The University of Southampton
University of Southampton Institutional Repository

A new tool for satellite re-entry predictions

A new tool for satellite re-entry predictions
A new tool for satellite re-entry predictions
Satellite drag data plays an important role in the estimation of atmospheric density and the study of thermospheric cooling and contraction. There are many ways of calculating atmospheric density, but inferring thermospheric density from satellite drag data is a relatively cost-effective way of gathering in-situ measurements. Given an initial satellite orbit, one approach is to use an orbital propagator to predict the satellite’s state at some time ahead and then to compare that state with the Two-Line Element (TLE) data at the same epoch. The difference between the mean motions from consecutive TLE sets is calculated then compared to results obtained from the orbital propagator. From this an estimate of global average density can then be calculated. The validation of a new orbital propagator that will be used for this purpose is the primary focus of this paper. Here, the validation takes the form of re-entry prediction for decaying satellites.
Saunders, A.
f42b40b5-5e67-47e2-bde0-0942211201f4
Lewis, H.G.
e9048cd8-c188-49cb-8e2a-45f6b316336a
Swinerd, G.G.
4aa174ec-d08c-4972-9986-966e17e072a0
Saunders, A.
f42b40b5-5e67-47e2-bde0-0942211201f4
Lewis, H.G.
e9048cd8-c188-49cb-8e2a-45f6b316336a
Swinerd, G.G.
4aa174ec-d08c-4972-9986-966e17e072a0

Saunders, A., Lewis, H.G. and Swinerd, G.G. (2009) A new tool for satellite re-entry predictions. Fifth European Conference on Space Debris, Darmstadt, Germany. 29 Mar - 01 Apr 2009. 6 pp .

Record type: Conference or Workshop Item (Poster)

Abstract

Satellite drag data plays an important role in the estimation of atmospheric density and the study of thermospheric cooling and contraction. There are many ways of calculating atmospheric density, but inferring thermospheric density from satellite drag data is a relatively cost-effective way of gathering in-situ measurements. Given an initial satellite orbit, one approach is to use an orbital propagator to predict the satellite’s state at some time ahead and then to compare that state with the Two-Line Element (TLE) data at the same epoch. The difference between the mean motions from consecutive TLE sets is calculated then compared to results obtained from the orbital propagator. From this an estimate of global average density can then be calculated. The validation of a new orbital propagator that will be used for this purpose is the primary focus of this paper. Here, the validation takes the form of re-entry prediction for decaying satellites.

This record has no associated files available for download.

More information

Published date: September 2009
Venue - Dates: Fifth European Conference on Space Debris, Darmstadt, Germany, 2009-03-29 - 2009-04-01
Organisations: Astronautics Group

Identifiers

Local EPrints ID: 68971
URI: http://eprints.soton.ac.uk/id/eprint/68971
PURE UUID: 437dc711-d1d0-4efb-acc0-d10251af5e9e
ORCID for H.G. Lewis: ORCID iD orcid.org/0000-0002-3946-8757

Catalogue record

Date deposited: 13 Oct 2009
Last modified: 26 Jul 2022 01:35

Export record

Contributors

Author: A. Saunders
Author: H.G. Lewis ORCID iD
Author: G.G. Swinerd

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×