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Abstract 

The paper addresses the problem of defining a theoretical physical agent framework that satisfies practical 
requirements of programmability by non-programmer engineers and at the same time permitting fast realtime 
operation of agents on digital computer networks. The objective of the new framework is to enable the 
satisfaction of performance requirements on autonomous vehicles and robots in space exploration, deep 
underwater exploration, defense reconnaissance, automated manufacturing and household automation.  

1. Introduction 

Agent theory has a substantial history within the field of computer science and has been theorized over 
greatly, stemming from the widely held view that an agent is a system most appropriately described by the 
intentional stance, wherein the agent is an entity subject to anthropomorphism [1]. Whilst, to date, there is no 
panacea for agent theory, significant contributions have been made relating to what properties an agent 
should have and how these properties should be formally represented and reasoned about [1,2,3,4,5]. 
Application areas for agent systems have been presented for the realms of software, industry and autonomous 
control systems [1,5,6]. 

Agent architectures are divisible into three groups: reactive, deliberative and hybrid. Reactive architectures 
operate through a mapping of data to action, in a stimulus-response fashion, as exhibited by Brook’s 
subsumption architecture. Subsumption architectures present intelligence as an emergent property resultant 
from a hierarchy of finite state machines such that there is a behavioral response resultant from goal oriented 
desires; there is no form of planning. Such simplistic architectures are advantageous in dynamic environments, 
though in addition to the difficulty of engineering a set of behaviors to achieve a particular task, undesired 
behaviors may also evolve. Moreover, omitting the ability for such agents to reason eliminates the possibilities 
of planning and learning: both highly desirable proactive traits for agents [7,8]. 

Deliberative architectures can be separated into symbolic and intentional systems; these latter architectures 
are based upon abstracted notions written within the intentional stance. Intentional systems, as philosophized 
over by Dennett, encompass system descriptions abstracted out using human notions such as belief and intent 
[9]. Such abstractions allow irrelevant details to be omitted and hence save in computational complexity, 
permitting subsequent reasoning to be based upon high level notions and not modeling physics as would be 
resultant from modeling within the physical stance. Both deliberative theories are strongly bound to logical 
systems and it is these engines which are used for agent reasoning. The earliest cited use of such logical 
formalism within agent reasoning is that of the possible world semantics, as presented by Hintikka, now 
commonly formulated in a Kripke structure using normal modal logic [1]. Unlike reactive systems, deliberative 
architectures do not imply any form of output, merely theorizing over system knowledge. By definition an 
agent is proactive, thus requiring some form of output: early work involving the integration of action and 
knowledge is from Moore, who presents a formalism wherein knowledge is used as a pre-condition for action. 
This is in agreement with Hintikka, who postulated that not only is knowledge is the goal of inquiry, but what 



‘decisions and actions are based upon’. This work was closely followed by a theory of intention by Cohen and 
Levesque [10]. 

Symbolic architectures are logical systems, wherein the environment is represented symbolically and 
manipulated through reasoning. It is common practice now that the symbolic representations are logical 
formulae and it is these which are manipulated: this syntactic manipulation is theorem proving. Such 
manipulation permits an agent not only to reason about the consequence of current percepts, but states of 
the world which it may bring about. Although advantageous in both mathematical rigor and concept, since 
human knowledge can be considered as symbolic, it is difficult to translate the world effectively into symbolic 
representation and the computation times required for formal proofs generally precludes implementation on 
real time systems, even if using a concurrent theorem proving mechanism [10] . 

Intentional systems are rooted in philosophy and based upon logical reasoning of the intentional stances used 
to represent the agent. Epistemic and doxastic logic, the logic of knowledge and belief respectively, are two 
forms of logic which fit within the anthropomorphist nature of an agent. A logical framework wherein beliefs, 
desires and intentions are primitive attitudes, as formulated by Rao and Georgeff, has proven to be the most 
popular: the three BDI primitives are highly cited within literature and used within numerous agent 
programming languages including the logic based PRS, Jason and 3APL, as well as the Java based 
implementations of JADE, Jadex and JACK [2,3,4]. 

Systems aiming to combine the timely nature of reactive architectures and the mathematical rigor of 
deliberative architectures are termed as hybrid, or layered architectures. Layered systems, as their name 
would suggest, involve a hierarchy of interacting subsystem layers; these layers may be horizontal or vertical. 
Complexities of information bottlenecks and the need for internal mediation within horizontal architectures 
are partially alleviated within vertical architectures, though these structures do not provide for fault tolerance.  
Both horizontal and vertical architectures have been implemented within TouringMachines and InterRRaP 
respectively [12].  

Possibly the most widely known BDI implementation is PRS [13, 14]. PRS is a situated real time reasoning 
system that has been applied to the handling of space shuttle malfunctions, threat assessment and the control 
of an autonomous robot. Within the PRS framework a knowledge database, detailing how to achieve particular 
goals or react to certain situations, is interfaced by an interpreter. Conceptually this is similar to a horizontally 
layered TouringMachine, though notions if intention are contained and consequently placing PRS as a 
deliberative BDI model. Whilst certainly a notable and proven method, the knowledge database is fixed and 
invoked upon perceived condition triggers for the particular knowledge item of relevance. The set of possible 
agent behaviors is restricted by the number of knowledge items programmed and held within the library: an 
agent cannot add knowledge items during runtime, self generated or otherwise. 

Here we propose interleaving of physical stances within the intentional stances used to abstract and reason 
about the system in order to enrich the reasoning process. Some might question the validity of such an 
approach as beneficial to aiding means–end reasoning, since conceptually we are providing an elaborate plan 
mechanism, which could be instigated within the PRS architecture. However, PRS interprets percepts and in 
conjunction with goals, will select a particular pre-formed plan to run: we are proposing the possibility for 
physical stances to act internal to deliberation as well as being the result of deliberation; not instigated as a 
result of deliberation until a preferential alternative is selected.  

 

2. An agent framework for unstructured physical environments   

A physical agent system (PAS) is a 3-tuple consisting of the agent, the environment in which the agent exists 
and a coupling between the agent and environment. 



Definition A physical agent system,  is defined by   

 

where is a set of agents,  ,    is a set of environment objects, , and  is a set 

of couplings between  and any members of the joint set  .  Couplings between 
members of    are called communications, and couplings between members of   are called physical 

interactions, . Couplings between members of  and  are called action and sensing, in the environment.  

A coupling is an abstract object at this stage of our discussion that will be specified later for its types, attribute 
and models (see Section 4). In this paper we are interested in physical agents that are not pure software 
agents but ones that have a set of environmental objects associated with them and are called the “body” of 
the agents. Strictly speaking a body is a set of environmental objects associated with a set of agents.  

Definition The body association of agents is a map, β, defined by splitting  and  into a disjoint set of sets of 
agents and sets of environmental objects, respectively: 

, , 

and allocating to each  a subset of  :   where   .  

In exceptional circumstances the  may be allowed not to be disjoint, meaning that agent teams can 
“share some body parts”, but this is not the norm. For logical clarity one should organize teams of agents, such 
that  is a disjoint union.  

 

Definition.  A single physical agent is a tuple    consisting of the three main constituents of any 
agent: its physical engine, its rational behavior engine and its continuous engine.  

 

 

 

 

 

  

 

 

This formal representation of a physical agent has been created to serve three practical purposes in 
engineering autonomous systems that interact with the physical environment: 

1. Easy programming by engineers through defining sensing and actuation for the physical engine, 
definition of prediction in the continuous world (using the continuous engine) and by defining goals 
and behaviour constraints for the rational behavior engine. 

Processes of a single physical agent  

Π: Physical Engine Σ: Rational Behaviour Engine 

Ω: Continuous Engine 



2. Formal verifiability of the complete hybrid system of the agent system and its environment class, 
based on assumptions made on probabilities of physical engine malfunctions, numerical precision of 
the continuous engine and a hybrid system model-class of the environment.  

3. Fast realtime operation on digital computers with asynchronous processes running in parallel. Any 
physical agent must have at least one process for each of  . Realtime functionality may well 
require that some or all of  are split into several, or many, sub processes.  

If any of these practical requirements are not met then the uptake of the agent system by industry can be 
seriously limited. 

The physical engine can be a complex process or set of processes. It can contain a multitude of devices, 
including communication, sensor and actuator devices, as well as sensor data abstractors  (SDAs), control data 
developers (CDDs) and feedback processes (FBPs) for realtime processing of perception and actions of the 
agent. The SDAs are to symbolize events for the CDDs are to develop symbolic action into control signals for 
the actuators and the FBPs are needed for linking CDD and SDA pairs into realtime feedback loop executors. 

Definition. A physical engine   is a quad tuple, , where is a set of communication devices,  is 
a set of sensor data abstractors,  is a set of control data developers and is a set of realtime feedback loop 
executors. For practical reasons any of  may be empty, but this is not true for , which represents 
communication devices and consequently may never be empty. 

Definition. A software agent is a physical agent that has only communication devices present within its 
physical engine, i.e. all of  are empty.  

The rational behavior engine, , is formally defined so as to permit the accommodation of simple reactive 
subsumption based architectures as well as deliberative belief-desire-intention, i.e. BDI  agent architectures. 
Whatever agent architecture is implemented, they must handle sensed event abstractions, agent action 
abstractions and decision making processes (DMPs).  

From a theoretical point of view, it is the DMPs where agent architectures mostly differ in complexity. Given a 
set of  abstractions, one can define simple behavior rules for a reactive subsumption architecture, or 
one can define a deliberative agent decision making process. The latter can use a belief set that can influence 
goal list prioritization and commitments to intentions that are executed, while monitoring beliefs and changing 
action if necessary. Of course a BDI architecture may involve more complex  abstractions, however 
the overall architecture described above remains valid. As the next section will show, humans formulate their 
behavior rules in abstract temporal logic statements, so to satisfy the requirement of “ease of programming”, 
it would be inappropriate to ignore temporal logic as a fundamental component of the DMP. As described 
later, and as one of the main contributions of this paper, there will be another equally important component 

of any capable advanced agent, that is via Ω, the continuous engine. The Ω moves beyond logic and facilitates 
the handling of unknown unstructured environments by the agent.    

A question remains relating to the complexity that the DMP going to take on.  It is inevitable that the DMP will 
be implemented using the abstractions of   plus some memory and suitable data structures. These 
data structures may possibly be different resolution maps of the world in which the agent resides that may be 
uncertain in their fine detail. Similar to the way we (as humans) use maps to learn the abstract layout of 
streets or connections of metro lines, robots may only have a rough and highly abstract guide to the world. In 
the case of the metro line maps even the rough geometry of where the lines go in the city is neglected and the 
map is only useful to know how the stations are connected. These examples from human context point to the 
importance of a robot needing maps with different resolutions to make goal achievement and planning fast. In 
an unknown environment, for which there are no detailed maps available, the robot must implement SLAM 
(self localization and mapping) techniques.  



Apart from maps there may also be a need for a memory for abstract skills (SAM) execution. Although the 
Physical Engine has  for the actual execution of physical contact with the world, physical skills are to 
be controlled at an abstract level in feedback/feedforward. Speed of execution in some skills may require 
sending out a sequence of abstract commands in  for execution, without concurrent feedback but rather 
details relating to the end result of the abstract command sequence. For humans this happens in driving a car 
where we learn what action to take in a particular situation, such a requirement to swerve or perform an 
emergency stop, and feedback can only be registered with some delay; speed of feedback is limited.  
Abstracted physical skills command sequences, and their feedback mechanisms, are learnt and improved upon 
by actually practicing the activity, a testament to the phrase “practice makes perfect”. The same should be 
true for robots as it is too laborious for programmers to develop physical skills of robots and the DMP system.  
Additionally, self-learning skills also infers learning how skills fit into the DMP system: integrity of the DMP 
operation is preserved. This integrity may become fragmented if programmers develop code for physical skills 
of agents and this highlights the importance of learning skills execution (LSE) and skills abstract memory (SAM) 
at an abstract level using discrete symbols .  

Most physical agents developed so far do not have a DMP with LSE and SAM. Existing robots tend to link 
abstractions directly with a limited set of physical actions. Using LSE and SAM the set of performable actions 
can be several magnitude greater than the set of abstractions for sensing and actions in , which may 
be called primitives of sensing and actions from which more complex ones can be built. Good choice of 
primitives in will fundamentally influence the sophistication of physical abilities that the robot will be 
able to learn via practice.  

Other components of DMP can be: 

• Planning of movements in the physical world  

• High level planning of goal achievement using various resolutions of world maps (self-learned or 
acquired)  

• Ultimate goals of operation and behaviour constraints at higher levels of abstraction 

The following definition grasps the minimum of what the DMP must contain for a capable physical agent, 
without specifying the actual mechanisms of operation, i.e. no “agent architecture” is specified.  

 Definition. A rational behavior engine  is a tuple,   that contains a granulated multi-

resolution and physical multi-domain world models W, abstract physical skills memory, ,  goal achievement 

memory (problem solving memory),   abstract formulation of behavior constraints, C, abstract formulation 

of short and long term goals, G. 

Although no specific agent architecture is required, we will briefly outline how some of the best known 
architectures fit into this. In all cases the   are assumed to be common. 

Subsumption architectures: 

The  of a physical agent with “subsumption architecture” can for instance be filled in by the following: 

  – Empty sets. 

C                  – A set of “if A then B” rules where the premises A are propositional logic formulae in terms 
of abstraction symbols in  or in . The conclusions are propositional logic formulae of symbols in  .  

BDI  architectures in Jason or similar agent oriented languages: 

  – Modeling structures in various physical domains and varying resolution 



  – Plans and logic rules programmed in the agent programming language 

     – Goal symbols that appear at the head of some plans  

METATEM deliberative agents using temporal logic : 

   – Modeling structures in various physical domains and varying resolution 

  – Databases of symbol vectors in terms of  and temporal propositional logic connections 

     – Temporal logic statements in terms of higher level abstractions as explained by temporal logic 
formulas using abstraction from: . 

The latter realization is the most natural for humans in terms of goal definitions and executions of tasks in a 
logical manner.  The question of modeling structures relating to the continuous world, and their role in 
planning and decision making, has so far been neglected. It is a fact however, that decisions can be influenced 
by hypothetical planning and not decision to be made first and then planning put into motion. This latter can 
lead to the agent making bad decisions. This fact and that initial abstractions in   as prescribed by the 
designer of the agent, may not be sufficient to capture the essence of the changing world correctly, leads us to 
the next section defining the “Continuous engine” of the physical agent. 

Definition. The continuous engine, Ω, is a tuple   where M is a set of approximate 
continuous models of the world,    is a continuous time simulator that uses analytical and empirical data 
based dynamic models to predict future state of the world, O is an optimizer that can optimize continuous 

time planning of actions, B is a Boolean evaluator of propositions in terms of σ statements and L is a library of 
useful numerical computations in terms of continuous variables.  

As W is the primary, symbolic model of the world with relationships stored on symbols, the M is related to W. 
The M is a collection of models from various physical domains (geometric, mechanical, electrical, gravitational, 
heat, fluid flow, etc…) that make symbolic descriptions in W either more precise in numerical or in qualitative, 
time evolution sense.  Even without precise numerics, the agent may perform a simulation using the 
simulation tools in S to see possible qualitative outcomes in terms of   abstractions.  These qualitative 

outcomes of predictions can be used to make the right decisions and planning by Σ.   

The O is a set of optimization tools of continuous problems. The agent can perform planning in continuous 
time and can set up a problem formulation. Then it searches in O for a suitable optimization tool. The results 
are formulated and used at the symbolic level of .  Optimization for path planning, robust feedback 
control or a low complexity numerical dynamical model may all be tools that are available in O. 

B is important since Boolean values of primitives in σ in prediction (simulation) outcomes must be inferred by 

some continuous computations that cannot be performed elsewhere except in the continuous engine  Ω .  B 
contains a Boolean valued functional, by example “will the agent body be within the allowed boundary if it 
carries on moving the same way for the next 10s” is an evaluation that is not done in symbolic computation 

but using M, S and B: the statement is converted into a symbolic temporal logic statement for  Σ . 

Finally L is a library of auxiliary computations with continuous quantities: for instance equation solvers for 
linear systems of equations, nonlinear equation solvers and generic nonlinear optimizers. Use of L by the agent 

assumes that the agent is capable of setting up problems in Σ by first abstracting them and picking a solution  
tool from L.  

It is evident that Σ and Ω run hand-in-hand, i.e. the Σ frequently delegates computations to Ω, and then uses 

the output from Ω to continue deliberation of prescribe action. 



 

 

3. Programming of  Physical Agents by Non-programmers  
 

A human being is represented here as a “super agent” that has considerably more in its DMP then the formal 
agents to be engineered. The extra features of the human DMP can be briefly summarized as follows: 

• Conceptual structures formed from  abstractions. 

• Seamless manipulation of conceptual structures to achieve lowest complexity models of the 
environment for goal achievement. 

• Rich set of skills to cope with in various situations in a physical environment. This includes manual 
skills as well as skills of analytical modelling performed in the head or on a computer.  

• Near “completeness” of abstract knowledge in an artificially created physical environment that 
permits reliable operation of human agents by design of the environment. 

The latter is an interesting point: our educational system complements the human built environment to be 
safe for humans by providing skills to cope and introducing laws and unwritten conventions to render the 
human – physical world interactions relatively safe for mature adults.  

Unfortunately, physical agents that we discuss in this paper do not enjoy the kind of advantages as listed.  
Instead the problem is to find a mapping of these human capabilities into formal agent properties that make 
them safe and achieving goals despite the very limited resources they have relative to humans. To do that we 
will formalize the human capabilities a bit further. 

 

4. An Example  Software Implementation Using J2M  

There are many ways to implement the agent architecture described above. Ideally C, C++ could be used for all 
the components to permit operation on all platforms (Windows, Linux, Unix, MacOS and embedded systems) 
but there are both practical and legacy issues that make realization biased towards software systems that have 
ready tools available and which would be far too expensive to reproduce. For instance the MATLAB family of 
toolboxes provides a rich set of numerical processing, optimization and simulation algorithms that can be 
exploited. Similarly the Java environment has numerous software components in the area of agent reasoning 
that may be implemented directly. The following table provides some possible options for the software 
platform to be used for the implementation of the agent architecture outlined in Sections 2-4.   

 

Π platform Σ platform Ω platform 
C C C 
C++ C++ C++ 
Java Java Java 
MATLAB Java MATLAB 
SIMPOL SIMPOL SIMPOL 

 

In the following we describe a possible software implementation in terms of MATLAB+Java+MATLAB (J2M) 
that has the advantage of minimal programming effort due to the rich set of programming tools presently 

available. Within the J2M implementation, the Π and Ω platforms are developed within MATLAB, whilst the Σ 



platform is exclusively developed using Java. Although it is theoretically possible to form a rational engine 
within a MATLAB framework, since MATLAB does not allow for multi-threaded code execution, this would be a 
restricting factor. Also, to do so would neglect the existing frameworks which have been developed in more 
suitable languages. It should be noted that the high level prototyping in J2M may be converted into concise 
machine code for embedded applications. A description of the J2M will follow, within which we are assuming 
the implementation of a physical agent, that is one for which  are not empty. 

The physical engine, Π, is an element within an environment; this environment may be purely numerical, 
instantiated within a virtual world or a true dynamic real world environment. Regardless of construct, the 
physical engine is capable of extracting relevant abstract data from the inhabited world to be encapsulated 

within  and communicated to the rational engine, , via . This is the only interaction mechanism Π has with 
.  

Within the developed implementation, the physical engine continually passes sensory information to the 
rational engine, which is used to update W, though the rational engine may chose to ignore information it 
receives. 

Sensor data, , may relate to position and velocity information given in some coordinate frame, as would be 
required for roving vehicles such as UAVs or AUVs.  may also relate to other functional data types such as 
temperature and pressure information, extracted from relevant sensors. The way in which  is communicated 
to  is critical, since  must be in the position to update W correctly based upon information received via . 
FIPA provides a comprehensive treatment of software standards and specifications for interacting agents and 
agent based systems, to enable intelligible communication between agents and agent processes. For the 
instance of sensor data flow from the physical engine to the rational engine, communication is unidirectional 
and so the communication considerations are reduced to the rational agent requiring knowledge only of the 
communicating entity (in this case ) and the subject matter ( ). W is updated as a consequence of , from 
which  will evaluate the appropriate actions and this may instantiate invocations of . 

During the rational agent deliberation cycle, a point may be reached wherein calls to the continuous engine 
are required. Instances of these calls have already been entered upon; here we shall concentrate on the data 
flow. The continuous engine is constructed within MATLAB and consequently all functionality of this system is 
achieved through use of the appropriate m-files.  requests execution of a component from , either S, O, B 
or L, dependent upon the solution sought by the deliberation cycle occurring within , and also requests a 
response in the form of a pointer, character array, numerical or Boolean value. 

Communication between  and  is more complex than that of the data pushing performed by Π, since 
actions executed by  are conditional upon input from , and in turn  expects some form of result. 
Consequently we are presented with the need for more elaborate communications protocols to ensure 
efficient interaction between  and . Messaging from  is of the form <mc,cc,rc>, whereby mc is a character 
string specifying the particular m-file to be executed, based upon the data encapsulated within cc and 
expecting the number of returned evaluations to be the number specified within rc. Since  is aware of the 
continuous engine invocation instance, the data type being returned by  need not be specified. Return dialog 
from  to  is in a similar format, of the form <mr,rr>, wherein mr signifies the m-file which was executed and 
rr the result of the routine. This format could be interpreted within the FIPA framework as <in-reply-to, data>. 

MATLAB is unable to function in a multi-threaded nature and so  is restricted to parallel processes only; this 
is not true for , which is intrinsically multi-threaded: whilst waiting for a response from ,  is able to 
continue other forms of deliberation which are unrelated to problems associated with the current  task. An 
example of such an instance is that of vehicle path optimization:  requests execution of O from  based upon 

current  and M. Whilst O is executing within ,  is still capable of monitoring  from Π and dealing with any 
instances which may arise, such as the need for control reconfiguration. Upon completion of O within , the 



relevant response (in this instance a pointer to the file detailing the optimized path) is sent to , from which 
the invoking thread may be resumed. Ultimately all threads within  result in some form of action to be 

completed by Π and this requires some form of assertion by ; note that the prescription of ‘no-action’ 

represents the simplest assertion which may be prescribed by . In the same way that Π acts to ‘push’ data to 

,  prescribes action for Π: here  prescribes the initiation of  which acts directly upon . Returning to the 

example of path following,  initiates  within Π relating to the task of path following using the plan formed by 
 and accessed by the file pointer provided to  by , which is consequently available to .  executes 

without additional action from , using internal feedback devices, though  is capable of over-riding the 
execution of a . 

All engines run concurrently:  is continuously feeding data to , which prescribes action to  via  and 
invokes intermittent communication with .  Whilst   and  do not communicate directly, shared memory 
between these engines allows access of the results from   by : such an instance is invoked when  is tasked 
with path optimization. Here  is invoked by  to optimize a path, or thruster sequence, and this plan is stored 
within a file. A pointer to this file passed to , which communicates this pointer to . If instructed to follow the 
plan,  reads the file directly and acts accordingly. A schematic of the J2M construct, indicating interaction of 
the three agent engines, is given within Figure 1. 

 

 

Figure 1: J2M Framework Construct 

An example implementation of the presented agent framework has been developed based upon a spacecraft 
agent scenario. Within the scenario a spacecraft agent is tasked with acquiring and tracking a geostationary 
orbital location upon a failed orbital insertion. During the simulation the agent is also presented with instances 
of actuator failure, requiring control reconfiguration in order to achieve the mission objective.  

The agent world is developed within Simulink (MATLAB), and is inclusive of disturbances resulting from Earth 
oblateness (triaxiality), solar radiation pressure and Luni-Solar third-body perturbations [15]. The agent is not 

aware of these impacting factors: within the continuous engine, Ω, the relevant physics engine for internal 
simulation which may be utilized are based upon the Hill equations, a simplification of the orbital dynamics 
with respect to the desired orbital location [16]. The spacecraft agent is availed with numerous possible 
control methodologies, afforded by the considerable amount of literature available on the subject of 



spacecraft control, inclusive of planning, adaptive and reactive control systems [17-23]. It is the task of the 
reasoning engine to select an appropriate control methodology to deal with the presented scenario, perform 
the appropriate control and analyse the resultant output in order to improve performance. Concurrent to the 
control requirements, the spacecraft agent is tasked with monitoring internal systems and reacting accordingly 
to any diagnostics made. Within simulation, the actuators present the agent with situations of gain reduction 
and propellant supply issues resulting from supply valves being stuck open/closed and a fuel-line breach. 

The upper level Simulink block is shown within Figure 2, with the VRML sink linking to a virtual world shown in 
Figure 3. Whilst not essential, it was chosen to include a VRML world to aid visualization of the dynamical 
processes occurring as a result of agent action or inaction. The world is initialized with the agent in an 
undesired location and with a state representative of a failed orbit insertion. A sphere indicates the desired 
geostationary location bounds: when within these bounds the sphere surface is green; when in violation of the 
bounds the surface is red. Note that for visualization purposes, scales have been altered greatly. 

 

 

Figure 2: Agent Simulink Environment 



 

Figure 3: Agent VRML World Initialized State 

Agent percepts are taken from the simulated world, from which abstractions are made and passed to the 
rational engine developed within Java. As presented within the proposed agent framework, the rational engine 
may task the continuous engine and these results may be used within deliberation to result in a rationalized 
prescription of action: agent action is currently limited to thruster actuation and internal reconfiguration to 
adapt for faulty thrusters.  

Using the presented framework within the simulation, successful geostationary orbit attainment and 
regulation has been achieved in the presence of unknown disturbances and actuator failure, necessitating 
online control reconfiguration. 

 

Summary 

This paper has discussed and presented a theoretical physical agent framework that satisfies the practical 
requirements of programmability by non-programmer engineers and realtime operation of deployed agents. 
The presented framework has been developed and implemented within simulation for autonomous spacecraft 
control tasked with position tracking, subject to orbit insertion error, unmodeled orbital perturbations and 
control reconfiguration requirements under the presence of actuator performance degradation and failure. 
Further development of this model, and the extension of the existing framework to additional agent scenarios, 
is the subject of continued research. 
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