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Abstract:

Government statistical agencies often apply statistical disclosure lim-
itation techniques to survey microdata to protect the confidentiality
of respondents. There is a need for valid and practical ways to assess
the protection provided. This paper develops some simple methods for
disclosure limitation techniques which perturb the values of categorical
identifying variables. The methods are applied in numerical experiments
based upon census data from the United Kingdom which are subject to
two perturbation techniques: data swapping (random and targeted) and
the post randomisation method. Some simplifying approximations to
the measure of risk are found to work well in capturing the impacts
of these techniques. These approximations provide simple extensions of
existing risk assessment methods based upon Poisson log-linear mod-
els. A numerical experiment is also undertaken to assess the impact
of multivariate misclassification with an increasing number of identify-
ing variables. It is found that the misclassification dominates the usual
monotone increasing relationship between this number and risk so that
the risk eventually declines, implying less sensitivity of risk to choice
of identifying variables. The methods developed in this paper may also
be used to obtain more realistic assessments of risk which take account
of the kinds of measurement and other non-sampling errors commonly
arising in surveys.

Keywords and phrases: disclosure risk, identification risk, log linear
model, measurement error, post randomization method, data swapping.

1. Introduction

Government statistical agencies have statutory and ethical obligations to
protect the confidentiality of the data they collect. At the same time, their
core mission is to ensure that these data are used effectively for statistical
purposes. Tensions between these two objectives may arise, in particular,
when access to microdata on individuals or establishments is to be provided
to researchers, so that they may conduct their own analyses of social or eco-
nomic phenomena. Although microdata may be anonymised by removing
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2 Shlomo and Skinner

obvious identifying information such as name and address without damage
to the statistical analyses, such anonymisation will rarely be considered suffi-
cient for confidentiality protection, since the rich socio-economic information
in the microdata may often enable records to be identified by matching to
another data source on known individuals or establishments. Agencies have
therefore developed a number of ways of protecting confidentiality in this
context. One common approach is to modify the microdata file by applying
a statistical disclosure limitation (SDL) method, such as recoding or data
perturbation, to those variables judged potentially identifying (Federal Com-
mittee on Statistical Methodology, 2005). Such modification can, however,
seriously reduce the utility of the microdata and it is therefore important
for the agency to be able to assess the protection provided by such methods
in order to be able to make judgements about the degree of modification to
apply.

The aim of this paper is to develop methodology to assess the disclosure
protection provided by the misclassification of one or more categorical iden-
tifying variables. Misclassification is supposed here to arise in one of two
ways. First, it may be the result of the deliberate application by the agency
of an SDL method, specifically we consider the methods of data swapping
(Dalenius and Reiss, 1982) and post-randomisation or PRAM (Gouweleeuw
et al., 1998). This paper is motivated by experience of the use of such meth-
ods at government statistical agencies (especially in the United Kingdom)
with microdata from social surveys on individuals or from population cen-
suses. In these cases, the potential identifying variables which might be used
for matching are invariably categorical. A second way in which misclassifi-
cation may arise is as a result of measurement error which arises naturally
in surveys and takes the form of misclassification for categorical variables
(Kuha and Skinner, 1997). In this case, we shall suppose that the agency
has some information about the nature of the misclassification mechanism.

In the current practice of statistical agencies, when the disclosure protec-
tion of such methods is assessed, it is usually based upon simple measures,
such as functions of the diagonal elements of the misclassification matrix
(Willenborg and De Waal, 2001, p119), or a simple estimated probability
that an apparent match is correct (Gouweleeuw et al., 1998), or via the out-
come of a record linkage experiment (see below). Reiter (2005) developed
a more sophisticated approach by defining a measure of identification risk,
based upon the modelling framework of Duncan and Lambert (1989), and
showing how it could be assessed before and after the application of a num-
ber of SDL methods, including data swapping. This focus on identification
risk is often appropriate in government contexts, where judgments about
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Assessing the Protection Provided by Misclassification 3

protection are informed by legislation or codes of practice which express
threats to confidentiality in terms of individual respondents being identi-
fied. However, the need to model a very wide range of microdata variables
and relationships in Reiter’s (2005) approach may limit its application in
practice. In this paper we develop an approach which is based on a similar
framework to Reiter (2005), but which retains some of the simplicity of the
former methods. We achieve simplification by restricting the information set
upon which the risk measure is conditioned, extending the approach of Skin-
ner and Shlomo (2008). Our approach also extends Reiter (2005) by taking
fuller account of the protection achieved from sampling.

Assessing identification risk using record linkage experiments (e.g. Yancy,
Winkler and Creecy, 2002; Domingo-Ferrer and Torra, 2001) is natural given
the threat that such methods pose (Fienberg, 2006). The experiment typ-
ically involves matching records in the microdata file, masked by an SDL
method, to records in the original unmasked file. The risk is often defined
as the proportion of such matches which are correct (Spruill, 1982). A prob-
lem with this approach is that it usually does not take account of the dis-
closure protection provided by sampling. We shall show in the Appendix
that our proposed approach to assessing identification risk in the case of
exact matching does, in fact, provide a closed form expression for the cor-
rect match proportion which would be estimated by an experiment using a
form of probabilistic record linkage proposed by Fellegi and Sunter (1969).
Record linkage experiments have the potential to capture the impact of a
wider range of types of potential attack, including those that make explicit
allowance for data masking and exploit greater computational power (Win-
kler, 2004), but consideration of such extensions is beyond the scope of this
paper.

Statistical modeling approaches to identification risk assessment have
been proposed by a number of authors (e.g. Paass, 1988; Duncan and Lam-
bert, 1989; Fuller, 1993). It is generally assumed that a hypothetical intruder
seeks to identify an individual in the microdata by matching records to
known individuals in the population using identifying variables, also called
key variables, values of which are known both for the microdata records and
for the known individuals. This paper builds on the literature which has
used models for categorical key variables as a basis for assessing disclosure
risk. Bethlehem et al. (1990) is a seminal contribution. We follow especially
Skinner and Shlomo (2008), who considered the use of log-linear models to
assess identification risk. Their work did not, however, consider the impact
of SDL methods on risk, other than the recoding of key variables.

The empirical work in this paper is based upon the 2001 population census
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in Great Britain, which will be used to provide population data to validate
risk assessments for samples, viewed as representing potential sample sur-
veys. Our focus will be on the impact of SDL methods on identification risk.
The effects of these methods on the utility of potential data analyses is also
vitally important and we provide some information loss measures to analyse
and compare the perturbation methods.

Our paper is organized as follows. Measures of identification risk in the
presence of misclassification are developed in Section 2. Since these measures
depend upon population quantities which may be unknown, methods of es-
timating these measures using sample data are considered in Section 3. Ap-
plications using census data are presented in Section 4 for a random and tar-
geted data swapping method and a random and targeted post-randomization
method (PRAM). A further numerical illustration with multivariate misclas-
sification is presented in Section 5. Section 6 contains a concluding discus-
sion.

2. Identification Risk Under Misclassification

Consider the release of a microdata file consisting of records for a sample
s = {1, 2, . . . , n} drawn from a finite population U of size N . We suppose an
intruder seeks to match a known target unit in U to a record in the file using
C categorical key variables X1, . . . ,XC . We assume the agency knows the
intruders choice of key variables. Possible departures from this assumption
are discussed in section 6. The variable formed by cross-classifying the key
variables, as measured by the intruder on the target unit, is denoted X and
its values are labelled 1, 2, . . . ,K. The value of X recorded in the microdata,
after the application of the SDL method (and natural measurement error)
is denoted X̃ . We treat the values of X for population units as fixed and
suppose the values of X̃ for the records in the microdata are determined
independently by a misclassification matrix M , where

(2.1) Pr(X̃ = j|X = k) = Mjk.

To assess the disclosure protection provided by misclassification, we imag-
ine that the intruder observes a match between a specific sample unit A and
a target population unit B, i.e. observes X̃A = XB (where X̃A is the value of
X̃ for unit A and XB is the value of X for unit B), and measure disclosure
risk in terms of the uncertainty as to whether A = B. A simple ad hoc mea-
sure of this uncertainty is given by Mjj (or 1−Mjj), where j is the common
value of X̃A and XB . Willenborg and De Waal (2001, p121) propose that the
agency specifies upper bounds for these diagonal elements of M according
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to the level of protection required. Following Reiter (2005) we define the
identification risk as Pr(A = B|data), where the values X̃A and XB are im-
plicitly included in the data and the nature of the probability mechanism will
be clarified later. A simplified approach to estimating this risk is given by
Gouweleeuw et al. (1998), who make the very conservative assumption that
the intruder knows that B is in the sample and approximate Pr(A = B|data)
by Pr(XA = j|X̃A = j) = MjjPr(XA = j)/

∑

k MjkPr(XA = k), which
they estimate by:

(2.2) Mjjfj/
∑

k

Mjkfk,

where fk is the number of units in s for which X = k (they in fact use the
odds rather than the probability). In contrast to the highly simplifying as-
sumptions of Gouweleeuw et al. (1998), Reiter (2005) allows for considerable
generality by adopting a very wide definition of data in Pr(A = B|data), so
that it may include all the values of X̃i in the sample as well as the values
of any other microdata variables. This creates not only a major modelling
task to assess the probability of interest, but also the possibility that this
probability will be sensitive to the specification of the model. We seek an
intermediate position, avoiding the very conservative assumption that the
intruder knows that B is in the sample, but reducing the scope of data
in Pr(A = B|data) to avoid the complex modelling issues. We define the
matching variable Z̃i to be 1 if X̃i = XB and 0 otherwise and we take the
data to consist of the values Z̃i for i ∈ s. We suggest that this is the criti-
cal information to consider when assessing the probability that an observed
match is correct. We shall also restrict our attention further to the case
when a unique sample unit matches B (so Z̃a = 1 and Z̃i = 0 if i 6= a for
some unit a ∈ s). This is the worst case and thus of most interest, i.e. the
risk will be lower if B matches more than one sample unit. In this case, we
obtain the following expression for the identification risk:

Identification risk = Pr(A = B|Z̃1, . . . , Z̃n)

= Pr(EB)/
∑

a∈U

Pr(Ea)(2.3)

where Ea is the event that population unit a is sampled and its value X̃a

matches XB and that no other population unit is both sampled and has a
value of X̃ which matches XB . In order to allow for the effect of unequal
probability sampling and the potential use of sampling weights, we suppose
that units in the population U are selected independently into the sample

imsart-aoas ver. 2007/12/10 file: ims-misclass2.tex date: July 27, 2009



6 Shlomo and Skinner

s with inclusion probabilities πj which may depend on the value X̃ = j for
the unit. Writing Xa = k and XB = j and using our previous assumptions
about the misclassification mechanism, we obtain Pr(Ea) = αjMjk/(1 −
πjMjk), where αj = πj

∏

l(1−πjMjl)
Fl and Fj is the number of units in the

population with X = j. Hence

(2.4) Pr(A = B|Z̃1, . . . , Z̃n) = [Mjj/(1−πjMjj)]/[
∑

k

FkMjk/(1−πjMjk)]

This expression assumes the intruder does not know whether B ∈ s. If
this event was known to arise and was included in the conditioning set,
(2.4) should be modified by setting πj = 1 and replacing Fk by fk. This
produces an expression that is similar to that given earlier in (2.2) from
Gouweleeuw et al. (1998) but makes fewer approximations. For expression
(2.4), the identification risk also assumes that the Fk are part of the data,
i.e. known. In practice this will often not be the case, as discussed by Skinner
and Shlomo (2008), and it will be necessary to integrate the Fk out of this
expression as will be discussed in section 3. It follows from (2.4) that

Pr(A = B|Z̃1, . . . , Z̃n) ≤ 1/Fj

with equality holding if there is no misclassification. The extent to which
the left hand side of this inequality is less than the right hand side measures
the impact of misclassification on disclosure risk.

If the inclusion probabilities πj are all small we may approximate (2.4)
by:

Pr(A = B|Z̃1, . . . , Z̃n) = Mjj/(
∑

k

FkMjk).

Moreover, if the population size is large, we have approximately
∑

k FkMjk ≈ F̃j , where F̃j is the number of units in the population which
would have X̃ = j if they were included in the microdata (with misclas-
sification). Hence a simple approximate expression for the risk, natural for
many social surveys, is

(2.5) Pr(A = B|Z̃1, . . . , Z̃n) = Mjj/F̃j .

An alternative derivation of this result is provided in the Appendix un-
der the assumption that the intruder adopts the probabilistic record linkage
approach of Fellegi and Sunter (1969), making a link if the match variable
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Z̃a = 1. The identification risk is the probability that the match is cor-
rect and the above approximation is obtained if the probability is defined
with respect to the sampling scheme, the misclassification mechanism and a
random selection of a pair for matching as in Fellegi and Sunter (1969).

Another approximation to expression (2.4) is obtained by assuming the
misclassification is small, say Mjj = (1 − δ)φjj and Mjk = δφjk (j 6= k),
where the φ are fixed and δ → 0. In this case, we have

(2.6) Pr(A = B|Z̃1, . . . , Z̃n) ≈ F−1

jj (1− [F̃j −FjMjj]/[FjMjj/(1−πjMjj)])

or
(2.7)
Pr(A = B|Z̃1, . . . , Z̃n) ≈ [Mjj/(1 − πjMjj]/[(FjπjM

2

jj)/(1 − πMjj) + F̃j ]

Note that none of approximations (2.5), (2.6) or (2.7) depend upon Mjk

for j 6= k and so knowledge of these probabilities is not required in the
estimation of risk.

The definition of risk in (2.3) applies to a specific record. Agencies will
also usually wish to consider aggregate measures to enable them to make
judgements about the whole file. Following Skinner and Shlomo (2008), we
define an aggregate measure as the sum of the record-level measures in (2.4)
across sample unique records:

(2.8) τ =
∑

j∈SU

[Mjj/(1 − πjMjj)]/[
∑

k

FkMjk/(1 − πjMjk)],

where SU is the set of key variable values which are sample unique. This
measure may be interpreted as the expected number of correct matches
among sample uniques. For some purposes, an agency might find this mea-
sure easier to interpret if it is transformed into a measure with an upper
bound, such as by dividing by the number of sample uniques to obtain a
proportion. However, we shall stick with the untransformed τ as a measure
of the total number of units, e.g. individuals, threatened with identification.

We also consider, for comparison, a related measure which could be used
if the misclassification status of microdata records is known. Let SUCC
denote the set of key variable values which are sample unique and where
these sample unique values have been correctly classified. The measure is
given by

(2.9) τ∗
CC =

∑

j∈SUCC

1/Fj ,
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8 Shlomo and Skinner

and again may be interpreted as the expected number of correct matches
among sample uniques. We also define τ∗ as the corresponding measure of
risk in the absence of perturbation, that is the sum of 1/Fj across key values
which are unique in the sample with respect to X.

3. Risk Estimation

An agency wishing to apply an SDC method to survey microdata will gen-
erally not know the values of Fj or F̃j appearing in the risk expressions. We
do suppose that the values of Mjk are known. Skinner and Shlomo (2008)
discuss the estimation of risk in the absence of misclassification based on a
Poisson - log linear model. In this case, expression (2.4) reduces to 1/Fj and
their broad approach is to define the risk as the conditional expectation of
this quantity given the observed data and to estimate this expectation using
data for the sample counts fj, j = 1, 2, . . . ,K for which a log-linear model
is fitted. Expression (2.5) provides a simple way to extend their approach
to misclassification provided Mjj is known. Since the f̃j, j = 1, 2, . . . ,K
represent the available data, all that is required is to ignore the misclassi-
fication and estimate the expectation of 1/F̃j given the data from the f̃j,
j = 1, 2, . . . ,K as in Skinner and Shlomo (2008), that is by fitting a log-
linear model now to the f̃j , j = 1, 2, . . . ,K following the same criteria as
before. This results in an estimate Ê(1/F̃j |f̃j = 1) based on the assumptions
of the Poisson distribution for the population and sample counts. These es-
timates should be multiplied by the Mjj values and summed if aggregate
measures of the form in (2.8) are needed. It would appear to be rather more
complex to estimate the expressions including terms in Fj . In the presence of
complex sampling, the estimation method may be adapted using the method
of pseudo maximum likelihood estimation (Rao and Thomas, 2003) by in-
corporating survey weights in the estimation as discussed by Skinner and
Shlomo (2008).

4. Application of Perturbative Disclosure Limitation Techniques

In this section we consider two specific perturbative SDL techniques used
at statistical agencies: data swapping and the post-randomization method
(PRAM). Both techniques introduce misclassification of the key variables
to lower the probabilities of identifying individuals. We present examples of
how to assess the impact of these techniques on identification risk. Since the
misclassification is under the control of the statistical agency, the misclassi-
fication matrix M is known.
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Assessing the Protection Provided by Misclassification 9

4.1. Data swapping

The method of data swapping is based on exchanging the values of one or
more key variables between pairs of records. In order to minimize bias, the
pairs of records are typically selected within strata defined by control vari-
ables, such as the age and sex of the individual. In addition, the perturbation
can be targeted to high-risk records that are more likely to be population
uniques, for example on rare ethnicities. It is common that geographic vari-
ables are swapped between records for the following reasons:

• For given values of the control variables, the sensitive variables are
likely to be relatively independent of geography and therefore it is
expected that less bias will occur. In addition, swapping geography will
not normally result in inconsistent and illogical records. By contrast,
swapping a variable such as age would result in many inconsistencies
with other variables, such as marital status and education.

• At a higher geographical level and within control strata, the marginal
distributions are preserved.

• The level of protection increases by swapping variables which are
highly ’matchable’ such as geography.

For this experiment, we carry out a simple data swapping procedure where
the geography variable of Local Authority District (LAD) is exchanged be-
tween a pair of individuals. The population includes N = 1, 468, 255 indi-
viduals from an extract of the 2001 United Kingdom (UK) Census. We drew
1% Bernoulli samples (n = 14, 683)and define six key variables for the risk
assessment: Local Authority (LAD) (11), sex (2), age groups (24), marital
status (6), ethnicity (17), economic activity (10), where the numbers of cat-
egories of each variable are in parentheses (K = 538, 560). We implement a
random data swap by drawing a sub-sample of 10% and 20% in each of the
LADs. The remaining individuals are not perturbed. On the sub-samples
in each LAD, half of the individuals are flagged. For each flagged individ-
ual, an unflagged individual is randomly chosen within the sub-sample and
their LAD variables swapped, on condition that the individual chosen was
not previously selected for swapping and that the two individuals do not
have the same LAD, i.e. no individual is selected twice for producing a pair.
We also implemented a 10% and 20% targeted data swap where the LAD
variable is swapped separately within two groups defined by ’White British’
and ’Other’ ethnicities. For the 20% swap, LADs were swapped randomly
between all pairs of individuals in the ’Other’ group and a small percentage
(7%) of individuals in the ’White British’ group. This swapping rate was
chosen so that the total percentage of swapped individuals would be 20%
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as in the random data swapping. For the 10% swap, LADs were swapped
randomly from among the ’Other’ group that compose 10% of the total
individuals in the sample.

The misclassification matrix M for the data swapping designs can be
expressed simply in terms of the 11 × 11 misclassification matrix, denoted
Mg = [Mg

jk], for the LAD variable g.:
For the random swap:

• On the diagonal: Mg
jj = 0.9 or Mg

jj = 0.8 for the 10% and 20% swaps
respectively.

• Off the diagonal: Mg
jk = 0.1×nk/(

∑

l 6=j nl) or Mg
jk = 0.2×nk/(

∑

l 6=j nl),
where nk is the number of records in the sample in LAD k, k =
1, 2, . . . , 11, for the 10% and 20% swaps respectively.

For the targeted swap on the 10% swap, the values Mg
jk for the ’Other’

ethnicity are calculated as follows:

• On the diagonal: Mg
jj = .25

• Off the diagonal: Mg
jk = .75 × n2k/(

∑

l 6=j n2l), where n2k is the num-
ber of records in the sample with ’Other’ ethnicity in LAD k, k =
1, 2, . . . , 11.

For the targeted swap on the 20% swap, the misclassification matrix M is
defined separately according to the ’White British’ and ’Other’ ethnicities
as follows:

• On the diagonal: Mg
jj = 0.93

• Off the diagonal: Mg
jk = 0.07×n1k/(

∑

l 6=j n1l), where n1k is the number
of records in the sample with ’White British’ ethnicity in LAD k,
k = 1, 2, . . . , 11.

The values Mg
jk for the ’Other’ ethnicity are calculated as follows:

• On the diagonal: Mg
jj = 0

• Off the diagonal: Mg
jk = 1×n2k/(

∑

l 6=j n2l), where n2k is the number of
records in the sample with ’Other’ ethnicity in LAD k, k = 1, 2, . . . , 11.

4.2. The Post-Randomization Method (PRAM)

A more direct method that is used for exchanging values of categorical vari-
ables is PRAM. For this method, values of categories in a given record are
changed or not changed stochastically according to a misclassification ma-
trix. This matrix is chosen to preserve expected marginal frequencies of the
variables. Let f c be the row vector of sample frequencies of the different
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categories of key variable Xc and pc = f c/n be the corresponding vector of
sample proportions, where n is the sample size. For each record, the category
of Xc is changed or not changed according to the probabilities in the mis-
classification matrix M c. Let f̃ c be the row vector of perturbed frequencies.
Then E(f̃ c|f c) = f cM c, where the expectation is with respect to the mis-
classification mechanism. Provided that the matrix M c has an inverse M c−1

,
this can be used to obtain an unbiased estimator of the original frequency
vector: f̂ c = f̃ cM c−1

. In addition, we can place the condition of invariance
on the matrix M c, i.e. f cM c = f c, and preserve the expected marginal fre-
quencies. This releases the users of the perturbed file of the extra effort to
obtain unbiased moment estimates of the original data, since f̃ c itself will
be an unbiased estimate of f c.

To obtain an invariant transition matrix, the following two stage algorithm
is applied (see Willenborg and De Waal, 2001). Let M c be the misclassifica-
tion matrix: M c

jk = Pr(X̃c = k|Xc = j) where j represents the original cate-
gory and k the perturbed category. Now calculate the matrix Q using Bayes
formula by Qc

kj = Pr(Xc = j|X̃c = k) = M c
jkPr(Xc = j)/[

∑

l M
c
lkPr(Xc =

l)]. We estimate the entries of this matrix by Q̂c
kj = M c

jkp
c
j/[

∑

l M
c
lkp

c
l ] ,

where pc
j is the sample proportion in category j. The matrix Rc = M cQ̂c

is invariant, i.e. pcRc = pc , since Rc
ij =

∑

k[p
c
jM

c
ikM

c
jk/

∑

l M
c
lkp

c
l ] and

∑

i p
c
iR

c
ij =

∑

k pc
jM

c
ik = pc

j . The vector of the original proportions pc is

the eigenvector of R. In practice, Q̂c can be calculated by transposing ma-
trix M c, multiplying each column j by pc

j and then normalizing its rows so

that the sum of each row equals one. We define Rc∗ = αRc +(1−α)I where
I is the identity matrix of the appropriate size. Rc∗ is also invariant and the
amount of misclassification is controlled by the value of α.

We conduct a second experiment using the same data and set-up described
in Section 4.1 and PRAM to perturb the geographical variable LAD. For the
random perturbation, an 11 × 11 misclassification matrix M c is defined for
the 11 categories of LAD where the diagonal elements are 0.9 and 0.8 and
the off-diagonal elements are equal to a probability of 0.1 and 0.2 for the 10%
and 20% perturbation respectively. The invariant misclassification matrix is
calculated with α = 0.55. For each individual, a random uniform number
between 0 and 1 is generated and the category of the LAD changed (or not
changed) if it is in the interval defined by the cumulative probability. For
the 10% targeted perturbation, we define the misclassification matrix for the
’Other’ ethnicities with 0.25 on the diagonal and 0.75 on the off-diagonals
and the invariant parameter α = 0.85. For the 20% targeted perturbation,
we define the misclassification matrix for the ’Other’ ethnicities with 0 on
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the diagonal and 1 on the off-diagonals, and the misclassification matrix
for the ’White British’ ethnicity with 0.93 on the diagonal and 0.07 on the
off-diagonals. For both matrices, the invariant parameter is α = 1.

4.3. Results of Disclosure Risk Assessment

Since we know the misclassification matrix M and the true population counts
Fj in these experiments, we can assess the performance of expressions (2.5)-
(2.7) as approximations to (2.4). We do this by summing all the expressions
across sample unique records, as in the aggregate risk measure τ in (2.8)
and comparing the resulting sums. We also compare these measures to the
measure in (2.2) of Gouweleeuw et al. (1998). In addition, we consider the
more practical situation when neither the Fj nor the F̃j are known to the
agency, all that is observed is the ’misclassified’ sample and the matrix M .
In this case, we carry out the risk estimation as described in Section 3
through the use of the Poisson-log-linear model on the sample counts f̃j.
The log-linear model was chosen using a forward search algorithm and the
outcome of goodness of fit statistics as developed in Skinner and Shlomo
(2008). We calculate the naive estimated risk measure obtained from the
log-linear model on the misclassified sample and the adjusted estimated risk
measure taking into account the misclassification matrix. The experiments
were repeated under different samples and each perturbation method applied
independently and we found that all of the experiments produced similar
results. Table 1 presents results of one of the simulation experiments for
each of the perturbation methods: random and targeted data swapping and
PRAM.

The estimates presented in Table 1 for the risk of identification are similar
for random data swapping and PRAM. Misclassification reduces the risk in
the file from about τ∗ = 360 to about τ∗

CC = 290 for the 20% perturbation
and τ∗

CC = 320 for the 10% perturbation for those methods. The measure τ∗

is interpreted as the expected number of correct matches which an intruder
would make if matches were attempted with all sample unique records. The
decrease in this measure from 360 to 290 as a result of misclassification is
modest since a large number of records remain unchanged. An alternative
interpretation of τ could be obtained by dividing by the number of sample
uniques to give the proportion of sample uniques which would be expected
to be identified correctly. This proportion ranges in Table 1 between 0.116
for the 10% Random Swap, 0.053 for the 10% Targeted Swap, 0.108 for the
20% Random Swap and 0.030 for the 20% Targeted Swap.

The identification risk is reduced considerably with the targeted data
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Assessing the Protection Provided by Misclassification 13

Table 1

Identification risk estimates for microdata samples generated from UK 2001 Census
subject to perturbative SDL methods - Risk measure τ∗ no misclassification= 358.1

Identification Risk SDL Method
Measures Random Targeted

Swap PRAM Swap PRAM

10% Perturbation

Identification risk measures for perturbed data with known population counts

Risk measure τ in (2.8) 321.6 325.8 146.3 161.6
Approximation in (2.5) 321.4 325.5 146.2 161.4
Approximation in (2.6) 317.7 321.7 144.8 159.8
Approximation in (2.7) 321.6 325.6 146.3 161.6
Risk measure τ∗

CC in (2.9) 316.6 318.2 149.5 160.3

Estimated risk measures based on sample data

Risk measure in (2.2) 2,486.7 2,489.1 1,749.1 1,899.3
Naive risk measure

(Poisson − log linear model

on misclassified sample) 343.2 347.6 297.2 285.4
Estimated risk measure

(Poisson − log linear model

adjusted for misclassification) 308.8 312.7 142.7 157.9

20% Perturbation

Identification risk measures for perturbed data with known population counts

Risk measure τ in (2.8) 298.9 299.7 82.2 133.8
Approximation in (2.5) 298.4 299.3 82.1 133.7
Approximation in (2.6) 280.4 283.5 81.7 132.7
Approximation in (2.7) 298.9 299.8 82.2 133.8
Risk measure τ∗

CC in (2.9) 292.8 292.2 85.0 133.4

Estimated risk measures based on sample data

Risk measure in (2.2) 2,264.0 2,311.7 1,419.8 1,688.2
Naive risk measure

(Poisson − log linear model

on misclassified sample) 358.6 349.5 262.5 285.2
Estimated risk measure

(Poisson − log linear model

adjusted for misclassification) 286.8 283.1 90.3 133.2
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14 Shlomo and Skinner

Table 2

Cross-classification of per-record risk measures in (2.4) against estimates based on
Poisson log-linear model adjusted for misclassification for sample uniques under 20%

random data swap

Per-record risk Estimates from Poisson Log-linear Model
Measures from 2.4 0.00 − 0.09 0.10 − 0.49 0.50 − 1.00 Total

0.00 − 0.09 1,961 133 4 2,098
0.10 − 0.49 180 325 76 581
0.50 − 1.00 8 69 75 152

Total 2,149 527 155 2,831

swapping since many more sample uniques are perturbed. The misclassifi-
cation is reduced from about τ∗ = 360 to about τ∗

CC = 85 for data swapping
and τ∗

CC = 130 for PRAM for the 20% perturbation and to about τ∗
CC = 150

for data swapping and τ∗
CC = 160 for PRAM for the 10% perturbation. The

three approximations to the risk measure in (2.8) all provide good results
although the approximation in (2.6) slightly underestimates. The measure in
(2.8) relies on knowledge of both the full misclassification matrix M and the
population counts Fj . In contrast, the approximations (2.5),(2.6) and (2.7)
only require knowledge of the probability of not misclassifying a record, i.e.
the probabilities on the diagonals. The alternative risk measure τ∗

CC in (2.9)
also turns out to behave similarly to (2.8). The value of the measure in (2.2)
of Gouweleeuw et al. (1998) is much higher than the values of the other mea-
sures, reflecting the very conservative assumption that the intruder knows
that the target unit is in the microdata sample. In practice the population
counts will generally be unknown to the statistical agency (and the intruder)
for survey data. We therefore consider the method in Section 3 based upon
the Poisson-log linear model. The estimated aggregate risk measures appear
to perform well with estimates for the risk measure under misclassification
of about 285 for random data swapping and PRAM under the 20% pertur-
bation and about 310 for random data swapping and PRAM under the 10%
perturbation. The estimated aggregate risk measures are about 140 for tar-
geted data swapping and 160 for targeted PRAM for the 20% perturbation
and about 90 for targeted data swapping and 130 for targeted PRAM for
the 10% perturbation.

Another important consideration when assessing disclosure risk for releas-
ing microdata is the individual per-record (record-level) disclosure risk mea-
sures in (2.4). Individual records with high disclosure risk might be subjected
to further tailored perturbation. In Figure 1, we plot the per-record (record-
level) risk measures in (2.4) for the sample uniques against the estimated
adjusted risk measures (as described in Section 3) based on the Poisson-log-

imsart-aoas ver. 2007/12/10 file: ims-misclass2.tex date: July 27, 2009



Assessing the Protection Provided by Misclassification 15

linear model for the experiment based on 20% random data swapping. In
addition, we summarize this bivariate distribution for the sample uniques
in a two-way table in Table 2. In both of the analyses we see a good fit
between the risk measures in (2.4) and their estimated risk measures. The
Spearman’s rank correlation is 0.91.

Fig 1. Scatterplot of inidividual per-record risk measures in (2.4) against estimated risk
measures based on Poisson-log linear model under 20% random data swap

4.4. Results of Information Loss Assessment

The utility of microdata that has undergone data masking techniques is
measured here in terms of the closeness of the results of an analysis based
upon the perturbed data compared to the same analysis based upon the
original data. The nature of the results and the type of analysis depend on
user requirements. In general, microdata is multi-purpose and used by many
different users. For this assessment we use the following three information
loss measures reflecting distortions of distributions in two-way tables, as
considered by Gomatam and Karr (2003) and Shlomo and Young (2006):

• Relative Absolute Average Distance per Cell: Let D represent a fre-
quency distribution for a two-way table produced from the microdata
and let D(r, c) be the frequency in the cell in row r and column c. The
distance metric is:

RAAD(Dorig,Dpert) = 100 × (Davg − AAD)/Davg
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16 Shlomo and Skinner

where the average cell size is defined as:

Davg =
∑

r,c

Dorig(r, c)/RC

with R the number of rows and C the number of columns in the table,
and the AAD metric is defined as:

AAD(Dorig,Dpert) =
∑

r,c

|Dpert(r, c) − Dorig(r, c)|/RC

with pert and orig referring to the perturbed and original tables re-
spectively. The RAAD provides a measure of the average absolute
perturbation per cell compared to the average cell size of the table.

• Impact on Measures of Association:

RCV (Dorig,Dpert) = 100 × (CV (Dpert) − CV (Dorig))/CV (Dorig)

where
CV (D) =

√

χ2/min(R − 1, C − 1)

is Cramer’s measure of association, defined in terms of χ2, the usual
Pearson chi-squared statistic for testing independence in the two-way
table. The RCV provides a measure of attenuation of the association.

• Impact on an ANOVA Analysis: another form of bivariate analysis
consists of comparing proportions in a category of a column (out-
come) variable between categories of a row (explanatory) variable. Let
P c(r) = D(r, c)/

∑

c D(r, c) be the proportion in column c for row r
and define the between-row variance of this proportion by:

BV (P c) =
∑

r

(P c(r) − P c)2/(R − 1)

where P c =
∑

r D(r, c)/
∑

rc D(r, c). The measure of information loss
is:

BV R(P c
orig, P

c
pert) = 100 × (BV (P c

pert) − BV (P c
orig))/BV (P c

orig)

The BV R provides a measure of attenuation of between group differ-
ences in an ANOVA analysis.

Table 3 presents results of the information loss measures on the mis-
classified samples used in Table 1. We obtain similar results for the infor-
mation loss measures on the random perturbations between data swapping
and PRAM with an expected improvement under the smaller perturbation
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Table 3

Information loss measures for microdata samples generated from UK 2001 Census
subject to three perturbative SDL methods

Information Loss SDL Method
Measures Random Targeted

Swap PRAM Swap PRAM

10% Perturbation

RAAD on LAD × ethnicity 98.5 98.1 97.4 97.2
RAAD on LAD × economic activity 97.0 96.9 96.1 95.8
RCV on LAD × ethnicity -9.9 -10.4 -13.3 -12.9
RCV on LAD × economic activity -10.8 -9.8 -11.0 -10.4
BV R on prop. ′White British′ across LAD -20.9 -23.8 0 0
BV R on prop. ′Indian′ across LAD -12.6 -13.0 -18.9 - 17.3

20% Perturbation

RAAD on LAD × ethnicity 97.4 97.2 96.5 96.4
RAAD on LAD × economic activity 95.8 95.5 95.0 94.9
RCV on LAD × ethnicity -20.4 -20.4 -17.8 -16.9
RCV on LAD × economic activity -18.1 -17.0 -16.2 -14.4
BV R on proportion ′White British′ across LAD -37.4 -39.6 0 0
BV R on proportion ′Indian′ across LAD -37.5 -39.1 -34.2 - 29.5

rate of 10%. The targeted perturbation show slight improvements on the
RCV and BV R for the 20% perturbation but there is generally no improve-
ment under the 10% perturbation. The impact on the BV R for other ethnic
groups was mixed with most of the ethnic groups following the same pattern
of attenuation as seen for the ’Indian’ ethnic group under data swapping and
PRAM but with a few exceptions due to small sample sizes. For example, we
obtained a positive value of the BV R for the ’Chinese’ ethnicity. Overall, the
considerable reduction in disclosure risk achieved by the 20% targeted data
swapping in Table 1 does not appear to be offset by any major reduction in
utility compared to the other methods.

In Figure 2, we plot a risk-utility map (Duncan, et al., 2001). The points
on the map represent different candidate releases, i.e. perturbation methods
with different levels of perturbation. In addition to the levels considered
earlier, we also include 2% and 5% targeted and random perturbation. The
points are denoted T for targeted or R for random; 20 for 20%, 10 for 10%,
5 for 5% or 2 for 2%; and S for swapping or P for PRAM. The points are
plotted against the risk measure τ in (2.8) on the Y-Axis and the information
loss measure RAAD for LAD × ethnicity on the X-Axis. We see that at
the same level of information loss between the targeted 10% perturbation
and the random 20% perturbation with respect to the RAAD, we obtain
lower disclosure risk with the targeted 10% perturbation. The same applies
to the targeted 5% perturbation and the random 10% perturbation with
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18 Shlomo and Skinner

the targeted 5% perturbation having less disclosure risk than the random
10% perturbation at the same level of information loss. We draw a line
to connect points on the risk-utility frontier (Gomatam, et al., 2005) and
note that in all cases, at given levels of information loss, the targeted data
swapping provides the lowest disclosure risk compared to the other methods,
although there is little difference between targeted swapping and targeted
PRAM. Targeting did not appear to lead to much greater information loss
for the other measures in Table 3 and the general conclusion here is that
targeting seems useful, enabling less perturbation to be applied and hence
less information loss for a given level of risk protection. Of course, this finding
could vary in other settings and an agency could use a similar risk-utility
approach, based on its own data, to determine its preferred SDL approach.

Fig 2. Risk-Utility Map

5. Impact of Misclassifying Multiple Key Variables

The previous section only provided estimates of the impact of misclassifying
one key variable. In this section we provide a further numerical illustration to
demonstrate the potential impact of misclassifying multiple key variables.
We consider a simple set-up where the C key variables X1, . . . ,XC are
independent and binary. Their values in the external information and the
microdata are denoted Xc and X̃c respectively, c = 1, . . . , C. We suppose
that Pr(Xc = 2) = p, Pr(Xc = 1) = 1 − p, Pr(X̃c = 2|Xc = 1) = θ1 and
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Pr(X̃c = 1|Xc = 2) = θ2 for c = 1, . . . , C. The misclassification probabilities
Mjk in (2.1) will thus consist of products of C terms, each term being one
of θ1, 1 − θ1, θ2 or 1 − θ2. To force X and X̃ to share the same marginal
distribution we set θ2 = (1−p)θ1/p so that Pr(X̃c = 1) = p and, to simplify,
write θ1 = θ.

In our experiment we generated values of X for a population of size N ,
drew a sample of size n by simple random sampling and then generated
the values X̃ . Various choices of (N,n,C, p, θ) were considered. We also
generated X̃ for all population units so that F̃j could be computed.

Fig 3. Risk measure for different numbers of key variables and rates of misclassification

We report values of risk measure (2.5) summed over sample uniques
∑

SU Mjj/F̃jj in Figure 3 for N = 100, 000, n = 2, 000,p = 0.2 and for vari-
ous choices of C and θ. Note that the number of sample uniques increases as
we add in more binary key variables. For C = 11 we have about 240 sample
uniques and for C = 30 we have about 1,960 sample uniques. In the absence
of misclassification we find that the risk increases monotonically and rapidly
with C. This is because the number of population uniques is increasing with
C and the fact that any observed match with a population unique must be a
true match. On the other hand, in the presence of misclassification, we find
that the risk does not increase monotonically, rather it reaches a maximum
and then declines. As expected, the more misclassification, the lower the
disclosure risk.

We do not present information loss measures for the simulation since their
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values follow theoretically. For any analysis involving a given set of variables,
say the estimation of a table cross-classifying two particular key variables,
the addition of further key variables will have no systematic impact on any
of the information loss measures, since each of the variables of interest will
be perturbed in the same way, irrespective of the inclusion of other key
variables. The only variation we might expect to observe would be as a
result of simulation variation. Any information loss function in Figure 3
should therefore be flat.

6. Discussion

In this paper, we have shown how existing methods for assessing identifica-
tion risk in survey microdata may be extended in a relatively simple way
to capture the impact of SDL methods based on misclassification. We pre-
sented a general expression for the risk under misclassification in (2.4) and
showed that the simple formula in (2.5) provided a good approximation to
this expression in two experiments based upon UK census data. The ad-
vantage of the formula in (2.5) is that it enables the extension of existing
risk assessment methods for unpeturbed data based on Poisson log-linear
models, as discussed in Skinner and Shlomo (2008), to handle perturbative
SDL methods. We demonstrated this extended approach also with the cen-
sus data and provided a disclosure risk-data utility analysis. We showed how
a targeted SDL method could dominate corresponding random methods.

One challenge faced by agencies when assessing identification risk is the
need to make assumptions about the information available to the intruder,
specifically the nature and number of key variables. We conducted a nu-
merical experiment to assess the sensitivity of the identification risk to the
misclassification of different numbers of key variables. In the absence of mis-
classification, the risk can increase rapidly with the number of key variables.
We observed that misclassification can, however, dominate this effect with
the risk eventually declining as the number of key variables increases. This
is potentially an encouraging finding for agencies, since the sensitivity of the
identification risk to departures from assumptions about the choice of key
variables may be reduced in some settings when the kinds of SDL methods
considered here are used and, in cases such as in Figure 3, there may even
be a natural upper bound for the risk across plausible choices.

Another issue faced by agencies is whether to release values of the param-
eters of the SDL method employed, e.g. the swapping rate. The information
loss measures used in section 4.4 assume that users of the microdata simply
ignore the perturbation in their analyses of the data. The agency‘s aim is to
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find an SDL method for which both the information loss and the disclosure
risk are considered satisfactorily small. If this is not feasible then it may be
necessary for the agency to resort to an SDL method which leads to non-
negligible distortion of analyses. In this case it may be desirable for data
analysts to be provided with values of the parameters of the SDL method to
enable them to undertake valid inference, as discussed e.g. in Gouweleeuw
et al. (1998) for PRAM (note that our use of invariant PRAM was designed
to avoid this need). The disclosure risk implications of releasing such SDL
parameters will not be pursued further here.

The findings of this paper are not only relevant to understanding the
impact of SDL methods but also to the assessment of risk, before the ap-
plication of SDL methods, in a way which more realistically takes account
of the errors of classification which arise in survey data from measurement,
coding and processing as well as from imputation for missing data, providing
the agency has estimates for the diagonal elements of the misclassification
matrix.

Appendix: Derivation of (2.5) under Probabilistic Record
Linkage

Suppose, as before, that a microdata record i is linked to a target unit B
by comparing the values of X̃i and XB . Following the approach of Fellegi
and Sunter (1969), let γ(X̃i,XB) = j if X̃i = XB = j, j = 1, ...,K and
γ(X̃i,XB) = K + 1 if X̃i 6= XB and suppose that exact matching is used,
so that a link is made if γ(X̃i,XB) ≤ K. Suppose the intruder draws the
pair (i, B) at random (with equal probability) from the set of pairs s × s∗,
where s∗ is the subset of units in U appearing in the external database
from which the intruder selects B. Partition s × s∗ as M = {(i, B)|i = B}
and U = {(i, B)|i 6= B} and let m(j) = Pr[γ(X̃i,XB) = j|(i, B) ∈ M ],
u(j) = Pr[γ(X̃i,XB) = j|(i, B) ∈ U ] and p = Pr[(i, B) ∈ M ], where Pr(.) is
defined with respect to the selection of (i, B), the selection of the sample s
and the misclassification mechanism. Then the identification risk for a linked
pair(i, B) for which X̃i = XB = j is given by

φj = Pr[(i, B) ∈ M |(X̃i,XB) = j] =
m(j)p

m(j)p + u(j)(1 − p)

A large sample size approximation gives m(j) ≈ Mjjfj/n
∗, u(j) ≈ (πF̃jfj−

πMjjfj)/(nn∗ − πn∗), p = π/n, where fj is the number of units b in s∗ for
which Xb = j and n∗ is the size of s∗. It follows that φj ≈ Mjj/F̃j irrespec-
tive of the manner in which s∗ is selected from U . Skinner (2008) provides
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further discussion of identification risk under probabilistic record linkage.
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