: In UWB systems the frequency of the basic signal pulse spansseveral GHz, making

the wavelength of the pulse even smaller than the distance between transmitter and receiver.

This phenomena is known as the far zone in radio systems. Hence, in the pulse-based UWB

systems, electric field is usually more appropriately defined by differentiation operator [40].

Specifically, in pulse-based UWB systems, a pulse is differentiated when it passes through an

antenna. Since there are transmitter and receiver the received pulse is hence the second order

derivative of the transmitted pulse, after it passed both the transmitter and receiver antennas.

Consequently, in the pulse-based UWB systems, the time-domain pulse must have a second

order derivative.

As mentioned previously in this section, in order to avoid the narrowband interference, the

width Tψ of the pulse should be small so as to achieve a high bandwidth of the UWB signal.

The study in UWB, has also shown that increasing the order of the derivative of the radiated

pulse waveform shifts the PSD of the transmitted UWB signal towards higher frequencies [36].

In this case, the chances to interfere with the existing narrowband systems which are usually

allocated in the relatively low frequency region, can be avoided. Furthermore, it has been

shown in [36] that, when high data rate is required, short pulses with higher order derivative

should be employed. However, as shown in [36,44], when the data rate is not high and there is

no narrowband interference, relatively wider pulses with low order derivatives usually perform

better than the shorter pulses with high order derivative.

• Matched Filtering : In wireless communications, the conventional MF or correlator multiplies

the received signal with a locally generated replica of the transmitted signal and then integrates

the result over a certain range. The locally generated signal replica is the same as the transmitted

signal. In UWB systems, however, the conventional MF is hardto use, since the shape of

the transmitted pulses may be changed due to the differentiation operations generated by the

antennas [12, 45]. In order to employ the MF-assisted detector in UWB systems, alternatively,

an integrator can be applied before the transmit antenna andanother one is applied after receive
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antenna [46]. By doing this, the original pulse shape is recovered after the second integrator

and the MF matched to the original pulse shape can then be employed.

• Power Spectral Density: The PSD of UWB signals is an important measure of the interference

caused by UWB signals to the conventional narrowband/wideband systems or vica versa. The

PSD of UWB signals consists of two components: the continuous component that is due to the

shape of the pulse and the discrete components which are generated by the periodical transmis-

sion of the pulse sequences. In UWB communications the discrete spectrum lines are usually

the main interference sources in comparison with the continuous PSD component. However, in

practice, the continuous PSD component is often used for making the UWB signals spectrum

meet the frequency emission mask [47]. Furthermore, it is possible to shift away or reduce part

of spectral lines in some particular part of the spectrum by careful design of the modulation and

spreading sequences involved [40].

2.2.2 Time-Domain Pulses for UWB Systems

A range of basic pulses have been proposed and considered forpulse-based UWB systems. Some

of these basic pulses are defined and their relevant properties are discussed in this section. Table 2.1

summarises the typical characteristics and properties of various time-domain pulses that are consid-

ered below.

2.2.2.1 Gaussian Pulse and Its Higher Derivatives

The Gaussian pulse (GP) is modified from the conventional Gaussian probability density function

(PDF), which is expressed as [49]

ψ(t) = exp

(

− [t− µ]2

2σ2

)

(2.4)

whereµ andσ are the centre and standard deviation of the GP, respectively. For the GP, the pulse

width Tψ is related to the standard deviation byTψ = 2πσ [1]. The nominal center frequency can be

given asf0 = 1/Tψ and the−3 dB bandwidth is116% of the nominal center frequency [7]. The time-

domian pulse of (2.4) is plotted in Fig. 2.1 for differentσ values whereps stands for pico-seconds. It

can be shown from Fig. 2.1 that the time dispersion of the pulse increases as the standard deviation

increases. Furthermore, the GP has a DC component, which canbe readily observed from Fig. 2.1,

since the pulse amplitude is always positive.
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Monocycle Gaussian Triangle Prolate Modified Gaussian
Pulse Enveloped Spheroidal Hermite Modulated
(GP) Sinusoidal Functions Polynomial Sinusoidal
and higher Monocycle (PS) Based Pulses Pulses
Derivatives (TESM) (HP) (GMSP)

DC-Component Even order Do not Not Even order Do not
have a DC have a DC available have a DC have a DC
component component component component

Generation Difficult Simple No closed Very Not
[46] [46] form complex simple

expression
[37]

Transmitted/ Very Identical Very Very Very
received different [46] different different different
signal [46]

Processing Complicated Simple Complex Complex Complex
[46] [46]

Integrability Low High Not Not Not
[46] [46] available available available

Side lobe 113.5 dB 30 dB Large Large 60 dB
below the below the side side below the
main lobe main lobe lobe lobe main lobe
[46] [46] [37] [37]

BER rate Best Not As good as Worse As good
[37] available GP [37] than GP [37] as GP [42]

Falls into 5th and 7th Not Can design Frequency Easily
FCC limits derivative available to fit in shift is meet

[48] [37] required [37] [42]

Table 2.1: Summary of the UWB time-domain pulses and their basic characteristics.

The normalised PSD of the GP having the time-domian pulse of (2.4) is given by [48]

Sψ(f) =

[

exp

(

− [2πfσ]2

2

)]2

(2.5)
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Figure 2.1: Time-domain representation of the
Gaussian pulses.

0 5 10 15
−35

−30

−25

−20

−15

−10

−5

0 

Frequency (GHz)

N
or

m
al

is
ed

 P
S

D
 (

dB
m

/M
H

z)

σ = 24ps

σ = 40ps

σ = 48ps

σ = 64ps

FCC Mask

Figure 2.2: PSD of the Gaussian pulses shown in
Fig.2.1.

which is plotted in Fig. 2.2 for differentσ values. From Fig. 2.2 it can be observed that the GP’s

bandwidth becomes lower as the standard deviation increases. In Fig. 2.2 the FCC mask [37] is also

plotted. It can be shown that the PSD of the GP defined by (2.4) does not fulfill the FCC’s requirement,

regardless of the standard deviation value used. Therefore, the GP cannot satisfy all the requirements

of the basic UWB pulses as described in Section 2.2.1.1.

From Fig. 2.2 we can see that the FCC mask may be satisfied by shifting the centre of the PSD

of the GP. However, it is well-known that the impulse radio isa carrierless system, which makes the

complexity of implementation low. Shifting the centre of the PSD of the GP through carrier modula-

tion introduces carrier phase rotation, which hence increases the complexity of implementation [48].

Additionally, when shifting the pulse to a higher frequencyregion the penetration capability of the

corresponding UWB signals reduces [8].

As mentioned previously, applying a higher order derivative on the GP can shift the resultant

pulse towards a higher frequency region. It can be shown thatthe nth order derivative of the GP

exists, which can be determined recursively by the following formula [48]

ψ(n)(t) = −(n− 1)

σ2
ψ(n−2)(t) − t

σ2
ψ(n−1)(t) (2.6)

The pulses shown in Fig. 2.3 are obtained by the4th-, 5th-, 6th- and7th-order of derivatives of

the GP. From these figures we can observe that the even number of derivatives, i.e., the4th- and

6th-order, of the GP generates DC components. By contrast, the time-domain pulses derived from
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Figure 2.3: Different order of derivatives of the Gaussian pulse.

the odd number of derivatives, i.e., the5th- and7th-order, have no DC components. Hence, in our

forthcoming discourse only the odd-order derivatives of the GP are considered.

It can be derived that the normalised PSD of thenth-order derivative of the GP can be expressed

as [48]

S
(n)
ψ (f) =

(2πfσ)2n exp
{
−(2πfσ)2

}

nn exp(−n)
(2.7)

which is shown in Fig. 2.4 for different values ofσ and different values ofn. Note that, the FCC

mask for indoor UWB systems as shown in Fig. 2.4 is defined in [37]. Additionally, in Fig. 2.4 the

PSD was normalised by the peak value allowed by the FCC, whichwas−41 dBm/MHz. Explicitly,

Fig. 2.4 shows that that the5th-order or higher-order derivative of the GP is capable of satisfying the

requirement of the FCC mask.

Fig. 2.5 shows the normalised PSD of the time-domain pulses derived by the higher-order deriva-

tives of the GP for the outdoor UWB systems. As shown in Fig. 2.5, the 7th-order or higher-order
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derivative complies with the FCC limits for the outdoor UWB systems. Furthermore, as shown in

Figs. 2.4 and 2.5, in order to maintain the signal bandwidth as wide as possible, the time-domain

pulses derived by the5th- and7th-order derivatives should be employed for indoor and outdoor UWB

systems, respectively. This is because, as the derivative increases, the standard deviation increases.

Consequently, the pulse widthTψ is increased and correspondingly the bandwidth of the UWB pulse

decreases.
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Figure 2.4: Power spectral density of the time-
domain pulses formed by the high-
er-order derivatives of the Gaussian
pulse for indoor UWB systems.
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Another interesting thing about the Gaussian monocycle is higher the order of the derivative of

the Gaussian monocycle, the lower is the achievable BER performance [8]. However, this BER

performance improvement is achieved at the expense of more strict receiver synchronisation. As

shown in Fig. 2.3 the gradient of higher order Gaussian monocycle changes more rapidly with the

time, which makes the synchronisation more difficult.

The most common method for generating the GP is passing a baseband rectangular pulse stream

through a filter with a Gaussian impulse response, which can be obtained by the8th-order Bessel

filters, if their cut-off frequency are accurately set [50, 51]. However, the Bessel filter in practice are

difficult to implement. Furthermore, a rectangular pulse passed becomes smeared, when it is passed

through a Bessel filter, even when this Bessel filter is ideal.Specifically, a rectangular pulse of0.2 ns

of width may be extended to0.7 ns [46] of width, when it passes through an ideal Bessel filter. This

implies that, when using the Bessel filter to generate GP, theoriginal pulse is required to be very

narrow and should have small rise and fall time, which is sometimes unattainable in practice [46].
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Due to the above-mentioned reasons, GP is usually difficult to generate practically. Additionally,

the MF for the GP is difficult to implement, since in UWB communications the received signal is

significantly different from the transmitted signal. In this case, it is difficult to recreate a signal that

is identical to the received signal carrying the information [46], which hence makes the processing

further complicated.

2.2.2.2 Triangle Enveloped Sinusoidal Monocycle

The triangle enveloped sinusoidal monocycle (TESM) is defined as

ψ(t) =







− t+2T
T , −2T < t < −T

t
T , −T < t < T

t−2T
T , T < t < 2T

0, otherwise

(2.8)

where the pulse width isTψ = 4T . In Fig. 2.7, the TESM is plotted for the pulse widthTψ =

1 ns. From (2.8) we can find that the first order derivative of theTESM pulse is not continuous.

Hence, the second order derivative of the TESM pulses does not exist. Therefore, integrators are

required before the transmitter antenna and after receiverantenna, in order to recover the received

pulse. Consequently, MF-based receiver can be employed, which makes low-complexity detection

possible. Additionally, from Fig. 2.7, it is apparent that the TESM does not have DC components.

The PSD of the TESM is given by [46]

Sψ(f) =
T 2

4

[

sinc4
(

2π(fT − 1)

4

)

+ sinc4
(

2π(fT + 1)

4

)]

(2.9)

which is plotted in Fig. 2.8. From Fig. 2.8, it can be observedthat the side lobes of the PSD are

about30 dB lower than the main lobe. However, these side lobes do not degrade the system perfor-

mance significantly, since the magnitude of these side lobesare still much lower than that of the main

lobe [46].

The generation of TESMs is simple. For example, Fig. 2.6 represents an approach for generation

of TESMs. To be more specific, the oscillator generates a sinusoidal signal at point1 in Fig. 2.6,

which is then passed through a comparator. The comparator transforms the sinusoidal signal into a

square wave, as seen at point2 in Fig. 2.6. The square wave is then integrated to create a triangular

wave. In Fig. 2.6, the switch permits the transmitter to sendthe pulses at a desired rate. Therefore,

the signal at point3 is triangle enveloped at the desired pulse rate. Then, the traingular envelopes are
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multiplied with the original sinusoid in order to generate the sinusoidal pulses as shown in point4 of

Fig. 2.6. The resulted signal is then integrated, leading tothe final TESMs pulses as shown in point

5.

2.2.2.3 Prolate Spheroidal Functions

The idea of generating the UWB basic pulse by Prolate Spheroidal (PS) functions was presented

in [47]. Fig. 2.9 represents the block diagram illustratingthe principles of generating the basic UWB

pulse using PS functions. As observed in Fig. 2.9 the basic pulseψ(t) is passed through a bandpass

filter having an impulse responseh(t), which has the desired frequency maskH(f). According to

Fig. 2.9, the output of the filter is the convolution ofψ(t) with h(t), which can be expressed as

y(t) =

∫ Tψ/2

−Tψ/2
ψ(τ)h(t − τ)dτ (2.10)

In order for the pulse generated to be used for the UWB communications, according to the princi-

ψ(t) λψ(t)

f

|H(f )|

Figure 2.9: Block diagram generating the basic UWB pulses through Prolate Sphedorial functions.

ples of UWB communications, we should havey(t) = λψ(t), whereλ is the attenuation constant.

According to FCC limitsh(t) is given as [47]

h(t) = 2fUsinc(2fU t) − 2fLsinc(2fLt) (2.11)

wherefL = 3.1 GHz andfU = 10.6 GHz. It has been shown that a closed-form solution to (2.10)

is extremely difficult to find. For this sake, an algorithm hasbeen proposed in [47] which obtains

a numerical solution through the discretisation of (2.10).To be more specific, when using(N + 1)

samples per pulse widthTψ, (2.10) can be written as

λψ[n] =

N/2
∑

m=−N/2

ψ[m]h[n −m], n = −N
2
, · · · , N

2
(2.12)
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wherey(t) = λψ(t) was assumed. When expressed in matrix form, (2.12) can be

λ

















ψ[−N
2 ]

ψ[−N
2 + 1]
...

ψ[0]
...

ψ[N2 ]

















︸ ︷︷ ︸

ψ

=

















h[0] h[−1] . . . h[−N ]

h[1] h[0] . . . h[−N + 1]
...

...
...

...

h[N2 ] h[N2 − 1] . . . h[−N
2 ]

...
...

...
...

h[N ] h[N − 1] . . . h[0]

















︸ ︷︷ ︸

H

















ψ[−N
2 ]

ψ[−N
2 + 1]
...

ψ[0]
...

ψ[N2 ]

















︸ ︷︷ ︸

ψ

(2.13)

whereH is a Toeplitz matrix andψ is the eigenvector ofH andλ is a eigenvalue corresponding

to ψ. Explicitly, λ andψ can be found by the eigenanalysis ofH. Let the eigenvalues ofH be

λ1 ≥ λ2 ≥ · · · ≥ λN and their corresponding eigenvectors beψψψ1,ψψψ2, · · · ,ψψψN . Then, any eigenvalue

and its eigenvector satisfies (2.13). However, it has been shown in [47] that the eigenvalue chosen

affects the desired power spectrum and that high-valued eigenvalue is usually preferred. Therefore,

for our case of (2.13), we can chooseλ1 and its corresponding eigenvectorψψψ1, in order to form the

UWB pulseψ(t).

Note that, when the matrixH is a Hermitian matrix, then its eigenvalues are real and their cor-

responding eigenvectors are orthogonal. In this case, multiple synchronous orthogonal UWB pulses

may be generated, which can be used to transmit high information rate without interference in an

UWB systems [47].

The UWB basic pulses generated using the PS functions can meet the FCC masks without fre-

quency shift. However, this type of UWB basic pulses cannot be generated based on closed-form

expression, which makes the implementation of the PS-basedpulses more complicated in comparison

with the Gaussian monocycles [37–39]. Additionally, decreasing the pulse widthTψ of the PS-based

pulses increases the amplitude of the dominant sidelobes ofthe PSD, which results in strong adjacent

channel interference [37–39]. However, it seems that the UWB system using the PS-based pulses is

capable of virtually achieving the same BER performance as the UWB system using GPs, for different

lengths of the repetition codes [37,38].

2.2.2.4 Modified Hermite Polynomial Based Pulses

A set of orthogonal pulses based generated on the Hermite polynomials (HP) has been proposed for

UWB communications [52]. Using the modified HP functions, a set of orthogonal pulses having



2.2. PULSE-BASED UWB SYSTEM 24

almost invariant pulse widthTψ can be obtained. The modified HP pulses can be employed by the

UWB systems, when pulse shape modulation is used as data modulation [7]. Specifically, thenth

order modified HP pulse is given by [52]

ψn(t) = exp

(

− t
2

4

)

hen(t) (2.14)

wherehen is defined as

hen(t) = (−1)n exp

(
t2

4

)
dn

dtn

[

exp

(

− t
2

2

)]

(2.15)

In Fig. 2.10, the0th, 1st, 2nd and3rd orders of HP pulses are depicted. From Fig. 2.10, we can
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Figure 2.10: Illustration of thenth order modified Hermite polynomials pulses forn = 0, 1, 2 and3.

observe that, as the GPs shown in Fig. 2.3 the HP pulses with even orders have a DC component,
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while the HP pulses with odd orders do not have a DC component.Hence, the HP pulses with even

orders are not suitable for UWB communications. Additionally, in the UWB communications using

the HP pulses, the transmitted and received pulses are different, after the antennas at the transmitter

and receiver differentiate the transmitted pulses. Hence,MF-based detection is hard to implement.
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Figure 2.11:PSD of the normalised Hermite polynomial pulses having the orders ofn = 0,1,2 and3.

The transfer function of HP pulses can be expressed as [52]

Hn+1(f) =
1

4π

{

4πnHn−1(f) − j8π2fHn(f)
}

− j2πfHn(f) (2.16)

which shows that the transfer functions of different ordersHP pulses can be computed recursively.

With the aid of (2.16), the PSD of a HP pulse can be readily obtained, which is given by|Hn(f)|2.

In Fig. 2.11 of the HP pulses is demonstrated forn = 0, 1, 2 and3. Explicitly, a frequency shift is

required for the HP pulses of order0 and1 in order to meet the FCC spectral mask. By contrast, for



2.2. PULSE-BASED UWB SYSTEM 26

the pulses with higher order, there exist large sidelobes, which need to be removed using bandpass

filters. Therefore, in the UWB systems using the HP pulses, different kinds of operations are required

for the HP pulses to meet the FCC spectral mask [37–39], whichinevitably increases the complexity

of the UWB systems.

The orthogonality of the HP pulses is one of the most desirable properties, since it enable optimum

detection with low-complexity at receiver [7]. However, the orthogonality can only be retained when

the user signals are synchronously transmitted, which in UWB communications due to multipath

fading is very difficult [8]. Furthermore, it has been found in [37] that the GPs generally outperform

the HP pulses for all SNR values. It has also been found that the MA capability of the UWB scheme

using single HP pulse is worse than that of the UWB scheme using either the GP or the PS pulse,

when assuming that all these pulses are constrained to meet the FCC spectral mask [37,39].

2.2.2.5 Gaussian Modulated Sinusoidal Pulses

The Gaussian modulated sinusoidal pulse (GMSP) is defined by[1]

ψ(t) =

(
8k

π

)2 1
√

1 + exp(2π2f2
c /k)

exp(−k2t2) cos(2πfct) (2.17)

wherefc denotes the desired frequency for the pulse, which isfc = 6.85 GHz for the FCC spectral

mask. In (2.17) the parameterk determines the pulse duration, which increases as the valueof k

decreases. Fig. 2.12 depicts the time-domain GMSP. Explicitly, the GMSP does not contain a DC

component.
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Figure 2.12: Time domain of the Gaussian
modulated sinusoidal pulse.
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The frequency response of the GMSP of (2.17) can be expressedas

ψ(f) =

(
8k

π

)2 1
√

1 + exp(2π2f2
c /k)

[√
π

k2
exp

(
−π2f2/k2

)
∗ 1

2
[δ(f − fc) + δ(f + fc)]

]

(2.18)

where∗ represents the convolution operation. The normalised PSD of ψ(f) is plotted in Fig. 2.13 for

fc = 6.85 GHz. It can be shown that the GMSP pulse can easily be designedto meet the FCC limits,

which can be achieved by changing the pulse width, i.e., the value ofk or by changing the centre

frequency offc. Furthermore, it can be observed from Fig. 2.13 that the sidelobes are about60 dB

lower than the main lobe. Therefore, the main lobe contains most of the power transmitted, which

implies that the UWB systems using the GMSP may cause less interference to the systems working

in the same frequency band.

These GMSP pulses are generated with the Gaussian pulses described in Section 2.2.2.1. Hence,

generation of the GMSP is not simple, as analysed in Section 2.2.2.1. Furthermore, as the pulse

shape of the GMSPs changes after passing them through the transmitter/receiver antennas, MF-based

detection is hard to implement. Note that, it has been shown in [42] that the BER performance of the

UWB systems using GMSP pulses is similar as that of the UWB systems using Gaussian pulses for

the same effective bandwidth.

So far, we have provided a review for a range of basic pulses that may be employed in the UWB

communications. In the public literature, there are also other techniques for designing the basic

pulses. For example, in [53] an approach has been proposed for designing the basic pulses for UWB

communications systems. The pulses generated are time-limited in order to make the implementation

simple. Furthermore, it has been shown [53] that this class of pulses are capable of achieving the

same BER performance as the class of gaussian monocycles or PS pulses. However, the basic pulses

generated by the approach of [53] has more degrees-of-freedom, which can be adjusted so that the

corresponding spectral meets the FCC spectral mask. Additionally, reference [39] shows that an

appropriate sinc-pulse can be defined as

ψ(t) = sinc(Wt) cos(2πfct) (2.19)

wherefc = 6.85 GHz is the center frequency,W = 3.75 GHz and sinc(·) is given as

sinc(x) =







sin(πx)
πx , x 6= 0

1, x = 0
(2.20)
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The sinc pulse defined by (2.19) complies well with the required spectral emission constraints,

and achieves better BER performance than the Gaussian monocycles, PS-based pulses or the pulses

generated using the approach proposed in [53]. After discussion of the basic requirements for UWB

pulses and review of various classes of UWB pulses, let us nowconsider the transmission of pulses

in UWB systems.

2.2.3 Signalling in UWB Systems

In pulse-based UWB systems, each information-conveying symbol is transmitted by a number of

frames [14,34]. Without data modulation, the general form of an uniform pulse train with a constant

amplitude of one can be represented as

s(t) =

Nf−1
∑

n=0

ψ(t− nTf ) (2.21)

wheres(t) denotes the transmitted signal at timet, Nf denotes the number of pulses transmitted

andTf denotes the duration of a frame. The uniform-pulse train is depicted in Fig. 2.14, where the

pulse starts att = 0 and is repeated everyTf seconds. Hence,Tf can be viewed as the average

time-duration between the transmission of two pulses. Explicitly, the uniform pulse train cannot be

0 Tf 2Tf (Nf − 2)Tf (Nf − 1)Tf NfTf

Figure 2.14: Illustration of an uniform pulse train.

employed for implementing MA communications due to the following reasons.

1) Firstly, when multiple users transmit information usingthe same pulse train, strong interference

exists among these users [24];

2) Secondly, when the same uniform pulse train is employed for supporting multiple users, it

becomes difficult for the receiver to distinguish between the users. This is because, in this

case, the signals transmitted by different users are highlycorrelated, making the detection very

difficult [34];

The above-mentioned problems existing in the pulse-based UWB systems using uniform pulse

train may be efficiently solved by employing proper data modulation techniques and MA schemes.
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Additionally, since FCC has imposed no restriction on data modulation techniques and MA schemes,

different kinds of modulation techniques and different types of MA schemes may hence be employed

for the pulse-based UWB systems [54]. Below we consider someof the modulation techniques that

may be employed for pulse-based UWB communications. Then some MA schemes, that may be

employed for the pulse-based UWB systems are discussed.

2.2.4 Data Modulation Techniques for UWB Systems

As UWB systems communicate in power-limited regime and there are different types of applications

that may be supported by UWB systems, a number of facts must beconsidered, when choosing a data

modulation techniques. Specifically, when choosing the modulation schemes for UWB systems, we

should take into account the following issues.

• First, UWB systems usually co-exist with the conventional narrowband/wideband systems op-

erating in the same frequency band, the UWB signals hence impose interference on these con-

ventional systems [55]. Therefore, in order to minimise theinterference by the UWB systems,

the PSD of the UWB systems needs to be very low [1]. As mentioned previously, the PSD

of UWB signals consists of two components: the continuous spectral waveforms, which are

due to the shape of the pulse, and the discrete spectral lines, which are due to the periodical

transmission of the pulse sequence [40]. Since the magnitude of the discrete spectral lines are

usually higher than that of the continuous spectral waveforms, the discrete spectral lines con-

stitute the major source inflicting interference on the other narrowband or wideband systems

operating in the same frequency band as the UWB systems [23, 36]. Therefore, in order to

reduce the interference caused by the discrete spectral lines, the transmitted power of the UWB

systems may need to be further reduced. However, as UWB systems are usually operated in the

power-limited regime, reducing the transmission power mayresult in difficult detection of the

information at the receiver side. Furthermore, it is desirable that in UWB systems, the mean

of the data modulation scheme is zero. Otherwise, the discrete spectral lines will appear at a

regular interval [4], yielding interference on the other systems. Additionally, due to the con-

straint on the total transmitted power, the data modulationschemes should be power-efficient,

in order for the UWB systems to attain a reasonably low BER andto support a relatively high

data rate [34,56,57].

• Second, in the conventional communication systems, signalinversion causes little or no harm

in addition to fading in multipath channels, as the phase error due to signal inversion can be
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easily detected and corrected [58]. However, in UWB communications this phenomena requires

special attention, since many pulse modulation schemes depend on the signal’s polarity. For

example, when employing binary pulse position modulation (PPM) using a single correlator for

detection, the outputs are positive when it is applied to thein-phase pulses and negative when is

applied to the shifted pulses. In multipath channels, the positions of the pulses will be shifted,

thus, the detection of the signals might not be correct. Therefore, special techniques must be

developed to assure the right polarity of the transmitted signal.

• Finally, when choosing a data modulation scheme for a particular type of UWB systems, the

data rate supported, affordable complexity, intersymbol interference ISI generated, spectral

characteristics, robustness against narrowband interference, BER performance, etc. [34, 45,

58–61] are required to be taken into account. Specifically, for high data-rate applications,

BER performance, complexity and system flexibility are the key criteria [62], that need to be

considered when choosing the corresponding modulation schemes.

For pulse-based UWB systems, basic modulation schemes considered in the literature include the

on-off keying (OOK), PPM, pulse amplitude modulation (PAM), pulse shape modulation (PSM), etc.

Table 2.2 shows some of the characteristics of these modulation schemes, which are now discussed

in a little more detail in the following subsections.

Modulation Complexity Pulse Discrete BER M-ary
Schemes Negation Spectral Performance Scalability

Lines

OOK Lowest [45] Not required Yes Worse Not
than PPM [45] scalable

PPM Higher Not required Yes Better Scalable
than OOK [45] than OOK [45]

PAM Higher Required No 3-dB better Scalable
than PPM [45] than PPM [63]

PSM Higher Required No Worse Scalable
than PPM than PPM [58]

Table 2.2: Summary of the data modulation schemes for pulse-based UWB systems.
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2.2.4.1 On-Off Keying

OOK is one of the data modulation schemes that are preferred for pulse-based UWB systems [45,63].

In the OOK modulation scheme, a pulse is transmitted for an information bit ‘1’ while there is no

transmission for an information bit ‘0’ [45]. The OOK modulation scheme employs the following

advantages for UWB communications. Firstly, with the OOK modulation, only a low-complexity

energy detector is required at the receiver [45]. Hence, theOOK modulation scheme may make the

UWB communications systems simple. Secondly, when the OOK is employed, no pulse negation

is required as negating ultra-short pulses is difficult to implement [14, 25]. The OOK has the disad-

vantage that there are discrete spectral lines in the PSD of the transmitted UWB signals, since the

mean of the OOK modulation scheme is not zero [56]. Furthermore, it has been shown that, for the

same communications environment, the PPM and PAM schemes are capable of achieving better BER

performance than the OOK scheme [45]. Additionally, the OOKscheme is not suitable forM -ary

modulation.

2.2.4.2 Pulse Position Modulation

PPM is one of the modulation techniques that are suitable forUWB communications supporting

power-limited applications [14]. With the PPM, no negationof UWB pulses is required [64,65]. It has

also been shown in [66] that the PPM can be readily scaled to implement theM -ary PPM (MPPM).

The scalability of the PPM can improve the MA capability of the corresponding UWB systems, when

a given number of users and a given data transmission rate aresupported [66]. This is because, with

the higher value ofM , it is possible to improve the probability of detection of the MPPM-based

systems supporting a fixed number of users, or for a fixed probability of error, to increase the number

of users supported by keeping the transmitted signal power constant [67]. Another advantage of

using PPM is that noncoherent detection can be employed, since in the PPM-based UWB systems

information is extracted from the location of the transmitted pulses and hence no phase estimation

is necessary. The disadvantages of using PPM is that discrete spectral lines may exist in the PSD of

the transmitted signal, due to the non-zero mean of the PPM modulated signals [14]. However, in

the PPM-based UWB systems, the discrete spectral lines introduce cyclostationarity, which can be

exploited for finding the timing-offset of the system [14].
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2.2.4.3 Pulse Amplitude Modulation

With the development of microelectronics and signal processing, negation of ultra-short pulses be-

comes easier and practical. Consequently, modulation schemes with zero mean have become more

attractive [45]. Pulse-Amplitude Modulation (PAM) is a data modulation scheme with zero mean.

Hence, in UWB systems using the PAM data modulation, there are no discrete spectral lines in the

PSD, resulting in a smooth PSD [45, 56]. The PAM is suitable for implementation ofM -ary PAM,

which is capable of improving the MA capability of the UWB systems for a given data rate. It has been

shown that the binary PAM has3 dB of SNR gain over the binary PPM, when communicating over

multipath fading channels [60, 63, 68]. It has also been shown that the multiple-access-interference

(MAI) of the UWB systems using the PPM has a higher impact on the BER performance than that of

the UWB system using the PAM [68, 69]. However, as the value ofM increases, the impact of MAI

on the BER performance decreases for the UWB system using PAM. By contrast, the impact of the

MAI on the BER performance of the UWB systems using the PPM retain the same, when the value

of M increases [68]. Although the PAM has certain advantages over the PPM, however, according

to [4], amplitude modulation is usually not desirable for UWB communications. This is because, in

amplitudes modulations the smaller amplitudes are more susceptible to noise interference than the

larger amplitudes. Furthermore, the PAM has a higher peak-to-average power ratio (PAPR) than the

PPM. Hence, the PAM scheme might not be power-efficient for UWB communications [4].

2.2.4.4 Pulse Shape Modulation

It has been recognised that the PSM is an alternative modulation technique for UWB communica-

tions, where different pulse shapes are used to carry information [7, 70]. In order to implement the

PSM modulation a set of pulses is required, where the number of pulses used determines the mod-

ulation order of the PSM. In the PSM, orthogonal pulses can beemployed to remove the discrete

spectral lines, in order to reduce the possible interference of the UWB systems on the other narrow-

band/wideband systems operated in the same frequency band.However, in practice it is difficult to

maintain the orthogonality of the transmitted pulses in ad-hoc communications environments, where

signals transmitted by different users are hard to synchronise [8]. Furthermore, the orthogonality of

the transmitted signals may be destroyed by the dispersive multipath fading channels [71].

Below we consider some other issues related to the pulse-based UWB communications. As an

example, we assume that the UWB systems employ the MPPM. In the case, when theM -ary symbol

Xn ∈ [0,M − 1] is transmitted within thenth frame, an additional time-shift ofXnTψ is added
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to the transmitted pulse. Hence, for the UWB systems using MPPM the transmitted signal can be

represented as

s(t) =

Nf−1
∑

n=0

ψ(t− nTf −XnTψ) (2.22)

whereTψ denotes the width of the basic UWB pulse,Tf represents the frame-duration andNf repre-

sents the number of frames invoked for transmitting one symbol. Fig. 2.15, illustrates the time-shift

caused by the data-modulation, whereXn = 1 was assumed. As shown in Fig. 2.15, the basic UWB

pulse in the(Nf − 4)th frame is shifted byTψ seconds, due toXn = 1.

0 2Tψ

(Nf − 5)Tf (Nf − 4)Tf

Tψ (M − 2)Tψ (M − 1)Tψ MTψ

Figure 2.15: Illustration ofM -ary pulse position modulation in pulse-based UWB systems.

Let us now provide an overview of the MA schemes for the pulse-based UWB systems using

MPPM.

2.2.5 Multiple-Access Schemes for UWB Systems

UWB systems are typical spread-spectrum systems. Hence, UWB systems may be implemented

by invoking various spread-spectrum techniques. It can be shown that many spread-spectrum tech-

niques, such as frequency-hopping (FH) [72], time-hopping(TH), direct-sequence (DS), etc., may

be employed to implement UWB systems. In this thesis our focus is mainly on the UWB systems

based on TH and DS, i.e., the TH-UWB and DS-UWB. Hence, below we provide an overview for the

TH-UWB and DS-UWB systems.
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2.2.5.1 Time-Hopping UWB System

Time-hopping multiple-access (THMA) technique for UWB communications system was first intro-

duced by Robert A. Scholtz in1993 [1,34,35]. In this type of spread-spectrum technique an additional

time-shift is imposed on the transmitted pulses in the pulsetrain due to the TH [73]. Furthermore,

in TH-UWB the discrete spectral lines, which are generated in the pulse-based UWB due to using

uniform pulses, can be smoothed to a certain level by choosing the proper TH codes [63]. THMA can

be classified into fast TH (FTH) and slow TH (STH). In the FTH systems, a symbol is transmitted

with the aid ofNf frames, each frame consists of a UWB pulse and the position ofthis UWB pulse

is determined jointly by the TH code and the data modulation technique employed. By contrast, in

the STH systems, a symbol is transmitted byNf frames but only a single UWB pulse is transmitted

by these frames. In the STH system, the selection of the framefor transmission depends upon the

TH code while the position of the pulse in the selected frame is determined by the data modulation

scheme employed. To be more specific, the FTH and STH schemes can be explained as follows.

• Fast Time Hopping: In FTH-UWB systems a symbol is transmitted by invoking several

frames. The transmitter schematic of the FTH-UWB system using MPPM is shown in Fig. 2.16.

For the sake of supporting multiple users, in the FTH-UWB systems each user is assigned a

unique TH pattern, which is also referred to as a TH address code, in order to distinguish among

different users. Assume thatNf is the number of frames invoked for transmitting one symbol,

and that the TH code of userk can be expressed asttt(k)m = [t
(k)
m (0), t

(k)
m (1), · · · , t(k)m (Nf − 1)],

wherem is related to themth symbol transmitted by userk. Then, for a givenM -ary trans-

mitted symbolX(k)
m of userk,X(k)

m is first combined with thekth user’s TH code based on the

operation

YYY (k)
m = (X(k)

m · 111) ⊕ ttt(k)m = [y(k)
m (0), y(k)

m (1), · · · , y(k)
m (Nf − 1)] (2.23)

where111 is an all-one vector of lengthNf and⊕ denotes the addition operation inGF (Q),

which denotes a Galois field havingQ elements, whereQ ≥M represents the number of time-

slots per frame. As shown in Fig. 2.16, each element inYYY
(k)
m imposes an extra delay for the

corresponding pulse. Consequently, as shown in Fig. 2.16 the transmitted signal for thekth

user can be expressed as

s(k)(t) =

∞∑

m=0

Nf−1
∑

n=0

ψ(t−mTs − nTf − y(k)
m (n)Tψ) (2.24)

whereTs is the symbol duration andTs = NfTf .
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Figure 2.16: Schematic block diagram of fast time-hopping ultrawide bandwidth systems usingM -ary pulse
position modulation.

0

0

2Tψ

V Ts (V + 1)Ts

Tf 2Tf (Nf − 2)Tf (Nf − 1)Tf NfTf

(Q− 2)Tψ QTψ

Figure 2.17: Illustration of the transmitted signals in the fast time-hopping ultrawide bandwidth usingM -ary
pulse position modulation.
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Fig. 2.17 illustrates the transmitted UWB signal in theV th symbol duration. As shown in

Fig. 2.17, theV th symbol duration is first divided intoNf number of frames having a frame

durationTf . Then, each frame is further divided intoQ number of time-slots of durationTψ. As

shown in Fig. 2.17, during each frame a pulse is transmitted and the pulse position at the time

slot level is jointly determined by the TH address code and the symbol value of the transmitted

data according to (2.23).

• Slow Time Hopping: In the STH-UWB system, only a single UWB pulse is transmittedin

a symbol duration, which consists ofNf number of frames. The operation of the STH-UWB

systems may be further augmented by referring to Fig. 2.18. As shown in Fig. 2.18, during

a signalling interval durationTs, b message bits of thekth user are loaded into ab-bit buffer,

yielding aM -ary symbol of valueX(k)
m . TheM -ary symbolX(k)

m is temporarily stored in the

buffer, and awaits for its time-slot for its transmission. As shown in Fig. 2.18, the transmitter

generates an UWB basic pulse expressed asψ(t − mTs) for themth symbol duration. The

pseudo-noise (PN) code generator generates a TH pattern foruserk. Let thekth user’s TH

pattern be{t(k)m }, where0 ≤ t
(k)
m ≤ (Nf − 1). As shown in Fig. 2.18, for themth symbol,

the TH operation applies an additional shift oft(k)m Tf to the basic UWB pulseψ(t − mTs),

locating the pulse atψ(t − mTs − t
(k)
m Tf ). Let us assume that a frame is divided intoM

number of time-slots to implement MPPM. Then, when the desired time-slot arrives the data-

modulation imposes a further delay ofX(k)
m Tψ on the transmitted UWB pulse. Consequently,

the transmitted signal for thekth user in the STH-UWB scheme can be expressed as

s(k)(t) =

∞∑

m=0

ψ(t−mTs − t(k)m Tf −X(k)
m Tψ) (2.25)

which shows that, for themth symbol, a pulse is transmitted at theX(k)
m th time-slot of the

t
(k)
m th frame within themth symbol duration. Fig. 2.19 shows the transmitted UWB signal in

theV th symbol duration. As shown in Fig. 2.19, theV th symbol duration is first divided into

Nf number of frames having a frame durationTf . Then, each frame is further divided intoM

number of time-slots of durationTψ. In Fig. 2.19 we usedt(k)m = 1. Therefore, the first frame

is activated and the position of the pulse in this frame is determined by theM -ary symbol

X
(1)
m = 1.

Note that, when designing the TH-UWB systems, the followingissues must be taken into account.

• If the value ofQ in the FTH-UWB or the value ofNf in the STH-UWB is small, catastrophic
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Figure 2.18: Schematic block diagram of slow time-hopping ultrawide bandwidth system usingM -ary pulse
position modulation.
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Figure 2.19: Illustration of the transmitted signals in slow time-hopping ultrawide bandwidth usingM -ary
pulse position modulation.
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collision (hit) among the users may occur at a high probability. Usually, the higher the value of

Q in the FTH-UWB or the higher value ofNf in the STH-UWB, the lower is the probability

of hit;

• When the FTH-UWB has a large value ofQ or when the STH-UWB has a large value ofNf ,

the MAI may be modelled more accurately by the Gaussian random process [34];

• Finally, the ratioQTψ/Tf in the FTH-UWB orMNfTψ/Ts in STH-UWB represents the frac-

tion of a frame time duration over which the TH is allowed. This ratio is usually kept less than

one, in order to avoid interpulse interference (IPI) [35], which is generated due to the overlap

among the successive transmitted pulses from the same user.Furthermore, the receiver could

utilise this time after TH to read the output and reset the correlator, etc. [34].

Recently, pseudo-chaotic time-hopping (PCTH) assisted PPM has been proposed for UWB modula-

tion and for implementation of MA transmission [23,74,75].In the PCTH, the principle of symbolic

dynamics is exploited to generate an aperiodic spreading sequence, which is dependent on the input

data. The PCTH enhances the UWB systems by removing most of the periodic components from

the transmitted signal, hence resulting in a low probability of intercept [23]. Furthermore, with the

PCTH, the discrete spectral lines of the UWB signals can be effectively removed. Hence, less inter-

ference may be inflicted by the UWB systems on the wireless systems operated in the same frequency

band [23, 74]. Additionally, the PCTH-based systems have the advantage of high immunity to inter-

ception, making them useful for high-security communications [8].

2.2.5.2 Direct-Sequence UWB System

Direct-sequences (DS) spread-spectrum is a famous spread-spectrum technique and a lot of research

has already been carried out associated with the DS code-division-multiplexing access (CDMA). In

DS-UWB, a data bit is transmitted with the aid of multiple chips and the chip duration is usually set

to equal the widthTψ of the basic UWB pulse. Therefore, in DS-UWB system the frameduration

Tf , chip-durationTc and the pulse widthTψ are all the same [36, 76, 77]. In UWB systems, since

the data rate supported may range from tens of megabits per second to hundreds of megabits per

second [29], the number of chips per bit-duration in UWB systems is expected to be in a range from

tens to several hundreds. In DS-UWB systems the conventional DS-CDMA-related techniques may

be applied [78–80].
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In DS-UWB the transmitted signal of thekth user can be represented as

s(k)(t) =

∞∑

m=0

Nc−1∑

n=0

c(k)n ψ(t−mTs − nTc) (2.26)

wherem indicates themth symbol,Ts denote the symbol duration, whilec(k)n assumes a value of+1

or−1 with equal probability, when random spread sequences are assumed. Furthermore, in (2.26),Nc

is the number of chips per symbol, representing the spreading factor. The transmitted DS-UWB signal

of (2.26) can be explained with the help of Fig. 2.20, where the V th symbol duration is considered.

As shown in the Fig. 2.20, theV th symbol duration is divided intoNc number of chips having a

chip-duration ofTc = Tψ, and associated with each chip a UWB pulse is transmitted.

0 Tc 2Tc 3Tc NcTc(Nc − 2)Tc

V Ts (V + 1)Ts

Tc

Figure 2.20: Illustration of direct-sequence ultrawide bandwidth signals.

In the DS-UWB systems theM -ary bi-orthogonal keying (MBOK) can be employed [81, 82].

As the MBOK uses bi-orthogonal sequences, the mean of the transmitted DS-UWB signals is zero.

Hence, there are no discrete spectral lines present in the PSD of the DS-UWB signals. Furthermore,

the MBOK is a power-efficient modulation scheme, which may boost the data-rate supported by the

DS-UWB system. However, when there is a large number of multipaths, which generate severe ISI,

the BER performance of the MBOK-assisted DS-UWB system may be significantly degraded [81].

The problem caused by the multipaths may be mitigated with the rake reception or high-efficiency
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equalisation techniques at a cost of higher complexity.

2.2.5.3 Comparison between TH-UWB and DS-UWB Systems

Both TH-UWB and DS-UWB systems have their advantages and disadvantages, which are sum-

marised as follows.

• Duty-Cycle: As above mentioned, in a FTH-UWB system a data-symbol is transmitted with

the help ofNf frames, each of which is further divided intoQ number of time-slots. Since

every frame transmits one UWB pulse by activating one time-slot per frame, the duty-cycle of

the FTH-UWB is hence1/Q. In a STH-UWB system a data-symbol is transmitted within the

time-duration ofNf frames, with each frame being divided intoM time-slots. Therefore, the

duty-cycle of the STH-UWB approaches1/MNf , since only one UWB pulse is transmitted

within the symbol-duration ofNf frames. Finally, in a DS-UWB system each symbol-duration

is divided intoNc chips having the chip duration equalling to the width of the basic UWB

pulse. Since in DS-UWB a pulse is transmitted associated with each chip, the duty-cycle of the

DS-UWB hence approaches unity. From the above discussion, it can be implied that, for the

systems using the same spreading factor, the duty-cycle of the TH-UWB systems is much lower

than that of the DS-UWB systems. It has been shown in [9] that,for a low-rate wireless personal

area network (LR-WPAN), equipments with exceptionally long battery life are highly impor-

tant. Therefore, low consumption of power for data transmission is important [83]. Since low

duty-cycle is a key requirement for low average power consumption, the TH-UWB schemes are

hence more suitable for LR-WPAN applications than the DS-UWB schemes [9]. Additionally,

references [55, 60, 84, 85] have shown that lower duty-cycleusually causes less interference

to the Universal Mobile Telecommunications System (UMTS) systems operating in the same

frequency band as the UWB systems.

• Inter-Chip Interference and Inter-Symbol Interference: It is well-established that UWB

signals with huge bandwidth have the characteristics of fineresolution, yielding a high num-

ber of resolvable multipaths [13, 86]. Due to the large number of multipaths and continuous

transmission, strong ICI and ISI exist in the DS-UWB systems. It has been shown that the BER

performance of the DS-UWB systems communicating over multipath fading channels degrades

due to ICI and ISI, when the ICI and ISI are not efficiently mitigated [87,88]. By contrast, due

to the discontinuous transmission in the TH-UWB systems, the TH-UWB systems hence have

the robustness against multipath fading [36]. In TH-UWB systems, the symbol duration is usu-
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ally very large in comparison with the width of the basic UWB pulse, as a result, the ICI and

ISI in the TH-UWB systems can be effectively mitigated [35].

• Multiuser Interference (MUI): A DS-UWB system can accommodate a large number of users

simultaneously [78]. However, the DS-UWB system may conflict severe multiuser interference

(MUI), when the spreading sequences assigned to different users are not orthogonal and when

the DS-UWB systems experience multipath fading [89]. By contrast, in the TH-UWB systems,

as the number of users supported increases, the chance that two or more users transmit at the

same time-slot increases, also yielding MUI. In both the DS-UWB and TH-UWB systems,

the MUI may be efficiently mitigated with the aid of the advanced multiuser detection tech-

niques [78, 89, 90]. However, in [80, 91–93] it has been shownthat the DS-UWB system can

support a larger number of users as compared to TH-UWB system.

• Interference to The Systems Operated in The Same Frequency Band: Since an UWB sys-

tem occupies a huge bandwidth, it is common that an UWB systemco-exists with the other

narrowband or wideband systems operated in the same frequency band [15]. In DS-UWB

systems the discrete spectral lines of the PSD are closely placed, but the magnitudes of the

discrete spectral lines are usually low [94]. By contrast, the discrete spectral lines of the PSD

in the TH-UWB systems are relatively higher than that of the PSD in the DS-UWB systems.

Consequently, the TH-UWB systems may impose higher interference on the existing narrow-

band or wideband systems than the DS-UWB systems do. In the TH-UWB systems the in-

terference caused by the discrete spectral lines of PSD can be reduced to a sufficiently low

level [63, 95–102] by properly design of the spreading codes, pulse width, pulse shape, etc. It

has been shown in [21,36,93] that the DS-UWB usually causes less in-band interference to the

systems operated in the same frequency band, when compared with the TH-UWB.

• Interference Imposed on UWB Systems by Other Systems:When there are narrowband

and/or wideband systems operated in the same frequency bandof the UWB systems, the

UWB systems also experience interference imposed by these narrowband and/or wideband

systems [15, 103, 104]. Since narrowband and wideband systems usually transmit at higher

power than the UWB systems operated in the same band, they maycause higher interference

on the UWB systems. Specifically, in a cellular environment,cellular phones may transmit

at a power of30 dBm, which results in a PSD that is107 times higher than that of the UWB

systems [62]. It has been demonstrated in [36, 55] that the error performance of the TH-UWB

systems is slightly better than that of the DS-UWB systems inthe presence of the interference
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caused by the global system for mobiles (GSM) and UMTS.

2.3 Multi-Carrier UWB System

Multi-carrier techniques have also been proposed for implementation of UWB communications,

where the UWB frequency band is divided into many sub-bands and each sub-band is associated

with a subcarrier [62, 105, 106]. For UWB communications, the bandwidth of the multicarrier sys-

tems should be at least a bandwidth of500 MHz, in order to comply with the FCC’s definition for

UWB systems [1]. It is well-known that in multi-carrier communications, orthogonal frequency di-

vison multiplexing (OFDM) is an attractive modulation scheme, since the OFDM uses fast Fourier

transform (FFT) techniques to implement low-complexity multi-carrier modulation/demodulation.

Furthermore, the OFDM scheme can capture efficiently the energy dispersed over a huge number of

multipaths in UWB channels [62, 105, 106]. Additionally, OFDM scheme has a high flexibility to

achieve the spectral regulations by FCC [107].

In [62] an OFDM-UWB scheme has been proposed. In this OFDM-UWB scheme the whole sys-

tem bandwidth for UWB systems is divided into14 sub-bands each having a bandwidth of approxi-

mately528 MHz, so that it is convenient for frequency plan and design ofthe pre-select filters [62].

Note that, the pre-select filters are employed in order to attenuate the out-of-band signals, from global

positioning system (GPS), GSM system etc. [62,106]. In the above-mentioned OFDM-UWB system,

over the528 MHz of bandwidth, there are a total of128 sub-carriers, which are constituted by122

sub-carriers carrying useful signals and6 null-tones [106]. Out of the122 sub-carriers,100 of which

are devoted to data transmission,12 of which are assigned for transmitting pilots, while the remaining

of which provide guard bands. In this OFDM-UWB system quadrature phase-shift keying (QPSK)

baseband modulation is employed [106]. Multiple users are supported through spread-spectrum tech-

niques by assigning different users different time-frequency codes.

In the OFDM-UWB scheme, guard-interval and cyclic-prefix (CP) are added before each trans-

mitted data block. The guard-interval is set in order to provide a sufficient time for the transmitter and

receiver to switch between different center frequencies [62]. By contrast, the CP is added for mitigat-

ing the ISI caused by multipath fading and the length of the CPmay be chosen to minimise the impact

of ISI, while maximising the captured energy [62]. In [108] it has been shown that, instead of using

CP, zero-padding (ZP) can also be employed for mitigating the ISI. The ZP technique has advantage

of reducing ripples in the PSD, which is usually generated due to the redundancy or structure added

by CP.
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Note that, when designing an OFDM-UWB system, the size of theFFT invoked plays an impor-

tant role. It has been pointed out that, when using a FFT size of 256, the complexity becomes extreme

for portable and handheld devices [62]. The research results in [62] show that a FFT size of128 with

a CP of60.6 ns is generally desirable for an OFDM-UWB system to achieve areasonable balance

between performance and complexity.

Let us below provide some comparisons between the pulse-based UWB and the multi-carrier

UWB.

2.4 Comparison of Pulse-Based UWB Schemes and Multi-Carrier

UWB Schemes

Both the pulse-based UWB schemes and the multi-carrier UWB schemes have their specific advan-

tages and disadvantages, which are dependent on the specificcommunications environments. Some

of the comparisons between these two UWB arrangements are summarised as follows.

• Coexistence with other systems:As previously discussed, UWB systems are generally de-

ployed to co-exist with the other narrowband/wideband systems operated in the same frequency

band, in order to reuse the spectrum resources. Therefore, the UWB systems deployed in cer-

tain areas should impose as low interference as possible on the existing narrowband/wideband

systems operated in the same frequency band as the UWB systems. Similarly, it is desirable

that the interference imposed by the co-existing narrowband/wideband systems on the UWB

systems is also as low as possible.

✦ Interference inflicted by UWB systems on the other systems:In order to reduce the

interference inflicted by the UWB systems on the systems operated in the same frequency

band, the PSD of the UWB signals should be as low as possible. It is well-recognized

that the PAPR of the transmitted signals in single-carrier systems is significantly lower

than that of the transmitted signals in multi-carrier systems [109]. Therefore, the multi-

carrier UWB systems may inflict more interference on the other systems operated in the

same frequency band than the single-carrier systems. Another disadvantage of the multi-

carrier UWB, which is caused by its high PAPR, is the increased battery drain [107].

Since in some battery operated UWB applications, such as in LR-WPAN, battery life

is critical [9, 83], hence, in this type of applications the pulse-based UWB scheme are

preferred.
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✦ Interference imposed by the other systems on UWB systems:It can be shown that

in the presence of narrowband interference (NBI), the bandwidth efficiency and overall

capacity of the OFDM-UWB systems degrades [107]. However, in the OFDM-UWB sys-

tems the NBI caused by narrowband systems may be avoided by choosing an appropriate

carrier frequency [1]. By contrast, in the pulsed-based UWBsystems, the interference

caused by the narrowband systems may be efficiently mitigated by choosing an appropri-

ate processing gain [34] and/or designing a proper pulse shape [97].

• Position and ranging: For accurate positioning and ranging, UWB signals are required to have

high time-resolution [110]. The time-resolution of a wireless signal is dependent on the basic

pulse duration; wireless signals having shorter pulse-duration have higher time-resolution, and

the capability to provide more accurate positioning and ranging. Since the pulse-based UWB

signals use much shorter pulse duration than the multi-carrier UWB signals, therefore, the

pulse-based UWB signals are capable of providing much more accurate positioning and ranging

than the multi-carrier UWB signals. For example, in the ad-hoc networks, where accurate

positioning is important, pulse-based UWB schemes may playan important role [30].

• Bit error-rate performance: The BER performance of a wireless system is dependent on

many factors, such as the amount of energy collected, noise level, interference level, detection

approach, etc. In UWB systems the transmitted energy is dispersed over a large number of

multipaths. Hence, in order to achieve a good BER performance, the energy conveyed by a

large number of multipaths is required to be collected. For the pulse-based UWB schemes, a

RAKE receiver with a large number of fingers may be employed, in order to collect the energy

conveyed by the multipaths. However, the complexity of the RAKE receiver increases with the

increase of the number of fingers in the RAKE receiver [111]. By contrast, in the multi-carrier

UWB arrangement, the frequency band is divided into many sub-bands that experience flat

fading. Therefore, the energy dispersed over the multipaths can be collected in the frequency

domain without requiring complex equalisation [107]. It has been shown in [62] that the multi-

band OFDM-UWB system with a bandwidth of528 MHz and a CP of60.6 ns is capable of

capturing approximately95% of the transmitted energy. By contrast, a DS-UWB system using

a RAKE receiver having16-fingers can only capture56% of the transmitted energy [62].

• Transmitter design: In order to reduce the cost of an UWB device, the UWB transceivers

should be as simple as possible. The transmitter in a pulse-based UWB system consists of only a

simple pulse generator and a modulator [110], and hence, is very simple. By contrast, in a multi-
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carrier UWB system, FFT, digital-to-analog converters (DAC), multiple frequency generators

and fast FH synthesisers required. Hence, the transmitter of the OFDM-UWB systems may

be much more complex than that of the pulse-based UWB systems[110]. Furthermore, when

designing the OFDM-UWB transmitter, different trade-offsneed to be taken into account. For

example, when considering the FFT size, larger size of FFT results in higher complexity of

handheld and portable devices, while smaller size of FFT yields larger portion of overhead due

to the CP [62].

• Receiver design:When designing a receiver for the UWB systems, complexity ofthe receiver

is one of the most important issues to be considered. When using RAKE receivers the complex-

ity of a pulsed-based UWB system increases linearly with thenumber of fingers of the RAKE

receiver [109, 112]. By contrast, the complexity of the multi-carrier OFDM-UWB system de-

pends logarithmically on the FFT size [62].

• Timing jitter and synchronization: As above-mentioned, the multiband OFDM-UWB ar-

rangement utilise relatively long pulse duration, which can mitigate the effect of timing jitter

on the achievable BER performance of the system. By contrast, the timing jitter may impose

severe impact on the BER performance of the pulse-based UWB systems [113]. Addition-

ally, using shorter pulse-duration requires more strict synchronization [32], since more precise

timing is required. It has been shown in [40] that using a higher order of monocycle in the

pulse-based UWB systems has the potential for achieving a better BER performance, as a re-

sult that a higher order of monocycle results in a lower variance of synchronization error.

Let us now look into the UWB channel model in detail.

2.5 Ultrawide Bandwidth Channel Modelling

Channel modelling constitutes one of the highly important areas that have drawn wide research since

the start of wireless communications [1, 7, 13, 29, 43, 114–116]. Wireless channel models that can

closely simulate the real-world wireless channels are highly attractive, since, in this case, a lot of

research in wireless communications may be carried out based on the wireless channel models in-

stead of the real-world wireless channels, which might be expensive, time-consuming and sometimes

impractical. In this section we provide an overview for UWB wireless channel modelling, with the

emphasis on its differences from the conventional narrow-band and wideband channels. The UWB
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channel models considered in this section, will be applied in the upcoming chapters in the context of

various pulse based UWB systems.

This section is structured as follows. Section 2.5.1 compares different types of channel models

and summarises their main characteristics. Section 2.5.2 describes the UWB channel model in detail.

The impact of both the large-scale fading and small-scale fading on the UWB channels is considered,

especially, with the emphasis on small-scale fading. The modified Saleh-Valenzuela (S-V) channel

model for modelling of UWB channels is analyzed in detail.

2.5.1 Typical Wireless Channel Models

A lot of work have already been done in the context of wirelesschannel modelling. Dependent on the

bandwidth of the transmitted radio signals, wireless channels can be classified as narrowband, wide-

band and ultrawide bandwidth (UWB) channels. The typical characteristics of the above-mentioned

three types of wireless channels can be described as follows.

• Narrowband Channel: The bandwidth of the transmitted signal is significantly less than the

coherence bandwidth of the wireless channel. The channel exhibits frequency non-selective or

flat fading [114]. All the received multipath component signals of a transmitted symbol arrive

at the receiver within a symbol duration. The delays associated with the individual multipath

components do not yield big impact on the performance of the system [29]. The multipath

component signals are added together at the receiver to formthe received signal. If the number

of multipath components are sufficiently large, then the amplitude of the received signal can

be modelled using Rayleigh or Rician distribution depending on whether there exists a line-of-

sight (LOS) propagation path between the transmitter and receiver [1,13,29,117].

• Wideband Channel: Wideband channels are typical frequency-selective fadingchannels,

since the coherence bandwidth of wideband channels is usually less than the bandwidth of

the transmitted wideband signals [114]. In wideband systems, the delays assisted with the mul-

tipath components have effect on the system performance [29]. In order to make use of the

multipath components, the delay spread of a wideband channel is divided into bins, where the

size of each bin is equal to the inverse of the bandwidth of thetransmitted wideband signal.

In frequency-selective wideband channel modelling, it is usually assumed that each delay bin

contains many multipath components. If there are enough multipath components in a delay bin,

the overall amplitude statistics of these multipath components can be modelled as Rayleigh or

Rician distribution if there exists no or one LOS propagation path between the transmitter and
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the receiver [29,114].

• Ultrawide Bandwidth Channel: Like wideband channels, UWB channels are typical

frequency-selective fading channels. In UWB channels, thebandwidth of the transmitted signal

is extremely higher than the coherence bandwidth of the corresponding wireless channels. As

a result, the size of the delay bins becomes extremely small.In this case, there is a possibil-

ity that no multipath components or only a few multipath components fall within a delay bin.

Consequently, in UWB channel modelling it becomes necessary to characterise the likelihood

that there are empty bins containing no signals [29]. Since,as above-mentioned, there are usu-

ally no or only a few multipath components falling within a resolvable delay bin, central-limit

theorum may no longer be valid [29]. Hence, in UWB channels, the amplitude statistics of

the signals within a delay bin may not be modelled using Rayleigh or Rician distribution [29],

which will be explored in detail in our forthcoming discourse in this chapter.

2.5.2 UWB Channel Modelling

In UWB systems, it is possible to resolve the multipath components generated by the objects separated

by only several feet, hence the fading margin can be significantly reduced. Low fading margin and low

PSD make UWB systems best suitable for short-range communications [118]. Recent results indicate

that UWB systems are viable candidates for short-range MA communications in dense multipath

environments. The UWB systems have the potential of providing a high order of diversity, since the

UWB signals employ the capability of fine delay resolution [119,120]. Since various UWB schemes

have been considered for providing short-range high-speedwireless communications, in recent years

a lot of measurements have been carried out in order to model the UWB channels, especially the

indoor UWB channels [29, 121–130]. In [131], a detailed overview of UWB indoor channels has

been presented.

In this section an overview of the UWB channel models given inthe literature is provided. As

the channel modelling for the conventional narrowband and wideband channels, the UWB channel

modelling can also be characterised in the context of the large-scale and small-scale fading. However,

it has been shown that, in UWB communications, it is the small-scale fading that plays an important

role in indoor short range wireless communications.
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2.5.2.1 Large-Scale Fading

In UWB communications the impact of the channel on the transmitted signal over a large distance

(greater than 1m) is referred to as large-scale fading [1]. Large-scale fading includes the average

attenuation effect due to the distance between the transmitter and receiver and large objects in the

propagation path. In traditional channel modelling the large-scale fading is also called as path-loss,

which is measured as [43]

PL(d) = PL(do) + 10η log10

(
d

do

)

+Xσ, d ≥ do (2.27)

wherePL(d) is the path-loss at a distanced, PL(do) is the average path-loss at a given distance or

referenced distance ofdo, e.g. do = 1m, η is the path-loss exponent andXσ takes into account the

shadowing, which is a Gaussian distributed random variable(in dB) with a standard deviationσ (also

in dB) [43]. The average path-loss, path-loss exponent and the standard deviationσ are statistically

dependent on the communications environments. Therefore,they are usually modelled as random

variables obeying certain distributions [118]. The path-loss exponentη depends upon the carrier

frequency, antenna height and propagation environments [114]. It has been found to have a normal

distributionN [µη, ση ] associated with a meanµη and a standard deviationση. Hence, the path-loss

exponent can be expressed as [118]

η = µη + η1ση (2.28)

whereη1 is a Gaussian variable having mean zero and unit variance.

The shadow fading termXσ given in (2.27) is environmental specific and can be modelledas

[118]

Xσ = η2(µσ + η3σσ) (2.29)

whereη2 and η3 are also zero mean Gaussian distributed random variables and σσ has a normal

distribution where the mean and the variance is determined statistically from the measured data. It is

found that in shadow fading the standard deviationσσ is independent of the carrier frequency [132].

Upon substituting (2.28) and (2.29) into (2.27), finally, the propagation path-loss, can be expressed as

PL(d) = PL(do) + 10µη log10

(
d

do

)

+ 10η1ση log10

(
d

do

)

+ η2µσ + η2η3σσ (2.30)

Note that, in (2.30) the first two terms represent the median path-loss, while the rest three terms

represent the random variations about the median path-loss[118].
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2.5.2.2 Small-Scale Fading: Saleh-Valenzuela Channel Model

In wireless communications small-scale fading is caused bythe small objects in the communica-

tions environments which result in that the receiver receives many versions of the transmitted signal,

which arrive at the receiver with different phases and also slightly different time delays [43]. In

UWB communications, small-scale fading refers to the fading within an area of one square metre

1m2 [1]. Therefore, it is the major parameter of interest in indoor communications. The main small-

scale fading model adopted for indoor UWB communications isthe modified Saleh-Valenzuela (S-V)

model [29], which is now described in detail.

In UWB Communications, it has been recognised that the multipath components arrive at the

receiver in clusters [13, 29, 133]. In wireless communications, generally, the number of resolvable

multipaths is a function of the measured bandwidth of the transmitted signals and the communications

environment [13], which can be formulated approximately as

L ≈ [WTm] + 1 (2.31)

whereL denotes the number of resolvable multipath components,W = 1/Tψ is the bandwidth of

the radio signals, whileTm represents the maximum delay-spread of the wireless communications

channel. In UWB indoor communications, the delay-spreadTm spans several nanoseconds, yield-

ing possibly many resolvable multipaths, which generates ISI, if the transmitted UWB pulses are

closely positioned in time [29]. However, the ISI may be mitigated by properly designing of the ba-

sic pulse waveform or by employing advanced signal processing or/and equalisation techniques for

detection [29].

In UWB channels the multipath arrivals can be classified intotwo categories: cluster arrival and

ray arrival within a cluster. Therefore, for the UWB channels, four parameters are required in order to

describe the S-V channel model. The four parameters determining the S-V model for UWB channels

are as follows:

• Λ: Cluster arrival rate,

• λ: Ray arrival rate within a cluster,

• Γ: Cluster decay factor,

• γ: Ray decay factor within a Cluster.

Let us below explain these parameters in more details.
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1) Cluster Arrival Rate ( Λ): In indoor UWB communications, the clusters are formed by the

building structure [133]. The cluster arrival can be modelled as a Poisson process with a mean

cluster arrival rate ofΛ [1, 29, 133]. Therefore, the probability of havingv clusters within a

time-duration ofT can be given as

Pv =
(ΛT )v

v!
exp(−ΛT ) (2.32)

Note that, for convenience, we can assume that the first cluster is always present. Furthermore,

according to the principles of Poisson process, the inter-arrival time of the clusters can be

described by a random variable obeying the exponential PDF

p(Tv|Tv−1) = Λ exp[−Λ(Tv − Tv−1)], v > 0 (2.33)

where, for UWB communications, the value of1/Λ is typically in the range of10 ns to

50 ns [13]. In the S-V model, the clusters usually overlap one another, making it difficult

for the naked eye to observe the start and end of the cluster [7]. As the number of clusters

is a function of bandwidth and environment, there are usually one till five number of clusters

present in an UWB indoor channel [1,118,124,134].

2) Ray Arrival Rate within A Cluster ( λ): In indoor UWB communications, rays are formed

by the objects within the vicinities of the transmitter and receiver [133]. Ray arrival within a

cluster can also be modelled by a Poisson process, where the inter-arrival of two adjacent rays

is a random variable obeying the exponential PDF given by

P (τu,v|τu−1,v) = λv exp[−λv(τu,v − τu,v−1)], u > 0, v = 1, 2, · · · (2.34)

whereτu,v denotes the arrival time of theuth multipath in thevth cluster, whileλv is the mean

arrival rate of the rays (multipaths) in thevth cluster. Typically, each cluster may contain many

multipaths, implyingλ >> Λ [133]. For some UWB communications environments where the

ray arrival rate of the later clusters is higher than that of the earlier clusters [13, 127], the ray

arrival can be modelled as a mixture of two Poisson processesgiven as [13,135,136].

P (τu,v|τu−1,v) = αλ1 exp[−λ1(τu,v − τu,v−1)] (2.35)

+ (1 − α)λ2 exp[−λ2(τu,v − τu,v−1)], u > 0, v = 1, 2, · · ·
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where0 ≤ α ≤ 1 is the mixture coefficient, whileλ1 andλ2 are the ray arrival rates of the

first and second Poisson processes. In UWB communications, one of the two ray arrival rates

is usually higher than the other one in the mixture model. Hence, the duration of the process

having a higher ray arrival rate is shorter than the durationof the process having a lower ray

arrival rate. However, the former case usually results in stronger multipath components than

the later case [137].

3) Cluster Decay Factor (Γ): The decay factor is derived from the observed power decay profile

of the UWB channels [29]. In S-V model, the average power of clusters usually decays expo-

nentially with the delay [137]. For a block of data, the powerand arrival time delay of the first

arrived cluster are normalised to one and a time delay zero, respectively. All the other clusters

of the same block of data are expressed relative to the first cluster [136]. It has been found that

the cluster decay factorΓ increases, if the building walls are more reflective [133].

4) Ray Decay Factor within A Cluster (γ): The average power of the resolvable multipaths

within a cluster also decays exponentially, which is reflected by the value of the ray decay

factor of a cluster [137]. In UWB communications, the multipath decay factor or the so-called

intra-cluster decay rate is found to be dependent linearly on the arrival time of the cluster [135].

Specifically, the decay factor of thevth cluster can be described as

γv ∝ uγTv + γ0, v = 0, 1, · · · , V − 1 (2.36)

whereγ0 represents the decay factor of the zeroth cluster,uγ is a constant, whileTv devoted

the arrival time of thevth cluster. Within a cluster, the arrival time of the first rayis set to

zero and its corresponding amplitude is set to one. All the other rays within a cluster are then

adjusted accordingly relative to the first ray according to the exponential distribution [136]. In

UWB communications, it has been found that we have typically, Γ > γ, which indicates that

the expected power of the rays within a cluster decays slowerthan the expected power of the

first rays of the clusters [136].

UWB channels are typical time-varying frequency-selective fading channels, which can be modelled

using tapped-delay line approach [1, 124, 138]. Specifically, in [124–126] an indoor UWB channel

model has been presented based on statistical analysis of the data collected from an UWB propaga-

tion experiment, performed in typical office buildings. Thechannel model is obtained based on the

measurements carried out within the frequency-range from300 MHz - 1 GHz and using the UWB
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basic pulse having2 ns of delay resolution. Hence, the resultant UWB channel model constitutes a

representative channel model suitable for low-frequency (LF) UWB systems. In the context of this

LF-UWB channel model [124,131], the measurement data showsthat the direct path always falls in

the first resolvable path, which is usually the strongest path. The power of the subsequent resolvable

paths decays exponentially with the increase of delay. The analysis in the context of the LF-UWB

channel [124] shows that the well-established tapped-delay-line model [49], is well suitable for the

LF-UWB channel modelling. Furthermore, the statistics analysis in [124] shows that the best-fit

distribution of the small-scale magnitude statistics is the Nakagami-m distribution or the Gamma

distribution, when power is considered. It has been shown [124] that the parameters of the Gamma

distribution vary from path to path. The value of the fading parameter in the Nakagami-m/ or Gamma

distribution ranges from1 and6, which decreases as the excess delay increases.

In contrast to the UWB channel model considered in [124, 131], which is suitable for the fre-

quency range from300 Mhz-1 GHz, channel model proposed in [29, 121–123] is suitable forthe

frequency band ranged from3.1 GHz to10.6 GHz. Correspondingly, this UWB channel model can

be viewed as a representative channel model for high-frequency (HF) UWB systems. To be more spe-

cific, the measurements in the context of [121–123,139] havebeen carried out in both the residential

and office areas, where both LOS signals and non-LOS signals exist, resulting in that the delay-spread

ranges from5 ns to about40 ns. The measurement data shows that in the above-mentioned HF-UWB

channels the first resolvable multipath at the receiver is not necessarily the strongest one. The power

delay profile is generally sparse, where some of the resolvable multipaths do not carry any significant

power, or even empty [29]. In the HF-UWB channels, multipaths arrive at the receiver in clusters

rather than in continuum as in narrowband channels. Hence, in [29, 121, 122] a double exponential

decay UWB channel model has been introduced for characterising the power delay profile of the

HF-UWB channels, where one corresponds to the clusters, while the other one corresponds to the

multipaths within a cluster. Furthermore, the measurementdata shows that the signal amplitudes do

not follow Rayleigh distribution. Instead, a lognormal or Nakagami distribution may be employed to

measurement data. Furthermore, it has been found that both the lognormal and Nakagami distribu-

tions can fit the measurement data equally well.

Based on the above-mentioned properties in association with the UWB channels, in this thesis the

conventional statistical tapped-delay-line (STDL) channel model is introduced and modified for our

investigation in the forthcoming discourses. Specifically, the S-V model is employed, which has the
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channel impulse response (CIR) of the S-V model and can be represented as [1,133,137]

h(t) =

∞∑

v=1

∞∑

u=1

βu,vδ(t− Tv − τu,v) (2.37)

whereβu,v denotes the fading gain of theuth multipath in thevth cluster,Tv denotes the arrival time

of the vth cluster andτu,v is the arrival time of theuth multipath invth cluster and is relative to

Tv. In UWB communications in order to capture all or most of the transmitted signal energy, the

receiver may require to process a huge number of resolvable multipaths [140]. In order to reduce

the complexity,L out of the total number of resolvable multipaths may be used for detection. It has

been shown that usingL multipaths for detection may achieve an error performance close to that

achieved by a receiver that processes all the resolvable multipath components provided the value of

L is sufficiently high [141].

In practice, the received UWB signals can only have a limitednumber of clusters, where each

cluster contains a limited number of resolvable multipaths. In this case, the CIR of (2.37) can be

reduced to

h(t) =

V∑

v=1

U∑

u=1

βu,vδ(t− Tv − τu,v) (2.38)

whereV represents the number of clusters andU denotes the number of resolvable multipaths in

each of theV clusters. Therefore, for the UWB channels having the CIR of (2.38), the total number

of resolvable multipaths can be as high asL = UV . Note that, as we mentioned previously, the

parametersβu,v, Tv andτu,v may be time-varying, due to the relative motion between the transmitter

and receiver. However, for the sake of convenience, we assume that the fading rate is significantly

lower than the data rate conveyed. Under this assumption, the parametersβu,v, Tv andτu,v may be

treated as time invariant random variables, when data blockof interest are relatively short [133]. In

(2.38), we define the average power of a multipath component at a given delayTv + τu,v is relative to

the average power of the first resolvable multipath as

β2
u,v = β2

1,1 exp

(

−Tv
Γ

)

exp

(

−τu,v
γ

)

, u = 1, 2, · · · , U, v = 1, 2, · · · , V (2.39)

whereβ2
1,1 denotes the average power of the first resolvable multipath in the first cluster, whileβ2

u,v

denotes the average power by theuth multipath in thevth cluster. Furthermore, in order to carry out

comparison among different scenarios, the total average power received is normalised to unity, i.e.,
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we have
U∑

u=1

V∑

v=1

β2
u,v = 1 (2.40)

Delay

Amplitude

Cluster 1

Cluster 2

Cluster 3

1/λ

1/Λ

Γ

γ

Figure 2.21: Illustration of the Saleh Valenzuela UWB channel model, which contains three clusters and each
cluster may contain different number of resolvable multipaths.

Figure 2.21 shows conceptually the CIR of the S-V UWB channelmodel [13]. As discussed pre-

viously in this section, in UWB communications the empirical distribution of the fading amplitudes

of the multipaths differs remarkably from the Rayleigh distribution. Instead, the measurement data

matches to the lognormal or Nakagami distribution, which has been validated using Kolmogorov-

Smirnov testing with a significance level1% [29]. Specifically, in this thesis, we mainly assume

that the fading amplitudes of the UWB channels follow the Nakagami-m distribution, which can be

expressed as

P (βu,v) = M (βu,v,m,Ωu,v)

=
2mmβ2m−1

u,v

Γ(m)Ωm
u,v

exp(−m/Ωu,v)β
2
u,v (2.41)

wherem ≥ 1/2 is the fading parameter, determining the severity of fading, which is equal to

m = E2[(β2
u,v)]/Var [(βu,v)2], Γ(m) is the Gamma-function andΩu,v = E[(βu,v)

2] is the second

moment of the fading amplitude of theuth multipath invth cluster. The Nakagami-m PDF of (2.41)
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employs the following properties.

1) Lognormal distribution can be approximated by the Nakagami distribution associated with a

relatively high value ofm of the fading parameter [29].

2) Rayleigh distribution is valid in some UWB communications environments, even when the

time resolution is fine [13]. For example, Rayleigh fading has been observed in industrial en-

vironments, where dense multipath scattering objects exist, resulting in numerous multipath

components [117]. The Nakagami-m distribution of (2.41) is reduced to the Rayleigh distribu-

tion, when the fading parameterm is set to one, i.e, whenm = 1.

3) Nakagami-m distribution is a generalised distribution, which often gives the best fit to land-

mobile and indoor-mobile multipath propagation environments, as well as to scintillating iono-

spheric radio links [142]. With the aid of (2.41), it can be shown that different propagation

scenarios can be modelled by the Nakagami-m distribution by simply changing the value ofm

in the Nakagami-m distribution. Furthermore, the Nakagami-m distribution offers features of

analytical convenience [142].

Finally, four typical UWB channel models proposed in literature [29] are summarised in Table 2.3.

Our simulation results provided in the following chapters were also obtained based on these typical

channel models.

2.6 Summary and Conclusions

In this chapter an overview of UWB systems has been presented. It can be shown that UWB sys-

tems employ a lot of merits in comparison with conventional narrowband/wideband systems, as the

instantaneous bandwidth of the UWB systems is significantlyhigher than the minimum bandwidth

required to deliver the information. Therefore, in recent years a lot of interest has been drawn in both

the research communities and industry.

UWB systems can be implemented by pulse-based or multi-carrier-based techniques. Pulse-based

UWB system, can be a carrier-less or a base-band modulation system, where signals are transmitted

with the assistance of trains of time-shifted pulses. When designing pulse-based UWB systems the

following issues needs to be considered.

• The shape of the basic UWB pulse has a strong impact on the design of transmitter and receiver

filters, signal bandwidth, BER, etc. The pulse is usually required to have no DC-component,
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Channel Channel Channel Channel Channel
Characteristics Model-1 Model-2 Model-3 Model-4

Λ [1/nsec] 0.0233 0.4 0.0667 0.0667
(Cluster arrival rate)

λ [1/nsec] 2.5 0.5 2.1 2.1
(Ray arrival rate)

Γ 7.1 5.5 14 24
(Cluster decay factor)

γ 4.3 6.7 7.9 12
(Ray decay factor)

Communication LOS NLOS NLOS Extreme
environments (0-4 m) (0-4 m) (4-10 m) NLOS

Table 2.3: Typical ultrawide bandwidth channel models, where LOS and NLOS stands for line of sight and
non-line of sight, respectively.

in order to yield high power efficiency. The second order derivative of the pulse should ex-

ist so that matched-filtering could be employed at the receiver for achieving low complexity

detection. Furthermore, it is required to have a low PSD, so that the interference inflicting to

the co-existing communications systems is low. In order to meet the above-mentioned require-

ments in this chapter a range of UWB pulses for pulse-based UWB systems have been analyzed

in detail. Specifically, the basic characteristics of GP, TESM, PS, HP and GMSP etc. UWB

pulses have been summarized in Table 2.1.

• As FCC has imposed no restriction on data modulation scheme,different kinds of data modu-

lation schemes may be employed for pulse-based UWB systems.Therefore, when considering

a data modulation scheme for pulse-based UWB systems, the data rate supported, affordable

complexity, ISI generated, spectral characteristics, robustness against narrowband interference,

BER performance, etc., are required to be taken into account. Generally, it is desirable that

the data modulation scheme has zero mean so that there are no discrete spectral lines in the

PSD. Furthermore, the data modulation scheme is expected tobe scalable toM -ary communi-

cations, in order to improve the MA capability of the UWB systems. Specifically, in Table 2.2
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the characteristics for OOK, PPM, PSM and PAM, etc., data modulation schemes have been

summarized and compared.

• As shown in our discussion, in pulse-based UWB systems, different types of MA schemes may

be employed. As UWB systems are typical spread-spectrum systems, TH, FH, DS, etc., spread-

spectrum techniques can hence be employed. The MA schemes have been overviewed in detail

in Section 2.2.5. It can be shown that each MA scheme has some advantages and also some

disadvantages for UWB applications.

For the multicarrier UWB schemes, the UWB frequency band is divided into many sub-bands

with each sub-band having at least a bandwidth of500 MHz. It has been realised that OFDM is an

attractive transmission scheme for the multi-carrier UWB systems. In the OFDM-UWB systems the

whole available bandwidth is divided into14 sub-bands with each sub-band having a total of128

subcarriers. Out of128 subcarriers,100 are used for data transmission,12 are used for transmitting

pilots,10 are used to provide guard bands and the rest are null-tones without transmitting information

at all. In the OFDM-UWB systems, QPSK baseband modulation isemployed and multiple users

are supported by spread-spectrum techniques by assigning each user a user specific time-frequency

spreading code.

Finally, in this chapter the modelling of UWB channels has been considered. It can be shown that

the UWB channels have the following characteristics.

• The UWB channels are significantly different from the conventional narrowband and wide-

band channels. Therefore, the results obtained for modelling the conventional narrowband and

wideband channels cannot be applied directly for modellingthe UWB channels.

• In the context of the large-scale fading, in UWB communications the path-loss is found to be

environmental specific, both the average path-loss and the path-loss exponent are environmental

specific.

• Since UWB communications are mainly for indoor and short-range communications, hence the

modelling of their small-scale fading is more interested. In UWB communications, the widely

recognised channel model adopted for modelling the small-scale fading is the modified S-V

model, which is a STDL model. The S-V channel model is characterised by four parameters,

namely, the cluster arrival rate (Λ), the ray arrival rate within a cluster (λ), the cluster decay

factor (Γ) and the ray decay factor within a cluster (γ), respectively.
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• The measurement data shows that the amplitude statistics inUWB channels follows the log-

normal or Nakagami distribution, or in some specific cases, the Rayleigh distribution. Usually,

the Nakagami distribution is preferred, since both the Rayleigh and log-normal distributions

can be approximated by the Nakagami distribution. Furthermore, the Nakagami distribution

can often result in closed-form analytical results.



Chapter 3
Hybrid Direct-Sequence Time-Hopping

Ultrawide Bandwidth Systems

3.1 Introduction

In Chapter 2 pulse-based UWB schemes were discussed and it was realised that like other spread-

spectrum systems, UWB systems do not rely only on the spreading sequence or hopping pattern to

produce a wide bandwidth signal. Instead, it is the extremely short duration of the basic UWB pulses

that results in the UWB systems having ultra-wide bandwidth[56, 92, 143, 144]. As discussed in

Chapter 2, UWB communication has initially been implemented with the aid of time-hopping pulse-

position modulation (TH-PPM) techniques without carrier modulation [34, 35]. In the carrier-less

or baseband UWB systems information is transmitted with theassistance of trains of time-shifted

pulses through PPM. In the TH-PPM UWB systems multiple pulses are usually used to transmit a

single symbol for the sake of enhancing the transmission performance. Recently, the direct-sequence

spread-spectrum technique has also been proposed for implementation of UWB communications [78].

In DS-UWB systems a data bit is transmitted associated with multiple chips and the chip-duration

is usually equal to the width of the basic time-domain pulse.Straight forwardly, in DS-UWB the

conventional DS-CDMA related techniques may be applied forimproving the multiple-access capa-

bility [78, 79]. As analysed in detail in Chapter 2 both the TH-UWB scheme and DS-UWB scheme

have their advantages as well as disadvantages.

In this chapter we propose and investigate a novel UWB scheme, namely the hybrid (DS-TH)

UWB system, which employs both DS spreading and TH. It can be shown that the hybrid DS-TH

59
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UWB system is capable of inheriting the advantages of both the DS-UWB and TH-UWB, while si-

multaneously avoiding their disadvantages. Conventionally, hybrid DS and TH schemes have not

been drawn much attention, since, it is generally recognised that the combination of DS with TH

increases the complexity of implementation and that the timing requirement may become more strin-

gent [49, 145]. However, in the hybrid DS-TH systems the search space, which is usually very large

in UWB systems due to long spreading sequences and fine timingresolution, can be significantly

reduced [146,147]. Hence, the code acquisition and timing tracking in hybrid DS-TH UWB systems

may become relatively easy. Additionally, the hybrid DS-THUWB systems are capable of provid-

ing more degrees-of-freedom for system design and reconfigurations than either the pure DS-UWB

schemes or the pure TH-UWB schemes. Furthermore, it can be shown that both the TH-UWB and

DS-UWB schemes constitute special examples of the hybrid DS-TH UWB.

In this chapter we investigate the performance of hybrid DS-TH UWB system, when communi-

cating over UWB channels associated with various detectionstrategy. For simplicity, we assume that

in this chapter the hybrid DS-TH UWB systems employs binary phase shift keying (BPSK) modu-

lation. More specifically, in Section 3.2, the transmitted signal in the hybrid DS-TH UWB system

is introduced along with the channel model and receiver structure. In Section 3.3, we consider the

detection of the hybrid DS-TH UWB signal using MF. In Section3.4 the performance of the hybrid

DS-TH UWB system is compared with that of the pure DS-UWB and pure TH-UWB systems, when

the conventional single-user correlation detector or conventional MMSE-MUD is employed. Sec-

tion 3.5 analyses the complexity of the correlation and MMSE-MUD when considering UWB com-

munications. Finally, in Section 3.6 the performance of theabove-mentioned three types of UWB

systems is investigated and compared, when communicating over typical UWB channels experienc-

ing Nakagami-m fading. Our study and simulation results in this chapter show that there exists a

trade off between the DS and TH spreading factors of the hybrid DS-TH UWB systems. Given the

channel conditions, SNR value and the total spreading factor equalling to the product of the DS and

TH spreading factors, there exists optimum DS and TH spreading factors which result in the lowest

achievable BER.

3.2 System Description

3.2.1 Transmitted Signal

The transmitter schematic block diagram for the consideredhybrid DS-TH UWB system is shown in

Fig. 3.1. In our hybrid DS-TH UWB system BPSK baseband modulation is assumed for simplicity.
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As shown in Fig. 3.1, a data bit of thekth user is first modulated by aNc-length DS spreading

sequence, yieldingNc chips. Then, theNc chips are transmitted by invokingNc time-domain pulses

within one symbol-duration, where the locations of theNc time-domain pulses are determined by the

TH pattern assigned to thekth user. According to Fig. 3.1, it can be shown that the hybridDS-TH

UWB signal transmitted by thekth user can be written as [148]

s(k)(t) =

√

Eb
NcTψ

∞∑

j=0

b
(k)
j

j
Nc

kd
(k)
j ψ

[

t− jTc − c
(k)
j Tψ

]

(3.1)

where⌊x⌋ represents the floor function, which returns the largest integer less than or equal tox, ψ(t)

is the basic time-domain pulse of widthTψ, which satisfies 1
Tψ

∫ Tψ
0 ψ2(t)dt = 1. The bandwidth

of the hybrid DS-TH UWB system is determined by the basic time-domain pulse. For brevity, the

parameters used in (3.1) and in our forthcoming discourse are listed as follows:

• Eb: Energy per bit;

• Nc: Number of chips per bit, which is defined as the DS spreading factor;

• Nψ: Number of time slots in a chip, which is defined as the TH spreading factor;

• Tψ: Duration of a time-hopping slot, which is equal to the duration of the basic UWB pulse;

• Tc: Chip-duration, which satisfiesTc = NψTψ;

• Tb: Bit-duration, which satisfiesTb = NcTc = NcNψTψ;

• b
(k)
i ∈ {+1,−1}: Theith data bit transmitted by userk;

• d
(k)
j ∈ {+1,−1}: Binary DS spreading sequence assigned to thekth user;

• c
(k)
j : TH sequence assigned to thekth user,c(k)j ∈ {0, 1, · · · ,Nψ−1} and takes any value with

equal probability;

• NcNψ: Total spreading factor of the hybrid DS-TH UWB system.

From the above description it can be observed that ifNψ = 1, Tψ andTc are equal and in this case

the hybrid DS-TH UWB scheme is reduced to the pure DS-UWB scheme. By contrast, the hybrid

DS-TH UWB scheme withNc = 1 is reduced to the pure TH-UWB scheme. As shown in (3.1), each

chip transmits a pulse and the location of the pulse within a chip is determined by the TH sequence

{c(k)j }, wherec(k)j takes a value in{0, 1, 2, · · · ,Nψ− 1} with equal probability. In the hybrid DS-TH
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UWB system total processing gain isN = NcNψ. Note that, the conventional TH-UWB system

represents a STH system, where one pulse is transmitted within a bit-duration. By contrast, hybrid

DS-TH UWB system is a FTH system, whereNc pulses are transmitted associated with one bit.

DS TH

Pulse
Generator

Spreading TH Pattern

b
(k)
i

{d
(k)
0 , · · · , d

(k)
Nc−1}

s(k)(t)

ψ(t− jTc − c
(k)
j Tψ)

{c
(k)
0 , · · · , c

(k)
Nψ−1}

ψ(t− jTc)

Figure 3.1: Transmitter schematic block diagram of hybrid direct-sequence time-hopping UWB System.

The principles of hybrid DS-TH UWB scheme can be further understood with the aid of Fig. 3.2.

In this figure the(V − 2)th bit of durationTb is first divided intoNc chips having duration ofTc

seconds. Each chip corresponds to an appropriate value determined by the DS-spreading code. Then,

each chip-duration ofTc is further divided intoNψ time-slots with durationTψ seconds. The time-slot

activated for transmitting a pulse is determined by the respective TH pattern assigned. For example,

in Fig. 3.2, the first time-slot of the second chip is activated to transmit a pulse. From the above

analysis, we can see that the bit-duration obeysTb = NcTc = NcNψTψ.

3.2.2 Channel Model

The CIR of the UWB channels considered in the chapter is givenby [86]

h(t) =

L−1∑

l=0

hlδ(t− T0 − lTψ) (3.2)

whereL represents the number of resolvable multipaths at the receiver, hl = |hl|ejφ represents the

channel gain of thelth resolvable multipath component,T0 denotes the transmission delay of the

line-of-sight (LOS) signal from the transmitter to the receiver, while lTψ represents the excess delay

of the lth resolvable path.

In order to make the channel model sufficiently general so that it can be modified for modelling

different communications environments, we assume that, firstly, the delay-spread of the UWB chan-
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Tψ

· · · (V − 2)Tb (V − 1)Tb · · ·

2Tc 3TcTc0

0 NψTψ

NcTc

Figure 3.2: Structure of the time-domain hybrid DS-TH UWB signals.

nels spansg data bits, yielding(g − 1)NcNψ < (L− 1) ≤ gNcNψ. Secondly, we assume that among

theL number of resolvable multipath components there areLs relatively strong multipath compo-

nents, which convey the majority of the average power transmitted. Furthermore, we assume that

theLs number of significant multipath components are randomly distributed over theL number of

resolvable multipaths, but retaining the same within each data block.

In UWB communications it has been found that the empirical distribution of the fading gains

differs remarkably from the Rayleigh distribution. This isbecause that UWB signals are capable of

providing a fine resolution in the time-domain, implying that usually only a small number of multipath

components fall within an interval of the resolution. In this case, the Gaussian approximation for

deriving the Rayleigh distribution is not satisfied. As shown in [29], the measured data shows that,

in UWB communications, the fading amplitudes usually follow lognormal or Nakagami distribution,

which has been validated with the aid of Kolmogorov-Smirnovtesting associated with a significance

level of 1%. Due to the above facts, in this chapter, the Nakagami distribution is introduced for

modelling the fading of the UWB channels concerned. Specifically, we assume that the amplitude of

the fading gain obeys the independent Nakagami-m distribution with a probability density function
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(PDF) given by [49]

P|hl|(r) = M (|hl|,ml,Ωl)

=
2mml

l r2ml−1

Γ(ml)Ω
ml
l

exp(−ml/Ωl)r
2, r > 0 (3.3)

whereΓ(·) is the gamma function,ml is the Nakagami fading parameter corresponding to thelth

resolvable multipath component and the parameterΩl is given byΩl = E[|hl|2] [49]. Furthermore,

we assume that the phase rotation due to fading channel is uniformly distributed in[0, 2π]. Let us

now consider the receiver structure.

3.2.3 Receiver Model

Let us assume that the hybrid DS-TH UWB system supportsK users. Then, when the DS-TH UWB

signal as shown in (3.1) is transmitted over the Nakagami-m fading channels with the CIR as shown

in (3.2), the received signal can be expressed as

r(t) =

√

Eb
NcTψ

K∑

k=1

L−1∑

l=0

∞∑

j=0

h
(k)
l b

(k)
j

j
Nc

kd
(k)
j ψrec

[
t− jTc − c

(k)
j Tψ − T0 − lTψ − τk

]

+ n(t) (3.4)

wheren(t) represents the additive white Gaussian noise (AWGN) with zero-mean and single-sided

power spectrum density ofN0 per dimension,τk takes into account the lack of synchronisation among

the users as well as transmission delay, whileψrec(t) represents the time-domain pulse received,

which is usually the second derivative [40] of the transmitted pulseψ(t), as seen in (3.1).

ψ∗
rec(−t)

r(t) Detection

algorithms

Data
output

Sampling

Matched-filter
yλ

λTψ

Figure 3.3: Receiver block diagram for detecting hybrid direct-sequence time-hopping UWB signals.

The receiver structure for detection of DS-TH UWB signal is shown in Fig. 3.3. The received

signal is first passed through a MF having the impulse response ψ∗
rec(−t). The output of the MF is

then sampled at a rate of1/Tψ . Hence, ifM number of data bits are detected, the detector can collect
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a total(MNcNψ +L− 1) number of samples for detection, where(L− 1) is due to theL number of

resolvable multipaths. Specifically, theλth sample can be obtained by sampling MF’s output at the

time instantt = T0 + (λ+ 1)Tψ , which can be expressed as

yλ =

(√

EbTψ
Nc

)−1 ∫ T0+(λ+1)Tψ

T0+λTψ

r(t)ψ∗
rec(t)dt, λ = 0, 1, · · · ,MNcNψ + L− 2 (3.5)

3.3 Representation of the Received Signal

Let us define

yyy = [y0, y1, · · · , yMNcNψ+L−2]
T (3.6)

nnn = [n0, n1, · · · , nMNcNψ+L−2]
T (3.7)

Then, according to (3.5), it can be shown that the elementnλ in nnn can be represented as

nλ =

(√

EbTψ
Nc

)−1 ∫ T0+(λ+1)Tψ

T0+λTψ

n(t)ψ∗
rec(t)dt, λ = 0, 1, · · · ,MNcNψ + L− 2 (3.8)

which is a Gaussian random variable with mean zero and a varianceσ2 = N0/2Eb per dimension.

Furthermore, upon subsituting the received signal in the form of (3.4) into (3.5), it can be shown that,

after some simplifications,yyy can be expressed as

yyy = CCCHHHbbb+nnn =

K∑

k=1

CCCkHHHkbbbk +nnn (3.9)

wherebbbk = [b
(k)
0 , b

(k)
1 , · · · , b(k)M−1]

T contains theM number of data bits transmitted by thekth user,

the channel matrix of thekth user,HHHk is given by

HHHk = diag{hhhk,hhhk, . . . ,hhhk} (3.10)

which is a(ML×M)-dimensional matrix withhhhk given by the CIR of userk as

hhhk =
[

h
(k)
0 , h

(k)
1 , . . . , h

(k)
L−1

]T
(3.11)
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The spreading matrixCCCk of thekth user as shown in (3.9) is a[(MNcNψ +L− 1)× (ML)] dimen-

sional matrix, which can be expressed in a form as

CCCk =


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

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

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

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

(3.12)

where each column has(M − 1) number of000 matrices of(NcNψ × L) dimension,CCC(k)
i is the

spreading matrix corresponding to theith data bit of thekth user, which is a((NcNψ + L− 1) × L)

dimensional matrix and can be represented as
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i =
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where ex will be the product of DS spreading factor and TH-pattern andwill take a value of

{+1,−1, 0} depending upon the product of DS and TH-pattern. In more detail the spreading ma-

trix CCC
(k)
i can be structured by Fig. 3.4. From Fig. 3.4, it can be observed that, if theNψ of the

number of time-slots per chip is less than the number of resolvable multipaths, then strong inter-chip-

interference ICI exists. By contrast, if the number of resolvable multipaths is less than the number of

time-slots per chip, the ICI is then less severe. For example, let theith bit of userk is spread over

Nc = 3 chips, where each chip is divided intoNψ = 2 time-slots. Let the number of resolvable
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Figure 3.4: Structure of the spreading matrixCCC(k)
i for theith data bit of userk in hybrid direct-sequence time-

hopping UWB systems communicating over the UWB channels having L number of resolvable
multipaths.

multipaths beL = 4. Furthermore, let the TH pattern used for theith bit be(0, 1, 1) and the DS

spreading code be(d(k)
0 , d

(k)
1 , d

(k)
2 ). Then, it can be shown that the spreading matrix for theith bit of

userk can be expressed as

CCC
(k)
i =


























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
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






(3.14)
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As the spreading matrixCCC(k)
i of the kth user for theith bit is known, the spreading matrixCCCk as
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= CCC
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Figure 3.5: Spreading matrixCCCk for thekth user in hybrid direct-sequence and time-hopping UWB systems.

seen in (3.9) for thekth user transmitting a block ofM number of bits can be readily obtained,

which has the structure as shown in Fig. 3.5. As shown in Fig. 3.5, the spreading matrixCCCk is a

((MNcNψ +L− 1)×ML) dimensional matrix. In order to have a close look of the structure ofCCCk,

let us extend the previous example by assuming that thekth user transmitsM = 3 data bits within a

block. Let us assume that the TH pattern for the first bit be(0, 1, 1), for the second bit be(1, 0, 0) and

for the last bit be(0, 0, 1). The DS-spreading code for the first bit is(d
(k)
0 , d

(k)
1 , d

(k)
2 ) for the second

bit is (d
(k)
3 , d

(k)
4 , d

(k)
5 ) and the for last bit is(d(k)

6 , d
(k)
7 , d

(k)
8 ), respectively. Then, the DS-TH code for

the first bit is(d
(k)
0 , 0, 0, d

(k)
1 , 0, d

(k)
2 ), for second bit is(0, d(k)

3 , d
(k)
4 , 0, d

(k)
5 , 0) and for the last bit is

(d
(k)
6 , 0, d

(k)
7 , 0, 0, d

(k)
8 ), respectively. In this case, it can be shown that the spreading matrixCCCk for
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userk can be expressed as

CCCk = (3.15)



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1 0 0 0 0 0 0 0 0 0 0
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1 0 0 0 0 0 0 0 0 0

0 d
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2 0 d
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1 0 0 0 0 0 0 0 0

0 0 d
(k)
2 0 d

(k)
3 0 0 0 0 0 0 0

0 0 0 d
(k)
2 d

(k)
4 d

(k)
3 0 0 0 0 0 0

0 0 0 0 0 d
(k)
4 d
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3 0 0 0 0 0

0 0 0 0 d
(k)
5 0 d

(k)
4 d

(k)
3 0 0 0 0

0 0 0 0 0 d
(k)
5 0 d
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0 0 0 0 0 0 d
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5 0 d
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6 0 0 0

0 0 0 0 0 0 0 d
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5 0 d
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6 0 0

0 0 0 0 0 0 0 0 d
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7 0 d
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6 0
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where the first four columns correspond to the first bit, the next four columns corresponds to the

second bit and the last four columns correspond to the last bit. From (3.15) it can be easily observed

that the ISI of the first and last bit is less than that of the middle bit. From (3.15) we can also be

implied that the ISI increases as the number of multipaths increases. In order to mitigate the ISI, each

bit may be assigned with a different spreading code, so that the cross-correlation between the current

bit and the following bit is small. Otherwise, if the same spreading code is used for all bits, then the

cross-correlation between the current and following bits is high, which will generate stronger ISI and

make the detection difficult.
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Finally, the spreading matrixCCC of theK users as mentioned associated with (3.9) can be shown as

Fig. 3.6, whereCCC(k)
i is shown in Fig. 3.4. The dimensions ofCCC are((MNcNψ +L− 1)× (MLK)).

Let us now consider the detection of the hybrid DS-TH UWB signals in the next section.
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Figure 3.6: Spreading matrixCCC for theK users supported by the hybrid direct-sequence time-hopping UWB
system.

3.4 Signal Detection

Despite achieving optimum error performance the optimal detectors [149] are impractical to be im-

plemented due to their high complexity, which grows exponentially in the order ofO(2MK), where

M denotes the number of bits per detection block andK denotes the number of users supported [150].

Additionally, in optimum detectors, stringent requirements, such as channel knowledge, code wave-

forms of all the users and strict synchronization, are hard to be satisfied, which also make the optimal

detectors impractical to be implemented, especially, in real-time sense [151]. For this sake, in practice

sub-optimal detectors having relatively low complexity isusually desirable [151, 152]. For example,

linear detectors [151,152] having a linear detection complexity are often the initial options to be con-
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sidered for implementation. Therefore, in this chapter, weconsider the linear detectors including the

conventional correlation detector and minimum mean squared error (MMSE) detector.

Since the hybrid DS-TH UWB signals experience both MUI and ISI, ideally, the window selected

for detection of the desired user should span all the bits transmitted by all the users [5]. However, due

to real-time applications and avoiding yielding large delay, it is often desirable to consider a window

of samplesyyyi for detecting only theith data bit [153]. However, when choosing the window size we

should realize that there is a trade-off between the achievable performance and the window size.

In this section we consider the bit-by-bit detection in the hybrid DS-TH UWB system. As the

delay-spread of the considered UWB channel spansg data bits as mentioned in Sub-section 3.2.2,

strong ISI may exist in the hybrid DS-TH UWB system. Specifically, according to our analysis in

Section 3.2, it can be shown that there are min(i, g − 1) data bits before the desired data bit and

min(M − 1 − i, g − 1) data bits after the desired data bit, which interfere with the desiredith bit.

Hence, in our bit-by-bit detection, the observations for detecting theith bit of the1st user, can be

formed by the(NcNψ + L− 1) samples as

yyyi = [yiNcNψ , yiNcNψ+1, · · · , y(i+1)NcNψ+L−2]
T (3.16)

Furthermore, it can be shown thatyyyi can be expressed as

yyyi = CCC
(1)
i hhh1b

(1)
i

︸ ︷︷ ︸

Desired signal

+

K∑

k=2

CCC
(k)
i hhhkb

(k)
i

︸ ︷︷ ︸

MUI from the ith data bit

+nnni

+

K∑

k=1

i−1∑

j=max(0,i−g)
i6=0

CCC(k)
j hhhkb

(k)
j

︸ ︷︷ ︸

MUI+ISI from the bits before biti

+

K∑

k=1

min(M−1,i+g)
∑

j=i+1
i6=M−1

C̄̄C̄C
(k)
j hhhkb

(k)
j

︸ ︷︷ ︸

MUI + ISI from the bits after biti

(3.17)

wherennni = [niNcNψ , niNcNψ+1, · · · , niNcNψ+L−2]
T is the noise vector. CCC(k)

j is the spreading matrix

associated with thejth bit transmitted before biti. Letx = ((NcNψ + L− 1) − (i− j)NcNψ), then
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it can be shown that CCC(k)
j can be represented as

CCC(k)
j =



























0 · · · 0 e
(k)
(j+1)NcNψ−1 e

(k)
(j+1)NcNψ−2 . . . e

(k)
(j+1)NcNψ−x

0 · · · 0 0 e
(k)
(j+1)NcNψ−1 . . . e

(k)
(j+1)NcNψ−x+1

...
.. .

...
...

...
. . .

...

0 · · · 0 0 0 . . . e
(k)
(j+1)NcNψ−1

0 · · · 0 0 0 . . . 0
...

.. .
...

...
...

. . .
...

0 . . . 0 0 0 . . . 0

L− x x

x

NcNψ + L− 1 − x



























(3.18)

wherex rows in (3.18) correspond to the lastx rows ofCCC(k)
j as shown in (3.13). From (3.18) it can be

observed that asx increases, more rows associated with thejth bit interfere with the desiredith bit,

hence causing severe ISI. By contrast, asx decreases, fewer rows associated with thejth bit interfere

with the desiredith bit, thus, yielding less ISI.

In (3.17) C̄̄C̄C(k)
j is the spreading matrix corresponding to thejth bit transmitted after biti. Let

x = ((NcNψ + L− 1) − (j − i)NcNψ). Then, it can be shown that̄C̄C̄C(k)
j can be represented as

C̄̄C̄C
(k)
j =



























0 . . . 00 0 . . . 0
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. ..
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0 · · · 00 0 . . . 0

0 · · · 0e
(k)
jNcNψ

0 . . . 0
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.. .
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. ..
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0 · · · 0e
(k)
jNcNψ+x−2 e

(k)
jNcNψ+x−3 . . . 0

0 · · · 0e
(k)
jNcNψ+x−1 e

(k)
jNcNψ+x−2 . . . e

(k)
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x
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












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

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

(3.19)

wherex rows as shown in (3.19) correspond to the firstx rows ofCCC(k)
j of (3.13). Again, whenx

increases, more rows from thejth bit interfere with the desiredith bit and cause severer ISI. By

contrast, asx decreases, fewer rows from thejth bit interfere with the desiredith bit, which hence
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generate lower ISI.

Let us now consider the detection of theith data bit of the1st user.

3.4.1 Correlation Detector

Correlation detector is also referred to as the conventional matched-filter (CMF) [152], which is a

single-user detector without the ability to remove MUI, ICIand ISI. However, the correlation detector

has the lowest complexity, which requires only the channel knowledgehhh1 and the knowledge about

the spreading matrixCCC(k)
i , in order to detect theith data bit of the1st user. Specifically, for the

correlation detector, the decision variablez(1)
i for b(1)i of the ith data bit of the1st user, can be

expressed as

z
(1)
i = hhhH1 (CCC

(1)
i )Tyyyi = hhhH1 (CCC

(1)
i )T

{

CCC
(1)
i hhh1b

(1)
i

︸ ︷︷ ︸

Desired signal

+

K∑

k=2

CCC
(k)
i hhhkb

(k)
i

︸ ︷︷ ︸

MUI

+nnni (3.20)

+

K∑

k=1

i−1∑

j=max(0,i−g)
i6=0

CCC(k)
j hhhkb

(k)
j

︸ ︷︷ ︸

MUI+ISI from the bits before biti

+

K∑

k=1

min(M−1,i+g)
∑

j=i+1
i6=M−1

C̄̄C̄C
(k)
j hhhkb

(k)
j

︸ ︷︷ ︸

MUI+ISI from the bits after biti

}

and the estimate to theith data bit of the1st user is given by

b̂
(1)
i = sgn

(

z
(1)
i

)

(3.21)

where sgn(x) is the sign function. As shown in (3.20), the correlation detector experiences both MUI

and ISI. Thus, the error performance of the hybrid DS-TH UWB system degrades as the number of

users supported increases.

3.4.2 Minimum Mean-Square Error Detector

Multiuser detector can increase the spectral-efficiency ofa multiuser system and make it support

more users [83,149]. The minimum mean-square error MMSE detector is a linear multiuser detector,

which employs a range of advantages. The MMSE detector is capable of suppressing both the MUI

and background noise. It outperforms the decorrelating detector in terms of the achievable BER

performance. Additionally, the MMSE detector can be implemented with the aid of the adaptive

techniques, as shown in the following chapters.
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In the context of the MMSE detector the received signal vector yyyi as shown in (3.17) is pro-

cessed by a complex weight vectorwww1, in order to detect bitb(1)i transmitted by the desired user1.

Correspondingly, the decision variable can be expressed as[16,154]

z
(1)
i = wwwH1 yyyi (3.22)

where the optimum weight vectorwww1 is chosen such that it minimises the mean-square error (MSE)

between the transmitted bitb(1)i and the decision variablez(1)
i , yielding [16,154]

J(www1) = argmin
w

E
[∣
∣b

(1)
i − z

(1)
i

∣
∣2
]

= argmin
w

E
[∣
∣b

(1)
i −wwwH1 yyyi

∣
∣2
]

(3.23)

It can be shown that the optimum weight vectorwww1 in MMSE sense can be expressed as [16,154]

www1 = RRR−1
yi rrryib(1)i

(3.24)

whereRRRyi is the auto-correlation matrix of the received signal vector yyyi, which can be represented as

RRRyi = E
[
yyyiyyy

H
i

]

= CCC
(1)
i hhh1hhh

H
1

(
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(1)
i
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where, by definition,

R̃RRI =

K∑
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(k)
i hhhkhhh
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which denotes the autocorrelation matrix of interference plus noise. Note that, in practiceRRRyi can
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be estimated at the receiver without requiring the knowledge about the other users. In (3.24)rrr
yib

(1)
i

is the cross-correlation vector between the transmitted bit b(1)i of the desired user and the received

observation vectoryyyi. rrryib(1)i
can be expressed as [155]

rrryibi = E
[

yyyib
∗(1)
i

]

= CCC
(1)
i hhh1 (3.27)

Hence, upon subsituting (3.25) and (3.27) into (3.24), the optimum weightwww1 for the MMSE detector

can be expressed as [155]

www1 =

[

CCC
(1)
i hhh1hhh

H
1

(

CCC
(1)
i

)T
+ R̃RRI

]−1

CCC
(1)
i hhh1 (3.28)

When applying thematrix inversion lemma, we obtain1

[
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(3.29)

Substituting this result into (3.28) yields

www1 =
R̃RR

−1
I CCC

(1)
i hhh1

1 + hhhH1

(
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(1)
i

)T
R̃RR

−1
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(3.30)

Finally, when substituting (3.30) into (3.22), the decision variablez(1)
i for b(1)i can be expressed as

z
(1)
i =

hhhH1

(
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(1)
i

)T
R̃RR

−1
I yyyi

1 + hhhH1

(
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(1)
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I CCC
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(3.31)

When approximatingz(1)
i as a Gaussian random variable, then the mean ofz

(1)
i can be expressed

as

E
[

z
(1)
i

]

= wwwH1 CCC
(1)
i hhh1b

(1)
i (3.32)

1Matrix inverse Lemma: if AAA is a (N × N) matrix andbbb is a N -dimensional vector, then [16]
`

AAA + bbbbbb
H

´−1
=

AAA−1

1+bbbHAAA−1bbb
.
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While the second-order moment can be expressed as

E
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and the variance ofz(1)
i can be evaluated by
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Furthermore, when we apply (3.31) in (3.32) and (3.34), we obtain
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Consequently, the signal-to-interference-plus-noise ratio (SINR) achieved by the MMSE detector can

be expressed as

γ
(1)
i =

[

E
[

z
(1)
i

] ]2

V ar
[
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i

]

= hhhH1
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I CCC

(1)
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= MMSE−1 − 1 (3.36)

whereE
[

[b
(1)
i ]2

]

= 1 and MMSE denotes the minimum MSE achieved by the MMSE detector,
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which it can be shown given by [156]

MMSE = 1 − rrrHyibiwww1

=
1

1 + hhhH1

(

CCC
(1)
i

)T
R̃RR

−1
I CCC

(1)
i hhh1

(3.37)

According to the principles of the MMSE detector as above-derived the MMSE detector requires

both the channel knowledge and the knowledge about the spreading sequences in the context of all

the active users. Let us below analyse the complexity of the correlation and MMSE detectors.

3.5 Complexity Analysis

This section analyses the complexity of both the conventional correlation detector and the MMSE

detector, when they are applied in the hybrid DS-TH UWB systems. The complexity is measured

by the number of multiplications and additions that are required to detect a bit transmitted of by the

desired user. Note that, the number of multiplications and additions needed to perform certain matrix

operations are given as follows.

• According to [150], multiplication of a(M × N) matrix with a (N × L) matrix requires

M(N−1)L additions andMNLmultiplications. WhenN >> 1, we also haveM(N−1)L ≈
MNL.

• Computing the inverse of a matrix of(M ×M)-dimensional, using cholesky decomposition

requiresM3/6 additions andM3/6 multiplications.

3.5.1 Correlation Detector

For the correlation detector, as shown in (3.20), the decision variable for detectingb(1)i can be formed

as

z
(1)
i = hhhH1 (CCC

(1)
i )Tyyyi (3.38)

Let T = NcNψ +L− 1. Then, it can be readily shown that the number additions and multiplications

for the operations involved in the correlation detector canbe given as shown in Table 3.1. Therefore,

in order to detect a bit using the correlation detector, the total number of additions and multiplications

required is2(L+ 1)T .
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Operations Number of Number of
additions multiplications

hhhH1

(

CCC
(1)
i

)T
LT LT

z
(1)
i T T

Table 3.1: Number of operations required for the correlation detector.

3.5.2 MMSE Detector

When MMSE detector is employed, the decision variable for detectingb(1)i is given in (3.22), which

is

z
(1)
i = rrrH

yib
(1)
i

(
RRR−1
yi

)H
yyyi (3.39)

The number of multiplications and additions required to perform the involved operations are sum-

marised in Table 3.2.

Operations Number of Number of
additions multiplications

rrrH
yb

(1)
i

= hhhH1

(

CCC
(1)
i

)T
LT LT

CCC
(1)
i hhh1hhh

H
1 CCC

(1)
i 2LT 2LT

∑K
k=2CCC

(k)
i hhhkhhh

H
k CCC

(k)
i 2(K − 1)LT 2(K − 1)LT

∑K
k=1

∑i−1
j=max(0,i−g)

i6=0

CCC(k)
j hhhkhhh

H
k

(

CCC(k)
j

)T
2gLKT 2gLKT

∑K
k=1

∑min(M−1,i+g)
j=i+1
i6=M−1

C̄CC
(k)
j hhhkhhh

H
k

(

C̄CC
(k)
j

)T
2gLKT 2gLKT

RRRyi 4T 2 −
RRR

(−1)
yi T 3/6 T 3/6

RRR
(−1)
yi rrr

yb
(1)
i

T 2 T 2

z
(1)
i T T

Table 3.2: Number of operations required for the MMSE detector.

Therefore, the total number of additions or multiplications required to detect one bit using MMSE
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detection isT 3/6 + 5T 2 + 2KL(1 + 2g)T + (L+ 1)T orT 3/6 + T 2 + 2KL(1 + 2g)T + (L+ 1)T
respectively, while the total number of operations for detection of one bit using MMSE detector is

given byT 3/3 + 6T 2 + 4KL(1 + 2g)T + 2(L + 1)T . Hence, when comparing the MMSE detec-

tor with the correlation detector, the MMSE detector requiresT 3/3 + 6T 2 + 4KL(1 + 2g)T more

operations than the correlation detector, in order to detect one bit.

Note that, the complexity considered above does not includethat for channel estimation. When

channel estimation is considered, the complexity of both the correlation detector and MMSE detector

will be much higher. As shown in Tables 3.1 and 3.2, the complexity is mainly determined by the

value ofT = NcNψ+L−1, which might be very big. In the following two chapters we aremotivated

to reduce the detection complexity in the hybrid DS-TH UWB systems.

3.6 Performance Results and Discussions

This section provides a range of simulation results to characterise the error rate performance of the

pure TH-UWB, pure DS-UWB and different hybrid DS-TH systems, which employ either the single-

user correlation detector or the MMSE-MUD. In order to compare these different systems, we use the

following assumptions and system settings.

1) Coherent BPSK baseband modulation;

2) It is assumed that there areL number of resolvable multipaths and the total average received

power over these multipaths are normalised to unity. Out of theseL number of resolvable

multipaths, there areLs number of relatively strong paths, which carry85% of the total average

power transmitted, while the rest(L − Ls) multipaths carry only15% of total average power

transmitted;

3) Each multipath channel is assumed to experience Nakagami-m fading with the fading sever-

ity determined by the value ofm. The fading of theL multipath channel is assumed to be

statistically independent.

4) In our simulations the Nakagami-m fading parameter was assumed to bem = 1, so that the

upper bound BER can be found, since in this case the Nakagami-m distribution is reduced to

Rayleigh distribution, and the fading becomes less severeras the value ofm increases.
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3.6.1 Correlation Detector

In this section the BER performance of hybrid DS-TH UWB system is provided and compared with

that of the pure TH-UWB and pure DS-UWB systems, when a single-user correlation detector is

employed. Fig. 3.7 shows the BER versus SNR per bit performance of the pure DS, pure TH and

hybrid DS-TH UWB systems supportingK = 1, 7 or 15 users, when the UWB signals are transmitted

over uncorrelated Rayleigh fading channels. In our simulations, the total spreading factor was retained

to beNcNψ = 128. As mentioned previously in this chapter, when the DS spreading factorNc = 1

our hybrid DS-TH UWB system is reduced to the pure TH-UWB system. The hybrid DS-TH UWB

system is reduced to the pure DS-UWB system whenNψ = 1. In our simulations the number of

resolvable multipaths was fixed toL = 15 out of which there are5 strong resolvable paths conveying

85% of the total transmitted power. It can be easily observed from Fig. 3.7 that the hybrid DS-TH

UWB system usingNc = 8,Nψ = 16 outperforms the pure DS-UWB and TH-UWB systems. Since

the correlation receiver does not have the capability to suppress MUI, as shown in Fig. 3.7, the BER

performance of all the three systems becomes worse, when thenumber of users supported increases

fromK = 1, to 7 and15.
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Figure 3.7: BER versus SNR per bit performance of the hybrid DS-TH, pure DS-UWB and pure TH-UWB sys-
tems using single-user correlation receiver when communicating over a Rayleigh fading channels.
The product of time-hopping and direct-sequence spreadingfactors is a constant ofNcNψ = 128.
There are a totalL = 15 number of resolvable multipaths, out of which5 multipaths have85% of
the total transmitted power.

Fig. 3.8 and Fig. 3.9, illustrate the BER versus SNR per bit performance of the hybrid DS-TH
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Figure 3.8: BER versus SNR per bit performance of different hybrid DS-TH, pure DS-UWB and pure TH-
UWB systems using single-user correlation receiver when supportingK = 7 users and com-
municating over a Rayleigh fading channels. The product of time-hopping and direct-sequence
spreading factors is a constant ofNcNψ = 128. There are a totalL = 15 number of resolvable
multipaths, out of which5 multipaths have85% of the total transmitted power.

UWB systems having different combinations of DS and TH spreading factors, when communicating

over Rayleigh fading channels. In our simulations we assumed that the UWB systems supported

K = 7 andK = 15 users. The number of resolvable multipaths are fixed toL = 15, where5

of which conveyed85% of the total transmitted power. Again the simulation results in Fig. 3.8 and

Fig. 3.9 show that the hybrid DS-TH UWB system may outperformthe pure DS-UWB and pure

TH-UWB systems, when certain DS and TH spreading factors areused. However, from Fig. 3.8

and Fig. 3.9 it can be seen that a trade-off exists between theDS spreading factorNc and the TH

spreading factorNψ. Given the total spreading factor ofNcNψ, there is an optimum combination

of (Nc, Nψ), which yields the lowest achievable BER specifically, when the value ofNcNψ = 128,

it can be observed from Fig. 3.8 and Fig. 3.9 that the best BER performance is achieved, when we

chooseNc = 8 andNψ = 16.

Fig. 3.10 shows the effect of the number of users supported onthe BER performance of the

pure DS-UWB, pure TH-UWB and hybrid DS-TH UWB systems at a SNRper bit ofEb/N0 = 14

dB, when communicating over uncorrelated Rayleigh fading channels. We assumed that the number

of resolvable multipaths wasL = 15, which containedLs = 5 strongest paths conveying85% of

the transmitted power. From the results of the Fig. 3.10 we observe that the BER performance of the

hybrid DS-TH systems using (Nc = 8,Nψ = 16), (Nc = 16,Nψ = 8) or (Nc = 64,Nψ = 2) is better
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Figure 3.9: BER versus SNR per bit performance of different hybrid DS-TH, pure DS-UWB and pure TH-
UWB systems using single-user correlation receiver when supportingK = 15 users and com-
municating over a Rayleigh fading channels. The product of time-hopping and direct-sequence
spreading factors is a constant ofNcNψ = 128. There are a totalL = 15 number of resolvable
multipaths, out of which5 multipaths have85% of the total transmitted power.
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Figure 3.10: BER versus number of usersK performance of pure DS-UWB, pure TH-UWB and hybrid DS-TH
UWB systems using correlation receiver atEb/N0 = 14 dB when communicating over Rayleigh
fading channels. The total spreading factor isNcNψ = 128. The total number of resolvable
multipaths areL = 15, whereLs = 5 strongest paths convey85% of the transmitted power.

than that of the pure DS-UWB system or that of the pure TH-UWB system. As shown in Fig. 3.10,

the hybrid DS-TH UWB system usingNc = 8 andNψ = 16 achieves the best BER performance. By
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contrast, the pure TH-UWB system achieves the worst BER performance in comparison with all the

other UWB schemes. Additionally, as shown in Fig. 3.10, as the number of users increases, the BER

performance of all the UWB systems becomes worse, since the single-user correlation detector does

not have the capability to suppress efficiently the MUI.
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Figure 3.11: BER performance of hybrid DS-TH UWB systems using various DSand TH spreading factors
while retaining the total spreading factorNcNψ = 128, when communicating over multipath
Rayleigh fading channels. The other parameters areEb/N0 = 14 dB, the total number of users
supported are fixed toK = 15.

Fig. 3.11 shows the effect of the number of resolvable multipaths as well as the DS and TH

spreading factors, on the BER performance of hybrid DS-TH UWB systems operated at a SNR of

Eb/N0 = 14 dB. In our simulations we assumed that the number of users supported wasK = 15, the

number of resolvable paths wasL, whereLs out ofL were the strongest paths that conveyed85% of

the transmitted power. From the results of Fig. 3.11, we observe that, given the total spreading factor,

the total number of resolvable multipaths as well as the number of strongest resolvable multipaths,

there exists an optimum hybrid DS-TH UWB scheme, which is capable of achieving the lowest BER.

For example, whenL = 30 andLs = 10, the best BER performance is achieved by the hybrid DS-TH

UWB system usingNc = 8 andNψ = 16, respectively. Furthermore, from the results of Fig. 3.11,

it can be observed that the BER performance of all the UWB systems improves as the number of

resolvable paths increases. Additionally, as the number ofresolvable multipaths approaches the total

spreading factor ofNcNψ = 128, as shown in Fig. 3.11, all the UWB systems considered approach a

similar BER performance.
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Figure 3.12: BER versus SNR per bit performance of the hybrid DS-TH UWB system using correlation re-
ceiver when communicating over Nakagami-m fading channels. In our simulations, the total
spreading factor wasNcNψ = 128, the DS spreading factor wasNc = 8 and the TH spreading
factor wasNψ = 16. The total number of resolvable multipaths were15, which contained5
strongest multipath conveying85% of the transmitted power.

Finally, Fig. 3.12 illustrates the BER performance of the hybrid DS-TH UWB system, when

communicating over Nakagami-m fading channels associated with differentm values. The other

parameters used in our simulation were the DS spreading factor Nc = 8, the TH spreading factor

Nψ = 16, andK = 7 or K = 15. From Fig. 3.12, it can be readily observed that the BER

performance improves, as the value ofm increases. This is because increasing the value ofm implies

that the corresponding channel’s quality improves, resulting in that the BER performance of the hybrid

DS-TH UWB system improves. Let us now consider the error performance of various UWB systems

when multiuser MMSE detector is employed.

3.6.2 MMSE Detector

In this section the BER performance of the hybrid DS-TH UWB system using MMSE detection is

investigated and compared with that of the pure TH-UWB and pure DS-UWB systems. Fig. 3.13

shows the BER versus SNR performance of hybrid DS-TH UWB, pure DS-UWB and pure TH-UWB

system, supportingK = 7 or 15 users, when communicating over uncorrelated Rayleigh fading

channels. Since the MMSE detector is capable of efficiently mitigating the MUI, ICI and ISI as

shown in Fig. 3.13 the BER performance achieved by the hybridDS-TH UWB systems is close to the

single-user BER performance bound for the scenarios considered. The hybrid DS-TH UWB using
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various spreading factors, the pure DS-UWB and pure TH-UWB systems all achieve a similar BER

performance. As shown in Fig. 3.13, whenK = 15 users are supported, the BER performance of the

hybrid DS-TH UWB system usingNc = 8 andNψ = 16 is slightly better than that of the pure DS-

or pure TH-UWB schemes.
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Figure 3.13: BER versus SNR per bit performance of hybrid DS-TH, pure DS-UWB and pure TH-UWB sys-
tems using MMSE detector, when communicating over Rayleighfading channels. The param-
eters used in our simulations were the total spreading factor of NcNψ = 128, the total number
of resolvable multipaths ofL = 15, andLs = 5 strongest multipaths conveying85% of the
transmitted power.

Fig. 3.14 studies the effect of the number of users on the achievable BER performance of different

UWB systems, when communicating over a Rayleigh fading channels. In our simulations theEb/N0

was fixed to10 dB, the total spreading factor was fixed toNcNψ = 128 and the number of resolvable

multipaths wasL = 15 out of which there wereLs = 5 strongest paths conveying85% of the trans-

mitted power. The results of Fig. 3.14 show that the BER performance of all the pulsed-based UWB

systems considered is generally the same, which degrades slightly, when the number of users sup-

ported increases. When comparing Fig. 3.10 corresponding to the correlator detector with Fig. 3.14

corresponding to the MMSE detector, we can readily know thatthe MMSE detector outperforms the

correlation detector in terms of their achievable BER performance, when supporting multiusers.

As Fig. 3.11 for the correlation detector, Fig. 3.15 studiesthe effect of the number of resolvable

multipaths and the DS and TH spreading factors on the achievable BER performance of the hybrid

DS-TH UWB systems. In our simulations, the SNR per bit was fixed to Eb/N0 = 10dB and the

number of users supported wasK = 15. From the results of Fig. 3.15, it can be observed that, when
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Figure 3.14: BER versus number of usersK performance of pure DS-UWB, pure TH-UWB and hybrid DS-
TH UWB systems using MMSE receiver atEb/N0 = 10 dB when communicating over Rayleigh
fading channels. The total spreading factor isNcNψ = 128. The total number of resolvable
multipaths areL = 15, whereLs = 5 strongest paths convey85% of the transmitted power.
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Figure 3.15: BER performance of hybrid DS-TH UWB systems using various DSand TH spreading factors
while retaining the total spreading factorNcNψ = 128, when communicating over multipath
Rayleigh fading channels. The other parameters areEb/N0 = 10 dB, the total number of users
supported are fixed toK = 15.

MMSE detector is employed, the hybrid DS-TH UWB systems using various DS and TH spreading

factors are capable of achieving a similar BER performance,given the total spreading factor is same.

Hence, in practice, the DS and TH spreading factors may be adjusted, in order to minimize the
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complexity of the hybrid DS-TH UWB systems. Additionally, we can observe from the Fig. 3.15

that, as the number of multipaths increases, the BER performance of all the UWB systems improves

due to multipath diversity provided by the UWB channels.
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Figure 3.16: BER versus SNR per bit performance of the hybrid DS-TH UWB system using MMSE receiver
when communicating over Nakagami-m fading channels. In our simulations, the total spreading
factor wasNcNψ = 128, the DS spreading factor wasNc = 8 and the TH spreading factor
wasNψ = 16. The total number of resolvable multipaths were15, which contained5 strongest
multipath conveying85% of the transmitted power.

Finally, Fig. 3.16 shows the BER performance of the hybrid DS-TH UWB systems, when com-

municating over Nakagami-m fading channels associated with differentm values. In our simulations

we assumed that the hybrid DS-TH UWB system used a DS spreading factor ofNc = 8 and a TH

spreading factor ofNψ = 16, and thatK = 15 users were supported. We assumed that the UWB

channel hadL = 15 number of resolvable multipaths and that there wereLs = 5 strongest multi-

paths, which conveyed85% of the transmitted power. From the results of Fig. 3.16, we can see that,

as them value increases, the BER performance of the hybrid DS-TH UWBsystem improves, since

the channel quality improves with the increase of the value of m.

Finally, when comparing the results of Figs. 3.7- 3.12 with that of Figs. 3.13- 3.16, we conclude

that the MMSE detector significantly outperforms the correlation detector, when the UWB system

supports multiple users.
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3.6.3 Effect of Channel Characteristics

Above we have investigated the BER performance of the pure DS-, pure TH- as well as the hybrid

DS-TH UWB systems, when communicating over the UWB channels, which we mainly assumed

that there wereL number of resolvable multipaths and that thereLs < L number of strong resolvable

multipath conveying85% of the transmitted power. Below we provide the BER performance of

the hybrid DS-TH UWB systems, when communicating over the UWB channels proposed in the

standards, which were summarised in Table 2.3 and characterised in [29].
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Figure 3.17: BER versus average SNR per bit performance of hybrid DS-TH UWB system using correlation
detector when communicating over various types of UWB channels characterised in Table 2.3. In
our simulations the UWB channels were assumed to experienceRayleigh fading, and the other
parameters wereNc = 16,Nψ = 8 andK = 15.

Figs. 3.17 and 3.18 show the BER versus SNR per bit performance of hybrid DS-TH UWB

systems using correlation (Fig. 3.17) and MMSE (Fig. 3.18) detectors, when communicating over

various types of UWB channels, as characterised in Table 2.3. In Table 2.3 the first four types of

channels are the S-V type of UWB channels proposed in [29], which have been analysed in Sec-

tion 2.5.2.2 of Chapter 2. For the uniform channel we assume that there areL = 15 resolvable

multipaths, which includeLs = 5 strong paths containing85% of the transmitted power. In addition

to the above-mentioned, in our simulations we assumed that the DS spreading factor wasNc = 16,

the TH spreading factor wasNψ = 8 and that the hybrid DS-TH UWB system supportedK = 15

users. From the results of Fig. 3.17 and Fig. 3.18 it can be observed that the best BER performance

is achieved by the hybrid DS-TH UWB systems when communicating over the uniformly distributed
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UWB channels, which haveL = 15 resolvable multipaths and5 of which posses85% of the trans-

mitted power. As seen in Figs. 3.17 and 3.18, the hybrid DS-THUWB systems over the Channel

model-1 UWB channels are capable of achieving a similar BER performance as the systems over the

uniform UWB channels. The BER performance over Channel model-2 UWB channels is slightly

worse than that achieved over the Channel model-1 and uniform UWB channels. Finally, the BER

performance of the hybrid DS-TH UWB systems over the Channelmodel-3 and Channel model-4

UWB channels is worse than that of the hybrid DS-TH UWB systems over the other types of UWB

channels. For both correlation and MMSE detectors, the hybrid DS-TH UWB systems achieve the

worst BER performance when communicating over the Channel model-3 UWB channels.
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Figure 3.18: BER versus average SNR per bit performance of hybrid DS-TH UWB systems employing MMSE
detector, when communicating over various types of UWB channels characterised in Table 2.3.
In our simulations the UWB channels were assumed to experience multipath Rayleigh fading and
the other parameters wereNc = 16,Nψ = 8 andK = 5.

3.7 Summary and Conclusions

In this chapter hybrid DS-TH UWB system is proposed and investigated along with its two special

cases, namely the pure DS-UWB system and pure TH-UWB system.It has been shown that the hy-

brid DS-TH UWB system is capable of providing more degrees offreedom for system design and

reconfiguration than the pure DS-UWB system or pure TH-UWB system. The transmitted signal,

followed by the UWB channel model as well as the receiver model for the hybrid DS-TH UWB have

been presented. Furthermore, the BER versus SNR per bit performance of the hybrid DS-TH UWB
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systems, pure DS-UWB systems and the pure TH-UWB systems have been investigated, when the

user signals are transmitted over the UWB channels modelledby the Nakagami-m fading. Further-

more, in this chapter our study has been based on the assumptions that the delay-spread of the UWB

channels may span several bit durations and that there exista huge number of resolvable multipaths

at the UWB receiver. In this chapter the BER performance and the implementation complexity of the

UWB system have been investigated, when either the correlation detector or the multiuser MMSE

detectors are employed. From our analysis and performance results, we may draw the following

conclusions.

• Single-User Correlation Receiver:The correlation detector conflicts both MUI and ISI, when

communicating over UWB channels. The BER performance of theUWB systems degrades

significantly, as the number of users supported increases. In the hybrid DS-TH UWB systems

using the single-user correlation detector, a trade-off exists between the DS and TH spreading

factors. It can be shown that the best BER performance of the hybrid DS-TH UWB system may

be achieved by appropriately choosing the DS and TH spreading factors. The hybrid DS-TH

UWB systems using the optimum DS and TH spreading factors outperform the corresponding

pure DS-UWB and pure TH-UWB systems. The complexity of the single-user correlation

detector is proportional to2(L+1)T , whereT stands for(NcNψ+L−1). Hence, in the pulse-

based UWB systems, even the single-user correlation detector may demand a high complexity,

due to the high number of resolvable multipaths of the UWB channels.

• Multiuser MMSE Receiver: It can be shown that the MMSE detector is capable of mit-

igating efficiently the MUI and ISI. When supporting multiple users, the multiuser MMSE

detector significantly outperforms the single-user correlation detector in terms of their achiev-

able BER performance. However, the complexity of the MMSE detector is significantly

higher than the correlation detector. The complexity of theMMSE detector is proportional

to T 3/3 + 6T 2 + 4KL(1 + 2g)T , where, again,T = (NcNψ + L − 1). It can be observed

from the simulations results that the BER performance of thethree types of UWB systems

considered is in general similar, when the MMSE detector is employed. However, for some

special cases as seen, for example in Fig. 3.13, the hybrid DS-TH UWB system may slightly

outperform the pure DS-UWB or pure TH-UWB system. In contrast to the single-user correla-

tion detector, which only requires the channel and spreading code’s knowledge of the desired

users, the MMSE detector considered in this chapter requires the complete knowledge about

the spreading codes and the channels of all the active users,in order to detect the desired user.
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Therefore, the MMSE detector considered in this chapter is extremely hard to be implemented,

considering the characteristics of the UWB channels, whichusually have a huge number of

resolvable multipaths when each of the resolvable multipaths conveys very low power. For this

sake, therefore, in Chapters 4 and 5, we will focus our attention on design of low complexity

detectors for the hybrid DS-TH UWB systems.



Chapter 4
Adaptive Detection in Hybrid DS-TH UWB

Systems

4.1 Introduction

In our previous chapter, it has been shown that in order to improve the BER performance of hybrid DS-

TH UWB systems, especially, in multiuser scenarios, MMSE-MUD should be employed. As shown

in Chapter 3, when employing the MMSE-MUD, the weighting vectorwww1 is required to be computed

which needs to invert the auto-correlation matrixRRRyi , which is((NcNψ+L−1)×(NcNψ+L−1)) di-

mensional. However, the complexity of computingRRR−1
yi might be very high, since the values ofNcNψ

andL are usually high. Furthermore, in order to implement the MMSE-MUD, signature waveforms,

delays as well as complete channel knowledge, which includes both the amplitudes and phases of

all the channels, of all the active users are required by the MMSE-MUD [157–161]. However, in

practical UWB communications environment, it is usually extremely hard to obtain this informa-

tion [16, 162–164]. For example, when using channel estimation techniques to estimate the UWB

channels, it has been found that there are as large as400 parameters required to be estimated in a

typical UWB indoor channel [14]. Without any doubt, estimating such a large number of parameters

will further increase significantly the system complexity,which is already too high even when de-

tection is only considered [165]. Additionally, it is well-known that channel estimation has a critical

impact on the attainable performance of the wireless systems. This becomes even severe when UWB

communications are considered, since in the UWB systems thepower conveyed by each resolvable

multipath is usually very low, making its estimation even harder [68, 166–171]. Therefore, in this

92
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chapter adaptive detection that is free from channel estimation is proposed for detection of the hybrid

DS-TH UWB signals.

To be more specific, in this chapter we propose and investigate a range of training based adaptive

detectors operated based on the principles of MMSE [152] forthe hybrid DS-TH UWB systems. We

focus our attention on the three types of low-complexity adaptive detectors, which are implemented

based on the principles of least mean-square (LMS), normalized least mean-square (NLMS) and

recursive least square (RLS), respectively [16]. As our forthcoming discourse shown, these adaptive

detectors are free from channel estimation and are capable of achieving the approximate MMSE

solutions with the aid of training sequences of certain length. In this chapter we investigate the

achievable BER performance of the adaptive detectors and compare it with that of the ideal MMSE-

MUD [172], which demands ideal knowledge about the UWB channels and the signature sequences

of all active users [152,157], as shown in the last chapter. The BER performance of the hybrid DS-TH

UWB, pure DS-UWB and pure TH-UWB systems, which employ the above-mentioned adaptive/ideal

detectors, is investigated, when communicating over indoor UWB channels modelled by the S-V

channel model [13, 117]. The advantages and disadvantages of the considered adaptive detectors

are analyzed in the context of UWB communications. Furthermore, the complexity of the adaptive

detectors is analyzed and compared with that of the single-user correlation receiver and also with that

of the ideal MMSE-MUD considered in Chapter 3.

Our study in this chapter shows that the three types of adaptive detectors are highly efficient

detection schemes for pulse-based UWB systems. They are free from channel estimation and can ef-

fectively capture the transmitted energy dispersed over UWB channels. They are capable of achieving

a BER performance close to that achieved by the ideal MMSE-MUD. Furthermore, as our forthcom-

ing complexity analysis shown, the detection complexity ofan adaptive detectors may be significantly

lower than that of the correlation receiver, even without taking account of the complexity required by

the correlation receiver for channel estimation.

The remainder of the chapter is organised as follows. In the next section, the general description

for the training-based adaptive detectors is described. InSection 4.2 the training and decision-directed

detection modes are described in detail. Specifically, the LMS, NLMS and RLS adaptive detectors

are studied in Sections 4.2.1, 4.2.2 and 4.2.3, respectively. In Section 4.3 the complexity of the LMS,

NLMS and RLS adaptive detectors are analysed. Simulation results are provided in Section 4.4 and

finally, in Section 4.5 the summary and conclusions of the chapter are presented. Let us first consider

the training based adaptive detectors.
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4.2 Description of Training-Based Adaptive Detectors

The training-based adaptive detectors are usually operated in two modes. The first mode is the training

mode, during which the weights of the adaptive filters are adjusted with the aid of training symbols.

In the context of the hybrid DS-TH UWB communications, the training symbols are first spread based

on the principles of that described in Chapter 3 by invoking aDS spreading sequence of lengthNc

and a TH pattern of lengthNψ. Then, when the training sequence is transmitted over UWB channels,

the receiver can obtain the observation samples, as shown in(3.5) in Chapter 3. After the receiver

obtains(NcNψ + L − 1) number of observation samples in the context of one trainingsymbol, the

(NcNψ + L − 1) observation samples are processed multiplying it with a(NcNψ + L − 1) length

weight vectorwww1 in order to provide an estimate for the training symbol considered. As the training

symbol is known to the receiver, it is then subtracted from the estimated symbol to yield an estimation

error, which is utilised to update the weight vectorwww1. The above process is repeated associated with

each of the training symbols. Finally, after the training, an approximate solution for the weight vector

www1 is obtained.

After obtaining a sub-optimal weight vectorwww1 with the aid of training, the adaptive detector

can now be switched to the signal detection mode. During the signal detection stage the adaptive

detector is operated under decision-directed (DD) mode. Under the DD mode, the received signal

is multiplied by the sub-optimal weight vectorwww1 to provide estimates to the transmitted symbols.

Then, the detected symbols are fed-back to the adaptive detector, which makes use of the detected

symbols to further improve the weight vectorwww1 [173].
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Figure 4.1: Illustration of the training based adaptive detector for the hybrid DS-TH UWB system.

The concept of the adaptive detector for the hybrid DS-TH UWBsystems can be further aug-

mented by Fig. 4.1, where the traversal filter is shown in principle in Fig. 4.2. During the training

stage, the data known to the receiver is first transmitted over the UWB channel. At the receiver as

shown in Fig. 4.1, this received signal is first passed through a matched-filter having the impulse
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Figure 4.2: Schematic for traversal filter implementation.

responseψ∗
rec(−t) and is sampled to obtain observation samples. For each data bit the receiver can

obtain(NcNψ + L − 1) samples, which are stored in the buffer as shown in Fig. 4.1. Then, the ob-

servation samples are input to the traversal filter, in orderto yield the estimatez(1)
i to the transmitted

data bitb(1)i . As the training sequence is known to the receiver, so isb
(1)
i , hence, an estimation error

can be calculated, which is the desired training bit subtracted from the estimationz(1)
i . As shown in

Fig. 4.1 this error signal is utilised to update the weightswwwH1 of the traversal filters so that the weight

vector converges to the optimum weight vector.

After the training mode is completed and a sub-optimalwww1 is achieved, the receiver is then

switched to the DD mode. During the DD mode, the adaptive detector is operated in the same way

as it is during the training mode, except that now the weight vector is updated with the aid of the

detected data bits, which might be unreliable.

Note that, when designing adaptive detectors for UWB systems, the following factors are required

to be considered.

• Convergence speed;

• Tracking ability;

• Robustness of the algorithm;
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• Computational Complexity.

First, when designing adaptive detectors for UWB systems, fast converging algorithms are re-

quired. With fast converging algorithms the overhead incurred during the training mode can be re-

duced, thus increasing the data-rate of the UWB systems [174–176]. However, in UWB systems the

number of taps of the traversal filter may be very large due to possible high spreading factor and large

number of resolvable multipaths. It has been shown in [177,178], that the convergence of an adaptive

algorithm depends on the filter length. The convergence speed usually decreases with the increase of

the filter length. Secondly, in most adaptive algorithms there is a tradeoff between the convergence

speed and the ensemble-average squared error (EASE), higher EASE is achieved in most cases with

a faster convergence. This higher EASE also leads to a worst BER performance. The convergence

speed of an adaptive algorithm also determines the trackingability of the adaptive algorithm. The

tracking ability of an adaptive algorithm represents the capability to track the statistical variation in a

nonstationary environment [16]. Therefore, when the adaptive algorithm has accomplished its train-

ing mode, a robust tracking algorithm is required to track the time-variant environment. In UWB

communications, due to a huge bandwidth employed, there maybe a huge number of resolvable mul-

tipaths present at the receiver [14]. In this case, a fast tracking algorithm must be employed by the

adaptive detectors for UWB systems, so that the multipath signals can be reliably tracked. Thirdly,

robust algorithms are required for detection in UWB environments. This requirement is further neces-

sitated by the fact that the UWB systems are usually requiredto co-exist with other narrowband and

wideband systems, which typically transmit with higher power as compared to the UWB systems. For

example, in cellular communications environment, cellular phones transmit up to+30 dBm, which

is 107 times higher than the PSD of the UWB signals [62]. Hence, in such high interference en-

vironments, the desired adaptive algorithms should be robust to combat the interference caused by

the narrowband and wideband communication systems. Additionally, strong ISI exists due to a large

number of multipaths, hence, the adaptive algorithms should be robust to the ISI. Finally, in practical

UWB systems, the computational complexity of the receiversshould be very low. In this chapter, we

will show that the adaptive detectors are capable of providing better BER performance as compared

to the matched filter receiver. However, the better BER performance is achieved at the expense of

a slightly increased detection complexity [179, 180]. Let us now discuss the adaptive algorithms by

first considering the LMS detector.
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4.2.1 Least Mean Square Adaptive Detector

The LMS algorithm was first proposed by Widrow and Hoff, whilein [16] Haykin derived the LMS

algorithm by using the steepest descent method. The basic idea of the LMS algorithm is to find a sub-

optimal weight vectorwww1 through stochastic gradient techniques, in order to achieve MMSE between

the transmitted symbolb(1)i and the decision variablez(1)
i as shown in (4.1). Hence, the cost-function

J(www1(i)) in the context of the desired user1 at theith transmission can be represented as [16]

J(www1(i)) = E[||b(1)i − z
(1)
i ||2] = E[||b(1)i −wwwH1 (i)yyyi||2]

= σ2

b
(1)
i

− rrrH
yib

(1)
i

www1(i) −wwwH1 (i)rrr
yib

(1)
i

+wwwH1 (i)RRRyiwww1(i) (4.1)

whereσ2

b
(1)
i

= 1 is the variance of the desired symbol vector andwww1(i) denotes the weight vector

at theith transmission symbol duration. With the aid of the steepest-descent algorithm, the weight

vectorwww1(i) is successively adjusted in the direction of the steepest descent, which is opposite to that

of the gradient vector of the cost function. Therefore, the updated equation for the weight vector can

be expressed as [16]

www1(i+ 1) = www1(i) −
1

2
µggg(i) (4.2)

wherewww1(i) andwww1(i + 1) are the weight vectors at time instanti and(i+ 1), respectively,µ is the

step-size andggg(i) denotes the gradient vector of the cost functionJ(www1(i)), which can be expressed

as [16]

ggg(i) = ∇J(www1(i)) =
∂J(www1(i))

∂(www1(i))
(4.3)

Upon substituting (4.1) into (4.3), we obtain [16]

ggg(i) = −2rrr
yib

(1)
i

+ 2RRRyiwww1(i) (4.4)

Furthermore, upon substituting (4.4) into (4.2), we have the weight update equation

www1(i+ 1) = www1(i) + µ[rrr
yib

(1)
i

−RRRyiwww1(i)], i = 0, 1, 2, · · · (4.5)

According to the above analysis, we know that the LMS algorithm determines the MMSE solution

recursively. In practice the exact measurement of the gradient vector of (4.4) are not available, as the

a-prior knowledge about the auto-correlation matrixRRRyi and the cross-correlation vectorrrr
yib

(1)
i

are

not known at the receiver. Therefore when operated in an unknown environment, the gradient vector
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has to be estimated with the aid of the received data. Specifically, the one-step estimations to the

auto-correlation matrixRRRyi and the cross-correlationrrr
yib

(1)
i

can be expressed as [16]

RRRyi = yyyiyyy
H
i

rrr
yib

(1)
i

= yyyib
∗(1)
i (4.6)

whereb(1)i is known to the receiver, when using the adaptive receiver inthe training mode, while it

can be estimated when using the adaptive receiver in the DD mode. However, the detected bit might

be unreliable.

Upon substituting the estimates of the auto-correlation matrixRRRyi and the cross-correlationrrr
yib

(1)
i

as shown in (4.6) into (4.3), the one-step estimate to the gradient ofJ(www1(i)) can be expressed as [16]

ggg(i) = ∇J(www1(i)) = −2yyyib
(1)
i + 2yyyiyyy

H
i www1(i) (4.7)

Moreover, when substituting (4.7) into (4.2), the recursive equation for updating the weight vector

can be expressed as

www1(i+ 1) = www1(i) + µyyyi[b
∗(1)
i − yyyHi www1(i)]

= www1(i) + µyyyi[b
(1)
i −wwwH1 (i)yyyi]

∗

= www1(i) + µyyyie
∗(i) (4.8)

where, by definition,e(i) = b
(1)
i −wwwH1 (i)yyyi, which denotes the estimation error at theith updating

step.

It has been shown that the convergence rate of the LMS algorithm as above-described depends on

the step-size employed and the statistics of the input-vector yyyi [181–185]. In order to attain an opti-

mum convergence speed, an appropriate step-size value ofµ needs to be determined, which is usually

very difficult to find in a non-stationary communication environment [16]. In the non-stationary com-

munication environment, an appropriate step-size performing well in a given environment might not

be suitable for another environment. In the LMS adaptive algorithm, the step-size is directly propor-

tional to the misadjustment of the algorithm, which is defined as the ratio between the excess MSE

and the MMSE [154]. It can be observed that when using a largerstep-size, faster convergence is

achieved, which reduces the length of the training sequenceand improves the spectral-efficiency of

the UWB system. However, a large step-size leads to a higher misadjustment, resulting in a higher
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MSE value or divergence of the algorithm. For this sake, a small step-size is required which however,

reduces the convergence speed and the spectral-efficiency of the UWB system [186]. Concerning

the effect of the input vectoryyyi, when the input vectoryyyi becomes longer, the LMS algorithm easily

suffers from the gradient-noise amplification problem [16]. Finally, although its implementation com-

plexity is low, the LMS algorithm however, has a relatively low convergence speed, which implies

relatively long training overhead and hence relatively lowthroughput [179]. However, the complexity

of the LMS algorithm is low [16], which will be discussed in detail in Section 4.3.

The LMS adaptive detector can be summarised as follows.

❏ Parameters:

µ = a suitable step-size,0 < µ <
2

E[||yyyi||2]
.

❏ Initialisation:

www1(0); www1(0) = 000, when withouta-prior knowledge.

❏ Weight vector update:

For i = 0, 1, 2, . . ., compute

estimation error:e(i) = b
(1)
i −wwwH1 (i)yyyi, and

weight vector:www1(i+ 1) = www1(i) + µyyyie
∗(i).

Let us now describe the NLMS adaptive detector.

4.2.2 Normalised Least Mean Square Adaptive Detector

The normalised least-mean square (NLMS) also belongs to thecategory of stochastic gradient al-

gorithm, and like LMS adaptive algorithm the associated optimisation criteria is the MMSE [178].

The NLMS algorithm was proposed independently by Nagumo andNoda [16] and Albert and Gard-

ner [16] in 1967. Originally, the NLMS adaptive algorithm was proposed in order to mitigate the

gradient noise amplification problem, which the LMS algorithm suffers from, when the input vector

yyyi is long [16]. It has been shown that the NLMS algorithm is morerobust than the LMS adaptive

algorithm, since the gradient noise amplification problem can be mitigated in the NLMS adaptive

algorithm [16, 179]. Consequently, the NLMS adaptive algorithm is capable of achieving a rela-

tively high convergence speed, no matter whether the input data is correlated or uncorrelated [16].
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Furthermore, the NLMS adaptive algorithm is independent ofthe varying communications environ-

ment [186, 187]. Additionally, the NLMS adaptive algorithmis capable of achieving a lower excess

MSE than the LMS adaptive algorithm, when they have an equivalent convergence rate [187–189].

In NLMS adaptive detector, the step-size is time-varying which is given by [16]

µ(i) =
µ

δ + ||yyyi||2
(4.9)

whereδ is a small positive constant that is introduced to avoid numerical overflow, when the magni-

tude of the input vectoryyyi is small [188,190],||yyyi||2 is the Euclidean norm of the input vector which

is time-varying andµ is the adaptation constant, which satisfies0 < µ < 2. Correspondingly, the

weight update equation in the NLMS adaptive detection can bedescribed as [16]

www1(i+ 1) = www1(i) + µ(i)yyyie
∗(i)

= www1(i) +
µ

δ + ||yyyi||2
yyyie

∗(i)

= www1(i) +
µ

δ + ||yyyi||2
yyyi[b

(1)
i −wwwH1 (i)yyyi]

∗ (4.10)

Provided that the step-sizeµ andδ are properly set, the overhead incurred by training mode can

be reduced by using the NLMS adaptive detector due to its faster convergence rate in comparison

with the LMS adaptive detector, but at the cost of a negligible increase of complexity [16, 191]. The

complexity of the NLMS adaptive detector will be discussed in Section 4.3.

Finally, the NLMS adaptive detector can be summarised as:

❏ Parameters:

µ = a suitable step-size,0 < µ < 2.

❏ Initialisation:

www1(0); www1(0) = 000, when withouta-prior knowledge.

❏ Weight vector update:

For i = 0, 1, 2, . . ., compute

estimation error:e(i) = b
(1)
i −wwwH1 (i)yyyi,

weight vector:www1(i+ 1) = www1(i) +
µ

δ + ||yyyi||2
yyyie

∗(i).
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According to [192], the main problem with the stochastic gradient algorithms, such as the LMS

and NLMS adaptive algorithms, is their heavily dependence on the eigenvalue distribution of the

autocorrelation matrixRRRyi of the input signals. It has been shown [178] that the larger is the ratio

between the highest and smallest eigen-values, the slower is the convergence speed. Hence, the LMS

and NLMS adaptive algorithms might converge very slowly, when the input signals are coloured

noise [192]. Furthermore, as shown in (4.8) and (4.10), the LMS and NLMS adaptive algorithms

have only single adjustable parameter which isµ, for controlling the convergence rate [193]. In

order to achieve higher convergence rate, more complex algorithms might be required, which have

additional parameters in addition to the step-size to control the convergence speed. Let us below

consider the RLS adaptive algorithm, which is capable of providing higher convergence rate than the

LMS and NLMS adaptive algorithms [193].

4.2.3 Recursive Least Square Adaptive Detector

In this section the RLS adaptive detector [16] is introducedfor detection of UWB signals. The RLS

adaptive algorithm is class of adaptive algorithm derived based on minimisation of the sum of the

weighted squared error. This adaptive algorithm can exploit all the information contained in the

received data that is invoked in the RLS adaptive algorithm.Hence, the RLS adaptive algorithm may

have a substantially higher computational complexity thanthe LMS or NLMS algorithm. However,

the RLS algorithm is capable of achieving a significantly higher convergence rate than the LMS or

NLMS algorithm [16,193]. Let us below develop the RLS adaptive algorithm.

According to the MMSE detection, the optimum weight vectorwww1(i) at timei can be expressed

as [16]

www1(i) = RRR−1
yi rrryib(1)i

(4.11)

whereRRRyi =
∑i

j=1 λ
i−jyyyiyyy

H
i is the estimate to the autocorrelation matrix,λ is the forgetting factor

accounting for the contribution of data. In (4.11) the estimate to the cross-correlation vector is given

by rrr
yib

(1)
i

=
∑i

j=1 λ
i−jyyyjb

(1)
j . Explicitly, the autocorrelation matrix and cross-correlation vector can

be written as

RRRyi = λRRRy(i−1)
+ yyyiyyy

H
i

rrr
yib

(1)
i

= λrrr
y
(i−1)

b
(1)
(i−1)

+ yyyib
∗(1)
i (4.12)

respectively. Using matrix-inverse Lemma, the inverse of the auto-correlation matrix can be repre-
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sented as [16]

RRR−1
yi = λ−1RRR−1

y(i−1)
−
λ−2RRR−1

y(i−1)
yyyiyyy

H
i RRR

−1
y(i−1)

1 + λ−1yyyHi RRR
−1
y(i−1)

yyyi
(4.13)

For convenience of notation, let us define the inverse autocorrelation matrix as [16]

PPP (i) = RRR−1
yi (4.14)

Furthermore, let us define [16]

kkk(i) =
λ−1PPP (i− 1)yyyi

1 + λ−1yyyHi PPP (i− 1)yyyi
(4.15)

as the RLS gain vector [16]. By rearranging the above equation

kkk(i) =λ−1PPP (i− 1)yyyi − λ−1kkk(i)yyyHi PPP (i− 1)yyyi

=
[
λ−1PPP (i− 1) − λ−1kkk(i)yyyHi PPP (i− 1)

]
yyyi (4.16)

Then, upon applying (4.14) and (4.15) into (4.13), the inverse of the autocorrelation matrix can be

expressed as [16]

PPP (i) = λ−1PPP (i− 1) − λ−1kkk(i)yyyHi PPP (i− 1) (4.17)

With the aid of (4.12), it can be shown that the weight vectorwww1(i) of (4.11) can be written as

www1(i) = PPP (i)rrr
yib

(1)
i

= λPPP (i)rrr
y
(i−1)

b
(1)
(i−1)

+PPP (i)yyyib
∗(1)
i (4.18)

Then, substituting (4.17) in (4.18) yields

www1(i) = PPP (i− 1)rrr
y
(i−1)

b
(1)
(i−1)

− kkk(i)yyyHi PPP (i− 1)rrr
y
(i−1)

b
(1)
(i−1)

+PPP (i)yyyib
∗(1)
i

= RRR−1
y(i−1)

rrr
y
(i−1)

b
(1)
(i−1)

− kkk(i)yyyHi RRR
−1
y(i−1)

rrr
y
(i−1)

b
(1)
(i−1)

+PPP (i)yyyib
∗(1)
i

= www1(i− 1) − kkk(i)yyyHi www1(i− 1) +PPP (i)yyyib
∗(1)
i (4.19)
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Finally, using the fact thatPPP (i)yyyi equals the gain vectorkkk(i), (4.19) can be represented as

www1(i) = www1(i− 1) + kkk(i)[b
∗(1)
i − yyyHi www1(i− 1)]

= www1(i− 1) + kkk(i)ξ∗(i) (4.20)

where the estimation errorξ(i) is defined as [16]

ξ(i) = b
(1)
i −wwwH1 (i− 1)yyyi (4.21)

In order to carry out the RLS-assisted adaptive detection, the weight vector is required to be

initialized. As in [16], a soft-contrained initialisationcan be employed, which sets

PPP (0) = δ−1III (4.22)

whereδ is referred as the regularization factor, which is usually asmall positive constant for a high

SNR, but a relatively large positive constant for a low SNR [16, 194]. Furthermore, when no a-prior

knowledge is available, the initial weight vectorwww(0) is typically set to be a null vector.

The stability of the RLS adaptive algorithm is dependent on the following factors [178]

• The initialisation of the inverse autocorrelation matrix,PPP (0) = δ−1III;

• The value of the forgetting factor,λ.

It has been shown that the choice ofδ is critical for nonstationary communications environ-

ments [178]. It turns out that in the nonstationary communications environment the convergence prop-

erties of the RLS adaptive algorithm differ significantly, when different values ofδ is applied [194].

A small value ofδ leads to instability of the algorithm(overshoot phenomenon). However, when the

value ofδ increases, the convergence speed of the RLS adaptive algorithm reduces especially, at the

start of the adaptation [178]. The choice of the forgetting factorλ also affects the stability, the con-

vergence speed and the tracking behaviour of the RLS Adaptive algorithm [178]. It has been found

that for achieving a stable algorithm a value ofλ should be chosen between
(

1 − 1
(NcNψ+L−1)

)

and
(

1 − 1
10(NcNψ+L−1)

)

[178]. It has been shown that the RLS adaptive algorithm has the higher com-

putational complexity than the LMS and NLMS adaptive algorithms [178, 192]. However, the RLS

adaptive algorithm is more suitable for rapidly time-varying environments than the LMS and NLMS

adaptive algorithms [195]. The computational complexity of the RLS adaptive algorithm will be

discussed in Section 4.3 along with the LMS and NLMS adaptivealgorithms.
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Finally, the procedure of the RLS adaptive detector is summarised as follows.

❏ Parameters:

λ = a suitable forgetting factor is chosen in the range
(

1 − 1
(NcNψ+L−1)

)

≤ λ ≤
(

1 − 1
10(NcNψ+L−1)

)

❏ Initialisation:

www1(0); www1(0) = 000, when withouta-prior knowledge.

PPP (0) = δ−1III, whereδ is set as a relatively small positive constant for higher SNR,

and as a relatively large positive constant for lower SNR.

❏ Computation: For i = 1, 2, . . ., compute

gain vector:kkk(i) =
λ−1PPP (i− 1)yyyi

1 + λ−1yyyHi PPP (i− 1)yyyi
,

a-priori estimation error: ξ(i) = b
(1)
i −wwwH1 (i− 1)yyyi,

weight vector:www1(i) = www1(i− 1) + kkk(i)ξ∗(i),

inverse of autocorrelation matrix:PPP (i) = λ−1PPP (i− 1) − λ−1kkk(i)yyyHi PPP (i− 1).

Let us now analyze the computation complexity of the adaptive algorithms considered in this

section.

4.3 Complexity of Adaptive Detectors

In this section, we analyze the complexity of the LMS, NLMS and the RLS adaptive detectors. The

complexity is measured with the help of the number of multiplications and additions required to detect

a symbol of the desired user. As in the last chapter we setT = NcNψ + L− 1.

4.3.1 Complexity of Least Mean Square Adaptive Detector

In adaptive detection, the LMS algorithm, is the most simpleto implement. The estimate of theith

bit of the1st user can be given as

z
(1)
i = wwwH1 (i)yyyi (4.23)
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The update equation for the weight vectorwww1(i+ 1) is given in (4.8), which is

www1(i+ 1) = www1(i) + µyyyie
∗(i) (4.24)

According to (4.23) and (4.24), it can be shown that the complexity for the LMS adaptive algorithm

can be summarised as shown in is calculated as shown in Table 4.1.

Operations Number of Number of
additions multiplications

z
(1)
i T T
e(i) 1 −

µyyyie
∗(i) − 2T

www1(i+ 1) T −

Table 4.1: Complexity of Least Mean Square (LMS) adaptive detector.

Therefore, in order to detect a symbol of the desired user, the total number of operations required

by the LMS adaptive detector is(5T + 1). Explicitly, if T is very large, we can ignore1, and the

complexity of the LMS adaptive detector is hence5T .

4.3.2 Complexity of Normalised Least Mean Square Adaptive Detector

As shown in Section 4.2.2, in the NLMS adaptive detection theestimate of theith bit of the1st user

can be expressed as

z
(1)
i = wwwH1 (i)yyyi (4.25)

Correspondingly, the updated equation for the weight vector www1(i+ 1) is given by (4.10), which is

www1(i+ 1) = www1(i) +
µ

δ + ||yyyi||2
yyyie

∗(i) (4.26)

Therefore, the number of operations required by the NLMS adaptive algorithm can be summarised in

Table 4.2.

Hence, in order to detect a symbol of the desired user, the total number of operations required is

7T + 2, which can be approximately expressed as7T , if T is very large.
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Operations Number of Number of
additions multiplications

z
(1)
i T T
e(i) 1 −
||yyyi||2 T − 1 T

µ
δ+||yyyi||2

yyyie
∗(i) 1 2T + 1

www1(i+ 1) T −

Table 4.2: Complexity of Normalised Least Mean Square (NLMS) adaptivedetector.

4.3.3 Complexity of Recursive Least Square Adaptive Detector

For the RLS adaptive detection, theith bit of the1st user can be expressed as

z
(1)
i = wwwH1 (i)yyyi (4.27)

where the weight vector is obtained through the update equation

www1(i) = www1(i− 1) + kkk(i)ξ∗(i)

= www1(i− 1) +
λ−1P (i− 1)yyyi

1 + λ−1yyyHi PPP (i− 1)yyyi
ξ∗(i) (4.28)

as shown in Section 4.2.3 of this chapter. The number of operations invoked in the RLS adaptive

detector are summarized in Table 4.3. Hence, in order to detect a symbol of the desired user, the total

number of operations by the RLS adaptive detector is11T 2 + 8T + 3, which is approximately11T 2,

if the value ofT is high.

Let us now provide and discuss the achievable error performance of the adaptive detectors.

4.4 Performance Results and Discussion

This section provides a range of simulation results characterising the error rate performance of the hy-

brid DS-TH systems employing the various adaptive detectors as shown in Section 4.2. Furthermore,

since both the pure DS-UWB and pure TH-UWB schemes constitute special examples of the hybrid
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Operations Number of Number of
additions multiplications

z
(1)
i T T
ξ(i) 1 −

λ−1P (i− 1)yyyi T 2 T 2 + T
yyyHi PPP (i− 1)yyyi T 2 + T T 2 + T

1 + λ−1yyyHi PPP (i− 1)yyyi 1 1
kkk(i) − T

kkk(i)ξ∗(i) − T
www1(i) T −

λ−1kkk(i)yyyHi PPP (i− 1) 2T 2 3T 2

λ−1PPP (i− 1) − T 2

P (i) T 2 −

Table 4.3: Complexity of Recursive Least Square (RLS) adaptive detector.

DS-TH UWB scheme, their BER performance is also investigated in this section. In our simulations,

the following assumptions were employed:

1) Coherent BPSK baseband modulation without channel coding;

2) The energy per symbol was kept constant. The total spreading factor was constant and was

NcNψ = 64. It is worth mentioning again that in this case, the hybrid DS-TH UWB system

is reduced to the pure DS-UWB system whenNc = 64 andNψ = 1, while it is reduced to

the pure TH-UWB system whenNc = 1 andNψ = 64. Furthermore, in our simulations for

the hybrid DS-TH UWB system, the DS spreading factor was fixedtoNc = 16, while the TH

spreading factor was fixed toNψ = 4;

3) For the UWB channels, the number of resolvable multipathswas assumed to beL = 15 and

the normalised doppler frequency was set tofdTb = 0.0001. Furthermore, in our simulations

the S-V channel model was employed, where the channel gains were assumed to obey the

Rayleigh distribution. The parameters of the S-V channel model used in our simulations are

summarised in Table 4.4, where ‘LoS’ means that the channel model contains line-of-sight

(LoS) propagation paths [117].
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1/Λ Γ γ

LoS 14.11ns 2.63ns 4.58ns

Table 4.4: Fitted Saleh Valenzuela Channel Model Parameter

Let us now provide and discuss the performance of the LMS-, NLMS- and RLS-aided adaptive

detectors in the following relevant subsections.

4.4.1 Performance Results Using Least Mean Square AdaptiveDetector

In this section the performance results of the hybrid DS-TH UWB systems using LMS-aided adaptive

detector are presented. Initially, learning curves for thehybrid DS-TH UWB system supporting single

or multiple users are depicted, when different step-sizes are chosen. Then, BER performance for the

hybrid DS-TH UWB systems are presented, when the LMS adaptive detector is employed. In this

subsection, all the simulations were carried out in the LoS communications environment.
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Figure 4.3: Learning curves of the LMS adaptive detector with differentstep-sizeµ for the hybrid DS-TH
UWB system supporting single user, when communicating overthe S-V UWB Rayleigh fading
channels havingL = 15 resolvable multipaths and a doppler frequencyfdTb = 0.0001. The
DS spreading factor isNc = 16, the TH-spreading factor isNψ = 4 and the SNR per bit is
Eb/N0 = 10 dB.

Fig. 4.3 shows the learning curves of the LMS adaptive detector for the hybrid DS-TH UWB

system supporting single user when communicating over the S-V UWB channels havingL = 15

number of resolvable multipaths and a doppler frequencyfdTb = 0.0001. In our simulations, the
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Figure 4.4: Learning curves of the LMS adaptive detector with differentstep-sizeµ for the hybrid DS-TH
UWB system supportingK = 15 users, when communicating over the S-V UWB Rayleigh fading
channels havingL = 15 resolvable multipaths and a doppler frequencyfdTb = 0.0001. The
DS spreading factor isNc = 16, the TH-spreading factor isNψ = 4 and the SNR per bit is
Eb/N0 = 10 dB.

DS-spreading factor was assumed to beNc = 16 while the TH-spreading factor was fixed toNψ = 4.

Furthermore, the SNR per bit was set asEb/N0 = 10 dB. The ensemble average was obtained

from 10, 000 independent realizations. From the results of Fig. 4.3, we observe that the convergence

speed of the LMS adaptive detector depends heavily on the step-sizeµ. For a large step-size value

of µ = 0.05, the adaptive detector converges to its steady-state valueafter about100 iterations.

By contrast, when a smaller step-size value, such asµ = 0.001 andµ = 0.005 is employed, the

convergence speed may be very slow. As seen in Fig. 4.3, whenµ = 0.001, the LMS adaptive

detector does not converge even after500 iterations.

Fig. 4.4 shows the learning curves of the LMS adaptive detector for the hybrid DS-TH UWB

system when communicating over the S-V UWB channels havingL = 15 resolvable paths and

a doppler frequencyfdTb = 0.0001. In our simulations the DS-spreading factor wasNc = 16,

the TH-spreading factor wasNψ = 4 andEb/N0 = 10 dB. The ensemble average was obtained

through10, 000 independent realizations. As shown in Fig. 4.4, the learning curve forµ = 0.05

converges much faster than the learning curves with the other step-size values. In comparison with

the results shown in Fig. 4.3, the corresponding MSE is increased because of MUI. Furthermore, it

can be observed from Fig. 4.3 and Fig. 4.4, that a relatively higher step-size usually results in higher

convergence speed, which hence leads to less number of iterations, and higher spectral-efficiency of
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Figure 4.5: BER versus SNR performance of the hybrid DS-TH UWB system supporting single orK = 5
users, when communicating over Rayleigh fading channels modelled by the S-V model having
L = 15 number of resolvable multipaths. The other parameters usedin our simulations were
fdTb = 0.0001,Nc = 16,Nψ = 4, µ = 0.05 andµDD = 0.01. The frame length (FL) was set to
500 or 1000, while the length of the training sequence was160 bits.

the hybrid DS-TH UWB system. However, as the step-size is directly related to misadjustment of the

algorithm, increasing the step-size also increases the misadjustment of the algorithm which results in

higher MSE values as shown in Fig. 4.3 and Fig. 4.4. Based on this observation, in our following

simulations, a bigger step-size is usually employed duringthe training mode so that the adaptive

detector can converge with a high speed. By contrast, duringthe DD mode, a smaller step-size is

utilised in order to reduce the misadjustment and consequently to reduce the MSE. Additionally,

from the results of Fig. 4.3 and Fig. 4.4 we are implied that misadjustment becomes more prominent

when multiple users are supported. Consequently, the decrease of spectral-efficiency due to using

small step-size might be used for trade off an improved MSE performace.

Fig. 4.5 shows the BER performance of the hybrid DS-TH UWB system supporting single or

K = 5 users when communicating over Rayleigh faded UWB channels having L = 15 number

of resolvable paths. The step-size used during the trainingmode wasµ = 0.05, while during the

DD mode wasµDD = 0.01. The DS-spreading factor wasNc = 16 and the TH-spreading factor

wasNψ = 4. It can be observed that the BER performance of the LMS-assisted adaptive detector

becomes closer to that of the ideal MMSE detector, as the SNR increases. As shown in Fig. 4.5,

in our simulations two types of frame length were considered, which were500 and1000. It can

be observed from Fig. 4.5 that, if an appropriate step-size is employed the BER performance of the
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hybrid DS-TH UWB systems using a frame length of1000 approaches to that of the hybrid DS-TH

UWB systems using a frame length500. Note that, since for both cases the number of training bits

was160, hence, the spectral-efficiency of systems using the frame-length of1000 is 84% while that

using a frame-length of500 is only68%. Furthermore, from the results of Fig. 4.5 it can be observed

that the LMS-aided detector is much worse than the ideal MMSEat the low SNR region. The BER

performance of the hybrid DS-TH UWB systems at low SNR regionmay be improved by using longer

training sequences associated with smaller step-size. However, in this case the spectral-efficiency of

the hybrid DS-TH UWB systems will be decreased. Additionally, from the water-fall BER curves as

shown in Fig. 4.5, we are implied that LMS adaptive detector is capable of efficiently mitigating both

the ISI and MUI.

Fig. 4.6, shows the effect of the step-size used during the DD-mode on the BER performance

of the hybrid DS-TH UWB systems, when communicating over theUWB channels modelled by the

S-V Rayleigh faded model. In Fig. 4.6,µDD = 0 corresponds to without using the DD-mode. It

can be observed from the results of Fig. 4.6 that, for the low-complexity LMS adaptive detector,

it is necessary to choose an appropriate step-size in order to achieve a BER performance that is

close to that achieved by the ideal MMSE detector with perfect channel knowledge. When the LMS

adaptive detector does not update its weights after the training mode, which corresponds to the case

of µDD = 0 there is a significant loss in BER performance in comparison with the cases using an

appropriate step-size such asµDD = 0.01, for weight updating. For a given step-size ofµDD = 0 or

0.01, the BER corresponding to a frame-lengthFL = 500 is slightly lower than that corresponding

to FL = 1000. However, as discussed previously, this better BER performance is obtained at the

expense of a lower spectral-efficiency, as higher percentage of training symbols were transmitted in

the former case than in the latter case. Furthermore, the results of Fig. 4.6 explicitly show that the DD

approach can be employed in order to improve the BER performance as well as the spectral-efficiency

of the hybrid DS-TH UWB systems. However, if an inappropriate step-size is used, as shown Fig. 4.6

the BER performance may become even worse than that of the LMSadaptive detector without the DD

operations. The reason behind this BER performance loss is that the inappropriate step-size causes a

high misadjustment, as mentioned previously, which further leads to a high MSE. Consequently, the

error probability becomes higher and the receiver may update its weights according to the erroneously

detected bits with the assumption that they are correct. As no reliable information is fed back, the

erroneously detected bits may make the adaptive detector even worse due to error propagation. This

is the case especially at low SNR when the BER is higher than10−2. As shown in Fig. 4.6 the BER

performance becomes better as the SNR increases. Therefore, it might be appropriate to utilise DD-
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Figure 4.6: BER versus SNR performance of the hybrid DS-TH UWB system supportingK = 15 users, when
communicating over the UWB channels modelled by the S-V Rayleigh fading model. The other
parameters used in our simulations wereL = 15, fdTb = 0.0001,Nc = 16,Nψ = 4 andµ = 0.05.
The frame length (FL)500 or 1000, while the length of the training sequence was160 bits.

mode, if the SNR is sufficiently high, yielding that the BER islower than10−2. Another possible

solution to this problem is to use soft decisions instead of hard decisions to upgrade the weights of the

adaptive detector. However, using soft decisions may increase the complexity of the UWB systems.

Additionally, in order to make the adaptive detector updated toward converging, a smaller step-size

than that used in the training mode may be employed. From the results of Fig. 4.6, we can see that

the BER performance difference for the systems usingFL = 1000 and500 is about1dB when using

no DD-mode. By contrast, when the DD-mode associated withµDD = 0.01 is employed, this BER

performance difference is significantly reduced.

Finally, Figs. 4.7 and 4.8 show the BER versus SNR performance of various UWB systems using

LMS adaptive detection and supporting single,K = 5 orK = 15 users. From the results of Fig. 4.7,

it can be observed that the BER performance of the pure DS-, pure TH- and hybrid DS-TH UWB

systems is approximately the same, when step-size and all other parameters are the same. From the

results of Fig. 4.8, it can be observed that the BER performance of the pure DS-, pure TH- and hybrid

DS-TH UWB systems is also approximately the same, when the adaptive detectors use no DD-mode

operations. However, when the DD-mode is applied with an appropriate step-size, then, for given

other parameters, the BER performance of the hybrid DS-TH UWB system is slightly better than that

of the pure TH- or pure DS-UWB system. Furthermore, from the results shown in Figs. 4.7 and 4.8,
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Figure 4.7: BER versus SNR performance of the DS-,TH- and hybrid DS-TH UWB systems supporting single
andK = 5 users, when communicating over the UWB channels modelled bythe S-V Rayleigh
fading model. The other parameters used in our simulations werel = 15, fdTb = 0.0001,µ = 0.05
andµDD = 0.01. The frame length (FL) was1000 and there were160 training symbols per frame.
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Figure 4.8: BER versus SNR performance of the DS-,TH- and hybrid DS-TH UWB systems supportingK =
15 users, when communicating over the UWB channels modelled bythe S-V channel Rayleigh
fading model. The other parameters used in our simulations werefdTb = 0.0001, µ = 0.05, and
L = 15. The frame length (FL) was1000 and there were160 training symbols per frame.
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we can conclude that the LMS adaptive detection is efficient for all UWB systems.

4.4.2 Performance Results Using Normalised Least Mean Square Adaptive Detector

In this section, we present the performance results of the hybrid DS-TH UWB systems employing the

NLMS adaptive detection. All our simulations were carried out in the context of the UWB channels

with LoS propagation. Furthermore, the BER performance results of the pure DS- and pure TH-UWB

are provided as special examples of hybrid DS-TH UWB systems.
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Figure 4.9: Learning curves of the NLMS adaptive detector with different adaptation step-sizesµ, when the
hybrid DS-TH UWB systems supports single user and communicates over the UWB channels
modelled by the S-V Rayleigh fading model. The other parameters wereEb/N0 = 10dB, Doppler
frequency-shiftfdTb = 0.0001, Nc = 16, Nψ = 4 andL = 15. The ensemble-averaged results
were taken over10, 000 independent realizations of the channel.

Fig. 4.9 and Fig. 4.10 shows the ensemble MSE learning curve of the NLMS adaptive detector

using different adaptation step-sizes ofµ atEb/N0 = 10dB, when the hybrid DS-TH UWB supports

K = 1 (Fig. 4.9) andK = 15 users (Fig. 4.10). The ensemble average was taken over10, 000

independent realizations. From the results of Fig. 4.9 and Fig. 4.10, it can be observed that, as the

value of the adaptation step-sizeµ increases, the rate of convergence increases. Hence, as thevalue of

µ increases, less number of training bits is required for the NLMS adaptive detector to reach its steady

state value, and consequently, the spectral-efficiency of the hybrid DS-TH UWB systems can be

improved. However, as shown in Figs. 4.9 and 4.10, a higher value ofµ results in faster convergence,

but also leads to a higher MSE value. Based on the above observations, it can be implied that variable

step-sizes may be utilised by the NLMS adaptive detector, sothat it can converge to a low MSE value,
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Figure 4.10: Learning curves of the NLMS adaptive detector with different adaptation step-sizeµ, when the
hybrid DS-TH UWB system supportsK = 15 users and communicates over the UWB chan-
nels modelled by the S-V Rayleigh fading model. The other parameters wereEb/N0 = 10dB,
Doppler frequency-shiftfdTb = 0.0001,Nc = 16,Nψ = 4 andL = 15. The ensemble-averaged
results were taken over10, 000 independent realizations of the channel.
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Figure 4.11: BER versus SNR performance of the hybrid DS-TH UWB system supporting single orK = 5
users, when communicating over the UWB channels modelled byS-V Rayleigh fading channel
model. The other parameters used in our simulations werefdTb = 0.0001,µ = 0.5,µDD = 0.05,
Nc = 16, Nψ = 4 andL = 15. The frame length (FL) was set to500 and1000, respectively,
where the training length (TL) was160 symbols.

but with the aid of short training sequences.
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Figure 4.12: BER versus SNR performance of the hybrid DS-TH UWB system supportingK = 15 users,
when communicating over the UWB channels modelled by the S-VRayleigh fading model. The
other parameters used in our simulations werefdTb = 0.0001, µ = 0.5, Nc = 16, Nψ = 4 and
L = 15. The frame length (FL) was set to500 or 1000, where the training length (TL) was160
symbols.

Fig. 4.11 shows the BER performance of the hybrid DS-TH UWB system supporting single or

K = 5 users, when communicating over the UWB channels modelled bythe S-V Rayleigh fading

model. It can be observed from the Fig. 4.11 that the NLMS-aided adaptive detector performs nearly

as well as an ideal MMSE detector requiring perfect channel knowledge when the systems support

single user. However, a BER performance loss of about1dB occurs, as the results of possibly using

inappropriate step-size, whenK = 5 users are supported. As shown in Fig. 4.11, the BER curves

are in the presence of water fall, implying that the hybrid DS-TH UWB system with the aid of the

NLMS adaptive detector is capable of efficiently suppressing the MUI and ISI. Furthermore, it can

be observed that the BER performance corresponding to the frame length ofFL = 500 is slightly

better than that corresponds toFL = 1000. However, this improved BER performance is obtained

at the expense of a lower spectral-efficiency as analysed previously in this section. Hence, it can

be concluded that the spectral-efficiency of the hybrid DS-TH UWB system might sometimes be

used to trade for the BER performance of the system, a lower spectral-efficiency for a better BER

performance.

Fig. 4.12 shows the BER performance of the hybrid DS-TH UWB system supportingK = 15

number of users when communicating over the UWB channels modelled by the S-V Rayleigh fading

model. From the results of Fig. 4.12, it can be observed that the BER performance of the NLMS-
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Figure 4.13: BER versus SNR performance of the DS-,TH- and hybrid DS-TH UWB systems supporting sin-
gle andK = 5 users, when communicating over the UWB channels modelled byS-V Rayleigh
fading model. The other parameters used in our simulations werefdTb = 0.0001, µ = 1.0,
µDD = 0.05 andL = 15, respectively. The frame length (FL) was set to1000 where the training
length was160 symbols.

aided adaptive detector is dependend on the step-size chosen for the DD-mode. From Fig. 4.12 it can

be inferred that using the DD-mode may enhance the BER performance. If no DD is applied, a con-

siderable loss in BER performance occurs, when the SNR is high. However, it can also be observed

that the BER performance of the hybrid DS-TH UWB system degrades, when the an inappropriate

step-size for the DD-mode is applied, which results in high misadjustment, or high error probability,

as discussed associated with Fig. 4.6. As shown in Fig. 4.12,when an appropriate step-size is applied

by the DD-mode, the BER performance difference corresponding to FL= 500 and to FL= 1000 is

very small.

The BER performance of the pure DS-UWB, pure TH-UWB and hybrid DS-TH UWB systems

using NLMS adaptive detection is plotted in Fig. 4.13 when both the training and DD mode are

employed. From the results of Fig. 4.13 it can be observed that the BER performance of all the UWB

system are the same when single andK = 5 users are supported. Finally, the BER performance

of pure DS-UWB, pure TH-UWB and hybrid DS-TH UWB systems supporting K = 15 users is

depicted in Fig. 4.14, when using no DD-mode (µDD = 0) or using the DD-mode associated with a

step-size (µDD = 0.05). It can be observed that the BER performance of the hybrid DS-TH UWB

system is slightly better than that of the pure DS-UWB or pureTH-UWB system for bothµDD = 0

andµDD = 0.05. Furthermore, from the results of Figs. 4.13 and 4.14, it canbe implied that all the
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Figure 4.14: BER versus SNR performance of the DS-,TH- and hybrid DS-TH UWB systems supportingK =
15 users, when communicating over the UWB channels modelled bythe S-V Rayleigh fading
model. The other parameters used in our simulations werefdTb = 0.0001,µ = 0.5,µDD = 0.05
andL = 15. The frame length (FL) was set to1000 and the training length (TL) was160 symbols
respectively.

UWB systems are capable of efficiently mitigating both the MUI and ISI. Moreover, from the shown

results in Figs. 4.11- 4.14 it can be concluded that the NLMS adaptive detector can be employed

in the context of all the UWB systems considered, in order to enhance their BER performance with

relatively low complexity.

4.4.3 Performance Results Using Recursive Least Square Adaptive Detector

In this section, the convergence behaviour and BER performance of the hybrid DS-TH UWB systems

using the RLS adaptive detector are investigated. As in the RLS adaptive detector the convergence

rate is depended on both the regularization factorδ and the forgetting factorλ, the learning behaviour

is hence studied by keeping one of them constant while varying the other. Besides the learning

behaviour, the BER performance of hybrid DS-TH UWB system, pure DS and pure TH-UWB is

investigated, when the forgetting factor is fixed toλ = 0.998 and the regularisation factor is fixed

to δ = 0.05. As in the previous two subsections, for the LMS and NLMS adaptive detectors, in this

section all our simulations were carried out in LoS UWB communication environments. Let us first

show the learning curves of the RLS adaptive detection.

Figs. 4.15 and 4.16 show the ensemble mean-square error learning curves of the RLS adaptive

detector for the hybrid DS-TH UWB system supporting single or K = 15 users, when using different
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Figure 4.15: Learning curves of the RLS adaptive detector using different regularisation factorδ, for the hybrid
DS-TH UWB system supported single user, when communicatingover the S-V Rayleigh fading
channels. The other parameters wereEb/N0 = 10dB, Doppler frequency-shiftfdTb = 0.0001,
λ = 0.998,Nc = 16,Nψ = 4 andL = 15.
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Figure 4.16: Learning curves of the RLS adaptive detector using different regularisation factorδ, for the hybrid
DS-TH UWB system supportingK = 15 users, when communicating over the S-V Rayleigh
fading channels. The other parameters wereEb/N0 = 10dB, Doppler frequency-shiftfdTb =
0.0001, λ = 0.998,Nc = 16,Nψ = 4 andL = 15.
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regularisation factorsδ but keeping the forgetting factor fixed toλ = 0.998. The ensemble average

was obtained by taking the average over10, 000 independent realizations of the UWB channel. It can

be observed from Fig. 4.15 and Fig. 4.16, that when the forgetting factorλ is fixed, the regularisation

factorδ plays an important role for the convergence of the RLS adaptive detector. According to [16,

194], the regularisation factor can be given asδ = σ2
yi(1−λ)α, where the value ofα ≤ 0 for low and

medium SNR values. It can be observed that forδ = 0.01, which corresponds to a value ofα > 0,

in both the Fig. 4.15 and Fig. 4.16 an overshoot phenomena is observed, where the RLS adaptive

detector produces a highly fluctuating estimates during theinitialisation period.
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Figure 4.17: Learning curves of the RLS adaptive detector using different forgetting factorλ, for the hybrid
DS-TH UWB system supporting single user, when communicating over the S-V Rayleigh fading
channels. The other parameters wereEb/N0 = 10dB, Doppler frequency-shiftfdTb = 0.0001,
regularisation factorδ = 5.0,Nc = 16,Nψ = 4 andL = 15.

Figs. 4.17 and 4.18 show the effect of forgetting factorλ on the ensemble mean-square er-

ror learning behaviour of the RLS adaptive detector for the hybrid DS-TH UWB system supporting

single orK = 15 users, when the regularisation factor is fixed toδ = 5. As mentioned in the

previous section, in order for the RLS adaptive detector to be stable, the value ofλ must satisfy

((1 − 1/(NcNψ + L− 1)) ≤ λ ≤ (1 − 1/10(NcNψ + L− 1))). Since for the hybrid DS-TH UWB

system considered, we have(NcNψ + L − 1) = 78, the optimum value ofλ is hence in the range

0.987 ≤ λ ≤ 0.998. From the results of Figs. 4.17 and 4.18 we can observe that asthe value of

λ increases in the constrained range, RLS adaptive detector converges to a lower MSE value. How-

ever, this improvement requires that the RLS adaptive detector has a higher memory, as the forgetting
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Figure 4.18: Learning curves of the RLS adaptive detector using different forgetting factorλ, for the hybrid
DS-TH UWB system supportingK = 15 users, when communicating over the S-V Rayleigh
fading channels. The other parameters wereEb/N0 = 10dB, Doppler frequency-shiftfdTb =
0.0001, regularisation factorδ = 5.0,Nc = 16,Nψ = 4 andL = 15.
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Figure 4.19: BER versus SNR performance of the hybrid DS-TH UWB system supporting single orK = 5
users, when communicating over the UWB channels modelled bythe S-V Rayleigh fading model.
The other parameters used in our simulations werefdTb = 0.0001, λ = 0.998, δ = 5.0, λDD =
0.998,Nc = 16,Nψ = 4 andL = 15. The frame length (FL) was set to500 or1000, respectively,
of which160 symbols were used for training.

factorλ becomes higher.

Fig. 4.19 shows the BER performance of the hybrid DS-TH UWB system supporting single user
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Figure 4.20: BER versus SNR performance of the hybrid DS-TH UWB system supportingK = 15 users,
when communicating over the UWB channels modelled by the S-VRayleigh fading model. The
other parameters used in our simulations werefdTb = 0.0001, λ = 0.998, δ = 5.0, λDD =
0.998,Nc = 16,Nψ = 4 andL = 15. The frame length (FL) was set to500 or1000, respectively,
of which160 symbols were used for training.

orK = 5 users when communicating over the UWB channels modelled by the S-V Rayleigh fading

model. It can be observed from Fig. 4.19 that the RLS adaptivedetector is capable of achieving a

BER performance that is close to (about1dB of difference) that of the ideal MMSE detector with

perfect channel knowledge when either single or five users are supported. The BER performance

corresponding to bothFL = 500 andFL = 1000 is approximately the same, despite the former case

using relatively more training symbols, which is160/500 than the latter case, which is160/1000.

Furthermore, the results of Fig. 4.19 show that the RLS adaptive detector is capable of efficiently

mitigating both the ISI and MUI, when communicating over UWBchannels.

Fig. 4.20 shows the BER performance of the hybrid DS-TH UWB system supportingK = 15

users and communicating over S-V channel modelled by Rayleigh fading. In the Fig. 4.20 the term

“No Adaptation” means that the filters are not updated after training, therefore, DD approach is not

applied. It can be observed that a gain of at least2dB could be achieved when using theFL = 500

as compared toFL = 1000 when no adaptation is done. This improved performance is achieved

at the expense of lower spectral efficiency as more training sequences are transmitted in the former

as compared to the latter. However, it can be observed that ifthe same forgetting factor is used for

the decision directed approach a considerable gain in performance is realised. Furthermore, it can be

observed that the difference between the BER performance ofFL = 500 andFL = 1000 becomes
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Figure 4.21: BER versus SNR performance of the pure DS-UWB, pure TH-UWB and hybrid DS-TH UWB
system supporting single orK = 5 users, when communicating over the UWB channels modelled
by the S-V Rayleigh fading model. The other parameters used in our simulations werefdTb =
0.0001, λ = 0.998, δ = 5.0, λDD = 0.998 andL = 15. The frame length (FL) was set to1000
of which160 symbols were used for training.
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Figure 4.22: BER versus SNR performance of the pure DS-UWB, pure TH-UWB and hybrid DS-TH UWB
system supportingK = 15 users, when communicating over the UWB channels modelled bythe
S-V Rayleigh fading model. The other parameters used in our simulations werefdTb = 0.0001,
λ = 0.998, δ = 5.0, λDD = 0.998 andL = 15. The frame length (FL) was set to1000 of which
160 symbols were used for training.

negligible.
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Finally, in Fig. 4.21 the BER performance of the hybrid DS-THUWB system is compared with

that of the pure TH-UWB and pure DS-UWB systems, when single or K = 5 users are supported.

From the results of Fig. 4.21, it can be observed that, for thesame set of values ofK, Nc andNψ,

the BER performance of all the UWB systems considered is approximately the same when the RLS

adaptive detector is employed. Fig. 4.22 shows the BER performance of the pure DS-UWB, hybrid

DS-TH UWB and pure TH-UWB systems, when using or without using the DD approach. As in

Fig. 4.20, from the results of Fig. 4.22, it can be observed that a substaintial performance gain can be

achieved when the DD approach is applied to improve the RLS adaptive detector after the training.

As shown in Fig. 4.22, when the same scenario is considered, the BER performance of all the pulsed-

based UWB systems is approximately the same, when the RLS adaptive detector is employed. Hence,

we can conclude from Figs. 4.21 and 4.22 that the RLS adaptivedetector may be employed for all

the pulsed-based UWB systems in order to improve their BER performance. Let us now compare the

BER performance of different adaptive detectors in the nextsection.

4.4.4 Performance Comparison of Different Adaptive Detectors

In this section, the BER performance results of the hybrid DS-TH UWB systems using the LMS,

NLMS and RLS adaptive detectors are presented and compared.First, the learning curves of the

adaptive detectors are depicted, when single orK = 15 users are supported by the hybrid DS-TH

UWB system. Then, the BER performance of the hybrid DS-TH UWBsystems is presented, when

different adaptive detectors are employed associated withusing the DD-mode. Note that, all our

simulations were carried out in the LoS UWB communications environment.

Figs. 4.23 and 4.24 show the ensemble mean-square error learning curves of the LMS, NLMS

and RLS adaptive detectors when the hybrid DS-TH UWB systemssupport single orK = 15 users at

a SNR ofEb/N0 = 10 dB. Specifically, the parameters used in our simulations wereµLMS = 0.05,

µNLMS = 0.5, λRLS = 0.998 and δRLS = 5.0. The ensemble average was taken over10, 000

independent realizations of the UWB channel. As the resultsof Fig. 4.23 shown for the single-

user scenario, all the adaptive detectors considered converge to approximately the same MSE value.

However, as the number of users is increased toK = 15, as Fig. 4.24 shown, the LMS adaptive

detector performs the worst among the three adaptive detectors considered. From Fig. 4.24, it can

be observed that the RLS adaptive detector is capable of converging to the lowest MSE value, when

compared to the LMS and NLMS adaptive detectors. This is because the RLS adaptive detector has

more degrees-of-freedom than the LMS and NLMS adaptive detectors, which make the convergence

rate and MSE of the RLS scheme are not determined by only single parameter as in the LMS and
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Figure 4.23: Learning curves of the adaptive detectors based on the LMS, NLMS and RLS principles for
the hybrid DS-TH UWB systems supporting single user when communicating over the UWB
channels modelled by the S-V Rayleigh fading model. The other parameters wereEb/N0 =
10 dB, Doppler frequency-shiftfdTb = 0.0001, Nc = 16, Nψ = 4, L = 15, µLMS = 0.05,
µNLMS = 0.5, λRLS = 0.998 andδRLS = 5.0, respectively.
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Figure 4.24: Learning curves of the adaptive detectors based on the LMS, NLMS and RLS principles for the
hybrid DS-TH UWB systems supportingK = 15 users when communicating over the UWB
channels modelled by the S-V Rayleigh fading model. The other parameters wereEb/N0 =
10 dB, Doppler frequency-shiftfdTb = 0.0001, Nc = 16, Nψ = 4, L = 15, µLMS = 0.05,
µNLMS = 0.5, λRLS = 0.998 andδRLS = 5.0, respectively.
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Figure 4.25: BER versus SNR performance of the hybrid DS-TH UWB systems when supporting single user,
while communicating over the UWB channels modelled by the S-V Rayleigh fading model. The
other parameters used in our simulations werefdTb = 0.0001, µLMS = 0.05, µDDLMS = 0.01,
µNLMS = 0.05, µDDNLMS = 0.05, δRLS = 5.0, λRLS = 0.998, λDDRLS = 0.998,Nc = 16,
Nψ = 4 andL = 15. The frame length (FL) was set to1000, while the training length (TL) was
160 symbols.

NLMS adaptive detectors.

In Figs. 4.25, 4.26 and 4.27 we compare the BER performance ofthe hybrid DS-TH UWB sys-

tems employing the LMS, NLMS and RLS adaptive detectors, when the DD-mode is applied. The

number of users supported was single (Fig. 4.25),K = 5(Fig. 4.26) orK = 15(Fig. 4.27), respec-

tively. When the single user case is considered, as shown in Fig. 4.25, the NLMS adaptive detector

achieves the best BER performance among the three adaptive detectors considered. WhenK = 5

users are supported, as shown in Fig. 4.26, the BER performance of all the three adaptive detectors

is approximately the same when the SNR is sufficiently high. By contrast, whenK = 15 users

are supported, as shown in Fig. 4.27, the RLS adaptive detector performs the best among the three

detectors.

Let us finally present the summary and conclusions of this chapter.

4.5 Summary and Conclusions

In this chapter we have investigated the adaptive detectionin the pulse-based UWB systems, illustrat-

ing that the adaptive detection is highly efficient detection for employment in the pulse-based UWB
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Figure 4.26: BER versus SNR performance of the hybrid DS-TH UWB systems when supportingK = 5 users,
while communicating over the UWB channels modelled by the S-V Rayleigh fading model. The
other parameters used in our simulations werefdTb = 0.0001, µLMS = 0.05, µDDLMS = 0.01,
µNLMS = 0.3, µDDNLMS = 0.1, δRLS = 5.0, λRLS = 0.998, λDDRLS = 0.998, Nc = 16,
Nψ = 4 andL = 15. The frame length (FL) was set to1000, while the training length (TL) was
160 symbols.
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Figure 4.27: BER versus SNR performance of the hybrid DS-TH UWB systems when supportingK = 15
users, while communicating over the UWB channels modelled by the S-V Rayleigh fading model.
The other parameters used in our simulations werefdTb = 0.0001, µLMS = 0.05, µDDLMS =
0.01, µNLMS = 0.8, µDDNLMS = 0.1, δRLS = 5.0, λRLS = 0.998, λDDRLS = 0.998,
Nc = 16,Nψ = 4 andL = 15. The frame length (FL) was set to1000, while the training length
(TL) was160 symbols.
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systems. The adaptive detectors are free from channel estimation, can effectively capture the trans-

mitted energy that is spread over many multipaths and are capable of achieving the BER performance

that is close to that achieved by the ideal MMSE-MUD, which depends on the ideal CSI. Furthermore,

the complexity of the adaptive detectors is analyzed, whichshows that the detection complexity of

an adaptive detector may be even lower than that of the single-user correlation detector, even without

taking into account of the complexity required by the correlation detector for channel estimation. In

more detail, our study in this chapter can be summarised as follows.

• The LMS adaptive detector is derived based on the stochasticgradient algorithms. The basic

principles of the LMS adaptive detector are finding a sub-optimal weight vectorwww1 through

stochastic gradient techniques in order to achieve the MMSEbetween the transmitted symbol

b
(1)
i and the decision variablez(1)

i . The procedure of the LMS adaptive detector is summarised

in Table 4.2.1. The complexity of the LMS adaptive detector has been calculated in Sec-

tion 4.3.1, which is found to be(5(NcNψ + L − 1) + 2). Finally, the performance results

of the hybrid DS-TH UWB systems using the LMS adaptive detector are presented in Sec-

tion 4.4.1. Our study and performance results show that the LMS adaptive detector constitutes

one of the efficient detection schemes that can be applied to the pure DS-, pure TH- or hybrid

DS-TH UWB systems. However, the LMS adaptive detector may not perform well, if the SNR

is relatively low.

• As the LMS adaptive detector, the NLMS adaptive detector is also derived based on the stochas-

tic gradient principles. In comparison with the LMS adaptive detector, the NLMS adaptive de-

tector can mitigate the gradient noise amplification problem, when the size of the adaptive filter

increases. NLMS adaptive detector can also achieve a higherconvergence speed than the LMS

adaptive detector. The operation procedure of the NLMS adaptive detector is summarised in

Table 4.2.2. The complexity of the NLMS adaptive detector isstudied in Section 4.3.2, which

has been found to be(7(NcNψ + L − 1) + 2). Finally, the learning and BER performance

results of the NLMS adaptive detector has been investigatedin Section 4.4.2. Our study and

performance results show that the NLMS adaptive detector can also be applied to the pure DS-,

pure TH- or hybrid DS-TH UWB systems. Generally, the BER performance of the NLMS

adaptive detector is found to be better than that of the LMS adaptive detector.

• The RLS adaptive detector is derived based on the principlesof least squares, where the weight

vectorwww1 is chosen to minimize the cost function consisting of the sumof error squares. The

operation procedure of the RLS adaptive detector is summarised in Table 4.2.3. Since the RLS
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adaptive detector has more degrees-of-freedom that can be used for controlling the convergence

speed than the LMS and NLMS adaptive detectors, the RLS adaptive detector has the highest

convergence rate among the three detectors considered. Thecomplexity of the RLS adaptive

detector is considered in Section 4.3.3, which is(11(NcNψ + L − 1)2 + 8(NcNψ + L −
1) + 3). The learning and BER performance of the RLS adaptive detector has been studied

in Section 4.4.3. Our study and simulation results shown that the RLS adaptive detector can

be deployed in the pure DS-, pure TH- and hybrid DS-TH UWB systems. The RLS adaptive

detector outperforms the LMS and NLMS adaptive detectors interms of their achievable BER

performance.

Finally, Table 4.5 illustrated the complexity required by the different detectors for the hybrid DS-

TH UWB systems. From Table 4.5, we can observe that the complexity of both the LMS and NLMS

adaptive detectors is significantly lower than the single-user correlation detector, even without consid-

ering the complexity required by the correlation detector for channel estimation. The complexity of

the RLS adaptive detector is slightly higher than that of thecorrelation detector, however, it is signifi-

cantly lower that that of the ideal MMSE detector, which alsorequires channel estimation. Therefore,

we conclude that the adaptive detectors considered in this chapter may be beneficial to UWB commu-

nications. They are free from channel estimation, relatively low complexity and efficient for achieving

a reasonable BER performance.
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Detection Spreading Number of resolvable Selected No. of operations for
Scheme factor,NcNψ multipaths,L rank,U detecting one bit

15 78 2496
Correlation 64 100 163 32926

detector 15 142 4544
128 100 227 45854

15 78 176670
Ideal MMSE 64 100 163 1523780

detector 15 142 1015350
128 100 227 4054300

15 78 391
LMS adaptive 64 100 163 816

detector 15 1423 711
128 100 227 1136

15 78 548
NLMS adaptive 64 100 163 1143

detector 15 142 996
128 100 227 1591

15 78 67551
RLS adaptive 64 100 163 293566

detector 15 142 222943
128 100 227 568638

Table 4.5: Complexity comparison of different detectors for the hybrid DS-TH UWB system.



Chapter 5
Adaptive Reduced-Rank Detection for

Hybrid DS-TH UWB System

5.1 Introduction

One of the major challenges in pulse-based UWB communications is to design the low-complexity

receivers, which are capable of achieving a reasonable BER performance [1, 29, 32, 34]. However,

as the MDP in UWB communications environment is generally sparse [29], there are usually a large

number of resolvable multipaths that are required to be acquired by the receiver in order to achieve

good BER performance. Hence, as shown in Chapter 3 even when the conventional single-user corre-

lation detector is employed, the complexity might still be very high, since a huge number of multipath

channels are required to be estimated and the detection complexity also increases linearly with the

number of resolvable multipaths [90]. Furthermore, the BERperformance of the single-user correla-

tion detector deteriorates as the number of users increasesas shown in Chapter 3 [148]. In order to

improve the BER performance, MUDs, such as MMSE MUD, may be employed by the pulse-based

UWB systems at the expense of higher complexity. The MMSE-MUD is capable of automatically

combining all the multipaths presenting within the time-duration of an observation window [172],

which retains a constant complexity for the MMSE-MUD. Furthermore, the MMSE-MUD is conve-

nient to be implemented using low-complexity adaptive techniques [16, 196], yielding the adaptive

detectors such as the adaptive LMS, NLMS and RLS detectors asstudied in Chapter 4.

As shown in Chapter 4 adaptive detectors are free from channel estimation and are capable of

achieving the approximate MMSE solutions with the aid of training sequences of certain length [197].

131
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The efficiency of an adaptive detector can be characterised by its convergence speed, BER perfor-

mance, robustness and implementation complexity [16]. According to the adaptive filter theory [16]

and also our study in Chapter 4, the above-mentioned characteristics are dependent on the length of

the traversal filter involved. In general, a longer traversal filter results in lower convergence speed,

which in turn means that a longer sequence is required to train the filter. Consequently, the data-rate

and spectral-efficiency of the corresponding communications system decreases. The robustness of an

adaptive filter also degrades as the filter length increases,since it requires to estimate more channel-

dependent variables [16, 157, 198, 199]. Furthermore, as shown in Chapter 4 when a longer adaptive

filter is employed, the computational complexity is also higher, since more operations are required for

the corresponding detection and estimation. Due to the reasons as above-mentioned, therefore, in this

chapter reduced-rank techniques are proposed for the adaptive detection of the hybrid DS-TH UWB

signals, in order to achieve low-complexity detection in hybrid DS-TH UWB systems.

To be more specific, in this chapter three types of reduced-rank techniques are investigated in

the contexts of the RLS adaptive detection in the hybrid DS-TH UWB systems. The reduced-rank

schemes are derived based on the principles of principal component analysis (PCA), of cross-spectral

metric (CSM) and of Taylor polynomial approximation (TPA),respectively [151,172,196,200,200–

204, 204–209]. The BER performance of the hybrid DS-TH UWB systems using the reduced-rank

RLS adaptive detection is investigated, when communicating over UWB channels modelled by the

S-V channel model [117]. Furthermore, the implementation complexity of the full-rank ideal MMSE-

MUD studied in Chapter 3, the full-rank RLS adaptive detector of Chapter 4 and the various reduced-

rank RLS adaptive detectors is analyzed and compared.

In comparison with the full-rank adaptive detectors studied in Chapter 4, the reduced-rank adap-

tive detectors have the following advantages when they are applied in the hybrid DS-TH UWB sys-

tems.

1) Convergence Speed: In UWB communications the adaptive detectors are usually required to

converge fast, so that the overhead incurred for training isshort. In the hybrid DS-TH UWB sys-

tems using a DS-spreading factorNc and a TH-spreading factorNψ and communicating over

an UWB channel havingL resolvable paths when the full-rank adaptive detector is considered,

the length of the traversal filter is(NcNψ + L− 1). Owing to possibly a high spreading factor

of NcNψ and/or a huge number of resolvable multipathsL of the UWB channels, the length

of the traversal filter may be extreme. Consequently, the convergence speed of the adaptive de-

tectors might be very low, since the convergence speed of an adaptive is inversely proportional
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to its length [16,32,157,178,198,199,210,211]. By contrast, when the reduced-rank adaptive

detector is employed the traversal filter may be significantly shorter than(NcNψ+L−1) of the

traversal filter’s length for the full-rank adaptive detector [83, 157, 210, 212–216]. Therefore,

the convergence speed of the reduced-rank adaptive detector may be significantly faster than

that of the corresponding full-rank adaptive detector. Consequently, the reduced-rank adaptive

detector may use relatively short training sequences, which in turn results in higher data-rate or

spectral-efficiency than the corresponding full-rank adaptive detector.

2) Achievable BER Performance: Our study and simulation results in this chapter show that,

for given system parameters, the hybrid DS-TH UWB systems using reduced-rank adaptive

detectors are capable of achieving a similar BER performance as that of using full-rank adaptive

detector, provided that the rank, sayU , of the subspace used for detection, which is hence

referred to as detection subspace, is sufficiently high. In Section 5.4 performance results and

more detailed analysis will be provided in the context of thevarious reduced-rank techniques.

3) Robustness:According to the adaptive filter theory [16], the robustnessof an adaptive algo-

rithm usually becomes worse, when the length of its corresponding traversal filter increases.

Our reduced-rank adaptive detectors for the hybrid DS-TH UWB system only require to find

U estimates for theU -length traversal filter, instead of finding(NcNψ + L − 1) estimates in

the full-rank adaptive detector. Furthermore, due to the characteristics of UWB channels, there

are many resolvable multipaths conveying only very low power. The low-power resolvable

multipaths are hard to be acquired by the full-rank adaptivedetectors and are sensitive to the

background noise. By contrast, the reduced-rank techniques considered in this chapter are ca-

pable of identifying automatically the relatively strong multipath signals and projecting them

onto the reduced-rank detection subspace. Hence, the adaptive filter operated in this reduced-

rank detection subspace becomes less sensitive to the background noise. Owing to the above

considerations, therefore, we may argue that the reduced-rank adaptive detectors are more ro-

bust than the full-rank adaptive detectors, when they are applied for the hybrid DS-TH UWB

systems.

4) Computational Complexity: In comparison with a full-rank adaptive detector, which isoper-

ated in a space of rank(NcNψ + L − 1), the corresponding reduced-rank adaptive detector is

operated in the detection subspace having a rank ofU , which can be significantly lower than

(NcNψ + L − 1), as shown in our forthcoming discourse. Hence, as to be detailed in Sec-

tion 5.3, the complexity of the reduced-rank adaptive detector can be much lower than that of
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the corresponding full-rank adaptive detector.

Note that, in this chapter we investigate specifically the reduced-rank RLS adaptive detector, since

it generally has a higher convergence speed than the LMS and NLMS adaptive detectors. However,

our approaches are general, which can be readily extended tothe hybrid DS-TH UWB systems using

the LMS or NLMS adaptive detection. The remainder of this chapter is organised as follows. In

the next section, the general procedure for reduced-rank detection is described. Furthermore, in this

section the rank reduction techniques based on the PCA, CSM and TPA are investigated in conjunc-

tion with the hybrid DS-TH UWB systems using the RLS-adaptive detection. Section 5.3 addresses

the computational complexity of the reduced-rank detection schemes associated with PCA, CSM and

TPA, respectively. Simulation results regarding these schemes are provided in Section 5.4 and finally

in Section 5.5 the summary and conclusions of the chapter arepresented. Let us now discuss the

reduced-rank schemes in the upcoming section.

5.2 Reduced-Rank RLS Adaptive Detection

5.2.1 General Theory
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Figure 5.1: Schematic block diagram of reduced-rank adaptive detectorfor the hybrid DS-TH UWB systems.

With the subspace reduced-rank detection the number of coefficients to be determined is reduced

by projecting the received signal in a higher dimensional observation space to a lower dimensional

subspace [196]. The reduced-rank RLS adaptive detector considered in this chapter is operated in

two modes as the full-rank adaptive detectors studied in Chapter 4. The detector starts with the

training mode to find a detection subspace and train the adaptive filter, followed by the DD-mode

in order to enhance the detection performance. Fig. 5.1 shows the block diagram of the reduced-

rank adaptive detector for the hybrid DS-TH UWB system. As shown in the previous chapters the

received signalr(t) is first passed through the matched-filter, which is sampled at the rate of1/λTψ
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to produce the observations, as shown in Fig. 5.1. In order todetect theith bit of the desired user,

which is the first user in our case,(NcNψ + L− 1) observation samples can be collected and stored

in the buffer, which is expressed asyyyi as shown in Fig. 5.1. Then, the observation vectoryyyi is

projected to aU -dimensional subspace by multiplyingyyyi with a reduced-rank matrixSSSU , which is a

((NcNψ + L− 1)× U) dimensional matrix andU < (NcNψ + L− 1). Specifically, for a bit-by-bit

detector, theU -dimensional vector in the reduced-rank subspace can be expressed as

ȳ̄ȳyi = SSSHU yyyi (5.1)

where a bar overyyyi is used to indicate that it is related to the reduced-rank subspace. Furthermore,

SSSU can be represented as

SSSU = PPPU (PPPHUPPPU )−1 (5.2)

wherePPPU can be viewed as a processing matrix of dimension(U × (NcNψ + L − 1)) with its row

vectors forming anU -dimensional subspace, while(PPPHUPPPU )−1 is the normalisation factor. After

projecting the received signalyyyi to a lower dimensional detection subspace determined byPPPU (SSSU ),

as shown in Fig. 5.1, the decision variable for detecting theith bit b(1)i of the first user can now be

formed as

zzz
(1)
i = w̄̄w̄wH1 ȳ̄ȳyi (5.3)

where the weight vector̄w̄w̄w1 is anU -length vector, which can be determined with the aid of the RLS

adaptive detection principles as shown in the previous chapter.

When comparing (3.22) and (5.3), we can find that the dimension of the observation vector is now

reduced from(NcNψ + L − 1) of yyyi to U of ȳyyi, and the auto-correlation matrix ofȳyyi is hence only

(U × U)-dimensional. Therefore, the complexity of the reduced-rank detector may be significantly

lower than that of the full-rank adaptive detectors, if the rank U can be significantly lower than

(NcNψ + L − 1). Hence, in the reduced-rank detection it is important to determine a processing

matrixPPPU with its rank ofU as low as possible, while the BER performance achieved by thehybrid

DS-TH UWB system using reduced-rank detection can be close to that achieved by the full-rank

adaptive detectors studied in Chapter 4. In this chapter three types of reduced-rank techniques are

considered, which are now described as follows.
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5.2.2 Eigenspace: Principal Components Analysis

The principal component analysis (PCA) is a well-studied rank reduction scheme [201, 203]. This

reduced-rank scheme was based on the principal component analysis of the auto-correlation matrix

RRRyi , which was originally developed by Hotelling and Eckart [200]. Since the auto-correlation matrix

RRRyi is Hermitian, eigen-analysis can be employed to represent the auto-correlation matrixRRRyi in

terms of its eigen-values and associated eigen-vectors. Inthe PCA-assisted reduced-rank detection

the eigenvectors corresponding to the relatively high eigenvalues are retained to form the processing

matrixPPPU .

During the training mode, the auto-correlation matrixRRRyi can be estimated according to

RRRyi ≈
1

M

M∑

i=1

yyyiyyy
H
i (5.4)

whereM represents the number of bits invoked in the estimation. Upon carrying the eigen-

decomposition onRRRyi , we obtain

RRRyi = ΦΦΦΛΛΛΦΦΦH (5.5)

whereΦΦΦ is an unitary matrix consisting of the eigenvectors ofRRRyi , which can be expressed as

ΦΦΦ =
[
φφφ1,φφφ2, · · · ,φφφNcNψ+L−1

]
(5.6)

while ΛΛΛ is a diagonal matrix consisting of the eigenvalues ofRRRyi , i.e.,

ΛΛΛ = diag{λ1, λ2, · · · , λNcNψ+L−1} (5.7)

The eigenvectorφφφi in (5.6) corresponds to the eigenvalueλi in (5.7). If S represents the dimension

of the signal subspace and the eigen-values are arranged in such a way thatλ1 ≥ λ2 ≥ · · · ≥
λNcNψ+L−1. Correspondingly, the eigen-vectors are expressed asφφφ1,φφφ2, · · · ,φφφNcNψ+L−1. Then,

there areS number of eigenvalues ofλ1, λ2, · · · , λS corresponding to the signal subspace, while the

otherV = (NcNψ + L − 1 − S) eigenvalues ofλS+1, λS+2, · · · , λNcNψ+L−1 corresponds to the

noise subspace. Therefore, the auto-correlation matrixRRRyi can be expressed as

RRRyi =
[
ΦΦΦS |ΦΦΦV

]

[

ΛΛΛS 000

000 ΛΛΛV

][
ΦΦΦH
S

ΦΦΦH
V

]

(5.8)
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whereΛΛΛS contains the eigenvalues associated with the signal subspace determined byΦΦΦS andΛΛΛV

contains the eigenvalues of noise subspace which is determined byΦΦΦV . Furthermore, we haveΦΦΦS =

[φφφ1,φφφ2, · · · ,φφφS] andΦΦΦV = [φφφS+1,φφφS+2, · · · ,φφφNcNψ+L−1].

Based on the above analysis, in the context of the PCA-assisted reduced-rank adaptive detection,

the processing matrixPPPU is constructed by the firstU columns ofΦΦΦ, i.e., we have

PPPU = [φφφ1,φφφ2, · · · ,φφφU ] (5.9)

In the context of the PCA-assisted reduced-rank detection,it has been shown that, if the rankU of

the detection subspacePPPU is higher than the rankS of the signal subspaceΦΦΦS , then the PCA-assisted

reduced-rank MMSE detection is capable of attaining the same error performance as the full-rank

MMSE detection [172]. Otherwise, the error performance of the PCA-assisted reduced-rank detection

will deteriorate if the rankU is less than the rankS of the signal subspace. Therefore, the PCA-based

reduced-rank method is very effective only if the dimensionS is known and significantly lower than

(NcNψ + L − 1). Otherwise, if the rankS of the signal subspace is high and a rankU < S is

used, then the PCA-based reduced-rank detection may experience severe MUI. Let us now consider

another eigen-decomposition assisted reduced-rank scheme, which is known as the cross-spectral

metric (CSM).

5.2.3 Eigenspace: Cross-Spectral Metric

The CSM-assisted reduced-rank method was proposed by Goldstein and Reed in 1997 [202]. Sim-

ilar to the PCA-assisted reduced-rank scheme, the CSM-assisted reduced-rank technique derives

the detection subspacePPPU also through eigen-decomposition of the auto-correlationmatrix RRRyi

of (5.4) [202]. This rank reduction scheme has been proposed, e.g., in [204], because the detec-

tion subspace formed in the PCA-based scheme by the eigenvectors corresponding to theU largest

eigenvalues does not necessarily represent the best set ofU eigenvectors resulting in the lowest

MSE. Therefore, in the context of the CSM-assisted reduced-rank detection, the processing ma-

trix PPPU is formed by a set ofU eigenvectors, which are chosen fromΦΦΦ and result in a minimum

MSE [172,200,202,217,218].

Specifically, for our CSM-assisted reduced-rank adaptive detection, the processing matrixPPPU

can be formed as follows. First, it can be shown that (5.5) of the auto-correlation matrix can be
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represented as

RRRyi = ΦΦΦΛΛΛΦΦΦH =

NcNψ+L−1
∑

i=1

λiφφφiφφφ
H
i (5.10)

The inverse ofRRRyi can hence be expressed as

RRR−1
yi =

NcNψ+L−1
∑

i=1

φφφiφφφ
H
i

λi
(5.11)

According to [172], the minimum MSE of the hybrid DS-TH UWB system after the MMSE-MUD is

given by

MMSE = 1 − 1

2
(CCC

(1)
i hhh1)

HRRR−1
yi (CCC

(1)
i hhh1) (5.12)

Upon substituting (5.11) into (5.12), we obtain

MMSE = 1 − 1

2





NcNψ+L−1
∑

i=1

||hhhH1 (CCC
(1)
i )Tφφφi||2
λi



 (5.13)

Let the CSMs be defined as [200]

CSM(i) = ||hhhH1 (CCC
(1)
i )Tφφφi||2/λi, i = 1, 2, · · · ,NcNψ + L− 1 (5.14)

Then, as shown in (5.13), in order to achieve the minimum MSE after the reduced-rank MMSE

detection in theU -rank detection subspace, theU number of largest CSMs in the bracket of (5.13)

should be maintained in the detection subspace. Hence, in the context of the CSM-assisted reduced-

rank detection, the processing matrixPPPU can be formed by the eigen-vectors inΦΦΦ, which yield theU

number of largest CSMs in the form of (5.14).

(5.13) shows that the CSM-assisted reduced-rank techniquerequires the knowledge about the

spreading sequence and also the CSI associated with the desired user. By contrast, the PCA-assisted

reduced-rank technique does not require this knowledge. Note that, in our simulations in Sec-

tion 5.4.2, the knowledge required for finding the detectionsubspace in the CSM-assisted reduced-

rank adaptive detection during the training mode is obtained from (5.4) with the aid of the training

sequences. Specifically, during the training mode,CCC
(1)
i hhh1 seen in (5.14) is estimated according to

Ê{CCC(1)
i hhh1} =

1

M

M∑

j=1

yyyjb
∗(1)
j (5.15)
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whereM denotes the length of the training sequence and a ‘hat’ aboveE implies estimation. By

contrast, during the data transmission, if the decision-directed approach is applied, the detected data-

bit may be fed back to enhance the estimation. In this case, the estimate toCCC(1)
i hhh1 can be denoted

as

Ê{CCC(1)
i hhh1} =

1

M +D

M+D∑

j=1

E{yyyjb(1)j } (5.16)

whereD represents the number of detected data bits involved in the estimation. From (5.14) and

(5.16) it is implied that, if a detected data bit is fed-back,the CSM in (5.14) needs to be computed

again, which increases the complexity of detection. Let us now, describe the TPA-assisted reduced-

rank technique, which does not require eigen-decomposition.

5.2.4 Taylor Polynomial Approximation

The major problem with the reduced-rank techniques based onthe eigen-decomposition is the com-

putational complexity. It has been found that the complexity for determining the eigenvectors and

eigenvalues of a Hermitian matrix is similar as that for finding the inverse of the same matrix [205].

Furthermore, in a heavily loaded system, where the rankS approaches(NcNψ+L−1), the size of the

adaptive filter may not be reduced when using the PCA- or CSM-based techniques. In these scenar-

ios, the reduced-rank detection based on the PCA or CSM may not provide any particular advantages

over the conventional full-rank detection, when the detection alone is considered. Alternatively, the

TPA-assisted rank-reduction technique may be employed forfinding the detection subspacePPPU . The

TPA-assisted reduced-rank technique has some advantages over both the PCA- and CSM-assisted

reduced-rank techniques [172, 200]. First, it does not depend on the eigen-decomposition of the

auto-correlation matrixRRRyi . Second, the detection subspace’s rank in the TPA-assistedreduced-rank

scheme does not scale with the system size, including the number of users supported, the total spread-

ing factorNcNψ as well as the number of resolvable multipaths. Hence, this reduced-rank technique

may be very promising for detection in the hybrid DS-TH UWB communications, since it is usually

associated with a big spreading factorNcNψ and the UWB channels usually have a high number of

resolvable paths. Furthermore, the BER performance of the TPA-assisted reduced-rank detector is

capable of converging to that of the full-rank detector witha detection subspace of very low rank, as

shown in [153,172,200,219–225] and also in Section 5.4.3 ofthis chapter.

Let λmax be the maximum eigenvalue ofRRRyi . Let ρ be a constant satisfying0 < ρ < 1/λmax.
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Then, the Taylor expansion of the auto-correlation matrixRRR−1
yi can be expressed as

RRR−1
yi = ρ(ρRRRyi)

−1 = ρ[III − (III − ρRRRyi)]
−1

= ρ
∞∑

j=0

(III − ρRRRyi)
j (5.17)

The firstU terms in (5.17) can be adopted to approximatedRRR−1
yi , i.e.,

RRR−1
yi ≈ ρ

U−1∑

j=0

(III − ρRRRyi)
j

= a0III + a1RRRyi + · · · + aU−1RRR
U−1
yi (5.18)

However, determining the coefficients{ai} in (5.18) is complicated. Furthermore, the finite order

approximation that results from tail-cutting of infinite order approximation generally does not lead

to the best fit among all approximations of the same order [201]. Specifically, in the context of the

TPA-assisted reduced-rank adaptive detector, a processing matrixPPPU can be constructed as [172]

PPPU = [CCC
(1)
i hhh1,RRRyiCCC

(1)
i hhh1, · · · ,RRRU−1

yi CCC
(1)
i hhh1] (5.19)

whereRRRyi andCCC(1)
i hhh1 are estimated based on (5.4) and (5.15) with the aid of training sequences.

Let us now proceed to consider the computational complexityof the reduced-rank adaptive detectors

associated with these rank-reduction schemes.

5.3 Complexity of Reduced-Rank Adaptive Detectors

In this section, the computational complexity of the PCA-, CSM- and TPA-assisted reduced-rank

adaptive detectors is investigated in the context of the hybrid DS-TH UWB system. The complexity

of the detectors is measured by the number of multiplications and additions required to detect one

bit of a user. We assume that the RLS-aided adaptive detection is employed, whose computational

complexity has been studied in the previous chapter, which is equivalent to11T 2 + 8T + 3, where

T = NcNψ+L−1. Let us first consider the computational complexity of the PCA-assisted reduced-

rank RLS adaptive detector.
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5.3.1 Complexity of PCA-Assisted Reduced-Rank RLS Adaptive Detector

In the context of the PCA-assisted reduced-rank scheme, theprocessing matrix isPPPU =

[φφφ1,φφφ2, · · · ,φφφU ], which consists of theU eigenvectors corresponding to theU largest eigenvalues

as shown in Section 5.2.2. Note that it takes aboutT multiplications to calculate the eigenvalue

from an autocorrelation matrix [226]. Furthermore, when the eigenvectors are calculated, it takesT 3

number of additions andT 3 number of multiplications to determine the required eigenvectors [226].

However, with the aid of efficient computing approaches, this complexity could be reduced to

T 3/6 number of additions and multiplications [227]. Furthermore, as shown in [227], if the bubble

sort algorithm is replaced by the comb sort algorithm for determining the maximum eigenvalue of a

matrix, the complexity can be reduced tolog2(T ) from T .

Operations Number of Number of
additions multiplications

RRRyi 2T FL T 2FL
RRRyi = ΦΦΦΛΛΛΦΦΦH T 3/6 T 3/6

max{λi}, i = 1, · · · , U U log2 T -
ȳ̄ȳyi = SSSHU yyy U(T − 1)FL UT FL

RLS adaptive detector (5U2 + 3U + 2)FL (6U2 + 5U + 1)FL

Table 5.1: Summary of the number of operations required by the PCA-assisted reduced-rank RLS adaptive
detector.

Table 5.1 summarises the number of operations required by the PCA-assisted reduced-rank RLS

adaptive detector. In the Table 5.1,FL denotes the length of the frame. From Table 5.1 it can be

observed that the number of additions required is(FL(UT +5U2+2T +2U+2)+T 3/6+U log2 T ),

while number of multiplications required is(FL(T 2 +UT + 6U2 + 5U + 1) + T 3/6), respectively.

Therefore, the total number of operations required for the detection of a frame is

NF = FL(T 2 + 2UT + 2T + 11U2 + 7U + 3) + T 3/3 + U log2 T (5.20)

Finally, the total number of operations required to detect one bit is given by

Nb = T 2 + 2UT + 2T + 11U2 + 7U + 3 +
T 3/3 + U log2 T

FL
(5.21)
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5.3.2 Complexity of CSM-Assisted Reduced-Rank RLS Adaptive Detector

In the CSM-assisted reduced-rank RLS adaptive detection, the processing matrixPPPU =

[φφφ1,φφφ2, · · · ,φφφU ], where the eigenvectors correspond to theU largest CSM values defined as

CSM(i) = ||hhhH1 (CCC
(1)
i )Tφi||2/λi, i = 1, 2, · · · , U , as shown in Section 5.2.3. Table 5.2 shows the

number of additions and multiplications required by the component processing in the CSM-assisted

reduced-rank RLS adaptive detector for the hybrid DS-TH UWBsystem.

Operations Number of Number of
additions multiplications

RRRyi 2T FL T 2FL
RRRyi = ΦΦΦΛΛΛΦΦΦH T 3/6 T 3/6

RRR−1
yi - T

hhhHi (CCC
(1)
i )T TL T TL

hhhHi (CCC
(1)
i )Tφφφi T 2 − T T 2

||hhhHi (CCC
(1)
i )Tφφφi||

2

λi
T T

max
{hhhHi (CCC

(1)
i )Tφφφi
λi

}
, i = 1, · · · , U U log2 T -

ȳ̄ȳyi = SSSHU yyy U(T − 1)FL UT FL
RLS adaptive detector (5U2 + 3U + 2)FL (6U2 + 5U + 1)FL

Table 5.2: Summary of the number of operations required by the CSM-assisted reduced-rank RLS adaptive
detector.

In Table 5.2,FL and TL represents respectively the frame length and the length of train-

ing sequence. From Table 5.2, it can be known that the total number of additions is

((2T + UT + 5U2 + 2U + 2)FL) + TL + T 3/6 + T 2 + U log2 T ) additions while the total num-

ber of multiplications is(FL(T 2 + UT + 6U2 + 5U + 1) + T TL + T 3/6 + T 2 + 2T ) respec-

tively. Hence, the total number of operations required for detection of a frame is

NF = FL(T 2 + 2T + 2UT + 11U2 + 7U + 3)

+ TL(T + 1) + T 3/3 + 2T 2 + 2T + U log2 T (5.22)
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Furthermore, the number of operations required to detect a bit can be expressed as

Nb = T 2 + 2T + 2UT + 11U2 + 7U + 3

+
(T + 1)TL + T 3/3 + 2T 2 + 2T + U log2 T

FL
(5.23)

Note that, as shown in Table 5.2, the quantities, such as CSI and the desired user’s signature,

required by the CSM-assisted reduced-rank RLS adaptive detector are obtained through the training

process. Let us now discuss the complexity of the TPA-assisted reduced-rank RLS adaptive detection.

5.3.3 Complexity of TPA-Assisted Reduced-Rank RLS Adaptive Detector

In the context of the TPA-assisted reduced-rank RLS adaptive detection, the processing matrix is

formed asPPPU = [CCC
(1)
i hhh1,RRRyiCCC

(1)
i hhh1, · · · ,RRRU−1

yi CCC
(1)
i hhh1]. OnceRRRyi , which is(T × T ), andCCC(1)

i hhh1,

which is(T × 1), are given, it can be readily known that computingRRRyiCCC
(1)
i hhh1 requiresT 2 additions

andT 2 multiplications. Furthermore, givenRRRiyiCCC
(1)
i hhh1, computingRRRi+1

yi CCC
(1)
i hhh1 = RRRyiRRR

i
yiCCC

(1)
i hhh1

also requiresT 2 additions andT 2 multiplications. Hence, we can known that the number of op-

erations for formingPPPU is (U − 1)T 2 additions and(U − 1)T 2 multiplications. The number of

operations required by the components of the TPA-assisted reduced-rank RLS adaptive detector is

summarized in Table 5.3. As shown in Table 5.3, only the training mode is employed to derive the

required information for the TPA-assisted reduced-rank RLS adaptive detector.

Operations Number of Number of
additions multiplications

RRRyi 2T FL T 2FL

CCC
(1)
i hhhi TL T TL

FormingPPPU (U − 1)T 2 (U − 1)T 2

ȳ̄ȳyi = SSSHU yyy U(T − 1)FL UT FL
RLS adaptive detector (5U2 + 3U + 2)FL (6U2 + 5U + 1)FL

Table 5.3: Summary of the number of operations required by the TPA-assisted reduced-rank RLS adaptive
detector.

From Table 5.3, we can know that the total number of operations required for detection of a frame
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is

NF =







(2T + 21)FL + (T + 1)TL, U = 1

(T 2 + 2T + 2UT + 11U2 + 7U + 3)FL

+(T + 1)TL + 2(U − 1)T 2, U = 2, 3 · · · , 8
(5.24)

Furthermore, the total number of operations required to detect a bit can be expressed as

Nb =







2T + 21 + (T +1)TL
FL

, U = 1

T 2 + 2T + 2UT + 11U2 + 7U + 3 + (T +1)TL+2(U−1)T 2

FL
, U = 2, 3 · · · , 8

(5.25)

From (5.24) and (5.25), we are implied that, ifT >> U , the complexity of the TPA-assisted

reduced-rank RLS adaptive detector isO(T 2).

5.4 Performance Results and Discussion

This section provides a range of simulation results for characterising the learning and BER perfor-

mance of the hybrid DS-TH UWB systems using various reduced-rank RLS adaptive detectors. In

our simulations we adopt the following assumptions.

1) Coherent binary phase-shift keying (BPSK) baseband modulation;

2) The total spreading factor is constant ofNcNψ = 64. Hence, for the pure DS-UWB systems

the DS spreading factor isNc = 64, while for the pure TH-UWB systems the TH spreading

factor isNψ = 64. For the hybrid DS-TH UWB systems, the DS spreading factor isfixed to

Nc = 16 and the TH spreading factor is fixed toNψ = 4;

3) Two types of UWB channels are considered. In the context ofthe first type UWB channels, the

number of resolvable multipaths isL = 15. Correspondingly, the factorg = 1. By contrast,

the second type of UWB channels is highly frequency-selective, the number of resolvable mul-

tipaths isL = 150, implying that the factorg = 3. For both cases, the normalised Doppler

frequency shift is given byfdTb = 0.0001. Furthermore, in our simulations the UWB channels

are modelled by the S-V channel model with the channel gains obeying the Rayleigh distri-

bution. The parameters of the S-V channel model used in our simulations are summarised in

Table 5.4, where ‘LoS’ means that the UWB channel consideredcontains a line-of-sight (LoS)

propagation path [117];
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1/Λ Γ γ

LoS 14.11ns 2.63ns 4.58ns

Table 5.4: Parameters characterzing the S-V channel model used in simulations.

4) Each frame is constituted byFL = 1000 bits (symbols), whereTL = 160 bits (symbols) are

the training bits (symbols). Hence, the spectral-efficiency of the hybrid DS-TH UWB systems

is (1000 − 160)/1000 = 84%.

Note that, for the hybrid DS-TH UWB scheme and UWB channels considered, the rank of the ob-

servation space isNcNψ + L− 1 = 78 for the caseL = 15 andNcNψ + L− 1 = 213 for the case

L = 150, respectively.

Furthermore, during our discussion the rank of signal subspace is often used in comparison with

the rankU of the detection subspace invoked in the reduced-rank adaptive detection. Note that,

for a hybrid DS-TH UWB system supportingK users and communicating over the UWB channels

associated with a factor ofg, the rank of the signal subspace is aboutK(g + 1), where the factor of

(g + 1) is due to that of a desired bit conflicts interference from(g + 1) bits of an interfering user.

Let us first show and discuss the performance results of hybrid DS-TH UWB systems using the

PCA-assisted reduced-rank adaptive detection.

5.4.1 Performance of PCA-Assisted Reduced-Rank RLS Adaptive Detector

In this section the performance results of the hybrid DS-TH UWB systems using the PCA-assisted

reduced-rank RLS adaptive detector is presented. First, the learning performance of the PCA-assisted

reduced-rank RLS adaptive detector is discussed in the context of the hybrid DS-TH UWB systems

supporting single or multiple users, when the detection subspace having different rank ofU is consid-

ered. Then, the BER versus SNR per bit performance of the hybrid DS-TH UWB systems supporting

single or multiple users is illustrated, when the PCA-assisted reduced-rank RLS adaptive detector

employs different ranks ofU for the detection subspace.

Fig. 5.2 shows the ensemble-average squared error learningcurve of the PCA-assisted reduced-

rank adaptive detector with the detection subspace using a rankU = 1, 10 or 78, when the hybrid

DS-TH UWB system supports single user. In our simulations the ensemble average was taken over

2000 independent realizations of the UWB channel characterizedby Table 5.4. From the results of

Fig. 5.2 it can be observed that the convergence speed of the PCA-assisted reduced-rank adaptive

detector depends on the rankU of the detection subspace, i.e., the length of the adaptive filter. When
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Figure 5.2: Learning curves of the PCA-based reduced-rank RLS adaptivedetector for the hybrid DS-TH
UWB system supporting single user, when communicating overcorrelated Rayleigh fading chan-
nels modelled by the S-V channel model associated with a normalised Doppler frequency-shift
fdTb = 0.0001. The other parameters wereEb/N0 = 10dB, λRLS = 0.9987, δ = 5.0, g = 1,
Nc = 16,Nψ = 4 andL = 15, respectively.

U = 1, the adaptive detector attains the highest convergence speed and also reaches the lowest MSE.

The reason for this observation is that the asynchronous hybrid DS-TH UWB system supports only

single user, which results in that the rank of the signal subspace is aboutK(g + 1) = 3. In this

case, when the length of the adaptive filter is significantly longer than two, the adaptive filter collects

not only the useful signal, but also the noise, which reducesthe convergence speed and generates

increased MSE. Furthermore, when comparing Fig. 5.2 with Fig. 4.15 in Section 4.4.3 of Chapter 4,

we can find that the PCA-assisted reduced-rank adaptive detector is capable of converging faster than

the full-rank RLS adaptive detector, which has a filter length of 78, when the hybrid DS-TH UWB

system supports single user.

Figs. 5.3 and 5.4 show the ensemble-average squared error learning curve of the PCA-assisted

reduced-rank RLS adaptive detector associated with the detection subspaces with different ranks of

U , when the hybrid DS-TH UWB system supportsK = 5 (Fig. 5.3) orK = 15 (Fig. 5.4) users.

In our simulations the ensemble average was taken over2000 independent realizations of the UWB

channel characterized by Table 5.4. From the results of Figs. 5.3 and 5.4 we can observe that, similar

as Fig. 5.2, the convergence speed of the PCA-assisted reduced-rank RLS adaptive detector is de-

pended on the rankU of the detection subspace. When the rankU of the detection subspace is lower

than the rank of the signal subspace, which is about10 for K = 5 and30 for K = 15, the adaptive
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Figure 5.3: Learning curves of the PCA-based reduced-rank RLS adaptivedetector for the hybrid DS-TH
UWB system supportingK = 5 users, when communicating over correlated Rayleigh fading
channels modelled by the S-V channel model associated with anormalised Doppler frequency-
shift fdTb = 0.0001. The other parameters wereEb/N0 = 10dB, λRLS = 0.9987, δ = 5.0,
g = 1,Nc = 16,Nψ = 4 andL = 15, respectively.
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Figure 5.4: Learning curves of the PCA-based reduced-rank RLS adaptivedetector for the hybrid DS-TH
UWB system supportingK = 15 users, when communicating over correlated Rayleigh fading
channels modelled by the S-V channel model associated with anormalised Doppler frequency-
shift fdTb = 0.0001. The other parameters wereEb/N0 = 10dB, λRLS = 0.9987, δ = 5.0,
g = 1,Nc = 16,Nψ = 4 andL = 15, respectively.
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detector converges to a relatively lower MSE value, as the rankU of the detection subspace increases.

However, after the rankU of the detection subspace reaches the signal subspace’s rank, further in-

creasing the rankU of the detection subspace results in an increased MSE, as shown in Figs. 5.3

and 5.4. Therefore, in the hybrid DS-TH UWB systems using thePCA-assisted reduced-rank RLS

adaptive detection, it is important to have thea-priori knowledge about the signal subspace’s rank.
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Figure 5.5: Learning curves of the PCA-based reduced-rank RLS adaptivedetector for the hybrid DS-TH
UWB system supportingK = 5 users, when communicating over correlated Rayleigh fading
channels modelled by the S-V channel model associated with anormalized Doppler frequency-
shift fdTb = 0.0001. The other parameters wereEb/N0 = 10dB, λRLS = 0.9995, δ = 0.005,
g = 3,Nc = 16,Nψ = 4 andL = 150, respectively.

In the above three figures, we assumed that the delay-spread of the UWB channels is lower than

the bit duration resulting ing = 1. By contrast, Fig. 5.5 shows the ensemble-average squared-

error learning curve of the PCA-based reduced-rank RLS adaptive detector, when the UWB channels

experience severe ISI resulting ing = 3. Again, in our simulations the ensemble-average squared-

error was calculated from2000 independent realizations of the UWB channel, when the hybrid DS-

TH UWB system supportedK = 5 users at a given SNR value ofEb/N0 = 10 dB. Again, from

the results of Fig. 5.5, we observe that the convergence speed and converged MSE of the PCA-based

reduced-rank RLS adaptive detector are depended on rankU of the detection subspace. When the rank

U is lower than the rank of the signal subspace, which is aboutK(g+1) = 20, the ensemble-average

squared-error converges to a relatively lower MSE value, when the rankU of detection subspace

increases. Furthermore, as shown in Fig. 5.5, when the rankU equals the signal subspace’s, i.e.,

whenU = 20, the PCA-based reduced-rank RLS adaptive detector converges faster than the full-rank
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RLS adaptive detector corresponding to the curve identifiedbyU = 213. Additionally, the results in

Fig. 5.5 show that the PCA-based reduced-rank RLS adaptive detector usingU = 20 is capable of

achieving an MSE that is lower than that achieved by the full-rank RLS adaptive detector studied in

Chapter 4. The achieved MSE by the PCA-based reduced-rank RLS adaptive detector usingU = 20

is close to the minimum MSE achieved by the ideal MMSE detector, if a sufficient number of training

symbols is provided.

In summary, from the results of Figs. 5.2 - 5.5, we can conclude that the convergence speed and

converged MSE of the PCA-assisted reduced-rank RLS adaptive detector are depended on the rank

U of the detection subspace. The best convergence and MSE performance can be achieved, when the

detection subspace has a rankU equalling to the signal subspace’s rank. Since in hybrid DS-TH UWB

systems the signal subspace’s rank is in general significantly lower than the rank of the observation

space, which is about(NcNψ + L − 1), the length of the adaptive filter used by the PCA-assisted

reduced-rank RLS adaptive detector may hence be significantly shorter than that of the full-rank RLS

adaptive detector. Furthermore, due to the relatively higher convergence speed in comparison with the

full-rank RLS adaptive detector, the PCA-assisted reduced-rank RLS adaptive detector may require

less number of training symbols and hence provide higher transmission data rate or higher spectral-

efficiency for the hybrid DS-TH UWB systems, than the full-rank RLS adaptive detector studied in

Chapter 4.

Fig. 5.6 shows the BER versus SNR per bit performance for the hybrid DS-TH UWB system using

the PCA-assisted reduced-rank RLS adaptive detector to support single user, when communicating

over the UWB channels modelled by the correlated Rayleigh fading. The other parameters used in

our simulations are specified in the caption of the figure. From the results of Fig. 5.6 one can observe

that the BER performance of the hybrid DS-TH UWB system is very close to that achieved by the

ideal MMSE detection, when the rank of the detection subspace isU = 1, 2 or 78. Since the rank

of the signal subspace in this case is two, as seen in Fig. 5.6,the BER performance becomes slightly

better, as the detection subspace’s rank increases fromU = 1 to U = 2, when the SNR ofEb/N0 is

high. In Fig. 5.6 the BER curve corresponding toU = 78 represents the BER achieved by the full-

rank RLS adaptive detector considered in the last chapter. Explicitly, the BER performance achieved

by the PCA-assisted reduced-rank RLS adaptive detector associated withU = 2 is the same as that

achieved by the full-rank RLS adaptive detector.

In Figs. 5.7 and 5.8 the BER versus SNR per bit performance of the hybrid DS-TH UWB systems

using the PCA-assisted reduced-rank RLS adaptive detection is depicted. In our simulations we

assumed that the hybrid DS-TH UWB systems supportedK = 5 users for Fig. 5.7, while supported
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Figure 5.6: BER versus SNR per bit performance of the hybrid DS-TH UWB system using PCA-based
reduced-rank RLS adaptive detection, when communicating over correlated Rayleigh fading chan-
nels modelled by the S-V channel model. The other parametersemployed for the simulations were
K = 1, fdTb = 0.0001, λRLS = 0.9987, δ = 0.05, g = 1, Nc = 16, Nψ = 4 andL = 15,
respectively.
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Figure 5.7: BER versus SNR per bit performance of the hybrid DS-TH UWB system using PCA-based
reduced-rank RLS adaptive detection, when communicating over correlated Rayleigh fading chan-
nels modelled by the S-V channel model. The other parametersemployed for the simulations were
K = 5, fdTb = 0.0001, λRLS = 0.9987, δ = 0.05,Nc = 16,Nψ = 4 andL = 15, respectively.
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Figure 5.8: BER versus SNR per bit performance of the hybrid DS-TH UWB system using PCA-based
reduced-rank RLS adaptive detection, when communicating over correlated Rayleigh fading chan-
nels modelled by the S-V channel model. The other parametersemployed for the simulations were
K = 15, fdTb = 0.0001, λRLS = 0.9987, δ = 0.05,Nc = 16,Nψ = 4 andL = 15, respectively.

K = 15 users for Fig. 5.8. The other parameters used for generatingboth figures were the same, as

seen associated with the figures. From the results of Figs. 5.7 and 5.8, one can observe that the BER

performance improves as the rankU of the detection subspace increases. When the rankU of the

detection subspace reaches the signal subspace’s rank, which is about10 for Fig. 5.7 corresponding

to K = 5 and about30 for Fig. 5.8 corresponding toK = 15, the BER performance achieved by

the PCA-assisted reduced-rank RLS adaptive detector reaches to that achieved by the full-rank RLS

adaptive detector. However, when the detection subspace’srankU is lower than the rank of the signal

subspace, error floors are likely to occur. As seen in Figs. 5.7 and 5.8, a lower rankU corresponds to

a higher BER floor. Furthermore, as shown in Fig. 5.8, when therankU of the detection subspace,

e.g.,U = 45, 78, is higher than the signal subspace’s rank of30, no performance gain is attainable

except for incurring higher detection complexity. Therefore, in order to avoid this problem, in the

PCA-assisted reduced-rank detection, it is important to have thea-priori knowledge of the actual

rank of the signal subspace.

Fig. 5.9 shows the BER versus SNR per bit(Eb/N0) performance of the hybrid DS-TH UWB

system employing the PCA-based reduced-rank RLS adaptive detector to supportK = 5 users, when

communicating over UWB channels havingL = 150 resolvable multipaths. Correspondingly, we

haveg = 3, implying that the rank of the signal subspace is about20. From the results of Fig. 5.9,
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Figure 5.9: BER versus SNR per bit performance of the hybrid DS-TH UWB system using PCA-based
reduced-rank RLS adaptive detection, when communicating over correlated Rayleigh fading chan-
nels modelled by the S-V channel model. The other parametersemployed for the simulations were
K = 5, fdTb = 0.0001, λRLS = 0.9995, δ = 0.005, g = 3, Nc = 16, Nψ = 4 andL = 150,
respectively.

again, we can observe that the BER performance improves whenthe rankU of the detection subspace

increases. However, when the rankU of the detection subspace reaches the rankU = 20 of the

signal subspace, further increasing the rankU of the detection subspace does not result in further

performance improvement. When the rankU of the detection subspace is lower than the rank of the

signal subspace, error-floor is observed, implying that themultiuser interference cannot be efficiently

suppressed by the PCA-assisted reduced-rank RLS adaptive detector. Furthermore, from the results

of Fig. 5.9, we can observe that the PCA-based reduced-rank RLS adaptive detector results in certain

performance loss in comparison with the ideal MMSE multiuser detector, even when the detection

subspace has the same rank ofU = 20 as the signal subspace. Specifically, the performance loss at

the BER of10−4 is about 0.7 dB.

When comparing the results in Fig. 5.7 with that in Fig. 5.9, both of which used the same param-

eters exceptL = 15 for Fig. 5.7 andL = 150 for Fig. 5.9, we can find that the BER performance

shown in Fig. 5.9 is better than that shown in Fig. 5.7, when the PCA-assisted reduced-rank RLS

adaptive detector is operated in the detection subspace having a rankU equalling to the rank of the

corresponding signal subspace, which is10 for Fig. 5.7 and20 for Fig. 5.9. The reason for Fig. 5.9

to attain a better BER performance than Fig. 5.7 is that the UWB channels considered in the context

of Fig. 5.9 has more resolvable multipaths than that considered in Fig. 5.7, hence, resulting in higher
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diversity gain.

In summary, in the hybrid DS-TH UWB systems, if the signal subspace’s rank is significantly

lower than the rank of the observation space, which is(NcNψ + L − 1), then, the detection com-

plexity may be significantly reduced without performance penalty by employing the PCA-assisted

reduced-rank RLS adaptive detector, instead of using the full-rank RLS adaptive detector, as studied

in the last chapter. However, as the number of users supported increases, resulting in that the rank

of the signal subspace is close to the rank of the observationspace, then, the benefit from using the

PCA-assisted reduced-rank RLS adaptive detector is limited. Considering that in the PCA-assisted

detection complexity is required for finding the detection subspacePPPU , therefore, in a heavily loaded

hybrid DS-TH UWB system, the PCA-assisted reduced-rank detection might not be a promising op-

tion.

5.4.2 Performance of CSM-Assisted Reduced-Rank RLS Adaptive Detector

In this section we illustrate a range of performance resultsin order to show the characteristics and

achievable BER performance of the hybrid DS-TH UWB systems using the CSM-assisted reduced-

rank RLS adaptive detection. As in Section 5.4.1, the learning performance of the CSM-assisted

reduced-rank RLS adaptive detector is first illustrated forthe hybrid DS-TH UWB systems supporting

single or multiple users, when the detection subspace employs different ranks ofU . Then, the BER

versus SNR per bit performance of the hybrid DS-TH UWB systems using the CSM-assisted reduced-

rank RLS adaptive detection is investigated, when different communications and detection scenarios

are considered.

Fig. 5.10 shows the ensemble-average squared error learning performance of the CSM-assisted

reduced-rank RLS adaptive detector for the hybrid DS-TH UWBsystem supporting single user at an

SNR per bitEb/N0 = 10dB. The average squared error was taken over2000 independent realizations

of the UWB channel. The other parameters used in our simulations were specified associated with

the figure. Similar to the learning behaviour of the PCA-assisted reduced-rank RLS adaptive detector

as shown in Fig. 5.2, it can be observed from Fig. 5.10 that theconvergence speed of the CSM-

assisted reduced-rank RLS adaptive detector is depended onthe rankU of the detection subspace.

Furthermore, it can be observed that the CSM-assisted reduced-rank adaptive detector is capable of

converging faster than the full-rank adaptive detector corresponding to the learning curve ofU = 78

in Fig. 5.10.

Figs. 5.11 and 5.12 show the learning performance of the CSM-assisted reduced-rank RLS adap-

tive detector, when the hybrid DS-TH UWB system supportsK = 5 (Fig. 5.11) andK = 15
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Figure 5.10: Learning curves of the CSM-based reduced-rank RLS adaptivedetector for the hybrid DS-TH
UWB system supporting single user, when communicating overcorrelated Rayleigh fading chan-
nels modelled by the S-V channel model associated with a normalized Doppler frequency-shift
fdTb = 0.0001. The other parameters wereEb/N0 = 10dB, λRLS = 0.9987, δ = 5.0, g = 1,
Nc = 16,Nψ = 4 andL = 15, respectively.
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Figure 5.11: Learning curves of the CSM-based reduced-rank RLS adaptivedetector for the hybrid DS-TH
UWB system supportingK = 5 users, when communicating over correlated Rayleigh fading
channels modelled by the S-V channel model associated with anormalized Doppler frequency-
shift fdTb = 0.0001. The other parameters wereEb/N0 = 10dB, λRLS = 0.9987, δ = 5.0,
g = 1,Nc = 16,Nψ = 4 andL = 15, respectively.
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Figure 5.12: Learning curves of the CSM-based reduced-rank RLS adaptivedetector for the hybrid DS-TH
UWB system supportingK = 15 users, when communicating over correlated Rayleigh fading
channels modelled by the S-V channel model associated with anormalized Doppler frequency-
shift fdTb = 0.0001. The other parameters wereEb/N0 = 10dB, λRLS = 0.9987, δ = 5.0,
g = 1,Nc = 16,Nψ = 4 andL = 15, respectively.

(Fig. 5.12) users, respectively. Again, the ensemble-average squared error as shown in the figures

was obtained by taking average over2000 independent realizations of the UWB channel. From the

results of Figs. 5.11 and 5.12 one can see that the CSM-assisted reduced-rank RLS adaptive detec-

tor is capable of attaining the highest convergence speed and also reaching the lowest MSE, if the

rankU used by the detection subspace is equivalent to that of the signal subspace, which is about 10

in Fig. 5.11 and 30 in Fig. 5.12. Similar to the PCA-based reduced-rank RLS adaptive detector as

shown in Figs. 5.3 and 5.4, the CSM-assisted reduced-rank RLS adaptive detector converges to the

lower MSE, when increasing the rankU of the detection subspace, as shown in Figs. 5.11 and 5.12.

However, if the rankU of the detection subspace is higher than that of the signal subspace, the CSM-

assisted reduced-rank RLS adaptive detector may converge to a MSE, which is even higher than that

achieved by the CSM-assisted reduced-rank RLS adaptive detector with a detection subspace having

the same rank as the signal subspace.

Fig. 5.13 shows the BER versus SNR per bit performance of the hybrid DS-TH UWB system

employing the CSM-assisted reduced-rank RLS adaptive detection to supportK = 1 user, when the

detection subspace has a reduced rank ofU = 1, 2 or full rank of U = 78. Explicitly, the BER

performance achieved in the context of the different detection scenarios is similar and it is close to

that of the ideal MMSE detector, even there exists certain ISI.



5.4. PERFORMANCE RESULTS AND DISCUSSION 156

0 2 4 6 8 10 12 14
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

BE
R

 

 

Ideal MMSE
U = 1
U = 2
U = 78

Figure 5.13: BER versus SNR per bit performance of the hybrid DS-TH UWB system using CSM-based
reduced-rank RLS adaptive detection, when communicating over correlated Rayleigh fading
channels modelled by the S-V channel model. The other parameters employed for the simu-
lations wereK = 1, fdTb = 0.0001, λRLS = 0.9987, δ = 5.0, g = 1, Nc = 16, Nψ = 4 and
L = 15, respectively.
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Figure 5.14: BER versus SNR per bit performance of the hybrid DS-TH UWB system using CSM-based
reduced-rank RLS adaptive detection, when communicating over correlated Rayleigh fading
channels modelled by the S-V channel model. The other parameters employed for the simu-
lations wereK = 5, fdTb = 0.0001, λRLS = 0.9987, δ = 5.0, g = 1, Nc = 16, Nψ = 4 and
L = 15, respectively.
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Figure 5.15: BER versus SNR per bit performance of the hybrid DS-TH UWB system using CSM-based
reduced-rank RLS adaptive detection, when communicating over correlated Rayleigh fading
channels modelled by the S-V channel model. The other parameters employed for the simu-
lations wereK = 15, fdTb = 0.0001, λRLS = 0.9987, δ = 5.0, g = 1, Nc = 16, Nψ = 4 and
L = 15, respectively.

Figs. 5.14 and 5.15 show the BER versus SNR per bit performance of the hybrid DS-TH UWB

system using the CSM-assisted reduced-rank RLS adaptive detection, when the detection subspace

invokes different rank ofU . Specifically, the hybrid DS-TH UWB system considered in Fig. 5.14

supportedK = 5 users, while that considered in Fig. 5.15 supportedK = 15 users. The other

parameters used in our simulations were specified in the captions associated with the figures. From

the results of Figs. 5.14 and 5.15 we can observe that the achievable BER performance of the hybrid

DS-TH UWB system is depended on the rankU of the detection subspace. In general, the BER

performance improves as the rankU of the detection subspace increases, but depended on the SNR

per bit. Specifically, when the SNR per bit is low, the CSM-assisted reduced-rank RLS adaptive

detector is capable of reaching a stable BER performance, when the rankU of the detection subspace

is relatively low, such asU = 5 in Fig. 5.14. However, when the SNR per bit is relatively high,

further increasing the rankU of the detection subspace may further improve the BER performance

of the hybrid DS-TH UWB system. As shown in Figs. 5.14 and 5.15, if the rankU of the detection

subspace is too lower, the CSM-assisted reduced-rank RLS adaptive detector may not efficiently

mitigate the MUI and, in these cases, error-floors are observed.

Finally, in contrast to Fig. 5.14 associated withL = 15 andg = 1, Fig. 5.16 shows the BER versus

SNR per bit performance of the hybrid DS-TH UWB systems employing the CSM-based reduced-
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Figure 5.16: BER versus SNR per bit performance of the hybrid DS-TH UWB system using CSM-based
reduced-rank RLS adaptive detection, when communicating over correlated Rayleigh fading
channels modelled by the S-V channel model. The other parameters employed for the simu-
lations wereK = 5, fdTb = 0.0001, λRLS = 0.9995, δ = 0.005, g = 3,Nc = 16,Nψ = 4 and
L = 150, respectively.

rank RLS adaptive detection to supportK = 5 users, whenL = 150 andg = 3. As observed in

Fig. 5.14, the BER performance of the hybrid DS-TH UWB systemimproves, as the rankU of the

detection subspace increases. Error-floors are observed, when the rankU of the detection subspace is

not sufficiently high. As shown in Fig. 5.16, when the SNR value is lower than7 dB, the CSM-based

reduced-rank RLS adaptive detector usingU = 20 is capable of achieving a better BER performance

than the reduced-rank RLS adaptive MMSE-MUD based on a detection subspace having a rank of

U = 160.

From Figs. 5.14 - 5.16, we find that, unlike Fig. 5.7 - 5.9 corresponding to the PCA-based reduced-

rank RLS adaptive detection, the CSM-based reduced-rank RLS adaptive detector cannot reach the

BER performance of the full-rank RLS adaptive detector, when the detection subspace reaches a rank

equivalent to the signal subspace’s rank. The reason for theabove observation is that the fading

channel is time-varying possibly with every data bit. However, the processing matrixPPPU used in our

simulations was fixed after the training mode and was not updated correspondingly to match each

transmitted data bit.

In summary, as the PCA-assisted scheme, the CSM-assisted reduced-rank RLS adaptive detection

is efficient if the signal subspace’s rank is significantly lower than the rank(NcNψ + L − 1) of the

observation space. However, if a hybrid DS-TH UWB system is heavily loaded, yielding that the
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rank of the signal subspace is very high, then the CSM-assisted reduced-rank RLS adaptive detection

might not be desirable.

5.4.3 Performance of TPA-Assisted Reduced-Rank RLS Adaptive Detector

In this section we illustrate the performance results of thehybrid DS-TH UWB systems using the

TPA-assisted reduced-rank RLS adaptive detection, when communicating over UWB channels. The

performance considered includes both the learning and BER performance. As our results in the previ-

ous two subsections shows, the PCA- or CSM-assisted reduced-rank RLS adaptive detector achieves

the full-rank RLS adaptive detector’s performance only when the detection subspace’s rankU reaches

the rank of the signal subspace. By contrast, our performance results in this subsection will show that

the TPA-assisted reduced-rank RLS adaptive detector is capable of achieving the full-rank RLS adap-

tive detector’s performance with a rank that can be significantly lower than the rank of the signal

subspace. Furthermore, the detection subspace’s rank achieving the full-rank adaptive detector’s per-

formance is generally independent of the signal subspace’srank, provided that the signal subspace’s

rank is sufficiently high.
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Figure 5.17: Learning curves of the TPA-based reduced-rank RLS adaptivedetector for the hybrid DS-TH
UWB system supporting single user, when communicating overcorrelated Rayleigh fading chan-
nels modelled by the S-V channel model associated with a normalized Doppler frequency-shift
fdTb = 0.0001. The other parameters used simulations wereEb/N0 = 10dB, λRLS = 0.9987,
δ = 5.0, g = 1,Nc = 16,Nψ = 4 andL = 15, respectively.

Fig. 5.17 shows the learning performance of the TPA-assisted reduced-rank RLS adaptive detector

for the hybrid DS-TH UWB system supporting single (K = 1) user. The ensemble-average squared-
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Figure 5.18: Learning curves of the TPA-based reduced-rank RLS adaptivedetector for the hybrid DS-TH
UWB system supportingK = 5 users, when communicating over correlated Rayleigh fading
channels modelled by the S-V channel model associated with anormalized Doppler frequency-
shift fdTb = 0.0001. The other parameters wereEb/N0 = 10dB, λRLS = 0.9987, δ = 5.0,
g = 1,Nc = 16,Nψ = 4 andL = 15, respectively.
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Figure 5.19: Learning curves of the TPA-based reduced-rank RLS adaptivedetector for the hybrid DS-TH
UWB system supportingK = 15 users, when communicating over correlated Rayleigh fading
channels modelled by the S-V channel model associated with anormalized Doppler frequency-
shift fdTb = 0.0001. The other parameters wereEb/N0 = 10dB, λRLS = 0.9987, δ = 5.0,
g = 1,Nc = 16,Nψ = 4 andL = 15, respectively.
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error was obtained from averaging over2000 independent realizations of the UWB channel. From

the results of Fig. 5.17, it can be observed that the TPA-assisted reduced-rank RLS detector using

U = 1 converges much faster than the full-rank RLS adaptive detector corresponding toU = 78. The

TPA-assisted reduced-rank RLS detector usingU = 1 also converges faster than that usingU = 3.

However, both of them converge to a similar MSE, which is lower than that converged by the full-rank

RLS adaptive detector.

Figs. 5.18 and 5.19 demonstrate the learning performance ofthe TPA-based reduced-rank RLS

adaptive detector for the hybrid DS-TH UWB systems supporting K = 5 (Fig. 5.18) andK = 15

(Fig. 5.19) users, respectively. Again, the MSE was obtained by the average over2000 independent

realizations of the UWB channel considered. The results of Figs. 5.18 and 5.19 show that the TPA-

assisted reduced-rank RLS adaptive detector using the rankU = 1 converges the fastest among

the cases considered. However, it converges to a relativelyhigh MSE, in comparison with the other

cases. As the rankU of the detection subspace increases, the TPA-assisted reduced-rank RLS adaptive

detector converges slower, but usually can reach a lower MSE. Furthermore, when the rankU = 78 is

applied, it can be observed that overshoot phenomena [194] is observed. The overshoot phenomena

occurs because an inappropriate regularisation factorδ was used for the initialisation. This problem

may be resolved by decreasing the value ofδ, as mentioned in the previous chapter.

0 2 4 6 8 10 12 14
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

BE
R

 

 

Ideal MMSE
U = 1
U = 2
U = 3

Figure 5.20: BER versus SNR per bit performance of the hybrid DS-TH UWB system using TPA-based
reduced-rank RLS adaptive detection, when communicating over correlated Rayleigh fading
channels modelled by the S-V channel model. The other parameters employed for the simu-
lations wereK = 1, fdTb = 0.0001, λRLS = 0.9987, δ = 5.0, g = 1, Nc = 16, Nψ = 4 and
L = 15, respectively.
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Fig. 5.20 shows the BER versus SNR per bit performance of the hybrid DS-TH UWB system

employing the TPA-based reduced-rank RLS adaptive detector. The hybrid DS-TH UWB system

supports single user. The results of Fig. 5.20 show that the TPA-assisted reduced-rank RLS adaptive

detectors using a rank ofU = 1, 2 and 3, respectively, are capable of achieving a similar BER

performance, which is within0.5dB of that achieved by the ideal MMSE detector, when the SNR per

bit is sufficiently high. Furthermore, when comparing Fig. 5.20 with Fig. 4.19 in the last chapter, we

can see that the TPA-assisted reduced-rank RLS adaptive detector using a rank ofU = 1, 2 or 3 is

capable achieving the same BER performance as the full-rankRLS adaptive detector. However, the

complexity of the TPA-assisted reduced-rank RLS adaptive detector is significantly lower than that

of the full-rank RLS adaptive detector.
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Figure 5.21: BER versus SNR per bit performance of the hybrid DS-TH UWB system using TPA-based
reduced-rank RLS adaptive detection, when communicating over correlated Rayleigh fading
channels modelled by the S-V channel model. The other parameters employed for the simu-
lations wereK = 5, fdTb = 0.0001, λRLS = 0.9987, δ = 5.0, g = 1, Nc = 16, Nψ = 4 and
L = 15, respectively.

In Figs. 5.21 and 5.22 we investigate the BER versus SNR per bit performance of the hybrid DS-

TH UWB systems using the TPA-assisted reduced-rank adaptive detection. In contrast to Fig. 5.20

corresponding to the system supporting single user, in Figs. 5.21 and 5.22 the number of users sup-

ported isK = 5 andK = 15, respectively. From the results of Figs. 5.21 and 5.22, it can be observed

that the BER performance of the hybrid DS-TH UWB systems improves, as the rankU of the detec-

tion subspace is increased. When the SNR is low, for example lower than7dB in Fig.5.21 and lower

than9dB in Fig. 5.22, the BER performance is close to each other when U > 4. By contrast, when
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Figure 5.22: BER versus SNR per bit performance of the hybrid DS-TH UWB system using TPA-based
reduced-rank RLS adaptive detection, when communicating over correlated Rayleigh fading
channels modelled by the S-V channel model. The other parameters employed for the simu-
lations wereK = 15, fdTb = 0.0001, λRLS = 0.9987, δ = 5.0, g = 1, Nc = 16, Nψ = 4 and
L = 15, respectively.

the SNR is high, as seen in Figs.5.21 and 5.22, the BER performance slightly improves as the rank

U of the detection subspace is further increased beyondU = 4. However, as shown in Figs.5.21 and

5.22, the full-rank RLS adaptive detector’s BER performance can be approximately achieved, when

the detection subspace’s rank is aboutU = 7 or 8. It is worth mentioning that, when the detection

subspace’s rank isU = 1, the TPA-assisted reduced-rank adaptive detector is actually reduced to a

correlation adaptive detector.

Finally, in Fig. 5.23 we illustrate the BER versus SNR per bitperformance of the hybrid DS-

TH UWB system using the TPA-based reduced-rank RLS adaptivedetector to supportK = 5 user,

when the UWB channel experiencesL = 150 resolvable multipaths. Again, the BER performance

improves, as the rankU of the detection subspace increases fromU = 1 toU = 7. When comparing

the results of Fig. 5.23 with that in Fig. 5.9, we can know thatthe TPA-based reduced-rank RLS

adaptive detector usingU = 7 is capable of achieving a similar BER performance as the PCA-

assisted reduced-rank RLS adaptive detector using a rank ofU = 20, which equals to the signal

subspace’s rank. Furthermore, when comparing the results of Fig. 5.23 corresponding toL = 150

with that in Fig. 5.21 corresponding toL = 15, we can find that, for the case ofU = 7, the BER

performance shown in Fig. 5.23 is better than that shown in Fig. 5.21.

In summary, from the results of Figs. 5.21 - 5.23, we can see that, in general, the TPA-assisted
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Figure 5.23: BER versus SNR per bit performance of the hybrid DS-TH UWB system using TPA-based
reduced-rank RLS adaptive MMSE-MUD, when communicating over correlated Rayleigh fading
channels modelled by the S-V channel model. The other parameters employed for the simula-
tions wereK = 5, fdTb = 0.0001, λRLS = 0.9995, δ = 0.005, g = 3, Nc = 16, Nψ = 4 and
L = 150, respectively.

reduced-rank RLS adaptive detector using a detection subspace having a rank of aboutU = 7 or 8 is

capable of achieving the BER performance, which is quite close to that achieved by the full-rank RLS

adaptive detector. This full-rank RLS adaptive detector’sBER performance is achieved regardless of

the size of the hybrid DS-TH UWB systems as well as the number of resolvable multipaths of the

UWB channels. Furthermore, from Figs. 5.17 - 5.19 we can see that the TPA-assisted reduced-rank

RLS adaptive detector converges very fast, when the rankU of the detection subspace is relatively

low. Explicitly, the above properties of the TPA-assisted reduced-rank RLS adaptive detection are

very desirable for the pulse-based UWB systems, which mightsupport a big number of users com-

municating over UWB channels having a huge number of low-power resolvable multipaths.

5.4.4 Performance Comparison of Reduced-Rank RLS AdaptiveDetectors

So far, we have shown the learning and BER performance of the reduced-rank RLS adaptive detec-

tors, which derive the detection subspaces based on the PCA-, CSM- and TPA-assisted rank reduction

techniques, respectively. In this subsection the learningand BER performance of the reduced-rank

RLS adaptive detectors using the above-mentioned three types of rank reduction techniques are com-

pared in the context of the hybrid DS-TH UWB systems.

Figs. 5.24 and 5.25 show the learning performance of the reduced-rank RLS adaptive detectors,
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Figure 5.24: Learning curves of the PCA-, CSM- and TPA-based reduced-rank RLS adaptive detectors for
the hybrid DS-TH UWB system supportingK = 5 users, when communicating over corre-
lated Rayleigh fading channels modelled by the S-V channel model associated with a normal-
ized Doppler frequency-shiftfdTb = 0.0001. The other parameters wereEb/N0 = 10dB,
λRLS = 0.9987, δ = 5.0, g = 1,Nc = 16,Nψ = 4 andL = 15, respectively.

which derive their detection subspaces based on the principles of the PCA-, CSM- and TPA-based

rank reduction techniques, as described in Section 5.2. In our simulations we assumed that the hybrid

DS-TH UWB systems supportedK = 5 users and that the average SNR per bit wasEb/N0 = 10dB.

In the context of Fig. 5.24 we assumed that the UWB channel hadL = 15 resolvable multipaths

corresponding tog = 1, while in the context of Fig. 5.25 we assumed that the UWB channel had

L = 150 resolvable multipaths corresponding tog = 3. Additionally, the ensemble-average squared

error shown in the figures was obtained from2000 independent realizations. The other parameters

were detailed associated with the figures. As the results of Figs. 5.24 and 5.25 shown, for a given

rankU considered in the figures, the TPA-based scheme achieves thelowest MSE among the three

rank reduction techniques. After the converging, the MSE achieved by the TPA-based scheme is

significantly lower than the MSE achieved by the PCA- or CSM-based scheme. For a given rank

U of the detection subspace, as shown in Figs. 5.24 and 5.25, the CSM-based reduced-rank scheme

converges to a (slightly) lower MSE than the PCA-based rank reduction scheme.

Fig. 5.26 shows the ensemble-average squared error learning performance of the reduced-rank

RLS adaptive detectors using the PCA-, CSM-, and TPA-assisted rank reduction techniques for the

hybrid DS-TH UWB systems supportingK = 15 users. In our simulations we assumed that the

average SNR per bit wasEb/N0 = 10dB, the UWB channel resulted inL = 15 resolvable multipaths
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Figure 5.25: Learning curves of the PCA-, CSM- and TPA-based reduced-rank RLS adaptive detectors for
the hybrid DS-TH UWB system supportingK = 5 users, when communicating over corre-
lated Rayleigh fading channels modelled by the S-V channel model associated with a normal-
ized Doppler frequency-shiftfdTb = 0.0001. The other parameters wereEb/N0 = 10dB,
λRLS = 0.9995, δ = 0.005, g = 3,Nc = 16,Nψ = 4 andL = 150, respectively.

and the ensemble average was taken over2000 independent realizations of the UWB channel. The

other parameters used in our simulation were summarized associated with figure. Again, for a given

considered rankU , the TPA-assisted rank reduction scheme is capable of achieving much lower

MSE than the PCA- or CSM-based rank reduction scheme. The PCA-based rank reduction scheme

achieves the worst MSE performance among the three rank reduction schemes for a given rankU of

the detection subspace.

Additionally, from Fig. 5.24 to Fig. 5.26, we can observe that, when the rankU of the detection

subpace increases, i.e., when the transceiver filter’s length increases, the reduced-rank RLS adaptive

detector using the PCA-, CSM- or TPA-based rank reduction scheme converges slower. This means

that, once a higher rankU of the detection subspace is applied, the number of trainingsymbols is also

required to be increased, in order for the adaptive filter to converge.

Fig. 5.27 compares the BER versus SNR per bit performance of the hybrid DS-TH UWB systems

supporting single user, when the PCA-, CSM- or TPA-assistedreduced-rank RLS adaptive detectors

is employed. Since only single user is supported and the ISI is not severe, as shown in Fig. 5.27,

all the reduced-rank RLS adaptive detector achieve a similar BER performance, which is quite close
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Figure 5.26: Learning curves of the PCA-, CSM- and TPA-based reduced-rank RLS adaptive detectors for
the hybrid DS-TH UWB system supportingK = 15 users, when communicating over corre-
lated Rayleigh fading channels modelled by the S-V channel model associated with a normal-
ized Doppler frequency-shiftfdTb = 0.0001. The other parameters wereEb/N0 = 10dB,
λRLS = 0.9987, δ = 5.0, g = 1,Nc = 16,Nψ = 4 andL = 15, respectively.
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Figure 5.27: BER performance comparison of the hybrid DS-TH UWB system using PCA-, CSM- and TPA-
based reduced-rank RLS adaptive detection, when communicating over correlated Rayleigh fad-
ing channels modelled by the S-V channel model. The parameters employed for the simulations
wereK = 1, fdTb = 0.0001, λRLS = 0.9987, δ = 0.5, g = 1, Nc = 16,Nψ = 4 andL = 15,
respectively.
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(less than0.4dB at reasonably high SNR) to that achieved by the ideal MMSE detector considered

in Chapter 3. Note that, when considering the computationalcomplexity in this case, we find that

the number of operations required for detecting one bit using the TPA-assisted reduced-rank tech-

nique is189, while that using the PCA- and CSM-assisted reduced-rank techniques are6575 and

6600, respectively. Hence, we are implied that the TPA-assistedscheme has the lowest computational

complexity among the three rank reduction schemes considered.
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Figure 5.28: BER performance comparison of the hybrid DS-TH UWB system using PCA-, CSM- and TPA-
based reduced-rank RLS adaptive detection, when communicating over correlated Rayleigh fad-
ing channels modelled by the S-V channel model. The parameters employed for the simulations
wereK = 5, fdTb = 0.0001,λRLS = 0.9987, δ = 0.005, g = 1,Nc = 16,Nψ = 4 andL = 15,
respectively.

Finally, in Figs. 5.28, 5.29 and 5.30 we compare the BER versus SNR per bit performance of the

hybrid DS-TH UWB systems using the three types of reduced-rank RLS adaptive detectors to support

multiple users. Specifically, in the context of Figs. 5.28 and 5.29 the number of users supported by

the hybrid DS-TH UWB systems wasK = 5, while in Fig. 5.30 the number of users supported was

K = 15. Furthermore, in our simulations the number of resolvable multipaths for Figs. 5.28 and 5.30

wasL = 15 implying relatively low ISI. By contrast, the number of resolvable multipaths assumed

for Fig. 5.29 wasL = 150, which resulted in severe ISI, in addition to multiuser interference. From

the results of Figs. 5.28, 5.29 and 5.30, we can observe that,for a given rankU of the detection

subspace, the TPA-based reduced-rank RLS adaptive detector significantly outperforms the PCA-

and CSM-based reduced-rank RLS adaptive detectors. Note that, the detection subspace’s ranks

considered in these figures are all lower than the corresponding signal subspace’s ranks. As shown
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Figure 5.29: BER performance comparison of the hybrid DS-TH UWB system using PCA-, CSM- and TPA-
based reduced-rank RLS adaptive detection, when communicating over correlated Rayleigh fad-
ing channels modelled by the S-V channel model. The parameters employed for the simulations
wereK = 5, fdTb = 0.0001, λRLS = 0.9995, δ = 0.005, g = 3, Nc = 16, Nψ = 4 and
L = 150, respectively.
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Figure 5.30: BER performance comparison of the hybrid DS-TH UWB system using PCA-, CSM- and TPA-
based reduced-rank RLS adaptive detection, when communicating over correlated Rayleigh fad-
ing channels modelled by the S-V channel model. The parameters employed for the simulations
wereK = 15, fdTb = 0.0001, λRLS = 0.9987, δ = 0.005, g = 1, Nc = 16, Nψ = 4 and
L = 15, respectively.
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in Figs. 5.28, 5.29 and 5.30, in these cases, the PCA-based reduced-rank RLS adaptive detector is

the worst among the three reduced-rank RLS detection schemes in terms of the achievable BER

performance forU = 1, 4, 5 or 8.

5.5 Summary and Conclusions

In this chapter we have investigated the learning and BER performance of the hybrid DS-TH UWB

systems using various reduced-rank RLS adaptive detectors, in order to illustrate the design trade-off

between the affordable detection complexity and the achievable BER performance, when reduced-

rank adaptive detection is employed. Three types of rank reduction techniques have been investigated

in conjunction with the hybrid DS-TH UWB systems using the RLS-aided adaptive detection. The

three types of reduced-rank detection schemes have been derived based on the principles of princi-

pal component analysis (PCA), cross-spectral metric (CSM)and Taylor polynomial approximation

(TPA), respectively. Throughout the study provided in thischapter, the following observations may

be derived.

• Principal Component Analysis: The PCA-assisted reduced-rank RLS adaptive detector is

depended on the eigen-decomposition of the auto-correlation matrixRRRyi of the observa-

tion vector yyyi. In this reduced-rank scheme theU number of eigenvectors correspond-

ing to theU largest eigenvalues ofRRRyi are used to form the detection subspace (or pro-

cessing matrix)PPPU . As shown in Section 5.2.2, the PCA-based scheme forms the de-

tection subspacePPPU without requiring the knowledge about the user to be detected. The

complexity of the PCA-based reduced-rank RLS adaptive detector has been considered in

Section 5.3.1, and the number of operations for detecting one bit has been found to be

((T 2 + 2T + 2UT + 11U2 + 7U + 3 + (T 3/3 + U log2 T )/FL), whereT = (NcNψ +L−
1) andFL denotes the frame-length. Finally, the learning and BER performance of the PCA-

based reduced-rank RLS adaptive detector have been studiedin Section 5.4.1. Our analysis and

performance results show that the PCA-assisted reduced-rank RLS adaptive detector is capable

of achieving the BER performance of the full-rank RLS adaptive detector, if the rankU of the

detection subspace is not lower than the signal subspace’s rank. Hence, the PCA-based scheme

may allow a significant reduction of the detection subspace’s rank, provided that the dimension

of the signal subspace is significantly lower than the rank ofthe observation space spanned by

the received signalyyyi, which is (NcNψ + L − 1) and may be very big if the total spreading

factor and/or the number of resolvable multipaths are high.When this is not the case, for ex-
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ample, when the hybrid DS-TH UWB system supports a high number of users resulting in that

the signal subspace’s rank exceeds the rankU of the detection subspace, then, mapping the

received signal vectors to the detection subspace of rankU is likely to reduce the desired signal

components. Consequently, the corresponding PCA-based reduced-rank RLS adaptive detector

might conflict severe multiuser interference and the BER performance appears error-floors.

• Cross-Spectral Metric: The CSM-based reduced-rank RLS adaptive detector is also depended

on the eigen-decomposition of the auto-correlation matrixRRRyi of the observation vectoryyyi. As

shown in Section 5.2.3, from(NcNψ + L − 1) eigenvectors ofRRRyi , the CSM-based scheme

chooses theU eigenvectors having theU largest CSM values as defined in (5.14) to form the

detection subspacePPPU . The detection subspace obtained in this way is the optimum selection

of the
(NcNψ+L−1

U

)
eigenvectors in MMSE sense for reduction in rank. Hence, theCSM-based

rank-reduction technique may be more efficient than the PCA-based rank-reduction technique,

since the CSM-based scheme takes into account the energy in the subspace contributed by the

desired user. However, as shown in (5.14), the CSM-based reduced-rank scheme requires to in-

voke the knowledge ofhhh1 andCCC(1)
i of the desired user, in order to form the detection subspace

PPPU . The complexity of the CSM-assisted reduced-rank RLS adaptive detector has been con-

sidered in Section 5.3.2. It has been found that the number ofoperations for detecting one

bit is (T 2 + 2T + 2UT + 11U2 + 7U + 3 + ((T + 1)TL + T 3/3 + 2T 2 + U log2 T )/FL),

whereTL represents the number of symbols per frame used for training, in addition to the

parameters mentioned previously. Finally, the learning behaviour of the CSM-based reduced-

rank RLS adaptive detector and the BER performance of the hybrid DS-TH UWB systems

using the CSM-based reduced-rank RLS adaptive detection have been depicted and discussed

in Section 5.4.2. From our study and performance results, itcan be found that the CSM-

assisted reduced-rank RLS adaptive detector may converge faster than the full-rank RLS adap-

tive detector. Hence, the hybrid DS-TH UWB systems using theCSM-assisted reduced-rank

RLS adaptive detection may result in a higher spectral-efficiency than that using the full-rank

RLS adaptive detection. The CSM-assisted reduced-rank RLSadaptive detector is capable of

achieving the BER performance of the full-rank RLS adaptivedetector, when the rankU of the

detection subspace reaches a value equivalent to the signalsubspace’s rank. Hence, like the

PCA-based scheme, the CSM-based scheme may also reduce significantly the detection com-

plexity, if the dimension of the signal subspace is significantly lower than that of the observation

space spanned by the received signalyyyi.
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• Taylor Polynomial Approximation : In contrast to the above two rank reduction schemes

that are depended on the eigen-decomposion, the TPA-assisted reduced-rank adaptive detec-

tor forms its detection subspacePPPU without depending on the eigen-decomposition of the

auto-correlation matrixRRRyi . Instead, it forms the detection subspacePPPU based on the Taylor

polynomial expansion of the inverse auto-correlation matrix RRRyi , as shown in (5.19). Based

on (5.19), we can know that the TPA-based reduced-rank scheme requires the knowledge of

hhh1 andCCC(1)
i of the desired user, in order to form the detection subspacePPPU . The complex-

ity of the TPA-based reduced-rank RLS adaptive detector hasbeen analysed in Section 5.3.3.

It has been found that, if the detection subspace’s rank isU = 1, the number of opera-

tions required to detect one bit is(2T + 21 + ((T + 1)TL/FL)). However, if the detec-

tion subspace’s rank isU > 1, then the number of operations required to detect one bit is

((T 2 + 2T + 2UT + 11U2 + 7U + 3) + ((T + 1)TL + 2(U − 1)T 2/FL)). Finally, in Sec-

tion 5.4.3 the learning and BER performance of the TPA-assisted reduced-rank RLS adaptive

detector have been provided and analysed. The learning and BER performance results show that

the TPA-assisted reduced-rank RLS adaptive detector is a highly efficient detection scheme. It

usually does not require a high rankU (in comparison to the signal subspace’s rank) to con-

verge to a low MSE and it usually converges very fast. The TPA-assisted reduced-rank RLS

adaptive detector is capable of converging to the full-rankRLS adaptive detector’s performance

with a rankU significantly lower than that of the signal subspace, especially when the signal

subspace’s rank is high. Furthermore, the detection subspace’s rankU needed to achieve the

full-rank RLS adaptive detector’s performance does not scale with the system size determined

by the observation space’s dimension, which is(NcNψ + L − 1), and the number of users,

K. Additionally, as shown in Tables 5.5 and 5.6, the TPA-basedreduced-rank RLS adaptive

detector usually has a lower complexity than the PCA- or CSM-based reduced-rank RLS adap-

tive detector. Owing to its above-mentioned properties, the TPA-assisted reduced-rank RLS

adaptive detector may constitute a promising detection scheme for the hybrid DS-TH UWB

systems, which may support a big number of users communicating over the UWB channels

having a huge number of low-power resolvable multipaths.

Finally, the complexity of various detection schemes for the hybrid DS-TH UWB systems to de-

tect one bit is summarized in Table 5.5. In Table 5.6 the number of operations required by the different

detectors to detect one bit is provided in the context of a range of specific cases. For generating Ta-

ble 5.6, we assumed that the frame-length wasFL = 1000 bits, which includedTL = 160 training

bits. Hence, the spectral-efficiency of the hybrid DS-TH UWBsystems is84%. Additionally, the
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Detection scheme Number of operations for detecting one bit
Correlation detector 2(L− 1)T
Ideal MMSE detector T 3/3 + 6T 2 + 2(L+ 1)T + 4KL(1 + 4g)T
Full-rank RLS adaptive 11T 2 + 8T + 3
detector

PCA-based reduced-rank T 2 + 2T + 2UT + 11U2 + 7U + 3 + T 3/3+U log2 T
FL

RLS adaptive detector

CSM-based reduced-rank T 2 + 2T + 2UT + 11U2 + 7U + 3 +
1

FL
[(T + 1)TL

RLS adaptive detector + T 3/3 + 2T 2 + 2T + U log2 T
]

TPA-based reduced-rank 2T + 21 +
1

FL
[(T + 1)TL] , U = 1

RLS adaptive detector T 2 + 2T + 2UT + 11U2 + 7U + 3 +
1

FL
[(T + 1)TL

+2(U − 1)T 2
]
, U = 2, 3, · · ·

Table 5.5: Complexity comparison of various detection schemes for thehybrid DS-TH UWB systems.

total spreading factor was assumed to be64, where the DS spreading factor wasNc = 16 and the

TH-spreading factor wasNψ = 4, respectively. From the data shown in Table 5.6, it can be observed

that the number of operations required for detecting one bitis reduced significantly for the reduced-

rank RLS adaptive detection schemes in comparison with thatrequired by the full-rank RLS adaptive

detector. All the three reduced-rank RLS adaptive detectors considered in this chapter have a similar

complexity, but, however, the number of operations required by the TPA-based reduced-rank scheme

is usually slightly lower than that required by the PCA- or CSM-based reduced-rank scheme, for any

givenU andL. Furthermore, the data in Table 5.6 shows that the complexity of the reduced-rank RLS

adaptive detectors is at a similar level as that of the single-user correlation detector studied in Chap-

ter 3, which achieves much worse BER performance than the reduced-rank RLS adaptive detectors

considered in this chapter.
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Detection scheme Number of resolvable Rank of detection Number of operations
multipaths,L subspace,U for detecting one bit

Correlation 15 78 2496
detector 100 163 32926

Ideal MMSE 15 78 176670
detector 100 163 1523780

Full-rank RLS 15 78 67551
adaptive detector 100 163 293566

1 6575
8 8428

PCA-based 15 15 11391
reduced-rank RLS 45 36670
adaptive detector 1 28686

8 31750
100 15 35957

45 66945
1 6600
8 8453

CSM-based 15 15 11416
reduced-rank RLS 45 36695
adaptive detector 1 28765

8 31829
100 15 36036

45 67024
1 189

TPA-based 15 5 7125
reduced-rank RLS 8 8023
adaptive detector 1 373

100 5 28601
8 30144

Table 5.6: Number of operations required for detecting one bit in the hybrid DS-TH UWB systems using
various detection schemes.



Chapter 6
Conclusions and Future Work

In this final concluding chapter, we first provide a summary ofthe thesis in Section 6.1. Then, a range

of topics concerning future research are presented in Section 6.2.

6.1 Summary and Conclusions

In this thesis we have proposed and investigated a novel pulse-based UWB system known as the

hybrid DS-TH UWB system. This pulse-based UWB system provides more degrees-of-freedom as

compared to the pure DS- and pure TH-UWB systems. Furthermore, it can be shown that both the

TH-UWB and DS-UWB systems constitute special examples of the hybrid DS-TH UWB system.

The main motivation of this thesis is to design low-complexity high-efficiency pulse-based UWB

receivers, which are capable of achieving reasonable BER performance.

We have commenced in Chapter 2 with a detailed review of related work on UWB communica-

tions. According to the literature, UWB systems can be implemented by pulse-based or multi-carrier-

based approached. Since our focus in this thesis is on the pulse-based UWB systems, in Chapter 2 a

detailed review of pulse-based UWB systems is, hence presented. Short duration pulses designed for

the pulse-based UWB systems have been analyzed in detail. Since FCC has imposed no restriction on

the pulse shape, data modulation and MA schemes, different kinds of pulse shapes in Section 2.2.2,

modulation techniques in Section 2.2.4 and different MA techniques in Section 2.2.5 can hence be

employed in the pulse-based UWB systems, although each of them has its advantages and disadvan-

tages in comparison with its counterparts. In this chapter,we have also provided a brief overview

for the multi-carrier based UWB systems which are implemented by dividing the frequency band

into several smaller bands with each band having at least500 MHz of bandwidth. Furthermore, a

175
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comparison between the pulse-based UWB schemes and multicarrier UWB schemes is carried out.

Then, in Section 2.5 the main differences among the narrowband, wideband and UWB channels have

been characterized, and statistics for modelling both the large-scale fading and small-scale fading of

the UWB channels have been provided, with our emphasis on thesmall-scale fading, since UWB

has been mainly considered for indoor and other short-distance communications. The S-V channel

model, which was initially proposed for indoor wireless communications in [133], has been intro-

duced as a typical UWB channel model for our study in the following chapters. Furthermore, the S-V

channel model for UWB indoor wireless communications is discussed in detail. It is shown that the

MDP in UWB communications environments is generally sparse, resulting in possibly a huge num-

ber of resolvable multipaths present at the UWB receiver. Hence, in UWB systems a large number of

resolvable multipaths are usually required to be processedby the UWB receiver in order to achieve a

good BER performance, which makes the design of low-complexity UWB receivers critical.

In Chapter 3 the hybrid DS-TH UWB system has been proposed andinvestigated. The transmitted

signal, channel model and the receiver model for the hybrid DS-TH UWB have been presented.

The performance of the hybrid DS-TH UWB systems have been investigated under the assumptions

that the delay-spread of the channel may span several bit durations, resulting in a huge number of

resolvable multipaths. In our investigation, both the single-user correlation detector and multiuser

MMSE detector have been considered. From our studies we can draw the following observations.

• Single-User Correlation Detector: It is near optimum when the hybrid DS-TH UWB system

supports single-user communicating over Nakagami-m Fading channels, if the delay-spread is

not high, resulting in ignorable ISI. A tradeoff exists between the DS and TH spreading factors,

when the single-user correlation detector is employed in a hybrid DS-TH UWB system. It can

be shown that the best BER performance of the hybrid DS-TH UWBsystem may be obtained

by appropriately choosing the DS and TH spreading factors. In this case, the hybrid DS-TH

UWB system outperforms the pure DS-UWB or pure TH-UWB system. The complexity of the

single-user correlation detector has been found to be2(L + 1)T , whereT = NcNψ + L −
1. Furthermore, it has been shown that the BER performance of the single-user correlation

detector deteriorates, when the number of users supported by the hybrid DS-TH UWB system

increases.

• Multiuser MMSE Detector: In the context of the multiuser MMSE detector, it has been ob-

served from the simulations results that the BER performance of the hybrid DS-TH UWB

system, that of the pure DS-UWB system and that of the pure TH-UWB system are all similar,



6.1. SUMMARY AND CONCLUSIONS 177

when given the total spreading factor. However, for some specific DS and TH spreading fac-

tors, the BER performance of the hybrid DS-TH UWB system may be slightly better than the

pure DS-UWB and pure TH-UWB systems. The complexity of the multiuser MMSE detector

is very high and has been found to beT 3/3 + 6T 2 + 4KL(1 + 2g)T + 2(L + 1)T , where

againT = NcNψ+L−1. In addition to the complexity for detection, the MMSE detector also

requires the complete knowledge of the spreading codes of all the active users. Furthermore,

the MMSE detector requires ideal channel knowledge associated with the active users, which is

usually not available in UWB systems, since the received UWBsignals are usually constituted

by a huge number of low-power resolvable multipaths that areextremely hard to estimate.
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Figure 6.1: Comparison of BER versus SNR per bit performance of the hybrid DS-TH UWB systems using
correlation and MMSE receivers to supportK = 15 users, when communication over Nakagami-
m fading channels. The total spreading factor isNcNψ = 128, where the DS spreading factor is
Nc = 8 while the TH spreading factor isNψ = 16. There are15 number of resolvable multipaths,
five of which convey85% of the transmitted power.

As an example, Fig. 6.1 compares the BER versus SNR performance of the hybrid DS-TH UWB

system employing the single-user correlation and multiuser MMSE detectors, when communicating

over Nakagami-m fading channels associated with different fading parameters. In our simulations we

assumed that the hybrid DS-TH UWB system supportedK = 15 users. The number of resolvable

multipaths were fixed toL = 15, where five of which conveyed85% of the total transmitted power.

From the results of Fig. 6.1 we can observe that as the channelquality improves, i.e., as the value

of m increases, the BER performance of the hybrid DS-TH UWB improves. It is also observed

from Fig. 6.1 that the BER performance of the MMSE receiver issignificantly better than that of the
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correlation receiver. However, we should note that the MMSEdetector has much more complexity

than the correlation detector.

In order to take the advantages of the multiuser MMSE detector but reduce the detection com-

plexity in Chapter 4 we have proposed and investigated a range of training-based adaptive detectors

for the hybrid DS-TH UWB systems. These adaptive detectors have lower complexity than the ideal

MMSE detector considered in Chapter 3. Furthermore, these adaptive detectors are free from channel

estimation and are capable of achieving the approximate MMSE solutions with the aid of some train-

ing sequences of certain length. In this chapter three typesof low-complexity adaptive detectors have

been considered, which are operated based on the principlesof least mean-square (LMS), normalized

least mean-square (NLMS) and recursive least square (RLS),respectively. From our analysis and

performance results, we can draw the following observations.

• LMS Adaptive Detector: The LMS adaptive detector belongs to the category of stochastic

gradient algorithms. The basic principle of the LMS detector is to find a sub-optimal weight

vectorwww1 through stochastic gradient techniques, in order to approach the minimum mean-

square error between the transmitted symbolb
(1)
i and its corresponding decision variablez(1)

i .

The procedure of the LMS adaptive detector has been summarised in Table 4.2.1. The com-

plexity of the LMS adaptive detector has been considered in Section 4.3.1 and is found to be

(5(NcNψ + L − 1) + 2). Finally, the BER performance results for the hybrid DS-TH UWB

systems employing the LMS adaptive detector have been presented in Section 4.4.1. It can be

found that the LMS-aided adaptive detector constitutes oneof the efficient detection schemes

that can be applied to the pure DS-, pure TH- and hybrid DS-TH UWB systems. However, the

LMS adaptive detector does not perform very well in the low SNR region.

• NLMS Adaptive Detector: The NLMS adaptive detector also works in the principles of

stochastic gradient. The NLMS adaptive detector is capableof attaining faster convergence

than the LMS adaptive detector. The algorithm of the NLMS adaptive detector is summarised

in Table 4.2.2. The complexity of the NLMS has been analyzed in Section 4.3.2, which is

(7(NcNψ +L−1)+2). Finally, the BER performance results of the hybrid DS-TH UWB sys-

tems employing the NLMS adaptive detector have been presented in Section 4.4.2. Our studies

show that the NLMS adaptive detector is efficient for applying to the pure DS-, pure TH- and

hybrid DS-TH UWB system. The BER performance of the NLMS adaptive detector is close to

that of the ideal MMSE detector and slightly better than thatof the LMS adaptive detector.

• RLS Adaptive Detector: The RLS adaptive detector is operated in the principle of least square,
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which chooses a weight vector, saywww1 to minimize the cost function that consists of the sum of

error squares. The algorithm of the RLS adaptive detector issummarised in Table 4.2.3. It can

be shown that the RLS adaptive detector employs more controllable parameters, or degrees-of-

freedom than the LMS and NLMS adaptive detector. Therefore,when appropriate parameters

are applied, the RLS adaptive detector is capable of attaining a higher convergence rate than

the LMS or NLMS adaptive detector. The complexity of the RLS adaptive detector has been

analyzed in Section 4.3.3, which is found to be(11(NcNψ +L−1)2 +8(NcNψ +L−1)+3).

Hence, the complexity of the RLS adaptive detector might be very high for the hybrid DS-

TH UWB system. Finally, the BER performance results of the hybrid DS-TH UWB systems

employing the RLS adaptive detector have been illustrated and analyzed in Section 4.4.3. It

can be shown that the RLS adaptive detector is capable of converging to the ideal MMSE

detector. The BER performance of the hybrid DS-TH UWB systems using the RLS adaptive

detection is very close to that of the hybrid DS-TH UWB systems using ideal MMSE detection.

Furthermore, it is shown that the BER performance of the RLS adaptive detector is better than

that of the LMS and NLMS adaptive detector.

It has been illustrated [16] that the efficiency of an adaptive detector can be characterised by

its convergence speed, BER performance, robustness and implementation complexity. According to

the adaptive filter theory [16] and also our study in Chapter 4, the above-mentioned characteristics

of adaptive detection are dependent on the length of the traversal filter employed. In general, a

longer traversal filter results in lower convergence speed,which, in turn, means that a longer training

sequence is required to train the adaptive filter. Consequently, the data-rate and spectral-efficiency

of the corresponding communications system decreases. Therobustness of an adaptive filter also

degrades as the filter length increases, since, in this case the adaptive filter requires to estimate more

channel-dependent parameters [16,157,198,199]. Furthermore, as shown in Chapter 4, when a longer

adaptive filter is employed, the computational complexity also becomes higher, since more operations

are required for the corresponding detection and estimation. Due to the reason as above-mentioned,

hence in Chapter 5 reduced-rank techniques are proposed forthe adaptive detection of the hybrid

DS-TH UWB signals, in order to achieve low-complexity detection in hybrid DS-TH UWB systems.

With the reduced-rank detection the number of coefficients to be determined is reduced by projecting

the received signal in a higher dimensional observation space to a lower dimensional subspace for

detection. In this chapter, three classes of reduced-rank detectors have been investigated in conjuction

with the proposed RLS-adaptive detector. The three classesof reduced-rank detectors have been

derived based on the principles of PCA, CSM and TPA, respectively. Note that, although reduced-



6.1. SUMMARY AND CONCLUSIONS 180

rank detection has been studied only associated with the RLSadaptive detection scheme, however,

these techniques are general and they can be similarly employed associated with LMS and NLMS

adaptive detectors. From our analysis and simulation results, the main findings of Chapter 5 can be

summarised as below.

• Principal Component Analysis (PCA): The PCA-assisted reduced-rank RLS adaptive de-

tector is depended on the eigen-decomposition of the auto-correlation matrixRRRyi of the

observation vectoryyyi. In this reduced-rank scheme theU number of eigenvectors corre-

sponding to theU largest eigenvalues ofRRRyi are used to form the detection subspace (or

processing matrix)PPPU . As shown in Section 5.2.2, the PCA-based scheme forms the de-

tection subspacePPPU without requiring the knowledge about the user to be detected. The

complexity of the PCA-based reduced-rank RLS adaptive detector has been considered in

Section 5.3.1, and the number of operations for detecting one bit has been found to be

((T 2 + 2T + 2UT + 11U2 + 7U + 3 + (T 3/3 + U log2 T )/FL), whereT = (NcNψ +L−
1) andFL denotes the frame-length. Finally, the learning and BER performance of the PCA-

based reduced-rank RLS adaptive detector have been studiedin Section 5.4.1. Our analysis and

performance results show that the PCA-assisted reduced-rank RLS adaptive detector is capable

of achieving the BER performance of the full-rank RLS adaptive detector, if the rankU of the

detection subspace is not lower than the signal subspace’s rank. Hence, the PCA-based scheme

may allow a significant reduction of the detection subspace’s rank, provided that the dimension

of the signal subspace is significantly lower than the rank ofthe observation space spanned by

the received signalyyyi, which is (NcNψ + L − 1) and may be very big if the total spreading

factor and/or the number of resolvable multipaths are high.When this is not the case, for ex-

ample, when the hybrid DS-TH UWB system supports a high number of users resulting in that

the signal subspace’s rank exceeds the rankU of the detection subspace, then, mapping the

received signal vectors to the detection subspace of rankU is likely to reduce the desired signal

components. Consequently, the corresponding PCA-based reduced-rank RLS adaptive detector

might conflict severe multiuser interference and the BER performance appears error-floors.

• Cross Spectral Metric (CSM): The CSM-based reduced-rank RLS adaptive detector is

also depended on the eigen-decomposition of the auto-correlation matrixRRRyi of the ob-

servation vectoryyyi. As shown in Section 5.2.3, from(NcNψ + L − 1) eigenvectors of

RRRyi , the CSM-based scheme chooses theU eigenvectors having theU largest CSM val-

ues as defined in (5.14) to form the detection subspacePPPU . The detection subspace ob-
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tained in this way is the optimum selection of the
(NcNψ+L−1

U

)
eigenvectors in MMSE

sense for reduction in rank. Hence, the CSM-based rank-reduction technique may be

more efficient than the PCA-based rank-reduction technique, since the CSM-based scheme

takes into account the energy in the subspace contributed bythe desired user. However,

as shown in (5.14), the CSM-based reduced-rank scheme requires to invoke the knowl-

edge ofhhh1 and CCC(1)
i of the desired user, in order to form the detection subspacePPPU .

The complexity of the CSM-assisted reduced-rank RLS adaptive detector has been consid-

ered in Section 5.3.2. It has been found that the number of operations for detecting one

bit is (T 2 + 2T + 2UT + 11U2 + 7U + 3 + ((T + 1)TL + T 3/3 + 2T 2 + U log2 T )/FL),

whereTL represents the number of symbols per frame used for training, in addition to the

parameters mentioned previously. Finally, the learning behaviour of the CSM-based reduced-

rank RLS adaptive detector and the BER performance of the hybrid DS-TH UWB systems

using the CSM-based reduced-rank RLS adaptive detection have been depicted and discussed

in Section 5.4.2. From our study and performance results, itcan be found that the CSM-

assisted reduced-rank RLS adaptive detector may converge faster than the full-rank RLS adap-

tive detector. Hence, the hybrid DS-TH UWB systems using theCSM-assisted reduced-rank

RLS adaptive detection may result in a higher spectral-efficiency than that using the full-rank

RLS adaptive detection. The CSM-assisted reduced-rank RLSadaptive detector is capable of

achieving the BER performance of the full-rank RLS adaptivedetector, when the rankU of the

detection subspace reaches a value equivalent to the signalsubspace’s rank. Hence, like the

PCA-based scheme, the CSM-based scheme may also reduce significantly the detection com-

plexity, if the dimension of the signal subspace is significantly lower than that of the observation

space spanned by the received signalyyyi.

• Taylor Polynomial Approximation (TPA): In contrast to the above two rank reduction

schemes that are depended on the eigen-decomposion, the TPA-assisted reduced-rank adap-

tive detector forms its detection subspacePPPU without depending on the eigen-decomposition

of the auto-correlation matrixRRRyi . Instead, it forms the detection subspacePPPU based on the

Taylor polynomial expansion of the inverse auto-correlation matrixRRRyi , as shown in (5.19).

Based on (5.19), we can know that the TPA-based reduced-rankscheme requires the knowl-

edge ofhhh1 andCCC(1)
i of the desired user, in order to form the detection subspacePPPU . The

complexity of the TPA-based reduced-rank RLS adaptive detector has been analysed in Sec-

tion 5.3.3. It has been found that, if the detection subspace’s rank isU = 1, the number of
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operations required to detect one bit is(2T + 21 + ((T + 1)TL/FL)). However, if the de-

tection subspace’s rank isU > 1, then the number of operations required to detect one bit is

((T 2 + 2T + 2UT + 11U2 + 7U + 3) + ((T + 1)TL + 2(U − 1)T 2/FL)). Finally, in Sec-

tion 5.4.3 the learning and BER performance of the TPA-assisted reduced-rank RLS adaptive

detector have been provided and analysed. The learning and BER performance results show that

the TPA-assisted reduced-rank RLS adaptive detector is a highly efficient detection scheme. It

usually does not require a high rankU (in comparison to the signal subspace’s rank) to con-

verge to a low MSE and it usually converges very fast. The TPA-assisted reduced-rank RLS

adaptive detector is capable of converging to the full-rankRLS adaptive detector’s performance

with a rankU significantly lower than that of the signal subspace, especially when the signal

subspace’s rank is high. Furthermore, the detection subspace’s rankU needed to achieve the

full-rank RLS adaptive detector’s performance does not scale with the system size determined

by the observation space’s dimension, which is(NcNψ + L − 1), andK of the number of

users. Additionally, as shown in Tables 5.5 and 5.6, the TPA-based reduced-rank RLS adaptive

detector usually has a lower complexity than the PCA- or CSM-based reduced-rank RLS adap-

tive detector. Owing to its above-mentioned properties, the TPA-assisted reduced-rank RLS

adaptive detector may constitute a promising detection scheme for the hybrid DS-TH UWB

systems, which may support a big number of users communicating over the UWB channels

having a huge number of low-power resolvable multipaths.

Finally, the number of operations required by the various detection schemes for the hybrid DS-TH

UWB systems to detect one bit is summarised in Table 6.1. In Table 6.1 the number of operations

required by the different detectors to detect one bit is provided in the context of a range of specific

cases. For generating Table 6.1, we assumed that the frame-length wasFL = 1000 bits, which include

TL = 160 training bits. Hence, the spectral efficiency of the hybrid DS-TH UWB systems is84%,

when the full-rank or reduced-rank adaptive detectors are considered. Additionally, in our evaluations

the total spreading factor was assumed to be64, where the DS spreading factor wasNc = 16 and

the TH-spreading factor wasNψ = 4, respectively. From the data shown in Table 6.1, it can be

observed that the number of operations required for detecting one bit is reduced significantly for the

LMS and NLMS adaptive detectors as compared to the correlation detector. However, the complexity

of the RLS adaptive detector is still very high as compared tothe correlation detector but lower than

that of the ideal MMSE detector. From the data shown in Table 6.1, it can be observed that the

number of operations required for detecting one bit is reduced significantly for the reduced-rank RLS

adaptive detection schemes in comparison with that required by the full-rank RLS adaptive detector.
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Detection Number of resolvable Rank of detection Number of operations
scheme multipaths,L subspace,U for detecting one bit

Correlation 15 78 2496
detector 100 163 32926

Ideal MMSE 15 78 176670
detector 100 163 1523780

LMS adaptive 15 78 391
detector 100 163 816

NLMS adaptive 15 78 548
detector 100 163 1143

RLS adaptive 15 78 67551
detector 100 163 293566

1 6575
PCA-based 15 8 8428

reduced-rank RLS 15 11391
adaptive detector 1 28686

100 8 31750
15 35957
1 6600

CSM-based 15 8 8453
reduced-rank RLS 15 11416
adaptive detector 1 28765

100 8 31829
15 36036
1 189

TPA-based 15 5 7125
reduced-rank RLS 8 8023
adaptive detector 1 373

100 5 28601
8 30144

Table 6.1: Number of operations required for detecting one bit in the hybrid DS-TH UWB systems using
various detection schemes to supportK = 5 users.

All the three reduced-rank RLS adaptive detectors considered have a similar complexity, but, however,

the number of operations required by the TPA-based reduced-rank scheme is usually slightly lower

than that required by the PCA- or CSM-based reduced-rank scheme, for any given values ofU and

L. Furthermore, the data in Table 6.1 shows that the complexity of the reduced-rank RLS adaptive

detectors is at a similar level as that of the single-user correlation detector, which achieves much

worse BER performance than the reduced-rank RLS adaptive detectors considered.
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6.2 Future Work

In this section we provide some suggestions for potential future research.

1) In this thesis, the adaptive detectors considered are operated in the principles of MMSE. How-

ever, the MMSE detector is optimum only when the conditionalprobability density function

(CDF) of the detector’s output when given the transmitted symbol is Gaussian [228]. In pulse-

based UWB systems, the CDF of the detector’s output given thetransmitted symbol is not

Gaussian whenever there are multiple users present [25]. Furthermore, when designing a com-

munication system, the ultimate requirement is the BER but not the MMSE. Therefore, adap-

tive minimum bit error rate (MBER) algorithms may be introduced to the hybrid DS-TH UWB

systems in order to enhance the BER performance [228]. Furthermore, the reduced-rank tech-

niques may be proposed for the MBER adaptive detector, in order to reduce its implementation

complexity, as shown in Appendix A.

2) In this thesis, since our major emphasis is on the design oflow-complexity UWB receivers,

hence, when reduced-rank techniques are employed, the detection subspace determined bySSSU

is estimated during the training stage without updating during the data transmission. However,

the detection subspace can be updated after the detection ofone or several data bits during the

data transmission stage. This joint update of the processing matrixSSSU and the weight vector

www will help to improve further the spectral-efficiency and theBER performance of the UWB

system, but certainly, at the expense of higher complexity.

3) It has been well-recognized that the channel estimation in the pulse-based UWB systems is

extremely difficult. Noncoherent techniques do not requirechannel estimation and allow to

capture the majority of the transmitted energy by using simple correlators, even when there

exist distortions and multipath propagation. Hence, efficient noncoherent detection techniques

may be introduced to the hybrid DS-TH UWB systems, in order toachieve low-complexity

detection.

4) In our study in this thesis, no error-control coding has been considered. However, error control

coding is genrally employed by any wireless communicationssystems. Hence, it is important to

investigate the achievable BER performance of the hybrid DS-TH UWB systems when certain

error-control coding is employed. Furthermore, error-control coding may help to improve the

convergence of the adaptive detectors. However, these issues need further research.
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5) Multiple antenna and multiple-input and multiple-output (MIMO) as well as space-time pro-

cessing have found a lot of application in recent years. Multiple antenna and MIMO principles

may be applied to the UWB systems in order to boost their capacity. However, introducing mul-

tiple antennas to UWB systems will make the system operationeven more complex. Hence,

it is highly important to investigate the high-efficiency transmission and detection schemes for

the multi-antenna UWB systems.

6) Finally, the mathematical performance analysis of the hybrid DS-TH UWB system communi-

cating over various UWB channels is also interesting and highly challenging.



Appendix A
Adaptive Reduced-Rank Minimum Bit

Error-Rate Detection for Hybrid

Direct-Sequence Time-Hopping Ultrawide

Bandwidth System

Pulse-based UWB communications schemes constitute a rangeof promising alternatives that may

be deployed for home, personal-area, sensor network, etc. applications, where the communication

devices are required to be low-complexity, high-reliability and minimum power consumption [1].

However, in pulse-based UWB systems the spreading factor isusually very high. The UWB channels

are usually very sparse [29], resulting in that a huge numberof low-power resolvable multipaths need

to be processed at the receiver. As demonstrated in [1, 29], in pulse-based UWB communications

the huge number of resolvable multipaths generally consistof a few relatively strong paths and many

other weak paths. Unlike in the conventional wideband communications where strong paths usually

arrive at the receiver before weak paths, in UWB communications the time-of-arrivals (ToAs) of the

strong multipaths are random variables and are not necessary the multipaths arriving at the receiver at

the earliest. Due to the above-described issues, therefore, in pulse-based UWB systems it is normally

impractical to carry out directly the coherent detection, which depends on accurate channel estimation

demanding extreme complexity. In fact, it has been recognized that the complexity might still be

extreme, even when the conventional single-user matched-filter (MF) detector [149] is employed.

This is because there are a huge number of multipath channelsneed to be estimated and the detection

186
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complexity is at least proportional to the sum of the spreading factor and the number of resolvable

multipaths [90].

In this appendix we consider the low-complexity detection in hybrid DS-TH UWB sys-

tems [148, 155], since the hybrid DS-TH UWB scheme is a generalized pulse-based UWB com-

munication scheme, which includes both the pure DS-UWB and the pure TH-UWB as special

cases [1, 148, 155]. The detector proposed is an adaptive detector operated in a reduced-rank detec-

tion subspace based on the least bit error-rate (LBER) principles [225, 228], which is hence referred

to as the reduced-rank adaptive LBER detector. As our forthcoming discourse shown, the reduced-

rank adaptive LBER detector does not depend on channel estimation. It achieves its near-optimum

detection with the aid of a training sequence at the start of communication and then maintains its near-

optimum detection based on the decision-directed (DD) principles during the communication [173].

The reduced-rank adaptive LBER detector does not require the knowledge about the number of re-

solvable multipaths as well as that about the locations of the strong resolvable multipaths; It only

requires the knowledge (which is still not necessary accurate) about the maximum delay-spread of the

UWB channels. Furthermore, the reduced-rank adaptive LBERdetector is operated in a reduced-rank

detection subspace obtained based on the principal component analysis (PCA) [196]. The detection

subspace usually has a rank that is significantly lower than that of the original observation space.

Owing to the above-mentioned properties of the reduced-rank adaptive LBER detector, we can argue

that it is a low-complexity detection scheme, which is feasible for practical implementation.

Note that, in this appendix the LBER algorithm is preferred instead of the conventional least

mean-square (LMS) algorithm [16], since, first, the LBER algorithm works under the minimum BER

(MBER) principles, which may outperform the LMS algorithm that is operated in minimum mean-

square error (MMSE) sense [228]. Second, the LBER algorithmhas similar complexity as the LMS

algorithm [228]. Furthermore, it has been observed [228] that the LBER algorithm may provide a

higher flexibility for system design in comparison with the LMS algorithm.

A.1 Description of Hybrid DS-TH UWB System

The hybrid DS-TH UWB scheme considered in this appendix is the same as that considered in [229],

where non-adaptive reduced-rank detection has been investigated.
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Figure A.1: Transmitter schematic block diagram of hybrid DS-TH UWB system.

A.1.1 Transmitted Signal

The transmitter schematic block diagram for the consideredhybrid DS-TH UWB system is shown in

Fig. A.1. We assume for simplicity that the hybrid DS-TH UWB system employs the binary phase-

shift keying (BPSK) baseband modulation. As shown in Fig. A.1, a data bit of thekth user is first

modulated by aNc-length DS spreading sequence, which generatesNc chips. TheNc chips are then

transmitted byNc time-domain pulses within one symbol-duration, where the positions of theNc

time-domain pulses are determined by the TH pattern assigned to thekth user. Finally, as shown in

Fig. A.1, the hybrid DS-TH UWB baseband signal transmitted by thekth user can be written as [148]

s(k)(t) =

√

Eb
NcTψ

∞∑

j=0

b
(k)
j

j
Nc

kd
(k)
j ψ

[

t− jTc − c
(k)
j Tψ

]

(A.1)

where⌊x⌋ represents the largest integer less than or equal tox, ψ(t) is the basic time-domain pulse

of width Tψ, which satisfies
∫ Tψ
0 ψ2(t)dt = Tψ. Note that, the bandwidth of the hybrid DS-TH UWB

system is approximately equal to the reciprocal ofTψ of the basic time-domain pulse’s width. The

other parameters in (A.1) as well as the other parameters used in this appendix are listed as follows:

• Eb: Energy per bit;

• Nc: Number of chips per bit and DS spreading factor;

• Nψ: Number of time-slots in a chip and TH spreading factor;

• Tb andTc: Bit-duration and chip-duration, which satisfiesTb = NcTc;

• Tψ: Time-domain pulse width or width of a time-slot, which satisfiesTc = NψTψ;
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• b
(k)
i ∈ {+1,−1}: Theith data bit transmitted by userk;

• {d(k)
j }: Random binary DS spreading sequence assigned to thekth user;

• {c(k)j ∈ {0, 1, · · · , Nψ − 1}}: Random TH sequence assigned to thekth user;

• NcNψ: Total spreading factor of hybrid DS-TH UWB system.

Note that, both the pure DS-UWB and pure TH-UWB schemes constitute special cases of the

hybrid DS-TH UWB scheme. Specifically, ifNc > 1 andNψ = 1, Tψ andTc are then equal and in

this case the hybrid DS-TH UWB system is reduced to the pure DS-UWB system. By contrast, when

Nc = 1 andNψ > 1, the hybrid DS-TH UWB scheme is then reduced to the pure TH-UWB scheme.

A.1.2 Channel Model

In this appendix the Saleh-Valenzuela (S-V) channel model is considered, which has the channel

impulse response (CIR) [117]

h(t) =
V−1∑

v=0

U−1∑

u=0

hu,vδ(t− Tv − Tu,v) (A.2)

whereV represents the number of clusters andU denotes the number of resolvable multipaths in a

cluster. Hence, the total number of resolvable multipath components can be as high asL = UV .

In (A.2) hu,v = |hu,v|ejθu,v represents the fading gain of theuth multipath in thevth cluster, where

|hu,v| andθu,v are assumed to obey the Rayleigh distribution [117] and uniform distribution in[0, 2π),

respectively. In (A.2)Tv denotes the arrival time of thevth cluster andTu,v the arrival time of the

uth multipath in thevth cluster. In the considered UWB channel, the average powerof a multipath

component at a given delay, say atTv + Tu,v, is related to the power of the first resolvable multipath

of the first cluster through the relation of [117]

Ωu,v = Ω0,0 exp

(

−Tv
Γ

)

exp

(

−Tu,v
γ

)

(A.3)

whereΩu,v = E
[
|hu,v|2

]
represents the power of theu resolvable multipath of thevth cluster,Γ and

γ are the respective cluster and ray power decay constants.

According to (A.2), we can know that the maximum delay-spread of the UWB channels consid-

ered is(TV + TU,V ) and the total number of resolvable multipaths isL = ⌊(TV + TU,V )/Tψ⌋+ 1. In
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order to make the channel model sufficiently general, in thisappendix we assume that the maximum

delay spread(TV + TU,V ) spansg ≥ 1 data bits, implying that(g − 1)NcNψ ≤ (L− 1) < gNcNψ.

A.1.3 Receiver Structure

Let us assume that the hybrid DS-TH UWB system supportsK uplink users. When theK number

of DS-TH UWB signals in the form of (A.1) are transmitted overUWB channels having the CIR as

shown in (A.2), the received signal at the base-station (BS)can be expressed as

r(t) =

√

Eb
NcTψ

K∑

k=1

V−1∑

v=0

U−1∑

u=0

MNc∑

j=0

h(k)
u,vb

(k)
j

j
Nc

kd
(k)
j

× ψrec

[

t− jTc − c
(k)
j Tψ − T (k)

v − T (k)
u,v − τk

]

+ n(t) (A.4)

wheren(t) represents an additive white Gaussian noise (AWGN) process, which has zero-mean and

a single-sided power spectral density ofN0 per dimension,τk takes into account the lack of syn-

chronisation among the user signals as well as the transmission delay, whileψrec(t) is the received

time-domain pulse, which is usually the second derivative of the transmitted pulseψ(t) [40].
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Figure A.2: Receiver schematic block diagram for the hybrid DS-TH UWB systems using reduced-rank adap-
tive LBER detection.

The receiver schematic block diagram for the hybrid DS-TH UWB using the considered reduced-

rank adaptive LBER detection is shown in Fig. A.2. At the receiver, the received signal is first filtered

by a MF having an impulse response ofψ∗
rec(−t). The output of the MF is then sampled at a rate

of 1/Tψ . Then, the observation samples are stored in a buffer, whichare projected to a reduced-rank

detection subspace, once a reduced-rank detection subspaceSSSU is obtained. Finally, the observations

in the detection subspace are input to a traversal filter, which is controlled by the LBER algorithm, in

order to generate estimates to the transmitted data bits.

Let us assume that a block ofM data bits per user is transmitted. Then, according to Fig. A.2,

the detector can collect a total of(MNcNψ +L− 1) number of samples, where(L− 1) is due to the
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L number of resolvable multipaths. In more details, theλth sample can be obtained by sampling the

MF’s output at the time instant oft = T0 + (λ+ 1)Tψ, which can be expressed as

yλ =

(√

EbTψ
Nc

)−1 ∫ T0+(λ+1)Tψ

T0+λTψ

r(t)ψ∗
rec(t)dt (A.5)

whereT0 denotes the ToA of the first multipath in the first cluster.

In order to reduce the detection complexity of the hybrid DS-TH UWB system, in this appendix

we consider only the bit-by-bit based detection. Let the observation vectoryyyi and the noise vectornnni

related to theith data bit of the first user (reference user) be represented by

yyyi = [yiNcNψ , yiNcNψ+1, · · · , y(i+1)NcNψ+L−2]
T (A.6)

nnni = [niNcNψ , niNcNψ+1, · · · , n(i+1)NcNψ+L−2]
T (A.7)

where the elements ofnnni are Gaussian random variables distributed with zero-mean and a variance of

σ2 = N0/2Eb per dimension. Then, as shown in [148,229],yyyi can be expressed as

yyyi =

K∑

k=1

i−1∑

j=max(0,i−g)
i6=0

CCC(k)
j hhhkbbb

(k)
j

︸ ︷︷ ︸

ISI from the previous bits ofK users

+CCC
(1)
i hhh1b

(1)
i

︸ ︷︷ ︸

Desired signal

+nnni

+

K∑

k=2

CCC
(k)
i hhhkb

(k)
i

︸ ︷︷ ︸

Multiuser interference

+

K∑

k=1

min(M−1,i+g)
∑

j=i+1
i6=M−1

C̄CC
(k)
j hhhkbbb

(k)
j

︸ ︷︷ ︸

ISI from the latter bits ofK users

(A.8)

where the matrices and vectors have been defined in detail in [148,229]. From (A.8), we observe that

theith data bit conflicts both severe inter-symbol interference(ISI) and multiuser interference (MUI),

in addition to the Gaussian background noise.

When the conventional linear detectors without invoking reduced-rank techniques are considered,

the decision variable forb(1)i of the reference user can be expressed as

z
(1)
i = wwwH1 yyyi, i = 0, 1, . . . ,M − 1 (A.9)

wherewww1 is a (NcNψ + L − 1)-length weight vector. Since in UWB communications the spread-

ing factorNcNψ might be very high and since the number of resolvable multipath L is usually huge

in UWB channels, the vectorwww1, i.e., the filter length might be very large. Therefore, the com-
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plexity of the corresponding detectors might be extreme, even when low-complexity linear detection

schemes are considered. Furthermore, using very long filterfor detection in UWB systems may

significantly degrade the performance of the UWB systems. For example, using a longer traversal

filter results in lower convergence speed and, hence, a longer sequence is required for training the

filter [16]. Consequently, the data-rate and spectral efficiency of the corresponding communications

system decreases. The robustness of an adaptive filter degrades as the filter length increases, since

more channel-dependent variables are required to be estimated [172]. Furthermore, when a longer

adaptive filter is employed, the computational complexity is also higher, since more operations are

required for the corresponding detection and estimation. Therefore, in this appendix the reduced-rank

adaptive LBER detector is proposed, in order to achieve low-complexity detection in hybrid DS-TH

UWB systems.

A.2 Reduced-Rank Adaptive Least Bit-Error-Rate Detector

In reduced-rank detection the number of coefficients to be determined is reduced through projecting

the received signals to a lower dimensional detection subspace [196]. Specifically, letPPPU be an

((NcNψ + L − 1) × U) processing matrix with itsU columns forming aU -dimensional subspace,

whereU < (NcNψ+L−1). Then, for a given received vectoryyyi, theU -length vector in the detection

subspace can be expressed as

ȳ̄ȳyi = (PPPHUPPPU )−1PPPHU
︸ ︷︷ ︸

SSSH
U

yyyi (A.10)

where an over-bar is used to indicate that the argument is in the reduced-rank detection subspace.

In this appendix, the PCA-assisted reduced-rank technique[196, 230] is employed for obtaining

the processing matrix: Given the rankU of the detection subspace, theU number of eigenvectors

corresponding to theU largest eigenvalues of the autocorrelation matrix ofyyyi are utilised to form

the processing matrixPPPU [230]. In more detail, the auto-correlation matrix ofyyyi can be represented

using eigen-analysis as

RRRyi = E[yyyiyyy
H
i ] = ΦΦΦΛΛΛΦΦΦH (A.11)
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whereΛΛΛ is a diagonal matrix given by

ΛΛΛ = diag{λ1, λ2, · · · , λNcNψ+L−1} (A.12)

which contains the eigenvalues ofRRRyi , whileΦΦΦ is an unitary matrix consisting of the eigenvectors of

RRRyi , which can be written as

ΦΦΦ = [φφφ1,φφφ2, · · · ,φφφNcNψ+L−1] (A.13)

whereφφφi is the eigenvector corresponding to the eigenvalueλi.

Let assume that the eigenvalues are arranged in descent order obeying λ1 ≥ λ2 ≥ · · · ≥
λNcNψ+L−1. Then, the processing matrixPPPU in the context of PCA-assisted reduced-rank technique

is constructed by the firstU columns ofΦΦΦ, ie., we havePPPU = [φφφ1,φφφ2, · · · ,φφφU ].

Given the observations in the detection subspace as shown in(A.10), the linear detection ofb(1)i

can be carried out by forming the decision variable

z
(1)
i = w̄̄w̄wH1 ȳ̄ȳyi (A.14)

wherew̄̄w̄w1 is now anU -length weight vector. According to the theory of the PCA-based reduced-rank

detection [196], the full-rank BER performance can be achieved, provided that the rankU of the

detection subspace is not lower than the rank of the signal subspace, which for our hybrid DS-TH

UWB system isK(g + 1). However, if the rank of the detection subspace is lower thanthe signal

subspace’s rank, the reduced-rank detection then conflictsMUI. Consequently, the BER performance

of the hybrid DS-TH UWB system using the PCA-based reduced-rank detection deteriorate, in com-

parison with the full-rank BER performance. Therefore, in the PCA-based reduced-rank detection it

is important to have the knowledge about the signal subspace’s rank. Note that, in our simulations

considered in Section A.3, the signal subspace’s rank was estimated through eigen-analysis of the

autocorrelation matrixRRRyi , which was estimated with the aid of a block of data bits.

In (A.14) the weight vector̄w̄w̄w1 can be obtained with the aid of the sample-by-sample adaptive

LBER algorithm proposed in [225]. In our reduced-rank adaptive LBER detector for the hybrid DS-

TH UWB systems, the reduced-rank adaptive LBER is operated in two modes, namely, the training

mode and the decision-directed (DD) mode, respectively. When operated in the training mode, the

weight vectorw̄̄w̄w1 is adjusted with the aid of a training sequence, which is known to the receiver.
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Correspondingly, the update equation in the LBER principlecan be expressed as [228]

w̄̄w̄w1(n+ 1) = w̄̄w̄w1(n) + µ
sgn(b(1)i (n))

2
√

2πρn

× exp

(

−|ℜ(z
(1)
i (n))|2
2ρ2
n

)

ȳ̄ȳyi(n), n = 1, 2, . . . (A.15)

where sgn(x) is a sign-function,µ is the step-size andρn is the so-called kernel width [228]. In the

adaptive LBER algorithm, the step-sizeµ and the kernel widthρn are required to be set appropriately,

in order to obtain a high convergence rate as well as a small and steady BER misadjustment. Fur-

thermore, it has been observed [228] that the above-mentioned two parameters can provide a higher

flexibility for system design in comparison with the adaptive LMS algorithm, which employs only

single adjustable parameter of the step-size [16].

When the training stage is completed and the normal data transmission is started, the reduced-

rank adaptive LBER detector is then switched to the DD mode. Under the DD mode, the estimated

data bits by the receiver are fed back to the adaptive LBER filter, which is then updated in the LBER

principle. Specifically, during the DD mode the update equation can be expressed as

w̄̄w̄w1(n+ 1) = w̄̄w̄w1(n) + µ
sgn(b̂(1)i (n))

2
√

2πρn

× exp

(

−|ℜ(z
(1)
i (n))|2
2ρ2
n

)

ȳ̄ȳyi(n), n = 1, 2, . . . (A.16)

where the estimatêb(1)i is given by

b̂
(1)
i = sgn(ℜ{z(1)

i }), i = 0, 1, . . . ,M − 1 (A.17)

Let us now provide our simulation results in the next section.

A.3 Simulation Results and Discussion

In this section the learning and BER performance of the reduced-rank adaptive LBER detector is

investigated by simulations. In our simulations the total spreading factor was assumed to be a constant

of NcNψ = 64, where the DS-spreading factor was set toNc = 16 and the TH-spreading factor

was henceNψ = 4. The normalised Doppler frequency-shift of the UWB channels was fixed to

fdTb = 0.0001. In our simulations the S-V channel model used in [117] was considered and the
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channel gains were assumed to obey the Rayleigh distribution. In more detail, the parameters of the

S-V channel model used in our simulations are summarized in the following Table.

1/Λ Γ γ

14.11 ns 2.63 ns 4.58 ns

Table A.1: Parameters for the S-V channel model used in simulations.

Fig. A.3 shows the ensemble-average squared error-rate (SER) learning curve of the reduced-rank

adaptive LBER detector for the hybrid DS-TH UWB system supportingK = 5 users, when different

step-size values are considered. Note that, the SER drawn inFig. A.3 is defined as

SER=

∣
∣
∣
∣
∣

sgn(b(1)i (n))

2
√

2πρn
exp

(

−|ℜ(z
(1)
i (n))|2
2ρ2
n

)∣
∣
∣
∣
∣

2

(A.18)

which is proportional to the BER achieved by the reduced-rank adaptive LBER detector. In our simu-

lations the signal-to-noise ratio (SNR) per bit was set toEb/N0 = 10dB, the ensemble-average SER

was obtained from the average over2000 independent realizations, the weight vector was initialized

to w̄ww(0) = 111 of an all-one vector, and the rank of the detection subspace was chosen asU = 20. It can

be observed from Fig. A.3 that the convergence speed of the reduced-rank adaptive LBER detector is

depended on the step-sizeµ. Explicitly, there exists an optimum step-size value, which results in that

the reduced-rank adaptive LBER detector converges to the lowest BER. As shown in Fig. A.3, when

an inappropriate step-size is used, the convergence speed may become lower and the reduced-rank

adaptive LBER detector may converge to a relatively higher SER.

Fig. A.4 shows the BER versus SNR per bit performance of the hybrid DS-TH UWB system using

reduced-rank adaptive LBER detection, when communicatingover the UWB channels experiencing

correlated Rayleigh fading. The hybrid DS-TH UWB system considered supportedK = 5 users and

the normalised Dopper frequency-shift was assumed to befdTb = 0.0001. Furthermore, we assumed

thatg = 1, implying that the desired bit conflicts ISI from one bit transmitted before the desired bit

and also from one bit transmitted after the desired bit. Notethat, given the parameters as shown in

the caption of the figure, it can be shown that the rank of the signal subspace isK(g+1) = 10. From

the results of Fig. A.4, we observe that, when the rank of the detection subspace is lower than that

of the signal subspace, i.e., whenU ≤ 10, the BER performance of the hybrid DS-TH UWB system

improves, as the rank of the detection subspace increases. The best BER performance is attained,

when the rank of the detection subspace reaches the rank of the signal subspace. When the rank of
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Figure A.3: Learning curves of the reduced-rank adaptive LBER detectorfor the hybrid DS-TH UWB system
supportingK = 5 users, when the detection subspace has a rank ofU = 20. The parameters
used in the simulations wereEb/N0 = 10dB, Doppler frequency-shift offdTb = 0.0001, ρn =√

10σn, g = 1,Nc = 16,Nψ = 4 andL = 15.

the detection subspace is higher than that of the signal subspace, no further SNR gain is achievable.

Furthermore, when the rank of the detection subspace is lower than that of the signal subspace, error-

floor is observed, explaining that the MUI cannot be fully suppressed by the reduced-rank adaptive

LBER detector.

Fig. A.5 shows the BER versus SNR per bit performance of the hybrid DS-TH UWB system using

reduced-rank adaptive LBER detection, when communicatingover the UWB channels experiencing

correlated Rayleigh fading, which results in severe ISI. Incontrast to Fig. A.4, where we assumed that

g = 1 and the number of resolvable multipaths wasL = 15, in the context of Fig. A.5 we assumed

that g = 3 andL = 150. The other parameters used for Fig. A.5 were the same as thoseused for

Fig. A.4. Note that, for the parameters considered in Fig. A.5, the rank of the signal subspace is

K(g + 1) = 20. Again, as the results of Fig. A.5 shown, the BER performanceimproves as the rank

of the detection subspace increases, until it reaches the rank of the signal subspace. In comparison

with Fig. A.4, we can see that, for a givenEb/N0 value, the full-rank BER shown in Fig. A.5 is

lower than the corresponding full-rank BER shown in Fig. A.4. This is because the UWB channel

considered associated with Fig. A.5 hasL = 150 number of resolvable multipaths, which results in a

higher diversity gain than the UWB channel considered associated with Fig. A.4, which hasL = 15
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Figure A.4: BER performance of the hybrid DS-TH UWB systems using reduced-rank adaptive LBER de-
tection, when communicating over the UWB channels modelledby the S-V channel model as-
sociated with correlated Rayleigh fading. The parameters used in the simulations wereK = 5,
fdTb = 0.0001, µ = 0.5, ρn =

√
10σn, g = 1,Nc = 16,Nψ = 4 andL = 15. The frame length

was fixed to1000 bits, where the first160 bits were used for training.

number of resolvable multipaths.

A.4 Summary and Conclusions

In conclusions, our study and simulation results show that the reduced-rank adaptive LBER detector

constitutes one of the efficient detectors for the hybrid DS-TH UWB systems. The reduced-rank

technique can be employed for achieving low-complexity detection in the DS-TH UWB systems and

for improving their efficiency. The reduced-rank adaptive LBER detector is capable of achieving the

full-rank BER performance with the detection subspace having a rank that is significantly lower than

(NcNψ + L− 1) of the original observation space.



A.4. SUMMARY AND CONCLUSIONS 198

0 3 6 9 12 15
Eb/N0 (dB)

10
-5

10
-4

10
-3

10
-2

10
-1

1

B
it

E
rr

o
r

R
a

te

U = 1
U = 5
U = 10
U = 15
U = 20

Figure A.5: BER performance of the hybrid DS-TH UWB systems using reduced-rank adaptive LBER de-
tection, when communicating over the UWB channels modelledby the S-V channel model as-
sociated with correlated Rayleigh fading. The parameters used in the simulations wereK = 5,
fdTb = 0.0001, µ = 0.5, ρn =

√
10σn, g = 3, Nc = 16, Nψ = 4 andL = 150. The frame

length was fixed to1000 bits, where the first160 bits were used for training.



Glossary

ADC Analog-to-Digital Converter

AWGN Additive White Gaussian Noise

BER Bit Error Rate

BPSK Binary Phase Shift Keying

CDMA Code Division Multiplexing Access

CIR Channel Impulse Response

CMF Conventional Matched Filter

CP Cyclic Prefix

CSI Channel State Information

CSM Cross-Spectral Metric

DD Decision-Directed

DS Direct Sequences

DS-TH Direct-Sequence Time-Hopping

EASE Ensemble-Average Squared Error

FCC Federal Communications Commission

FFT Fast Fourier transform
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FH Frequency Hopping

FTH Fast Time Hopping

GHz GigaHertz

GMSP Gaussian Modified Sinusoidal Pulses

GP Gaussian Pulses

GPS Global Positioning System

GSM Global System for Mobiles

HF High Frequency

HP Hermite Polynomial

IPI Inter Pulse Interference

ISI Inter Symbol Interference

LANL Los Alamos National Laboratories

LF Low Frequency

LLNL Lawrence Livermore National Laboratories

LMS Least Mean Square

LOS Line Of Sight

LR-WPAN Low-Rate Wireless Personal Area Network

LTI Linear Time Invariant

MA Multiple Access

MAI Multiple Access Interference

MBOK M -ary Bi-Orthogonal Keying

MDP Multipath Delay Profile

MF Matched-Filtering
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MHz MegaHertz

MMSE-MUD Minimum Mean Square Error Multi-User Detector

MPPM M -ary Pulse Position Modulation

MSE Mean Square Error

MUI Multi-User Interference

NBI Narrow Band Interference

NLMS Normalised Least Mean Square

ns nanoseconds

OFDM Orthogonal Frequency Divison Multiplexing

OOK On-Off Keying

PAM Pulse Amplitude Modulation

PAN Personal Area Networks

PAPR Peak-to-Average Power Ratio

PCA Principal Components Analysis

PCTH Pseudo-Chaotic Time-Hopping

PDF Probability Density Function

PN Pseudo-Noise

PPM Pulse Position Modulation

PS Prolate Spheroidal

PSD Power Spectral Density

PSM Pulse Shape Modulation

QoS Quality-of-Services

QPSK Quadrature Phase-Shift Keying
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RLS Recursive Least Square

S-V Saleh-Valenzuela

SINR Signal-to-Interference-plus-Noise Ratio

SNR Signal-to-Noise Ratio

STDL Statistical Tapped Delay Line

STH Slow Time Hopping

TESM Triangular enveloped sinusoidal monocycle

TH Time Hopping

THMA Time Hopping Multiple Access

TPA Taylor Polynomial Approximation

UMTS Universal Mobile Telecommunications System

USAF United States Air Force

UWB UltraWide Bandwidth

WSN Wireless Sensor Networks

ZP Zero Padding
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