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1 Introduction

Polynomial spline modeling is a popular statistical technique for nonparametric function estim-
ation, because of its similarity to polynomials and its conceptual simplicity [see e.g. De Boor
(1978), Dierckx (1995) or Eubank (1999) among many others]. These concepts have first been
considered in the case of a univariate predictor and have then been extended to the situation of
a multivariate predictor usually combining univariate basis functions from different components
of the predictor [see for example Friedman (1991), Stone et al. (1997) among others]. Several
authors propose to use least squares splines [see e.g. Hartley (1961) and Gallant and Fuller
(1973) for some early references|. If the knots are assumed to be fixed, this approach is par-
ticularly attractive because of its computational simplicity. Grove et al. (2004) use B-splines
to analyse data from an engine-mapping experiment from the automotive industry. For some
further applications of spline models in the context of dynamic programming, computer models
and chromatography we refer to Chen et al. (1999), Siddapa et al. (2007), Fang (2006) and
Put et al. (2004). If the knots are also estimated from the data the estimation problem is a
nonlinear least squares problem and the computation of the estimate and appropriate designs is
substantially more difficult [see e.g. Jupp (1978) or Mao and Zhao (2003)].

In the case where the knots are assumed to be known several authors have studied the problem of
constructing optimal designs for the corresponding segmented univariate polynomial regression
models [see e.g. Studden and Van Arman (1969), Studden (1971), Murty (1971a,b), Park (1978),
Kaishev (1989), Heiligers (1998, 1999), Woods and Lewis (2006) among others]. If the design of
experiment should also address the precise estimation of the knots, the situation is substantially
more difficult. Recently, Dette et al. (2008) considered the problem of constructing optimal
designs for (univariate) free knot least squares splines, while Dette et al. (2009) discussed
optimal designs for (univariate) smoothing splines.

Most of the literature on design of experiments for spline regression models discusses the uni-
variate case. Recently Yue and Hickernell (2002) investigated smoothing splines for ANOVA
models while Woods et al. (2003) considered optimal design problems for multivariate B-spline
models, where the knots are assumed to be known and do not have to be estimated from the
data.

This is the first paper to consider multivariable designs for spline models with unknown knots,
which is the most prevalent situation in practical problems encountered in industry. The paper
is organised as follows. After a brief introduction into the terminology in Section 2 we consider
optimal design problems in an additive spline regression model with a K-dimensional predictor
and a truncated power basis, where the knots for each coefficient are also estimated from the data.
We derive theoretical results on locally, Bayesian and standardised maximin D-optimal designs
for these models in Section 3, and apply these results to the engine mapping problem considered
by Grove et al. (2004). We also show that the same assertions hold true for Ds-optimal designs
for estimating the knots and briefly consider models containing interaction terms. In Section
4, we investigate local and robust ()-optimal designs for predictions at unobserved locations of



the predictor. In Section 5, we show that the results derived in Sections 3 and 4 hold for any
regression spline basis spanning the same space. Our results are illustrated by several examples
throughout the paper, and some conclusions are given in Section 6. Finally, the proofs of our
results can be found in an Appendix.

2 Optimal design for additive spline models

The general form of a spline regression function in one variable x; € [ag,bx] C IR using a
truncated power basis is given by

Uk re lig—1
pe(re) = Op1 + Z Oy "+ Z Z Orig(xr — M) =1 Op1 + i (@, M)y (1)
i=2 =1 j=0

where the last identity defines the vector «; in an obvious manner, ¢;) is the vector of all linear
parameters in model (1) except the intercept, and Ay = (Ag1,..., Ak, )’ € Ay is the vector
of all knots in model (1). Throughout the paper, we define z; = max(0,z) and Ay = {)\; €
[, bk)™ | Aka < Ak < ... < Mg }. Moreover, we assume that [, < my + 1 and ;;; < my — 1 to
ensure that the regression function is continuously differentiable.
In many real life problems, there will be more than one explanatory variable, and this situation
can be accommodated by fitting additive spline models in K variables of the form
Yi = p(wsy .. oxi) v 60, & b 0,64, i=1,...,n,
K
/L(ZE) = 91+Z’7§(£k7)\k)9(k)7 T = (xlv"wa)T' (2>

k=1

Example 1 To familiarise with the notation, consider a simple example. Assume we have the
quadratic two-factor model (I} = ly = 3) with one knot in each direction (ri =ry =1), i.e.

w1, xa) = 01 + 01021 + 91,3% + 0110(x1 — )\1,1)1 + 02272 + 92,32173 +0510(x2 — )\2,1)2+- (3)

All exponents of the terms including the knots (my—j and mg—j) are 2, solyy—1=115—1=10
(lii=la=1)and my =my =2. Thus ly =my+ 1 and ly =my — 1 for k=1,2, i =1, so the
conditions on the degree of the polynomial part and the smoothnesses of the spline part are also
satisfied.

The full parameter vector to be estimated is (67, \T)T where 6 = (0, 9(71), e ,H(TK))T and \ =
(AT )T, Obviously, model (2) is linear in the -component of the parameter vector, and
non-linear in A. Throughout this paper, we consider approximate designs. An approximate

5 _ :E(l) ZE(Q) Ce ZE(m)
w1 w9 e Wi,

design



is a probability measure with finite support on the design space x = [a1,b1] X ... X [ak, bk], i.e.
TG € X, @ = 1,...,m. Without loss of generality, we let a, = —1, by =1 forall k =1,... K.
The observations are taken at the support points of the design, and the number of observations
in each point x; is proportional to the weight w;.

The Fisher information of a design ¢ is then given by the matrix

=1

where g(z, 0, \) is the vector of derivatives of the regression function u(x) with respect to the
model parameters, i.e. g(z,0,\) = (1, ¢{ (21,00), M1)), - -, 9% (T, Ox), Ak))T with

s - (52 (5£2))

The Fisher information can be expressed as

where Cjy is a nonsingular block-diagonal square matrix depending only on €, but neither on A
nor the design &, and

1(€.0) = / Fa N 7 (2, N de ().

The vector f(z, \) is defined by f(z, ) = (1, fT(z1, M), - .., [E(xk, Ax))T where the components
of the vector fi(zg, \), Kk =1,..., K, are given by

(
Ty g=1,... 1, —1
(g — Ay ) P aHiteo g=ap+1,...,0
(Fe(@, Ae))g = & (o — M) P77 g=ar+1,...,09 (5)
my—q+1+a,, —
\<37k:_>\k,rk)+k ! Fly=an o+ 1,

where a; = [, — 1+ Zi:l(lsk +1),7=0,...,7%, and ¢ = 1, ..., px with p; + 1 the number of
parameters in the k' single factor model (1). Similarly, for each single factor model p(xy), the
Fisher information can be expressed as

My (&, Or,s M) = Co I (&, )\k>Cg;

where I (&, Ae) = [ fre(zr, M) fiF (2, Ar) d€i(xr) and the vector fi(zy, M) equals (1, F (@, )T
The non-singular matrices Cy,, k = 1,..., K, without their first rows and columns, respectively,
form the blocks around the main diagonal of the matrix Cy, together with the first block con-
sisting of the value 1.



From (4) we obtain that both the single factor models (1) and the additive model (2) are
partially nonlinear models in the sense of Hill (1980) and Khuri (1984). Using properties of the
determinant, it follows that

so the same design {7, , will maximise the determinants of the Fisher information M (&,0,\) and
of the more manageable matrix (£, ), which will be denoted as information matrix in what
follows. The design &j, , will only depend on the vector of the unknown knot locations A, but not
on the linear parameters 6. Following Chernoff (1953), we call a design ¢}, , locally D-optimal
if it maximises the determinant of the Fisher information matrix for given A, i.e.

€ = argmax | (€, V).

3 D- and D,-optimal designs

3.1 Locally and robust D-optimal designs

The concept of local D-optimality requires knowledge of the unknown parameter vector A. If
A is misspecified at the design stage, the design may be inefficient, i.e. will not allow accurate
estimation of the model parameters. Several approaches to overcome the parameter dependency
of optimal designs in nonlinear models have been suggested. We will focus on two non-sequential
concepts: Bayesian D-optimality (see, e.g. Chaloner and Verdinelli, 1995) and standardised
maximin D-optimality (Imhof, 2001).

When some prior knowledge about the location of the knots is available, which can be summarised
in a prior distribution m(\) on A where A = A; X Ag X ... X Ag, it is reasonable to use a Bayesian
optimality criterion which averages the original criterion over the plausible values for A\. The
Bayesian D-optimality criterion function with respect to the prior 7 on A is given by

Bpa(€) = / log 1€ )| dr(N), (6)

and is maximised with respect to the design &.

If only an interval for each knot can be specified, the problem of specifying a prior on the knots
can be avoided by using a maximin approach guarding the experiment against the worst case
scenario. This is a more cautious approach than the Bayesian, and is recommended in the
absence of sufficient prior knowledge. The standardised maximin D-optimality criterion is

Ypay (&) = Aier}\f O, \) = inf 1€ M)

— 7
AEA N |I(§B7>\, )\)| ( )

where £, , is the locally D-optimal design with respect to A and Ay C A is the set in which A
is supposed to lie.



The following result states how Bayesian and standardised maximin D-optimal designs for the
additive model (2) can be constructed from the corresponding Bayesian and standardised max-
imin D-optimal designs for the single factor models (1).

Theorem 1 (a) Let w(\) be a prior for A € A with marginals mx(\g), k = 1,..., K. Then
the product design &, . = &h ) @ ED py @ . ® & o, 18 Bayesian D-optimal with respect
to w(\) for the additive model, where EDmyr 8Dy @re the Bayesian D-optimal designs
with respect to mp(A\g) in the single factor models (1).

(b) Let Epp,, 15 €D Ay, b€ the standardised mazimin D-optimal designs with respect to
Ayvig, k=1,..., K, in the single factor models (1) for compact parameter spaces Ay C
Ay Then the product design &p x, = €D ay, @ EDay, ® - @ EDny e U5 standardised
mazimin D-optimal with respect to Apy = Apra X ... X Ay in the additive model (2).

See Appendix A.1 for the proof of Theorem 1. Local D-optimality can be viewed as a special
case of Bayesian D-optimality with a point mass prior on .

Applying Theorem 1 and Theorem 3.1 in Dette et al. (2008) we can find an explicit solution
of the locally D-optimal design problem for the additive model if the regression function has
exactly one continuous derivative at each knot.

Corollary 1 Let my > Iy — 1 and lip = my — 1 for alli. Then the locally D-optimal design &7,
with respect to A = (AT, ... N)T in the additive model (2) on the design space x is the product
design with marginals &, , k =1,..., K, where the support points Ty 1, ..., Tk p+1 0f §p 5, have
equal weights wy,; = 1/(pr + 1), i = 1,...,px + 1, where py + 1 is the number of parameters in
the marginal model py. The support points are given by

A1 — A
Tri = g + (Vrig, + 1)(%» =1,..., 1,
>\k s+1 — /\k s .
Thi 14l (s—Lymp, = As T (l/k,i,karl +1) (%» 1=2,...omp+ 1, s=1,... 1,
where A\io = g, Nerpt1 = Ok, Vkits .- -, Vket are the ordered roots of the polynomial

(23 — 1)L}, (x1) and Lj(xy,) is the derivative of the t' Legendre polynomial.

Example 2 Consider Example 1 on the design space [—1,1]%. Note that the condition ly, =
my — 1 for all © from Corollary 1 is satisfied. For both marginal models l;, = my +1 = 3, so the
required values are vg13 = —1, V523 = 0 and vp33 = 1 for k = 1,2. Applying Corollary 1, we
obtain the general form of the locally D-optimal marginal designs as

e - Mo Meo+2M1)/2 0 A (M1 +Me2)/2 Ao
D2 0.2 0.2 0.2 0.2 02 |’

For \i1 = —0.5 and A1 = 0.5 (A\po = —1, \p2 = 1) we obtain

) ~1 —075 —-05 025 1
€D7)\1 = )
0.2 0.2 0.2 0.2 0.2



) ~1 —025 05 075 1
gD,)\g =
0.2 0.2 0.2 02 02

and the product design of these marginals is locally D-optimal in the two-factor model.

Although the D-optimal information matrix (£}, 5, A) for the additive model (2) is uniquely
determined due to the strict log-concavity of the determinant criterion, the locally D-optimal
designs are not necessarily unique even if the D-optimal designs for the single factor models are
unique. Remark 1 characterises the support of any D-optimal design for the additive model (2).

Remark 1 The support of any multi-factor D-optimal design must be contained in the support
of the product of the corresponding one-dimensional D-optimal designs.

The proof of Remark 1 can be found in Appendix A.2.

The number of support points of product designs quickly increases in higher dimensions. To
investigate if all support points of the product design are required, or if a subset will be sufficient
we consider the model from Examples 1 and 2. The product design consists of 25 support points
to estimate 9 parameters. Numerical evidence shows that there is, however, no locally D-optimal
design with fewer support points than 25. Figure 3.1 shows the efficiencies of the locally D-
optimal m-point designs, found numerically, relative to the product design for A = (—0.5,0.5)%,
where 9 < m < 25 is the number of support points. The efficiency is an increasing function of m
up to m = 25. We obtained similar results numerically for a variety of models in two variables.

Efficiency
0.90
|
N

0.85
|

0.80
L
~__ .

T T T T
10 15 20 25

No. of support points

Figure 1: Efficiencies of locally D-optimal designs with 9 - 25 support points, relative
to the product optimal design, for the two factor spline model with terms (1,xy, 23, (1 +
05)+,I‘2,l’2,($2 05) )



3.2 D,-optimal designs for estimating the knots

In some practical problems, the experimenter’s main interest is in estimating the knot locations,
since they may indicate at which experimental conditions the behaviour of the regression function
changes and provide insight into the complexity of the response. In what follows, we therefore
investigate Dg-optimal designs for the estimation of the knots. This means we minimise the
determinant of the asymptotic covariance matrix for the estimator of A\, or equivalently, maximise
the function

Us(M(E,0, 7)) = [(ATM™(&,0,\)A)7"]. (8)

The matrix AT = (J; | Osx(p—s)) consists of two blocks, where J, is the identity matrix of size
s = Zszl Tis Osx(p—s) 15 & zero matrix of size s x (p—s), and p = 1+ Zszl P is the total number
of model parameters. Without loss of generality, throughout this section we have re-ordered the
rows and columns of the information matrix M (&, 0, A) such that the top left corner of size s x s
of this matrix corresponds to the derivatives of the regression function with respect to the knots,
and also re-ordered the rows and columns of I(£, A) accordingly. Here, M~ (&, 6, \) and I~ (&, \)
denote the respective generalised inverses of the matrices M (&,6,\) and I(£,\). The design ¢
must ensure that the parameters in \ are estimable, i.e. the matrix AT M~(&,0,\)A must be
non-singular.

Lemma 1 shows that we can restrict ourselves to considering the simpler problem of maximising
Vs(I(E,N) = [(ATT=(£,\)A)7!|, and that consequently D,-optimal designs for estimating the
knots in model (2) do not depend on the linear model parameters 6.

Lemma 1 There exists a positive constant cg, depending only on 6 but neither on X\ nor on the
design &, such that
[(ATM™(€,0. M) A) | = el (ATT7 (&, M) A) 7,

where 1(&, \) is the re-ordered version of the information matriz defined in (5).

The proof of Lemma 1 can be found in Appendix A.3.
We now consider Bayesian and standardised maximin Dg-optimality, where a Bayesian Dj-
optimal design with respect to a prior 7 on A maximises

©o.o() = [ logv.(1(6, ) dr(N),
A
and a standardised maximin D -optimal design with respect to Aj; maximises

e N)
N = f '
Ds, Ay (5) )\ler}\M wS(I(f*Ds:)\’ A))

Here &}, denotes the locally D,-optimal design with respect to A. Analogous to Section 3.1,
we show that the product of designs which are Bayesian (standardised maximin) Ds-optimal for



estimating the knots A in the £ marginal model (1) are Bayesian (standardised maximin) Dj-
optimal for estimating all knots A = (AT, ..., AL)7 in the additive model (2). Local D,-optimality
is embedded in this result as the special case of 7 being a point mass prior concentrated in some
A € A. The proof of Theorem 2 is in Appendix A.4.

Theorem 2 (a) Let w(\) be a prior for X € A with marginals m, k = 1,...,K. Let
EDamyr -2 EDh.ny denote the Bayesian Dg-optimal designs with respect to m(\y) in the
single factor models. Then the product design &, . = &b, r ® ED,py @ - @ Ep, 1y 18
Bayesian Dg-optimal with respect to w(X) for the additive model.

(b) Let EDurnar Do € standardised mazimin Ds-optimal designs with respect to Apr,
k=1,...,K, in the single factor models (1) for compact parameter spaces Ay C Ag.
Then the product design &, x,, = g*DS7A]\/[,1®€*DS7AAI,2®' . '®€*DS7A]M,K 15 standardised maximin
Dg-optimal with respect to the parameter space Ayy = Apq X ... X Ay i in the additive
model.

3.2.1 Examples

A numerical study was carried out to investigate locally D,-optimal designs, and found they
have the same support points as the locally D-optimal designs for the same model, but different
weights. Some selected single factor locally Ds-optimal designs for quadratic models with one
and two knots, respectively, i.e.

p(zy) = 61+ 61201 + 91,?@% +6110(x1 — /\1,1)%r
() = 01+ 0101 + 91,31’% + 0110(21 — /\1,1)2r + 0120(x1 — )\1,2)17 9)

are given in Table 1.

Table 1: Selected locally Dg-optimal designs for the quadratic single factor models with one or
two knots, respectively. The last weight is omitted since the weights sum up to one.

ALl | A2 Support points Weights

05 - |-1 -0.75 -0.5 025 1 0.094 0.375 0.375 0.125
0 - /-1 05 0 05 1 0.063 0.250 0.375 0.250
02| - |-1 -04 02 06 1 0.050 0.200 0.375 0.300

05105 (-1 -075 -05 0 05 075 10047 0.188 0.207 0.116 0.207 0.188

02 105|-1 -04 02 035 05 075 10018 0.073 0.238 0.246 0.250 0.141

The locally Ds-optimal designs in Table 1 all generate information matrices of full rank, so
the full parameter vector is estimable when using these designs. Even if the experimenter’s
main interest is in estimating the knots, the other parameters are still of some importance. We

9



therefore investigate how efficient locally D,-optimal designs are for estimating the full parameter
vector, i.e. how D-efficient they are. Similarly, when using a locally D-optimal design, it will be
interesting to see how well this design performs for estimating the knots only, i.e. to assess its
Dg-efficiency. The D-efficiency and the Dg-efficiency of a design £ are defined by

L (HENLNT g ey (e )
eﬂD(va)_(’[(SE’A,)\)’> ’ ﬁDS(g’A)_(%(%S,AJ)) '

In Table 2, we present D-efficiencies of locally Dg-optimal designs (for the same parameter \)
as well as Ds-efficiencies of locally D-optimal designs in models (9) and some selected two-
dimensional models.

Table 2: Selected D- and Dg-efficiencies of locally D,- respective D-optimal designs for quadratic
models in one or two variables with knots A\j 1, A2 and Mg ;.

An | Az | Aaa | effp(§p 5, A) | effp (§5 5, A)
-0.5 | - - 0.694 0.652

0 - - 0.779 0.731
0.2 — - 0.766 0.718
-0.5 1 0.5 - 0.850 0.820
0.2 | 0.5 — 0.695 0.696
-0.5 | - 0.5 0.665 0.653
0.2 - 0.5 0.703 0.685

0 — 0 0.757 0.732

We can see from Table 2 that the D- and D,-efficiencies in these examples are between 65%
and 85%. This was confirmed for a variety of different scenarios (not listed). Hence D- (Dy)-
optimal designs maintain moderate efficiency for the estimation of only the knot locations (all
parameters). However, to avoid a loss in accuracy it is recommended to run the design which
has been constructed for the respective purpose.

3.3 Application - Robustness of Bayesian D-optimal designs

The purpose of engine mapping experiments as considered in Grove et al. (2004) is to model a
measure of engine performance as a function of several adjustable engine variables. The data
for such an experiment described in Woods et al. (2003) give rise to an additive spline model
for the maximum brake torque timing of an engine in the three variables “speed”, “load” and
“air-fuel ratio”. The corresponding single factor models are the cubic spline model

pi(z1) = 611+ 601221 + 91,3$% + 91,4@? +6110(x1 — )\1,1)1 (10)

10



for the variable “speed” and quadratic polynomials for “load” and “air-fuel ratio”, respectively.
We use this model to assess the robustness of locally and Bayesian D-optimal designs, in order
to investigate if it is necessary to calculate the numerically more demanding Bayesian D-optimal
design, or if locally D-optimal designs will be sufficiently robust.

The data imply that the knot A;; should be in the interval [0,0.6]. We compare the locally
D-optimal design for the midpoint, i.e. A;; = 0.3, with the Bayesian D-optimal design with
respect to the uniform prior on [0, 0.6] using two different approximations for this prior: 7, the
uniform distribution on the seven points 0,0.1,...,0.6 as a crude but simple approximation; s,
the uniform distribution on 121 equidistant points from 0 to 0.6 as an approximation close to the
continuous prior. To compare designs we define the relative D-efficiency of a design & compared
with a design & as

(&, VN

eﬂrsl,D(gbg%/\) (‘1(52’)‘)0 .
The Bayesian D-optimal designs with respect to the priors m; and 75 were calculated numerically,
and the locally D-optimal design for A;; = 0.3 and the Bayesian D-optimal design with respect
to m for the single factor model (10) are depicted in Figure 2. The Bayesian D-optimal design
with respect to my is very similar to the corresponding design for the cruder approximation and
therefore not shown. Figure 2 also shows the relative D-efficiencies of the Bayesian D-optimal
designs with respect to m; and mo, respectively, compared with the locally D-optimal design for

A1 = 0.3. Here p = 10, as we consider the three-factor model described above.

0.20
|

—— 7 ptprior
-~ 121 pt prior

1.15
L

0.15
1.10
|

Rel. Eff.

0.05
|
1.00

—e— Locally D-optimal design
—e— Bayesian D-optimal design

0.00
|

0.95
L

T T t — T T T T T T T
-1.0 -0.5 0.0 0.5 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 2: Left: Support points and weights of the locally D-optimal design for Ai1 = 0.3 and the
Bayesian D-optimal design with respect to m for the single factor model (10). Right: Relative
D-efficiencies of the Bayesian D-optimal designs with respect to my and my compared with the
locally D-optimal design for A\j; = 0.3, plotted against the possible knots in the interval [0,0.6].

Figure 2 shows that in the interval from about 0.14 to 0.42 the Bayesian D-optimal designs
are slightly less efficient, but outperform the locally D-optimal designs if the knot is closer to
the boundary. Both Bayesian designs have similar relative D-efficiencies, with the Bayesian D-
optimal design with respect to m; being slightly better around the boundary, and the Bayesian

11



D-optimal design with respect to m being somewhat more efficient in the interior. For a large
area of uncertainty it is recommended to use a Bayesian D-optimal design, where the level of
approximation to a continuous prior does not seem to have a large impact on design performance.

3.4 D-optimal designs for models with interactions

So far we have considered the additive model (2), but there might occur situations where the
factors do not work independently on the response but interact. In this case, the models are
no longer partially nonlinear. The decomposition (4) of the Fisher information can no longer
be achieved with a matrix C' which does not depend on the design. Therefore, optimal designs
(with respect to any of the criteria considered in this paper) do not only depend on the knots
but also on some of the linear parameters.

For the D-optimal designs we have found numerically for the model

,u(ac) = 91 + 92171 + 9313% + 84(1’1 - )\171)%r + 951’2 + 86131%’2 + 87I%$2 + 98<ZL’1 - )\1,1)11’2
+ Ogx3 + Oromia5 + 0112375 + Ora(z1 — Ai1)2xs + O1a(z2 — Aoyt)% + Oz (22 — Aoyp)% (11)
+ 915$%($2 - )\271)1 + b16(zq — >\171)i($2 - )\2,1)1

the dependence of design performance on # is quite weak. This can also be seen in Table 3,
which shows the D-efficiencies of several D-optimal designs for the additive model (2) (which
do not depend on 6) relative to the D-optimal designs for the full model for different values of
6. We can also see from Table 3 that the D-optimal designs for the additive model are highly
efficient in the full interaction model with efficiencies of over 90%.

Table 3: Selected D-efficiencies of D-optimal designs for the additive model in the full interaction
model. 6; = (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)7, 6, = (1,1,1,1,1,1,1,2,2,2,3,3,9,4,5,6)7,
and 05 = (1,1,2,3,-3,-2,—1,4,2,-4,2,—1,1,-7,8, —11)7.

A | A | 6] efin(€p A
0505 |6 0.901
0505 | 6 0.901
0505 | 6y 0.930
021056 0.912
02 ] 05 | 6, 0.913
0.2 | 0.5 | 65 0.913

Although somewhat counter-intuitive, the D-optimal designs for the full interaction model found
here have fewer support points than the D-optimal designs for the additive model, i.e. a model
with much fewer parameters than the interaction model. For example, the D-optimal design for
the full interaction model with A = (0.2,0.5) and # = 6; has 19 support points, many of which

12



actually coincide with the support points of the D-optimal design for the additive model. For
illustration, this design, together with the D-optimal design for the additive model is shown in
Figure 3, together with the corresponding standardised variances.
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Figure 3: Top left: Support points of the D-optimal design for the full interaction model with
A = (0.2,0.5) and 0 = 6,. Top right: Support points of the D-optimal design for the additive
model with A = (0.2,0.5). Bottom left: Standardised variance of the D-optimal design for the full
interaction model. Bottom right: Standardised variance of the D-optimal design for the additive
model evaluated under the full interaction model.

4 Optimal designs for prediction of the response surface

Often, the experimenter is rather interested in the prediction of the response surface at different
points than in the particular values of the unknown parameters. A first order approximation to
the variance of ji(z) at some point # = (z1,...,zx) € IRX is given by

Var (:a($)) = gT(x> 0, )‘)M_l(gv 0, )\)g($, 0, >‘) = fT(*%? )‘)]_1(57 )\)f(l’, )‘)
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Naturally, it is appealing to minimise this variance jointly for a user-selected choice of values for
z, reflected in a distribution H(x). So the goal is to minimise the objective function

QN = / ST NI EN) f (o, N) dH (). (12)

Since the matrix @ := [ f(z,\)f*(x, \) dH(z) is non-negative definite we can decompose it into
Q = GGT where G is a lower triangular matrix (Cholesky Decomposition), and the objective
function can be expressed as

Q(EN) =tr(GTTHENG) = tr(GGTTHEN)).

To achieve robustness against misspecification of the knots, we seek Bayesian ()-optimal designs
with respect to a prior (), which minimise

Porl6) = [ QUEN dr(Y) (13)
Similarly, a minimax @-optimal design minimises
Py (§) = max Q(S,A). (14)

Theorem 3, which is proven in Appendix A.5, establishes the main result of this section, i.e. that
the product design of the Bayesian (minimax) @Q-optimal designs in the marginal models (1) is
Bayesian (minimax) Q-optimal for the additive model (2) in the class of all product designs.

Theorem 3 Let 7 be a prior on A € A with marginals m, on Ay, k=1,..., K, Apyy = Apa X
... X Ay a compact subset of A, and the weighting measure H(x) be a product measure with
marginals Hy(z1), ..., Hx(Tk).

(a) The product design of the Bayesian Q-optimal designs for the single factor models with
respect to Hy, and m, k = 1,..., K, is Bayesian Q-optimal within the class of all product
designs with respect to H and .

(b) The product design of the minimax Q-optimal designs for the single factor models with
respect to Hy, and Ay, k= 1,..., K, is minimax Q-optimal within the class of all product
designs with respect to H and A.

4.1 Performance of ()-optimal product designs

Since the product designs of the Q-optimal designs in the single factor models (1) are Q-optimal
within the class of product designs, but not necessarily optimal among all designs, we investigate
their performance relative to the Q-optimal designs found by numerical search.

Table 4 shows a selection of Q-optimal designs for the quadratic single factor models (9). Here,
Hj is the uniform distribution on the design interval [—1, 1], i.e. the goal is to predict accurately
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Table 4: Selected Q-optimal designs for the quadratic single factor models with one or 2 knots,
respectively. The last weight is omitted since the weights sum up to one.

A1 | A2 Support points Weights
05 - |-1 -076 -0.5 0.25 1 0.101 0.195 0.196 0.338
02| - |-1 -0.61 -0.2 0.405 1 0.123 0.241 0.191 0.295
0 - |[-1 -0.51 0 0505 1 0.136  0.269 0.191 0.269
02| - |-1 -041 0.2 0605 1 0.150 0.295 0.191 0.241
05| — |-1 -0.255 0.5 0.755 1 0.171 0.338 0.196 0.195
-0.51 0.5 | -1 -0.755 -0.5 0 0.5 0.755 10.084 0.162 0.140 0.229 0.140 0.162
-0.510.2|-1 -0.755 -0.5 -0.155 0.2 0.605 1 |0.083 0.160 0.124 0.189 0.139 0.202

over the whole range of the variable x1. The designs were found numerically, using a multiplic-
ative algorithm which updates the weights on a grid in each step, and H; was approximated by
a discrete uniform distribution on 1000 equidistant points in this interval.
We can see from Table 4 that although the @-optimal designs are all minimally supported they
are far from being equally weighted. All Q-optimal designs are supported at the end points
of the design interval, -1 and 1, at the knots, and at the points approximately in the middle
between the endpoints and the knots. The support is thus almost identical to the support of the
locally D-optimal designs with respect to the same knot locations.
Comparing the products of these designs with the corresponding ()-optimal designs in two vari-
ables, we found that the support was identical, but the weights differed to some extent. The
@-optimal product designs are therefore not Q-optimal among all designs, but they turn out to
be very highly efficient. Table 5 shows some Q-efficiencies of (Q-optimal product designs {g
where the Q-efficiency of a design £ is defined as the ratio

cffg(€ ) = Aeax )

Q& A)

with & y denoting the locally ()-optimal design. The last column shows the Q-efficiency of the
D-optimal design for the same knot locations for comparison.
We find that all Q-optimal product designs have an efficiency of more than 99%. From a plot
of the directional derivative of the objective function we can see, however, that they are not
Q-optimal. Figure 4 shows a plot of the directional derivative of the objective function for the
Q-optimal design and the Q-optimal product design, both for the quadratic two-factor model
with knots A\;; = —0.5, A2 = 0.5 and Ag; = 0.5.
Figure 4 indicates that the product design does not put enough weight on the vertices and one
point towards the centre of the design range, resulting in values of the directional derivative
greater than 1 at these points.
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Table 5: Selected Q-efficiencies of locally Q-optimal product designs and locally D-optimal
designs with respect to the knots A1, A2 and Aoy in the quadratic two factor model.

A | A | Ao | effg(§on, A) | effg(§h 0, A)
-0.5 | - 0.5 0.9978 0.8505
05| - |-0.2 0.9984 0.8746

0 - 0 0.9991 0.9071
0.2 - 1 0.5 0.9985 0.8746
-0.5 1 0.5 | 0.5 0.9989 0.8767
-0.5 1 0.2 |-0.2 0.9993 0.9100

Figure 4: The directional derivative of the criterion function evaluated at the Q-optimal design
(left) and the Q-optimal product design (right), both for the quadratic two-factor model with
knots )\1,1 = —05, )\1’2 = 0.5 and )\271 =0.5.

We also assessed the performance of the product of single factor Bayesian ()-optimal designs
with marginal priors 7 relative to the optimal multifactor design for the prior 7. It turned
out that in this situation the support of the Q)-optimal multifactor design was usually slightly
larger than (but still similar to) the support of the optimal product design. The efficiencies of
the optimal product designs are still high, but not quite as impressive as in the local case. For
example, the Q-optimal product design for the quadratic two-factor model (3) with one knot in
each direction from Example 1 has Bayesian Q-efficiency of 0.8974 for the four point prior with
equal weights on the knot locations {(—0.5, —0.5), (—0.5,0.5), (0.5, —0.5), (0.5,0.5) }.
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5 Other spline bases - a generalisation

The following result, which is proven in Appendix A.6, relates D- and Q-optimal designs for the
splines generated by the truncated power basis to splines from other bases. Truncated power
bases can suffer from severe ill-conditioning (De Boor, 1978) whereas for example B-spline bases
are well-conditioned and have local support, thus facilitating computation.

Theorem 4 The results presented in Theorems 1 and 3 for the truncated power basis are also
valid for any regression spline basis spanning the same space, i.e. a change in the spline basis
does not affect the optimal designs with respect to the local and robust D- and Q-optimality
criteria.

6 Conclusion/Discussion

We have shown that D-optimal designs for the full parameter vector and D -optimal designs for
the knots A in additive multivariable spline models of the form (2) with unknown knot locations
can be found as the products of the D- and D,-optimal designs in the corresponding single factor
models (1), thus reducing computational effort for calculating optimal multi-factor designs, as
it is sufficient to compute the corresponding optimal designs in one variable. Since model (2) is
partially nonlinear these designs depend on the unknown knots A, and misspecifications of these
parameters can lead to poor designs. Hence we have generalised our results to parameter robust
optimality criteria, namely Bayesian and standardised maximin D- and D,-optimality.

In many situations, the main goal of an experiment is to predict the response at unobserved loc-
ations. We have considered Bayesian/minimax @-optimal designs and shown that the products
of Bayesian/minimax (-optimal designs in the single factor models are optimal in the addit-
ive model within the class of product designs. In a numerical study, we have found that the
(Q-optimal product designs are - if not (Q-optimal among all designs - extremely efficient.

We have finally shown that all results on local and robust D- and @Q-optimality presented above
are valid regardless of the choice of regression spline basis.

We have illustrated our results throughout the paper through examples and applied them to our
motivating example on engine mapping (Grove et al., 2004, Woods et al., 2003). We hope that
our work will facilitate the utilisation of optimal designs either directly or indirectly in upcoming
experiments in the automotive industry.

We finally note that for some applications interactions between the explanatory variables might
be present. We have briefly discussed the full interaction model in Section 3.4, but the true model
might lie somewhere in between the strictly additive and the full interaction model. Future work
is planned on optimal design for model selection to find the best fit. Another issue to be pursued
in future work is designing experiments efficiently in the situation when the number of knots is
unknown.
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A Proofs

A.1 Proof of Theorem 1

For clarity of presentation, in what follows we restrict ourselves to proving the assertion of the
Theorem for K = 2. The general case K > 2 follows by defining meta-factors consisting of more
than one single factor and applying the result for K = 2.

(a) Let &1, & denote the marginals of the design €. The special form of the information matrices
permits application of Lemma 5.1 in Schwabe (1996), which is stated for information matrices
of linear models, and we find that

(&M < Hi(6n, M) (€2, A2)] = [1(61 © &2, M) (15)

Using this inequality, the following holds:

/ log [1(€), ® Ep.ny A)| dr(A) < max / log [1(€, 3)| dr ()
A & Ja

< max /A log(11 (€1, )| 1Ta(E2, Ao)]) dr(N)

= max/ log [11 (&1, A1)] dmi (A1)
Ay

&1

—l—max/ log | I5(&2, A2)| dma(As) (16)
Ao

&2

= [ tog (& M)l dm () + [ 108 [a(€h, 0 No)| dma(0o)
A1 A2

So substituting the Bayesian D-optimal designs &f, ., &5, for the single factor models into (16)
gives an upper bound for the maximal determinant for the two-factor model. Moreover, this
upper bound is attained at £, . = &, ;, ® &p , since following (15) we obtain

/ log [1(&) 2, ® Epryy M| dm(N) = /
A

log |1(€) .. M) dm (M) + / log [12(€5., . Ao)| dma(Ao)
Ay

Ao
So all inequalities turn into equalities and £ is optimal.
(b) Let the set N (§) be the subset of Ay, at which for a given design £ the minimum of ®(, \)

over \ is attained, i.e.

N(E) ={Ne Ay | P(E,N) = min (&N}

)\EA]W
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As we consider compact sets Ay, £ = 1,2, the product set A,y is also compact, and the infimum
in the definition of the standardised maximin D-optimality criterion will be attained, so the
minimum exists for all . The set N (£) will therefore not be empty for any design £. Let ¥y be the
optimal value of the standardised maximin D-optimality criterion, i.e. ¥y = minyep,, P(£*, N).
The proof will be divided into two steps, the first of which will show that the product design
characterised by the marginals &, k = 1, 2, of the standardised maximin D-optimal design £* for
Ay is also standardised maximin D-optimal for Ay;. In step 2, we will show that the product
of the standardised maximin D-optimal designs 7, Anik with respect to Ajsy in the single factor
models will produce the same value as the product of the marginals &;, k = 1, 2, when substituted
into the criterion function Wp 4, (-).

Applying (15) and the result for locally D-optimal designs from part (a) of this Theorem, we
obtain the following inequality for all A = (A, A\D)T € Ay

(£, A) < (5, M)P(&, A2) = D(ET ® &5, ) (17)

For all A € N(& ® &), we have
D(&T ® &3, M) < W, (18)
because of the optimality of ¥y. Combining (17) and (18), yields that for all A € N (& ® &)
Uy <O N) <P RE,N) <V,

hence

min ®(¢] © &, A) = Yo = max min B¢, ),
so the product design £ ® & is also standardised maximin D-optimal with respect to Ajy.

Let Wy = miny en,, , P(Epa,, o M)s B =1,2. Applying (15) and the result for locally D-optimal
designs from part (a) again, it follows that for all A € N(§5 4, ®Epa,,,)

\Ijl \112 S q)(g*D,AA/Iyl7 Al)(b(é*D,[MWg? >\2) - é(g*D,AA{’l ® 57),/\@1’27 )\> S \IIO‘ (19>

Since neither of the values Wy, Uy or ¥y depend on A, we obtain from (19) that ¥; Wy < Wy,
Now, for all A € N(&F) x N (&) we have

(&Y, M) P(E5 A2) = P(§7 ® &3, A) = Vo (20)
Combining (19) and (20), we find that
min q)(éik,)\l) min (I)(fg,)\Q) Z \Ifl \112, (21)
A2€A 2

A €ANM
so to avoid a contradiction to the optimality of £}, | and £f, ,, , in the single factor models

there must be equality in (21), and using (19) again we obtain that

mln (b(g*DaA]W,l ® f*DyA]\/IQ’ )\) - \IJO,

AEA N

which completes the proof of Theorem 1. a
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A.2 Proof of Remark 1

From Corollary 5.4 in Schwabe (1996) we obtain that a necessary condition for local D-optimality
of a design ¢ in the additive model (2) is local D-optimality of the marginals of £ in the corres-
ponding single factor models (1) which proves the assertion. O

A.3 Proof of Lemma 1

The multiplication of a matrix B with AT from the left and A from the right yields the top
left corner By of B of size s x s. We therefore show that the determinant of M (€, 0, ) is
proportional to the determinant of I7; (£, A) in what follows. We define gs(x, 6, \) as the gradient
of the regression function with respect to A and 6, i.e. the first s entries corresponding to the
derivatives with respect to A will be linear combinations (involving ) of terms of the form
(xp — )‘k,i){w Jj = mg — lig, ..., mg, where my, and l;; are defined in (1) and my — I, + 1 and
my, are the lowest and the highest exponent of (zx — Ar;)+ appearing in the model, respectively.
Similarly, define f,(z, \) as the vector with the first s entries equal to (2 — Ar;)7* ™", and the
last (p — s) entries equal to the last (p — s) entries in gs(z,0,\). We therefore have

M(E,0,)) = / 0u(2,0, g7 (2.0,0) dé(z) and (€, \) = / Fole NV fT (2, \) dé(z).

We can express gq(x,0, A) in the form gs(z,0,\) = Cyfs(x, \) where Cy is a non-singular p x p-
matrix with the lower (p — s) rows equal to (0(p—s)xs | Jp—s), and Cp 11, the top left corner of Cy
of size s X s, is a diagonal matrix where the entry c;; corresponding to the knot A ; is given by

—(my — lix, + 1) times the coefficient 6y ;;,, —1 of the term (z, — )\k,i)T’“_li’“Jrl, i.e. Cp is of the form

o = ( Co11 O@,m) B <diag(ck,i> O@,m)
) = = :
O(p—s)Xs prs O(p—S)XS JP*S

Since both factors of ¢ ; are non-zero by the definition of the model, so is their product —(my —

lik + 1) Ok, —1 and both the top left and the bottom right corner of Cy are non-singular. By
the formula for inverting block matrices, we obtain that Cj !'is a block matrix of the form

ct = ( Coi 0511109,12> _ (diag(l/cm) 0511100,12) (22)
O(pfs)xs Jp—s O(pfs)xs ‘ Jp—s

Now AT(CF) ™ = (diag(1/ck;) | Osx(p—s)), SO

1

Ck

|ATM™(€,0, ) A| = |AT(CF) ' T (&, N)Cy M Al = H(

ki

) |ATT= (&, M)A

Therefore the assertion of Lemma 1 follows with ¢y = [, ; i O
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A.4 Proof of Theorem 2

From the proof of Theorem 5.13 in Schwabe (1996), we obtain the inequality

1/)8(]<§7)‘)) < ¢s(]1(§1, )\1)) ws(]2<§27 >\2)) = 1/13([(51 & §27 A))

where &, and &, are the marginals of the design &, and A = (AT, AT)T. The rest of the proof now
follows exactly along the same lines as the proof of Theorem 1 and is therefore omitted. a

A.5 Proof of Theorem 3

We first establish a result on the lower Cholesky factor G for the matrix Q).

Lemma 2 [f H(x) is a product measure of the marginals Hi(x1),..., Hx(xk) there exists a
Cholesky decomposition GGT of Q where the lower Cholesky factor G is block-diagonal except
for the first column, which may consist of non-zero entries. The blocks are lower triangular
matrices, and have sizes IRP**Prx k= 1,... K, where p, + 1 is the number of parameters in
the k™ marginal model (1). If the choice of the distribution H(x) makes Q positive definite the
unique lower Cholesky factor G is of the form described above.

Proof of Lemma 2: For clarity of presentation, we show the proof for the special case K = 2.
The proof for general K > 2 then follows by defining meta-factors of more than one variable.
Let f(zy,29,A) = (1, fi(x1, A1), f2(z2, A2))T. Then the matrix @) is given by

1 |Q Q% )
Q = | Qu|Qu|Q% |, where Qo I/fk(ff?kv\k) dH}. (), (23)
QQO QQl Q22

Qkk = /fk(fk,)\k)fg(l‘k,Ak) de(iL‘k), k= 1,2, and
Q21 = /f~2<x27)‘2)f~1T(x17)\1>dH($1,x2):/f2(332,)\2)dH2<.T2) /flT(xl,)\l)dHl(:cl),

The last equality in (23) follows from Fubini’s Theorem and the assumption that H(z) is a
product measure. The lower triangular matrix GG in the Cholesky decomposition of () is of the
form

1 01><P1 lepz
G = | G| G |Opyxps (24)
G20 G21 G22

where the blocks Gy are lower triangular matrices of size p, X pg, respectively, kK = 1,2, and
(1,G10, Gog)T is a column vector. To prove the assertion of Lemma 2, we show in the following
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that there exists a Cholesky decomposition G' with the block Gg; = 0,,xp,. We note that from
(24) we obtain

1 Gy G
GGT = | Gy|G11GT, + GGL, G10GY, (25)
Gao Ga0GTl, G0Gay + G22GY,

for Ga; = 0p,xp,. We are now looking for a matrix G such that GGT of the form (25) is equal
to Q. Equating the corresponding blocks in GGT and @ and using that both matrices are
symmetric we obtain

Gio = Quo, G = Qo (26)
(26),(23) = GloGrfo + G11G1T1 =Qu = G11G1T1 =Qn — QIOQF{O

_ / Fo () T () A () — / fi () dHy (2) / @) di () (@)

where the expression in (27) is obviously non-negative definite, and therefore a Cholesky decom-
position G1;GY; exists. Similarly, we find that

CGan Gy = Qs — Ciag Gy = / Fol2) F (a02) dH () — / foliea) dHy(z) / J7 (22) dHy()

which is also non-negative definite, so, again, there exists a Cholesky decomposition GoyGZ, for
this matrix. Finally, we consider the term

GGl = Q@1 = /fQ(@) dH2(552)(/ fi(z1) dHy(21))F = Qa

from (26) and (23). The last assertion is obvious because if @) is positive definite then the
Cholesky decomposition is unique, and we have just shown that there exists a lower Cholesky
factor G’ which satisfies the condition Ga; = Op,xp, - O

From Lemma 2 we obtain that there exists a lower Cholesky factor G for (), which is a block-
diagonal matrix except for the first column. Applying the rules for block-wise matrix inversion
(repeatedly if K > 2) we find that G™' is of the same form as G. We note that the mat-
rix GTT7Y(&,M\)@ is at the same time (asymptotically) proportional to the covariance matrix
of the maximum likelihood estimator for § in the linear regression model with expectation
i(z) = fT(z, )3 = (G f(x,))T3 and iid. normal errors. Therefore f(z,A) is of the form
(1, fl(xl, M)y ,fK(xK, Ag))T, i.e. each single vector fk(azk, Ax) depends only on the variable
z, k= 1,..., K. We can therefore apply Lemma 5.5 (ii) in Schwabe (1996) to the weighted
regression model 7j(x) = (G71f(z,\))T3, and we obtain the form of the covariance matrix
Ca(&,\) = GT'T7HE, NG in the additive model if € is a product design, and of the covariance
matrices Cg (&, A\x) in the corresponding marginal models 7 (zx) = (1, fk(:ck, o)D) B where &,
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are the marginals of £&. For the marginal model we define the matrices Q) with

1 T
Qr = /<fk(xk,>\k)> (1 fi (wx, Ax)) dHy (21

( 1 S M) dH () )
I frl@r, Ar) de(xk)‘ffk(xk,Ak)ff;?(xk,Ak) dHp(zy,)

— ( ! Qg@), k=1,..., K,
Qko Qkkz

using the notation from the proof of Lemma 2. The lower Cholesky factor Gy for each @y is

therefore given by
110
Gy = D) k=1, K.
Gro| Gk

The block-wise inverse G,;l of Gy, is

Gfl o 1 ‘01 XPk
ko= -1 -1 )
_Gkk Ghro ‘ Gkk
Now G~! has the blocks 1,G ], ..., G55 on its main diagonal, some possibly non-zero entries

in the first column and all other entries are zero. The model (G fi(xx, \))? By, is therefore
equivalent to the marginal model 7 () = (1, fu(2x, \e)T) B of i(z), k = 1,..., K. We write
Ce (&, M) in diagonal form

Crp| 7"

g ‘CG,k(gka M) )

where 7 is some vector, and use the representation of the covariance matrix C(€, A) of a product
design £ =& ® ... ® &k from Lemma 5.5 (ii) in Schwabe (1996)

Cﬁo

Ca (&, M) = (

é 1 1>A1
Ca(é, ) = AlGte) ,

CG,K (5[(7 )\K)

where the off-diagonal blocks in Cg (&, A) have been omitted since they do not contribute to the
trace and Cg, = b Crg, — (K — 1). From this representation it is obvious that the local
()-criterion for ¢ in the additive model with respect to H(z) and A can be expressed (apart from
an additive constant) as the sum of the local Q-criteria for & in the single factor models with
respect to Hy and \gz. So interchanging the integration with respect to w(A) and the summation
of the @-criteria in the marginal models yields the desired result for Bayesian @Q-optimality.
Equivalently, the maximisation with respect to A = (AT, ... ) AT)T € Ajyq x ... X Aprx and the
summation can be interchanged, so the result for minimax @Q-optimality follows. O
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A.6 Proof of Theorem 4:

Let bj(x,\), i = 1,...,r, be the truncated power basis for the spline space R with given knots
A and given smoothnesses at the knots where x can be multi-dimensional, i.e. z = (x1,...,2k).
Then for any system of splines (e.g. B-splines) there exists a basis b;(x,\), i = 1,...,r, for the
same space R. So the original regression function u(x) (an element of R) can be written as

= Z 0:b; (2, \) = Z 0:0;(z, \) (28)

for some parameters 6; and 6;, i = 1,...,r. From (4) and (5), we obtain that the vector of
derivatives of > 7, 0;b;(x, \) with respect to the parameters ¢; and A (when multiplied by some
non-singular matrix C, ' which depends on @ but neither on the knots A nor on the design)
forms the basis of another spline space S with the same knots as for R, the original one, but
smaller smoothnesses. This basis depends on A and z, but not on 6. Since each element of R
can also be expressed in terms of Bi(:c, A), there exists another non-singular matrix Dy, which
may depend on 6 and the knots but not on z, so that the vector of derivatives multiplied by
Dé_1 is a basis of S, which only depends on A and x. Now the two new bases for S are related to
each other by multiplication with a non-singular matrix Ey 5, which does not depend on z (basis
transformation). As a result, the information matrices I(£, ), 1(£,\) for the models generated
by using the different spline bases are related by I(€,\) = Eg I(£,)) Eg .

For the D- and Q-optimality criteria we obtain:

e Bayesian D-optimality: [log|I(§,\)|dr(\) = [log|Egx>dr(N) + [log|I(€,\)|dr(N).
Since Fjp » does not depend on z and therefore not on the design &, the criterion functions
for both matrices are maximised by the same design.

e Standardised Maximin optimality: Using that the locally D-optimal designs are equal, and
that the expression |Fjp,|* cancels, we find that

IEN] . B[ N)
mln —— = 111N ~
zehar [1(E5 5, M) Aehar [ B2 11(€5 5, M)

so the criterion functions are equal and therefore maximised by the same design.

Y

e Q-optimality: From f(z,\) = Epf(z,\) it follows that
Q& N) /f x, NI (EN) f(x, ) dH ()
= [ £ N ELED) o N € NE, dEan fo V) dH ()

= /f (2, VIHE N fz, \) dH (z)

So the Q-criterion function is equal for both bases, and therefore minimised by the same
design. The assertion for Bayesian and minimax (-optimality is now obvious. O
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