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Abstract. POAG (Primary Open Angle Glaucoma) is a major cause of blindness. This normally occurs when the IOP 
(intraocular pressure) increases. High pressure can be caused by an imbalance in the production and drainage of fluid (aqueous 
humour, AH) in the eye. AH is continually being produced but sometimes cannot be drained because of improperly functioning 
drainage channels (trabecular meshwork, TM). A mathematical model is presented for the flow of AH through the TM and into 
the SC (canal of Schlemm) and to couple this flow in order to predict changes in IOP. The governing equations have been 
developed by using the lubrication theory limit of the Navier-Stokes equations. To close the model, Friedenwald’s law has been 
used to predict changes of IOP. Several different cases have been examined in the model, relating AH flow to changes in IOP for 
various submodels: (i) the permeability, k in Darcy’s law may be either constant or not constant; (ii) the TM may be deformable so 
that the general theory of a beam under axial load is applicable - a number of different subcases where either θ or λ, may be either 
large or small have been considered. However only the subcase θ is small has been discussed in this study by assuming the 
permeability, k is constant and the TM is deformable. This subcase has been solved by using the regular perturbation method. The 
results show that the IOP rises continually when θ is small and may cause blindness.   

Keywords: POAG, Lubrication theory flow, Friedenwald’s law, Darcy’s law, Beam bending theory 
 
1. POAG in Human Eyes 
 
 The human eye is a truly amazing organ. It gives us the sense of sight, allowing us to learn more about our 
surroundings than we can with any of the other four senses. Most people would probably agree that sight is the 
sense that they value more than all the rest. Each part of the eye has its own special function but if only one of 
these parts is damaged or injured, this may lead to blindness. 
 

 
 

Figure 1.  Glaucomatous Optic Nerve Damage. This figure was extracted from [14]. 
 

 One common cause of blindness is glaucoma. Glaucoma is an eye condition where the optic nerve at the back 
of the eye is damaged (see Figure 1). In most cases, the damage to the optic nerve is due to an increased 
pressure within the eye. The several different types of glaucoma include, primary open angle glaucoma (POAG), 
acute angle closure glaucoma, secondary glaucoma and congenital glaucoma. The most common type is primary 
open angle glaucoma (also called chronic glaucoma) ([13]). In [13] it was noted that POAG affects about 1 
percent of the population over 40 and more than 10 percent over 80. POAG most often occurs when the 
intraocular pressure (IOP) increases. The cause of this high pressure is generally accepted to be an imbalance in 
the production and drainage of fluid in the eye (aqueous humour, AH). The channels that normally drain the 
fluid from inside the eye do not function properly. Though fluid is continually being produced, it cannot be 
drained because of the improperly functioning drainage channels (trabecular meshwork, TM). This results in an 
increased amount of fluid inside the eye, thereby raising the pressure (see Figure 2). 
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Figure 2.  Mechanism for Intraocular Pressure (IOP) increases in Human Eyes. This figure was reproduced from [15]. 
 

 In Western countries, POAG is leading the cause of blindness. It affects approximately 66 million people 
from all countries around the world [2]. According to [10], POAG can affect anyone, but commonly it will 
affect people who have a family history of glaucoma, short sight, or diabetes. A number of researchers have 
studied the problem of POAG (see, for example [7], [11], [2] and [1]). It seems that they mostly understand 
what happens in POAG. They agree that the component of abnormality that causes the fluid (aqueous humour, 
AH) not to be drained, (so that the amount of fluid inside the eye slowly increases and thereby raises the 
intraocular pressure (IOP)) is blockage of the trabecular meshwork (TM). 
 In many previous studies (see [8], [7], [11] and, [1]) it was shown that, if the IOP increases, then the wall of 
the SC collapses dramatically. "The collapse of the canal caused by elevated IOP offers resistance to the 
aqueous flow through it [1]". [8] modelled AH flow in the SC and assumed the inner wall of canal to be a rigid 
wall. [7] improved the model, making it more realistic by treating the inner wall of canal as a porous and elastic 
wall, and proposed that "the TM is a series of linear springs that allow the inner wall of canal to deform in 
proportion to the local pressure drop across it". [11] developed a mathematical model of AH flow through the 
TM and into the SC by observing the effects that influenced the collapse of the wall. [1] extended this study by 
considering the inner wall of canal to be both resilient and elastic. 
 Most of the studies, [8], [7], [11] and, [1] have focused on the flow of AH through the TM and into the SC 
before it exists at a collector channel. However they did not consider that the flows involved can be assumed as 
lubrication theory flows [9]. Though, the final fluid dynamics equations that are given below in Section 2.3 are 
very similar to those in [1], not only is extra coupling now added to determine the IOP, but the equations are 
interpreted in a full lubrication theory context. This contrasts with [1], where the flow was assumed to be a fluid 
flow through a narrow elliptical and circular channel. Our approach lends itself much more easily to 
generalization. A previous study, [3] modelled the flow of AH from the AC through the TM and into the SC and 
coupled this flow to predict changes in IOP. However, [3] only examined simple modelling cases where 
( )h x h≡ o

 and  were both constant, and only considered the case where flow through the TM was 
determined by Darcy’s law. In this current study, we extend the work of [3] in order to predict changes in IOP, 
by considering the permeability, k in Darcy’s law to be either constant or not constant and further assuming that 
the TM is deformable by applying the general theory of a beam under axial load. Therefore this is the aim in our 
current study. 

( ) 0hw x α≡ <

 
2. Governing Equations 
 
2.1 Fluid Modelling 
 

A two-dimensional paradigm problem of flow through the TM into the SC in order to predict changes of IOP 
is shown in Figure 3. In this problem we assume that the SC typically has half-length, L between a symmetry 
axis and a collector channel; 600L mμ= , an undeformed depth, 25h mμ=o  and breadth, 300B mμ=  (all the 
parameter values are obtained from [7]). The aspect ratio h Lδ = o

 is thus about 0. . Using the values from [7], 
the density, 

04
31003kg mρ =  and from [16], the dynamic viscosity, 30.75 10 Pa sμ −= × , thus we obtain the Reynolds 

number is ( )Re ~ 4ULρ μ=  and the reduced Reynolds number, . By using the lubrication theory 
limit of the Navier-Stokes equations ([9]), we develop the governing equations of this problem (see Figure 3 for 
nomenclature). These are:  

2δ Re ~ 0.0064

 1968
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               [ ] ( )( ), 0 , 0 0, ,0x zz z x zp u p u w x L z h xμ= = + = ∈ ≤ ≤                                          (2.1) 

with the boundary conditions 
( ) ( ) ( )( ) ( )( ) ( ),0 ,0 0, , 0, , ,hu x w x u x h x w x h x w x= = = =  

                                                                 ( ) ( ) out0, 0, , .xp z p L z p= =                                                                (2.2) 
Here L denotes the length between a symmetry axis and a collector channel, p is the pressure, 

( ) ( )( ), , ,u x z w x zq =  is the fluid velocity,  is the flow speed through the TM, and ([7]) is the 
pressure at a collector channel. We note that [3] also developed the governing equations (2.1) and the boundary 
conditions (2.2) that are shown above. 

hw ~ 9mmHgoutp

 
 

( )z h x=

z

x
L

( )0h h= o

( ) Lh L h=

0  
 

Figure 3. Schematic diagram of flow through the TM into the SC 
 
2.2 Friedenwald’s Law 
 
 To close the model, we must relate the IOP to the eye's AH production and removal. [6] stated that 
measurements of the ocular rigidity of the sclera, choroid or retina portion of the eye have traditionally been 
expressed in term of 'Friedenwald's law' rather than using a traditional linear elasticity approach involving 
Young's modulus and Poisson's ratio. We use Friedenwald's law to predict changes of IOP (see [3]). [5] stated 
that the volume and IOP of a human eye are related. Friedenwald's law stated that  and  (two IOPs) are 
related to respective ocular volumes  and  (measured in

1p 2p

1V 2V lμ ) via 

( )1 2 10 1 10log log 2K V V p p− = −  

( )( )1 2 1 2exp ln10 .p p K V V⇒ = −  
We denote normal conditions using a subscript n and altered conditions using a subscript i. We therefore find 
that, 

( )( )exp .i n i np p K V V= −%  

Here K ~ 0.025/ lμ  is a known constant. . If we differentiate the equation above 
with respect to t  now we get 

7ln10 ~ 5.75646 10 / mK K= ×% 3

( ) ( ) ( )exp ,i i
n i n i n i i

dp dp
nKp K V V V V Kp V V

dt dt
⎡ ⎤= − − ⇒ =⎣ ⎦

% % & & % & − &  

                                                                    (i
i in out

dp Kp V V
dt )∴ = −% & &                                                                     (2.3) 

where ( )11 3~ 3.3321 10 / seci inV V m−= ×& & and ( )3m / secn outV V=& & denote the respective total amounts of fluid flowing 

in and out of the eye.  
 
2.3 Fluid Flow / IOP Equations 
 
 The governing equations can now be solved by integrating equation (2.1) and substituting the boundary 
conditions (2.2) in order to get the fluid velocity, u . We find that 

                 ( )2 .
2

xpu z h
μ

= − z                                  (2.4) 

We now differentiate equation (2.4) with respect to x  and substitute into equation (2.1), yielding 

 1969
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( )21 1 .
2 2z x x xxw p h z p hz z
μ μ

= + −  

We now solve the equation above by using the boundary conditions (2.2), therefore we get the equation of fluid 
velocity w , 

                                                                 
2 3

21 .
2 2 3 4

xx
x x

p hz zw
μ μ
⎛ ⎞

= − +⎜ ⎟
⎝ ⎠

p h z                                            (2.5) 

From equation (2.5) we may find that the pressure ( )p x  satisfies 

            ( )
3

12
x

h
x

p hw x
μ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

   ( ) ( )( ), 0 0out xp L p p= ,=                                              (2.6) 

where  and ( )hw x ( )h x  are unknown functions of x which should be determined. The volumetric flow rate, 

( )3 / sCV m&  in this problem from a single collector channel is given by 

                                                                            ( )

0
.

h L

C x L
V B u

=
= ∫& dz                                                          (2.7) 

Substituting equation (2.4) into equation (2.7), we find that 

                     
3

.
12

x
C

x L

Bp hV
μ

=

= −&                 (2.8) 

Generally, the total number of collector channels,  is about 30 ([4]) and so that the total amounts of fluid 
flowing out of the eye is . Therefore, the IOP, 

N
out CV NV=& & ( )ip t  may now be determined by equation (2.3) with 

( )0i ip p= o
. Note that the modelling that has so far taken place is identical to that contained in [3]. 

 
3. Results and Discussion 
 
 Each of the cases studied in this problem requires a good understanding of the causes and consequences that 
potentially cause POAG, and different mathematical techniques from analytical to numerical methods. Due to 
the fact that higher order equations cannot normally be solved analytically, MAPLE was be used to solve these 
following cases. Many different cases have been examined relating AH flow to changes in IOP for various 
submodels. Example include, 
 
Case - The permeability, k in Darcy’s law is constant and the TM is deformable 
 
First we consider the case of flow through TM determined by Darcy’s law so that q p∝ ∇ [9]. We assume that, 

                ( ) ( )h i
kw x p p

dμ
= − −                 (3.1) 

where is the width of the TM and the permeability k (dimensions ) is constant. The permeability k has been 
measured from the TM resistance,  (dimensions 

d 2m
TR 1 4kgs m− − ),

TR d kBLμ=  (see [3]). Then we apply the general 
theory of a beam under axial load. We use a simple model of beam bending, namely Bernoulli-Euler theory. 
This theory is applicable in this problem because the bending of the beam is small enough so that the elastic 
reaction force that the beam opposes to the bending force is proportional to the deflection ([12]). We assume 
that the beam is of length L and is located between symmetry axis and the collector channel (see Figure 3). The 
equilibrium position of the beam is described by a function h(x) and is determined by the balance between the 
elastic forces in the beam and the loads (the IOP in the AC) acting on it. We can now formulate an equation that 
links the displacement h(x) directly to the distributed load which is the different pressure in the AC and SC, 
thereby obtaining 

                                                                             
4

4 i
d hEI p
dx

p= −                                                  (3.2) 

where E is the modulus of elasticity and I is the moment of inertia. Equation (3.2) is a fourth order linear 
equation. In order to find the solution, we must have appropriate boundary conditions that describe the 
constraint imposed by the hinges. In this problem, we assume that the beam has a clamped end. Therefore the 
boundary conditions are    

                                          ( ) ( ) ( ) ( )0 0, 0 0, , 0x xxx L xh h h L h h L= = = .                                                  (3.3) =

Here we assume that the flow through the TM is determined by Darcy’s law where k is constant. h(x) is no 
longer constant since the TM is deformable and satisfies the beam equation (3.2) and also the boundary 
conditions (3.3). We now equate equation (3.1) with equation (2.6), yielding 
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                          (
3

.
12

x
i

x

p h k p p
dμ μ

⎡ ⎤
= − −⎢ ⎥

⎣ ⎦
)                                                               (3.4) 

We now rearrange equation (3.2) and we find that 
                                                                           .i xxxxp p EI h= +                                                  (3.5) 
Then we differentiate equation (3.5) with respect to x, now we get that 
                                                                             .x xxxxxp EI h=                                                                (3.6) 
We now substitute equations (3.5) and (3.6) into equation (3.4) and therefore we may obtain the governing 
equation for this case. Thence it is given by 
                                                               ( )3 ;xxxxx xxxxx

h h hθ=                            (3.7)   12k dθ =                                 

with boundary conditions, 

                   ( ) ( ) ( ) ( ) ( ) ( )
4

0 0, 0 0, 0 0, 1 1, 1 0, 1 0, = out i
x xxx xxxxx x xxxx

L

p pLh h h h h h
h EI

λ λ λ
⎛ ⎞−⎛ ⎞= = = = = = <⎜ ⎟⎜

⎝⎝ ⎠
 .⎟

⎠
           (3.8) 

We have examined a number of different subcases where either θ  or λ , may be either large or small. However 
in this study, for brevity, we only discuss the subcase where 1θ � . 
 

1θ �  
 

he governing equation (3.7) can now be solved by using regular perturbation method where we assume that  T
                                                                        ( ) ( ) ( )1 .h x h x h xθ= + +o K                                                  (3.9) 

uation (3.7) and boundary conditionsWe now substitute equation (3.9) into eq  (3.8), here we get that 
                           ( ) ( )( ) ( ) ( )( ) ( ) ( )( )3

1 1 1xxxxx xxxxx⎣ ⎦o o oh x h x h x h x h x h xθ θ θ θ⎡ ⎤+ + + + = + +K K K                         (3.10) 

nditions with boundary co

                 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1

1 1 1

0 0, 0 0 0, 0 0 0,

1 1 1, 1 1 0, 1 1 .

x x xxx xxx xxxxx xxxxx

x x xxxx xxxx

h h h h

h h h h h h

θ θ

θ θ θ

+ = + + = + +

+ + = + + = + + =

o o o

o o o

K K

K K K

 0h hθ+

λ

=K     (3.11) 

From equation (3.10) and the boundary conditions (3.11), we examine the governing equation at leading order,                                

( )( ) ( )( )3
0.h x h x⎡ ⎤

xxxxx x
=

⎣ ⎦o o
 

We now find that either  
( )( ) ( )3

0 0h x h x= ⇒ =o o
 

(this equation can be ignored because it does not satisfy the boundary nditions (3.11)) or co
( )( ) 0.

xxxxx
h x =o

 

If we integrate the above equation five times with respect to x, we may get that  
               ( ) 4 3 21 1 1 .h x C x C x C x C x C= + + + +        

1 2 3 4 524 6 2o
                                         (3.12) 

Thus we substitute the boundary conditions (3.11) at x = 0 into equation (3.12), we may obtain that  
2 40, 0.C C= =  

We now rewrite equation (3.11) by substituting the values above, yielding 
                         ( ) 4 21 1 .h x C x C x C= + +             

1 3 524 2o
                                                (3.13) 

Then we substitute the boundary conditions (3.11) at x = 1 into equation (3.12), we may find that 

1 3 5, , 1 .C C C
6 24
λ λλ= = − = +  

After the values of C1, C3 and C5 have been got, thus we rewrite equation (3.13), yielding 
                           ( ) 4 2 1.h x x x

24 12 24
λ λ λ

= + + +                                 
o

                          (3.14) 

We now substitute equation (3.14) into equation (3.9), thus we obtain 
                         ( ) ( )4 2 1 .h x x x O

24 12 24
λ λ λ θ= + + + +o

                                                 (3.15) 

Equation (3.15) may now be plotted (see Figure 4) in order to examine the deformation of the TM when θ is less 
that one. Here we assume that λ = -1. Figure 4 shows the deformation of the TM when θ is small. Three different 
curves shown in Figure 4 have been measured for different values of θ. It shows that when the value of θ 
decreases, then h(x) becomes much less deformed.  
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Then we may find the volumetric flow rate, cV&

( )( )

 is equal to zero at leading order, by substituting the equations (3.6) 
and (3.15) into equation (2.8). This is because when we differentiate equation (3.15) five times with respect to x, 

( ) Thus  (in equation (3.6)) becomes zero. p xwe may find that 0 at leading order.
xxxx

h x =o
 

Therefore the total amount of fluid flowing out of the eye, V   
out
&

             ( )( )0out c outV V N OV N θ= ⇒ = +& & &                                                   (3.16) 
is very small. This means that the amount of AH flowing across TM is also negligible. Thus the IOP, ( )ip t  may 
now be determined by substituting equation (3.16) into equation (2.3), therefore the total change in IOP is 

( ) ( ); 0 .  i
i in i io

dp KpV O p p
dt

θ= + =% &

 

 
 

Figure 4. The deformation of the TM at λ = -1 for different values of θ  
 
Thence the IOP rises continually at leading order and there is nothing to stop it. Note that, though we could find 
( )1h x

(
 in this problem there is no point in doing so because when θ is small, we can see by just looking at 

the )h o x  terms, the IOP rises dramatically and blindness will inevitably result.  
 
4. Conclusions and Further Work 
 
In this study, we sought to model the flow of AH through the TM and into the SC, and to couple this flow to the 
pressure in the AC in order to predict changes in IOP. We have discussed the particular subcase where θ is small 
where we assume the permeability, k is constant and the TM is deformable, and this subcase has been solved by 
using the regular perturbation method. Many other possible cases can be considered for other different values of 
θ and λ. These will be dealt with in a further study. 
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