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UNIVERSITY OF SOUTHAMPTON
ABSTRACT
FACULTY OF ENGINEERING AND APPLIED SCIENCE
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE
Doctor of Philosophy

Adaptive Detection in Ultrawide Bandwith Wireless Communication Systems
by Qasim Zeeshan Ahmed

The main motivation of this thesis is to design low-complekigh-efficiency pulse-based ultra-
wide bandwidth (UWB) systems with reasonable bit-errée-(BER) performance. The thesis starts
with proposing a new pulse-based UWB system, namely theidgirect-sequence time-hopping
(DS-TH) UWB system. This novel pulse-based UWB system isbbpof inheriting the advantages
of both the pure direct-sequence (DS)-UWB and pure timesimgp(TH)-UWB systems, while avoid-
ing their disadvantages. Furthermore, this hybrid DS-THRJS¢heme can be easily converted to the
pure DS-UWB or pure TH-UWB scheme. The BER performance othtiaid DS-TH UWB sys-
tems employing either correlation or minimum mean-squama €§MMSE) detection is investigated.
From our studies it can be found that both the correlation MMSE detectors have the capability
to make use of the multipath diversity. The correlation dietedoes not have the capability to re-
move multiuser interference (MUI) and inter-symbol inéeence (ISI1), while the MMSE detector is
capable of mitigating efficiently both the ISI and MUI. Whitar single-user scenario the correlation
detector is near-optimum and has low-complexity, it is sintfrat for multi-user scenarios the MMSE
detector must be employed in order to achieve a reasonalifeg@Bormance. However, in this case
the complexity of the hybrid DS-TH UWB system is found to béreme. Furthermore, in order to
implement MMSE detection, the signature waveforms, dedayscomplete channel knowledge of all
the active users are required to be known by the receiveghwhake the MMSE detection impracti-
cal. In practical channels obtaining the channel knowleddeghly challenging, since the received
UWSB signals usually consist of a huge number of resolvabl#ipaths and the energy conveyed by
each resolvable multipath is usually very low.

In order to mitigate the above mentioned problems of the MMBtection, then, in this thesis a
range of training-based adaptive detectors are investigatthe context of the hybrid DS-TH UWB
systems. In detail, in this thesis a brief introduction te tlterature of adaptive detection is first
provided, followed by the philosophies of least mean-sg{aMS), normalised least-mean squares
(NLMS) and recursive least square (RLS) algorithms. In tut\sdecision directed (DD) approaches

are also introduced to the adaptive detectors to improvBEiR performance and spectral-efficiency



of the hybrid DS-TH UWB systems. Our studies show that theplerity of the adaptive LMS and
adaptive NLMS detectors may be even lower than that of theesdional correlation detector. For
the RLS adaptive detector, our studies show that, if it isaliéed properly, it is capable of attaining
a faster convergence rate than the LMS and NLMS adaptivetese In this case, the RLS adaptive
detector requires less number of training bits, and henoéd®s higher spectral-efficiency than the
LMS and NLMS adaptive detectors for the hybrid DS-TH UWB eyss. Furthermore, the RLS
adaptive detector is more robust and has more degrees dbfrethan the LMS and NLMS adaptive
detectors. However, the complexity of the RLS adaptiveaetds still too high to be implemented
in practical UWB systems.

In order to further reduce the complexity of the RLS adaptigéector, rank-reduction techniques
are introduced. With the aid of reduced-rank techniques fitter size can be efficiently reduced,
which in turn reduces the number of parameters required tstimated. Consequently, the conver-
gence speed, tracking ability and robustness of the RLStiadagetector can be improved. In this
thesis, three classes of reduced-rank techniques ardigatesl associated with the RLS adaptive
detector, which are derived based on the principles of pradcomponents analysis (PCA), cross-
spectral metric (CSM) and Taylor polynomial approximat{@iA), respectively. Our study and sim-
ulation results show that, given a sufficient rank of the cle&te subspace on which the RLS adaptive
detector is operated, the reduced-rank RLS adaptive detisctapable of achieving a similar BER
performance as the corresponding full-rank RLS adaptivectier, while with a detection complexity
that is significantly lower than that of the full-rank RLS atiege detector. Furthermore, our studies
shown that the TPA-based reduced-rank RLS adaptive deteatstitutes one of the highly efficient
detection schemes for the pulse-based UWB systems. Theb@Béd reduced-rank RLS adaptive
detector is usually capable of attaining the full-rank BERfprmance with a very low rank, which is
typically in the range ob — 8, regardless of the system size in terms of the spreadingrfaimber
of resolvable multipaths and the number of users suppostedebUWB systems.

Finally, in this thesis we summarise our discoveries angigeodiscussion on the possible future

research issues.
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Chapter

Introduction

1.1 Research Background and Motivation

With the development of consumer electronics, personalpetimg and wireless communications,
people have become more and more interested in connectjethtr different devices to form a net-
work [1-5]. For example, a personal area network (PAN) cam @asily be formed by using cables
to connect all the devices, in order to achieve communioatietween them. However, in the cable-
connected networks the mobility, flexibility and scalalgilof the connected devices are very low,
since the devices are required to be connected at partigositions with special interface plugs [5].

For this sake, in recent years wireless techniques havendgagat attention for implementation of

certain networks in order to improve their mobility, fletityi and scalability. Among the various

wireless techniques, UWB technique is the one which has pegyosed for future short-range in-
door wireless communications [1, 6-8], in order to achideintegration of consumer electronics,
personal computing and mobile devices [1-5]. Specifictily,applications of the UWB techniques

can be broadly divided into the following three categories.

¢ High data rate (HDR) services: For supporting HDR services, the UWB systems are expected
to support a data rate in the range fraf® Mbps to more tharn Gbps [5, 6]. The HDR UWB
systems are operated in the frequency band fBomGHz to 10.6 GHz. They can be built
at low-cost with a coverage range less th@&m. The major applications of the HDR UWB
systems include file transfer, video streaming, high gualitdio streaming, etc. Recently, Or-
thogonal Frequency-Division Multiplexing (OFDM)- basetMB schemes have been adopted
for providing HDR services [3, 6].
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e Low data rate (LDR) services: When considering LDR services, low complexity and low
power consumption are usually the main concern of the UWBesys. In this type of UWB
systems, the amount of data transfered is usually very swigile the battery life of the devices
is of great importance [6,9]. The LDR applications of UWBlimde wireless sensor networks
and tagging [10,11], as well as the communications scesariere, exact location is particular
significant [11]. It has been recognized that the pulse@dha$VB schemes are well suitable

for the LDR applications [6].

e Imaging: Imaging is also one of the major applications of UWB systeifiif®e major charac-
teristics of imaging include accurate ranging and higlreisien geolocation. The applications
of UWB systems for imaging include ground penetration rattaough and in-wall imaging,
security devices, etc. [6,12]. These applications aralslg@tfor providing alternatives for some
harsh environments, where global positioning system (G&8)[6]. Additionally, the UWB
techniques can provide imaging applications for medicstriments, such as x-rays and body

screening scans.

Although the research for the theory and applications of U¥éBimunications has been car-
ried out for many years, however, design of a practical UW&eamy still faces a lot of challenges.
Specifically, when designing UWB systems demanding higletspleefficiency and high flexibility,

the following issues should be considered with emphasis.

¢ In UWB communications, a low-complexity receiver that ipahle of achieving a reasonable
bit-error-rate (BER) performance is highly important,caiJWB devices are usually required
to be simple and light weight. In UWB communications, the tipakh delay profile (MDP)
is generally sparse [13], resulting in that a large numbdowtpower resolvable multipaths
are required to be processed at the receiver, in order to thekeWB radio energy-efficient
and achieve a good BER performance. The UWB receivers auireedto be able to mitigate
efficiently the I1SI. They are required to be efficient when th&B system supports multiple
users, which generate MUI. Furthermore, the UWB receivegseapected to be able to cope
with the interfering signals generated by the other exgstiWwB systems, narrowband and

wideband interferers;

¢ In UWB communications channel estimation becomes highbllehging [14], not only be-
cause the number of resolvable multipaths is high, but ats@mise each multipath channel

conveys very low power. Furthermore, the number of paramseseich as delays, amplitudes,
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phases, etc. associated with each resolvable multipathsjred to be estimated at the re-
ceiver is extremely high, which makes the channel estimatmaffordably complex for a low-

complexity UWB device;

e Since UWB signals usually have very wide bandwidth, theyusr@voidably overlapping with
the other existing radios. Hence, the interference inflitte the UWB systems on the existing

wireless systems operated in the same frequency-banddsbeuals low as possible;

e Synchronization is another major issue for UWB systems. Auge bandwidth of the UWB
signals make them have a fine time resolution, which resulisat a large space is required to
be searched during the synchronization stage. GenerallyVeB system requires a fast and
accurate synchronization step. However, due to the largelsespace, low power constraint,
huge number of low-power multipaths and very low duty cythe synchronization process
in UWB communications becomes slow and complicated. Intamtdto the above-mentioned
synchronization issues, in UWB systems a very fast anaetjgital converter (ADC) is also
required to sample the received signals constituted by-sanond pulses, which also makes

the implementation of UWB system highly challenging [15];

e Finally, in UWB communications the characteristics of tlasio UWB pulses are much more
complicated than that of the basic pulses used in narrowbgstéms. The basic UWB pulses
characteristics strongly affect the design of transméisd receiver filters, signal bandwidth,

BER performance of the UWB system in Gaussian and/or mitifzaling environments.

Due to the above-mentioned issues, this thesis motivai@®pmse and investigate a generalized
pulse-based UWB scheme, namely the hybrid direct-sequimeshopping UWB (DS-TH UWB)
system. As our forthcoming discourse shown, both the puertdsequence UWB (DS-UWB) and
time-hopping UWB (TH-UWB) constitute special examples af proposed hybrid DS-TH UWB
scheme. In this thesis, we focus on studying the achievassfermance of the hybrid DS-TH UWB
systems, when the UWB systems are operated in Gaussian tipattulfading environments. We
motivate to design the low-complexity receivers for the fiyDS-TH UWB systems. These low-
complexity receivers are expected to be free from channighason and are operated without re-
quiring the knowledge, such as the number of resolvableipatiits, the multipaths’ strength, etc.
Furthermore, these low-complexity receivers are expettddae capable of achieving a reasonable
BER performance in the presence of MUI and ISI, when comnaiinig over UWB channels. To be

more specific, the work carried out in this thesis can be suiisetaas follows.
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1.2 Thesis Outline

In this thesis, pulse-based UWB systems, namely the purdJWHB, pure DS-UWB and hybrid
DS-TH-UWB systems are investigated. The thesis is stradtas follows:

O Chapter 2: In this chapter an overview is provided for the various UWBLtes in the con-
text of their advantages and disadvantages. SpecifichylWB systems reviewed include
the TH-UWB, DS-UWB, multiband OFDM-UWAB, etc. Additionallyn this chapter the time-
domain pulses proposed for UWB communications are revieavebtheir characteristics are
compared. The stochastic tapped-delay-line (STDL) cHgmopagation model for modelling
UWB indoor channels is analyzed. The differences betweerJWB channels and the con-
ventional narrowband/wideband channels are addressedheFuore, the Saleh-Valenzuela
(S-V) channel model for UWB indoor wireless communicatiomsliscussed in detail. Note
that, in this thesis the S-V UWB indoor channel model is ire@kor the BER performance

evaluation of the various pulse-based UWB systems in theviiolg chapters.

0 Chapter 3: Since both the TH-UWB and DS-UWB schemes have their uniquargdges and
disadvantages, a hybrid DS-TH UWB scheme using both DS gdimgand TH is proposed in
Chapter 3, in order to take the advantages of both the DS-UkdBl&l-UWB schemes, while
avoiding simultaneously their disadvantages. It can bevehibat the hybrid DS-TH UWB
systems are capable of providing more degrees-of-freedamthe pure DS-UWB or pure TH-
UWB systems. Specifically, in this chapter the error perfamoe of the hybrid DS-TH UWB
systems is investigated associated with various low-cenilyl detection schemes, which in-
clude the conventional correlation detector and minimuramrgquare error (MMSE) detector,
respectively, when communicating over UWB indoor wirelelsannels. The complexity of the
hybrid DS-TH UWB systems employing both the correlatiored&tr and MMSE detector are
analyzed. From the simulation results obtained in this wrape can find that there is a trade-
off between the DS spreading and TH spreading invoked in yhedDS-TH UWB systems,
especially, when the single-user correlation detectoomsiclered. The best BER performance
of a hybrid DS-TH UWB system can be achieved by appropriatélyosing the DS and TH
spreading factors. Furthermore, when the hybrid DS-TH UW&esns support multiple users,
multiuser receiver, such as MMSE receiver, is required fdramcing the BER performance,

but at a cost of increase of system complexity.
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O Chapter 4: In this chapter we first demonstrate that the MMSE multiusgedtor is difficult

to be implemented practically in a pulse-based UWB systams, td its high computational
complexity and requiring that the receiver has the idealedge about the channel state in-
formation (CSI) associated with all the users as well asphesgling sequences of all the users,
which may not be available in practical communication emwnents. For this sake, in this
chapter we propose to employ adaptive detection for theephdsed UWB systems with the aid
of training sequences. In this chapter different traintiaged adaptive detectors are proposed
and also studied in the context of different UWB systems.cBipally, the adaptive detectors
based on the algorithms of least mean-square (LMS), nosathleast mean-squares (NLMS)
and recursive least-square (RLS), etc., are investigatedmnjuction with the hybrid DS-TH
UWB systems. Furthermore, in this chapter the complexityhete adaptive detectors are

analyzed when considering communications over UWB channel

O Chapter 5: Since in UWB systems a high spreading factor might be usedsaroe there
usually exists a large number of multipaths in UWB channéis filter length of the adaptive
detectors considered in Chapter 4 may hence be very lonlglingehigh complexity of de-
tection. Furthermore, according to the adaptive filteringory, a large number of filter taps
makes the convergence of an adaptive filter slow [16]. Tloeeein this chapter rank-reduction
techniques are employed for further reducing the comple{idetection in UWB systems, in
order to make the UWB systems practically implementableec8igally, in this chapter three
classes of reduced-rank techniques are investigatedhvaeinicderived based on the principles
of principal components analysis (PCA), cross-spectralim@CSM) and Taylor polynomial
approximation (TPA), respectively. Our study and simuolatiesults in this chapter show that,
given a sufficiently high rank of the detection subspace,aheve-mentioned reduced-rank
detection schemes are capable of achieving a similar BERmpeaince as the correspond-
ing full-rank detection scheme, while with a detection ctexrjty that is significantly lower
than that of the full-rank detection scheme. Furthermdream be shown that the TPA-based
reduced-rank detection scheme results in a better BERrpeafice than the PCA- or CSM- as-
sisted reduced-rank detection, when the same rank of detestibspace is assumed, provided
that the rank of the detection subspace is lower than thdteogignal subspace, as defined in
Chapter 5.

O Chapter 6: Finally, in Chapter 6 we summarise our conclusions obtaineithis thesis and

present possible future research directions.
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1.3 Novel Contributions

The novel contributions of this thesis can be summarised|isfs.

e A hybrid DS-TH UWB scheme is proposed for the pulse-based Usy8ems. This novel
pulse-based UWB scheme is capable of inheriting the adgastaf both the pure DS-UWB
and pure TH-UWB schemes, while simultaneously circumwventheir disadvantages. Fur-
thermore, it can be shown that the hybrid DS-TH UWB schemeajsble of providing more
degrees-of-freedom than the pure DS-UWB or pure TH-UWBesys(The increased degrees-
of-freedom of the hybrid DS-TH UWB can be exploited for entiag the UWB system’s
performance and/or for providing flexibility for design aretonfiguration of UWB systems.
In this thesis one of our major objectives is to design lowptexity detectors with accept-
able detection performance in UWB communications. Theegfm this thesis the detection
schemes considered are the low-complexity detection sekewhich are the single-user cor-

relation detector and minimum mean square error multiuseratiors (MMSE-MUD).

O Single-User Correlation Detector: It has the lowest complexity. However, when it is
employed for detection in UWB systems, the complexity of ¢tberelation detector in-
creases at least linearly with the number of multipathsect#id at receiver. Further-
more, as the number of users increases, the BER performéttoe OWB systems using
correlation detector becomes worse, as the correlaticecttetdoes not have the capa-
bility to mitigate MUI and ISI. However, given the channelnditions, signal-to-noise
ratio (SNR) value and the total spreading factor, theret @gmum combinations of DS
and TH spreading factors, which result in that the hybrid SUWB system achieves
the lowest BER.

O Multiuser MMSE Detector: MMSE detector is one of the multiuser detectors, which has
a higher complexity than the correlation detector. The derity of the MMSE detector
can be maintained to be a constant, since the MMSE detecsathbaability to combine
automatically all the multipaths falling in the same windofurthermore, the MMSE
detector has the capability to mitigate both the MUI and ISlr study in this thesis
shows that the BER performance of the pure DS-UWB, pure THBUANd hybrid DS-
TH UWB systems is similar, when the MMSE detector assumieg@li€S| and signature

codes is employed.

e Generally, ideal channel knowledge is very hard to acquirhé pulse-based UWB commu-
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nications systems, since the received UWB signals are lyst@istituted by many multipath
components and each multipath component conveys very lenggnFurthermore, the com-
plexity of the MMSE detector is mainly determined by the isien opeartion of the auto-
correlation matrix, which might be very large due to the asgpient of a high spreading factor
and existance of a large number of multipaths. Accordingegarinciples of adaptive filtering,
adaptive detectors may be employed for solving the conigléssue in UWB systems, since
the adaptive detectors can be operated without requiringvist the autocorrelation matrix.
Furthermore, with the help of training sequences, the adapetectors can also be operated
without requiring the knowledge about the user signatusegal as the UWB channels. There-
fore, in Chapter 4 a range of adaptive detectors operatestimasthe principles of LMS, NLMS
and RLS are proposed and investigated in the context of tlefnased UWB systems. The
performance of the adaptive detectors are investigateccamgared in terms of their conver-
gence speed, BER performance, robustness and computatomalexity. From our study and

performance results, the following main conclusions caddréved.

O LMS-Aided Adaptive Detector: The complexity of the LMS-aided adaptive detector is
lower than that of the RAKE-receiver. The BER performancéhefLMS-aided adaptive
detector at higher SNR value is similar as that of the ideal8Buietector, which employs
perfect CSI. However, the LMS-aided adaptive detector do¢perform well in the low
SNR region. In comparison with the NLMS- and RLS-aided aiglatetectors, our study

shows that the LMS-aided adaptive detector has a relatiselgr convergence speed.

O NLMS-Aided Adaptive Detector: The NLMS-aided adaptive detector has a slightly
higher complexity than the LMS-aided adaptive detector.weleer, its complexity is
still lower than that of the RAKE receiver. By contrast, th&m performance of the
NLMS-aided adaptive detector is better than that of the LaitBd adaptive detector.
Furthermore, the NLMS-aided adaptive detector is more sbbm noise amplification
problem than the LMS-aided adaptive detector. Additigndahe NLMS-aided adaptive

detector converges faster than the LMS-aided adaptivetdete

0 RLS-Aided Adaptive Detector: The RLS-aided adaptive detector has lower complexity
than the MMSE-MUD using full channel knowledge, but has Bigantly higher com-
plexity than the single-user RAKE receiver. Our study andqumance results show
that the BER performance of the RLS-aided adaptive detastoruch better than the
LMS- or NLMS-aided adaptive detector. Furthermore, the Rii&d adaptive detec-
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tor has more degrees-of-freedom than the LMS- or NLMS-aatiptive detector. These
degrees-of-freedom may be used for controlling the comrerg rate and the mean square
error (MSE) of the RLS-aided adaptive detector. It can bevshthat the RLS-aided
adaptive detector is generally more robust and also coesdagster than the LMS- and
NLMS-aided adaptive detectors.

e Finally, in this thesis reduced-rank techniques are prep@nd investigated in the context of
the adaptive detectors for the hybrid DS-TH UWB systemsaift be shown that the reduced-
rank techniques are capable of providing a flexible tradd@tiveen the achievable BER per-
formance and the computational complexity. Specificdltlg, effects of the reduced-rank tech-

niques on the performance of the hybrid DS-TH UWB systemsbeasummarised as follows.

0 Convergence Speedfor the training-based adaptive detectors, it is desirtide the
convergence speed is high, so that the overhead incurra@tiddraining could be min-
imised. As analysed previously, in pulse-based UWB systémedength of the adaptive
detector affects the convergence speed: the convergered gpreases as the length of
the adaptive filter becomes short. When the reduced-ratikitees are employed, the
length of the adaptive filters can be shortened. Hence, smmgléhe reduced-rank tech-
niques may enhance the convergence speed of the adaptvs ifivoked. Furthermore,
faster convergence results in shorter training sequereg@xe enhancing the spectral-
efficiency of the UWB systems.

0 BER Performance: In conventional adaptive detectors, there exists a tréideetween
the convergence speed and the MSE achieved, where higheergence speed usu-
ally leads to higher MSE and ultimately results in worse BERfgrmance. As above-
mentioned, applying reduced-rank techniques enhancesadieergence speed of the
adaptive detectors. However, in the reduced-rank adagttectors faster convergence
usually does not lead to higher MSE value. The reduced-rdaptéave detectors are ca-
pable of achieving the same MSE performance as the adapieetdrs without using
reduced-rank techniques. Furthermore, the reduced-rdajitise detectors are capable

of achieving similar BER performance as the full-rank adaptietectors.

0 Robustness:With the employment of reduced-rank detections, the nurabparameters
to be estimated is reduced. Hence, the reduced-rank aealgiectors are more robust to
MUI and ISI than the conventional adaptive detectors withaing reduced-rank tech-

niques.



1.3. NOVEL CONTRIBUTIONS 9

0 Computational Complexity: The number of parameters need to be updated in a reduced-
rank adaptive detector is significantly lower than that ofoar&sponding conventional
adaptive detector. Hence, the complexity of the adaptitectler may be reduced by

employment of reduced-rank techniques.

In this thesis, a range of reduced-rank schemes are ina&stigwhich are derived based on the
principles of PCA, CSM and TPA, respectively. From our stadg simulation results, we can

have the following observations.

O Principal Component Analysis (PCA):PCA is derived based on the eigen-decomposition
technique. In this techniqué], which is a value that may be significantly lower than the
rank of the original observation space, eigenvectors spording to thd/ number of
largest eigen-values of the autocorrelation matrix camegirare used to form a detection
subspace. Our study shows that, if the r&hbkf the detection subspace is lower than the
rank of the signal subspace determined by the number oflsigneked, BER floors are
likely to occur. However, when the rarik of the detection subspace reaches the rank of

the signal subspace, full-rank BER performance of the UWdesys can be achieved.

O Cross Spectral Metric (CSM): CSM is also derived based on the eigen-decomposition
technique. Our study and simulation result show that, ifrdmk U of the detection sub-
space is lower than the rank of the signal subspace, the C&éidrank-reduction scheme
outperforms the PCA-based rank-reduction scheme. Howe&ivl-based reduced-rank
adaptive detectors cannot approach the BER performande aiorresponding full-rank
adaptive detector. This performance loss is mainly thelre$uime-varying channels,
since in this case the detection subspace cannot be upaatedpondingly with the time-

varying channels.

0 Taylor Polynomial Approximation (TPA): The TPA-based reduced-rank scheme does
not depend on the eigen-decomposition and can achieve misBiER performance as
a corresponding full-rank scheme with a rank that is sigaifity lower than that of
signal subspace. Given a rank of the detection subspac&,RAdased reduced-rank
scheme is usually capable of achieving the lowest BER amunthtee types of reduced-
rank schemes considered. Furthermore, the implementatimplexity of the TPA-based
reduced-rank scheme does not scale with the size of the U\#Bray including the total

spreading factor and the number of users supported.



Chapter

Overview of Ultrawide Bandwidth

Communications and Systems

Channel capacity of a communications system depends oratidnlidth occupied and the signal-
to-noise ratio SNR achieved at the receiver. According tanbn [17], channel capacity increases
linearly with the increase of bandwidth but increases oogjatithmically with the increase of SNR.
Furthermore, according to [18], the channel capacity aees linearly with the SNR, if the channel
bandwidth is infinite. Therefore, in order to achieve a higtleannel capacity without incurring a
higher SNR, wider bandwidth can be employed by the commtinitasystems. For this sake, in re-
cent years a lot of attention in wireless communicationsieas drawn to the UWB communications,
where the instantaneous bandwidth is significantly highanthe minimum bandwidth required to
deliver the information [1, 19]. According to the Federalnf@aunications Commission (FCC) in the
United States [1, 7, 8, 19], a wireless system can be reféoregd an UWB system, either when the
frequency bandwidth of the system is at le2@tpercent of the center frequency, or when the sys-
tem’s frequency bandwidth is higher tha®0 megahertz (MHz) and the center frequency is alfbve
gigahertz (GHz).

In recent years UWB techniques have drawn a lot of interebbth research and industry com-
munities [1, 3, 7, 8]. The potential strength of UWB techmguies in their use of extremely wide
transmission bandwidth, which results in that the UWB radgimploy a range of merits when com-
pared against the conventional narrowband and widebandsta8pecifically, the UWB radios em-
ploy the merits, such as, accurate position location andimgn[7, 10, 20-22], lack of significant

fading [13, 23], high multiple-access capability [24], lhidata rate [13, 19, 21], covert communica-

10
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tions [19, 23, 25, 26], possibly easier material penetngfidd, 27, 28], etc. However, due to the highly
dispersive UWB channels, UWB communications may be maiunitable for short-range commu-
nications, such as for applications in wireless sensor orsv(WSN) and PAN [29]. One of the
major applications of UWB techniques is for alleviating ireblem of increasingly scarce spectrum
resources by re-using the spectrum already allocated tottiex systems without degrading their
quality-of-services (QoS) noticeably [30].

2.1 A Brief History of UWB Communications

The history of UWB communications goes back to the first vissltransmission made o2 Decem-
ber1901 by Marconi with the help of a Spark Gap Emitter, which acyaénerated UWB signals,
as the instantaneous bandwidth of the sparks was significhigther than the data rate transmit-
ted [1, 31, 32]. However, the actual work in UWB communicasiovas not started until the early
1960s. The research of UWB communicationsl®60s was led by Harmuth at Catholic University
in America, Ross and Robins at Sperry Rand Corporation andEtten at the United States Air
Force (USAF) Rome Air Development Center [1,33]. In UWB couomications, matched-filtering
(MF) was first introduced by Harmuth, Ross and Robbins [33] Hie UWB was referred to as
baseband radio [1]. The system design and antenna conceptderecloped based on Van Etten’s
empirical testing [33]. The fundamental concept in UWB cammications was to characterize the
UWB system as a linear time-invariant (LTI) system with tieb@f time-domain response rather than
frequency-domain response. However, umfib0, there was no convenient means to observe and
measure the waveforms that had a duration of sub-nanose¢8hfi The major break through in
UWB communications was achieved, when the sampling osctitipe was invented by Tektronix and
Hewlett-Packard in960s [1,31,33]. The sampling oscilloscope helped to displayiategrate UWB
signals, which made it possible to design simple circuitessary for generation of sub-nanosecond
pulses [1, 33]. During the same period, in Lawrence Liveeridational Laboratories (LLNL) and
Los Alamos National Laboratories (LANL) research in pulsmnsmitters, receivers and antennas
was performed [33]. 11970s the basic design for UWB systems was available along wéhdd:
sign of the basic components such as, pulse train genepatsg train modulator, pulse receiver and
wideband antennas, etc. However, the commercial succes8N® communications did not come
into practice untill974, when Moray designed an impulse radar, which was capablerdtpting
the ground and was used by Geophysical Survey System [33]9%h, McEwan at LLNL devel-

oped the first Micropower Impulse Radar, which was a compaekpensive and low-power UWB
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system [1, 33].
According to literature, UWB systems can be implementedulggebased or multi-carrier-based

techniques. In the forthcoming section, a brief discussitimese two approaches is provided.

2.2 Pulse-Based UWB System

Pulse-based UWB system is also referred to as an impulse j24jj. It is a carrier-less or a base-
band modulation system, where signals are transmitted thttassistance of trains of time-shifted
pulses [1, 34, 35]. As the pulse-duration of UWB signals it order of nano-seconds (ns), the
bandwidth occupied by the pulse-based UWB signals traieis typically several GHz. In UWB
communications, pulses should be designed properly irr todenprove the efficiency of communi-
cations. Hence, the basic pulses proposed in literaturesgi®ved in Section 2.2.1. In this Section
the basic requirements for the UWB pulses are also discudse8ection 2.2.2 different types of
UWB pulses are analyzed, which include the Gaussian puaBB¥, (Traingular enveloped sinusoidal
monocycle (TESM), pulses based on Prolate spheroidal ({@®}ibns, Modified hermite polyno-
mial based pulses (HP) and Gaussian modulated sinusoilsp(GMSP). Section 2.2.3 presents
the typical UWB signals transmitted. In Section 2.2.4 wedss the advantages and disadvantages
of different types of modulation schemes that may be empldyeUWB systems. Finally, in Sec-
tion 2.2.5 different kinds of multiple access (MA) schemeailable for pulse-based UWB system

are considered. Let us first review the basic pulses for UWBmanications.

2.2.1 Basic Signal Pulses for UWB Communications

The basic UWB signal pulse(t) is usually defined in the time-domain. Let the duration ontfigith
of the pulse bely,. It has been found that the UWB system’s performance ise@l&d the width
T, of the basic pulse and the performance usually degrades) thieepulse width increases [36].
This is mainly because, when using a wider pulse, the casrepg UWB system may suffer higher
interference from narrowband systems, if there are naraogtsystems overlaying with the UWB
systems. For example, a Gaussian pulse Wjth= 1 ns has a center frequency biGHz, while a
Gaussian pulse witlhy, = 2 ns has only a center frequencyif0 MHz. In this case, when decreas-
ing the pulse duratiofl’,, the UWB spectrum moves towards higher frequencies, whiehteally
expand beyond the range of the interfering frequencies |3&]the energy of a basic signal pulse is

denoted by, which is given by
Ey = / [ (t))?dt 2.1)

—0o0
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The auto-correlation function of a basic signal pulge) is defined as
s L[
vulr) 2 5 [ttt - nar (2.2
Y J—o0

wherer is assumed to be in the interval 77;]. Let us below discuss the requirements for design of

basic UWB pulses.

2.2.1.1 Requirements for Design of Basic UWB Pulses

The shape of the basic UWB pulse strongly affects the desigransmitter and receiver filters,
signal bandwidth, BER, performance in Gaussian and/oripatlt fading environments [37-39].
The basic pulse may be selected from a range of time domdseguncluding rectangular pulses,
raised-cosine pulses, prolate spheroidal function basé&skg Gaussian pulses, sinusoidal pulses,
etc. However, the pulse shape and width determine the spedaif the transmitted signal, which
should be optimised in some sense. Specifically, when degidghe basic pulses for UWB systems

the following requirements should be satisfied.

e No DC Component In UWB systems, the transmitted pulse is differentiateigrapassing
through antenna [40]. Therefore, the first major requirarfmrthe UWB basic pulse is that the
transmitted UWB signals should contain no DC components Thplies that the integration

of a basic pulse over its duration, should go to zero [41]ding

Ty
Y(t)dt =0 (2.3)
0

Since there is no DC component, the transmitted power magehlea decreased [42].

¢ Radiation or High Power Efficiency. Radiation efficiency is defined as the ratio of the power
radiated to the total power supplied to the radiator at argivequency [40]. For achieving
effective radiation, the basic pulse should not contain add@ponent as above-mentioned.
Note that, this requirement may not be necessary for themgstising carrier frequencies [40].
It is well-known that one of the main advantages of UWB systesnthat they can co-exist
with the conventional narrowband or wideband systems. iBpaty, by spreading the trans-
mitted power as wide in frequency as possible, the powertgedensity (PSD) of UWB
signals can be very low. Consequently, UWB systems impdttbe ilnterference on the other

narrowband/wideband systems. Therefore, UWB pulses nawst high power efficiency. The
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conventional Nyquist pulse shaping requires linear angpfifiwhich are usually not power ef-
ficient [43]. Therefore, the Nyquist pulses such as rectimgand raised cosine pulses have
not been considered for UWB applications. AdditionallylWwB communications the pulses,
which have their main lobes containing the majority of sigmawer are preferred. In this
case, the side lobes have relatively lower power, and thusirng less adjacent channel inter-

ference [37].

e Derivative: In UWB systems the frequency of the basic signal pulse speveral GHz, making
the wavelength of the pulse even smaller than the distantveeba transmitter and receiver.
This phenomena is known as the far zone in radio systems. llémthe pulse-based UWB
systems, electric field is usually more appropriately defibg differentiation operator [40].
Specifically, in pulse-based UWB systems, a pulse is difteseed when it passes through an
antenna. Since there are transmitter and receiver theveecpulse is hence the second order
derivative of the transmitted pulse, after it passed bothttAnsmitter and receiver antennas.
Consequently, in the pulse-based UWB systems, the timeattopulse must have a second

order derivative.

As mentioned previously in this section, in order to avoid trarrowband interference, the
width T, of the pulse should be small so as to achieve a high bandwifdtredJWB signal.
The study in UWB, has also shown that increasing the ordeheflerivative of the radiated
pulse waveform shifts the PSD of the transmitted UWB sigoakirds higher frequencies [36].
In this case, the chances to interfere with the existingowdsand systems which are usually
allocated in the relatively low frequency region, can beid®d. Furthermore, it has been
shown in [36] that, when high data rate is required, shorsgmilwith higher order derivative
should be employed. However, as shown in [36, 44], when tteerdde is not high and there is
no narrowband interference, relatively wider pulses wath brder derivatives usually perform

better than the shorter pulses with high order derivative.

e Matched Filtering: In wireless communications, the conventional MF or ceti@ multiplies
the received signal with a locally generated replica of thedmitted signal and then integrates
the result over a certain range. The locally generated kigphca is the same as the transmitted
signal. In UWB systems, however, the conventional MF is hardse, since the shape of
the transmitted pulses may be changed due to the diffetientiaperations generated by the
antennas [12,45]. In order to employ the MF-assisted datétiJWB systems, alternatively,

an integrator can be applied before the transmit antennarasttier one is applied after receive
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antenna [46]. By doing this, the original pulse shape isversd after the second integrator

and the MF matched to the original pulse shape can then beogatpl

e Power Spectral Density The PSD of UWB signals is an important measure of the intenige
caused by UWB signals to the conventional narrowband/veddtsystems or vica versa. The
PSD of UWB signals consists of two components: the contislgmmponent that is due to the
shape of the pulse and the discrete components which areateéy the periodical transmis-
sion of the pulse sequences. In UWB communications theats@pectrum lines are usually
the main interference sources in comparison with the coatis PSD component. However, in
practice, the continuous PSD component is often used foingake UWB signals spectrum
meet the frequency emission mask [47]. Furthermore, it $site to shift away or reduce part
of spectral lines in some particular part of the spectrumdregful design of the modulation and

spreading sequences involved [40].

2.2.2 Time-Domain Pulses for UWB Systems

A range of basic pulses have been proposed and considergdifa-based UWB systems. Some
of these basic pulses are defined and their relevant prepexte discussed in this section. Table 2.1
summarises the typical characteristics and propertiesuabws time-domain pulses that are consid-

ered below.

2.2.2.1 Gaussian Pulse and Its Higher Derivatives

The Gaussian pulse (GP) is modified from the conventionals&an probability density function
(PDF), which is expressed as [49]

Y(t) = exp (— - “]2> 2.4)

202

wherep ando are the centre and standard deviation of the GP, respactizer the GP, the pulse
width T, is related to the standard deviation By = 270 [1]. The nominal center frequency can be
given asf, = 1/T,, and the—3 dB bandwidth isl 16% of the nominal center frequency [7]. The time-
domian pulse of (2.4) is plotted in Fig. 2.1 for differentalues wheres stands for pico-seconds. It
can be shown from Fig. 2.1 that the time dispersion of theepinisreases as the standard deviation
increases. Furthermore, the GP has a DC component, whichecesadily observed from Fig. 2.1,

since the pulse amplitude is always positive.
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Monocycle Gaussian Triangle Prolate Modified Gaussian
Pulse Enveloped | Spheroidal | Hermite Modulated
(GP) Sinusoidal | Functions | Polynomial | Sinusoidal
and higher | Monocycle| (PS) Based Pulses Pulses
Derivatives | (TESM) (HP) (GMSP)
DC-Component Even order | Do not Not Even order | Do not
have a DC | have a DC | available have a DC have a DC
component | component component | component
Generation Difficult Simple No closed | Very Not
[46] [46] form complex simple
expression
[37]
Transmitted/ Very Identical Very Very Very
received different [46] different different different
signal [46]
Processing Complicated| Simple Complex | Complex Complex
[46] [46]
Integrability Low High Not Not Not
[46] [46] available | available available
Side lobe 113.5 dB 30 dB Large Large 60 dB
below the below the | side side below the
main lobe main lobe | lobe lobe main lobe
[46] [46] [37] [37]
BER rate Best Not As good as| Worse As good
[37] available | GP [37] than GP [37]| as GP [42]
Falls into 5th and 7th | Not Can design| Frequency | Easily
FCC limits derivative available | tofitin shift is meet
[48] [37] required [37]| [42]
Table 2.1: Summary of the UWB time-domain pulses and their basic clariatics.
The normalised PSD of the GP having the time-domian puls2.4dj (s given by [48]
21 fo)? 2
Sy(f) = [exp (—7[ ‘g ] )} (2.5)
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Figure 2.1: Time-domain representation of the Figure 2.2: PSD of the Gaussian pulses shown in
Gaussian pulses. Fig.2.1.

which is plotted in Fig. 2.2 for different values. From Fig. 2.2 it can be observed that the GP’s
bandwidth becomes lower as the standard deviation in@e#&séig. 2.2 the FCC mask [37] is also
plotted. It can be shown that the PSD of the GP defined by (2€§ dot fulfill the FCC’s requirement,
regardless of the standard deviation value used. Therdf@& P cannot satisfy all the requirements
of the basic UWB pulses as described in Section 2.2.1.1.

From Fig. 2.2 we can see that the FCC mask may be satisfied thiynwghhe centre of the PSD
of the GP. However, it is well-known that the impulse radiaisarrierless system, which makes the
complexity of implementation low. Shifting the centre o€tRSD of the GP through carrier modula-
tion introduces carrier phase rotation, which hence irsgedhe complexity of implementation [48].
Additionally, when shifting the pulse to a higher frequemegion the penetration capability of the
corresponding UWB signals reduces [8].

As mentioned previously, applying a higher order derivatbn the GP can shift the resultant
pulse towards a higher frequency region. It can be shownthigatth order derivative of the GP
exists, which can be determined recursively by the follgaormula [48]

v (t) = - Lo yn-2 gy - Ly 2.6)

o g

The pulses shown in Fig. 2.3 are obtained by 4tie, 5th-, 6th- and7th-order of derivatives of
the GP. From these figures we can observe that the even nurhderivatives, i.e., theith- and

6th-order, of the GP generates DC components. By contrastirtte-domain pulses derived from
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Figure 2.3: Different order of derivatives of the Gaussian pulse.

the odd number of derivatives, i.e., thth- and7th-order, have no DC components. Hence, in our
forthcoming discourse only the odd-order derivatives ef@P are considered.
It can be derived that the normalised PSD of #tle-order derivative of the GP can be expressed

as [48]

Sl(ﬁn)(f) _ (27Tf0)2" exp {—(27Tf0)2} 2.7)

n" exp(—n)

which is shown in Fig. 2.4 for different values efand different values of.. Note that, the FCC
mask for indoor UWB systems as shown in Fig. 2.4 is defined . [Additionally, in Fig. 2.4 the
PSD was normalised by the peak value allowed by the FCC, whasdh-41 dBm/MHz. Explicitly,
Fig. 2.4 shows that that tHeh-order or higher-order derivative of the GP is capableati§/ing the
requirement of the FCC mask.

Fig. 2.5 shows the normalised PSD of the time-domain pulsdget! by the higher-order deriva-

tives of the GP for the outdoor UWB systems. As shown in Fi§, the 7th-order or higher-order
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derivative complies with the FCC limits for the outdoor UWgstems. Furthermore, as shown in
Figs. 2.4 and 2.5, in order to maintain the signal bandwidthwale as possible, the time-domain
pulses derived by th&th- and7th-order derivatives should be employed for indoor and cartdJ\WB
systems, respectively. This is because, as the derivatdredases, the standard deviation increases.

Consequently, the pulse widih, is increased and correspondingly the bandwidth of the UWBepu
decreases.

oF= & 7 0F= = , ]
n=3. ¢ © VX &0 =44ps n=5 ¥ / \ % 0=58.5ps
5l O ¥ .n=7 A —%—0=51ps | 5l P n=9 . —6— 0= 64.5ps|
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Figure 2.4: Power spectral density of the time- Figure 2.5: Power spectral density of the time-
domain pulses formed by the high- domain pulses formed by the high-
er-order derivatives of the Gaussian er-order derivatives of the Gaussian
pulse for indoor UWB systems. pulse for outdoor UWB systems.

Another interesting thing about the Gaussian monocyclégisen the order of the derivative of
the Gaussian monocycle, the lower is the achievable BERweahce [8]. However, this BER
performance improvement is achieved at the expense of nigce receiver synchronisation. As
shown in Fig. 2.3 the gradient of higher order Gaussian mgeieachanges more rapidly with the
time, which makes the synchronisation more difficult.

The most common method for generating the GP is passing ddradeectangular pulse stream
through a filter with a Gaussian impulse response, which eaoltained by th&th-order Bessel
filters, if their cut-off frequency are accurately set [50].5However, the Bessel filter in practice are
difficult to implement. Furthermore, a rectangular pulsesegal becomes smeared, when it is passed
through a Bessel filter, even when this Bessel filter is id8pécifically, a rectangular pulse @ ns
of width may be extended t@7 ns [46] of width, when it passes through an ideal Bessel filtbis
implies that, when using the Bessel filter to generate GPptlginal pulse is required to be very

narrow and should have small rise and fall time, which is domes unattainable in practice [46].
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Due to the above-mentioned reasons, GP is usually diffiougeinerate practically. Additionally,
the MF for the GP is difficult to implement, since in UWB comnations the received signal is
significantly different from the transmitted signal. Ingtiase, it is difficult to recreate a signal that
is identical to the received signal carrying the informat[d6], which hence makes the processing

further complicated.

2.2.2.2 Triangle Enveloped Sinusoidal Monocycle

The triangle enveloped sinusoidal monocycle (TESM) is eefias

2T 9T <t < T

T >
L. -T<t<T

vit)=9 [, (2.8)
B T<t<2T
0, otherwise

where the pulse width i, = 47'. In Fig. 2.7, the TESM is plotted for the pulse widlfy =

1 ns. From (2.8) we can find that the first order derivative of TlieSM pulse is not continuous.

Hence, the second order derivative of the TESM pulses doesxigt. Therefore, integrators are

required before the transmitter antenna and after recaiv@mna, in order to recover the received

pulse. Consequently, MF-based receiver can be employeidhwimakes low-complexity detection

possible. Additionally, from Fig. 2.7, it is apparent thiae {TESM does not have DC components.
The PSD of the TESM is given by [46]

Sy(f) = T{ {sinc4 (W) + sinc! (Wﬂ (2.9)

which is plotted in Fig. 2.8. From Fig. 2.8, it can be obserttegt the side lobes of the PSD are
about30 dB lower than the main lobe. However, these side lobes doemriade the system perfor-
mance significantly, since the magnitude of these side lateestill much lower than that of the main
lobe [46].

The generation of TESMs is simple. For example, Fig. 2.6asgmts an approach for generation
of TESMs. To be more specific, the oscillator generates assidal signal at point in Fig. 2.6,
which is then passed through a comparator. The comparatwsfarms the sinusoidal signal into a
square wave, as seen at pdinn Fig. 2.6. The square wave is then integrated to createuagmiar
wave. In Fig. 2.6, the switch permits the transmitter to semedpulses at a desired rate. Therefore,

the signal at poing is triangle enveloped at the desired pulse rate. Then, éiregular envelopes are
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multiplied with the original sinusoid in order to generate sinusoidal pulses as shown in pairuf
Fig. 2.6. The resulted signal is then integrated, leadingpeédinal TESMs pulses as shown in point
5.

2.2.2.3 Prolate Spheroidal Functions

The idea of generating the UWB basic pulse by Prolate Spiar¢PS) functions was presented
in [47]. Fig. 2.9 represents the block diagram illustrating principles of generating the basic UWB
pulse using PS functions. As observed in Fig. 2.9 the badgepi(t) is passed through a bandpass
filter having an impulse respong€t), which has the desired frequency maskf). According to

Fig. 2.9, the output of the filter is the convolutionft) with i (), which can be expressed as

Tw/Q
y(t) = / Wt — 7)dr (2.10)

—Ty/2

In order for the pulse generated to be used for the UWB comeations, according to the princi-

(1) AY(t)

[H (/)]
\ \

f

Figure 2.9: Block diagram generating the basic UWB pulses through Rr&@ahedorial functions.

ples of UWB communications, we should hayg) = Ay (t), where) is the attenuation constant.
According to FCC limitsh(¢) is given as [47]

h(t) = 2fysind2fyt) — 2frsing2f1t) (2.11)

where f;, = 3.1 GHz andfy = 10.6 GHz. It has been shown that a closed-form solution to (2.10)
is extremely difficult to find. For this sake, an algorithm Heesen proposed in [47] which obtains
a numerical solution through the discretisation of (2.113).be more specific, when usifdv + 1)

samples per pulse width,, (2.10) can be written as

N/2

Nl = YD wlmlkln—m), 0= -

N
2
m=—N/2

N
5 (2.12)

Sttt
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wherey(t) = M\p(t) was assumed. When expressed in matrix form, (2.12) can be

P[5 hlo]  A[-1] h[—N] P[5
p[-& +1] h[1] R[0] h[—N +1] Y5 +1]
\ : _ : : : : : (2.13)
Y[0] W% RIS —1 ... h[-%] Y[0]
P[] h[N] R[N —1] h[0] Y[
Y H Y

whereH is a Toeplitz matrix and) is the eigenvector oH and X is a eigenvalue corresponding
to ¢. Explicitly, A and can be found by the eigenanalysis i Let the eigenvalues df be
A1 > Xy > --- > Ay and their corresponding eigenvectorsbes, - - - ,¥ . Then, any eigenvalue
and its eigenvector satisfies (2.13). However, it has beewrslin [47] that the eigenvalue chosen
affects the desired power spectrum and that high-valuesheidue is usually preferred. Therefore,
for our case of (2.13), we can choosgand its corresponding eigenvectpy, in order to form the
UWB pulse)(t).

Note that, when the matriM is a Hermitian matrix, then its eigenvalues are real and ttmt
responding eigenvectors are orthogonal. In this casejptauitynchronous orthogonal UWB pulses
may be generated, which can be used to transmit high infwmaate without interference in an
UWB systems [47].

The UWB basic pulses generated using the PS functions cantheeECC masks without fre-
quency shift. However, this type of UWB basic pulses canmogenerated based on closed-form
expression, which makes the implementation of the PS-ljadeds more complicated in comparison
with the Gaussian monocycles [37-39]. Additionally, desreg the pulse widtlf;, of the PS-based
pulses increases the amplitude of the dominant sidelobtbe &#SD, which results in strong adjacent
channel interference [37—39]. However, it seems that theBUstem using the PS-based pulses is
capable of virtually achieving the same BER performancaéasWB system using GPs, for different
lengths of the repetition codes [37, 38].

2.2.2.4 Modified Hermite Polynomial Based Pulses

A set of orthogonal pulses based generated on the Hermigaglals (HP) has been proposed for

UWB communications [52]. Using the modified HP functions,eh af orthogonal pulses having
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almost invariant pulse widtff;, can be obtained. The modified HP pulses can be employed by the
UWB systems, when pulse shape modulation is used as datalatiody7]. Specifically, thenth
order modified HP pulse is given by [52]

2
07(6) = exp (=17 ) ) 214
whererh,,, is defined as
2 n 2
he. (t) = (—1)" exp <tz> j? [exp (-%)} (2.15)

In Fig. 2.10, theOth, 1st, 2nd and3rd orders of HP pulses are depicted. From Fig. 2.10, we can
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Figure 2.10: lllustration of thenth order modified Hermite polynomials pulses for= 0, 1, 2 and3.

observe that, as the GPs shown in Fig. 2.3 the HP pulses wéth exders have a DC component,
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while the HP pulses with odd orders do not have a DC comporégice, the HP pulses with even
orders are not suitable for UWB communications. Additibpah the UWB communications using
the HP pulses, the transmitted and received pulses areatiffeafter the antennas at the transmitter

and receiver differentiate the transmitted pulses. HaMéebased detection is hard to implement.
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Figure 2.11: PSD of the normalised Hermite polynomial pulses having tide ofn = 0,1,2 and3.

The transfer function of HP pulses can be expressed as [52]

Hoa () = {4 a(F) — 85 FHL (1) ) — j2m fH(f) (2.16)

which shows that the transfer functions of different orddE pulses can be computed recursively.
With the aid of (2.16), the PSD of a HP pulse can be readilyiobth which is given by H,,(f)|?.
In Fig. 2.11 of the HP pulses is demonstrated+ior 0, 1,2 and3. Explicitly, a frequency shift is

required for the HP pulses of ordeand1 in order to meet the FCC spectral mask. By contrast, for
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the pulses with higher order, there exist large sidelobdésctwneed to be removed using bandpass
filters. Therefore, in the UWB systems using the HP pulséfgrdnt kinds of operations are required
for the HP pulses to meet the FCC spectral mask [37—39], whhtably increases the complexity
of the UWB systems.

The orthogonality of the HP pulses is one of the most desratiperties, since it enable optimum
detection with low-complexity at receiver [7]. Howeveretbrthogonality can only be retained when
the user signals are synchronously transmitted, which inBUs@mmunications due to multipath
fading is very difficult [8]. Furthermore, it has been foumd87] that the GPs generally outperform
the HP pulses for all SNR values. It has also been found tleattif capability of the UWB scheme
using single HP pulse is worse than that of the UWB schemegusither the GP or the PS pulse,

when assuming that all these pulses are constrained to heeEQC spectral mask [37, 39].

2.2.2.5 Gaussian Modulated Sinusoidal Pulses

The Gaussian modulated sinusoidal pulse (GMSP) is defin¢t]] by

8k ” 1
W(t) = <?> N EESSCEry exp(—k>t?) cos(27 f.t) (2.17)

where f. denotes the desired frequency for the pulse, which is- 6.85 GHz for the FCC spectral
mask. In (2.17) the parametérdetermines the pulse duration, which increases as the wélie
decreases. Fig. 2.12 depicts the time-domain GMSP. Ettplithe GMSP does not contain a DC
component.

1 T y T -100,
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Figure 2.12: Time domain of the Gaussian Figure 2.13: Power spectral density of the Gaussian
modulated sinusoidal pulse. modulated sinusoidal pulses.
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The frequency response of the GMSP of (2.17) can be expressed

2

o) = (%) s [\ o (220 i~ 0+ 600+ )

(2.18)
wherex represents the convolution operation. The normalised HSE ) is plotted in Fig. 2.13 for
fe = 6.85 GHz. It can be shown that the GMSP pulse can easily be destgrmadet the FCC limits,
which can be achieved by changing the pulse width, i.e., #ieevofk or by changing the centre
frequency off.. Furthermore, it can be observed from Fig. 2.13 that the Isides are aboui0 dB
lower than the main lobe. Therefore, the main lobe contaiostraf the power transmitted, which
implies that the UWB systems using the GMSP may cause lemgargénce to the systems working
in the same frequency band.

These GMSP pulses are generated with the Gaussian pulsgetbddsn Section 2.2.2.1. Hence,
generation of the GMSP is not simple, as analysed in Secti®2.2. Furthermore, as the pulse
shape of the GMSPs changes after passing them through tisenitéer/receiver antennas, MF-based
detection is hard to implement. Note that, it has been shavi#?] that the BER performance of the
UWB systems using GMSP pulses is similar as that of the UWBegys using Gaussian pulses for
the same effective bandwidth.

So far, we have provided a review for a range of basic pulsastiay be employed in the UWB
communications. In the public literature, there are aldweotechniques for designing the basic
pulses. For example, in [53] an approach has been proposéddigning the basic pulses for UWB
communications systems. The pulses generated are tintediin order to make the implementation
simple. Furthermore, it has been shown [53] that this cldgmutses are capable of achieving the
same BER performance as the class of gaussian monocycl&pmriges. However, the basic pulses
generated by the approach of [53] has more degrees-ofdmeedhich can be adjusted so that the
corresponding spectral meets the FCC spectral mask. Addlty, reference [39] shows that an

appropriate sinc-pulse can be defined as
Y(t) = singWt) cos(27 f.t) (2.19)

wheref. = 6.85 GHz is the center frequencly’ = 3.75 GHz and sin¢) is given as

sin(7x) 0
sinz)={ = 77 (2.20)
1, z=0
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The sinc pulse defined by (2.19) complies well with the resglispectral emission constraints,
and achieves better BER performance than the Gaussian yuescPS-based pulses or the pulses
generated using the approach proposed in [53]. After dssonf the basic requirements for UWB
pulses and review of various classes of UWB pulses, let usaomsider the transmission of pulses

in UWB systems.

2.2.3 Signalling in UWB Systems

In pulse-based UWB systems, each information-conveyimgbsy is transmitted by a number of
frames [14, 34]. Without data modulation, the general fofrarouniform pulse train with a constant

amplitude of one can be represented as

Ny—1

s(t) =Yt —nTy) (2.21)
n=0

where s(t) denotes the transmitted signal at time/N; denotes the number of pulses transmitted
andT); denotes the duration of a frame. The uniform-pulse traireiated in Fig. 2.14, where the
pulse starts at = 0 and is repeated ever§; seconds. Hencel; can be viewed as the average

time-duration between the transmission of two pulses. iEiiy| the uniform pulse train cannot be
n A N cc  In n |
\4 \V vV JJ 4 \4

0 T 2T (N; — 2)T} (N; = 1)Ty N/Ty

Figure 2.14: lllustration of an uniform pulse train.

employed for implementing MA communications due to thedwihg reasons.

1) Firstly, when multiple users transmit information usthg same pulse train, strong interference

exists among these users [24];

2) Secondly, when the same uniform pulse train is employedsdpporting multiple users, it
becomes difficult for the receiver to distinguish betwees tisers. This is because, in this
case, the signals transmitted by different users are higgthelated, making the detection very
difficult [34];

The above-mentioned problems existing in the pulse-bad#® dystems using uniform pulse

train may be efficiently solved by employing proper data nation techniques and MA schemes.
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Additionally, since FCC has imposed no restriction on datauatation techniques and MA schemes,
different kinds of modulation techniques and differentdyf MA schemes may hence be employed
for the pulse-based UWB systems [54]. Below we consider soinlee modulation techniques that
may be employed for pulse-based UWB communications. ThameddA schemes, that may be

employed for the pulse-based UWB systems are discussed.

2.2.4 Data Modulation Techniques for UWB Systems

As UWB systems communicate in power-limited regime andelaee different types of applications
that may be supported by UWB systems, a number of facts musirigdered, when choosing a data
modulation techniques. Specifically, when choosing theutatihn schemes for UWB systems, we

should take into account the following issues.

e First, UWB systems usually co-exist with the conventiorairawband/wideband systems op-
erating in the same frequency band, the UWB signals hencesenipterference on these con-
ventional systems [55]. Therefore, in order to minimiseititerference by the UWB systems,
the PSD of the UWB systems needs to be very low [1]. As mentiqureviously, the PSD
of UWB signals consists of two components: the continuowscspl waveforms, which are
due to the shape of the pulse, and the discrete spectral Wiriésh are due to the periodical
transmission of the pulse sequence [40]. Since the magnitithe discrete spectral lines are
usually higher than that of the continuous spectral wave$pithe discrete spectral lines con-
stitute the major source inflicting interference on the otierowband or wideband systems
operating in the same frequency band as the UWB systems §R3,Therefore, in order to
reduce the interference caused by the discrete specesa] line transmitted power of the UWB
systems may need to be further reduced. However, as UWBsystee usually operated in the
power-limited regime, reducing the transmission power mesylt in difficult detection of the
information at the receiver side. Furthermore, it is déd@dhat in UWB systems, the mean
of the data modulation scheme is zero. Otherwise, the desspectral lines will appear at a
regular interval [4], yielding interference on the othestgyns. Additionally, due to the con-
straint on the total transmitted power, the data modulatemes should be power-efficient,
in order for the UWB systems to attain a reasonably low BERtarglipport a relatively high
data rate [34,56,57].

e Second, in the conventional communication systems, sigmatsion causes little or no harm

in addition to fading in multipath channels, as the phaseratue to signal inversion can be
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easily detected and corrected [58]. However, in UWB comigations this phenomena requires
special attention, since many pulse modulation schemesndepn the signal’s polarity. For
example, when employing binary pulse position modulatfRNl) using a single correlator for
detection, the outputs are positive when it is applied tartighase pulses and negative when is
applied to the shifted pulses. In multipath channels, thstioms of the pulses will be shifted,
thus, the detection of the signals might not be correct. dfioee, special techniqgues must be

developed to assure the right polarity of the transmittgdagi

e Finally, when choosing a data modulation scheme for a paatidype of UWB systems, the
data rate supported, affordable complexity, intersymbéérierence I1SI generated, spectral
characteristics, robustness against narrowband inéerde;r BER performance, etc. [34, 45,
58-61] are required to be taken into account. Specificatly,high data-rate applications,
BER performance, complexity and system flexibility are tleg kriteria [62], that need to be

considered when choosing the corresponding modulatioenses.

For pulse-based UWB systems, basic modulation scheme&deoed in the literature include the
on-off keying (OOK), PPM, pulse amplitude modulation (PAMlIse shape modulation (PSM), etc.
Table 2.2 shows some of the characteristics of these maslulathemes, which are now discussed

in a little more detail in the following subsections.

Modulation | Complexity Pulse Discrete| BER M-ary
Schemes Negation Spectral| Performance | Scalability
Lines
OOK Lowest [45] Not required| Yes Worse Not
than PPM [45]| scalable

PPM Higher Not required| Yes Better Scalable
than OOK [45] than OOK [45]

PAM Higher Required No 3-dB better Scalable
than PPM [45] than PPM [63]

PSM Higher Required No Worse Scalable
than PPM than PPM [58]

Table 2.2: Summary of the data modulation schemes for pulse-based UpftBras.



2.2. PULSE-BASED UWB SYSTEM 31

2.2.4.1 On-Off Keying

OOK is one of the data modulation schemes that are prefesrqulifse-based UWB systems [45,63].
In the OOK modulation scheme, a pulse is transmitted for &rnmation bit ‘1’ while there is no
transmission for an information bio" [45]. The OOK modulation scheme employs the following
advantages for UWB communications. Firstly, with the OOKdulation, only a low-complexity
energy detector is required at the receiver [45]. HenceQ®& modulation scheme may make the
UWB communications systems simple. Secondly, when the CO&mployed, no pulse negation
is required as negating ultra-short pulses is difficult tplement [14, 25]. The OOK has the disad-
vantage that there are discrete spectral lines in the PSBedfransmitted UWB signals, since the
mean of the OOK modulation scheme is not zero [56]. Furtheembhas been shown that, for the
same communications environment, the PPM and PAM scheraesipable of achieving better BER
performance than the OOK scheme [45]. Additionally, the Oszkeme is not suitable fav/-ary

modulation.

2.2.4.2 Pulse Position Modulation

PPM is one of the modulation techniques that are suitabldJiéfB communications supporting
power-limited applications [14]. With the PPM, no negat@tJWB pulses is required [64,65]. It has
also been shown in [66] that the PPM can be readily scaled pteiment thel/-ary PPM (MPPM).
The scalability of the PPM can improve the MA capability of torresponding UWB systems, when
a given number of users and a given data transmission ragippsrted [66]. This is because, with
the higher value of\/, it is possible to improve the probability of detection oétMPPM-based
systems supporting a fixed number of users, or for a fixed pitityeof error, to increase the number
of users supported by keeping the transmitted signal pomestant [67]. Another advantage of
using PPM is that noncoherent detection can be employede #mthe PPM-based UWB systems
information is extracted from the location of the transedtipulses and hence no phase estimation
is necessary. The disadvantages of using PPM is that disgpettral lines may exist in the PSD of
the transmitted signal, due to the non-zero mean of the PPNutated signals [14]. However, in
the PPM-based UWB systems, the discrete spectral linesdunte cyclostationarity, which can be
exploited for finding the timing-offset of the system [14].
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2.2.4.3 Pulse Amplitude Modulation

With the development of microelectronics and signal prsicgs negation of ultra-short pulses be-
comes easier and practical. Consequently, modulatiomsehevith zero mean have become more
attractive [45]. Pulse-Amplitude Modulation (PAM) is a dahodulation scheme with zero mean.
Hence, in UWB systems using the PAM data modulation, thezenardiscrete spectral lines in the
PSD, resulting in a smooth PSD [45,56]. The PAM is suitableirfgplementation ofd/-ary PAM,
which is capable of improving the MA capability of the UWB sm1s for a given data rate. It has been
shown that the binary PAM hesdB of SNR gain over the binary PPM, when communicating over
multipath fading channels [60, 63, 68]. It has also been shihat the multiple-access-interference
(MAL) of the UWB systems using the PPM has a higher impact @BER performance than that of
the UWB system using the PAM [68, 69]. However, as the valug/ahcreases, the impact of MAI
on the BER performance decreases for the UWB system using. BA&Montrast, the impact of the
MAI on the BER performance of the UWB systems using the PPlimghe same, when the value
of M increases [68]. Although the PAM has certain advantagestbeePPM, however, according
to [4], amplitude modulation is usually not desirable for BWommunications. This is because, in
amplitudes modulations the smaller amplitudes are moreegtible to noise interference than the
larger amplitudes. Furthermore, the PAM has a higher pealk#trage power ratio (PAPR) than the

PPM. Hence, the PAM scheme might not be power-efficient forBJs@mmunications [4].

2.2.4.4 Pulse Shape Modulation

It has been recognised that the PSM is an alternative maalultgéchnique for UWB communica-
tions, where different pulse shapes are used to carry irdtom [7, 70]. In order to implement the
PSM modulation a set of pulses is required, where the numbgulees used determines the mod-
ulation order of the PSM. In the PSM, orthogonal pulses caerbployed to remove the discrete
spectral lines, in order to reduce the possible interferaiche UWB systems on the other narrow-
band/wideband systems operated in the same frequency bemekver, in practice it is difficult to
maintain the orthogonality of the transmitted pulses irhad-communications environments, where
signals transmitted by different users are hard to synabedi8]. Furthermore, the orthogonality of
the transmitted signals may be destroyed by the dispersitepath fading channels [71].

Below we consider some other issues related to the pulssddg/B communications. As an
example, we assume that the UWB systems employ the MPPMelcatde, when th&/-ary symbol
X, € [0,M — 1] is transmitted within thezth frame, an additional time-shift ok, 7, is added
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to the transmitted pulse. Hence, for the UWB systems usinggMPhe transmitted signal can be

represented as
Ny—1

s(t) = Yt —nTy — X, Ty) (2.22)

n=0
whereT’;, denotes the width of the basic UWB puldg, represents the frame-duration aNg repre-
sents the number of frames invoked for transmitting one synikig. 2.15, illustrates the time-shift
caused by the data-modulation, whéfg = 1 was assumed. As shown in Fig. 2.15, the basic UWB
pulse in the( N; — 4)th frame is shifted by(;, seconds, due t&,, = 1.

coce (Ny = 5T (N —4)T¢ sese
N—" -
0 T, 2T, (M —2)T, (M —1)T, MT,

Figure 2.15: lllustration of M -ary pulse position modulation in pulse-based UWB systems.

Let us now provide an overview of the MA schemes for the pblssed UWB systems using
MPPM.

2.2.5 Multiple-Access Schemes for UWB Systems

UWB systems are typical spread-spectrum systems. HenceB Bi{tems may be implemented
by invoking various spread-spectrum techniques. It carhogvs that many spread-spectrum tech-
niques, such as frequency-hopping (FH) [72], time-hopgifig), direct-sequence (DS), etc., may
be employed to implement UWB systems. In this thesis ourdasumainly on the UWB systems
based on TH and DS, i.e., the TH-UWB and DS-UWB. Hence, belevpmvide an overview for the
TH-UWB and DS-UWB systems.
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2.2.5.1 Time-Hopping UWB System

Time-hopping multiple-access (THMA) technique for UWB aommications system was first intro-
duced by Robert A. Scholtz 993 [1,34,35]. In this type of spread-spectrum technique artiadd!
time-shift is imposed on the transmitted pulses in the pur@ due to the TH [73]. Furthermore,
in TH-UWB the discrete spectral lines, which are generatethé pulse-based UWB due to using
uniform pulses, can be smoothed to a certain level by chgdbmproper TH codes [63]. THMA can
be classified into fast TH (FTH) and slow TH (STH). In the FTHt®ms, a symbol is transmitted
with the aid of N, frames, each frame consists of a UWB pulse and the positibniofJWB pulse

is determined jointly by the TH code and the data modulatemmnique employed. By contrast, in
the STH systems, a symbol is transmitted/¥y frames but only a single UWB pulse is transmitted
by these frames. In the STH system, the selection of the ffamigansmission depends upon the
TH code while the position of the pulse in the selected frasndetermined by the data modulation

scheme employed. To be more specific, the FTH and STH scheandsecexplained as follows.

e Fast Time Hopping: In FTH-UWB systems a symbol is transmitted by invoking saver
frames. The transmitter schematic of the FTH-UWB systemgusIPPM is shown in Fig. 2.16.
For the sake of supporting multiple users, in the FTH-UWBeays each user is assigned a
unigue TH pattern, which is also referred to as a TH addreds,éo order to distinguish among
different users. Assume thaf; is the number of frames invoked for transmitting one symbol,
and that the TH code of usércan be expressed 88 = [t,(ff)(o), tﬁ,’lf)(l), e ,t,(ff)(Nf —-1)],
wherem is related to thenth symbol transmitted by usér. Then, for a given\/-ary trans-
mitted symbolX,(ff) of userk, X,(ff) is first combined with théth user’'s TH code based on the
operation

Y® = (x0.1)@t® = 5B 0),y® 1), -,y (Np - 1)] (2.23)

m m

wherel is an all-one vector of lengtiV; and @ denotes the addition operation (/(Q),
which denotes a Galois field havidgelements, wher& > M represents the number of time-
slots per frame. As shown in Fig. 2.16, each elemem’ﬁi‘? imposes an extra delay for the
corresponding pulse. Consequently, as shown in Fig. 24@rémsmitted signal for thith

user can be expressed as

oo Np—1

s®(t) =" 3" Wt —mTy —nTy — y&) (n)Ty) (2.24)

m=0 n=0

whereT is the symbol duration anfl, = NT’.
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Figure 2.16: Schematic block diagram of fast time-hopping ultrawidedwaidth systems using/-ary pulse
position modulation.

YYY) VT, (V 4+ 1)T; YYY)
Ss | | 55

5 T 27 (Ny=2)Ty Ny = 1Ty N;Ty
ANEEWAN | A oo JAE AN A
/ Y% il VooV v
| 7\ PSP I |

\/
0 2Ty,  (Q—2)T, QTy

Figure 2.17: lllustration of the transmitted signals in the fast timggping ultrawide bandwidth using/-ary
pulse position modulation.
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Fig. 2.17 illustrates the transmitted UWB signal in thi¢h symbol duration. As shown in
Fig. 2.17, theVth symbol duration is first divided intd/; number of frames having a frame
durationT’;. Then, each frame is further divided infonumber of time-slots of duratiofi,. As

shown in Fig. 2.17, during each frame a pulse is transmittettle pulse position at the time
slot level is jointly determined by the TH address code amdstimbol value of the transmitted

data according to (2.23).

e Slow Time Hopping: In the STH-UWB system, only a single UWB pulse is transmitired
a symbol duration, which consists 8f; number of frames. The operation of the STH-UWB
systems may be further augmented by referring to Fig. 2.18 slown in Fig. 2.18, during
a signalling interval duratiofi’;, b message bits of theth user are loaded intotabit buffer,
yielding aM-ary symbol of vaIueXﬁf). The M-ary symbolX,Sf) is temporarily stored in the
buffer, and awaits for its time-slot for its transmissions ghown in Fig. 2.18, the transmitter
generates an UWB basic pulse expressed @s— mT;) for the mth symbol duration. The
pseudo-noise (PN) code generator generates a TH patteusdok. Let the kth user's TH
pattern be{t%”)}, where( < tgfi) < (Ny —1). As shown in Fig. 2.18, for thenth symbol,
the TH operation applies an additional shiﬂtxﬁ){f)Tf to the basic UWB pulse)(t — mTy),
locating the pulse at)(t — mTs — tﬁ,{f)Tf). Let us assume that a frame is divided inkb
number of time-slots to implement MPPM. Then, when the @esiime-slot arrives the data-
modulation imposes a further delaymﬁ,’f)ﬂp on the transmitted UWB pulse. Consequently,

the transmitted signal for thieh user in the STH-UWB scheme can be expressed as

s (t) = i Wt —mTy —tPT, — XT,) (2.25)
m=0

which shows that, for thenth symbol, a pulse is transmitted at thfé,f)th time-slot of the
S,’?th frame within themth symbol duration. Fig. 2.19 shows the transmitted UWB aligm
the Vth symbol duration. As shown in Fig. 2.19, th@h symbol duration is first divided into
Ny number of frames having a frame duratibp Then, each frame is further divided inid
number of time-slots of duratiofi,. In Fig. 2.19 we usedgi) = 1. Therefore, the first frame
is activated and the position of the pulse in this frame i®eined by theM-ary symbol
X =1.

Note that, when designing the TH-UWB systems, the followssgies must be taken into account.

e If the value ofQ in the FTH-UWB or the value oV, in the STH-UWB is small, catastrophic
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Figure 2.18: Schematic block diagram of slow time-hopping ultrawide daidth system usind/-ary pulse
position modulation.
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Figure 2.19: lllustration of the transmitted signals in slow time-happiultrawide bandwidth using/-ary
pulse position modulation.
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collision (hit) among the users may occur at a high probigbilisually, the higher the value of
@ in the FTH-UWB or the higher value oV, in the STH-UWB, the lower is the probability
of hit;

e When the FTH-UWB has a large value @for when the STH-UWB has a large value [§f,

the MAI may be modelled more accurately by the Gaussian ranutocess [34];

e Finally, the ratioQT, /T in the FTH-UWB orM NT,, /T in STH-UWB represents the frac-
tion of a frame time duration over which the TH is allowed. §hatio is usually kept less than
one, in order to avoid interpulse interference (IPI) [35hieh is generated due to the overlap
among the successive transmitted pulses from the sameRug#nermore, the receiver could
utilise this time after TH to read the output and reset theetator, etc. [34].

Recently, pseudo-chaotic time-hopping (PCTH) assistdd R&s been proposed for UWB modula-
tion and for implementation of MA transmission [23, 74, 7B].the PCTH, the principle of symbolic
dynamics is exploited to generate an aperiodic spreadiggesee, which is dependent on the input
data. The PCTH enhances the UWB systems by removing moseqfdtiodic components from
the transmitted signal, hence resulting in a low probabdit intercept [23]. Furthermore, with the
PCTH, the discrete spectral lines of the UWB signals can feetfely removed. Hence, less inter-
ference may be inflicted by the UWB systems on the wireledesysoperated in the same frequency
band [23, 74]. Additionally, the PCTH-based systems haeeattvantage of high immunity to inter-

ception, making them useful for high-security communimadi [8].

2.2.5.2 Direct-Sequence UWB System

Direct-sequences (DS) spread-spectrum is a famous sppeatium technique and a lot of research
has already been carried out associated with the DS cotgedivmultiplexing access (CDMA). In
DS-UWB, a data bit is transmitted with the aid of multiple mhiand the chip duration is usually set
to equal the widthr’, of the basic UWB pulse. Therefore, in DS-UWB system the fraimetion
Ty, chip-durationT; and the pulse widtiT;, are all the same [36, 76, 77]. In UWB systems, since
the data rate supported may range from tens of megabits pendé¢o hundreds of megabits per
second [29], the number of chips per bit-duration in UWB el is expected to be in a range from
tens to several hundreds. In DS-UWB systems the convehti@®aCDMA-related techniques may
be applied [78-80].
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In DS-UWB the transmitted signal of thigh user can be represented as

oo Ne—1

s (1) = Z Z FVp(t — mTy — nT,) (2.26)
m=0 n=0
wherem indicates thenth symbol, T denote the symbol duration, whidaék) assumes a value afl
or —1 with equal probability, when random spread sequences averessl. Furthermore, in (2.26Y,
is the number of chips per symbol, representing the sprgddator. The transmitted DS-UWB signal
of (2.26) can be explained with the help of Fig. 2.20, wheereltth symbol duration is considered.
As shown in the Fig. 2.20, th&th symbol duration is divided intdv, number of chips having a

chip-duration off’. = T}, and associated with each chip a UWB pulse is transmitted.

XXX VT, (V 4+ 1)T, XXX

0
n
0
n

VAAANNMARTAWTAN
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0 T. 2T, 3T, (N.—2)T. N/,

Figure 2.20: lllustration of direct-sequence ultrawide bandwidth silgn

In the DS-UWB systems thé/-ary bi-orthogonal keying (MBOK) can be employed [81, 82].
As the MBOK uses bi-orthogonal sequences, the mean of thenisted DS-UWB signals is zero.
Hence, there are no discrete spectral lines present in tBeoP®ie DS-UWB signals. Furthermore,
the MBOK is a power-efficient modulation scheme, which magdidhe data-rate supported by the
DS-UWB system. However, when there is a large number of pathis, which generate severe ISI,
the BER performance of the MBOK-assisted DS-UWB system neagignificantly degraded [81].
The problem caused by the multipaths may be mitigated wehrdlike reception or high-efficiency
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equalisation techniques at a cost of higher complexity.

2.2.5.3 Comparison between TH-UWB and DS-UWB Systems

Both TH-UWB and DS-UWB systems have their advantages arabldatages, which are sum-

marised as follows.

e Duty-Cycle: As above mentioned, in a FTH-UWB system a data-symbol istrétbed with
the help of NV, frames, each of which is further divided in@ number of time-slots. Since
every frame transmits one UWB pulse by activating one titoegger frame, the duty-cycle of
the FTH-UWB is hencd /Q. In a STH-UWB system a data-symbol is transmitted within the
time-duration of N, frames, with each frame being divided intd time-slots. Therefore, the
duty-cycle of the STH-UWB approachégM N, since only one UWB pulse is transmitted
within the symbol-duration o, frames. Finally, in a DS-UWB system each symbol-duration
is divided into N, chips having the chip duration equalling to the width of tlesib UWB
pulse. Since in DS-UWB a pulse is transmitted associatdd eeth chip, the duty-cycle of the
DS-UWB hence approaches unity. From the above discusgicanibe implied that, for the
systems using the same spreading factor, the duty-cycledftd-UWB systems is much lower
than that of the DS-UWB systems. It has been shown in [9] tbag low-rate wireless personal
area network (LR-WPAN), equipments with exceptionallyddrattery life are highly impor-
tant. Therefore, low consumption of power for data transioisis important [83]. Since low
duty-cycle is a key requirement for low average power comgion, the TH-UWB schemes are
hence more suitable for LR-WPAN applications than the DSBJS¥hemes [9]. Additionally,
references [55, 60, 84, 85] have shown that lower duty-cysleally causes less interference
to the Universal Mobile Telecommunications System (UMTgtems operating in the same

frequency band as the UWB systems.

¢ Inter-Chip Interference and Inter-Symbol Interference: It is well-established that UWB
signals with huge bandwidth have the characteristics ofriaselution, yielding a high num-
ber of resolvable multipaths [13, 86]. Due to the large nundfemultipaths and continuous
transmission, strong ICl and ISl exist in the DS-UWB systelnisas been shown that the BER
performance of the DS-UWB systems communicating over patli fading channels degrades
due to ICl and ISI, when the ICI and ISI are not efficiently ipetied [87, 88]. By contrast, due
to the discontinuous transmission in the TH-UWB systenms, TtH-UWB systems hence have

the robustness against multipath fading [36]. In TH-UWB@eyss, the symbol duration is usu-



2.2. PULSE-BASED UWB SYSTEM 41

ally very large in comparison with the width of the basic UWige, as a result, the ICI and

ISIin the TH-UWB systems can be effectively mitigated [35].

e Multiuser Interference (MUI): A DS-UWB system can accommodate a large number of users
simultaneously [78]. However, the DS-UWB system may con$évere multiuser interference
(MUI), when the spreading sequences assigned to diffesmrsiare not orthogonal and when
the DS-UWB systems experience multipath fading [89]. Bytrast, in the TH-UWB systems,
as the number of users supported increases, the chance/that more users transmit at the
same time-slot increases, also yielding MUI. In both the 8B and TH-UWB systems,
the MUI may be efficiently mitigated with the aid of the advadamultiuser detection tech-
niques [78, 89, 90]. However, in [80,91-93] it has been shtvaenh the DS-UWB system can

support a larger number of users as compared to TH-UWB system

¢ Interference to The Systems Operated in The Same Frequencyad: Since an UWB sys-

tem occupies a huge bandwidth, it is common that an UWB systeexists with the other
narrowband or wideband systems operated in the same fregurmd [15]. In DS-UWB
systems the discrete spectral lines of the PSD are closate@) but the magnitudes of the
discrete spectral lines are usually low [94]. By contrast, discrete spectral lines of the PSD
in the TH-UWB systems are relatively higher than that of ti8DHn the DS-UWB systems.
Consequently, the TH-UWB systems may impose higher imenfze on the existing narrow-
band or wideband systems than the DS-UWB systems do. In th&/WWB systems the in-
terference caused by the discrete spectral lines of PSD earnduced to a sufficiently low
level [63,95-102] by properly design of the spreading cogatse width, pulse shape, etc. It
has been shown in [21, 36, 93] that the DS-UWB usually causssih-band interference to the

systems operated in the same frequency band, when compéaheithevTH-UWB.

e Interference Imposed on UWB Systems by Other SystemsWhen there are narrowband
and/or wideband systems operated in the same frequency dfathee UWB systems, the
UWB systems also experience interference imposed by thasewband and/or wideband
systems [15, 103, 104]. Since narrowband and widebandmgstisually transmit at higher
power than the UWB systems operated in the same band, thexauag higher interference
on the UWB systems. Specifically, in a cellular environmestdjular phones may transmit
at a power of30 dBm, which results in a PSD that 197 times higher than that of the UWB
systems [62]. It has been demonstrated in [36, 55] that ttee performance of the TH-UWB
systems is slightly better than that of the DS-UWB systentbhépresence of the interference
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caused by the global system for mobiles (GSM) and UMTS.

2.3 Multi-Carrier UWB System

Multi-carrier technigues have also been proposed for implgtation of UWB communications,
where the UWB frequency band is divided into many sub-bamdsemach sub-band is associated
with a subcarrier [62, 105, 106]. For UWB communicationg landwidth of the multicarrier sys-
tems should be at least a bandwidth56H MHz, in order to comply with the FCC'’s definition for
UWB systems [1]. It is well-known that in multi-carrier conumications, orthogonal frequency di-
vison multiplexing (OFDM) is an attractive modulation soi& since the OFDM uses fast Fourier
transform (FFT) techniques to implement low-complexity ltircarrier modulation/demodulation.
Furthermore, the OFDM scheme can capture efficiently theggrdispersed over a huge number of
multipaths in UWB channels [62, 105, 106]. Additionally, DM scheme has a high flexibility to
achieve the spectral regulations by FCC [107].

In [62] an OFDM-UWB scheme has been proposed. In this OFDMBRAtheme the whole sys-
tem bandwidth for UWB systems is divided intd sub-bands each having a bandwidth of approxi-
mately528 MHz, so that it is convenient for frequency plan and desigthefpre-select filters [62].
Note that, the pre-select filters are employed in order enatite the out-of-band signals, from global
positioning system (GPS), GSM system etc. [62,106]. In tteva-mentioned OFDM-UWB system,
over the528 MHz of bandwidth, there are a total ®28 sub-carriers, which are constituted b32
sub-carriers carrying useful signals ahdull-tones [106]. Out of thé22 sub-carriers]100 of which
are devoted to data transmissiaf,of which are assigned for transmitting pilots, while the aémng
of which provide guard bands. In this OFDM-UWB system quadeaphase-shift keying (QPSK)
baseband modulation is employed [106]. Multiple users apparted through spread-spectrum tech-
niques by assigning different users different time-freguyecodes.

In the OFDM-UWB scheme, guard-interval and cyclic-prefiXPjGare added before each trans-
mitted data block. The guard-interval is set in order to e\ sufficient time for the transmitter and
receiver to switch between different center frequenci@ [By contrast, the CP is added for mitigat-
ing the ISI caused by multipath fading and the length of then@l be chosen to minimise the impact
of I1SI, while maximising the captured energy [62]. In [108has been shown that, instead of using
CP, zero-padding (ZP) can also be employed for mitigatieg ®1. The ZP technique has advantage
of reducing ripples in the PSD, which is usually generateel tduthe redundancy or structure added
by CP.
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Note that, when designing an OFDM-UWB system, the size offR€ invoked plays an impor-
tant role. It has been pointed out that, when using a FFT $i2&86 the complexity becomes extreme
for portable and handheld devices [62]. The research sesul62] show that a FFT size 28 with
a CP of60.6 ns is generally desirable for an OFDM-UWB system to achieveagonable balance
between performance and complexity.

Let us below provide some comparisons between the pulssbd8VB and the multi-carrier
UWB.

2.4 Comparison of Pulse-Based UWB Schemes and Multi-Carne
UWB Schemes

Both the pulse-based UWB schemes and the multi-carrier Ud¥iBrees have their specific advan-
tages and disadvantages, which are dependent on the sgedifinunications environments. Some

of the comparisons between these two UWB arrangements amaartsed as follows.

e Coexistence with other systemsAs previously discussed, UWB systems are generally de-
ployed to co-exist with the other narrowband/widebandesystoperated in the same frequency
band, in order to reuse the spectrum resources. Theref@a&WB systems deployed in cer-
tain areas should impose as low interference as possibleeoexisting narrowband/wideband
systems operated in the same frequency band as the UWB sys&milarly, it is desirable
that the interference imposed by the co-existing narrowhadeband systems on the UWB

systems is also as low as possible.

O Interference inflicted by UWB systems on the other systemstn order to reduce the
interference inflicted by the UWB systems on the systemsatpeiin the same frequency
band, the PSD of the UWB signals should be as low as possibis.well-recognized
that the PAPR of the transmitted signals in single-carngtesns is significantly lower
than that of the transmitted signals in multi-carrier spstd109]. Therefore, the multi-
carrier UWB systems may inflict more interference on the ioflystems operated in the
same frequency band than the single-carrier systems. Andibadvantage of the multi-
carrier UWB, which is caused by its high PAPR, is the incrdalsattery drain [107].
Since in some battery operated UWB applications, such aRikWPAN, battery life
is critical [9, 83], hence, in this type of applications thelge-based UWB scheme are

preferred.



2.4, COMPARISON OF PULSE-BASED UWB SCHEMES AND MULTI-CARRI ER UWB SCHEMES 44

O Interference imposed by the other systems on UWB systemdt can be shown that
in the presence of narrowband interference (NBI), the baditiwefficiency and overall
capacity of the OFDM-UWB systems degrades [107]. Howewdhé OFDM-UWB sys-
tems the NBI caused by narrowband systems may be avoidedoogicly an appropriate
carrier frequency [1]. By contrast, in the pulsed-based UsyBtems, the interference
caused by the narrowband systems may be efficiently mitigateehoosing an appropri-

ate processing gain [34] and/or designing a proper pulgeesiea].

e Position and ranging: For accurate positioning and ranging, UWB signals are regub have
high time-resolution [110]. The time-resolution of a was$ signal is dependent on the basic
pulse duration; wireless signals having shorter pulsathm have higher time-resolution, and
the capability to provide more accurate positioning andjiramu  Since the pulse-based UWB
signals use much shorter pulse duration than the multiecatbWB signals, therefore, the
pulse-based UWB signals are capable of providing much numngrate positioning and ranging
than the multi-carrier UWB signals. For example, in the ad-metworks, where accurate

positioning is important, pulse-based UWB schemes may gaynportant role [30].

e Bit error-rate performance: The BER performance of a wireless system is dependent on
many factors, such as the amount of energy collected, neisd interference level, detection
approach, etc. In UWB systems the transmitted energy issdisp over a large number of
multipaths. Hence, in order to achieve a good BER performatiee energy conveyed by a
large number of multipaths is required to be collected. Rerpulse-based UWB schemes, a
RAKE receiver with a large number of fingers may be employedyrder to collect the energy
conveyed by the multipaths. However, the complexity of tR&E receiver increases with the
increase of the number of fingers in the RAKE receiver [113].cBntrast, in the multi-carrier
UWB arrangement, the frequency band is divided into manybarms that experience flat
fading. Therefore, the energy dispersed over the multipedim be collected in the frequency
domain without requiring complex equalisation [107]. Ish@een shown in [62] that the multi-
band OFDM-UWB system with a bandwidth 528 MHz and a CP 01:0.6 ns is capable of
capturing approximatel95% of the transmitted energy. By contrast, a DS-UWB systemgusin

a RAKE receiver having6-fingers can only capturg% of the transmitted energy [62].

e Transmitter design: In order to reduce the cost of an UWB device, the UWB transesiv
should be as simple as possible. The transmitter in a palseebUJWB system consists of only a

simple pulse generator and a modulator [110], and henceryssimple. By contrast, in a multi-
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carrier UWB system, FFT, digital-to-analog converters QAmultiple frequency generators
and fast FH synthesisers required. Hence, the transmittérecOFDM-UWB systems may
be much more complex than that of the pulse-based UWB syqtety Furthermore, when
designing the OFDM-UWB transmitter, different trade-affsed to be taken into account. For
example, when considering the FFT size, larger size of FBUlt®in higher complexity of
handheld and portable devices, while smaller size of FF@yirger portion of overhead due
to the CP [62].

e Receiver design:When designing a receiver for the UWB systems, complexithefreceiver
is one of the most important issues to be considered. Whag 8AKE receivers the complex-
ity of a pulsed-based UWB system increases linearly witmtimaber of fingers of the RAKE
receiver [109, 112]. By contrast, the complexity of the mcdrrier OFDM-UWB system de-
pends logarithmically on the FFT size [62].

e Timing jitter and synchronization: As above-mentioned, the multiband OFDM-UWB ar-
rangement utilise relatively long pulse duration, which caitigate the effect of timing jitter
on the achievable BER performance of the system. By conttastiming jitter may impose
severe impact on the BER performance of the pulse-based Uysteras [113]. Addition-
ally, using shorter pulse-duration requires more stricichyonization [32], since more precise
timing is required. It has been shown in [40] that using a éigbrder of monocycle in the
pulse-based UWB systems has the potential for achievindtar&ER performance, as a re-

sult that a higher order of monocycle results in a lower varéaof synchronization error.

Let us now look into the UWB channel model in detail.

2.5 Ultrawide Bandwidth Channel Modelling

Channel modelling constitutes one of the highly importaeta that have drawn wide research since
the start of wireless communications [1, 7, 13, 29, 43, 116}:1 Wireless channel models that can
closely simulate the real-world wireless channels are lfigktractive, since, in this case, a lot of
research in wireless communications may be carried outdbasehe wireless channel models in-
stead of the real-world wireless channels, which might lpeagive, time-consuming and sometimes
impractical. In this section we provide an overview for UWBeless channel modelling, with the

emphasis on its differences from the conventional narrandband wideband channels. The UWB
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channel models considered in this section, will be appliieithé upcoming chapters in the context of
various pulse based UWB systems.

This section is structured as follows. Section 2.5.1 coepdifferent types of channel models
and summarises their main characteristics. Section 2&s@ribes the UWB channel model in detail.
The impact of both the large-scale fading and small-scalmfpon the UWB channels is considered,
especially, with the emphasis on small-scale fading. Thdified Saleh-Valenzuela (S-V) channel

model for modelling of UWB channels is analyzed in detail.

2.5.1 Typical Wireless Channel Models

A lot of work have already been done in the context of wireldgmnel modelling. Dependent on the
bandwidth of the transmitted radio signals, wireless cbtnoan be classified as narrowband, wide-
band and ultrawide bandwidth (UWB) channels. The typicalrabteristics of the above-mentioned

three types of wireless channels can be described as follows

e Narrowband Channel: The bandwidth of the transmitted signal is significantlyslésan the
coherence bandwidth of the wireless channel. The chanh@iexfrequency non-selective or
flat fading [114]. All the received multipath component sitgof a transmitted symbol arrive
at the receiver within a symbol duration. The delays assediwith the individual multipath
components do not yield big impact on the performance of ytstem [29]. The multipath
component signals are added together at the receiver totfermeceived signal. If the number
of multipath components are sufficiently large, then the laoge of the received signal can
be modelled using Rayleigh or Rician distribution depegdin whether there exists a line-of-
sight (LOS) propagation path between the transmitter aceiver [1,13,29,117].

e Wideband Channel: Wideband channels are typical frequency-selective fadingnnels,
since the coherence bandwidth of wideband channels islydaatk than the bandwidth of
the transmitted wideband signals [114]. In wideband sysiehe delays assisted with the mul-
tipath components have effect on the system performande [A%rder to make use of the
multipath components, the delay spread of a wideband chandwided into bins, where the
size of each bin is equal to the inverse of the bandwidth oftridnesmitted wideband signal.
In frequency-selective wideband channel modelling, itdeally assumed that each delay bin
contains many multipath components. If there are enouglipathh components in a delay bin,
the overall amplitude statistics of these multipath congms can be modelled as Rayleigh or

Rician distribution if there exists no or one LOS propagatiath between the transmitter and
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the receiver [29, 114].

e Ultrawide Bandwidth Channel: Like wideband channels, UWB channels are typical
frequency-selective fading channels. In UWB channelsb#relwidth of the transmitted signal
is extremely higher than the coherence bandwidth of theesponding wireless channels. As
a result, the size of the delay bins becomes extremely snmathis case, there is a possibil-
ity that no multipath components or only a few multipath camgnts fall within a delay bin.
Consequently, in UWB channel modelling it becomes necgdsacharacterise the likelihood
that there are empty bins containing no signals [29]. Sias@bove-mentioned, there are usu-
ally no or only a few multipath components falling within soévable delay bin, central-limit
theorum may no longer be valid [29]. Hence, in UWB channdis, dmplitude statistics of
the signals within a delay bin may not be modelled using Rglyler Rician distribution [29],

which will be explored in detail in our forthcoming discoarm this chapter.

2.5.2 UWB Channel Modelling

In UWB systems, itis possible to resolve the multipath congris generated by the objects separated
by only several feet, hence the fading margin can be significeeduced. Low fading margin and low
PSD make UWB systems best suitable for short-range commautions [118]. Recent results indicate
that UWB systems are viable candidates for short-range MAncanications in dense multipath
environments. The UWB systems have the potential of progidi high order of diversity, since the
UWSB signals employ the capability of fine delay resolutiod91120]. Since various UWB schemes
have been considered for providing short-range high-spéieliess communications, in recent years
a lot of measurements have been carried out in order to mbdeUWB channels, especially the
indoor UWB channels [29, 121-130]. In [131], a detailed @imxv of UWB indoor channels has
been presented.

In this section an overview of the UWB channel models givethm literature is provided. As
the channel modelling for the conventional narrowband am&kland channels, the UWB channel
modelling can also be characterised in the context of tlyelacale and small-scale fading. However,
it has been shown that, in UWB communications, it is the sisdle fading that plays an important

role in indoor short range wireless communications.
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2.5.2.1 Large-Scale Fading

In UWB communications the impact of the channel on the transchsignal over a large distance

(greater than 1m) is referred to as large-scale fading [Hrgé-scale fading includes the average
attenuation effect due to the distance between the tratesnaibhd receiver and large objects in the
propagation path. In traditional channel modelling thgdascale fading is also called as path-loss,

which is measured as [43]

PL(d) = PL(d,) + 10n1logy, (%) + X,, d>d, (2.27)
where PL(d) is the path-loss at a distande PL(d,) is the average path-loss at a given distance or
referenced distance df, e.g.d, = 1m, n is the path-loss exponent aid, takes into account the
shadowing, which is a Gaussian distributed random vari@bléB) with a standard deviation (also

in dB) [43]. The average path-loss, path-loss exponent laadtandard deviation are statistically
dependent on the communications environments. Theretffloeg, are usually modelled as random
variables obeying certain distributions [118]. The paibsl exponent) depends upon the carrier
frequency, antenna height and propagation environmeft$.[1t has been found to have a normal
distribution NV [1,,, 0] associated with a mean, and a standard deviatian,. Hence, the path-loss

exponent can be expressed as [118]

N = py + Moy (2.28)

wheren; is a Gaussian variable having mean zero and unit variance.
The shadow fading ternX, given in (2.27) is environmental specific and can be modaied
[118]
Xo =m(tte + 1300) (2.29)

wheren, andns are also zero mean Gaussian distributed random variabtés ahas a normal
distribution where the mean and the variance is determitaistically from the measured data. It is
found that in shadow fading the standard deviatigris independent of the carrier frequency [132].

Upon substituting (2.28) and (2.29) into (2.27), finallye ffropagation path-loss, can be expressed as

- d d
PL(d) = PL(d,) + 10, logy <d_> + 10moy logyg <d_> + M2t + N2N304 (2.30)

Note that, in (2.30) the first two terms represent the medath-fwss, while the rest three terms

represent the random variations about the median patH4&8%.
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2.5.2.2 Small-Scale Fading: Saleh-Valenzuela Channel Mel

In wireless communications small-scale fading is causedhbysmall objects in the communica-
tions environments which result in that the receiver reeemany versions of the transmitted signal,
which arrive at the receiver with different phases and alghty different time delays [43]. In
UWB communications, small-scale fading refers to the fgdaithin an area of one square metre
1m? [1]. Therefore, it is the major parameter of interest in iadoommunications. The main small-
scale fading model adopted for indoor UWB communicatiorteesnodified Saleh-Valenzuela (S-V)
model [29], which is now described in detalil.

In UWB Communications, it has been recognised that the pathi components arrive at the
receiver in clusters [13, 29, 133]. In wireless communaraj generally, the number of resolvable
multipaths is a function of the measured bandwidth of thesimaitted signals and the communications

environment [13], which can be formulated approximately as
L~ [WT,]+1 (2.31)

where L denotes the number of resolvable multipath componéiits= 1/7, is the bandwidth of
the radio signals, whilg’,, represents the maximum delay-spread of the wireless comations
channel. In UWB indoor communications, the delay-sprégdspans several nanoseconds, yield-
ing possibly many resolvable multipaths, which genera&lsif the transmitted UWB pulses are
closely positioned in time [29]. However, the ISI may be gutied by properly designing of the ba-
sic pulse waveform or by employing advanced signal prongssi/and equalisation techniques for
detection [29].

In UWB channels the multipath arrivals can be classified into categories: cluster arrival and
ray arrival within a cluster. Therefore, for the UWB charmdbur parameters are required in order to
describe the S-V channel model. The four parameters detengiihe S-V model for UWB channels

are as follows:
e A: Cluster arrival rate,
¢ ). Ray arrival rate within a cluster,
e I': Cluster decay factor,
e ~: Ray decay factor within a Cluster.

Let us below explain these parameters in more details.
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1

2)

Cluster Arrival Rate (A): In indoor UWB communications, the clusters are formed by the
building structure [133]. The cluster arrival can be moelglds a Poisson process with a mean
cluster arrival rate of\ [1, 29, 133]. Therefore, the probability of havingclusters within a
time-duration ofl”’ can be given as

(AT)"
v!

P, = exp(—AT) (2.32)

Note that, for convenience, we can assume that the firseclissalways present. Furthermore,
according to the principles of Poisson process, the intarah time of the clusters can be

described by a random variable obeying the exponential PDF
p(Ty|Ty—1) = Aexp[—A(T, — Ty—1)], v >0 (2.33)

where, for UWB communications, the value bfA is typically in the range ofl0 ns to
50 ns [13]. In the S-V model, the clusters usually overlap onetlzer, making it difficult
for the naked eye to observe the start and end of the clusterAl§ the number of clusters
is a function of bandwidth and environment, there are ugualk till five number of clusters
present in an UWB indoor channel [1,118,124,134].

Ray Arrival Rate within A Cluster ( A): In indoor UWB communications, rays are formed
by the objects within the vicinities of the transmitter ardeiver [133]. Ray arrival within a
cluster can also be modelled by a Poisson process, whenetérerrival of two adjacent rays

is a random variable obeying the exponential PDF given by
P(Tyo|Tu—1,0) = Ay exp[=Ap(Tup — Tuw—1)], ©w>0,0=1,2,--- (2.34)

wherer, ,, denotes the arrival time of theth multipath in thevth cluster, while), is the mean
arrival rate of the rays (multipaths) in the¢h cluster. Typically, each cluster may contain many
multipaths, implyingh >> A [133]. For some UWB communications environments where the
ray arrival rate of the later clusters is higher than thathef @arlier clusters [13,127], the ray

arrival can be modelled as a mixture of two Poisson procagisen as [13,135, 136].

P(Tu,v’Tu—l,v) = a)\ eXp[—)\l (Tu,v - Tu,v—l)] (235)

+ (1 —a)\aexp[—Aa(Tuw — Tup—1)], u©u>0,0=1,2---
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3)

4)

where0 < o < 1 is the mixture coefficient, whilé; and A5 are the ray arrival rates of the
first and second Poisson processes. In UWB communicatioespfothe two ray arrival rates
is usually higher than the other one in the mixture model. déethe duration of the process
having a higher ray arrival rate is shorter than the duratibthe process having a lower ray
arrival rate. However, the former case usually results riongter multipath components than
the later case [137].

Cluster Decay Factor ("): The decay factor is derived from the observed power decdilgoro
of the UWB channels [29]. In S-V model, the average power o$ters usually decays expo-
nentially with the delay [137]. For a block of data, the powad arrival time delay of the first
arrived cluster are normalised to one and a time delay zespectively. All the other clusters
of the same block of data are expressed relative to the fustesi[136]. It has been found that

the cluster decay factdr increases, if the building walls are more reflective [133].

Ray Decay Factor within A Cluster (y): The average power of the resolvable multipaths
within a cluster also decays exponentially, which is reflddby the value of the ray decay
factor of a cluster [137]. In UWB communications, the mudtip decay factor or the so-called
intra-cluster decay rate is found to be dependent linearthe arrival time of the cluster [135].

Specifically, the decay factor of theh cluster can be described as

Yo X UyTy +70, ©v=0,1,---,V —1 (2.36)

wherey, represents the decay factor of the zeroth clusteiis a constant, whild’, devoted
the arrival time of thevth cluster. Within a cluster, the arrival time of the first riayset to
zero and its corresponding amplitude is set to one. All thermtays within a cluster are then
adjusted accordingly relative to the first ray accordingh éxponential distribution [136]. In
UWB communications, it has been found that we have typic&lly- ~, which indicates that
the expected power of the rays within a cluster decays sltirgar the expected power of the

first rays of the clusters [136].

UWB channels are typical time-varying frequency-selectading channels, which can be modelled
using tapped-delay line approach [1, 124, 138]. Specificall[124—126] an indoor UWB channel

model has been presented based on statistical analysie dath collected from an UWB propaga-

tion experiment, performed in typical office buildings. Tétleannel model is obtained based on the

measurements carried out within the frequency-range 86inMHz - 1 GHz and using the UWB
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basic pulse having ns of delay resolution. Hence, the resultant UWB channelehodnstitutes a
representative channel model suitable for low-frequehdy) JWB systems. In the context of this
LF-UWB channel model [124,131], the measurement data slktvatghe direct path always falls in
the first resolvable path, which is usually the strongedt.péhe power of the subsequent resolvable
paths decays exponentially with the increase of delay. Tadysis in the context of the LF-UWB
channel [124] shows that the well-established tappedyd&ia model [49], is well suitable for the
LF-UWB channel modelling. Furthermore, the statisticslgsia in [124] shows that the best-fit
distribution of the small-scale magnitude statistics is Nakagamis distribution or the Gamma
distribution, when power is considered. It has been showid][that the parameters of the Gamma
distribution vary from path to path. The value of the fadiraggmeter in the Nakagami/ or Gamma
distribution ranges from and6, which decreases as the excess delay increases.

In contrast to the UWB channel model considered in [124, 1@Mhjch is suitable for the fre-
quency range fron300 Mhz-1 GHz, channel model proposed in [29, 121-123] is suitableter
frequency band ranged frotfl GHz t010.6 GHz. Correspondingly, this UWB channel model can
be viewed as a representative channel model for high-frecyu@HF) UWB systems. To be more spe-
cific, the measurements in the context of [121-123, 139] baen carried out in both the residential
and office areas, where both LOS signals and non-LOS sigxials eesulting in that the delay-spread
ranges fronmd ns to aboutl0 ns. The measurement data shows that in the above-mentidaei/¥B
channels the first resolvable multipath at the receiver is\eoessarily the strongest one. The power
delay profile is generally sparse, where some of the resielvabltipaths do not carry any significant
power, or even empty [29]. In the HF-UWB channels, multigadinrive at the receiver in clusters
rather than in continuum as in narrowband channels. Hend9i 121, 122] a double exponential
decay UWB channel model has been introduced for characigrice power delay profile of the
HF-UWB channels, where one corresponds to the clusterde e other one corresponds to the
multipaths within a cluster. Furthermore, the measurerdatd shows that the signal amplitudes do
not follow Rayleigh distribution. Instead, a lognormal cakdgami distribution may be employed to
measurement data. Furthermore, it has been found that letlegdnormal and Nakagami distribu-
tions can fit the measurement data equally well.

Based on the above-mentioned properties in associati¢tntietUWB channels, in this thesis the
conventional statistical tapped-delay-line (STDL) chelimodel is introduced and modified for our

investigation in the forthcoming discourses. Specificaltg S-V model is employed, which has the



2.5. ULTRAWIDE BANDWIDTH CHANNEL MODELLING 53

channel impulse response (CIR) of the S-V model and can regepted as [1,133,137]

0 00
h(t) = Buwdl(t — Ty — Tup) (2.37)
v=1u=1

wheref3, ., denotes the fading gain of theéh multipath in thevth cluster,T;, denotes the arrival time
of the vth cluster andr, , is the arrival time of theuth multipath invth cluster and is relative to
T,. In UWB communications in order to capture all or most of ttensmitted signal energy, the
receiver may require to process a huge number of resolvablépaths [140]. In order to reduce
the complexity,L. out of the total number of resolvable multipaths may be usedétection. It has
been shown that using multipaths for detection may achieve an error performangsecto that
achieved by a receiver that processes all the resolvablegpatl components provided the value of
L is sufficiently high [141].

In practice, the received UWB signals can only have a limiathber of clusters, where each
cluster contains a limited number of resolvable multipathsthis case, the CIR of (2.37) can be

reduced to
1%

U
h(t) =D Buwd(t = Ty — Tup) (2.38)

v=1u=1
whereV represents the number of clusters dAdlenotes the number of resolvable multipaths in
each of theV clusters. Therefore, for the UWB channels having the CIRREE), the total number
of resolvable multipaths can be as highlas= UV. Note that, as we mentioned previously, the
parameters, ,,, T, andr, , may be time-varying, due to the relative motion between ritigsimitter
and receiver. However, for the sake of convenience, we assbat the fading rate is significantly
lower than the data rate conveyed. Under this assumptierpahameterg, ,,, 7, andr, , may be
treated as time invariant random variables, when data tbdahkterest are relatively short [133]. In
(2.38), we define the average power of a multipath comportengaen delayr’, + 7, ,, is relative to
the average power of the first resolvable multipath as

Tﬂ):@exp (—%) exp (—%) , wu=12,--- U, wv=12,.--,V (2.39)
Where@,1 denotes the average power of the first resolvable multipathe first cluster, Whi|$37
denotes the average power by tite multipath in thevth cluster. Furthermore, in order to carry out

comparison among different scenarios, the total averagepreceived is normalised to unity, i.e.,
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we have

u Vv
YD B.=1 (2.40)
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Figure 2.21: lllustration of the Saleh Valenzuela UWB channel model,chhiontains three clusters and each
cluster may contain different number of resolvable muttiga

Figure 2.21 shows conceptually the CIR of the S-V UWB chanmedlel [13]. As discussed pre-
viously in this section, in UWB communications the empiridestribution of the fading amplitudes
of the multipaths differs remarkably from the Rayleigh disition. Instead, the measurement data
matches to the lognormal or Nakagami distribution, which haen validated using Kolmogorov-
Smirnov testing with a significance levéVs [29]. Specifically, in this thesis, we mainly assume
that the fading amplitudes of the UWB channels follow the &gdmism distribution, which can be

expressed as

P(ﬁu,v) = M (ﬁu,v>m> Qu,v)
o2mm 2m—1
= — exp(_m/Qu,v)ﬁg,v (2-41)

L(m)Qy,
wherem > 1/2 is the fading parameter, determining the severity of fadiwbich is equal to
m = E?[(82,)]/Var[(Bu.)?], [(m) is the Gamma-function anf, ., = E[(8.,.)? is the second
moment of the fading amplitude of theh multipath invth cluster. The Nakagamiz PDF of (2.41)
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employs the following properties.

1) Lognormal distribution can be approximated by the Nakaigdistribution associated with a

relatively high value ofn of the fading parameter [29].

2) Rayleigh distribution is valid in some UWB communicasoanvironments, even when the
time resolution is fine [13]. For example, Rayleigh fading b&en observed in industrial en-
vironments, where dense multipath scattering objectd,erdsulting in numerous multipath
components [117]. The Nakagami-distribution of (2.41) is reduced to the Rayleigh distribu-

tion, when the fading parameter is set to one, i.e, whem = 1.

3) Nakagamim distribution is a generalised distribution, which oftenas the best fit to land-
mobile and indoor-mobile multipath propagation environtseas well as to scintillating iono-
spheric radio links [142]. With the aid of (2.41), it can beosim that different propagation
scenarios can be modelled by the Nakagawdistribution by simply changing the value of
in the Nakagamin distribution. Furthermore, the Nakagami-distribution offers features of

analytical convenience [142].

Finally, four typical UWB channel models proposed in liteira [29] are summarised in Table 2.3.
Our simulation results provided in the following chaptersrevalso obtained based on these typical

channel models.

2.6 Summary and Conclusions

In this chapter an overview of UWB systems has been presefitexhn be shown that UWB sys-
tems employ a lot of merits in comparison with conventiorairowband/wideband systems, as the
instantaneous bandwidth of the UWB systems is significamtyer than the minimum bandwidth
required to deliver the information. Therefore, in recesdns a lot of interest has been drawn in both
the research communities and industry.

UWB systems can be implemented by pulse-based or multiecdrased techniques. Pulse-based
UWB system, can be a carrier-less or a base-band modulatsbens, where signals are transmitted
with the assistance of trains of time-shifted pulses. Whesighing pulse-based UWB systems the

following issues needs to be considered.

e The shape of the basic UWB pulse has a strong impact on thgrndefsiransmitter and receiver

filters, signal bandwidth, BER, etc. The pulse is usuallyuneml to have no DC-component,
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Channel Channel| Channel| Channel| Channel
Characteristics Model-1 | Model2 | Model-3 | Model4
A [1/nsec] 0.0233 0.4 0.0667 | 0.0667
(Cluster arrival rate)
A [1/nsec] 2.5 0.5 2.1 2.1
(Ray arrival rate)
r 7.1 55 14 24
(Cluster decay factor
ol 4.3 6.7 7.9 12
(Ray decay factor)
Communication LOS NLOS NLOS | Extreme
environments (0-4m) | (0-4m) | (4-10m)| NLOS

Table 2.3: Typical ultrawide bandwidth channel models, where LOS ah®H stands for line of sight and
non-line of sight, respectively.

in order to yield high power efficiency. The second order\dgiie of the pulse should ex-
ist so that matched-filtering could be employed at the recdior achieving low complexity
detection. Furthermore, it is required to have a low PSDhabthe interference inflicting to
the co-existing communications systems is low. In order éeththe above-mentioned require-
ments in this chapter a range of UWB pulses for pulse-base® Sy¥tems have been analyzed
in detail. Specifically, the basic characteristics of GPSMg PS, HP and GMSP etc. UWB

pulses have been summarized in Table 2.1.

e As FCC has imposed no restriction on data modulation schdiffierent kinds of data modu-
lation schemes may be employed for pulse-based UWB systEmesefore, when considering
a data modulation scheme for pulse-based UWB systems, theata supported, affordable
complexity, ISI generated, spectral characteristicsisbiess against narrowband interference,
BER performance, etc., are required to be taken into acca@enerally, it is desirable that
the data modulation scheme has zero mean so that there aiscnetal spectral lines in the
PSD. Furthermore, the data modulation scheme is expecteglgoalable td/-ary communi-

cations, in order to improve the MA capability of the UWB sysis. Specifically, in Table 2.2
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the characteristics for OOK, PPM, PSM and PAM, etc., datautaditbn schemes have been

summarized and compared.

e As shown in our discussion, in pulse-based UWB systemsrdifit types of MA schemes may
be employed. As UWB systems are typical spread-spectrutarags TH, FH, DS, etc., spread-
spectrum techniques can hence be employed. The MA schewebdan overviewed in detalil
in Section 2.2.5. It can be shown that each MA scheme has sduamtages and also some

disadvantages for UWB applications.

For the multicarrier UWB schemes, the UWB frequency bandvigldd into many sub-bands
with each sub-band having at least a bandwidtboaf MHz. It has been realised that OFDM is an
attractive transmission scheme for the multi-carrier UWBtems. In the OFDM-UWB systems the
whole available bandwidth is divided infiet sub-bands with each sub-band having a total 25
subcarriers. Out 0f28 subcarriers 100 are used for data transmissidr, are used for transmitting
pilots, 10 are used to provide guard bands and the rest are null-totlesuviransmitting information
at all. In the OFDM-UWB systems, QPSK baseband modulaticemployed and multiple users
are supported by spread-spectrum techniques by assigagtiguser a user specific time-frequency
spreading code.

Finally, in this chapter the modelling of UWB channels hasrbeonsidered. It can be shown that

the UWB channels have the following characteristics.

e The UWB channels are significantly different from the corti@ral narrowband and wide-
band channels. Therefore, the results obtained for modefie conventional narrowband and

wideband channels cannot be applied directly for modetliregUWB channels.

¢ In the context of the large-scale fading, in UWB communimagi the path-loss is found to be
environmental specific, both the average path-loss andithelpss exponent are environmental

specific.

e Since UWB communications are mainly for indoor and shangeacommunications, hence the
modelling of their small-scale fading is more interestedlUWB communications, the widely
recognised channel model adopted for modelling the smalksfading is the modified S-V
model, which is a STDL model. The S-V channel model is char&égd by four parameters,
namely, the cluster arrival raté.), the ray arrival rate within a clustep), the cluster decay

factor (') and the ray decay factor within a clustef)(respectively.
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e The measurement data shows that the amplitude statistid$iB channels follows the log-
normal or Nakagami distribution, or in some specific casesRayleigh distribution. Usually,
the Nakagami distribution is preferred, since both the Bighl and log-normal distributions
can be approximated by the Nakagami distribution. Furtlbeemthe Nakagami distribution

can often result in closed-form analytical results.



Chapter

Hybrid Direct-Sequence Time-Hopping
Ultrawide Bandwidth Systems

3.1 Introduction

In Chapter 2 pulse-based UWB schemes were discussed andg ieaitsed that like other spread-
spectrum systems, UWB systems do not rely only on the sprga#quence or hopping pattern to
produce a wide bandwidth signal. Instead, it is the extrgralebrt duration of the basic UWB pulses
that results in the UWB systems having ultra-wide bandw[8® 92, 143, 144]. As discussed in
Chapter 2, UWB communication has initially been implemdntdéth the aid of time-hopping pulse-
position modulation (TH-PPM) techniques without carriepdulation [34, 35]. In the carrier-less
or baseband UWB systems information is transmitted withab&stance of trains of time-shifted
pulses through PPM. In the TH-PPM UWB systems multiple pubse usually used to transmit a
single symbol for the sake of enhancing the transmissiofoppeance. Recently, the direct-sequence
spread-spectrum technique has also been proposed fonraptation of UWB communications [78].
In DS-UWB systems a data bit is transmitted associated withipte chips and the chip-duration
is usually equal to the width of the basic time-domain pulS#raight forwardly, in DS-UWB the
conventional DS-CDMA related techniques may be appliednfigroving the multiple-access capa-
bility [78, 79]. As analysed in detail in Chapter 2 both the-TNVB scheme and DS-UWB scheme
have their advantages as well as disadvantages.

In this chapter we propose and investigate a novel UWB schearaely the hybrid (DS-TH)
UWB system, which employs both DS spreading and TH. It canhosve that the hybrid DS-TH

59
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UWB system is capable of inheriting the advantages of bati8-UWB and TH-UWB, while si-
multaneously avoiding their disadvantages. Conventignblbrid DS and TH schemes have not
been drawn much attention, since, it is generally recognikat the combination of DS with TH
increases the complexity of implementation and that thentimequirement may become more strin-
gent [49, 145]. However, in the hybrid DS-TH systems thed®apace, which is usually very large
in UWB systems due to long spreading sequences and fine timasajution, can be significantly
reduced [146, 147]. Hence, the code acquisition and tintengking in hybrid DS-TH UWB systems
may become relatively easy. Additionally, the hybrid DS-UM/B systems are capable of provid-
ing more degrees-of-freedom for system design and recaafigns than either the pure DS-UWB
schemes or the pure TH-UWB schemes. Furthermore, it candvensthat both the TH-UWB and
DS-UWB schemes constitute special examples of the hybrid BRJIWB.

In this chapter we investigate the performance of hybridSUWB system, when communi-
cating over UWB channels associated with various detedti@iegy. For simplicity, we assume that
in this chapter the hybrid DS-TH UWB systems employs bindrgge shift keying (BPSK) modu-
lation. More specifically, in Section 3.2, the transmittéghal in the hybrid DS-TH UWB system
is introduced along with the channel model and receiverctira. In Section 3.3, we consider the
detection of the hybrid DS-TH UWB signal using MF. In Sect@#d the performance of the hybrid
DS-TH UWB system is compared with that of the pure DS-UWB amct ' H-UWB systems, when
the conventional single-user correlation detector or eatienal MMSE-MUD is employed. Sec-
tion 3.5 analyses the complexity of the correlation and MM3BD when considering UWB com-
munications. Finally, in Section 3.6 the performance ofdbeve-mentioned three types of UWB
systems is investigated and compared, when communicategtypical UWB channels experienc-
ing Nakagamim fading. Our study and simulation results in this chaptemskitat there exists a
trade off between the DS and TH spreading factors of the dybB8-TH UWB systems. Given the
channel conditions, SNR value and the total spreading fagoalling to the product of the DS and
TH spreading factors, there exists optimum DS and TH spngafdictors which result in the lowest
achievable BER.

3.2 System Description

3.2.1 Transmitted Signal

The transmitter schematic block diagram for the considagdutid DS-TH UWB system is shown in
Fig. 3.1. In our hybrid DS-TH UWB system BPSK baseband mdahrias assumed for simplicity.
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As shown in Fig. 3.1, a data bit of thieth user is first modulated by &.-length DS spreading
sequence, yieldingV,. chips. Then, theV. chips are transmitted by invokinyy.. time-domain pulses
within one symbol-duration, where the locations of fkietime-domain pulses are determined by the
TH pattern assigned to thgh user. According to Fig. 3.1, it can be shown that the hyD/& TH
UWB signal transmitted by thieth user can be written as [148]

(k:) / (k) k (k)
s NTwa NL [ —JjTe — ¢ Tw] 3.1

where|z | represents the floor function, which returns the largesgiet less than or equal 19 ¢ (t)

is the basic time-domain pulse of widif},, which SatISerST— fo v 4p2(t)dt = 1. The bandwidth
of the hybrid DS-TH UWB system is determined by the basic tdloeain pulse. For brevity, the

parameters used in (3.1) and in our forthcoming discoursdisied as follows:
e E: Energy per bit;
e N.: Number of chips per bit, which is defined as the DS spreadintpf;
e Ny,: Number of time slots in a chip, which is defined as the TH sgiirepfactor;
e T}, Duration of a time-hopping slot, which is equal to the disnrabf the basic UWB pulse;
e T.: Chip-duration, which satisfi€g. = N, T},
e T3: Bit-duration, which satisfie$;, = N.T. = N.NyTy;
o bgk) € {+1,—1}: Theith data bit transmitted by usér
° d§k) € {+1,—1}: Binary DS spreading sequence assigned td:theuser;

. (k) . TH sequence assigned to thih userc Ve {0,1,- -+, Ny — 1} and takes any value with

equal probability;
e N.Ny: Total spreading factor of the hybrid DS-TH UWB system.

From the above description it can be observed thatif= 1, T;, andT, are equal and in this case
the hybrid DS-TH UWB scheme is reduced to the pure DS-UWB eeheBy contrast, the hybrid
DS-TH UWB scheme withV,. = 1 is reduced to the pure TH-UWB scheme. As shown in (3.1), each
chip transmits a pulse and the location of the pulse withihip s determined by the TH sequence
{cg.k)}, Wherec§k) takes a value if0,1,2,--- , N, — 1} with equal probability. In the hybrid DS-TH
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UWB system total processing gain = N.N,. Note that, the conventional TH-UWB system
represents a STH system, where one pulse is transmittethwaithit-duration. By contrast, hybrid

DS-TH UWB system is a FTH system, whek& pulses are transmitted associated with one bit.
bgk) - <:> ><:)_> s(F) (1)
. k
% M(t—ﬂc—é "T,)

Spreading TH |~&——TH Pattern
{c(k) c(k) }
{d(k) d(k) } ‘0 ) 7Ny —1
0 7 Nl P(t —jTe)
Pulse
Generator

Figure 3.1: Transmitter schematic block diagram of hybrid direct-sawe time-hopping UWB System.

The principles of hybrid DS-TH UWB scheme can be further used with the aid of Fig. 3.2.
In this figure the(V — 2)th bit of durationT} is first divided into N, chips having duration of
seconds. Each chip corresponds to an appropriate valuertiedel by the DS-spreading code. Then,
each chip-duration df.. is further divided intaV,, time-slots with duratiorf;, seconds. The time-slot
activated for transmitting a pulse is determined by theeetyge TH pattern assigned. For example,
in Fig. 3.2, the first time-slot of the second chip is actidate transmit a pulse. From the above

analysis, we can see that the bit-duration oldBys- N.T,. = N.NyT.

3.2.2 Channel Model
The CIR of the UWB channels considered in the chapter is giei86]

h(t) = LZ:I ho(t — Ty —1Ty) (3.2)
1=0
where L represents the number of resolvable multipaths at thewergéi, = |h;|e’? represents the
channel gain of théth resolvable multipath componerify denotes the transmission delay of the
line-of-sight (LOS) signal from the transmitter to the reeg while [T;, represents the excess delay
of thelth resolvable path.
In order to make the channel model sufficiently general sbitltan be modified for modelling

different communications environments, we assume thatlyfithe delay-spread of the UWB chan-
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0 Tc 27¢ 3¢ NT

Wy \n
n n

|[\115511|

0 T¢ N¢T¢

Figure 3.2: Structure of the time-domain hybrid DS-TH UWB signals.

nels spang data bits, yieldindg — 1)N.Ny, < (L — 1) < gN.N,. Secondly, we assume that among
the L number of resolvable multipath components there lareelatively strong multipath compo-
nents, which convey the majority of the average power trétbsthh Furthermore, we assume that
the Ly number of significant multipath components are randomlyriliged over thel. number of
resolvable multipaths, but retaining the same within eaath tlock.

In UWB communications it has been found that the empiricatritiution of the fading gains
differs remarkably from the Rayleigh distribution. Thisbiecause that UWB signals are capable of
providing a fine resolution in the time-domain, implyingtthaually only a small number of multipath
components fall within an interval of the resolution. Instliase, the Gaussian approximation for
deriving the Rayleigh distribution is not satisfied. As show [29], the measured data shows that,
in UWB communications, the fading amplitudes usually fallmgnormal or Nakagami distribution,
which has been validated with the aid of Kolmogorov-Smirtesting associated with a significance
level of 1%. Due to the above facts, in this chapter, the Nakagami bigtan is introduced for
modelling the fading of the UWB channels concerned. Spedificve assume that the amplitude of

the fading gain obeys the independent Nakagandistribution with a probability density function
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(PDF) given by [49]

Py (r) = M (b, )
2 my 2ml 1
= m(i exp(—my /)7, r>0 (3.3)

o
whereI'(-) is the gamma functiony; is the Nakagami fading parameter corresponding toltthe
resolvable multipath component and the param@jeis given by(); = E[|l;|?] [49]. Furthermore,
we assume that the phase rotation due to fading channelfsrmaty distributed in[0, 27]. Let us

now consider the receiver structure.

3.2.3 Receiver Model

Let us assume that the hybrid DS-TH UWB system supplrissers. Then, when the DS-TH UWB
signal as shown in (3.1) is transmitted over the Nakaganfi&ding channels with the CIR as shown

in (3.2), the received signal can be expressed as

d(»k)lbrec[ jT — C( )T¢ TO — ZT¢ — Tk]

K L-1

= 5w ZZZ
k: =0 =0

+ n(t) (3.4)

)
J
N

wheren(t) represents the additive white Gaussian noise (AWGN) with-neean and single-sided
power spectrum density d¥, per dimensiong; takes into account the lack of synchronisation among
the users as well as transmission delay, whije.(¢) represents the time-domain pulse received,

which is usually the second derivative [40] of the transaeditpulse)(¢), as seen in (3.1).

Sampling
Matched-filter ATy, Data
r(t) YA Detection output
e (1) - —
algorithms

Figure 3.3: Receiver block diagram for detecting hybrid direct-seaqasime-hopping UWB signals.

The receiver structure for detection of DS-TH UWB signalhewn in Fig. 3.3. The received
signal is first passed through a MF having the impulse respois(—t). The output of the MF is

then sampled at a rate ©f 7. Hence, ifM number of data bits are detected, the detector can collect
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atotal(M N.N, + L — 1) number of samples for detection, whefe— 1) is due to thel, number of
resolvable multipaths. Specifically, théh sample can be obtained by sampling MF’s output at the

time instantt = Ty + (A + 1)7}, which can be expressed as

-1
_ [ BTy
Y = ( N, )

3.3 Representation of the Received Signal

To+(A+1)Ty,
/ r(r (Bdt,  A=0,1,--- ,MN.Ny+L—2 (3.5)

Let us define

¥y = [o.y1  YMNNy+L—2)" (3.6)

n = [no,n1, MMN.Ny+L—2]" (3.7

Then, according to (3.5), it can be shown that the elemgnh n can be represented as

EyT, To+(A+1)Ty,
ny = / ()i, (0)dt,  A=0,1,--- . MN.Ny+L—2 (3.8)
N, To+AT,,

which is a Gaussian random variable with mean zero and anarie? = N,/2E; per dimension.
Furthermore, upon subsituting the received signal in the fof (3.4) into (3.5), it can be shown that,

after some simplificationg; can be expressed as

K
y = CHb+n=> CiHpb+n (3.9)
k=1
whereb;, = [b((]k), bgk), e ,bgfj)_l]T contains thelM number of data bits transmitted by théh user,

the channel matrix of theth user,H . is given by
H, = dlag{hk,hk,,hk} (3.10)
which is a(M L x M )-dimensional matrix witth, given by the CIR of usek as

T
hy = [hg’ﬂ,hg’ﬂ,...,hgﬁl (3.11)
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The spreading matri€';, of the kth user as shown in (3.9) isjf@V/ N Ny + L — 1) x (M L)] dimen-

sional matrix, which can be expressed in a form as

Cr=

0
c
k
0 c
0 0
0 0

0 0o |
0 0
0
k
ol .
0 CM—l

(3.12)

where each column has\/ — 1) number of0 matrices of(IN.Ny x L) dimension,CEk) is the
spreading matrix corresponding to tik data bit of thetth user, which is &(N N, + L — 1) x L)

dimensional matrix and can be represented as

(

€

(k)
€iNeN,,
oK)
iNeNy+1

o)
iNeNy+L—2

oF)
iNeNy+L—1

o)
iNeNy+L

k)

0

(k)
€iN:N,,

oK)
iNeNy+L—3

o)
iNeNy+L—2

o)
iNeNy+L—1

(k)

i+1)NeNy—1  C(i+1) NNy —2

0

(k)
Cli+1)N.Ny—1

0
0

(k)
€iNeNy,
o)
iNeNy+1
(k)
CiN.Ny

o(8)
(i+1)Ne Ny —L+1
:

€(i+1)NeNy—L+2

(k)
Cli+1)N. N, —1

0

0
(k)
€iNeN,,

o(8)
iNeNy+1

o8
(7«+1)NCN¢;_L
o)
(i+1)NeNy—L41

o)
(i+1)Nch/)_2
E )

k
€(i+1)NeNy—1

(3.13)

where e, will be the product of DS spreading factor and TH-pattern anlll take a value of

{+1, 1,0} depending upon the product of DS and TH-pattern. In morelldb& spreading ma-
trix Cgk) can be structured by Fig. 3.4. From Fig. 3.4, it can be obsethat, if the Ny, of the

number of time-slots per chip is less than the number of vabt® multipaths, then strong inter-chip-

interference ICI exists. By contrast, if the number of reable multipaths is less than the number of
time-slots per chip, the ICl is then less severe. For exangieheith bit of userk is spread over

N. = 3 chips, where each chip is divided infg, = 2 time-slots. Let the number of resolvable
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Figure 3.4: Structure of the spreading mat@(ﬁk) for theith data bit of usek in hybrid direct-sequence time-
hopping UWB systems communicating over the UWB channelénlgaly number of resolvable
multipaths.

multipaths beL = 4. Furthermore, let the TH pattern used for thie bit be (0,1, 1) and the DS
spreading code b@i(()k), dgk), dgk)). Then, it can be shown that the spreading matrix foritheit of

userk can be expressed as

a0 o o
o |4” 0o o0
o |0 [dFo
a1 o o |aP
c=1 1o |adPlo |o (3.14)
d”o | 4P| o
o | d¥lo |aP
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As the spreading matri@'ﬁk) of the kth user for theith bit is known, the spreading matr&;, as

User k
!
NN, +L-1 NelNy
b §
l Z L-1 _ CU‘)
ZZ I !
=
MN.Ny+L-1
4
> [ |-

Figure 3.5: Spreading matri, for the kth user in hybrid direct-sequence and time-hopping UWBesyist

seen in (3.9) for théth user transmitting a block a#/ number of bits can be readily obtained,
which has the structure as shown in Fig. 3.5. As shown in Elg. tBe spreading matri€'y. is a
((MN:Ny + L —1) x ML) dimensional matrix. In order to have a close look of the stmecofC',

let us extend the previous example by assuming thatttheser transmitd/ = 3 data bits within a
block. Let us assume that the TH pattern for the first biftbe, 1), for the second bit bél, 0,0) and
for the last bit bg0,0,1). The DS-spreading code for the first bit('ti%’“), dgk),dgk)) for the second
bitis (a{"),d", d*)) and the for last bit igd", d'*), a{*)), respectively. Then, the DS-TH code for
the first bit is(d", 0,0,d", 0,d"), for second bit i0,d", d'", 0, d*), 0) and for the last bit is
(dék),o,dgk),o,o,dgk)), respectively. In this case, it can be shown that the spngadiiatrixC';, for
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userk can be expressed as

Cy = (3.15)
(¢ o o o]l]o o o olo o o o0]]
o 4 o o|o0o 0o 0o 0|0 0O 0 O
o 0 d” o|lo 0o 0o 0|0 0 0 O
d? o o 4”0 o o o|lO0 0 0 o
o & o o|o0o 0o 0o 0|0 0 0 O
ad” o 4d” o] o o o o]0 o o0 o0
o d o 4”0 o o o|[0 0o 0 O
o 0 d¥ o|d’ o o o]0 o0 0 O
o 0o 0 dP{dP 4P o o0 0o 0 o0
o o o o0 4”7 d4d” o]0 o 0o o
o 0o o 0(d” o 4d” 4P 0o o 0o o
o o o o0 d4” o 4”0 o o0 o
o o o oo o d” o]dP’ o o o
o o o 0|0 o0 o0 d” 0o 4 o o
o o o o|o0o o o old? o 4 o
o o o ©o0|0 0 o0 o0]o0 d” o ¥
o o o o|0 o o o]o0 o 4¥ o0
o o o o|o0o o o old’ o o ¥
o o o o|o0o o o o|o d4d” o o
o o o o|o0o o o o|o0 o 4 o
o o o o|o0o o o o|0 o0 o0 4V

where the first four columns correspond to the first bit, thet fieur columns corresponds to the
second bit and the last four columns correspond to the lasEtmim (3.15) it can be easily observed
that the ISI of the first and last bit is less than that of thedigicbit. From (3.15) we can also be
implied that the ISl increases as the number of multipatbeases. In order to mitigate the ISI, each
bit may be assigned with a different spreading code, so ligatrioss-correlation between the current
bit and the following bit is small. Otherwise, if the sameesating code is used for all bits, then the
cross-correlation between the current and following lsitsigh, which will generate stronger ISI and

make the detection difficult.
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Finally, the spreading matr& of the K users as mentioned associated with (3.9) can be shown as
Fig. 3.6, WhereCZ(.k) is shown in Fig. 3.4. The dimensions@fare((M N.Ny, + L — 1) x (M LK)).

Let us now consider the detection of the hybrid DS-TH UWB algrin the next section.

User 1 User 2 User K

NNy +L-1 NN,

T T 1T
-
f-—

ML ML ML

KML

c? eo o —c

Figure 3.6: Spreading matrixC for the K users supported by the hybrid direct-sequence time-hgppB
system.

3.4 Signal Detection

Despite achieving optimum error performance the optimé&aers [149] are impractical to be im-
plemented due to their high complexity, which grows expdiadip in the order ofO(2M %), where

M denotes the number of bits per detection block Andenotes the number of users supported [150].
Additionally, in optimum detectors, stringent requirentgrsuch as channel knowledge, code wave-
forms of all the users and strict synchronization, are haugktsatisfied, which also make the optimal
detectors impractical to be implemented, especially, ahtiene sense [151]. For this sake, in practice
sub-optimal detectors having relatively low complexitygially desirable [151,152]. For example,

linear detectors [151, 152] having a linear detection cexip} are often the initial options to be con-
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sidered for implementation. Therefore, in this chapterceesider the linear detectors including the
conventional correlation detector and minimum mean squarmr (MMSE) detector.

Since the hybrid DS-TH UWB signals experience both MUI andit&ally, the window selected
for detection of the desired user should span all the bitstréatted by all the users [5]. However, due
to real-time applications and avoiding yielding large geltis often desirable to consider a window
of samplegy; for detecting only theéth data bit [153]. However, when choosing the window size we
should realize that there is a trade-off between the achleygerformance and the window size.

In this section we consider the bit-by-bit detection in thydrid DS-TH UWB system. As the
delay-spread of the considered UWB channel spadata bits as mentioned in Sub-section 3.2.2,
strong ISI may exist in the hybrid DS-TH UWB system. Speciicaccording to our analysis in
Section 3.2, it can be shown that there are (min — 1) data bits before the desired data bit and
min(M — 1 — i,g — 1) data bits after the desired data bit, which interfere with desiredith bit.
Hence, in our bit-by-bit detection, the observations faedtng theith bit of the 1st user, can be

formed by the( N Ny, + L — 1) samples as

Yi = [iNaNy s YiNeNyt15 Y+ ) NNyt L—2) (3.16)

Furthermore, it can be shown thgtcan be expressed as

K
Yi = Cl(l)hqbl(-l) + ZCZ(-k)hka(-k) +n;
————

Desired signal k=2

~—_——
MUI from the ith data bit
K min(M—1,i+g)

K i—1
+3 Y Ahp® S Y W (3.17)
k=1

k=1 j=max(0,i—g) j=it+1
i#£0 iAM—1

MUI+ISI from the bits before bit MUI + ISI from the bits after bit

wheren; = [niNch,nZ—NchH, e ,niNch+L_2]T is the noise vectonggf) is the spreading matrix
associated with thgth bit transmitted before bit Letz = ((N.Ny + L — 1) — (i — j)N:Ny), then
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it can be shown tha@_gf) can be represented as
_ | -
(k) (k) (k)
00 | eGanNNg—1  E(41)NeNy—2 €(j+1)NeNy—z
I (k) (k)
0---0 70 C(j+1)NeNy -1 CUHDNNy—a41 | |
I
cl = | (3.18)
I )
0---0 70 0 (J+1)NCN1,, 1
—_— —_— I_ —_— —_— —_— —_— —_— —_— —_— —_— R -
0---0 O 0 0
I 1 : NNy +L—-1-x
0...0 |0 0 0 1
j | |
I — - \

wherex rows in (3.18) correspond to the lastows ofcg.k)

as shown in (3.13). From (3.18) it can be

observed that as increases, more rows associated with ttiebit interfere with the desiretth bit,

hence causing severe ISI. By contrastzaecreases, fewer rows associated withjthebit interfere

with the desiredth bit, thus, yielding less ISI.
In (3.17)C"
x=((NeNy + L —1) —

0 0 0 0.0
: : : RO
0 0 0 | 0---0
B eg.]j\),ch 0 0 Io...o
c\ — [
J .
I .
k k
egz\)f(:Nz,,+x—2 egz\)chz,,ﬂ_g 0 o0
|
k k
e§]\)7cN¢+w—1 e;]\)/ch+m—2 651\)[
] -
| x L—z '

wherex rows as shown in (3.19) correspond to the firstows ofC

is the spreading matrix corresponding to gtk bit transmitted after bif. Let

j —1)N.Ny). Then, it can be shown thé_I(.k) can be represented as
P J

Nch—i-L—l—w

(3.19)

B
|
(k) of (3.13). Again, whenr

increases, more rows from thih bit interfere with the desiredh bit and cause severer ISI. By

contrast, ax decreases, fewer rows from thth bit interfere with the desireéth bit, which hence
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generate lower ISI.

Let us now consider the detection of thk data bit of thelst user.

3.4.1 Correlation Detector

Correlation detector is also referred to as the conventiorached-filter (CMF) [152], which is a
single-user detector without the ability to remove MUI, E2Id ISI. However, the correlation detector
has the lowest complexity, which requires only the channekkedgeh; and the knowledge about
the spreading matriCEk), in order to detect theéth data bit of thelst user. Specifically, for the
correlation detector, the decision variabalzg) for bgl) of the ith data bit of thelst user, can be

expressed as

K
= ROy = e ) 3 PR i @20
~———

(A
Desired signal k=2

MUI
K min(M-1,i+g)

K
+ 0y Z o) A +Z Z Cg.’“)hkbg.’“)}

k=1 j=max(0,i—g) =i+1
1#0 z#]\f 1

MUI+ISI from the bits before bit MUI+ISI from the bits after biti

and the estimate to th¢h data bit of thel st user is given by
B = sgn( (1)> (3.21)

where sgK) is the sign function. As shown in (3.20), the correlationed&tr experiences both MUI
and ISI. Thus, the error performance of the hybrid DS-TH UWBtem degrades as the number of

users supported increases.

3.4.2 Minimum Mean-Square Error Detector

Multiuser detector can increase the spectral-efficiency afiultiuser system and make it support
more users [83,149]. The minimum mean-square error MMSéctimtis a linear multiuser detector,
which employs a range of advantages. The MMSE detector mbtapf suppressing both the MUI
and background noise. It outperforms the decorrelatingatiet in terms of the achievable BER
performance. Additionally, the MMSE detector can be immabted with the aid of the adaptive

techniques, as shown in the following chapters.
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In the context of the MMSE detector the received signal wegioas shown in (3.17) is pro-
cessed by a complex weight vecwi, in order to detect bibgl) transmitted by the desired uskr

Correspondingly, the decision variable can be expressgtbas54]
2 = wlly, (3.22)

where the optimum weight vectar; is chosen such that it minimises the mean-square error (MSE)
between the transmitted tbiitl) and the decision variablél), yielding [16, 154]

)

J(w)) = argmin E [‘bl(l) _ Z(l)ﬂ

— argmin E [\bg” - w{fy,-ﬂ (3.23)
It can be shown that the optimum weight vecimrin MMSE sense can be expressed as [16, 154]
wy = R;ilryibgm (3.24)
whereR,, is the auto-correlation matrix of the received signal vegtowhich can be represented as

Ryi = E[yzyﬁ]
1 NT & Ak BT
= cWhnf (€V) + Y cOmhf (V) + 2071
k=2

K min(M —1,i+g)

i—1 K
£ e (€)Y Y oWl (e
k=1

k=1 j=max(0,i—g) j=i+1
i#0 i#AM—1

T ~
= ¢Vt (¢V) + R (3.25)

where, by definition,

~ K T K i—1 T
B = Y cPmal () 43 Y cPhaf (€
k=2 k=1 j=max0,i—g)
i#0

K min(M—1,i+g)

_ _ T
+ > Y ePmaf (C) +20 (3.26)
k=1 j=it1
iAM—1

which denotes the autocorrelation matrix of interferenkss moise. Note that, in practicg,, can
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be estimated at the receiver without requiring the knowdealgout the other users. In (3.243)_17(1)
is the cross-correlation vector between the transmittedjgﬁi of the desired user and the received

observation vectay;. r,pm can be expressed as [155]
rop = E [yib:(l)} —cWhy (3.27)

Hence, upon subsituting (3.25) and (3.27) into (3.24), fiteraum weightw, for the MMSE detector

can be expressed as [155]

-1

T ~
w, = [C§1>h1h{f (CE”) +R;| oWy (3.28)
When applying thenatrix inversion lemmave obtaint
T - R
[cf’hlh{f () +Ri| = N (3.29)
1+hf (¢V) R, 'cVhy

Substituting this result into (3.28) yields

R;'cWh,
w1 = T -

1+hf (¢V) R, '¢Vhy

(3.30)

Finally, when substituting (3.30) into (3.22), the deoisuariablezi(l) for bgl) can be expressed as

T . 4
oo () R 3.31
T 1+ nH (W T 5=1 A1) (3:31)
+hf (V) R, 'CPm

7

When approximating:}l) as a Gaussian random variable, then the memﬁlbtan be expressed

as

B[] = wicVhp! (3.32)

)

'Matrix inverse Lemmaif A is a (N x N) matrix andb is a N-dimensional vector, then [16]A —|—be)71 =
A—l
T+6HA- 15
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While the second-order moment can be expressed as

T ~
[cg”hlh{f (C§”) + RI] w, (3.33)

and the variance oa‘l.(l) can be evaluated by

var["] = B|[)] - |8 []]

ol [emnt (00) + Re] wi — [ [wiren] |

2

T ~ T
= wiCcPmhf () wy +wlRuw, — wlCVhihf! (C§1>) w,

7

Furthermore, when we apply (3.31) in (3.32) and (3.34), waiab

T . _
i (60) 7 i

O) -
2] 1+hH (CS’)TR;lcg”hl
M\ 51 A1)
Var [:0] = wf! (o) Ri'clh i (3.35)
(1 +hll (cgl))TR,‘ng”m)

Consequently, the signal-to-interference-plus-noisie (8INR) achieved by the MMSE detector can

be expressed as

BRI

n
%1 B Var [zi(l)}

T . _
— i (V) R;'cVh
= MMSE!-1 (3.36)

where E [[bz(.l)P] = 1 and MMSE denotes the minimum MSE achieved by the MMSE datecto
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which it can be shown given by [156]

MMSE = 1-r/ w

- L (3.37)

T . _
1+l (¢V) B, ¢V

According to the principles of the MMSE detector as aboveved the MMSE detector requires
both the channel knowledge and the knowledge about thedipgeaequences in the context of all

the active users. Let us below analyse the complexity of tneetation and MMSE detectors.

3.5 Complexity Analysis

This section analyses the complexity of both the conveatiaorrelation detector and the MMSE
detector, when they are applied in the hybrid DS-TH UWB syste The complexity is measured
by the number of multiplications and additions that are neguto detect a bit transmitted of by the
desired user. Note that, the number of multiplications afditeons needed to perform certain matrix

operations are given as follows.

e According to [150], multiplication of &M x N) matrix with a (/N x L) matrix requires
M (N —1)L additions and/ N L multiplications. WhenV >> 1, we also havel/ (N —1)L ~
MNL.

e Computing the inverse of a matrix ¢f/ x M )-dimensional, using cholesky decomposition
requires)M? /6 additions and\/3 /6 multiplications.

3.5.1 Correlation Detector

For the correlation detector, as shown in (3.20), the decigariable for detectinggl) can be formed
as

A0 =hil(cM) Ty, (3.38)

Let7T = N.Ny + L — 1. Then, it can be readily shown that the number additions anitiptications
for the operations involved in the correlation detector bamiven as shown in Table 3.1. Therefore,
in order to detect a bit using the correlation detector, dfel humber of additions and multiplications
required i2(L + 1)7.



3.5. COMPLEXITY ANALYSIS 78

Operations | Number of| Number of
additions | multiplications

hit (C§1>)T LT LT

Table 3.1: Number of operations required for the correlation detector

3.5.2 MMSE Detector

When MMSE detector is employed, the decision variable foecteng bgl) is given in (3.22), which
is
_1\H
AV = o (B v (3.39)
The number of multiplications and additions required tofqren the involved operations are sum-
marised in Table 3.2.

Operations Number of Number of
additions | multiplications
1 T
cVhnticV 2LT 2LT
sk cWhnic® 2K —1)LT | 2(K — 1)LT
i k B\ T
> Z,.:rlnaix;%,m C¥hyhf! (C_:§ ’) 9 LKT 99LKT
. . _ _ T
S z”};ﬂé{f{*lv’*f’) CWhyht! (Cg.’“)> 2gLKT 99 LKT
(3 —1
R, 4772 -
R T3/6 T3/6
Ry r ) 72 T2
OB T T

Table 3.2: Number of operations required for the MMSE detector.

Therefore, the total number of additions or multiplicaaequired to detect one bit using MMSE
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detectionisT3/6 + 572 + 2KL(1+29)7 + (L+1)Tor73/6 + 7>+ 2KL(1+29)T + (L+ 1)T
respectively, while the total number of operations for diét® of one bit using MMSE detector is
given by73/3 + 672 + 4K L(1 +29)7 + 2(L + 1)T. Hence, when comparing the MMSE detec-
tor with the correlation detector, the MMSE detector reesif>/3 + 672 + 4K L(1 + 2g)7 more
operations than the correlation detector, in order to detee bit.

Note that, the complexity considered above does not indldefor channel estimation. When
channel estimation is considered, the complexity of botictrrelation detector and MMSE detector
will be much higher. As shown in Tables 3.1 and 3.2, the coriylés mainly determined by the
value of7 = N.N, + L —1, which might be very big. In the following two chapters we aretivated
to reduce the detection complexity in the hybrid DS-TH UWBteyns.

3.6 Performance Results and Discussions

This section provides a range of simulation results to atarse the error rate performance of the
pure TH-UWB, pure DS-UWB and different hybrid DS-TH systerviich employ either the single-
user correlation detector or the MMSE-MUD. In order to coneghese different systems, we use the

following assumptions and system settings.
1) Coherent BPSK baseband modulation;

2) It is assumed that there afenumber of resolvable multipaths and the total average vedei
power over these multipaths are normalised to unity. OuheséL number of resolvable
multipaths, there aré, number of relatively strong paths, which cag&/% of the total average
power transmitted, while the re6k — L) multipaths carry onlyi5% of total average power

transmitted;

3) Each multipath channel is assumed to experience Nakagafading with the fading sever-
ity determined by the value ofi. The fading of thel. multipath channel is assumed to be

statistically independent.

4) In our simulations the Nakagami-fading parameter was assumed torbe= 1, so that the
upper bound BER can be found, since in this case the Nakagadistribution is reduced to

Rayleigh distribution, and the fading becomes less sewréne value ofn increases.
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3.6.1 Correlation Detector

In this section the BER performance of hybrid DS-TH UWB syisie provided and compared with
that of the pure TH-UWB and pure DS-UWB systems, when a singé correlation detector is
employed. Fig. 3.7 shows the BER versus SNR per bit perfoceanf the pure DS, pure TH and
hybrid DS-TH UWB systems supporting = 1, 7 or 15 users, when the UWB signals are transmitted
over uncorrelated Rayleigh fading channels. In our sinmuiat the total spreading factor was retained
to be N.N,, = 128. As mentioned previously in this chapter, when the DS spnggfdictor N. = 1
our hybrid DS-TH UWB system is reduced to the pure TH-UWB aeyst The hybrid DS-TH UWB
system is reduced to the pure DS-UWB system whgn= 1. In our simulations the number of
resolvable multipaths was fixed fo= 15 out of which there aré strong resolvable paths conveying
85% of the total transmitted power. It can be easily observethffig. 3.7 that the hybrid DS-TH
UWB system usingV,. = 8, N, = 16 outperforms the pure DS-UWB and TH-UWB systems. Since
the correlation receiver does not have the capability tpesegs MUI, as shown in Fig. 3.7, the BER
performance of all the three systems becomes worse, whawthber of users supported increases
from K =1, to7 and15.

10

--O- Single User

—o—N_=128, l\&J =1
_A_NC=8, Nw=16 |
—&—N. =1 N =128
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Figure 3.7: BER versus SNR per bit performance of the hybrid DS-TH, pugelDVB and pure TH-UWB sys-
tems using single-user correlation receiver when comnatinig over a Rayleigh fading channels.
The product of time-hopping and direct-sequence spredéuigrs is a constant d¥. N, = 128.
There are a total. = 15 number of resolvable multipaths, out of whigmultipaths have&5% of
the total transmitted power.

Fig. 3.8 and Fig. 3.9, illustrate the BER versus SNR per hitgpsance of the hybrid DS-TH
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Figure 3.8: BER versus SNR per bit performance of different hybrid DS-pdre DS-UWB and pure TH-
UWB systems using single-user correlation receiver wheapsting X = 7 users and com-
municating over a Rayleigh fading channels. The productroétopping and direct-sequence
spreading factors is a constant®f.V,, = 128. There are a total. = 15 number of resolvable
multipaths, out of whict multipaths hav&5% of the total transmitted power.

UWB systems having different combinations of DS and TH sgirepfactors, when communicating
over Rayleigh fading channels. In our simulations we assuthat the UWB systems supported
K = 7and K = 15 users. The number of resolvable multipaths are fixed te- 15, whereb

of which conveyed5% of the total transmitted power. Again the simulation resuit Fig. 3.8 and
Fig. 3.9 show that the hybrid DS-TH UWB system may outperfdh® pure DS-UWB and pure
TH-UWB systems, when certain DS and TH spreading factorauseel. However, from Fig. 3.8
and Fig. 3.9 it can be seen that a trade-off exists betweeD$&epreading factoN, and the TH
spreading factorV,,. Given the total spreading factor of. N, there is an optimum combination
of (N, Ny), which yields the lowest achievable BER specifically, whe value ofN N, = 128,

it can be observed from Fig. 3.8 and Fig. 3.9 that the best B&fpnance is achieved, when we
chooseN, = 8 andN,, = 16.

Fig. 3.10 shows the effect of the number of users supporteth®@BER performance of the
pure DS-UWB, pure TH-UWB and hybrid DS-TH UWB systems at a MR bit of £, /Ny = 14
dB, when communicating over uncorrelated Rayleigh fadimgnoels. We assumed that the number
of resolvable multipaths was = 15, which containedl; = 5 strongest paths conveyirg$% of
the transmitted power. From the results of the Fig. 3.10 veenie that the BER performance of the
hybrid DS-TH systems using\. = 8, Ny, = 16), (N. = 16, N, = 8) or (N, = 64, N,, = 2)is better
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Figure 3.9: BER versus SNR per bit performance of different hybrid DS-pdre DS-UWB and pure TH-
UWB systems using single-user correlation receiver whepsting X' = 15 users and com-
municating over a Rayleigh fading channels. The productroétopping and direct-sequence
spreading factors is a constant®f.V,, = 128. There are a total. = 15 number of resolvable
multipaths, out of whict multipaths hav&5% of the total transmitted power.
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Figure 3.10: BER versus number of usef§ performance of pure DS-UWB, pure TH-UWB and hybrid DS-TH
UWB systems using correlation receiverfat/ Ny = 14 dB when communicating over Rayleigh
fading channels. The total spreading factoMsN,, = 128. The total number of resolvable
multipaths ard, = 15, whereL, = 5 strongest paths convé}% of the transmitted power.

than that of the pure DS-UWB system or that of the pure TH-UW&em. As shown in Fig. 3.10,
the hybrid DS-TH UWB system usiny. = 8 andV,, = 16 achieves the best BER performance. By



3.6. PERFORMANCE RESULTS AND DISCUSSIONS 83

contrast, the pure TH-UWB system achieves the worst BERopmdnce in comparison with all the
other UWB schemes. Additionally, as shown in Fig. 3.10, asiilimber of users increases, the BER
performance of all the UWB systems becomes worse, sincarigkesiser correlation detector does

not have the capability to suppress efficiently the MUI.
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Figure 3.11: BER performance of hybrid DS-TH UWB systems using variousdd8 TH spreading factors
while retaining the total spreading factdi. N, = 128, when communicating over multipath
Rayleigh fading channels. The other parametersfaréV, = 14 dB, the total number of users
supported are fixed th’ = 15.

Fig. 3.11 shows the effect of the number of resolvable matltip as well as the DS and TH
spreading factors, on the BER performance of hybrid DS-THRJSYstems operated at a SNR of
E, /Ny = 14 dB. In our simulations we assumed that the number of usersostgal wask’ = 15, the
number of resolvable paths waswhereL, out of L were the strongest paths that convesty of
the transmitted power. From the results of Fig. 3.11, we festhat, given the total spreading factor,
the total number of resolvable multipaths as well as the rarmob strongest resolvable multipaths,
there exists an optimum hybrid DS-TH UWB scheme, which isabdgof achieving the lowest BER.
For example, whei, = 30 andL; = 10, the best BER performance is achieved by the hybrid DS-TH
UWB system usingV,. = 8 andV,, = 16, respectively. Furthermore, from the results of Fig. 3.11,
it can be observed that the BER performance of all the UWBesystimproves as the number of
resolvable paths increases. Additionally, as the numbezsaflvable multipaths approaches the total
spreading factor olN.V,, = 128, as shown in Fig. 3.11, all the UWB systems considered aphraa

similar BER performance.
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Figure 3.12: BER versus SNR per bit performance of the hybrid DS-TH UWBeysusing correlation re-
ceiver when communicating over Nakagamifading channels. In our simulations, the total
spreading factor wa®/. N, = 128, the DS spreading factor wdé. = 8 and the TH spreading
factor wasN, = 16. The total number of resolvable multipaths wéfe which contained
strongest multipath conveyirg$% of the transmitted power.

Finally, Fig. 3.12 illustrates the BER performance of théiiy DS-TH UWB system, when
communicating over Nakagami- fading channels associated with differentvalues. The other
parameters used in our simulation were the DS spreadingrfat = 8, the TH spreading factor
Ny = 16, and K = 7 or K = 15. From Fig. 3.12, it can be readily observed that the BER
performance improves, as the valuemincreases. This is because increasing the value iofiplies
that the corresponding channel’'s quality improves, rasylh that the BER performance of the hybrid
DS-TH UWB system improves. Let us now consider the errorgreréince of various UWB systems

when multiuser MMSE detector is employed.

3.6.2 MMSE Detector

In this section the BER performance of the hybrid DS-TH UWBteyn using MMSE detection is
investigated and compared with that of the pure TH-UWB ang @S-UWB systems. Fig. 3.13
shows the BER versus SNR performance of hybrid DS-TH UWBeg m8-UWB and pure TH-UWB

system, supportingd = 7 or 15 users, when communicating over uncorrelated Rayleigméndi
channels. Since the MMSE detector is capable of efficientijgating the MUI, ICI and ISI as

shown in Fig. 3.13 the BER performance achieved by the hyib8drH UWB systems is close to the
single-user BER performance bound for the scenarios ceresid The hybrid DS-TH UWB using
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various spreading factors, the pure DS-UWB and pure TH-UW&Besns all achieve a similar BER
performance. As shown in Fig. 3.13, wh&h= 15 users are supported, the BER performance of the
hybrid DS-TH UWB system using/. = 8 and N, = 16 is slightly better than that of the pure DS-
or pure TH-UWB schemes.
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Figure 3.13: BER versus SNR per bit performance of hybrid DS-TH, pure DSBJand pure TH-UWB sys-
tems using MMSE detector, when communicating over Rayléging channels. The param-
eters used in our simulations were the total spreading faéte/. N, = 128, the total number
of resolvable multipaths of. = 15, andL; = 5 strongest multipaths conveyirg§% of the
transmitted power.

Fig. 3.14 studies the effect of the number of users on thesaahle BER performance of different
UWB systems, when communicating over a Rayleigh fading eéksn In our simulations the&, /Ny
was fixed tol0 dB, the total spreading factor was fixed¥@V,, = 128 and the number of resolvable
multipaths wad., = 15 out of which there werd.; = 5 strongest paths conveyirs§% of the trans-
mitted power. The results of Fig. 3.14 show that the BER parémce of all the pulsed-based UWB
systems considered is generally the same, which degraidesysiwhen the number of users sup-
ported increases. When comparing Fig. 3.10 corresponditigetcorrelator detector with Fig. 3.14
corresponding to the MMSE detector, we can readily know tt@tMMSE detector outperforms the
correlation detector in terms of their achievable BER panfince, when supporting multiusers.

As Fig. 3.11 for the correlation detector, Fig. 3.15 studieseffect of the number of resolvable
multipaths and the DS and TH spreading factors on the adilie\BER performance of the hybrid
DS-TH UWB systems. In our simulations, the SNR per bit wasdfit@ £, /Ny = 10dB and the

number of users supported wAs= 15. From the results of Fig. 3.15, it can be observed that, when
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Figure 3.14: BER versus number of usefs performance of pure DS-UWB, pure TH-UWB and hybrid DS-
TH UWB systems using MMSE receiver Bt /N, = 10 dB when communicating over Rayleigh
fading channels. The total spreading factoMsN,, = 128. The total number of resolvable
multipaths ardl, = 15, whereL, = 5 strongest paths convé}% of the transmitted power.
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Figure 3.15: BER performance of hybrid DS-TH UWB systems using variouséD8 TH spreading factors
while retaining the total spreading factdi. N, = 128, when communicating over multipath
Rayleigh fading channels. The other parametersigyéV, = 10 dB, the total number of users
supported are fixed t& = 15.

MMSE detector is employed, the hybrid DS-TH UWB systems gisiarious DS and TH spreading
factors are capable of achieving a similar BER performagisen the total spreading factor is same.

Hence, in practice, the DS and TH spreading factors may hestdj, in order to minimize the
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complexity of the hybrid DS-TH UWB systems. Additionallyevean observe from the Fig. 3.15
that, as the number of multipaths increases, the BER pedafiocen of all the UWB systems improves

due to multipath diversity provided by the UWB channels.
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Figure 3.16: BER versus SNR per bit performance of the hybrid DS-TH UWResysusing MMSE receiver
when communicating over Nakagamifading channels. In our simulations, the total spreading
factor wasN.N,, = 128, the DS spreading factor was. = 8 and the TH spreading factor
was N, = 16. The total number of resolvable multipaths wefe which contained strongest
multipath conveyin@5% of the transmitted power.

Finally, Fig. 3.16 shows the BER performance of the hybrid DEUWB systems, when com-
municating over Nakagami: fading channels associated with differemtvalues. In our simulations
we assumed that the hybrid DS-TH UWB system used a DS spgeéatitor of N, = 8 and a TH
spreading factor ofVy, = 16, and thatK’ = 15 users were supported. We assumed that the UWB
channel had. = 15 number of resolvable multipaths and that there wiefe= 5 strongest multi-
paths, which conveye®s% of the transmitted power. From the results of Fig. 3.16, wesee that,
as them value increases, the BER performance of the hybrid DS-TH W§&em improves, since
the channel quality improves with the increase of the vafue o

Finally, when comparing the results of Figs. 3.7- 3.12 withattof Figs. 3.13- 3.16, we conclude
that the MMSE detector significantly outperforms the catieh detector, when the UWB system

supports multiple users.
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3.6.3 Effect of Channel Characteristics

Above we have investigated the BER performance of the pure pBe TH- as well as the hybrid
DS-TH UWB systems, when communicating over the UWB channelich we mainly assumed
that there werd. number of resolvable multipaths and that thége< . number of strong resolvable
multipath conveying85% of the transmitted power. Below we provide the BER perforaganf

the hybrid DS-TH UWB systems, when communicating over theBJgthannels proposed in the

standards, which were summarised in Table 2.3 and chassztan [29].

10

—©— Channel 1
—%— Channel 2
—8— Channel 3
o —#— Channel 4
10 B —7— Channel Unifor 3

4

10

8
E/N, (dB)

Figure 3.17: BER versus average SNR per bit performance of hybrid DS-THBA¥stem using correlation
detector when communicating over various types of UWB ckéncharacterised in Table 2.3. In
our simulations the UWB channels were assumed to experigagkeigh fading, and the other
parameters werd/, = 16, Ny, = 8 andK = 15.

Figs. 3.17 and 3.18 show the BER versus SNR per bit perforenahtiybrid DS-TH UWB
systems using correlation (Fig. 3.17) and MMSE (Fig. 3.1&gdtors, when communicating over
various types of UWB channels, as characterised in Table [d.3able 2.3 the first four types of
channels are the S-V type of UWB channels proposed in [29]clwhave been analysed in Sec-
tion 2.5.2.2 of Chapter 2. For the uniform channel we assumethere ard. = 15 resolvable
multipaths, which includd.; = 5 strong paths containings% of the transmitted power. In addition
to the above-mentioned, in our simulations we assumed hieaD& spreading factor wds. = 16,
the TH spreading factor wa¥,, = 8 and that the hybrid DS-TH UWB system support&d= 15
users. From the results of Fig. 3.17 and Fig. 3.18 it can berabd that the best BER performance
is achieved by the hybrid DS-TH UWB systems when commumigativer the uniformly distributed
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UWB channels, which havé = 15 resolvable multipaths arél of which posses$5% of the trans-
mitted power. As seen in Figs. 3.17 and 3.18, the hybrid DSUWB systems over the Channel
modeld1 UWB channels are capable of achieving a similar BER perfocaas the systems over the
uniform UWB channels. The BER performance over Channel taddd¢WB channels is slightly
worse than that achieved over the Channel madahd uniform UWB channels. Finally, the BER
performance of the hybrid DS-TH UWB systems over the Chanmadel3 and Channel model-
UWB channels is worse than that of the hybrid DS-TH UWB syst@wver the other types of UWB
channels. For both correlation and MMSE detectors, theithybs-TH UWB systems achieve the

worst BER performance when communicating over the Chanoeletd UWB channels.
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Figure 3.18: BER versus average SNR per bit performance of hybrid DS-TH#)stems employing MMSE
detector, when communicating over various types of UWB ok#sicharacterised in Table 2.3.
In our simulations the UWB channels were assumed to exparienltipath Rayleigh fading and
the other parameters wefé. = 16, Ny, = 8 andK = 5.

3.7 Summary and Conclusions

In this chapter hybrid DS-TH UWB system is proposed and itigated along with its two special
cases, namely the pure DS-UWB system and pure TH-UWB sydtdms been shown that the hy-
brid DS-TH UWB system is capable of providing more degreefeddom for system design and
reconfiguration than the pure DS-UWB system or pure TH-UW8eay. The transmitted signal,
followed by the UWB channel model as well as the receiver rhfmtehe hybrid DS-TH UWB have

been presented. Furthermore, the BER versus SNR per barpemce of the hybrid DS-TH UWB
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systems, pure DS-UWB systems and the pure TH-UWB systenss lbeen investigated, when the
user signals are transmitted over the UWB channels modbildtie Nakagami» fading. Further-
more, in this chapter our study has been based on the assusfttiat the delay-spread of the UWB
channels may span several bit durations and that thereaeRistje number of resolvable multipaths
at the UWB receiver. In this chapter the BER performance hadmplementation complexity of the
UWB system have been investigated, when either the caoeldetector or the multiuser MMSE
detectors are employed. From our analysis and performaeméts, we may draw the following

conclusions.

¢ Single-User Correlation Receiver:The correlation detector conflicts both MUl and I1SI, when
communicating over UWB channels. The BER performance ofuiiliB systems degrades
significantly, as the number of users supported increasehelhybrid DS-TH UWB systems
using the single-user correlation detector, a trade-afftexetween the DS and TH spreading
factors. It can be shown that the best BER performance ofythechDS-TH UWB system may
be achieved by appropriately choosing the DS and TH sprgdédtiors. The hybrid DS-TH
UWB systems using the optimum DS and TH spreading factoqgeoigrm the corresponding
pure DS-UWB and pure TH-UWB systems. The complexity of theglg-user correlation
detector is proportional (L +1)7, where7 stands for(N. Ny + L —1). Hence, in the pulse-
based UWB systems, even the single-user correlation deteety demand a high complexity,
due to the high number of resolvable multipaths of the UWBhcleds.

e Multiuser MMSE Receiver: It can be shown that the MMSE detector is capable of mit-
igating efficiently the MUI and ISI. When supporting mulplsers, the multiuser MMSE
detector significantly outperforms the single-user catieh detector in terms of their achiev-
able BER performance. However, the complexity of the MMSEed®r is significantly
higher than the correlation detector. The complexity of MMSE detector is proportional
to 73/3 + 672 + 4K L(1 + 29)7, where, again] = (N.Ny + L — 1). It can be observed
from the simulations results that the BER performance oftlinee types of UWB systems
considered is in general similar, when the MMSE detectomipleyed. However, for some
special cases as seen, for example in Fig. 3.13, the hybrs@HDBWB system may slightly
outperform the pure DS-UWB or pure TH-UWB system. In corittashe single-user correla-
tion detector, which only requires the channel and spreadade’s knowledge of the desired
users, the MMSE detector considered in this chapter regjtive complete knowledge about

the spreading codes and the channels of all the active usengler to detect the desired user.
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Therefore, the MMSE detector considered in this chaptextremely hard to be implemented,
considering the characteristics of the UWB channels, whstally have a huge number of
resolvable multipaths when each of the resolvable muhigoabnveys very low power. For this
sake, therefore, in Chapters 4 and 5, we will focus our atterdgn design of low complexity
detectors for the hybrid DS-TH UWB systems.



Chapter

Adaptive Detection in Hybrid DS-TH UWB

Systems

4.1 Introduction

In our previous chapter, it has been shown that in order toorgthe BER performance of hybrid DS-
TH UWB systems, especially, in multiuser scenarios, MMSBDshould be employed. As shown
in Chapter 3, when employing the MMSE-MUD, the weightingteeav is required to be computed
which needs to invert the auto-correlation mafy , which is((N.Ny+L—1) x (N.Ny+L—1)) di-
mensional. However, the complexity of computiﬁgi1 might be very high, since the valuesS{.N,,
and L are usually high. Furthermore, in order to implement the MBVMUD, signature waveforms,
delays as well as complete channel knowledge, which insldm¢h the amplitudes and phases of
all the channels, of all the active users are required by thdSHE-MUD [157-161]. However, in
practical UWB communications environment, it is usuallyresnely hard to obtain this informa-
tion [16, 162—-164]. For example, when using channel estimatchniques to estimate the UWB
channels, it has been found that there are as larg@@parameters required to be estimated in a
typical UWB indoor channel [14]. Without any doubt, estiingtsuch a large number of parameters
will further increase significantly the system complexityhich is already too high even when de-
tection is only considered [165]. Additionally, it is wedhown that channel estimation has a critical
impact on the attainable performance of the wireless systdinis becomes even severe when UWB
communications are considered, since in the UWB systempdiver conveyed by each resolvable

multipath is usually very low, making its estimation evendwa [68, 166—171]. Therefore, in this
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chapter adaptive detection that is free from channel eftbmé proposed for detection of the hybrid
DS-TH UWB signals.

To be more specific, in this chapter we propose and investigahnge of training based adaptive
detectors operated based on the principles of MMSE [152h®hybrid DS-TH UWB systems. We
focus our attention on the three types of low-complexitypdidta detectors, which are implemented
based on the principles of least mean-square (LMS), nozedlieast mean-square (NLMS) and
recursive least square (RLS), respectively [16]. As outhftsming discourse shown, these adaptive
detectors are free from channel estimation and are capdldehieving the approximate MMSE
solutions with the aid of training sequences of certain flengln this chapter we investigate the
achievable BER performance of the adaptive detectors amghaee it with that of the ideal MMSE-
MUD [172], which demands ideal knowledge about the UWB cledsiand the signature sequences
of all active users [152,157], as shown in the last chaptiee BER performance of the hybrid DS-TH
UWB, pure DS-UWB and pure TH-UWB systems, which employ thevabmentioned adaptive/ideal
detectors, is investigated, when communicating over inddé/B channels modelled by the S-V
channel model [13, 117]. The advantages and disadvantdgiae aonsidered adaptive detectors
are analyzed in the context of UWB communications. Furtloeenthe complexity of the adaptive
detectors is analyzed and compared with that of the singge-correlation receiver and also with that
of the ideal MMSE-MUD considered in Chapter 3.

Our study in this chapter shows that the three types of agapietectors are highly efficient
detection schemes for pulse-based UWB systems. They &é&dm channel estimation and can ef-
fectively capture the transmitted energy dispersed oveBUWannels. They are capable of achieving
a BER performance close to that achieved by the ideal MMSH>MELUrthermore, as our forthcom-
ing complexity analysis shown, the detection complexitgrmfidaptive detectors may be significantly
lower than that of the correlation receiver, even witholirtg account of the complexity required by
the correlation receiver for channel estimation.

The remainder of the chapter is organised as follows. In &x¢ section, the general description
for the training-based adaptive detectors is describe8ettion 4.2 the training and decision-directed
detection modes are described in detail. Specifically, tfiSL.NLMS and RLS adaptive detectors
are studied in Sections 4.2.1, 4.2.2 and 4.2.3, respegtiveSection 4.3 the complexity of the LMS,
NLMS and RLS adaptive detectors are analysed. Simulatisultseare provided in Section 4.4 and
finally, in Section 4.5 the summary and conclusions of thetdreare presented. Let us first consider

the training based adaptive detectors.
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4.2 Description of Training-Based Adaptive Detectors

The training-based adaptive detectors are usually ogkirateyo modes. The first mode is the training
mode, during which the weights of the adaptive filters arestdd with the aid of training symbols.
In the context of the hybrid DS-TH UWB communications, traring symbols are first spread based
on the principles of that described in Chapter 3 by invokidgSspreading sequence of length
and a TH pattern of lengtly,,. Then, when the training sequence is transmitted over UWiBicéls,
the receiver can obtain the observation samples, as sho{@&Gnin Chapter 3. After the receiver
obtains(N.Ny, + L — 1) number of observation samples in the context of one traisymgbol, the
(NcNy + L — 1) observation samples are processed multiplying it witivaNV,, + L — 1) length
weight vectorw, in order to provide an estimate for the training symbol cdestd. As the training
symbol is known to the receiver, it is then subtracted froengbtimated symbol to yield an estimation
error, which is utilised to update the weight vector. The above process is repeated associated with
each of the training symbols. Finally, after the training agproximate solution for the weight vector
w is obtained.

After obtaining a sub-optimal weight vectar; with the aid of training, the adaptive detector
can now be switched to the signal detection mode. During itieakdetection stage the adaptive
detector is operated under decision-directed (DD) modedetithe DD mode, the received signal
is multiplied by the sub-optimal weight vectar; to provide estimates to the transmitted symbols.
Then, the detected symbols are fed-back to the adaptivetdetevhich makes use of the detected

symbols to further improve the weight vectog [173].

Samplin
Matched-filter )\ﬂp 9 y,; "
r(t) Yn »| Traversal filter % [ b
— ] W () —a/_> Buffer E wl (i) ! Ro(z) | J
A Decision
Directed
Adaptive e(?) N ° Training
Algorithm Oh Sequences

Figure 4.1: lllustration of the training based adaptive detector fer tiybrid DS-TH UWB system.

The concept of the adaptive detector for the hybrid DS-TH UgyBtems can be further aug-
mented by Fig. 4.1, where the traversal filter is shown ingipile in Fig. 4.2. During the training
stage, the data known to the receiver is first transmitted thee UWB channel. At the receiver as

shown in Fig. 4.1, this received signal is first passed thnoagnatched-filter having the impulse
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Figure 4.2: Schematic for traversal filter implementation.

response);..(—t) and is sampled to obtain observation samples. For each idtee veceiver can
obtain (N.Ny, + L — 1) samples, which are stored in the buffer as shown in Fig. 4tienTthe ob-
servation samples are input to the traversal filter, in otdgield the estimatei(l) to the transmitted
data bitbgl). As the training sequence is known to the receiver, sbél?s hence, an estimation error
can be calculated, which is the desired training bit subdchfrom the estimationi(l). As shown in
Fig. 4.1 this error signal is utilised to update the weight5 of the traversal filters so that the weight
vector converges to the optimum weight vector.

After the training mode is completed and a sub-optinral is achieved, the receiver is then
switched to the DD mode. During the DD mode, the adaptivecti@tés operated in the same way
as it is during the training mode, except that now the weiglttor is updated with the aid of the
detected data bits, which might be unreliable.

Note that, when designing adaptive detectors for UWB sysié¢ne following factors are required

to be considered.
e Convergence speed;
e Tracking ability;

e Robustness of the algorithm;
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e Computational Complexity.

First, when designing adaptive detectors for UWB systemst, donverging algorithms are re-
quired. With fast converging algorithms the overhead irediduring the training mode can be re-
duced, thus increasing the data-rate of the UWB systems-[I7&}. However, in UWB systems the
number of taps of the traversal filter may be very large duegsible high spreading factor and large
number of resolvable multipaths. It has been shown in [178],Xhat the convergence of an adaptive
algorithm depends on the filter length. The convergencedspseally decreases with the increase of
the filter length. Secondly, in most adaptive algorithmsdhe a tradeoff between the convergence
speed and the ensemble-average squared error (EASE)r BHISE is achieved in most cases with
a faster convergence. This higher EASE also leads to a wé&Bt [erformance. The convergence
speed of an adaptive algorithm also determines the trackumildy of the adaptive algorithm. The
tracking ability of an adaptive algorithm represents theatslity to track the statistical variation in a
nonstationary environment [16]. Therefore, when the adajtgorithm has accomplished its train-
ing mode, a robust tracking algorithm is required to track tiime-variant environment. In UWB
communications, due to a huge bandwidth employed, thereomayhuge number of resolvable mul-
tipaths present at the receiver [14]. In this case, a faskiimg algorithm must be employed by the
adaptive detectors for UWB systems, so that the multipaghads can be reliably tracked. Thirdly,
robust algorithms are required for detection in UWB envinemts. This requirement is further neces-
sitated by the fact that the UWB systems are usually requoem-exist with other narrowband and
wideband systems, which typically transmit with higher poas compared to the UWB systems. For
example, in cellular communications environment, cetlplones transmit up te-30 dBm, which
is 107 times higher than the PSD of the UWB signals [62]. Hence, ithstigh interference en-
vironments, the desired adaptive algorithms should bestoloucombat the interference caused by
the narrowband and wideband communication systems. Addill, strong IS| exists due to a large
number of multipaths, hence, the adaptive algorithms shibellrobust to the ISI. Finally, in practical
UWB systems, the computational complexity of the receigbisuld be very low. In this chapter, we
will show that the adaptive detectors are capable of progidietter BER performance as compared
to the matched filter receiver. However, the better BER perémce is achieved at the expense of
a slightly increased detection complexity [179, 180]. Letnow discuss the adaptive algorithms by

first considering the LMS detector.
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4.2.1 Least Mean Square Adaptive Detector

The LMS algorithm was first proposed by Widrow and Hoff, whilg16] Haykin derived the LMS
algorithm by using the steepest descent method. The basioidhe LMS algorithm is to find a sub-
optimal weight vectotv; through stochastic gradient techniques, in order to aeHi#MSE between
the transmitted symb(blgl) and the decision variablél) as shown in (4.1). Hence, the cost-function

J(w1 (7)) in the context of the desired uskat theith transmission can be represented as [16]

Jwi(i) = Bl — 2112 = El|p"Y) — wl i)y’

wherealf(l) = 1 is the variance of the desired symbol vector amdi) denotes the weight vector
at theith transmission symbol duration. With the aid of the steedescent algorithm, the weight
vectorw (7) is successively adjusted in the direction of the steepestethe, which is opposite to that
of the gradient vector of the cost function. Therefore, thdated equation for the weight vector can

be expressed as [16]
. A
wi(i+1) =wi(i) - 5#9(2) (4.2)

wherew (i) andw (i + 1) are the weight vectors at time instarand (i + 1), respectivelyu is the
step-size ang(i) denotes the gradient vector of the cost functitiw, (¢)), which can be expressed
as [16]

N _ OJ(wy(7))
g(i) = VJ(wi(i)) = Dwi (i) (4.3)
Upon substituting (4.1) into (4.3), we obtain [16]
g(i) = =2r o + 2Ry w1 (i) (4.4)

Furthermore, upon substituting (4.4) into (4.2), we haewieight update equation
wi(i+1) =w(i) + ,u[ryib(;) —R,wi(i)], i=0,1,2,--- (4.5)

According to the above analysis, we know that the LMS albaritletermines the MMSE solution
recursively. In practice the exact measurement of the gradiector of (4.4) are not available, as the
a-prior knowledge about the auto-correlation maf@ly and the cross-correlation vecmyr,b@ are

not known at the receiver. Therefore when operated in anawkrenvironment, the gradient vector
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has to be estimated with the aid of the received data. Spabjfithe one-step estimations to the

auto-correlation matri,, and the cross—correlationy L1 can be expressed as [16]

R, = yu
ram = il (4.6)

wherebz(.l) is known to the receiver, when using the adaptive receivénértraining mode, while it
can be estimated when using the adaptive receiver in the Diiemdowever, the detected bit might
be unreliable.

Upon substituting the estimates of the auto-correlatiotrim®,, and the cross-correlatim; e
as shown in (4.6) into (4.3), the one-step estimate to thaigmaof.J (w4 (7)) can be expressed as [16]

N N (1) o H .
9(i) = VJ(wi(i)) = —2y:b;" + 2y:y; w1 () 4.7)

Moreover, when substituting (4.7) into (4.2), the recugsbguation for updating the weight vector

can be expressed as

wi(i+1) = wi(i)+ pyb]Y — yFw (4)

= wi(0) + b} — wil i)y,

= wii) + pyie’ (i) (4.8)
where, by definitiong(i) = bgl) — w! (i)y;, which denotes the estimation error at ttie updating
step.

It has been shown that the convergence rate of the LMS ahgois above-described depends on
the step-size employed and the statistics of the inpubvegt{181-185]. In order to attain an opti-
mum convergence speed, an appropriate step-size valuradds to be determined, which is usually
very difficult to find in a non-stationary communication enawiment [16]. In the non-stationary com-
munication environment, an appropriate step-size peifayrwell in a given environment might not
be suitable for another environment. In the LMS adaptiverdgm, the step-size is directly propor-
tional to the misadjustment of the algorithm, which is ddlie the ratio between the excess MSE
and the MMSE [154]. It can be observed that when using a lastggr-size, faster convergence is
achieved, which reduces the length of the training sequandemproves the spectral-efficiency of

the UWB system. However, a large step-size leads to a higheadustment, resulting in a higher
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MSE value or divergence of the algorithm. For this sake, distep-size is required which however,
reduces the convergence speed and the spectral-efficiéribg & WB system [186]. Concerning

the effect of the input vectay;, when the input vectay; becomes longer, the LMS algorithm easily
suffers from the gradient-noise amplification problem [Fdhally, although its implementation com-
plexity is low, the LMS algorithm however, has a relativetyv convergence speed, which implies
relatively long training overhead and hence relatively thvoughput [179]. However, the complexity
of the LMS algorithm is low [16], which will be discussed intd# in Section 4.3.

The LMS adaptive detector can be summarised as follows.

0 Parameters

: : 2
1 = a suitable step-siz®,< y < ——-.
Elly:[?]

O Initialisation:

w1 (0); w1(0) = 0, when withouta-prior knowledge.

0 Weight vector update
Fori =0,1,2,..., compute
estimation errore(i) = bgl) —wll (i)y;, and

weight vectorw (i + 1) = w1 (2) + pyie* ().

Let us now describe the NLMS adaptive detector.

4.2.2 Normalised Least Mean Square Adaptive Detector

The normalised least-mean square (NLMS) also belongs teategory of stochastic gradient al-
gorithm, and like LMS adaptive algorithm the associatednoigation criteria is the MMSE [178].

The NLMS algorithm was proposed independently by NagumoNuwh [16] and Albert and Gard-
ner [16] in 1967. Originally, the NLMS adaptive algorithm svproposed in order to mitigate the
gradient noise amplification problem, which the LMS alduritsuffers from, when the input vector
y; is long [16]. It has been shown that the NLMS algorithm is maraust than the LMS adaptive
algorithm, since the gradient noise amplification problean be mitigated in the NLMS adaptive
algorithm [16, 179]. Consequently, the NLMS adaptive althon is capable of achieving a rela-

tively high convergence speed, no matter whether the inpt# i$ correlated or uncorrelated [16].
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Furthermore, the NLMS adaptive algorithm is independerthefvarying communications environ-
ment [186, 187]. Additionally, the NLMS adaptive algorithencapable of achieving a lower excess
MSE than the LMS adaptive algorithm, when they have an efgriv@onvergence rate [187—-189].

In NLMS adaptive detector, the step-size is time-varyingohlis given by [16]

N_m
p(i) = ST wiE (4.9)

whered is a small positive constant that is introduced to avoid micakoverflow, when the magni-
tude of the input vectay; is small [188, 190]]|y;||? is the Euclidean norm of the input vector which
is time-varying andu is the adaptation constant, which satisfles: ;. < 2. Correspondingly, the
weight update equation in the NLMS adaptive detection catdseribed as [16]

wi(i+1) = wi(i)+ p(i)yie (2)

. i ..
= w(?2) + —F——5Yie (2
O s et @

. I (1) Hy, *
= wi(i) + ———3Yilb; " —wy (1)y; 4,10

Provided that the step-sizeandé are properly set, the overhead incurred by training mode can
be reduced by using the NLMS adaptive detector due to iterfasinvergence rate in comparison
with the LMS adaptive detector, but at the cost of a neglajibhtrease of complexity [16,191]. The
complexity of the NLMS adaptive detector will be discusse&ection 4.3.

Finally, the NLMS adaptive detector can be summarised as:

0 Parameters

1 = a suitable step-siz®,< p < 2.

O Initialisation:

w1 (0); w1(0) = 0, when withouta-prior knowledge.

0 Weight vector update

Fori =0,1,2,..., compute

estimation errore(i) = bgl) —wil (i)y;,

, . . 7 .l
weight vectorw; (i + 1) = w1 (i) + ————5yie” (7).
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According to [192], the main problem with the stochasticdigat algorithms, such as the LMS
and NLMS adaptive algorithms, is their heavily dependentcdehe eigenvalue distribution of the
autocorrelation matrife,, of the input signals. It has been shown [178] that the largehe ratio
between the highest and smallest eigen-values, the slewles iconvergence speed. Hence, the LMS
and NLMS adaptive algorithms might converge very slowly,ewhhe input signals are coloured
noise [192]. Furthermore, as shown in (4.8) and (4.10), thkSland NLMS adaptive algorithms
have only single adjustable parameter whichujsfor controlling the convergence rate [193]. In
order to achieve higher convergence rate, more complexitdges might be required, which have
additional parameters in addition to the step-size to obtitre convergence speed. Let us below
consider the RLS adaptive algorithm, which is capable ofiping higher convergence rate than the
LMS and NLMS adaptive algorithms [193].

4.2.3 Recursive Least Square Adaptive Detector

In this section the RLS adaptive detector [16] is introduftddetection of UWB signals. The RLS
adaptive algorithm is class of adaptive algorithm derivadda on minimisation of the sum of the
weighted squared error. This adaptive algorithm can ekplibithe information contained in the
received data that is invoked in the RLS adaptive algorithience, the RLS adaptive algorithm may
have a substantially higher computational complexity ttienLMS or NLMS algorithm. However,
the RLS algorithm is capable of achieving a significantlyhieigconvergence rate than the LMS or
NLMS algorithm [16, 193]. Let us below develop the RLS adaptlgorithm.

According to the MMSE detection, the optimum weight veatqr:) at time: can be expressed
as [16]

w1 (i) = R;}ryibgl) (4.11)

whereR,, = Z;Zl )\i‘jyiyf{ is the estimate to the autocorrelation matixs the forgetting factor
accounting for the contribution of data. In (4.11) the estianto the cross-correlation vector is given
by T = 23.:1 Ai—jyjbg.l). Explicitly, the autocorrelation matrix and cross-coat&n vector can

be written as

R, = >\Ry(i71) + yiyZ'H

_ (1)
’I‘yin@) = )\ry(iﬂ)bgln +yib; (4.12)

respectively. Using matrix-inverse Lemma, the inversehefduto-correlation matrix can be repre-
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sented as [16]
AR yylR 1

R'=)\"'R;} -~ M U (4.13)

i (i—1) 1+ A‘ly{{Ry(i,Dyi

For convenience of notation, let us define the inverse auteledion matrix as [16]

P(i)=R,! (4.14)
Furthermore, let us define [16]
: ALP>i — 1)y,

k(i) = 4.15
=17 Ay P(i - 1)y (+.19)

as the RLS gain vector [16]. By rearranging the above eguatio

k(i) =A"'P(i — D)y — A 'k(D)y{ P(i — Dy

=[NP — 1) = A k(i)yl P(i — 1)) y; (4.16)

Then, upon applying (4.14) and (4.15) into (4.13), the isgenf the autocorrelation matrix can be
expressed as [16]
P(i)=\"'P6i—1) = X k()ylP@i—1) (4.17)

With the aid of (4.12), it can be shown that the weight veato(i) of (4.11) can be written as

wili) = P, o

= AP(i)r o+ Py (4.18)

Y(i-1)%3i-1) !

Then, substituting (4.17) in (4.18) yields

wi(i) = Pli—Or o —k@yIPli-Dr o +P(iyd"
Yi-1bi-1) Y1)t

_ . _ . 1)
- R r — k(i) R r P(i)y:b;
vin Ty, o, T ROV Ry o PR,

= wi(i— 1) — k()yHw (i — 1) + P(i)y;b: Y (4.19)
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Finally, using the fact thaP(i)y; equals the gain vectds(i), (4.19) can be represented as

wi(i) = wi(i—1)+k@)b"Y —ylw (1)
= wi(i—1)+kG)E(D) (4.20)

where the estimation errgx:) is defined as [16]
g6) = o —wlfi -1y, (4.21)

In order to carry out the RLS-assisted adaptive detectioa,weight vector is required to be

initialized. As in [16], a soft-contrained initialisatiazan be employed, which sets
P0) =611 (4.22)

whereJ is referred as the regularization factor, which is usualgnmall positive constant for a high
SNR, but a relatively large positive constant for a low SNR, [l94]. Furthermore, when no a-prior
knowledge is available, the initial weight vecwr0) is typically set to be a null vector.

The stability of the RLS adaptive algorithm is dependentranfollowing factors [178]
e The initialisation of the inverse autocorrelation matd(0) = 6 1;
e The value of the forgetting factok.

It has been shown that the choice &fis critical for nonstationary communications environ-
ments [178]. It turns out that in the nonstationary commatidns environment the convergence prop-
erties of the RLS adaptive algorithm differ significantlyhewn different values of is applied [194].

A small value of$ leads to instability of the algorithm(overshoot phenomgndliowever, when the
value ofé increases, the convergence speed of the RLS adaptivethigaeduces especially, at the
start of the adaptation [178]. The choice of the forgettiagtdr \ also affects the stability, the con-
vergence speed and the tracking behaviour of the RLS Adaptgorithm [178]. It has been found
that for achieving a stable algorithm a value\ashould be chosen betweegﬂl — m) and

(1 — W) [178]. It has been shown that the RLS adaptive algorithm hadigher com-
putational complexity than the LMS and NLMS adaptive algoris [178, 192]. However, the RLS
adaptive algorithm is more suitable for rapidly time-vagyienvironments than the LMS and NLMS
adaptive algorithms [195]. The computational complexifytlee RLS adaptive algorithm will be

discussed in Section 4.3 along with the LMS and NLMS adagigerithms.
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Finally, the procedure of the RLS adaptive detector is suriz@é as follows.

0 Parameters

A = a suitable forgetting factor is chosen in the range

(1~ ovemirr=) <2 < (1~ rowestr=my)
O Initialisation:
w1 (0); w1 (0) = 0, when withouta-prior knowledge.
P(0) = §~1, wheres is set as a relatively small positive constant for higher SNR

and as a relatively large positive constant for lower SNR.

0 ComputationFori = 1,2, ..., compute

gain vector: k(i) = A PS ,1)% ,
1+ A—lyi P(Z — 1)yz

a-priori estimation error: (i) = bgl) —wll (i — 1)y,

weight vectoraw, (i) = wy(i — 1) + k(4)£*(4),

inverse of autocorrelation matri (i) = A=*P(i — 1) — A~ 'k(i)y  P(i — 1).

Let us now analyze the computation complexity of the adepsilgorithms considered in this

section.

4.3 Complexity of Adaptive Detectors

In this section, we analyze the complexity of the LMS, NLMSldhe RLS adaptive detectors. The
complexity is measured with the help of the number of muttagions and additions required to detect

a symbol of the desired user. As in the last chapter w@setN. Ny, + L — 1.

4.3.1 Complexity of Least Mean Square Adaptive Detector

In adaptive detection, the LMS algorithm, is the most sintplenplement. The estimate of thith
bit of the 1st user can be given as
2V = wll (i)y; (4.23)
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The update equation for the weight vector(i + 1) is given in (4.8), which is
wi (i + 1) = wi (i) + pyie” (i) (4.24)

According to (4.23) and (4.24), it can be shown that the cemxipf for the LMS adaptive algorithm

can be summarised as shown in is calculated as shown in Tdble 4

Operations| Number of| Number of
additions | multiplications
2 T T
e(7) 1 -
pyie* (i) - 2T
wl(i + 1) T —

Table 4.1: Complexity of Least Mean Square (LMS) adaptive detector.

Therefore, in order to detect a symbol of the desired usetatial number of operations required
by the LMS adaptive detector {$7 + 1). Explicitly, if 7 is very large, we can ignorg and the
complexity of the LMS adaptive detector is hericE.

4.3.2 Complexity of Normalised Least Mean Square Adaptive Btector

As shown in Section 4.2.2, in the NLMS adaptive detectionetstimate of theth bit of thelst user
can be expressed as
)

z = 'w{{(i)yi

(4.25)

Correspondingly, the updated equation for the weight vaetd: + 1) is given by (4.10), which is

. . Iz ./
wi(i+1) =wi(i) + ———¥ie (9) (4.26)
J+ [lysl[?
Therefore, the number of operations required by the NLM$themalgorithm can be summarised in
Table 4.2.
Hence, in order to detect a symbol of the desired user, thénamber of operations required is

7T + 2, which can be approximately expressedas if 7 is very large.
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Operations | Number of| Number of
additions | multiplications

20 T T
e(7) 1 -
[lyil I 7-1 T
wl(i + 1) T —

Table 4.2: Complexity of Normalised Least Mean Square (NLMS) adapdistector.

4.3.3 Complexity of Recursive Least Square Adaptive Deteat

For the RLS adaptive detection, tith bit of thelst user can be expressed as

Y = wil i)y, (4.27)

2

where the weight vector is obtained through the update &mjuat

wi(i) = wi(i—1)+ k() ()
ALP(i— 1)y,

= i —1
w (i ) + 1—|—>\‘1y2-HP(i—1)yi

£ (1) (4.28)

as shown in Section 4.2.3 of this chapter. The number of tipeasinvoked in the RLS adaptive
detector are summarized in Table 4.3. Hence, in order t@tat®ymbol of the desired user, the total
number of operations by the RLS adaptive detectadd 2 + 87 + 3, which is approximatelyt 172,

if the value of7 is high.

Let us now provide and discuss the achievable error perfocmnaf the adaptive detectors.

4.4 Performance Results and Discussion

This section provides a range of simulation results chariing the error rate performance of the hy-
brid DS-TH systems employing the various adaptive deteasrshown in Section 4.2. Furthermore,

since both the pure DS-UWB and pure TH-UWB schemes corstipiecial examples of the hybrid
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Operations Number of| Number of
additions | multiplications
20 T T
£(2) 1 -
AP — 1)y, T2 T2 +7T
yIP(i — 1)y, T2 +T T2 +T
L+ A"l PG - 1)y, 1 1
k(i) — T
k(i)&" (4) - T
'wl(z) T —
M@y P(Gi - 1) 2772 3772
AIP(i—1) — T2
P(i) 7?2 —

Table 4.3: Complexity of Recursive Least Square (RLS) adaptive detect

DS-TH UWB scheme, their BER performance is also investijatehis section. In our simulations,

the following assumptions were employed:
1) Coherent BPSK baseband modulation without channel gpdin

2) The energy per symbol was kept constant. The total sprgddctor was constant and was
NN, = 64. Itis worth mentioning again that in this case, the hybrid-TH$ UWB system
is reduced to the pure DS-UWB system wh&p = 64 and NV, = 1, while it is reduced to
the pure TH-UWB system wheN,. = 1 and N, = 64. Furthermore, in our simulations for
the hybrid DS-TH UWB system, the DS spreading factor was fieell, = 16, while the TH

spreading factor was fixed ¥, = 4;

3) For the UWB channels, the number of resolvable multipaths assumed to bk = 15 and
the normalised doppler frequency was sef @, = 0.0001. Furthermore, in our simulations
the S-V channel model was employed, where the channel ga@ns assumed to obey the
Rayleigh distribution. The parameters of the S-V channellehosed in our simulations are
summarised in Table 4.4, where ‘LoS’ means that the chanmeleincontains line-of-sight

(LoS) propagation paths [117].



4.4. PERFORMANCE RESULTS AND DISCUSSION 108

1/A r 07
LoS | 14.11ns | 2.63ns | 4.58ns

Table 4.4: Fitted Saleh Valenzuela Channel Model Parameter

Let us now provide and discuss the performance of the LMS-MBLand RLS-aided adaptive

detectors in the following relevant subsections.

4.4.1 Performance Results Using Least Mean Square Adaptietector

In this section the performance results of the hybrid DS-TWRJsystems using LMS-aided adaptive
detector are presented. Initially, learning curves forrylerid DS-TH UWB system supporting single
or multiple users are depicted, when different step-sireclaosen. Then, BER performance for the
hybrid DS-TH UWB systems are presented, when the LMS adaplatector is employed. In this

subsection, all the simulations were carried out in the Las8rounications environment.

10

Ensemble-average squared error

Ideal MMSE

¢} 100 200 300 400 500
Number of training symbols, n

Figure 4.3: Learning curves of the LMS adaptive detector with differstep-sizeu for the hybrid DS-TH
UWB system supporting single user, when communicating twerS-V UWB Rayleigh fading
channels havind. = 15 resolvable multipaths and a doppler frequerfg§, = 0.0001. The
DS spreading factor isV. = 16, the TH-spreading factor i/, = 4 and the SNR per bit is
Ey/Noy = 10 dB.

Fig. 4.3 shows the learning curves of the LMS adaptive detdor the hybrid DS-TH UWB
system supporting single user when communicating over thel8VB channels having. = 15

number of resolvable multipaths and a doppler frequefidy, = 0.0001. In our simulations, the
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Figure 4.4: Learning curves of the LMS adaptive detector with differstep-sizeu for the hybrid DS-TH
UWB system supportingd = 15 users, when communicating over the S-V UWB Rayleigh fading
channels havind. = 15 resolvable multipaths and a doppler frequerfg§, = 0.0001. The
DS spreading factor isV. = 16, the TH-spreading factor i&/,, = 4 and the SNR per bit is
Ey/Ny = 10 dB.

DS-spreading factor was assumed ta\oe= 16 while the TH-spreading factor was fixedAq, = 4.
Furthermore, the SNR per bit was setg/Ny, = 10 dB. The ensemble average was obtained
from 10, 000 independent realizations. From the results of Fig. 4.3, bee=ove that the convergence
speed of the LMS adaptive detector depends heavily on tipessten. For a large step-size value
of 4 = 0.05, the adaptive detector converges to its steady-state \edtae about100 iterations.
By contrast, when a smaller step-size value, sucl as 0.001 and . = 0.005 is employed, the
convergence speed may be very slow. As seen in Fig. 4.3, when 0.001, the LMS adaptive
detector does not converge even afi@d iterations.

Fig. 4.4 shows the learning curves of the LMS adaptive detdor the hybrid DS-TH UWB
system when communicating over the S-V UWB channels having 15 resolvable paths and
a doppler frequency;7;, = 0.0001. In our simulations the DS-spreading factor wils = 16,
the TH-spreading factor wa¥, = 4 and E,/N, = 10 dB. The ensemble average was obtained
through 10, 000 independent realizations. As shown in Fig. 4.4, the legrmarve fory, = 0.05
converges much faster than the learning curves with the atee-size values. In comparison with
the results shown in Fig. 4.3, the corresponding MSE is amed because of MUI. Furthermore, it
can be observed from Fig. 4.3 and Fig. 4.4, that a relativiglgidr step-size usually results in higher

convergence speed, which hence leads to less number dioitex,aand higher spectral-efficiency of
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Figure 4.5: BER versus SNR performance of the hybrid DS-TH UWB systenpstumg single orK = 5
users, when communicating over Rayleigh fading channeldetfed by the S-V model having
L = 15 number of resolvable multipaths. The other parameters usedr simulations were
faTy = 0.0001, N, = 16, Ny = 4, p = 0.05 andpupp = 0.01. The frame length (FL) was set to
500 or 1000, while the length of the training sequence &8 bits.

the hybrid DS-TH UWB system. However, as the step-size ectliy related to misadjustment of the
algorithm, increasing the step-size also increases thadjuistment of the algorithm which results in
higher MSE values as shown in Fig. 4.3 and Fig. 4.4. Based isrotiservation, in our following
simulations, a bigger step-size is usually employed dutigtraining mode so that the adaptive
detector can converge with a high speed. By contrast, duhedD mode, a smaller step-size is
utilised in order to reduce the misadjustment and conselyutnreduce the MSE. Additionally,
from the results of Fig. 4.3 and Fig. 4.4 we are implied thaadjustment becomes more prominent
when multiple users are supported. Consequently, the aseref spectral-efficiency due to using
small step-size might be used for trade off an improved MSfopaace.

Fig. 4.5 shows the BER performance of the hybrid DS-TH UWBe@yssupporting single or
K = 5 users when communicating over Rayleigh faded UWB chanraling L = 15 number
of resolvable paths. The step-size used during the traimioge was: = 0.05, while during the
DD mode wasupp = 0.01. The DS-spreading factor wag. = 16 and the TH-spreading factor
was N, = 4. It can be observed that the BER performance of the LMS4ass&daptive detector
becomes closer to that of the ideal MMSE detector, as the SidRRases. As shown in Fig. 4.5,
in our simulations two types of frame length were considesehich were500 and 1000. It can

be observed from Fig. 4.5 that, if an appropriate step-sizmiployed the BER performance of the
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hybrid DS-TH UWB systems using a frame length1600 approaches to that of the hybrid DS-TH
UWB systems using a frame lengih0. Note that, since for both cases the number of training bits
was 160, hence, the spectral-efficiency of systems using the fi@mgth of 1000 is 84% while that
using a frame-length dfo0 is only 68%. Furthermore, from the results of Fig. 4.5 it can be observed
that the LMS-aided detector is much worse than the ideal MM6tEe low SNR region. The BER
performance of the hybrid DS-TH UWB systems at low SNR regiay be improved by using longer
training sequences associated with smaller step-size.elAmwin this case the spectral-efficiency of
the hybrid DS-TH UWB systems will be decreased. Additiopdliom the water-fall BER curves as
shown in Fig. 4.5, we are implied that LMS adaptive detedaraipable of efficiently mitigating both
the ISI and MUL.

Fig. 4.6, shows the effect of the step-size used during thenizide on the BER performance
of the hybrid DS-TH UWB systems, when communicating overlh&B channels modelled by the
S-V Rayleigh faded model. In Fig. 4.6.pp = 0 corresponds to without using the DD-mode. It
can be observed from the results of Fig. 4.6 that, for the domplexity LMS adaptive detector,
it is necessary to choose an appropriate step-size in oodactieve a BER performance that is
close to that achieved by the ideal MMSE detector with pérdeannel knowledge. When the LMS
adaptive detector does not update its weights after theirigamode, which corresponds to the case
of upp = 0 there is a significant loss in BER performance in comparisagh the cases using an
appropriate step-size such@asp = 0.01, for weight updating. For a given step-sizeigfp = 0 or
0.01, the BER corresponding to a frame-lendtii. = 500 is slightly lower than that corresponding
to FL = 1000. However, as discussed previously, this better BER peidona is obtained at the
expense of a lower spectral-efficiency, as higher percendhgraining symbols were transmitted in
the former case than in the latter case. Furthermore, tdises Fig. 4.6 explicitly show that the DD
approach can be employed in order to improve the BER perfocmas well as the spectral-efficiency
of the hybrid DS-TH UWB systems. However, if an inapprom@iastep-size is used, as shown Fig. 4.6
the BER performance may become even worse than that of thedddftive detector without the DD
operations. The reason behind this BER performance lobgigtie inappropriate step-size causes a
high misadjustment, as mentioned previously, which furteads to a high MSE. Consequently, the
error probability becomes higher and the receiver may @pititveights according to the erroneously
detected bits with the assumption that they are correct. AAseliable information is fed back, the
erroneously detected bits may make the adaptive detectorwearse due to error propagation. This
is the case especially at low SNR when the BER is higher tiad. As shown in Fig. 4.6 the BER

performance becomes better as the SNR increases. Theriefoight be appropriate to utilise DD-
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Figure 4.6: BER versus SNR performance of the hybrid DS-TH UWB systenpetting X = 15 users, when
communicating over the UWB channels modelled by the S-V &ghlfading model. The other
parameters used in our simulations wére- 15, f;73 = 0.0001, N, = 16, Ny, = 4andu = 0.05.
The frame length (FLJ00 or 1000, while the length of the training sequence vi&8 bits.

mode, if the SNR is sufficiently high, yielding that the BERdsver than10~2. Another possible
solution to this problem is to use soft decisions insteacdhod ldecisions to upgrade the weights of the
adaptive detector. However, using soft decisions may asgréhe complexity of the UWB systems.
Additionally, in order to make the adaptive detector updatevard converging, a smaller step-size
than that used in the training mode may be employed. Fromethdts of Fig. 4.6, we can see that
the BER performance difference for the systems ugiig= 1000 and500 is about1dB when using
no DD-mode. By contrast, when the DD-mode associated mith = 0.01 is employed, this BER
performance difference is significantly reduced.

Finally, Figs. 4.7 and 4.8 show the BER versus SNR performafizarious UWB systems using
LMS adaptive detection and supporting singlé= 5 or K = 15 users. From the results of Fig. 4.7,
it can be observed that the BER performance of the pure D%®e, Pd- and hybrid DS-TH UWB
systems is approximately the same, when step-size andchall parameters are the same. From the
results of Fig. 4.8, it can be observed that the BER perfoomarf the pure DS-, pure TH- and hybrid
DS-TH UWB systems is also approximately the same, when thptag detectors use no DD-mode
operations. However, when the DD-mode is applied with arr@pjate step-size, then, for given
other parameters, the BER performance of the hybrid DS-THUWstem is slightly better than that
of the pure TH- or pure DS-UWB system. Furthermore, from #sults shown in Figs. 4.7 and 4.8,
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Figure 4.7: BER versus SNR performance of the DS-,TH- and hybrid DS-THBBA/stems supporting single
and K = 5 users, when communicating over the UWB channels modellettidys-V Rayleigh
fading model. The other parameters used in our simulati@nein= 15, f37, = 0.0001, u = 0.05
andupp = 0.01. The frame length (FL) was)00 and there wer@60 training symbols per frame.
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Figure 4.8: BER versus SNR performance of the DS-,TH- and hybrid DS-THB&Wstems supportingf =
15 users, when communicating over the UWB channels modellethéys-V channel Rayleigh
fading model. The other parameters used in our simulatiere y;7; = 0.0001, 4 = 0.05, and

L = 15. The frame length (FL) was000 and there wer&60 training symbols per frame.
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we can conclude that the LMS adaptive detection is efficienall UWB systems.

4.4.2 Performance Results Using Normalised Least Mean SqueaAdaptive Detector

In this section, we present the performance results of thedhpS-TH UWB systems employing the
NLMS adaptive detection. All our simulations were carriad im the context of the UWB channels
with LoS propagation. Furthermore, the BER performanceltesf the pure DS- and pure TH-UWB
are provided as special examples of hybrid DS-TH UWB systems

10

Ensemble-average squared error
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Figure 4.9: Learning curves of the NLMS adaptive detector with différadaptation step-sizes when the
hybrid DS-TH UWB systems supports single user and commtescaver the UWB channels
modelled by the S-V Rayleigh fading model. The other parensetereZ;, /N, = 10dB, Doppler
frequency-shiftfy7; = 0.0001, N, = 16, Ny, = 4 andL = 15. The ensemble-averaged results
were taken ovet0, 000 independent realizations of the channel.

Fig. 4.9 and Fig. 4.10 shows the ensemble MSE learning curtleeoNLMS adaptive detector
using different adaptation step-sizesuoéit £}, /Ny = 10dB, when the hybrid DS-TH UWB supports
K = 1 (Fig. 4.9) andK = 15 users (Fig. 4.10). The ensemble average was taken 1@vé00
independent realizations. From the results of Fig. 4.9 dgd4+10, it can be observed that, as the
value of the adaptation step-sizéncreases, the rate of convergence increases. Hence,\adubeof
1 increases, less number of training bits is required for th®IN adaptive detector to reach its steady
state value, and consequently, the spectral-efficienchefhybrid DS-TH UWB systems can be
improved. However, as shown in Figs. 4.9 and 4.10, a higheewa ;. results in faster convergence,
but also leads to a higher MSE value. Based on the above @lieers, it can be implied that variable

step-sizes may be utilised by the NLMS adaptive detectdhaidt can converge to a low MSE value,



4.4. PERFORMANCE RESULTS AND DISCUSSION 115

10

[u=1.0][u=08][n=05] [u=03]

Ensemble-average squared error

¢} 100 200 . 300 400 500
Number of training symbols, n

Figure 4.10: Learning curves of the NLMS adaptive detector with diffaradaptation step-size, when the
hybrid DS-TH UWB system support& = 15 users and communicates over the UWB chan-
nels modelled by the S-V Rayleigh fading model. The otheapeaters werd”, /Ny = 10dB,
Doppler frequency-shiff,7; = 0.0001, N, = 16, Ny, = 4 andL = 15. The ensemble-averaged
results were taken ovén, 000 independent realizations of the channel.

10

, Ideal MMSH
, FL=500

, FL=1000

, Ideal MMSH
, FL=500

, FL=1000

m¢+o¢<|>
XRRRR KX
T T T T T |

[EONON NN

10&

Figure 4.11: BER versus SNR performance of the hybrid DS-TH UWB systenpesttng single ork’ = 5
users, when communicating over the UWB channels modelle8-byRayleigh fading channel
model. The other parameters used in our simulations Wgre= 0.0001, . = 0.5, upp = 0.05,
N, =16, Ny, = 4 andL = 15. The frame length (FL) was set &0 and 1000, respectively,
where the training length (TL) wass0 symbols.

but with the aid of short training sequences.
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Figure 4.12: BER versus SNR performance of the hybrid DS-TH UWB systenpsumg K = 15 users,
when communicating over the UWB channels modelled by theRayleigh fading model. The
other parameters used in our simulations wgfg, = 0.0001, x = 0.5, N, = 16, IV, = 4 and
L = 15. The frame length (FL) was set &0 or 1000, where the training length (TL) wal$0
symbols.

Fig. 4.11 shows the BER performance of the hybrid DS-TH UWBtay supporting single or
K = 5 users, when communicating over the UWB channels modelleithéys-V Rayleigh fading
model. It can be observed from the Fig. 4.11 that the NLMS®aiadaptive detector performs nearly
as well as an ideal MMSE detector requiring perfect channeilsedge when the systems support
single user. However, a BER performance loss of alid& occurs, as the results of possibly using
inappropriate step-size, whdti = 5 users are supported. As shown in Fig. 4.11, the BER curves
are in the presence of water fall, implying that the hybrid D% UWB system with the aid of the
NLMS adaptive detector is capable of efficiently suppregsire MUl and ISI. Furthermore, it can
be observed that the BER performance corresponding to éineeflength ofF'L = 500 is slightly
better than that corresponds #4. = 1000. However, this improved BER performance is obtained
at the expense of a lower spectral-efficiency as analysedopidy in this section. Hence, it can
be concluded that the spectral-efficiency of the hybrid {IWB system might sometimes be
used to trade for the BER performance of the system, a lowexrts-efficiency for a better BER
performance.

Fig. 4.12 shows the BER performance of the hybrid DS-TH UWBtayn supporting<d = 15
number of users when communicating over the UWB channelshsadby the S-V Rayleigh fading

model. From the results of Fig. 4.12, it can be observed tt@BER performance of the NLMS-
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Figure 4.13: BER versus SNR performance of the DS-,TH- and hybrid DS-THBJYstems supporting sin-
gle andK = 5 users, when communicating over the UWB channels modelleg-WyRayleigh
fading model. The other parameters used in our simulatiosr® W7, = 0.0001, x = 1.0,
upp = 0.05 andL = 15, respectively. The frame length (FL) was sel @0 where the training
length wasl 60 symbols.

aided adaptive detector is dependend on the step-sizercfmabe DD-mode. From Fig. 4.12 it can
be inferred that using the DD-mode may enhance the BER peaioce. If no DD is applied, a con-
siderable loss in BER performance occurs, when the SNR s Higwever, it can also be observed
that the BER performance of the hybrid DS-TH UWB system diggsawhen the an inappropriate
step-size for the DD-mode is applied, which results in higeagjustment, or high error probability,
as discussed associated with Fig. 4.6. As shown in Fig. &fi&n an appropriate step-size is applied
by the DD-mode, the BER performance difference correspantb FL= 500 and to FL= 1000 is
very small.

The BER performance of the pure DS-UWB, pure TH-UWB and iy5-TH UWB systems
using NLMS adaptive detection is plotted in Fig. 4.13 whethbite training and DD mode are
employed. From the results of Fig. 4.13 it can be observedhiesBER performance of all the UWB
system are the same when single d&id= 5 users are supported. Finally, the BER performance
of pure DS-UWB, pure TH-UWB and hybrid DS-TH UWB systems supipg X = 15 users is
depicted in Fig. 4.14, when using no DD-mode>( = 0) or using the DD-mode associated with a
step-size fpp = 0.05). It can be observed that the BER performance of the hybrieTBISJWB
system is slightly better than that of the pure DS-UWB or ptite UWB system for bothupp = 0
andupp = 0.05. Furthermore, from the results of Figs. 4.13 and 4.14, itlmaimplied that all the
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Figure 4.14: BER versus SNR performance of the DS-,TH- and hybrid DS-THRM&Ystems supporting =
15 users, when communicating over the UWB channels modelletthéys-V Rayleigh fading
model. The other parameters used in our simulations Wgrg= 0.0001, 4 = 0.5, upp = 0.05
andL = 15. The frame length (FL) was set t000 and the training length (TL) wal0 symbols
respectively.

UWB systems are capable of efficiently mitigating both the INMbd 1SI. Moreover, from the shown
results in Figs. 4.11- 4.14 it can be concluded that the NLM&p#ve detector can be employed
in the context of all the UWB systems considered, in ordemioe@ce their BER performance with

relatively low complexity.

4.4.3 Performance Results Using Recursive Least Square Aplave Detector

In this section, the convergence behaviour and BER perfocmaf the hybrid DS-TH UWB systems
using the RLS adaptive detector are investigated. As in th® &laptive detector the convergence
rate is depended on both the regularization faétand the forgetting factok, the learning behaviour
is hence studied by keeping one of them constant while varttie other. Besides the learning
behaviour, the BER performance of hybrid DS-TH UWB systenmepDS and pure TH-UWB is
investigated, when the forgetting factor is fixedXo= 0.998 and the regularisation factor is fixed
tod = 0.05. As in the previous two subsections, for the LMS and NLMS &gapletectors, in this
section all our simulations were carried out in LoS UWB comination environments. Let us first
show the learning curves of the RLS adaptive detection.

Figs. 4.15 and 4.16 show the ensemble mean-square erromigaurves of the RLS adaptive

detector for the hybrid DS-TH UWB system supporting singlé<o= 15 users, when using different
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Figure 4.15: Learning curves of the RLS adaptive detector using differegularisation factod, for the hybrid
DS-TH UWB system supported single user, when communicatieg the S-V Rayleigh fading
channels. The other parameters wekg' N, = 10dB, Doppler frequency-shiff;7;, = 0.0001,
A=0.998, N, =16, Ny, =4 andL = 15.
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Figure 4.16: Learning curves of the RLS adaptive detector using differegularisation facto#, for the hybrid
DS-TH UWB system supportingg = 15 users, when communicating over the S-V Rayleigh
fading channels. The other parameters wBs¢N, = 10dB, Doppler frequency-shiff;7, =
0.0001, A = 0.998, N, = 16, Ny, = 4 andL = 15.
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regularisation factorg but keeping the forgetting factor fixed fo= 0.998. The ensemble average
was obtained by taking the average o¥r000 independent realizations of the UWB channel. It can
be observed from Fig. 4.15 and Fig. 4.16, that when the fongefactor A is fixed, the regularisation
factor é plays an important role for the convergence of the RLS adagketector. According to [16,
194], the regularisation factor can be givervas Uzi(l — \)%, where the value ok < 0 for low and
medium SNR values. It can be observed thatffes 0.01, which corresponds to a value af > 0,

in both the Fig. 4.15 and Fig. 4.16 an overshoot phenomenasereed, where the RLS adaptive

detector produces a highly fluctuating estimates duringritialisation period.
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Figure 4.17: Learning curves of the RLS adaptive detector using diffefergetting factor), for the hybrid
DS-TH UWB system supporting single user, when communigatirer the S-V Rayleigh fading
channels. The other parameters wekg' N, = 10dB, Doppler frequency-shiff;7;, = 0.0001,
regularisation facto§ = 5.0, N, = 16, N, =4 andL = 15.

Figs. 4.17 and 4.18 show the effect of forgetting factoon the ensemble mean-square er-
ror learning behaviour of the RLS adaptive detector for thierid DS-TH UWB system supporting
single or K = 15 users, when the regularisation factor is fixedite= 5. As mentioned in the
previous section, in order for the RLS adaptive detectordcstable, the value oX must satisfy
(1 —=1/(NeNy+L—1)) <X<(1-1/10(N:Ny + L — 1))). Since for the hybrid DS-TH UWB
system considered, we hay®, N, + L — 1) = 78, the optimum value oA is hence in the range
0.987 < X\ < 0.998. From the results of Figs. 4.17 and 4.18 we can observe théiteagalue of
A increases in the constrained range, RLS adaptive detemtweges to a lower MSE value. How-

ever, this improvement requires that the RLS adaptive tmtbas a higher memory, as the forgetting
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Figure 4.18: Learning curves of the RLS adaptive detector using diffefergetting factor), for the hybrid
DS-TH UWB system supportingg = 15 users, when communicating over the S-V Rayleigh
fading channels. The other parameters wBggN, = 10dB, Doppler frequency-shiff; 7, =
0.0001, regularisation factof = 5.0, N. = 16, N, = 4 andL = 15.
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Figure 4.19: BER versus SNR performance of the hybrid DS-TH UWB systenpsttng single ork’ = 5
users, when communicating over the UWB channels modell¢deb8-V Rayleigh fading model.
The other parameters used in our simulations wegfi¢ = 0.0001, A = 0.998, = 5.0, A\pp =
0.998, N. = 16, Ny, = 4andL = 15. The frame length (FL) was set300 or 1000, respectively,
of which 160 symbols were used for training.

factor A becomes higher.
Fig. 4.19 shows the BER performance of the hybrid DS-TH UW&ey supporting single user
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Figure 4.20: BER versus SNR performance of the hybrid DS-TH UWB systenpsumg K = 15 users,
when communicating over the UWB channels modelled by theRayleigh fading model. The
other parameters used in our simulations wgf€, = 0.0001, A = 0.998, 6 = 5.0, App =
0.998, N. = 16, Ny, = 4andL = 15. The frame length (FL) was set300 or 1000, respectively,
of which 160 symbols were used for training.

or K = 5 users when communicating over the UWB channels modelletidoystV Rayleigh fading
model. It can be observed from Fig. 4.19 that the RLS adajpkdtector is capable of achieving a
BER performance that is close to (abdwaB of difference) that of the ideal MMSE detector with
perfect channel knowledge when either single or five usesssapported. The BER performance
corresponding to both' = 500 and F'L = 1000 is approximately the same, despite the former case
using relatively more training symbols, whichi80/500 than the latter case, which i$0/1000.
Furthermore, the results of Fig. 4.19 show that the RLS adapletector is capable of efficiently
mitigating both the 1SI and MUI, when communicating over U\Wannels.

Fig. 4.20 shows the BER performance of the hybrid DS-TH UWBtay supportings = 15
users and communicating over S-V channel modelled by Rayleiding. In the Fig. 4.20 the term
“No Adaptation” means that the filters are not updated aftEning, therefore, DD approach is not
applied. It can be observed that a gain of at |@al& could be achieved when using thd. = 500
as compared td&'L = 1000 when no adaptation is done. This improved performance ireeeth
at the expense of lower spectral efficiency as more trainBggiesnces are transmitted in the former
as compared to the latter. However, it can be observed thia¢ ifame forgetting factor is used for
the decision directed approach a considerable gain inmegace is realised. Furthermore, it can be
observed that the difference between the BER performané&.of 500 and F'L, = 1000 becomes
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Figure 4.21: BER versus SNR performance of the pure DS-UWB, pure TH-UW® faybrid DS-TH UWB

system supporting single & = 5 users, when

communicating over the UWB channels modelled

by the S-V Rayleigh fading model. The other parameters usedii simulations werg,T, =
0.0001, A = 0.998, 6 = 5.0, A\pp = 0.998 andL = 15. The frame length (FL) was set 1600

of which 160 symbols were used for training.
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Figure 4.22: BER versus SNR performance of the pure DS-UWB, pure TH-UW® faybrid DS-TH UWB
system supportingd = 15 users, when communicating over the UWB channels modellétdy
S-V Rayleigh fading model. The other parameters used iniourlations weref,;7;, = 0.0001,
A=0.998,0 = 5.0, \pp = 0.998 and L = 15. The frame length (FL) was set 1000 of which

negligible.

160 symbols were used for training.
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Finally, in Fig. 4.21 the BER performance of the hybrid DS-UMVB system is compared with
that of the pure TH-UWB and pure DS-UWB systems, when singl& o= 5 users are supported.
From the results of Fig. 4.21, it can be observed that, foistimae set of values dt, N. and N,
the BER performance of all the UWB systems considered isceqipiately the same when the RLS
adaptive detector is employed. Fig. 4.22 shows the BER prence of the pure DS-UWB, hybrid
DS-TH UWB and pure TH-UWB systems, when using or without gdine DD approach. As in
Fig. 4.20, from the results of Fig. 4.22, it can be observed dsubstaintial performance gain can be
achieved when the DD approach is applied to improve the RlZptad detector after the training.
As shown in Fig. 4.22, when the same scenario is considdre®ER performance of all the pulsed-
based UWB systems is approximately the same, when the Rifbiaeldetector is employed. Hence,
we can conclude from Figs. 4.21 and 4.22 that the RLS adagétector may be employed for all
the pulsed-based UWB systems in order to improve their BERpRance. Let us now compare the

BER performance of different adaptive detectors in the segtion.

4.4.4 Performance Comparison of Different Adaptive Detedrs

In this section, the BER performance results of the hybrid T SUWB systems using the LMS,
NLMS and RLS adaptive detectors are presented and compdiest, the learning curves of the
adaptive detectors are depicted, when singlédoe= 15 users are supported by the hybrid DS-TH
UWB system. Then, the BER performance of the hybrid DS-TH UgyBtems is presented, when
different adaptive detectors are employed associated wsgitihg the DD-mode. Note that, all our
simulations were carried out in the LoS UWB communicatiomgrenment.

Figs. 4.23 and 4.24 show the ensemble mean-square erromigamurves of the LMS, NLMS
and RLS adaptive detectors when the hybrid DS-TH UWB systmport single o/ = 15 users at
a SNR of E, /Ny = 10 dB. Specifically, the parameters used in our simulationewef,;s = 0.05,
unrvms = 0.5, Arrs = 0.998 anddrrs = 5.0. The ensemble average was taken oM&r000
independent realizations of the UWB channel. As the resafltBig. 4.23 shown for the single-
user scenario, all the adaptive detectors considered e approximately the same MSE value.
However, as the number of users is increased&’te= 15, as Fig. 4.24 shown, the LMS adaptive
detector performs the worst among the three adaptive deseconsidered. From Fig. 4.24, it can
be observed that the RLS adaptive detector is capable otaging to the lowest MSE value, when
compared to the LMS and NLMS adaptive detectors. This isumxthe RLS adaptive detector has
more degrees-of-freedom than the LMS and NLMS adaptivecttate which make the convergence

rate and MSE of the RLS scheme are not determined by onlyesppaylameter as in the LMS and
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Figure 4.23: Learning curves of the adaptive detectors based on the LM®3Nand RLS principles for
the hybrid DS-TH UWB systems supporting single user whenroamicating over the UWB
channels modelled by the S-V Rayleigh fading model. Theropagameters weré, /N, =
10 dB, Doppler frequency-shiff;7; = 0.0001, N = 16, Ny = 4, L = 15, prms = 0.05,
unoms = 0.5, Agrs = 0.998 anddrrs = 5.0, respectively.
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Figure 4.24: Learning curves of the adaptive detectors based on the LMI$|Nand RLS principles for the
hybrid DS-TH UWB systems supporting = 15 users when communicating over the UWB
channels modelled by the S-V Rayleigh fading model. Theropagameters weré, /N, =
10 dB, Doppler frequency-shiff;7; = 0.0001, N. = 16, Ny = 4, L = 15, prpms = 0.05,
unoms = 0.5, Agrs = 0.998 anddrrs = 5.0, respectively.



4.5. SUMMARY AND CONCLUSIONS 126

10 " ——Ideal MMSE S
-0 LMS E
- NLMS VAN
1S LT RLS ‘ - en
0 2 4 10 12 14

6 8
E/N, (dB)

Figure 4.25: BER versus SNR performance of the hybrid DS-TH UWB systemsngupporting single user,
while communicating over the UWB channels modelled by thé Rayleigh fading model. The
other parameters used in our simulations wéfB, = 0.0001, pzas = 0.05, upprams = 0.01,
UNLMS = 0.05, UDDNLMS = 0.05, 5RLS = 5.0, /\RLS = 0.998, )\DDRLS = 0.998, NC = 16,
Ny =4 andL = 15. The frame length (FL) was set 1600, while the training length (TL) was
160 symbols.

NLMS adaptive detectors.

In Figs. 4.25, 4.26 and 4.27 we compare the BER performanteedfybrid DS-TH UWB sys-
tems employing the LMS, NLMS and RLS adaptive detectors,nithe DD-mode is applied. The
number of users supported was single (Fig. 4.25)= 5(Fig. 4.26) orK = 15(Fig. 4.27), respec-
tively. When the single user case is considered, as showigimR25, the NLMS adaptive detector
achieves the best BER performance among the three adaptieetars considered. Wheki = 5
users are supported, as shown in Fig. 4.26, the BER perfaenainall the three adaptive detectors
is approximately the same when the SNR is sufficiently higly. cBntrast, whenk' = 15 users
are supported, as shown in Fig. 4.27, the RLS adaptive detpetforms the best among the three
detectors.

Let us finally present the summary and conclusions of thiptena

4.5 Summary and Conclusions

In this chapter we have investigated the adaptive deteititire pulse-based UWB systems, illustrat-

ing that the adaptive detection is highly efficient detectior employment in the pulse-based UWB
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Figure 4.26: BER versus SNR performance of the hybrid DS-TH UWB systemsngupporting<d = 5 users,
while communicating over the UWB channels modelled by thé Rayleigh fading model. The
other parameters used in our simulations wéfB, = 0.0001, pras = 0.05, upprams = 0.01,
UNLMS = 0.3, UDDNLMS — 0.1, 5RLS = 5.0, )\RLS = 0.998, /\DDRLS = 0.998, NC = 16,

Ny =4 andL = 15. The frame length (FL) was set 1000, while the training length (TL) was
160 symbols.
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Figure 4.27: BER versus SNR performance of the hybrid DS-TH UWB systemsngupporting’ = 15
users, while communicating over the UWB channels modelgtibé S-V Rayleigh fading model.
The other parameters used in our simulations wegfie = 0.0001, urrs = 0.05, uppryms =
0.01, UNLMS — 0.8, UDDNLMS — 0.1, 5RLS = 5.0, /\RLS = 0.998, /\DDRLS = 0.998,

N, =16, Ny =4 andL = 15. The frame length (FL) was set 16000, while the training length
(TL) was 160 symbols.
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systems. The adaptive detectors are free from channelagimm can effectively capture the trans-
mitted energy that is spread over many multipaths and am@t@pf achieving the BER performance
that is close to that achieved by the ideal MMSE-MUD, whicheateds on the ideal CSI. Furthermore,
the complexity of the adaptive detectors is analyzed, wklobws that the detection complexity of
an adaptive detector may be even lower than that of the sirggle correlation detector, even without
taking into account of the complexity required by the catieh detector for channel estimation. In

more detail, our study in this chapter can be summarisedllasvt

e The LMS adaptive detector is derived based on the stochgistiient algorithms. The basic
principles of the LMS adaptive detector are finding a sulirogit weight vectorw, through
stochastic gradient techniques in order to achieve the MId&&een the transmitted symbol
bgl) and the decision variablf,(l). The procedure of the LMS adaptive detector is summarised
in Table 4.2.1. The complexity of the LMS adaptive detectas lheen calculated in Sec-
tion 4.3.1, which is found to b&5(N.Ny, + L — 1) + 2). Finally, the performance results
of the hybrid DS-TH UWB systems using the LMS adaptive deteare presented in Sec-
tion 4.4.1. Our study and performance results show that M8 hdaptive detector constitutes
one of the efficient detection schemes that can be applidtetpure DS-, pure TH- or hybrid
DS-TH UWB systems. However, the LMS adaptive detector mayadorm well, if the SNR

is relatively low.

e Asthe LMS adaptive detector, the NLMS adaptive detectdsis @erived based on the stochas-
tic gradient principles. In comparison with the LMS adagptiletector, the NLMS adaptive de-
tector can mitigate the gradient noise amplification pnohlerhen the size of the adaptive filter
increases. NLMS adaptive detector can also achieve a higiieergence speed than the LMS
adaptive detector. The operation procedure of the NLMS tagadetector is summarised in
Table 4.2.2. The complexity of the NLMS adaptive detectatiglied in Section 4.3.2, which
has been found to b&(N.Ny + L — 1) + 2). Finally, the learning and BER performance
results of the NLMS adaptive detector has been investigat&ection 4.4.2. Our study and
performance results show that the NLMS adaptive detectoatso be applied to the pure DS-,
pure TH- or hybrid DS-TH UWB systems. Generally, the BER parfance of the NLMS
adaptive detector is found to be better than that of the LMspaek detector.

e The RLS adaptive detector is derived based on the princgfliesst squares, where the weight
vectorw, is chosen to minimize the cost function consisting of the sfirrror squares. The

operation procedure of the RLS adaptive detector is sunsethin Table 4.2.3. Since the RLS
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adaptive detector has more degrees-of-freedom that caselodar controlling the convergence
speed than the LMS and NLMS adaptive detectors, the RLS imdagdtector has the highest
convergence rate among the three detectors consideredconty@exity of the RLS adaptive
detector is considered in Section 4.3.3, which(i$(N.N,, + L — 1)? + 8(N.Ny + L —

1) + 3). The learning and BER performance of the RLS adaptive datdets been studied
in Section 4.4.3. Our study and simulation results shownhttit@ RLS adaptive detector can
be deployed in the pure DS-, pure TH- and hybrid DS-TH UWBeayst. The RLS adaptive
detector outperforms the LMS and NLMS adaptive detectotsrims of their achievable BER

performance.

Finally, Table 4.5 illustrated the complexity required by different detectors for the hybrid DS-
TH UWB systems. From Table 4.5, we can observe that the cotylaf both the LMS and NLMS
adaptive detectors is significantly lower than the singlericorrelation detector, even without consid-
ering the complexity required by the correlation detectwrdhannel estimation. The complexity of
the RLS adaptive detector is slightly higher than that ofdbieelation detector, however, it is signifi-
cantly lower that that of the ideal MMSE detector, which aisgquires channel estimation. Therefore,
we conclude that the adaptive detectors considered inllajgter may be beneficial to UWB commu-
nications. They are free from channel estimation, relstik@v complexity and efficient for achieving

a reasonable BER performance.
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Detection Spreading | Number of resolvable Selected| No. of operations for
Scheme factor, N.Vy, multipaths,L rank,U detecting one bit
15 78 2496
Correlation 64 100 163 32926
detector 15 142 4544
128 100 227 45854
15 78 176670
Ideal MMSE 64 100 163 1523780
detector 15 142 1015350
128 100 227 4054300
15 78 391
LMS adaptive 64 100 163 816
detector 15 1423 711
128 100 227 1136
15 78 548
NLMS adaptive 64 100 163 1143
detector 15 142 996
128 100 227 1591
15 78 67551
RLS adaptive 64 100 163 293566
detector 15 142 222943
128 100 227 568638

Table 4.5: Complexity comparison of different detectors for the hghidiS-TH UWB system.



Chapter

Adaptive Reduced-Rank Detection for
Hybrid DS-TH UWB System

5.1 Introduction

One of the major challenges in pulse-based UWB communitaii® to design the low-complexity
receivers, which are capable of achieving a reasonable BERrmance [1, 29, 32, 34]. However,
as the MDP in UWB communications environment is generalbrsp [29], there are usually a large
number of resolvable multipaths that are required to beiemtdjiy the receiver in order to achieve
good BER performance. Hence, as shown in Chapter 3 even Wwhaohventional single-user corre-
lation detector is employed, the complexity might still ewhigh, since a huge number of multipath
channels are required to be estimated and the detectionlexitypalso increases linearly with the
number of resolvable multipaths [90]. Furthermore, the BieRormance of the single-user correla-
tion detector deteriorates as the number of users increassisown in Chapter 3 [148]. In order to
improve the BER performance, MUDs, such as MMSE MUD, may bpleyed by the pulse-based
UWB systems at the expense of higher complexity. The MMSEEMSb capable of automatically
combining all the multipaths presenting within the timeation of an observation window [172],
which retains a constant complexity for the MMSE-MUD. Feriore, the MMSE-MUD is conve-
nient to be implemented using low-complexity adaptive téghes [16, 196], yielding the adaptive
detectors such as the adaptive LMS, NLMS and RLS detect@tudid in Chapter 4.

As shown in Chapter 4 adaptive detectors are free from chastienation and are capable of

achieving the approximate MMSE solutions with the aid ohireg sequences of certain length [197].

131
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The efficiency of an adaptive detector can be characterigdts lzonvergence speed, BER perfor-
mance, robustness and implementation complexity [16].0Ading to the adaptive filter theory [16]
and also our study in Chapter 4, the above-mentioned clegistats are dependent on the length of
the traversal filter involved. In general, a longer travefitzr results in lower convergence speed,
which in turn means that a longer sequence is required to tinai filter. Consequently, the data-rate
and spectral-efficiency of the corresponding communioati&ystem decreases. The robustness of an
adaptive filter also degrades as the filter length increasese it requires to estimate more channel-
dependent variables [16, 157,198, 199]. Furthermore, @srsin Chapter 4 when a longer adaptive
filter is employed, the computational complexity is alsaigig since more operations are required for
the corresponding detection and estimation. Due to th@nsass above-mentioned, therefore, in this
chapter reduced-rank techniques are proposed for theiaslaetection of the hybrid DS-TH UWB
signals, in order to achieve low-complexity detection ibtg¢ DS-TH UWB systems.

To be more specific, in this chapter three types of reduceki-tachniques are investigated in
the contexts of the RLS adaptive detection in the hybrid BBUWB systems. The reduced-rank
schemes are derived based on the principles of principapooent analysis (PCA), of cross-spectral
metric (CSM) and of Taylor polynomial approximation (TPAgspectively [151,172,196, 200, 200—
204, 204-209]. The BER performance of the hybrid DS-TH UWBLtaems using the reduced-rank
RLS adaptive detection is investigated, when communigativer UWB channels modelled by the
S-V channel model [117]. Furthermore, the implementatimmglexity of the full-rank ideal MMSE-
MUD studied in Chapter 3, the full-rank RLS adaptive detecfcChapter 4 and the various reduced-
rank RLS adaptive detectors is analyzed and compared.

In comparison with the full-rank adaptive detectors stddieChapter 4, the reduced-rank adap-
tive detectors have the following advantages when they kel in the hybrid DS-TH UWB sys-

tems.

1) Convergence Speedin UWB communications the adaptive detectors are usuelijyired to
converge fast, so that the overhead incurred for trainisgast. In the hybrid DS-TH UWB sys-
tems using a DS-spreading factd. and a TH-spreading factdy,, and communicating over
an UWB channel having. resolvable paths when the full-rank adaptive detector isiciered,
the length of the traversal filter {§V. /N, + L — 1). Owing to possibly a high spreading factor
of N.Ny, and/or a huge number of resolvable multipathsf the UWB channels, the length
of the traversal filter may be extreme. Consequently, theargence speed of the adaptive de-

tectors might be very low, since the convergence speed ofi@gtiae is inversely proportional
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2)

3)

4)

to its length [16,32,157,178,198,199, 210, 211]. By casttrahen the reduced-rank adaptive
detector is employed the traversal filter may be signifigestiorter thar{/N. N, + L — 1) of the
traversal filter’'s length for the full-rank adaptive detacf83, 157, 210, 212-216]. Therefore,
the convergence speed of the reduced-rank adaptive deteatobe significantly faster than
that of the corresponding full-rank adaptive detector. $&guently, the reduced-rank adaptive
detector may use relatively short training sequences,wihiturn results in higher data-rate or

spectral-efficiency than the corresponding full-rank aidemetector.

Achievable BER Performance Our study and simulation results in this chapter show that,
for given system parameters, the hybrid DS-TH UWB systenisgueduced-rank adaptive
detectors are capable of achieving a similar BER performasdhat of using full-rank adaptive
detector, provided that the rank, s&y of the subspace used for detection, which is hence
referred to as detection subspace, is sufficiently high. éctiSn 5.4 performance results and

more detailed analysis will be provided in the context ofthgous reduced-rank techniques.

Robustness:According to the adaptive filter theory [16], the robustnetan adaptive algo-
rithm usually becomes worse, when the length of its cornedipg traversal filter increases.
Our reduced-rank adaptive detectors for the hybrid DS-THBJSYstem only require to find
U estimates for thé/-length traversal filter, instead of findingv. N, + L — 1) estimates in
the full-rank adaptive detector. Furthermore, due to treatteristics of UWB channels, there
are many resolvable multipaths conveying only very low powEhe low-power resolvable
multipaths are hard to be acquired by the full-rank adapd@tectors and are sensitive to the
background noise. By contrast, the reduced-rank techsiqaesidered in this chapter are ca-
pable of identifying automatically the relatively stronguittipath signals and projecting them
onto the reduced-rank detection subspace. Hence, theiadéjper operated in this reduced-
rank detection subspace becomes less sensitive to therbaokignoise. Owing to the above
considerations, therefore, we may argue that the redwddadaptive detectors are more ro-
bust than the full-rank adaptive detectors, when they apfieapfor the hybrid DS-TH UWB

systems.

Computational Complexity: In comparison with a full-rank adaptive detector, whicloper-
ated in a space of rankV.Ny, + L — 1), the corresponding reduced-rank adaptive detector is
operated in the detection subspace having a rarik,affhich can be significantly lower than
(NeNy + L — 1), as shown in our forthcoming discourse. Hence, as to beleleéta Sec-

tion 5.3, the complexity of the reduced-rank adaptive detetan be much lower than that of
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the corresponding full-rank adaptive detector.

Note that, in this chapter we investigate specifically tlkioed-rank RLS adaptive detector, since
it generally has a higher convergence speed than the LMS aiMiSNadaptive detectors. However,
our approaches are general, which can be readily extendbd tyybrid DS-TH UWB systems using
the LMS or NLMS adaptive detection. The remainder of thisptlais organised as follows. In
the next section, the general procedure for reduced-ratdctiien is described. Furthermore, in this
section the rank reduction techniques based on the PCA, GBIM BA are investigated in conjunc-
tion with the hybrid DS-TH UWB systems using the RLS-adaptiketection. Section 5.3 addresses
the computational complexity of the reduced-rank detectithemes associated with PCA, CSM and
TPA, respectively. Simulation results regarding thesesws are provided in Section 5.4 and finally
in Section 5.5 the summary and conclusions of the chapteprasented. Let us now discuss the

reduced-rank schemes in the upcoming section.

5.2 Reduced-Rank RLS Adaptive Detection

5.2.1 General Theory

. Sampling
Matched-filter AT,

i )
r(t) U v |ou| Traversal filter Zi ) B
—| (1) — | Buffer |—pm| S{/ |[———m i | Re(z")

Decision
Directed

Adaptive

! Training
Algorithm

Sequenceg

o

Figure 5.1: Schematic block diagram of reduced-rank adaptive detéatdhe hybrid DS-TH UWB systems.

With the subspace reduced-rank detection the number diicieats to be determined is reduced
by projecting the received signal in a higher dimensionaeotation space to a lower dimensional
subspace [196]. The reduced-rank RLS adaptive detect@idemed in this chapter is operated in
two modes as the full-rank adaptive detectors studied inpt@hat. The detector starts with the
training mode to find a detection subspace and train the addiiter, followed by the DD-mode
in order to enhance the detection performance. Fig. 5.1 shbesblock diagram of the reduced-
rank adaptive detector for the hybrid DS-TH UWB system. Agvahin the previous chapters the
received signat(t) is first passed through the matched-filter, which is sampi¢dearate ofl /AT,
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to produce the observations, as shown in Fig. 5.1. In ordeetect theith bit of the desired user,
which is the first user in our cas@y.N,, + L — 1) observation samples can be collected and stored
in the buffer, which is expressed gs as shown in Fig. 5.1. Then, the observation vegtprs
projected to d&/-dimensional subspace by multiplyimg with a reduced-rank matri&;;, which is a
((NeNy + L — 1) x U) dimensional matrix and” < (N.Ny, + L — 1). Specifically, for a bit-by-bit

detector, thé/-dimensional vector in the reduced-rank subspace can bessqul as

g = Stly; (5.1)

where a bar ovey; is used to indicate that it is related to the reduced-ranisgate. Furthermore,
Sy can be represented as
Sy = Py(PHPy)™! (5.2)

wherePy; can be viewed as a processing matrix of dimengiénx (N.N,, + L — 1)) with its row
vectors forming ari/-dimensional subspace, whil@P;)~! is the normalisation factor. After
projecting the received signgl} to a lower dimensional detection subspace determineB®b{5),
as shown in Fig. 5.1, the decision variable for detecting:theoit bgl) of the first user can now be
formed as

2V =wl'y, (5.3)

where the weight vectab; is anU-length vector, which can be determined with the aid of th&RL
adaptive detection principles as shown in the previoustehhap

When comparing (3.22) and (5.3), we can find that the dimensithe observation vector is now
reduced fromN.Ny, + L — 1) of y; to U of y;, and the auto-correlation matrix gf is hence only
(U x U)-dimensional. Therefore, the complexity of the reducetkrdetector may be significantly
lower than that of the full-rank adaptive detectors, if tlaak U can be significantly lower than
(NcNy + L —1). Hence, in the reduced-rank detection it is important t@weine a processing
matrix Py with its rank ofU as low as possible, while the BER performance achieved bigythad
DS-TH UWB system using reduced-rank detection can be cloghat achieved by the full-rank
adaptive detectors studied in Chapter 4. In this chapteettypes of reduced-rank techniques are

considered, which are now described as follows.
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5.2.2 Eigenspace: Principal Components Analysis

The principal component analysis (PCA) is a well-studiemkreeduction scheme [201, 203]. This
reduced-rank scheme was based on the principal componalysanof the auto-correlation matrix
R,,, which was originally developed by Hotelling and EckartQ20Since the auto-correlation matrix
R, is Hermitian, eigen-analysis can be employed to represenatito-correlation matri,, in
terms of its eigen-values and associated eigen-vectorthel? CA-assisted reduced-rank detection
the eigenvectors corresponding to the relatively highreigkeies are retained to form the processing
matrix Py;.

During the training mode, the auto-correlation mafily can be estimated according to

1 M
~ |
R, ~ U ;_1 Yy (5.4)

where M represents the number of bits invoked in the estimation. nUgarrying the eigen-
decomposition o2, we obtain
R, = ®A®" (5.5)

where® is an unitary matrix consisting of the eigenvectordyf, which can be expressed as

® = [b1,02, - ,ONN,+L-1] (5.6)

while A is a diagonal matrix consisting of the eigenvaluedigf, i.e.,

A = diag{Ai, Az, -+ AN, vy L1} (5.7)

The eigenvectop; in (5.6) corresponds to the eigenvalhgin (5.7). If S represents the dimension
of the signal subspace and the eigen-values are arrangedlinasway that\; > X\, > --- >
AN.Ny+L-1. Correspondingly, the eigen-vectors are expresseph as;, - ,dn.N,+L—1. Then,
there areS number of eigenvalues of;, \o, - - - , Ag corresponding to the signal subspace, while the
otherV = (N.Ny + L — 1 — S) eigenvalues ohg 1, Agy2,- - s AN.N,+L—-1 corresponds to the
noise subspace. Therefore, the auto-correlation mBtyi>can be expressed as

e

oy

Aslo

R, = [@siev] |40

(5.8)
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whereA g contains the eigenvalues associated with the signal sobspetermined b and Ay
contains the eigenvalues of noise subspace which is detednfiy®y,. Furthermore, we hav@g =
(61,02, ,ds] and®@y = [ds11,bs542, NN, +L-1]-

Based on the above analysis, in the context of the PCA-adsistiuced-rank adaptive detection,

the processing matriRy; is constructed by the firéf columns of®, i.e., we have

PU = [¢17¢27"' >¢U] (59)

In the context of the PCA-assisted reduced-rank detedtibas been shown that, if the rabkof
the detection subspad®; is higher than the rank of the signal subspac®g, then the PCA-assisted
reduced-rank MMSE detection is capable of attaining theesamor performance as the full-rank
MMSE detection [172]. Otherwise, the error performancénefR CA-assisted reduced-rank detection
will deteriorate if the rankJ is less than the ranK of the signal subspace. Therefore, the PCA-based
reduced-rank method is very effective only if the dimenstbis known and significantly lower than
(NcNy + L — 1). Otherwise, if the rankS of the signal subspace is high and a rdnk< S is
used, then the PCA-based reduced-rank detection may erpersevere MUI. Let us now consider
another eigen-decomposition assisted reduced-rank s;hehiich is known as the cross-spectral
metric (CSM).

5.2.3 Eigenspace: Cross-Spectral Metric

The CSM-assisted reduced-rank method was proposed by t@aldsd Reed in 1997 [202]. Sim-
ilar to the PCA-assisted reduced-rank scheme, the CSMtadsreduced-rank technique derives
the detection subspadg;; also through eigen-decomposition of the auto-correlatiatrix R,,
of (5.4) [202]. This rank reduction scheme has been proposed, in [204], because the detec-
tion subspace formed in the PCA-based scheme by the eigerv@orresponding to th€ largest
eigenvalues does not necessarily represent the best géteidenvectors resulting in the lowest
MSE. Therefore, in the context of the CSM-assisted reduaal-detection, the processing ma-
trix Py is formed by a set ot/ eigenvectors, which are chosen fr@nand result in a minimum
MSE [172,200,202,217,218].

Specifically, for our CSM-assisted reduced-rank adapteation, the processing matrRy

can be formed as follows. First, it can be shown that (5.5)hef duto-correlation matrix can be
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represented as
NcNy+L-1

R, =®A®" = > Nigig! (5.10)

1=1
The inverse of?,, can hence be expressed as

NeNy+L—1

S
R'= > % (5.11)
i=1

According to [172], the minimum MSE of the hybrid DS-TH UWBstgm after the MMSE-MUD is
given by
MMSE = 1 — ~(CVh) R (CVhy) (5.12)
- 9 7 1 Yi 7 1 '

Upon substituting (5.11) into (5.12), we obtain

NeNy+L=1 @ i ~(DNT 4 112
i=1 t
Let the CSMs be defined as [200]
CsM(i) =[BT C )¢ /N, i=1,2,--- ,N.Ny+L—1 (5.14)

Then, as shown in (5.13), in order to achieve the minimum M8&r dhe reduced-rank MMSE
detection in theJ/-rank detection subspace, thenumber of largest CSMs in the bracket of (5.13)
should be maintained in the detection subspace. Henceg icotiitext of the CSM-assisted reduced-
rank detection, the processing matRy can be formed by the eigen-vectorsBnwhich yield thel/
number of largest CSMs in the form of (5.14).

(5.13) shows that the CSM-assisted reduced-rank techmipgugdres the knowledge about the
spreading sequence and also the CSI associated with timedlaser. By contrast, the PCA-assisted
reduced-rank technique does not require this knowledgete Mwt, in our simulations in Sec-
tion 5.4.2, the knowledge required for finding the detecsabspace in the CSM-assisted reduced-
rank adaptive detection during the training mode is obthiinem (5.4) with the aid of the training

sequences. Specifically, during the training mofdlg,)hl seen in (5.14) is estimated according to

M

~ 1 "

E{CMh} = TOIIL e (5.15)
j=1
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where M denotes the length of the training sequence and a ‘hat’ abbiraplies estimation. By
contrast, during the data transmission, if the decisioaetied approach is applied, the detected data-
bit may be fed back to enhance the estimation. In this casegshimate tch.l)hl can be denoted
as

M~+D

Biem) = 55 2 By (5.16)
1

<.
Il

where D represents the number of detected data bits involved in gtimation. From (5.14) and
(5.16) it is implied that, if a detected data bit is fed-battle CSM in (5.14) needs to be computed
again, which increases the complexity of detection. Letaws, mlescribe the TPA-assisted reduced-

rank technique, which does not require eigen-decompasitio

5.2.4 Taylor Polynomial Approximation

The major problem with the reduced-rank techniques basdteorigen-decomposition is the com-
putational complexity. It has been found that the compjefar determining the eigenvectors and
eigenvalues of a Hermitian matrix is similar as that for fimgdthe inverse of the same matrix [205].
Furthermore, in a heavily loaded system, where the faagproachesN. N, + L —1), the size of the
adaptive filter may not be reduced when using the PCA- or Cabkd techniques. In these scenar-
ios, the reduced-rank detection based on the PCA or CSM mayrowide any particular advantages
over the conventional full-rank detection, when the débecalone is considered. Alternatively, the
TPA-assisted rank-reduction techniqgue may be employefinfding the detection subspaé®;. The
TPA-assisted reduced-rank technique has some advantagedath the PCA- and CSM-assisted
reduced-rank techniques [172, 200]. First, it does not degmmn the eigen-decomposition of the
auto-correlation matri®?,,. Second, the detection subspace’s rank in the TPA-assetieded-rank
scheme does not scale with the system size, including théauaof users supported, the total spread-
ing factor N.N,, as well as the number of resolvable multipaths. Hence, #uigaed-rank technique
may be very promising for detection in the hybrid DS-TH UWBrraunications, since it is usually
associated with a big spreading facfésV,, and the UWB channels usually have a high number of
resolvable paths. Furthermore, the BER performance of #e-dssisted reduced-rank detector is
capable of converging to that of the full-rank detector vattetection subspace of very low rank, as
shown in [153,172, 200, 219-225] and also in Section 5.4tBisfchapter.

Let Amax be the maximum eigenvalue &,,. Let p be a constant satisfying < p < 1/Amax.
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Then, the Taylor expansion of the auto-correlation maﬂg}% can be expressed as

R, ' =p(pRy,)"" = plI—(I—-pR,)™"

= pY (I—pRy) (5.17)
j=0
The firstU terms in (5.17) can be adopted to approximaﬂﬁy‘g}, ie.,

U-1
Ry_il ~ pZ(I - PRyi)j
=0

= aol + 1Ry, + -+ ay_1R) ! (5.18)

However, determining the coefficienfs;} in (5.18) is complicated. Furthermore, the finite order
approximation that results from tail-cutting of infiniteder approximation generally does not lead
to the best fit among all approximations of the same order][28pecifically, in the context of the

TPA-assisted reduced-rank adaptive detector, a progessatrix P;; can be constructed as [172]
Py =[Ch. R, C by, . RU-'CVhy] (5.19)

whereR,, andCEl)hl are estimated based on (5.4) and (5.15) with the aid of trgisequences.
Let us now proceed to consider the computational compl@fitiie reduced-rank adaptive detectors

associated with these rank-reduction schemes.

5.3 Complexity of Reduced-Rank Adaptive Detectors

In this section, the computational complexity of the PCASNG and TPA-assisted reduced-rank
adaptive detectors is investigated in the context of theitybS-TH UWB system. The complexity
of the detectors is measured by the number of multiplicatiand additions required to detect one
bit of a user. We assume that the RLS-aided adaptive deteistiemployed, whose computational
complexity has been studied in the previous chapter, wisigiyuivalent tal 172 4 87 + 3, where

T = N.Ny+ L —1. Letus first consider the computational complexity of theAPaSsisted reduced-
rank RLS adaptive detector.
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5.3.1 Complexity of PCA-Assisted Reduced-Rank RLS Adapti Detector

In the context of the PCA-assisted reduced-rank scheme, ptheessing matrix isPy =

(61,2, -

as shown in Section 5.2.2. Note that it takes abbumultiplications to calculate the eigenvalue

, @], which consists of thé/ eigenvectors corresponding to thelargest eigenvalues

from an autocorrelation matrix [226]. Furthermore, whea ¢igenvectors are calculated, it takes
number of additions an@? number of multiplications to determine the required eigetors [226].
However, with the aid of efficient computing approachess ttomplexity could be reduced to
73 /6 number of additions and multiplications [227]. Furthermoas shown in [227], if the bubble
sort algorithm is replaced by the comb sort algorithm foed®ining the maximum eigenvalue of a

matrix, the complexity can be reducedlég,(7) from 7.

Operations Number of Number of
additions multiplications
R, 2T Fy, T2Fp,
R, = ®AD! T3/6 T3/6
max{\; },i=1,--- U Ulog, T -
5 =Sty U(T - 1)Fy, UTFy,
RLS adaptive detector| (5U% + 3U + 2)Fy, | (6U? +5U + 1)F},

Table 5.1: Summary of the number of operations required by the PC/Astsbireduced-rank RLS adaptive
detector.

Table 5.1 summarises the number of operations requiredebl @A-assisted reduced-rank RLS
adaptive detector. In the Table 5.K; denotes the length of the frame. From Table 5.1 it can be
observed that the number of additions require@ig(U7 +5U2 427 +2U +2)+73/6+U log, T),
while number of multiplications required {§7, (72 + U7 + 6U? + 5U + 1) + T3/6), respectively.

Therefore, the total number of operations required for #tection of a frame is

Np = Fp(T?+2UT +2T +11U? +7U +3)+ T3/3 + Ulog, T (5.20)
Finally, the total number of operations required to dete bit is given by
73 logo, T
Ny = T?4oUT 427 + 1102 + 70 + 3+ /3T U108 (5.21)

Fr,
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5.3.2 Complexity of CSM-Assisted Reduced-Rank RLS Adapter Detector

In the CSM-assisted reduced-rank RLS adaptive detectitve, grocessing matrixPy =
(01,02, -+ ,0u], where the eigenvectors correspond to fiielargest CSM values defined as
CSM(i) = || (C))T¢;|2/Ni;, i=1,2,---,U, as shown in Section 5.2.3. Table 5.2 shows the
number of additions and multiplications required by the poment processing in the CSM-assisted
reduced-rank RLS adaptive detector for the hybrid DS-TH UsyBtem.

Operations Number of Number of
additions multiplications
Ry, 2T Fy, T2Fp,
R, = ®AD" T3/6 T3/6
R,! - T
hH(c)T Ty, TTY,
hH(C)T g, T2 T T2
[ (CE;_))T@IIQ T T
(W\T 4"
max{wwj\ii)%},izl,---,U Ulogy T -
g =S{ly U(T - 1)Fy UTF,
RLS adaptive detector (5U2 43U + 2)Fy, | (6U? +5U +1)Fp

Table 5.2: Summary of the number of operations required by the CSMstesbireduced-rank RLS adaptive
detector.

In Table 5.2, F, and T}, represents respectively the frame length and the lengthranfi-t

From Table 5.2, it can be known that the totahbew of additions is
(2T +UT +5U2 +2U +2)FL) + T, + T3/6 + T2 + U log, T) additions while the total num-
ber of multiplications is(FL(7%+UT +6U?+5U +1)+ 7T, +73/6+ 72+ 27T) respec-

tively. Hence, the total number of operations required &tedtion of a frame is

ing sequence.

Np = Fp(T?+27 +2UT + 11U + 7U + 3)

+ To(T+1)+7T3/34+27%+2T +Ulog, T (5.22)
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Furthermore, the number of operations required to deteittcab be expressed as

N, = T?+4+2T +2UT +11U*+7U +3
(T+1)T,+T3/3+2T%+2T +Ulog, T
Fr,

(5.23)

Note that, as shown in Table 5.2, the quantities, such as @&ltte desired user’s signature,
required by the CSM-assisted reduced-rank RLS adaptieztbetare obtained through the training

process. Let us now discuss the complexity of the TPA-asbsi®tduced-rank RLS adaptive detection.

5.3.3 Complexity of TPA-Assisted Reduced-Rank RLS Adaptie Detector

In the context of the TPA-assisted reduced-rank RLS adaptetection, the processing matrix is
formed asPy = [C\"h1, R,,C\"hy,--- ,RU-1CVh,]. OnceR,,, whichis(T x T), andC!"h,,
which is(7 x 1), are given, it can be readily known that computhCEl)hl requires7 2 additions
and 72 multiplications. Furthermore, giveR;Z_CEl)hl, computingjongl)hl = RyiR;Z_CEl)hl
also requires7? additions andZ? multiplications. Hence, we can known that the number of op-
erations for formingPy; is (U — 1)7?2 additions andU — 1)72 multiplications. The number of
operations required by the components of the TPA-assistdalced-rank RLS adaptive detector is
summarized in Table 5.3. As shown in Table 5.3, only the imgirmode is employed to derive the

required information for the TPA-assisted reduced-raniSRHdaptive detector.

Operations Number of Number of
additions multiplications
R, 2T Fy, T2Fy
CVh; Ty, TT,
Forming Py (U —1)T? (U —-1)T?
gZ:S{}’y U(T—l)FL UTFL
RLS adaptive detector (5U2 + 3U + 2)Fy, | (6U? + 5U + 1)Fy,

Table 5.3: Summary of the number of operations required by the TPAstesbireduced-rank RLS adaptive
detector.

From Table 5.3, we can know that the total number of operatiequired for detection of a frame
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is
(2T + 21)Fp, + (T + )Ty, U=1
T2 +2T +2UT + 11U% +7U + 3)F,
Np = ( i (5.24)
HT + 1Ty +2(U - 172, U=23---,8

Furthermore, the total number of operations required tedet bit can be expressed as

o7 +21+ T U=1
N, = (5.25)
T2 42T +2UT + 11U2 47U + 3 + THULLUNTE - 79 3. g

From (5.24) and (5.25), we are implied that,7if >> U, the complexity of the TPA-assisted
reduced-rank RLS adaptive detectorié7 2).

5.4 Performance Results and Discussion

This section provides a range of simulation results for atigrising the learning and BER perfor-
mance of the hybrid DS-TH UWB systems using various reduee#-RLS adaptive detectors. In

our simulations we adopt the following assumptions.
1) Coherent binary phase-shift keying (BPSK) baseband fatdn;

2) The total spreading factor is constant/éfN,, = 64. Hence, for the pure DS-UWB systems
the DS spreading factor ¥, = 64, while for the pure TH-UWB systems the TH spreading
factor isN,, = 64. For the hybrid DS-TH UWB systems, the DS spreading factdixed to
N. = 16 and the TH spreading factor is fixed 2, = 4,

3) Two types of UWB channels are considered. In the contettteofirst type UWB channels, the
number of resolvable multipaths is = 15. Correspondingly, the factagr = 1. By contrast,
the second type of UWB channels is highly frequency-selecthe number of resolvable mul-
tipaths isL. = 150, implying that the factoy = 3. For both cases, the normalised Doppler
frequency shift is given by; T, = 0.0001. Furthermore, in our simulations the UWB channels
are modelled by the S-V channel model with the channel gdieying the Rayleigh distri-
bution. The parameters of the S-V channel model used in owilations are summarised in
Table 5.4, where ‘LoS’ means that the UWB channel consideoadiains a line-of-sight (LoS)
propagation path [117];
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1/A r 07
LoS | 14.11ns | 2.63ns | 4.58ns

Table 5.4: Parameters characterzing the S-V channel model used iations.

4) Each frame is constituted b, = 1000 bits (symbols), wher&, = 160 bits (symbols) are
the training bits (symbols). Hence, the spectral-effigjenicthe hybrid DS-TH UWB systems
is (1000 — 160)/1000 = 84%.

Note that, for the hybrid DS-TH UWB scheme and UWB channelssiered, the rank of the ob-
servation space %Ny, + L — 1 = 78 for the casel. = 15 andN.Ny + L — 1 = 213 for the case
L = 150, respectively.

Furthermore, during our discussion the rank of signal satxsiis often used in comparison with
the rankU of the detection subspace invoked in the reduced-rank iadagétection. Note that,
for a hybrid DS-TH UWB system supportin§ users and communicating over the UWB channels
associated with a factor @f the rank of the signal subspace is ab8ly + 1), where the factor of
(9 + 1) is due to that of a desired bit conflicts interference frgmt 1) bits of an interfering user.

Let us first show and discuss the performance results of thyh8-TH UWB systems using the

PCA-assisted reduced-rank adaptive detection.

5.4.1 Performance of PCA-Assisted Reduced-Rank RLS Adapie Detector

In this section the performance results of the hybrid DS-TWRJsystems using the PCA-assisted
reduced-rank RLS adaptive detector is presented. Fiestedrning performance of the PCA-assisted
reduced-rank RLS adaptive detector is discussed in thexiot the hybrid DS-TH UWB systems
supporting single or multiple users, when the detectiorsgabe having different rank éf is consid-
ered. Then, the BER versus SNR per bit performance of thadhii$-TH UWB systems supporting
single or multiple users is illustrated, when the PCA-dsdiseduced-rank RLS adaptive detector
employs different ranks d¥ for the detection subspace.

Fig. 5.2 shows the ensemble-average squared error leacuimg of the PCA-assisted reduced-
rank adaptive detector with the detection subspace usiaglelf = 1, 10 or 78, when the hybrid
DS-TH UWB system supports single user. In our simulatiomsehsemble average was taken over
2000 independent realizations of the UWB channel characteried@able 5.4. From the results of
Fig. 5.2 it can be observed that the convergence speed ofGleaBsisted reduced-rank adaptive

detector depends on the rabikof the detection subspace, i.e., the length of the adaptiee #When
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Figure 5.2: Learning curves of the PCA-based reduced-rank RLS adaggtector for the hybrid DS-TH
UWB system supporting single user, when communicating oweelated Rayleigh fading chan-
nels modelled by the S-V channel model associated with a alised Doppler frequency-shift
faT», = 0.0001. The other parameters wefg /Ny = 10dB, Agrs = 0.9987,5 = 5.0, g = 1,
N, =16, Ny = 4 andL = 15, respectively.

U = 1, the adaptive detector attains the highest convergenes sppel also reaches the lowest MSE.
The reason for this observation is that the asynchronouschi8-TH UWB system supports only
single user, which results in that the rank of the signal sabs is abouf(g + 1) = 3. In this
case, when the length of the adaptive filter is significarhger than two, the adaptive filter collects
not only the useful signal, but also the noise, which redubesconvergence speed and generates
increased MSE. Furthermore, when comparing Fig. 5.2 wigh (L5 in Section 4.4.3 of Chapter 4,
we can find that the PCA-assisted reduced-rank adaptivetdets capable of converging faster than
the full-rank RLS adaptive detector, which has a filter l&ngt 78, when the hybrid DS-TH UWB
system supports single user.

Figs. 5.3 and 5.4 show the ensemble-average squared earomig curve of the PCA-assisted
reduced-rank RLS adaptive detector associated with thexti@n subspaces with different ranks of
U, when the hybrid DS-TH UWB system suppo#s = 5 (Fig. 5.3) orK = 15 (Fig. 5.4) users.
In our simulations the ensemble average was taken 24#r independent realizations of the UWB
channel characterized by Table 5.4. From the results of Bi§sand 5.4 we can observe that, similar
as Fig. 5.2, the convergence speed of the PCA-assistedesdack RLS adaptive detector is de-
pended on the rank of the detection subspace. When the rédhkf the detection subspace is lower

than the rank of the signal subspace, which is aBodor K = 5 and30 for K = 15, the adaptive
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Figure 5.3: Learning curves of the PCA-based reduced-rank RLS adag#tector for the hybrid DS-TH
UWB system supportind{ = 5 users, when communicating over correlated Rayleigh fading
channels modelled by the S-V channel model associated witbrmalised Doppler frequency-
shift f;7, = 0.0001. The other parameters wefg, /N, = 10dB, Arrs = 0.9987, § = 5.0,
g=1,N.=16, Ny, = 4andL = 15, respectively.
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Figure 5.4: Learning curves of the PCA-based reduced-rank RLS adag#tector for the hybrid DS-TH
UWB system supportindC = 15 users, when communicating over correlated Rayleigh fading
channels modelled by the S-V channel model associated witbrmalised Doppler frequency-
shift f47, = 0.0001. The other parameters wefg, /Ny = 10dB, Arrs = 0.9987, 6 = 5.0,
g=1,N.=16, Ny, = 4andL = 15, respectively.
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detector converges to a relatively lower MSE value, as thke ¥aof the detection subspace increases.
However, after the rank/ of the detection subspace reaches the signal subspack;sfugher in-
creasing the rank/ of the detection subspace results in an increased MSE, amshoFigs. 5.3
and 5.4. Therefore, in the hybrid DS-TH UWB systems usingRli&\-assisted reduced-rank RLS

adaptive detection, it is important to have #riori knowledge about the signal subspace’s rank.
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Figure 5.5: Learning curves of the PCA-based reduced-rank RLS adag#tector for the hybrid DS-TH
UWB system supportindC = 5 users, when communicating over correlated Rayleigh fading
channels modelled by the S-V channel model associated withrmalized Doppler frequency-
shift 47, = 0.0001. The other parameters wefg /Ny = 10dB, Agrs = 0.9995, § = 0.005,

g =3, N. =16, Ny, = 4andL = 150, respectively.

In the above three figures, we assumed that the delay-spfeélae OWB channels is lower than
the bit duration resulting iy = 1. By contrast, Fig. 5.5 shows the ensemble-average squared-
error learning curve of the PCA-based reduced-rank RLStagagetector, when the UWB channels
experience severe ISI resulting gn= 3. Again, in our simulations the ensemble-average squared-
error was calculated frorR000 independent realizations of the UWB channel, when the bybD®&-

TH UWB system supported = 5 users at a given SNR value &f /Ny, = 10 dB. Again, from
the results of Fig. 5.5, we observe that the convergencedsgeskconverged MSE of the PCA-based
reduced-rank RLS adaptive detector are depended orifafikhe detection subspace. When the rank
U is lower than the rank of the signal subspace, which is ahgyt+ 1) = 20, the ensemble-average
squared-error converges to a relatively lower MSE valuegmwtie rankl/ of detection subspace
increases. Furthermore, as shown in Fig. 5.5, when the faekuals the signal subspace’s, i.e.,

whenU = 20, the PCA-based reduced-rank RLS adaptive detector cawéagter than the full-rank
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RLS adaptive detector corresponding to the curve identifietd = 213. Additionally, the results in
Fig. 5.5 show that the PCA-based reduced-rank RLS adapé#iterir using/ = 20 is capable of
achieving an MSE that is lower than that achieved by thernk RLS adaptive detector studied in
Chapter 4. The achieved MSE by the PCA-based reduced-raSkadhaptive detector usirig = 20

is close to the minimum MSE achieved by the ideal MMSE detedta sufficient number of training
symbols is provided.

In summary, from the results of Figs. 5.2 - 5.5, we can corelindéit the convergence speed and
converged MSE of the PCA-assisted reduced-rank RLS adagéitector are depended on the rank
U of the detection subspace. The best convergence and MS#parice can be achieved, when the
detection subspace has a rdnkqualling to the signal subspace’s rank. Since in hybridlb8JWB
systems the signal subspace’s rank is in general signiljckmter than the rank of the observation
space, which is aboutV.N, + L — 1), the length of the adaptive filter used by the PCA-assisted
reduced-rank RLS adaptive detector may hence be signifjcstmirter than that of the full-rank RLS
adaptive detector. Furthermore, due to the relativelydrigonvergence speed in comparison with the
full-rank RLS adaptive detector, the PCA-assisted reduaell RLS adaptive detector may require
less number of training symbols and hence provide highestrnission data rate or higher spectral-
efficiency for the hybrid DS-TH UWB systems, than the fulikaRLS adaptive detector studied in
Chapter 4.

Fig. 5.6 shows the BER versus SNR per bit performance foryhadhDS-TH UWB system using
the PCA-assisted reduced-rank RLS adaptive detector foosupingle user, when communicating
over the UWB channels modelled by the correlated Rayleiginéa The other parameters used in
our simulations are specified in the caption of the figurenftioe results of Fig. 5.6 one can observe
that the BER performance of the hybrid DS-TH UWB system ig/\v&ose to that achieved by the
ideal MMSE detection, when the rank of the detection subsg®t’ = 1,2 or 78. Since the rank
of the signal subspace in this case is two, as seen in Figthe BER performance becomes slightly
better, as the detection subspace’s rank increasestfreml to U = 2, when the SNR of, /N is
high. In Fig. 5.6 the BER curve correspondinglfo= 78 represents the BER achieved by the full-
rank RLS adaptive detector considered in the last chapigidily, the BER performance achieved
by the PCA-assisted reduced-rank RLS adaptive detectociassd withU = 2 is the same as that
achieved by the full-rank RLS adaptive detector.

In Figs. 5.7 and 5.8 the BER versus SNR per bit performandeedfiybrid DS-TH UWB systems
using the PCA-assisted reduced-rank RLS adaptive deteiiadlepicted. In our simulations we

assumed that the hybrid DS-TH UWB systems suppoieg 5 users for Fig. 5.7, while supported
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Figure 5.6: BER versus SNR per bit performance of the hybrid DS-TH UWBtaysusing PCA-based
reduced-rank RLS adaptive detection, when communicatieganrrelated Rayleigh fading chan-
nels modelled by the S-V channel model. The other parameteptoyed for the simulations were
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Figure 5.7: BER versus SNR per bit performance of the hybrid DS-TH UWBtaysusing PCA-based
reduced-rank RLS adaptive detection, when communicatieganrrelated Rayleigh fading chan-
nels modelled by the S-V channel model. The other parameteptoyed for the simulations were
K =5, f4T, = 0.0001, Aprs = 0.9987,§ = 0.05, N. = 16, Ny, = 4 andL = 15, respectively.
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Figure 5.8: BER versus SNR per bit performance of the hybrid DS-TH UWBtaysusing PCA-based
reduced-rank RLS adaptive detection, when communicatiegeorrelated Rayleigh fading chan-
nels modelled by the S-V channel model. The other parameteptoyed for the simulations were
K =15, f4I, = 0.0001, Aprs = 0.9987,6 = 0.05, N. = 16, Ny, = 4 andL = 15, respectively.

K = 15 users for Fig. 5.8. The other parameters used for generatitigfigures were the same, as
seen associated with the figures. From the results of Figar 5.8, one can observe that the BER
performance improves as the rafikof the detection subspace increases. When the taok the
detection subspace reaches the signal subspace’s rard istaboutl 0 for Fig. 5.7 corresponding
to K = 5 and abouB0 for Fig. 5.8 corresponding t& = 15, the BER performance achieved by
the PCA-assisted reduced-rank RLS adaptive detectoresdolthat achieved by the full-rank RLS
adaptive detector. However, when the detection subspeardd’ is lower than the rank of the signal
subspace, error floors are likely to occur. As seen in Figsabd 5.8, a lower rank corresponds to
a higher BER floor. Furthermore, as shown in Fig. 5.8, wherrdh& U of the detection subspace,
e.qg.,U = 45, 78, is higher than the signal subspace’s ranB@fno performance gain is attainable
except for incurring higher detection complexity. Therefoin order to avoid this problem, in the
PCA-assisted reduced-rank detection, it is important teehhea-priori knowledge of the actual
rank of the signal subspace.

Fig. 5.9 shows the BER versus SNR per [dit,/ Ny) performance of the hybrid DS-TH UWB
system employing the PCA-based reduced-rank RLS adapieeimr to suppork’ = 5 users, when
communicating over UWB channels havidig= 150 resolvable multipaths. Correspondingly, we

haveg = 3, implying that the rank of the signal subspace is al#utFrom the results of Fig. 5.9,
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Figure 5.9: BER versus SNR per bit performance of the hybrid DS-TH UWBtaysusing PCA-based
reduced-rank RLS adaptive detection, when communicatiegeorrelated Rayleigh fading chan-
nels modelled by the S-V channel model. The other parameteptoyed for the simulations were
K =5, f4T, = 0.0001, Agrs = 0.9995, § = 0.005, g = 3, N, = 16, Ny, = 4 andL = 150,
respectively.

again, we can observe that the BER performance improves thikeankU of the detection subspace
increases. However, when the rabikof the detection subspace reaches the i@nk= 20 of the
signal subspace, further increasing the réhlof the detection subspace does not result in further
performance improvement. When the rdiilof the detection subspace is lower than the rank of the
signal subspace, error-floor is observed, implying thahtéiuser interference cannot be efficiently
suppressed by the PCA-assisted reduced-rank RLS adaptieetar. Furthermore, from the results
of Fig. 5.9, we can observe that the PCA-based reduced-raBkadaptive detector results in certain
performance loss in comparison with the ideal MMSE multiugetector, even when the detection
subspace has the same ranko= 20 as the signal subspace. Specifically, the performance toss a
the BER of10~* is about 0.7 dB.

When comparing the results in Fig. 5.7 with that in Fig. 5@&hbof which used the same param-
eters excepl, = 15 for Fig. 5.7 andL = 150 for Fig. 5.9, we can find that the BER performance
shown in Fig. 5.9 is better than that shown in Fig. 5.7, whenRICA-assisted reduced-rank RLS
adaptive detector is operated in the detection subspadeghavankU equalling to the rank of the
corresponding signal subspace, which(sfor Fig. 5.7 and20 for Fig. 5.9. The reason for Fig. 5.9
to attain a better BER performance than Fig. 5.7 is that thaBldhannels considered in the context

of Fig. 5.9 has more resolvable multipaths than that comsitian Fig. 5.7, hence, resulting in higher
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diversity gain.

In summary, in the hybrid DS-TH UWB systems, if the signal spdxe’s rank is significantly
lower than the rank of the observation space, whiciNsN,, + L — 1), then, the detection com-
plexity may be significantly reduced without performancegisy by employing the PCA-assisted
reduced-rank RLS adaptive detector, instead of using theafitk RLS adaptive detector, as studied
in the last chapter. However, as the number of users sugbimteeases, resulting in that the rank
of the signal subspace is close to the rank of the observafiane, then, the benefit from using the
PCA-assisted reduced-rank RLS adaptive detector is limi@onsidering that in the PCA-assisted
detection complexity is required for finding the detectiobspacePy;, therefore, in a heavily loaded
hybrid DS-TH UWB system, the PCA-assisted reduced-ran&atieih might not be a promising op-

tion.

5.4.2 Performance of CSM-Assisted Reduced-Rank RLS Adapte Detector

In this section we illustrate a range of performance resaolrder to show the characteristics and
achievable BER performance of the hybrid DS-TH UWB systesisgithe CSM-assisted reduced-
rank RLS adaptive detection. As in Section 5.4.1, the legrmerformance of the CSM-assisted
reduced-rank RLS adaptive detector is first illustratedtierhybrid DS-TH UWB systems supporting
single or multiple users, when the detection subspace gmplidferent ranks ot/. Then, the BER
versus SNR per bit performance of the hybrid DS-TH UWB systasing the CSM-assisted reduced-
rank RLS adaptive detection is investigated, when diffecemmunications and detection scenarios
are considered.

Fig. 5.10 shows the ensemble-average squared error lggoeifiormance of the CSM-assisted
reduced-rank RLS adaptive detector for the hybrid DS-TH UgYBtem supporting single user at an
SNR per bitE}, /Ny = 10dB. The average squared error was taken 80e0 independent realizations
of the UWB channel. The other parameters used in our sinonlsiivere specified associated with
the figure. Similar to the learning behaviour of the PCA-stssi reduced-rank RLS adaptive detector
as shown in Fig. 5.2, it can be observed from Fig. 5.10 thatctwevergence speed of the CSM-
assisted reduced-rank RLS adaptive detector is dependdieaanklU of the detection subspace.
Furthermore, it can be observed that the CSM-assisted edehank adaptive detector is capable of
converging faster than the full-rank adaptive detectorezponding to the learning curve Gf= 78
in Fig. 5.10.

Figs. 5.11 and 5.12 show the learning performance of the @Saikted reduced-rank RLS adap-
tive detector, when the hybrid DS-TH UWB system suppdits= 5 (Fig. 5.11) andK = 15
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Figure 5.10: Learning curves of the CSM-based reduced-rank RLS adagétector for the hybrid DS-TH
UWB system supporting single user, when communicating coeelated Rayleigh fading chan-
nels modelled by the S-V channel model associated with a alored Doppler frequency-shift
faT» = 0.0001. The other parameters wefg, /Ny = 10dB, Agrs = 0.9987,6 = 5.0, g = 1,
N, =16, Ny, = 4 andL = 15, respectively.
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Figure 5.11: Learning curves of the CSM-based reduced-rank RLS adagétector for the hybrid DS-TH
UWB system supportindC = 5 users, when communicating over correlated Rayleigh fading
channels modelled by the S-V channel model associated withrraalized Doppler frequency-
shift f47;, = 0.0001. The other parameters wekg, /Ny = 10dB, Agrs = 0.9987, § = 5.0,
g=1,N.=16, Ny, =4 andL = 15, respectively.
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Figure 5.12: Learning curves of the CSM-based reduced-rank RLS adagétextor for the hybrid DS-TH
UWB system supportingd = 15 users, when communicating over correlated Rayleigh fading
channels modelled by the S-V channel model associated witirraalized Doppler frequency-
shift f4;7;, = 0.0001. The other parameters wekg, /Ny = 10dB, Agrs = 0.9987, § = 5.0,
g=1,N.=16, Ny, =4 andL = 15, respectively.

(Fig. 5.12) users, respectively. Again, the ensembleageeisquared error as shown in the figures
was obtained by taking average o0 independent realizations of the UWB channel. From the
results of Figs. 5.11 and 5.12 one can see that the CSM-aseiuced-rank RLS adaptive detec-
tor is capable of attaining the highest convergence speédiso reaching the lowest MSE, if the
rank U used by the detection subspace is equivalent to that of gimalssubspace, which is about 10
in Fig. 5.11 and 30 in Fig. 5.12. Similar to the PCA-based cedurank RLS adaptive detector as
shown in Figs. 5.3 and 5.4, the CSM-assisted reduced-rark &laptive detector converges to the
lower MSE, when increasing the rafkof the detection subspace, as shown in Figs. 5.11 and 5.12.
However, if the rankJ of the detection subspace is higher than that of the sigtsipsce, the CSM-
assisted reduced-rank RLS adaptive detector may conve@®SE, which is even higher than that
achieved by the CSM-assisted reduced-rank RLS adaptieetdetwith a detection subspace having
the same rank as the signal subspace.

Fig. 5.13 shows the BER versus SNR per bit performance of yheich DS-TH UWB system
employing the CSM-assisted reduced-rank RLS adaptivecti@beto support’ = 1 user, when the
detection subspace has a reduced rank/of 1,2 or full rank of U = 78. Explicitly, the BER
performance achieved in the context of the different detecicenarios is similar and it is close to

that of the ideal MMSE detector, even there exists certain 1S
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Figure 5.13: BER versus SNR per bit performance of the hybrid DS-TH UWBtesysusing CSM-based
reduced-rank RLS adaptive detection, when communicatireg oorrelated Rayleigh fading
channels modelled by the S-V channel model. The other paemsmemployed for the simu-
lations wereK = 1, fqTy = 0.0001, Agrs = 0.9987,9 = 5.0, 9 = 1, N. = 16, Ny, = 4 and
L = 15, respectively.
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Figure 5.14: BER versus SNR per bit performance of the hybrid DS-TH UWBteaysusing CSM-based
reduced-rank RLS adaptive detection, when communicatireg oorrelated Rayleigh fading
channels modelled by the S-V channel model. The other paemsmemployed for the simu-
lations wereK = 5, fqTp = 0.0001, Agrs = 0.9987,9 = 5.0, 9 = 1, N. = 16, Ny, = 4 and
L = 15, respectively.
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Figure 5.15: BER versus SNR per bit performance of the hybrid DS-TH UWBtesysusing CSM-based
reduced-rank RLS adaptive detection, when communicatirey oorrelated Rayleigh fading
channels modelled by the S-V channel model. The other paemsmemployed for the simu-
lations wereK = 15, fqTy = 0.0001, Agrrs = 0.9987,6 = 5.0, g = 1, N. = 16, Ny = 4 and
L = 15, respectively.

Figs. 5.14 and 5.15 show the BER versus SNR per bit perforenahthe hybrid DS-TH UWB
system using the CSM-assisted reduced-rank RLS adaptteetas, when the detection subspace
invokes different rank ot/. Specifically, the hybrid DS-TH UWB system considered in.FHdl4
supportedK = 5 users, while that considered in Fig. 5.15 supporiéd= 15 users. The other
parameters used in our simulations were specified in theorepassociated with the figures. From
the results of Figs. 5.14 and 5.15 we can observe that thevatiile BER performance of the hybrid
DS-TH UWB system is depended on the ralikof the detection subspace. In general, the BER
performance improves as the rabikof the detection subspace increases, but depended on the SNR
per bit. Specifically, when the SNR per bit is low, the CSMistssl reduced-rank RLS adaptive
detector is capable of reaching a stable BER performancen wte rankJ of the detection subspace
is relatively low, such a&¢/ = 5 in Fig. 5.14. However, when the SNR per bit is relatively high
further increasing the rankl of the detection subspace may further improve the BER pedace
of the hybrid DS-TH UWB system. As shown in Figs. 5.14 and 5iflthe rankU of the detection
subspace is too lower, the CSM-assisted reduced-rank Rbftiad detector may not efficiently
mitigate the MUI and, in these cases, error-floors are oleserv

Finally, in contrast to Fig. 5.14 associated with= 15 andg = 1, Fig. 5.16 shows the BER versus
SNR per bit performance of the hybrid DS-TH UWB systems eriplp the CSM-based reduced-
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Figure 5.16: BER versus SNR per bit performance of the hybrid DS-TH UWBtesysusing CSM-based
reduced-rank RLS adaptive detection, when communicatirey oorrelated Rayleigh fading
channels modelled by the S-V channel model. The other paemsmemployed for the simu-
lations wereK = 5, fqTy = 0.0001, Aprs = 0.9995, 6 = 0.005, g = 3, N. = 16, Ny, = 4 and
L = 150, respectively.

rank RLS adaptive detection to suppdft = 5 users, wher, = 150 andg = 3. As observed in
Fig. 5.14, the BER performance of the hybrid DS-TH UWB systmproves, as the rank of the
detection subspace increases. Error-floors are observe tive ranky of the detection subspace is
not sufficiently high. As shown in Fig. 5.16, when the SNR eaisilower tharv dB, the CSM-based
reduced-rank RLS adaptive detector using= 20 is capable of achieving a better BER performance
than the reduced-rank RLS adaptive MMSE-MUD based on a tiletesubspace having a rank of
U = 160.

From Figs. 5.14 - 5.16, we find that, unlike Fig. 5.7 - 5.9 cgpending to the PCA-based reduced-
rank RLS adaptive detection, the CSM-based reduced-rarik &laptive detector cannot reach the
BER performance of the full-rank RLS adaptive detector, mviie detection subspace reaches a rank
equivalent to the signal subspace’s rank. The reason foalioge observation is that the fading
channel is time-varying possibly with every data bit. Hoemlthe processing matriR;; used in our
simulations was fixed after the training mode and was not tggdeorrespondingly to match each
transmitted data bit.

In summary, as the PCA-assisted scheme, the CSM-assisgigtberank RLS adaptive detection
is efficient if the signal subspace’s rank is significantiywéo than the rankKN.N,, + L — 1) of the
observation space. However, if a hybrid DS-TH UWB systemeiavily loaded, yielding that the
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rank of the signal subspace is very high, then the CSM-askisduced-rank RLS adaptive detection

might not be desirable.

5.4.3 Performance of TPA-Assisted Reduced-Rank RLS Adaptée Detector

In this section we illustrate the performance results oftierid DS-TH UWB systems using the
TPA-assisted reduced-rank RLS adaptive detection, whemumicating over UWB channels. The
performance considered includes both the learning and BEfenmance. As our results in the previ-
ous two subsections shows, the PCA- or CSM-assisted redao&dRLS adaptive detector achieves
the full-rank RLS adaptive detector’s performance only wtiee detection subspace’s raikeaches
the rank of the signal subspace. By contrast, our performeggults in this subsection will show that
the TPA-assisted reduced-rank RLS adaptive detector abtapf achieving the full-rank RLS adap-
tive detector's performance with a rank that can be signiflgaower than the rank of the signal
subspace. Furthermore, the detection subspace’s rargvaathe full-rank adaptive detector’s per-
formance is generally independent of the signal subspaasls provided that the signal subspace’s

rank is sufficiently high.
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Figure 5.17: Learning curves of the TPA-based reduced-rank RLS adagttector for the hybrid DS-TH
UWB system supporting single user, when communicating coeelated Rayleigh fading chan-
nels modelled by the S-V channel model associated with a alored Doppler frequency-shift
faT» = 0.0001. The other parameters used simulations wesgN, = 10dB, Agrs = 0.9987,
0=>5.0,9=1, N. =16, Ny = 4 andL = 15, respectively.

Fig. 5.17 shows the learning performance of the TPA-askisiduced-rank RLS adaptive detector
for the hybrid DS-TH UWB system supporting singlE€ & 1) user. The ensemble-average squared-
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Figure 5.18: Learning curves of the TPA-based reduced-rank RLS adagttector for the hybrid DS-TH
UWB system supportindC = 5 users, when communicating over correlated Rayleigh fading
channels modelled by the S-V channel model associated witirraalized Doppler frequency-
shift f47;, = 0.0001. The other parameters wefg, /Ny = 10dB, Agrs = 0.9987, § = 5.0,
g=1,N.=16, Ny, =4 andL = 15, respectively.
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Figure 5.19: Learning curves of the TPA-based reduced-rank RLS adaggtector for the hybrid DS-TH
UWB system supportingd = 15 users, when communicating over correlated Rayleigh fading
channels modelled by the S-V channel model associated withrraalized Doppler frequency-
shift f47;, = 0.0001. The other parameters wekg, /Ny = 10dB, Agrs = 0.9987, § = 5.0,
g=1,N.=16, Ny, =4 andL = 15, respectively.
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error was obtained from averaging o800 independent realizations of the UWB channel. From
the results of Fig. 5.17, it can be observed that the TPAsteskireduced-rank RLS detector using
U = 1 converges much faster than the full-rank RLS adaptive timteorresponding t&/ = 78. The
TPA-assisted reduced-rank RLS detector udihg- 1 also converges faster than that usiliig= 3.
However, both of them converge to a similar MSE, which is Iothan that converged by the full-rank
RLS adaptive detector.

Figs. 5.18 and 5.19 demonstrate the learning performandeecf PA-based reduced-rank RLS
adaptive detector for the hybrid DS-TH UWB systems suppgrk’ = 5 (Fig. 5.18) andK = 15
(Fig. 5.19) users, respectively. Again, the MSE was obthingthe average ove000 independent
realizations of the UWB channel considered. The resultsigd.F5.18 and 5.19 show that the TPA-
assisted reduced-rank RLS adaptive detector using theWark 1 converges the fastest among
the cases considered. However, it converges to a relatiigly MSE, in comparison with the other
cases. As the rank of the detection subspace increases, the TPA-assisteckedank RLS adaptive
detector converges slower, but usually can reach a lower.M&8hermore, when the rartk = 78 is
applied, it can be observed that overshoot phenomena [$§®tserved. The overshoot phenomena
occurs because an inappropriate regularisation factess used for the initialisation. This problem

may be resolved by decreasing the valué,as mentioned in the previous chapter.
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Figure 5.20: BER versus SNR per bit performance of the hybrid DS-TH UWBtaysusing TPA-based
reduced-rank RLS adaptive detection, when communicatiregy oorrelated Rayleigh fading
channels modelled by the S-V channel model. The other paemsmemployed for the simu-
lations wereK = 1, fqTy = 0.0001, Agrs = 0.9987,9 = 5.0, 9 = 1, N. = 16, Ny, = 4 and
L = 15, respectively.



5.4. PERFORMANCE RESULTS AND DISCUSSION 162

Fig. 5.20 shows the BER versus SNR per bit performance of yheich DS-TH UWB system
employing the TPA-based reduced-rank RLS adaptive detedtbe hybrid DS-TH UWB system
supports single user. The results of Fig. 5.20 show that BAe-dssisted reduced-rank RLS adaptive
detectors using a rank df = 1,2 and 3, respectively, are capable of achieving a similar BER
performance, which is withif.5dB of that achieved by the ideal MMSE detector, when the SNR pe
bit is sufficiently high. Furthermore, when comparing Fig®with Fig. 4.19 in the last chapter, we
can see that the TPA-assisted reduced-rank RLS adaptigetdetising a rank of/ = 1,2 or 3 is
capable achieving the same BER performance as the fullfRrskadaptive detector. However, the
complexity of the TPA-assisted reduced-rank RLS adaptatedtor is significantly lower than that
of the full-rank RLS adaptive detector.
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Figure 5.21: BER versus SNR per bit performance of the hybrid DS-TH UWBtaysusing TPA-based
reduced-rank RLS adaptive detection, when communicatireg oorrelated Rayleigh fading
channels modelled by the S-V channel model. The other pdaemsnemployed for the simu-
lations wereK = 5, fqTp = 0.0001, Agrs = 0.9987,9 = 5.0, 9 = 1, N. = 16, Ny, = 4 and
L = 15, respectively.

In Figs. 5.21 and 5.22 we investigate the BER versus SNR peetiormance of the hybrid DS-
TH UWB systems using the TPA-assisted reduced-rank agaggtection. In contrast to Fig. 5.20
corresponding to the system supporting single user, in Big@d and 5.22 the number of users sup-
ported isK = 5 and K = 15, respectively. From the results of Figs. 5.21 and 5.22 ntteaobserved
that the BER performance of the hybrid DS-TH UWB systems oaes, as the rankl of the detec-
tion subspace is increased. When the SNR is low, for exaroplerlthan7dB in Fig.5.21 and lower

than9dB in Fig. 5.22, the BER performance is close to each othemwthe- 4. By contrast, when
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BER

Figure 5.22: BER versus SNR per bit performance of the hybrid DS-TH UWBtaysusing TPA-based
reduced-rank RLS adaptive detection, when communicatirey oorrelated Rayleigh fading
channels modelled by the S-V channel model. The other paemsmemployed for the simu-
lations wereK = 15, fqTy = 0.0001, Agrrs = 0.9987,6 = 5.0, g = 1, N. = 16, Ny = 4 and
L = 15, respectively.

the SNR is high, as seen in Figs.5.21 and 5.22, the BER peafwwenslightly improves as the rank
U of the detection subspace is further increased beybrd4. However, as shown in Figs.5.21 and
5.22, the full-rank RLS adaptive detector's BER perforneanan be approximately achieved, when
the detection subspace’s rank is abbut= 7 or 8. It is worth mentioning that, when the detection
subspace’s rank i§ = 1, the TPA-assisted reduced-rank adaptive detector islcreduced to a
correlation adaptive detector.

Finally, in Fig. 5.23 we illustrate the BER versus SNR pergatformance of the hybrid DS-
TH UWB system using the TPA-based reduced-rank RLS adag#&tector to suppork’ = 5 user,
when the UWB channel experiencés= 150 resolvable multipaths. Again, the BER performance
improves, as the rank of the detection subspace increases fiéra- 1 to U = 7. When comparing
the results of Fig. 5.23 with that in Fig. 5.9, we can know it TPA-based reduced-rank RLS
adaptive detector usinf = 7 is capable of achieving a similar BER performance as the PCA-
assisted reduced-rank RLS adaptive detector using a rabk of 20, which equals to the signal
subspace’s rank. Furthermore, when comparing the resukigy05.23 corresponding té = 150
with that in Fig. 5.21 corresponding th = 15, we can find that, for the case of = 7, the BER
performance shown in Fig. 5.23 is better than that showndgn%:R1.

In summary, from the results of Figs. 5.21 - 5.23, we can sak th general, the TPA-assisted
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Figure 5.23: BER versus SNR per bit performance of the hybrid DS-TH UWBtaysusing TPA-based
reduced-rank RLS adaptive MMSE-MUD, when communicatingra@orrelated Rayleigh fading
channels modelled by the S-V channel model. The other paesisnemployed for the simula-
tions wereK = 5, f41, = 0.0001, Arrs = 0.9995, § = 0.005, g = 3, N. = 16, Ny, = 4 and
L = 150, respectively.

reduced-rank RLS adaptive detector using a detection agbdpaving a rank of abolit = 7 or 8 is
capable of achieving the BER performance, which is quitsecto that achieved by the full-rank RLS
adaptive detector. This full-rank RLS adaptive detectBER performance is achieved regardless of
the size of the hybrid DS-TH UWB systems as well as the numbeeswmlvable multipaths of the
UWB channels. Furthermore, from Figs. 5.17 - 5.19 we canlzatethe TPA-assisted reduced-rank
RLS adaptive detector converges very fast, when the tamk the detection subspace is relatively
low. Explicitly, the above properties of the TPA-assisteduced-rank RLS adaptive detection are
very desirable for the pulse-based UWB systems, which nsgpport a big number of users com-

municating over UWB channels having a huge number of lowgrawsolvable multipaths.

5.4.4 Performance Comparison of Reduced-Rank RLS AdaptivBetectors

So far, we have shown the learning and BER performance ofeitheced-rank RLS adaptive detec-
tors, which derive the detection subspaces based on the, XSM- and TPA-assisted rank reduction
techniques, respectively. In this subsection the learaimd) BER performance of the reduced-rank
RLS adaptive detectors using the above-mentioned thres tyforank reduction techniques are com-
pared in the context of the hybrid DS-TH UWB systems.

Figs. 5.24 and 5.25 show the learning performance of theceztitank RLS adaptive detectors,
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Figure 5.24: Learning curves of the PCA-, CSM- and TPA-based reducel-RirS adaptive detectors for
the hybrid DS-TH UWB system supporting = 5 users, when communicating over corre-
lated Rayleigh fading channels modelled by the S-V chanrelahassociated with a normal-
ized Doppler frequency-shiff;7;, = 0.0001. The other parameters wefe,/N, = 10dB,
Arrs = 09987, =5.0,9 =1, N. = 16, Ny, = 4 andL = 15, respectively.

which derive their detection subspaces based on the piescgs the PCA-, CSM- and TPA-based
rank reduction techniques, as described in Section 5.2usimulations we assumed that the hybrid
DS-TH UWB systems supporteld = 5 users and that the average SNR per bit Wg&V, = 10dB.

In the context of Fig. 5.24 we assumed that the UWB channellhad 15 resolvable multipaths
corresponding tg = 1, while in the context of Fig. 5.25 we assumed that the UWB nkahad

L = 150 resolvable multipaths correspondinggte= 3. Additionally, the ensemble-average squared
error shown in the figures was obtained fr@00 independent realizations. The other parameters
were detailed associated with the figures. As the resultdgs. .24 and 5.25 shown, for a given
rank U considered in the figures, the TPA-based scheme achievéswhst MSE among the three
rank reduction techniques. After the converging, the MSEeed by the TPA-based scheme is
significantly lower than the MSE achieved by the PCA- or CSAdddl scheme. For a given rank
U of the detection subspace, as shown in Figs. 5.24 and 52% $M-based reduced-rank scheme
converges to a (slightly) lower MSE than the PCA-based radkction scheme.

Fig. 5.26 shows the ensemble-average squared error lggpeiiormance of the reduced-rank
RLS adaptive detectors using the PCA-, CSM-, and TPA-askistnk reduction techniques for the
hybrid DS-TH UWB systems supporting = 15 users. In our simulations we assumed that the
average SNR per bit was, /Ny = 10dB, the UWB channel resulted ih = 15 resolvable multipaths
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Figure 5.25: Learning curves of the PCA-, CSM- and TPA-based reducel-RirS adaptive detectors for
the hybrid DS-TH UWB system supporting = 5 users, when communicating over corre-
lated Rayleigh fading channels modelled by the S-V chanrelahassociated with a normal-
ized Doppler frequency-shiff;7;, = 0.0001. The other parameters wefe,/N, = 10dB,
Arrs = 0.9995, = 0.005, g = 3, N. = 16, Ny, = 4 andL = 150, respectively.

and the ensemble average was taken @06 independent realizations of the UWB channel. The
other parameters used in our simulation were summarizextiassd with figure. Again, for a given
considered rankU, the TPA-assisted rank reduction scheme is capable of\achienuch lower
MSE than the PCA- or CSM-based rank reduction scheme. ThelBd3Ad rank reduction scheme
achieves the worst MSE performance among the three ranktredischemes for a given rartk of

the detection subspace.

Additionally, from Fig. 5.24 to Fig. 5.26, we can observetflvehen the rankU of the detection
subpace increases, i.e., when the transceiver filter'sHangreases, the reduced-rank RLS adaptive
detector using the PCA-, CSM- or TPA-based rank reductiberse converges slower. This means
that, once a higher rarik of the detection subspace is applied, the number of trasyngpols is also
required to be increased, in order for the adaptive filtelotoverge.

Fig. 5.27 compares the BER versus SNR per bit performandeedfytbrid DS-TH UWB systems
supporting single user, when the PCA-, CSM- or TPA-assistddced-rank RLS adaptive detectors
is employed. Since only single user is supported and thesl&bt severe, as shown in Fig. 5.27,

all the reduced-rank RLS adaptive detector achieve a siBER performance, which is quite close
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Figure 5.26: Learning curves of the PCA-, CSM- and TPA-based reducel-RirS adaptive detectors for
the hybrid DS-TH UWB system supporting = 15 users, when communicating over corre-
lated Rayleigh fading channels modelled by the S-V chanrmelahassociated with a normal-
ized Doppler frequency-shiff;7;, = 0.0001. The other parameters wefe,/N, = 10dB,
Arrs = 09987, =5.0,9 =1, N. = 16, Ny, = 4 andL = 15, respectively.
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Figure 5.27: BER performance comparison of the hybrid DS-TH UWB systemgiBCA-, CSM- and TPA-
based reduced-rank RLS adaptive detection, when comntingaaver correlated Rayleigh fad-
ing channels modelled by the S-V channel model. The parameteployed for the simulations
wereK =1, f¢Ty, = 0.0001, Agrs = 0.9987,5 = 0.5, g = 1, N. = 16, Ny, = 4 andL = 15,
respectively.



5.4. PERFORMANCE RESULTS AND DISCUSSION 168

(less tharD.4dB at reasonably high SNR) to that achieved by the ideal MM8tealor considered
in Chapter 3. Note that, when considering the computaticoaiplexity in this case, we find that
the number of operations required for detecting one bitgutire TPA-assisted reduced-rank tech-
nique is189, while that using the PCA- and CSM-assisted reduced-rachniques are&575 and
6600, respectively. Hence, we are implied that the TPA-assistééme has the lowest computational

complexity among the three rank reduction schemes comslder
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Figure 5.28: BER performance comparison of the hybrid DS-TH UWB systemgiBCA-, CSM- and TPA-
based reduced-rank RLS adaptive detection, when comntingaaver correlated Rayleigh fad-
ing channels modelled by the S-V channel model. The parameteployed for the simulations
wereK =5, fqTp, = 0.0001, Arrs = 0.9987,9 = 0.005,¢9 = 1, N, = 16, Ny, = 4andL = 15,
respectively.

Finally, in Figs. 5.28, 5.29 and 5.30 we compare the BER w8\R per bit performance of the
hybrid DS-TH UWB systems using the three types of reduce&-RiLS adaptive detectors to support
multiple users. Specifically, in the context of Figs. 5.28 &129 the number of users supported by
the hybrid DS-TH UWB systems wds = 5, while in Fig. 5.30 the number of users supported was
K = 15. Furthermore, in our simulations the number of resolvabldtipaths for Figs. 5.28 and 5.30
was L = 15 implying relatively low ISI. By contrast, the number of régble multipaths assumed
for Fig. 5.29 wasl. = 150, which resulted in severe ISI, in addition to multiuser ifeeence. From
the results of Figs. 5.28, 5.29 and 5.30, we can observe ftirag given ranklU of the detection
subspace, the TPA-based reduced-rank RLS adaptive desegtoficantly outperforms the PCA-
and CSM-based reduced-rank RLS adaptive detectors. Natettlte detection subspace’s ranks

considered in these figures are all lower than the correspgraignal subspace’s ranks. As shown
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Figure 5.29: BER performance comparison of the hybrid DS-TH UWB systemgiBPCA-, CSM- and TPA-
based reduced-rank RLS adaptive detection, when comntingaaver correlated Rayleigh fad-
ing channels modelled by the S-V channel model. The parameteployed for the simulations
were K = 5, fqTy, = 0.0001, Agrs = 0.9995, § = 0.005, g = 3, N. = 16, Ny, = 4 and
L = 150, respectively.
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Figure 5.30: BER performance comparison of the hybrid DS-TH UWB systemgiBCA-, CSM- and TPA-
based reduced-rank RLS adaptive detection, when comntingaaver correlated Rayleigh fad-
ing channels modelled by the S-V channel model. The parameteployed for the simulations
were K = 15, f¢T, = 0.0001, Agrs = 0.9987, 6 = 0.005, ¢ = 1, N, = 16, N, = 4 and
L = 15, respectively.
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in Figs. 5.28, 5.29 and 5.30, in these cases, the PCA-badede@-rank RLS adaptive detector is
the worst among the three reduced-rank RLS detection schemierms of the achievable BER

performance fot/ = 1, 4, 5 or 8.

5.5 Summary and Conclusions

In this chapter we have investigated the learning and BERpeance of the hybrid DS-TH UWB
systems using various reduced-rank RLS adaptive deteatavsder to illustrate the design trade-off
between the affordable detection complexity and the aabievBER performance, when reduced-
rank adaptive detection is employed. Three types of rankatézh techniques have been investigated
in conjunction with the hybrid DS-TH UWB systems using theRRaided adaptive detection. The
three types of reduced-rank detection schemes have beleedibased on the principles of princi-
pal component analysis (PCA), cross-spectral metric (C&Ml) Taylor polynomial approximation
(TPA), respectively. Throughout the study provided in tthapter, the following observations may

be derived.

e Principal Component Analysis The PCA-assisted reduced-rank RLS adaptive detector is
depended on the eigen-decomposition of the auto-cowalatatrix R,, of the observa-
tion vectory;. In this reduced-rank scheme tlié& number of eigenvectors correspond-
ing to the U largest eigenvalues aR,, are used to form the detection subspace (or pro-
cessing matrix)P;;.  As shown in Section 5.2.2, the PCA-based scheme forms the de
tection subspacd’;; without requiring the knowledge about the user to be detect€he
complexity of the PCA-based reduced-rank RLS adaptivecttatehas been considered in
Section 5.3.1, and the number of operations for detecting lnh has been found to be
(T2 +2T +2UT +11U? +7U + 3+ (T3/3+ Ulog, T)/Fy), whereT = (N.Ny + L —

1) and F;, denotes the frame-length. Finally, the learning and BERoperance of the PCA-
based reduced-rank RLS adaptive detector have been stnd@edtion 5.4.1. Our analysis and
performance results show that the PCA-assisted reduckdRaS adaptive detector is capable
of achieving the BER performance of the full-rank RLS adaptietector, if the rank/ of the
detection subspace is not lower than the signal subspaa®s Hence, the PCA-based scheme
may allow a significant reduction of the detection subspaaik, provided that the dimension
of the signal subspace is significantly lower than the ranthefobservation space spanned by
the received signay;, which is (N.N,, + L — 1) and may be very big if the total spreading

factor and/or the number of resolvable multipaths are higthen this is not the case, for ex-
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ample, when the hybrid DS-TH UWB system supports a high nurobesers resulting in that
the signal subspace’s rank exceeds the ri@néf the detection subspace, then, mapping the
received signal vectors to the detection subspace oflfaiskikely to reduce the desired signal
components. Consequently, the corresponding PCA-badaded-rank RLS adaptive detector

might conflict severe multiuser interference and the BERoperance appears error-floors.

e Cross-Spectral Metric. The CSM-based reduced-rank RLS adaptive detector is a{sendled
on the eigen-decomposition of the auto-correlation matjxof the observation vectqy;. As
shown in Section 5.2.3, froiV.V,, + L — 1) eigenvectors of?,,, the CSM-based scheme
chooses thé/ eigenvectors having th€ largest CSM values as defined in (5.14) to form the
detection subspad®;;. The detection subspace obtained in this way is the optinelecon
of the (Y4 *-~1) eigenvectors in MMSE sense for reduction in rank. HenceCtbl-based
rank-reduction technique may be more efficient than the B@ged rank-reduction technique,
since the CSM-based scheme takes into account the enellgy subspace contributed by the
desired user. However, as shown in (5.14), the CSM-basededdrank scheme requires to in-
voke the knowledge di, andCEl) of the desired user, in order to form the detection subspace
Py. The complexity of the CSM-assisted reduced-rank RLS adgapetector has been con-
sidered in Section 5.3.2. It has been found that the numbepefations for detecting one
bit is (72427 +2UT + 11U +7U +3+ (T + )T, + T3/3+ 272 + Ulog, T)/F1),
where Ty, represents the number of symbols per frame used for traimingddition to the
parameters mentioned previously. Finally, the learningalur of the CSM-based reduced-
rank RLS adaptive detector and the BER performance of theichydS-TH UWB systems
using the CSM-based reduced-rank RLS adaptive detectiem lteen depicted and discussed
in Section 5.4.2. From our study and performance resultsart be found that the CSM-
assisted reduced-rank RLS adaptive detector may convastgr than the full-rank RLS adap-
tive detector. Hence, the hybrid DS-TH UWB systems using@B#M-assisted reduced-rank
RLS adaptive detection may result in a higher spectralieffay than that using the full-rank
RLS adaptive detection. The CSM-assisted reduced-rank &laptive detector is capable of
achieving the BER performance of the full-rank RLS adaptigtector, when the rarik of the
detection subspace reaches a value equivalent to the sighgpace’s rank. Hence, like the
PCA-based scheme, the CSM-based scheme may also reduifieangly the detection com-
plexity, if the dimension of the signal subspace is signiftalower than that of the observation

space spanned by the received sigpal
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e Taylor Polynomial Approximation: In contrast to the above two rank reduction schemes
that are depended on the eigen-decomposion, the TPAabseduced-rank adaptive detec-
tor forms its detection subspad®; without depending on the eigen-decomposition of the
auto-correlation matrix®,,. Instead, it forms the detection subspde based on the Taylor
polynomial expansion of the inverse auto-correlation irall,,, as shown in (5.19). Based
on (5.19), we can know that the TPA-based reduced-rank semequires the knowledge of
hq andCEl) of the desired user, in order to form the detection subsgagce The complex-
ity of the TPA-based reduced-rank RLS adaptive detectobkas analysed in Section 5.3.3.
It has been found that, if the detection subspace’s rank is= 1, the number of opera-
tions required to detect one bit {87 + 21 + ((7 + 1)T1/FL)). However, if the detec-
tion subspace’s rank & > 1, then the number of operations required to detect one bit is
(T2 +27 +2UT + 11U +7U + 3) + (T + 1)T, + 2(U — 1)T2%/Fy)). Finally, in Sec-
tion 5.4.3 the learning and BER performance of the TPA-ge$ireduced-rank RLS adaptive
detector have been provided and analysed. The learningiBRdgpBrformance results show that
the TPA-assisted reduced-rank RLS adaptive detector ighdyhefficient detection scheme. It
usually does not require a high rabk(in comparison to the signal subspace’s rank) to con-
verge to a low MSE and it usually converges very fast. The BBgisted reduced-rank RLS
adaptive detector is capable of converging to the full-r@hks adaptive detector’s performance
with a rankU significantly lower than that of the signal subspace, egfigaivhen the signal
subspace’s rank is high. Furthermore, the detection sab§peanklU needed to achieve the
full-rank RLS adaptive detector’s performance does noeseéh the system size determined
by the observation space’s dimension, whicl{A&N,, + L — 1), and the number of users,
K. Additionally, as shown in Tables 5.5 and 5.6, the TPA-baselliced-rank RLS adaptive
detector usually has a lower complexity than the PCA- or A&%ided reduced-rank RLS adap-
tive detector. Owing to its above-mentioned properties, TRA-assisted reduced-rank RLS
adaptive detector may constitute a promising detectioersehfor the hybrid DS-TH UWB
systems, which may support a big number of users commumicatier the UWB channels

having a huge number of low-power resolvable multipaths.

Finally, the complexity of various detection schemes fer llybrid DS-TH UWB systems to de-
tect one bit is summarized in Table 5.5. In Table 5.6 the nurabeperations required by the different
detectors to detect one bit is provided in the context of geast specific cases. For generating Ta-
ble 5.6, we assumed that the frame-length wgs= 1000 bits, which includedl;, = 160 training
bits. Hence, the spectral-efficiency of the hybrid DS-TH U\Btems is84%. Additionally, the
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Detection scheme Number of operations for detecting one bit
Correlation detector 2(L-1)T

Ideal MMSE detector T3/3+6T%+2(L+1)T +4KL(1+49)T
Full-rank RLS adaptive | 1172 +87 +3

detector
PCA-based reduced-rank| 72 + 27 +2UT + 11U2 + 7U + 3 + T/l T

RLS adaptive detector
CSM-based reduced-rank| 72 + 27 +2UT + 11U? +7U + 3 + FLL (T +1)Ty,
RLS adaptive detector +73/3+27%+2T + Ulog, 7|

TPA-based reduced-rank | 27 + 21 + FLL (T+1)Tr],U=1

RLS adaptive detector T2 42T +2UT +11U%2 +7U +3 + FL (T + 1)1,
L
+2(U - 1)T?%,U=2,3,---

Table 5.5: Complexity comparison of various detection schemes fohthwid DS-TH UWB systems.

total spreading factor was assumed to6dewhere the DS spreading factor was = 16 and the
TH-spreading factor wad/,, = 4, respectively. From the data shown in Table 5.6, it can bervksl
that the number of operations required for detecting oneslvgduced significantly for the reduced-
rank RLS adaptive detection schemes in comparison withrégaiired by the full-rank RLS adaptive
detector. All the three reduced-rank RLS adaptive deteatonsidered in this chapter have a similar
complexity, but, however, the number of operations reguing the TPA-based reduced-rank scheme
is usually slightly lower than that required by the PCA- orNG8ased reduced-rank scheme, for any
givenU andL. Furthermore, the data in Table 5.6 shows that the complekite reduced-rank RLS
adaptive detectors is at a similar level as that of the singlr correlation detector studied in Chap-
ter 3, which achieves much worse BER performance than theeedrank RLS adaptive detectors

considered in this chapter.
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Detection scheme

Number of resolvable

Rank of detection

Number of operations

multipaths,L subspacel/ for detecting one bit
Correlation 15 78 2496
detector 100 163 32926
Ideal MMSE 15 78 176670
detector 100 163 1523780
Full-rank RLS 15 78 67551
adaptive detector 100 163 293566
1 6575
8 8428
PCA-based 15 15 11391
reduced-rank RLS 45 36670
adaptive detector 1 28686
8 31750
100 15 35957
45 66945
1 6600
8 8453
CSM-based 15 15 11416
reduced-rank RLS 45 36695
adaptive detector 1 28765
8 31829
100 15 36036
45 67024
1 189
TPA-based 15 5 7125
reduced-rank RLS 8 8023
adaptive detector 1 373
100 5 28601
8 30144

Table 5.6: Number of operations required for detecting one bit in therldyDS-TH UWB systems using
various detection schemes.



Chapter

Conclusions and Future Work

In this final concluding chapter, we first provide a summarthefthesis in Section 6.1. Then, a range

of topics concerning future research are presented in@e6iR.

6.1 Summary and Conclusions

In this thesis we have proposed and investigated a noveé{nased UWB system known as the
hybrid DS-TH UWB system. This pulse-based UWB system prewichore degrees-of-freedom as
compared to the pure DS- and pure TH-UWB systems. Furthernitocan be shown that both the
TH-UWB and DS-UWB systems constitute special examples efhybrid DS-TH UWB system.
The main motivation of this thesis is to design low-compieiigh-efficiency pulse-based UWB
receivers, which are capable of achieving reasonable BE&rpsance.

We have commenced in Chapter 2 with a detailed review ofaélatork on UWB communica-
tions. According to the literature, UWB systems can be immaeted by pulse-based or multi-carrier-
based approached. Since our focus in this thesis is on tke-palsed UWB systems, in Chapter 2 a
detailed review of pulse-based UWB systems is, hence piexbeShort duration pulses designed for
the pulse-based UWB systems have been analyzed in detake BCC has imposed no restriction on
the pulse shape, data modulation and MA schemes, differeds lof pulse shapes in Section 2.2.2,
modulation techniques in Section 2.2.4 and different MAtegues in Section 2.2.5 can hence be
employed in the pulse-based UWB systems, although eacleof ttas its advantages and disadvan-
tages in comparison with its counterparts. In this chapterhave also provided a brief overview
for the multi-carrier based UWB systems which are implemeériy dividing the frequency band

into several smaller bands with each band having at lE#sMHz of bandwidth. Furthermore, a
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comparison between the pulse-based UWB schemes and nmigtiddWB schemes is carried out.
Then, in Section 2.5 the main differences among the narrod;baideband and UWB channels have
been characterized, and statistics for modelling bothargelscale fading and small-scale fading of
the UWB channels have been provided, with our emphasis osrttadl-scale fading, since UWB
has been mainly considered for indoor and other shortsdist@ommunications. The S-V channel
model, which was initially proposed for indoor wireless eonmmications in [133], has been intro-
duced as a typical UWB channel model for our study in the Yalhy chapters. Furthermore, the S-V
channel model for UWB indoor wireless communications isaésed in detail. It is shown that the
MDP in UWB communications environments is generally spamssulting in possibly a huge num-
ber of resolvable multipaths present at the UWB receivenddein UWB systems a large number of
resolvable multipaths are usually required to be procebgeate UWB receiver in order to achieve a
good BER performance, which makes the design of low-conitgl&€RN/B receivers critical.

In Chapter 3 the hybrid DS-TH UWB system has been proposeéhaastigated. The transmitted
signal, channel model and the receiver model for the hybi®&TH UWB have been presented.
The performance of the hybrid DS-TH UWB systems have beegstigated under the assumptions
that the delay-spread of the channel may span several Gtidos, resulting in a huge number of
resolvable multipaths. In our investigation, both the Engser correlation detector and multiuser

MMSE detector have been considered. From our studies weraantlle following observations.

e Single-User Correlation Detector: It is near optimum when the hybrid DS-TH UWB system
supports single-user communicating over Nakagantading channels, if the delay-spread is
not high, resulting in ignorable ISI. A tradeoff exists beem the DS and TH spreading factors,
when the single-user correlation detector is employed ipbaith DS-TH UWB system. It can
be shown that the best BER performance of the hybrid DS-TH Wj2em may be obtained
by appropriately choosing the DS and TH spreading factarghik case, the hybrid DS-TH
UWB system outperforms the pure DS-UWB or pure TH-UWB syst&éhe complexity of the
single-user correlation detector has been found ta(de+ 1)7, where7 = N.Ny + L —

1. Furthermore, it has been shown that the BER performancheo§ingle-user correlation
detector deteriorates, when the number of users suppoytdtethybrid DS-TH UWB system
increases.

e Multiuser MMSE Detector: In the context of the multiuser MMSE detector, it has been ob-
served from the simulations results that the BER performawicthe hybrid DS-TH UWB
system, that of the pure DS-UWB system and that of the pur@&JT¥B system are all similar,
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when given the total spreading factor. However, for someifipeDS and TH spreading fac-
tors, the BER performance of the hybrid DS-TH UWB system maglightly better than the
pure DS-UWB and pure TH-UWB systems. The complexity of thdtionser MMSE detector
is very high and has been found to 66 /3 + 672 + 4K L(1 + 29)T + 2(L + 1)7, where
again7 = N.Ny + L —1. In addition to the complexity for detection, the MMSE détealso
requires the complete knowledge of the spreading coded tifeahctive users. Furthermore,
the MMSE detector requires ideal channel knowledge assakiwsith the active users, which is
usually not available in UWB systems, since the received WAgRals are usually constituted

by a huge number of low-power resolvable multipaths thaeatemely hard to estimate.
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Figure 6.1: Comparison of BER versus SNR per bit performance of the bybB8-TH UWB systems using
correlation and MMSE receivers to suppéft= 15 users, when communication over Nakagami-
m fading channels. The total spreading factoMgV,, = 128, where the DS spreading factor is
N, = 8 while the TH spreading factor i¥,, = 16. There are 5 number of resolvable multipaths,
five of which conveyg5% of the transmitted power.

As an example, Fig. 6.1 compares the BER versus SNR perfaeraithe hybrid DS-TH UWB
system employing the single-user correlation and multind&SE detectors, when communicating
over Nakagamin fading channels associated with different fading parammeta our simulations we
assumed that the hybrid DS-TH UWB system suppotftee= 15 users. The number of resolvable
multipaths were fixed td. = 15, where five of which conveyegh% of the total transmitted power.
From the results of Fig. 6.1 we can observe that as the chauadity improves, i.e., as the value
of m increases, the BER performance of the hybrid DS-TH UWB imgso It is also observed
from Fig. 6.1 that the BER performance of the MMSE receivesigmificantly better than that of the
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correlation receiver. However, we should note that the MMi8Eector has much more complexity
than the correlation detector.

In order to take the advantages of the multiuser MMSE detdmibreduce the detection com-
plexity in Chapter 4 we have proposed and investigated aerahtraining-based adaptive detectors
for the hybrid DS-TH UWB systems. These adaptive detectave lower complexity than the ideal
MMSE detector considered in Chapter 3. Furthermore, thdgptive detectors are free from channel
estimation and are capable of achieving the approximate Ekt8utions with the aid of some train-
ing sequences of certain length. In this chapter three typlesv-complexity adaptive detectors have
been considered, which are operated based on the prinoidiesst mean-square (LMS), normalized
least mean-square (NLMS) and recursive least square (ReS)ectively. From our analysis and

performance results, we can draw the following observation

e LMS Adaptive Detector: The LMS adaptive detector belongs to the category of stdichas
gradient algorithms. The basic principle of the LMS detedao find a sub-optimal weight
vectorw; through stochastic gradient techniques, in order to agprdlae minimum mean-
square error between the transmitted synﬂgdland its corresponding decision variabﬁé).
The procedure of the LMS adaptive detector has been sunedarisTable 4.2.1. The com-
plexity of the LMS adaptive detector has been considereceiiién 4.3.1 and is found to be
(5(NeNy + L — 1) + 2). Finally, the BER performance results for the hybrid DS-TW/B
systems employing the LMS adaptive detector have beenmiessen Section 4.4.1. It can be
found that the LMS-aided adaptive detector constitutesadribe efficient detection schemes
that can be applied to the pure DS-, pure TH- and hybrid DS-WHBkystems. However, the

LMS adaptive detector does not perform very well in the lowRafggion.

e NLMS Adaptive Detector: The NLMS adaptive detector also works in the principles of
stochastic gradient. The NLMS adaptive detector is capabkgtaining faster convergence
than the LMS adaptive detector. The algorithm of the NLMSpiste detector is summarised
in Table 4.2.2. The complexity of the NLMS has been analyze&éction 4.3.2, which is
(7T(NeNy, + L —1) +2). Finally, the BER performance results of the hybrid DS-TH B'\#ys-
tems employing the NLMS adaptive detector have been pred@mSection 4.4.2. Our studies
show that the NLMS adaptive detector is efficient for apgyia the pure DS-, pure TH- and
hybrid DS-TH UWB system. The BER performance of the NLMS diepdetector is close to
that of the ideal MMSE detector and slightly better than tifahe LMS adaptive detector.

e RLS Adaptive Detector: The RLS adaptive detector is operated in the principle aftlsquare,
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which chooses a weight vector, say to minimize the cost function that consists of the sum of
error squares. The algorithm of the RLS adaptive detectsunsmarised in Table 4.2.3. It can
be shown that the RLS adaptive detector employs more ctatitelparameters, or degrees-of-
freedom than the LMS and NLMS adaptive detector. Therefaten appropriate parameters
are applied, the RLS adaptive detector is capable of atgiaihigher convergence rate than
the LMS or NLMS adaptive detector. The complexity of the Ridaative detector has been
analyzed in Section 4.3.3, which is found to(d@(N.N,, + L —1)2 +8(N.Ny + L — 1) + 3).
Hence, the complexity of the RLS adaptive detector might &y Wigh for the hybrid DS-
TH UWB system. Finally, the BER performance results of thbrild/DS-TH UWB systems
employing the RLS adaptive detector have been illustratetlamalyzed in Section 4.4.3. It
can be shown that the RLS adaptive detector is capable ofeoging to the ideal MMSE
detector. The BER performance of the hybrid DS-TH UWB systersing the RLS adaptive
detection is very close to that of the hybrid DS-TH UWB systaming ideal MMSE detection.
Furthermore, it is shown that the BER performance of the Ri&ptve detector is better than
that of the LMS and NLMS adaptive detector.

It has been illustrated [16] that the efficiency of an adaptietector can be characterised by
its convergence speed, BER performance, robustness atehigptation complexity. According to
the adaptive filter theory [16] and also our study in Chaptethd above-mentioned characteristics
of adaptive detection are dependent on the length of thersal filter employed. In general, a
longer traversal filter results in lower convergence speduth, in turn, means that a longer training
sequence is required to train the adaptive filter. Consdiyiehe data-rate and spectral-efficiency
of the corresponding communications system decreases.robustness of an adaptive filter also
degrades as the filter length increases, since, in this basadaptive filter requires to estimate more
channel-dependent parameters [16,157,198,199]. Fartrer as shown in Chapter 4, when a longer
adaptive filter is employed, the computational complexispdecomes higher, since more operations
are required for the corresponding detection and estimafiue to the reason as above-mentioned,
hence in Chapter 5 reduced-rank techniques are proposetef@daptive detection of the hybrid
DS-TH UWB signals, in order to achieve low-complexity dei@e in hybrid DS-TH UWB systems.
With the reduced-rank detection the number of coefficiemtsetdetermined is reduced by projecting
the received signal in a higher dimensional observatiorepa a lower dimensional subspace for
detection. In this chapter, three classes of reduced-ratdctbrs have been investigated in conjuction
with the proposed RLS-adaptive detector. The three claskesduced-rank detectors have been
derived based on the principles of PCA, CSM and TPA, resgaygti Note that, although reduced-
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rank detection has been studied only associated with the d&lative detection scheme, however,
these techniques are general and they can be similarly gewplassociated with LMS and NLMS
adaptive detectors. From our analysis and simulation tedile main findings of Chapter 5 can be

summarised as below.

e Principal Component Analysis (PCA): The PCA-assisted reduced-rank RLS adaptive de-
tector is depended on the eigen-decomposition of the arelation matrixR,, of the
observation vectoy;. In this reduced-rank scheme tli& number of eigenvectors corre-
sponding to thel/ largest eigenvalues aR,, are used to form the detection subspace (or
processing matrixP;;.  As shown in Section 5.2.2, the PCA-based scheme forms the de
tection subspacé#’;; without requiring the knowledge about the user to be detect€he
complexity of the PCA-based reduced-rank RLS adaptivectimtehas been considered in
Section 5.3.1, and the number of operations for detecting lmh has been found to be
(T2 +2T +2UT + 11U? +7U + 3+ (T3/3+ Ulog, T)/Fy), whereT = (N Ny + L —

1) and F, denotes the frame-length. Finally, the learning and BERoperance of the PCA-
based reduced-rank RLS adaptive detector have been stadedtion 5.4.1. Our analysis and
performance results show that the PCA-assisted reducddRiaS adaptive detector is capable
of achieving the BER performance of the full-rank RLS adagptietector, if the rank/ of the
detection subspace is not lower than the signal subspau®s Hence, the PCA-based scheme
may allow a significant reduction of the detection subsgaik, provided that the dimension
of the signal subspace is significantly lower than the ranthefobservation space spanned by
the received signay;, which is (N.N, + L — 1) and may be very big if the total spreading
factor and/or the number of resolvable multipaths are highen this is not the case, for ex-
ample, when the hybrid DS-TH UWB system supports a high nurabesers resulting in that
the signal subspace’s rank exceeds the r@néf the detection subspace, then, mapping the
received signal vectors to the detection subspace oflvaisiikely to reduce the desired signal
components. Consequently, the corresponding PCA-badaded-rank RLS adaptive detector

might conflict severe multiuser interference and the BERoperance appears error-floors.

e Cross Spectral Metric (CSM): The CSM-based reduced-rank RLS adaptive detector is
also depended on the eigen-decomposition of the autolabore matrix R,, of the ob-
servation vectory;. As shown in Section 5.2.3, frofiN.N,, + L — 1) eigenvectors of
R,,, the CSM-based scheme chooses theeigenvectors having th& largest CSM val-

ues as defined in (5.14) to form the detection subsf2dge The detection subspace ob-
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tained in this way is the optimum selection of tif&="%"*~") eigenvectors in MMSE
sense for reduction in rank. Hence, the CSM-based ranlctietu technique may be
more efficient than the PCA-based rank-reduction technigirece the CSM-based scheme
takes into account the energy in the subspace contributethdydesired user. However,
as shown in (5.14), the CSM-based reduced-rank schemeresqid invoke the knowl-
edge ofh; and CEI) of the desired user, in order to form the detection subspage
The complexity of the CSM-assisted reduced-rank RLS adamietector has been consid-
ered in Section 5.3.2. It has been found that the number ofatipas for detecting one
bit is (72 + 27 +2UT + 11U%2+7U +3+ (T + )T + T3/3+ 272 + Ulog, T)/FL),
where T}, represents the number of symbols per frame used for traifingddition to the
parameters mentioned previously. Finally, the learningglbmur of the CSM-based reduced-
rank RLS adaptive detector and the BER performance of theidhy®S-TH UWB systems
using the CSM-based reduced-rank RLS adaptive detectigm lteen depicted and discussed
in Section 5.4.2. From our study and performance resultsart be found that the CSM-
assisted reduced-rank RLS adaptive detector may convastgr than the full-rank RLS adap-
tive detector. Hence, the hybrid DS-TH UWB systems using@B#-assisted reduced-rank
RLS adaptive detection may result in a higher spectralieffay than that using the full-rank
RLS adaptive detection. The CSM-assisted reduced-rank&llaptive detector is capable of
achieving the BER performance of the full-rank RLS adapdigtector, when the rarik of the
detection subspace reaches a value equivalent to the sigbsppace’s rank. Hence, like the
PCA-based scheme, the CSM-based scheme may also reduifeangly the detection com-
plexity, if the dimension of the signal subspace is signiftgelower than that of the observation

space spanned by the received sigpal

e Taylor Polynomial Approximation (TPA): In contrast to the above two rank reduction
schemes that are depended on the eigen-decomposion, thasERted reduced-rank adap-
tive detector forms its detection subspdeg without depending on the eigen-decomposition
of the auto-correlation matri®,,. Instead, it forms the detection subspde based on the
Taylor polynomial expansion of the inverse auto-correlatmatrix R,,, as shown in (5.19).
Based on (5.19), we can know that the TPA-based reducedsemme requires the knowl-
edge ofhy and CEI) of the desired user, in order to form the detection subsgage The
complexity of the TPA-based reduced-rank RLS adaptiveai@tenas been analysed in Sec-
tion 5.3.3. It has been found that, if the detection subspaesk isU = 1, the number of
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operations required to detect one bit(®& + 21 + ((7 + 1)1, /F1)). However, if the de-
tection subspace’s rank I > 1, then the number of operations required to detect one bit is
(T2 42T +2UT +11U% +7U + 3) + (T + )Ty, +2(U — 1)T?/Fy)). Finally, in Sec-
tion 5.4.3 the learning and BER performance of the TPA-ge$ireduced-rank RLS adaptive
detector have been provided and analysed. The learningiBRdgpBrformance results show that
the TPA-assisted reduced-rank RLS adaptive detector igtayhéfficient detection scheme. It
usually does not require a high rabk(in comparison to the signal subspace’s rank) to con-
verge to a low MSE and it usually converges very fast. The BRgisted reduced-rank RLS
adaptive detector is capable of converging to the full-rahks adaptive detector’s performance
with a rankU significantly lower than that of the signal subspace, egfigcivhen the signal
subspace’s rank is high. Furthermore, the detection sab§peanklU needed to achieve the
full-rank RLS adaptive detector’s performance does ndeseith the system size determined
by the observation space’s dimension, whic{A&.V,, + L — 1), and K of the number of
users. Additionally, as shown in Tables 5.5 and 5.6, the BR#ed reduced-rank RLS adaptive
detector usually has a lower complexity than the PCA- or O&ided reduced-rank RLS adap-
tive detector. Owing to its above-mentioned properties, TRA-assisted reduced-rank RLS
adaptive detector may constitute a promising detectioersehfor the hybrid DS-TH UWB
systems, which may support a big number of users commumicatier the UWB channels

having a huge number of low-power resolvable multipaths.

Finally, the number of operations required by the variousd®n schemes for the hybrid DS-TH
UWB systems to detect one bit is summarised in Table 6.1. bdeTa.1 the number of operations
required by the different detectors to detect one bit is jpiexy in the context of a range of specific
cases. For generating Table 6.1, we assumed that the feamgttiwas’;, = 1000 bits, which include
T, = 160 training bits. Hence, the spectral efficiency of the hybri-DH UWB systems i84%,
when the full-rank or reduced-rank adaptive detectors @amsidered. Additionally, in our evaluations
the total spreading factor was assumed t@bewhere the DS spreading factor wads = 16 and
the TH-spreading factor wa¥,, = 4, respectively. From the data shown in Table 6.1, it can be
observed that the number of operations required for degpctine bit is reduced significantly for the
LMS and NLMS adaptive detectors as compared to the comelaktector. However, the complexity
of the RLS adaptive detector is still very high as compareithéocorrelation detector but lower than
that of the ideal MMSE detector. From the data shown in Table B can be observed that the
number of operations required for detecting one bit is redwgignificantly for the reduced-rank RLS

adaptive detection schemes in comparison with that redjloyethe full-rank RLS adaptive detector.
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Detection Number of resolvable Rank of detection Number of operations
scheme multipaths,L subspacel/ for detecting one bit
Correlation 15 78 2496
detector 100 163 32926
Ideal MMSE 15 78 176670
detector 100 163 1523780
LMS adaptive 15 78 391
detector 100 163 816
NLMS adaptive 15 78 548
detector 100 163 1143
RLS adaptive 15 78 67551
detector 100 163 293566
1 6575
PCA-based 15 8 8428
reduced-rank RLS 15 11391
adaptive detector 1 28686
100 8 31750
15 35957
1 6600
CSM-based 15 8 8453
reduced-rank RLS 15 11416
adaptive detector 1 28765
100 8 31829
15 36036
1 189
TPA-based 15 5 7125
reduced-rank RLS 8 8023
adaptive detector 1 373
100 5 28601
8 30144

Table 6.1: Number of operations required for detecting one bit in therldyDS-TH UWB systems using
various detection schemes to suppl@rt= 5 users.

All the three reduced-rank RLS adaptive detectors consitleave a similar complexity, but, however,

the number of operations required by the TPA-based redrarddscheme is usually slightly lower

than that required by the PCA- or CSM-based reduced-ranénsehfor any given values &f and

L. Furthermore, the data in Table 6.1 shows that the completithe reduced-rank RLS adaptive

detectors is at a similar level as that of the single-useretation detector, which achieves much

worse BER performance than the reduced-rank RLS adaptteetdes considered.
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6.2

Future Work

In this section we provide some suggestions for potenttakéuresearch.

1

2)

3)

4)

In this thesis, the adaptive detectors considered anatsukin the principles of MMSE. How-
ever, the MMSE detector is optimum only when the conditigmalbability density function
(CDF) of the detector’s output when given the transmittetlsyl is Gaussian [228]. In pulse-
based UWB systems, the CDF of the detector's output giverirdresmitted symbol is not
Gaussian whenever there are multiple users present [2Bhdfmore, when designing a com-
munication system, the ultimate requirement is the BER butime MMSE. Therefore, adap-
tive minimum bit error rate (MBER) algorithms may be intraed to the hybrid DS-TH UWB
systems in order to enhance the BER performance [228]. &untbre, the reduced-rank tech-
niques may be proposed for the MBER adaptive detector, ierdadreduce its implementation

complexity, as shown in Appendix A.

In this thesis, since our major emphasis is on the desidavwstomplexity UWB receivers,
hence, when reduced-rank techniques are employed, thetidateubspace determined By,

is estimated during the training stage without updatingnduthe data transmission. However,
the detection subspace can be updated after the detectwmreafr several data bits during the
data transmission stage. This joint update of the procgssirix Sy and the weight vector
w Will help to improve further the spectral-efficiency and BER performance of the UWB

system, but certainly, at the expense of higher complexity.

It has been well-recognized that the channel estimatine pulse-based UWB systems is
extremely difficult. Noncoherent techniques do not reqehlannel estimation and allow to
capture the majority of the transmitted energy by using &ngorrelators, even when there
exist distortions and multipath propagation. Hence, e&ffithoncoherent detection techniques
may be introduced to the hybrid DS-TH UWB systems, in ordeadbieve low-complexity

detection.

In our study in this thesis, no error-control coding hasrbeonsidered. However, error control
coding is genrally employed by any wireless communicatgystems. Hence, itis important to
investigate the achievable BER performance of the hybridlBISJWB systems when certain
error-control coding is employed. Furthermore, errortoarcoding may help to improve the

convergence of the adaptive detectors. However, thesesisged further research.
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5) Multiple antenna and multiple-input and multiple-outgiMIMO) as well as space-time pro-
cessing have found a lot of application in recent years. igleliantenna and MIMO principles
may be applied to the UWB systems in order to boost their ggpatowever, introducing mul-
tiple antennas to UWB systems will make the system operati@m more complex. Hence,
it is highly important to investigate the high-efficiencatismission and detection schemes for

the multi-antenna UWB systems.

6) Finally, the mathematical performance analysis of theridyDS-TH UWB system communi-

cating over various UWB channels is also interesting antlhighallenging.



Appendix

Adaptive Reduced-Rank Minimum Bit
Error-Rate Detection for Hybrid
Direct-Sequence Time-Hopping Ultrawide
Bandwidth System

Pulse-based UWB communications schemes constitute a Eng®mising alternatives that may
be deployed for home, personal-area, sensor network, pgications, where the communication
devices are required to be low-complexity, high-reliapiland minimum power consumption [1].
However, in pulse-based UWB systems the spreading factmuially very high. The UWB channels
are usually very sparse [29], resulting in that a huge nurablew-power resolvable multipaths need
to be processed at the receiver. As demonstrated in [1,2%ulse-based UWB communications
the huge number of resolvable multipaths generally con$istfew relatively strong paths and many
other weak paths. Unlike in the conventional wideband comications where strong paths usually
arrive at the receiver before weak paths, in UWB commurocatthe time-of-arrivals (ToAs) of the
strong multipaths are random variables and are not negetsgsamultipaths arriving at the receiver at
the earliest. Due to the above-described issues, ther@fgoalse-based UWB systems it is normally
impractical to carry out directly the coherent detectiohjcl depends on accurate channel estimation
demanding extreme complexity. In fact, it has been recaghthat the complexity might still be
extreme, even when the conventional single-user matched-fMF) detector [149] is employed.

This is because there are a huge number of multipath chamneetsto be estimated and the detection

186
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complexity is at least proportional to the sum of the spregdactor and the number of resolvable
multipaths [90].

In this appendix we consider the low-complexity detection hybrid DS-TH UWB sys-
tems [148, 155], since the hybrid DS-TH UWB scheme is a gdirerh pulse-based UWB com-
munication scheme, which includes both the pure DS-UWB dmdpure TH-UWB as special
cases [1, 148, 155]. The detector proposed is an adaptieetdebperated in a reduced-rank detec-
tion subspace based on the least bit error-rate (LBER)iptagc[225, 228], which is hence referred
to as the reduced-rank adaptive LBER detector. As our fortticg discourse shown, the reduced-
rank adaptive LBER detector does not depend on channelagiim It achieves its near-optimum
detection with the aid of a training sequence at the statvwfraunication and then maintains its near-
optimum detection based on the decision-directed (DD)cjplas during the communication [173].
The reduced-rank adaptive LBER detector does not requiréribwledge about the number of re-
solvable multipaths as well as that about the locations efstinong resolvable multipaths; It only
requires the knowledge (which is still not necessary a¢ejebout the maximum delay-spread of the
UWB channels. Furthermore, the reduced-rank adaptive L8&RBctor is operated in a reduced-rank
detection subspace obtained based on the principal companalysis (PCA) [196]. The detection
subspace usually has a rank that is significantly lower thah af the original observation space.
Owing to the above-mentioned properties of the reducel-adaptive LBER detector, we can argue
that it is a low-complexity detection scheme, which is fblesfor practical implementation.

Note that, in this appendix the LBER algorithm is preferradi@éad of the conventional least
mean-square (LMS) algorithm [16], since, first, the LBERoaiidhm works under the minimum BER
(MBER) principles, which may outperform the LMS algorithimat is operated in minimum mean-
square error (MMSE) sense [228]. Second, the LBER algortsisimilar complexity as the LMS
algorithm [228]. Furthermore, it has been observed [228} the LBER algorithm may provide a

higher flexibility for system design in comparison with th®1g algorithm.

A.1 Description of Hybrid DS-TH UWB System

The hybrid DS-TH UWB scheme considered in this appendixésstime as that considered in [229],

where non-adaptive reduced-rank detection has been iietest.
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Figure A.1: Transmitter schematic block diagram of hybrid DS-TH UWBtsys.

A.1.1 Transmitted Signal

The transmitter schematic block diagram for the considagdztid DS-TH UWB system is shown in
Fig. A.1. We assume for simplicity that the hybrid DS-TH UW§&sgem employs the binary phase-
shift keying (BPSK) baseband modulation. As shown in Fidl,A data bit of the&th user is first
modulated by av.-length DS spreading sequence, which generateships. TheN. chips are then
transmitted by, time-domain pulses within one symbol-duration, where tositpns of the/NV,
time-domain pulses are determined by the TH pattern assigmthekth user. Finally, as shown in
Fig. A.1, the hybrid DS-TH UWB baseband signal transmittedhe £th user can be written as [148]

s (1) 1/ Zb’i d\* [t—jT ~ T, (A.1)
¥ =0 NC

where| x| represents the largest integer less than or equa] tgt) is the basic time-domain pulse
of width 77, which satisfie%TZ” ¢%(t)dt = Ty. Note that, the bandwidth of the hybrid DS-TH UWB

system is approximately equal to the reciprocallpfof the basic time-domain pulse’s width. The

other parameters in (A.1) as well as the other parametetsinghis appendix are listed as follows:

e Ej: Energy per bit;

N.: Number of chips per bit and DS spreading factor;

Ny: Number of time-slots in a chip and TH spreading factor;

T, andT,: Bit-duration and chip-duration, which satisfi€s= N.1¢;

T,: Time-domain pulse width or width of a time-slot, which s&&sT. = N, T,
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o bgk) € {+1, —1}: Theith data bit transmitted by usér

° {dg.k)}: Random binary DS spreading sequence assigned ftelheser;

o {c§k> € {0,1,--- , N, — 1}}: Random TH sequence assigned tokteuser;
e N.N,: Total spreading factor of hybrid DS-TH UWB system.

Note that, both the pure DS-UWB and pure TH-UWB schemes itotestspecial cases of the
hybrid DS-TH UWB scheme. Specifically, ¥. > 1 andN,, = 1, T}, andT, are then equal and in
this case the hybrid DS-TH UWB system is reduced to the purdJB3 system. By contrast, when
N. = 1andNy > 1, the hybrid DS-TH UWB scheme is then reduced to the pure THEBtheme.

A.1.2 Channel Model

In this appendix the Saleh-Valenzuela (S-V) channel masl@onsidered, which has the channel
impulse response (CIR) [117]

V-1U-1

h(t) =D huwd(t — T, — Tow) (A2)

v=0 u=0

whereV represents the number of clusters dndlenotes the number of resolvable multipaths in a
cluster. Hence, the total number of resolvable multipatmmonents can be as high &s= UV..
In (A.2) hyy = |huwle?®v represents the fading gain of théh multipath in thevth cluster, where
|hy,»| @andé,, ., are assumed to obey the Rayleigh distribution [117] andumitdistribution in[0, 27),
respectively. In (A.2)I}, denotes the arrival time of theth cluster andr’, , the arrival time of the
uth multipath in thevth cluster. In the considered UWB channel, the average poWamultipath
component at a given delay, saylat+ 7, ., is related to the power of the first resolvable multipath

of the first cluster through the relation of [117]

T’U Tu v
Q0 = Qooexp (——) exp <——’> (A.3)
r Y

where(,,, = E [|h,|*] represents the power of theresolvable multipath of theth cluster,I' and
~ are the respective cluster and ray power decay constants.
According to (A.2), we can know that the maximum delay-sgrefithe UWB channels consid-

ered is(Ty + Ty,y ) and the total number of resolvable multipathdis= | (T + Ty,v) /Ty | + 1. In
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order to make the channel model sufficiently general, indpgendix we assume that the maximum
delay spreadTy + Ty,v) spansy > 1 data bits, implying thatg — 1) N.Ny, < (L — 1) < gNNy.
A.1.3 Receiver Structure

Let us assume that the hybrid DS-TH UWB system suppgrigplink users. When th& number
of DS-TH UWB signals in the form of (A.1) are transmitted ow#WB channels having the CIR as

shown in (A.2), the received signal at the base-station (8)be expressed as

[ B S~ X (k) (k)
> hg’?,b d
N, Tw k=1 v=0 u=0 j=0 NLCJ

xzpm t i1 — 7, — TP — k) - }%—n() (A.4)

<
_
-
—_
&

o
<
Il
o

~

U,V

wheren(t) represents an additive white Gaussian noise (AWGN) proedssh has zero-mean and
a single-sided power spectral density /g§ per dimension;r;, takes into account the lack of syn-
chronisation among the user signals as well as the transmidslay, whilei,...(t) is the received

time-domain pulse, which is usually the second derivativa® transmitted pulseé(t) [40].

(t Yx yi Ui Traversal filter (1)
uon Ul (—t) —)}5_> Buffer sH - ol i o ez -

nTy
Matched-filter ~Sampling A

l‘)(l)

Decision
Directed

A

LBER
Algorithm | g o—|

Training
Sequences

Figure A.2: Receiver schematic block diagram for the hybrid DS-TH UWBLtsims using reduced-rank adap-
tive LBER detection.

The receiver schematic block diagram for the hybrid DS-THRIMging the considered reduced-
rank adaptive LBER detection is shown in Fig. A.2. At the ireee the received signal is first filtered
by a MF having an impulse responsef..(—t). The output of the MF is then sampled at a rate
of 1/Ty. Then, the observation samples are stored in a buffer, varelprojected to a reduced-rank
detection subspace, once a reduced-rank detection s@#pas obtained. Finally, the observations
in the detection subspace are input to a traversal filtehvisi controlled by the LBER algorithm, in
order to generate estimates to the transmitted data bits.

Let us assume that a block 8f data bits per user is transmitted. Then, according to Fig, A.

the detector can collect a total @/ N.N,, + L — 1) number of samples, whe(é — 1) is due to the
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L number of resolvable multipaths. In more details, Atile sample can be obtained by sampling the

MF’s output at the time instant ¢f= Ty + (A + 1)T},, which can be expressed as

-1

ET To+(M+1)T, .

U\ = ( ]11[ w) / T(t)wrec(t)dt (AS)
c CZ—‘OJF)\TI/)

whereTy denotes the ToA of the first multipath in the first cluster.
In order to reduce the detection complexity of the hybrid T UWB system, in this appendix
we consider only the bit-by-bit based detection. Let theeoketion vectoly; and the noise vectot;

related to theth data bit of the first user (reference user) be represemnted b

Yi = [YiNeNy» YiNNy+15 - ay(i+1)NCN¢,+L—2]T (A.6)

T
Ni = [N Ny N Ny+15 " 5 (it 1) Ne Ny +L—2] (A7)

where the elements af, are Gaussian random variables distributed with zero-medmaariance of

0% = Ny/2E}, per dimension. Then, as shown in [148, 228]can be expressed as

K i—1
_ § ' E : (k) g p(K) D)y (1) ,
Yi= gj hkb] +Cz hlbz +n;

k=1 j:maﬁzjiig) Desired signal

ISI from the previous bits oK users

K K min(M—1,i+g)
+ Y Ph® 3 Y Pl (A.8)
= =1

Multiuser interference -
I1SI from the latter bits ofK users

where the matrices and vectors have been defined in detd#8)229]. From (A.8), we observe that
thesth data bit conflicts both severe inter-symbol interferefi and multiuser interference (MUI),
in addition to the Gaussian background noise.

When the conventional linear detectors without invokindueed-rank techniques are considered,

the decision variable fdrgl) of the reference user can be expressed as
JCO R AR _
;= wiy;, i=0,1,... M—1 (A.9)

wherew, is a(N.Ny + L — 1)-length weight vector. Since in UWB communications the agre
ing factor N.IV,, might be very high and since the number of resolvable mutipais usually huge

in UWB channels, the vectaw,, i.e., the filter length might be very large. Therefore, tloene
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plexity of the corresponding detectors might be extremenavhen low-complexity linear detection
schemes are considered. Furthermore, using very long filtetietection in UWB systems may
significantly degrade the performance of the UWB systems. eikample, using a longer traversal
filter results in lower convergence speed and, hence, al@®grience is required for training the
filter [16]. Consequently, the data-rate and spectral efficy of the corresponding communications
system decreases. The robustness of an adaptive filterdgsgas the filter length increases, since
more channel-dependent variables are required to be ¢stmitr2]. Furthermore, when a longer
adaptive filter is employed, the computational complexityaliso higher, since more operations are
required for the corresponding detection and estimatitnerdfore, in this appendix the reduced-rank
adaptive LBER detector is proposed, in order to achievedomyplexity detection in hybrid DS-TH
UWB systems.

A.2 Reduced-Rank Adaptive Least Bit-Error-Rate Detector

In reduced-rank detection the number of coefficients to bernened is reduced through projecting
the received signals to a lower dimensional detection desplo6]. Specifically, leP;; be an
((NeNy + L — 1) x U) processing matrix with it§/ columns forming &/-dimensional subspace,
whereU < (N.N,+L—1). Then, for a given received vectgy, theU-length vector in the detection
subspace can be expressed as

7 = (PHPy) 1Py, (A.10)
N——

S

where an over-bar is used to indicate that the argument ieingduced-rank detection subspace.

In this appendix, the PCA-assisted reduced-rank techriit@@ 230] is employed for obtaining
the processing matrix: Given the rabkof the detection subspace, thenumber of eigenvectors
corresponding to thé&’ largest eigenvalues of the autocorrelation matriypare utilised to form
the processing matri®y [230]. In more detail, the auto-correlation matrixggfcan be represented
using eigen-analysis as

Ry, = Elyy!"] = @AD" (A.11)
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whereA is a diagonal matrix given by

A:diag{)\l,)\g,"' 7)‘Nch/,+L—1} (A12)

which contains the eigenvalues Bf,,, while ® is an unitary matrix consisting of the eigenvectors of

R,,, which can be written as

®=[1,02, . ON.N,+L-1] (A.13)

whereg; is the eigenvector corresponding to the eigenvalue

Let assume that the eigenvalues are arranged in descemtaiedging Ay > Ay > --- >
AN.N,+L-1- Then, the processing mati;; in the context of PCA-assisted reduced-rank technique
is constructed by the firdf columns of®, ie., we havePy = [¢1, 02, -+ , du].

Given the observations in the detection subspace as shoplifl), the linear detection djﬁl)

can be carried out by forming the decision variable
2 = ol (A.14)

wherew; is now anU-length weight vector. According to the theory of the PC/Asd@reduced-rank
detection [196], the full-rank BER performance can be aede provided that the rank of the
detection subspace is not lower than the rank of the sigrapace, which for our hybrid DS-TH
UWB system isK (g + 1). However, if the rank of the detection subspace is lower tharsignal
subspace’s rank, the reduced-rank detection then corflidis Consequently, the BER performance
of the hybrid DS-TH UWB system using the PCA-based reduesdt-detection deteriorate, in com-
parison with the full-rank BER performance. Therefore,hia PCA-based reduced-rank detection it
is important to have the knowledge about the signal sub&paaek. Note that, in our simulations
considered in Section A.3, the signal subspace’s rank wi#mated through eigen-analysis of the
autocorrelation matrix,,, which was estimated with the aid of a block of data bits.

In (A.14) the weight vectofp; can be obtained with the aid of the sample-by-sample adaptiv
LBER algorithm proposed in [225]. In our reduced-rank ad@pt BER detector for the hybrid DS-
TH UWB systems, the reduced-rank adaptive LBER is operatdaetd modes, namely, the training
mode and the decision-directed (DD) mode, respectivelyeMiiperated in the training mode, the

weight vectorw; is adjusted with the aid of a training sequence, which is kmowthe receiver.
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Correspondingly, the update equation in the LBER princgale be expressed as [228]

0,
B1(n 1) = Ba(n) + 2T T")

2\/%%
(1) 2
X exp (—W) gi(n), n=1,2,... (A.15)
Pn

where sgliz) is a sign-functiony is the step-size ang, is the so-called kernel width [228]. In the
adaptive LBER algorithm, the step-sizeand the kernel widtlp,, are required to be set appropriately,
in order to obtain a high convergence rate as well as a smdlsteady BER misadjustment. Fur-
thermore, it has been observed [228] that the above-mesttibmo parameters can provide a higher
flexibility for system design in comparison with the adaptivMS algorithm, which employs only
single adjustable parameter of the step-size [16].

When the training stage is completed and the normal datartriasion is started, the reduced-
rank adaptive LBER detector is then switched to the DD modeddd the DD mode, the estimated
data bits by the receiver are fed back to the adaptive LBE& filthich is then updated in the LBER
principle. Specifically, during the DD mode the update eigmatan be expressed as

xOr.
wl(n+1):w1(n)+usgdbi (n))

2/ 27 pn,
Rz (n) |2 _
X exp (—%) giln), n=1,2,... (A.16)
where the estimatégl) is given by
B = sgnr{z"}), i=0,1,...,M —1 (A.17)

Let us now provide our simulation results in the next section

A.3 Simulation Results and Discussion

In this section the learning and BER performance of the redwank adaptive LBER detector is
investigated by simulations. In our simulations the topaeading factor was assumed to be a constant
of N.N, = 64, where the DS-spreading factor was set\p = 16 and the TH-spreading factor
was henceV,, = 4. The normalised Doppler frequency-shift of the UWB chaaneés fixed to

fdTy = 0.0001. In our simulations the S-V channel model used in [117] wassittered and the
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channel gains were assumed to obey the Rayleigh distribuliomore detail, the parameters of the

S-V channel model used in our simulations are summarizeukeifidiowing Table.

1/A r v
14.11 ns| 2.63 ns| 4.58 ns

Table A.1: Parameters for the S-V channel model used in simulations.

Fig. A.3 shows the ensemble-average squared error-rate)(8&rning curve of the reduced-rank
adaptive LBER detector for the hybrid DS-TH UWB system suppg K = 5 users, when different

step-size values are considered. Note that, the SER drakig.if\.3 is defined as

sgr(t!") (n) RED )2 |
SER= Wexp —T (A.18)

which is proportional to the BER achieved by the reduced-eadaptive LBER detector. In our simu-
lations the signal-to-noise ratio (SNR) per bit was se@N, = 10dB, the ensemble-average SER
was obtained from the average 02800 independent realizations, the weight vector was initiliz
tow(0) = 1 of an all-one vector, and the rank of the detection subspasechosen as = 20. It can
be observed from Fig. A.3 that the convergence speed of theeeel-rank adaptive LBER detector is
depended on the step-sige Explicitly, there exists an optimum step-size value, Whiesults in that
the reduced-rank adaptive LBER detector converges to thestoBER. As shown in Fig. A.3, when
an inappropriate step-size is used, the convergence spagthecome lower and the reduced-rank
adaptive LBER detector may converge to a relatively higheR S

Fig. A.4 shows the BER versus SNR per bit performance of theithypS-TH UWB system using
reduced-rank adaptive LBER detection, when communicaiirey the UWB channels experiencing
correlated Rayleigh fading. The hybrid DS-TH UWB systemsidared supporte& = 5 users and
the normalised Dopper frequency-shift was assumed tfBe= 0.0001. Furthermore, we assumed
thatg = 1, implying that the desired bit conflicts ISI from one bit tsamtted before the desired bit
and also from one bit transmitted after the desired bit. Nlogg, given the parameters as shown in
the caption of the figure, it can be shown that the rank of theadisubspace & (g + 1) = 10. From
the results of Fig. A.4, we observe that, when the rank of e#tealion subspace is lower than that
of the signal subspace, i.e., wh&n< 10, the BER performance of the hybrid DS-TH UWB system
improves, as the rank of the detection subspace increades bdst BER performance is attained,

when the rank of the detection subspace reaches the rank sighal subspace. When the rank of
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Figure A.3: Learning curves of the reduced-rank adaptive LBER detdotahe hybrid DS-TH UWB system
supportingK = 5 users, when the detection subspace has a raik ef 20. The parameters
used in the simulations weig, /N, = 10dB, Doppler frequency-shift of;7, = 0.0001, p,, =
V100, g =1, N, = 16, Ny, = 4 andL = 15.

the detection subspace is higher than that of the signapagbs no further SNR gain is achievable.
Furthermore, when the rank of the detection subspace ig linaa that of the signal subspace, error-
floor is observed, explaining that the MUI cannot be fully prgssed by the reduced-rank adaptive
LBER detector.

Fig. A.5 shows the BER versus SNR per bit performance of theithypS-TH UWB system using
reduced-rank adaptive LBER detection, when communicatirey the UWB channels experiencing
correlated Rayleigh fading, which results in severe IStdntrast to Fig. A.4, where we assumed that
g = 1 and the number of resolvable multipaths was- 15, in the context of Fig. A.5 we assumed
thatg = 3 andL = 150. The other parameters used for Fig. A.5 were the same as tiseskfor
Fig. A.4. Note that, for the parameters considered in Fid, Ahe rank of the signal subspace is
K (g + 1) = 20. Again, as the results of Fig. A.5 shown, the BER performamg@oves as the rank
of the detection subspace increases, until it reaches tieafathe signal subspace. In comparison
with Fig. A.4, we can see that, for a giveny, /N, value, the full-rank BER shown in Fig. A.5 is
lower than the corresponding full-rank BER shown in Fig. AThis is because the UWB channel
considered associated with Fig. A.5 Has= 150 number of resolvable multipaths, which results in a

higher diversity gain than the UWB channel considered astmt with Fig. A.4, which had, = 15
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Figure A.4: BER performance of the hybrid DS-TH UWB systems using redwueak adaptive LBER de-
tection, when communicating over the UWB channels moddiethe S-V channel model as-
sociated with correlated Rayleigh fading. The parameteesiun the simulations werk = 5,
faTy = 0.0001, u = 0.5, p, = v/100,,, g = 1, N. = 16, N, = 4 andL = 15. The frame length
was fixed to1000 bits, where the first60 bits were used for training.

number of resolvable multipaths.

A.4  Summary and Conclusions

In conclusions our study and simulation results show that the reducekl-adaptive LBER detector

constitutes one of the efficient detectors for the hybrid BSUWB systems. The reduced-rank
technique can be employed for achieving low-complexitedgon in the DS-TH UWB systems and
for improving their efficiency. The reduced-rank adaptiHR detector is capable of achieving the
full-rank BER performance with the detection subspacentpeirank that is significantly lower than

(N.Ny + L — 1) of the original observation space.
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Figure A.5: BER performance of the hybrid DS-TH UWB systems using redueamk adaptive LBER de-
tection, when communicating over the UWB channels moddiethe S-V channel model as-
sociated with correlated Rayleigh fading. The parameteesiun the simulations werg = 5,
faTy = 0.0001, & = 0.5, pp, = V100, g = 3, N. = 16, Ny = 4 andL = 150. The frame
length was fixed td 000 bits, where the first60 bits were used for training.
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ADC
AWGN
BER
BPSK
CDMA
CIR
CMF
CP
csl
CSM
DD
DS
DS-TH
EASE
FCC

FFT

Analog-to-Digital Converter
Additive White Gaussian Noise

Bit Error Rate

Binary Phase Shift Keying

Code Division Multiplexing Access
Channel Impulse Response
Conventional Matched Filter
Cyclic Prefix

Channel State Information
Cross-Spectral Metric
Decision-Directed

Direct Sequences
Direct-Sequence Time-Hopping
Ensemble-Average Squared Error
Federal Communications Commission

Fast Fourier transform
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FH Frequency Hopping

FTH Fast Time Hopping

GHz GigaHertz

GMSP Gaussian Modified Sinusoidal Pulses
GP Gaussian Pulses

GPS Global Positioning System

GSM Global System for Mobiles

HF High Frequency

HP Hermite Polynomial

IPI Inter Pulse Interference

ISI Inter Symbol Interference

LANL Los Alamos National Laboratories

LF Low Frequency

LLNL Lawrence Livermore National Laboratories
LMS Least Mean Square

LOS Line Of Sight

LR-WPAN Low-Rate Wireless Personal Area Network
LTI Linear Time Invariant

MA Multiple Access

MAI Multiple Access Interference

MBOK M-ary Bi-Orthogonal Keying

MDP Multipath Delay Profile

MF Matched-Filtering
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MHz
MMSE-MUD
MPPM
MSE
MUI
NBI
NLMS
ns
OFDM
OOK
PAM
PAN
PAPR
PCA
PCTH
PDF
PN
PPM
PS
PSD
PSM
QoS

QPSK

MegaHertz

Minimum Mean Square Error Multi-User Detector
M-ary Pulse Position Modulation
Mean Square Error

Multi-User Interference

Narrow Band Interference
Normalised Least Mean Square
nanoseconds

Orthogonal Frequency Divison Multiplexing
On-Off Keying

Pulse Amplitude Modulation
Personal Area Networks
Peak-to-Average Power Ratio
Principal Components Analysis
Pseudo-Chaotic Time-Hopping
Probability Density Function
Pseudo-Noise

Pulse Position Modulation
Prolate Spheroidal

Power Spectral Density

Pulse Shape Modulation
Quality-of-Services

Quadrature Phase-Shift Keying
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RLS

S-V

SINR

SNR

STDL

STH

TESM

TH

THMA

TPA

UMTS

USAF

uwB

WSN

ZP

Recursive Least Square

Saleh-Valenzuela
Signal-to-Interference-plus-Noise Ratio
Signal-to-Noise Ratio

Statistical Tapped Delay Line

Slow Time Hopping

Triangular enveloped sinusoidal monocycle
Time Hopping

Time Hopping Multiple Access

Taylor Polynomial Approximation

Universal Mobile Telecommunications System
United States Air Force

Ultrawide Bandwidth

Wireless Sensor Networks

Zero Padding
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