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Abstract

A methodology is developed to estimate comparable international migration flows be-
tween a set of countries. International migration flow data may be missing, reported by
the sending country, reported by the receiving country or reported by both the sending and
receiving countries. For the last situation, reported counts rarely match due to differences
in definitions and data collection systems. In this thesis, reported counts are harmonized
using correction factors estimated from a constrained optimization procedure. Factors are
applied to scale data known to be of a reliable standard, creating an incomplete migra-
tion flow table of harmonized values. Cells for which no reliable reported flows exist are
then estimated from a negative binomial regression model fitted using the Expectation-
Maximization (EM) type algorithm. Covariate information for this model is drawn from
international migration theory. Finally, measures of precision for all missing cell estimates
are derived using the Supplemented EM algorithm. Recent data on international migra-
tion between countries in Europe are used to illustrate the methodology. The results
represent a complete table of comparable flows that can be used by regional policy makers

and social scientist alike to better understand population behaviour and change.
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Chapter 1

Introduction

Migration flow data inform policy makers, the media and academic community to the
level and direction of population movements. In any one country, reliable migration data
provide a means to improve the governance of population flows and their impacts. They
also allow a better understanding of the causes and consequences of people’s movements.
However, reliable migration data for comparisons of international population flows between
a set of countries are often lacking. Reported counts are either missing, reported by the
sending country, reported by the receiving country or reported by both the sending and
receiving countries. For the last situation in which two sources of information are possible
for one particular flow, reported counts rarely match due to differences in data collection
and measurement.

Comparable migration data can help concerned parties to manage policy and under-
stand people’s movements better. This is apparent for a number of reasons. First, com-
parative summaries of international migration flows become more meaningful when they
are presented in a multinational context. Second, data from multiple nations can provide
a more comprehensive empirical source for the testing of migration theories. Third, such
analysis has the potential to provide new insights to the dynamics of migration between
countries. Finally, the difference between public policies for international migration across
multiple countries can be more readily studied when comparative measures exist. This
thesis develops steps towards these ends, introducing a methodology for the estimation of
international migration flow tables of comparable data.

This introductory chapter commences with an overview of international migration flow
data. The lack of comparability in flow data can be grouped into two areas: inconsisten-
cies and incompleteness. These problems have lead to the development of estimation
methods for the provision of comparable data by previous researchers. The next section
discusses migration flow tables. Analysis of international migration tables of comparable
data have a number of discussed advantages which motivate their study throughout this
thesis. The succeeding section describes the aims and scope of this thesis. Included are a
set, of desirable criteria for methodologies to estimate international migration flow tables of

comparable data. These criteria are used to evaluate estimation techniques (including the



one developed in this thesis) and help determine the comparability of resulting estimates.

Finally, a summary of the thesis structure is given.

1.1 International Migration Data

Migration can be measured as either a flow or stock. Data for migration flows quantify
the magnitude of population movements between selected countries during a specified time
period (usually one year). Migrant stock data quantify the size of immigrant populations.
This thesis concentrates on the first of these measures.

International migration flow data often lack adequate measurements of volumes, direc-
tion and completeness between nations (Kelly, 1987; Salt, 1993; Willekens, 1994; Nowok
et al., 2006). The lack of comparability in flow data can be traced to a number of causes.
First, migration is a multi-dimensional process (Goldstein, 1976) involving a transition
between two states. Consequently, movements can be reported by sending or receiving
countries. When data collection methods or measurements used in these countries differ,
the reported counts do not match. Second, international migration flow data are typically
collected by individual national statistics institutes in each country. Institutes have de-
veloped measures of migration solely suitable to their domestic priorities. These are often
produced within a legal framework, and hence alterations to their collection are difficult to
implement. Third, in many countries, migration data collection systems do not exist. In
other countries, collection methods (such as passenger surveys) may provide inadequate
means to report flows at the levels of detail required by some data users. Finally, the
nature of international migration continues to change. In recent decades movements have
become more global, occurring at faster rates and diversifying into a greater range of mi-
gration types, such as migration for short periods of time, for retirement or for political
asylum (Castles and Miller, 2003, p7-9). National statistics institutes are often unable to
adapt data collection and measurement procedures to provide users with information on
such changes.

Difficulties in producing international migration flow statistics creates multiple prob-
lems in obtaining comparable data needed for a better understanding of population change
and behaviour. These problems can be grouped into two areas: inconsistencies and in-
completeness. Inconsistencies in reported values, for the same flow, occur due to different
measurements and data collection systems. Incompleteness in reported values occurs when
national statistics institutes do not collect or disseminate data. Estimation techniques,
such as those applied in this thesis, can be used to overcome these problems. These
techniques often require knowledge of the collection methods and measurement in each
data source, assumptions regarding the difference between reported counts and statistical

models for the imputation of missing flows.



1.2 International Migration Flow Tables

Data on migration between a set of regions are commonly presented in a square table with
off diagonal entries containing the number of people moving from any given origin to any
given destination. These are known as migration tables or matrices. The analyses of tables
of comparable international migration data have a number of advantages. First, they allow
a fuller understanding of population behaviour and change in comparison to other migra-
tion measures. For example, the study of a net migration measure cannot differentiate
reported counts by migrant origins or destinations (Rogers, 1990). Second, international
migration tables provide details on the propensity of movements across multiple countries.
Consequently, the contributions made by each nation to a system of migration can be eas-
ily identified. An alternative analysis of migration, such as flows into a single country or
net migration cannot account for this heterogeneity. For example, when modelling the
movements into a single country over time, a similar country may undergo a period of
immense growth, drawing migrants away from the country of study. The analyses of flows
for the country of study may be able to explain fewer migrants sent from this high growth
country but may fail to account for a fall in its relative attraction to potential migrants
from other origins. Third, the analysis of migration tables allows the possibility for counts
to be divided into sub-tables based on individual characteristics of migrants such as age
and sex. These additional dimensions, as with origin and destination, allow the analysis of
migration flow tables containing information in a whole system of movements, furthering
the possibility for insights that may have been confounded by more conventional methods
of analysis. Finally, migration tables may be considered as part of a wider account of
demographic data. Rees (1980) noted that national account statistics of financial stocks
and flows have served economists well in their modelling activities, encouraging users to
compare data for consistencies, check for inadequacies and force analysts to attempt to
match available data with a conceptual model. A demographic account of population

stocks and flows would lead to similar improvements.

1.3 Thesis Aims and Scope

The study of transition patterns, such as migration flows, generally involves three steps
(Rogers, 1980). First, data are collected and missing observations estimated. Second,
appropriate rates and probabilities are calculated. Finally, simple projections of the future
conditions that would arise were probabilities to remain unchanged are generated. This
thesis concentrates on the first of the three stages, with the aim of providing a methodology
for the estimation of comparable data for international migration flow tables.

The methodology developed in this thesis addresses the two fundamental data prob-
lems of inconsistencies and incompleteness. In order to make observed data consistent, a
constrained optimization procedure is used. Such procedures have been applied to harmo-
nize international migration data in previously proposed methodologies, such as Poulain

(1993). These are reviewed in Chapter 3, and extended using a variety of distance func-



tions and constraints in Chapter 4. There exists a range of model based methods to
deal with missing data in statistical literature, see for example the seminal text of Little
and Rubin (2002). One such method, the Expectation-Maximization (EM) algorithm is
applied to harmonized international migration flows in Chapter 5. This method is cho-
sen because of its effectiveness and relative simplicity in application compared with other
missing data techniques. This new application of a popular missing data technique allows
the imputations for missing migration flows to be estimated. In Chapter 6, the asymptotic
variance-covariance matrix for parameter estimates is obtained using the Supplemented
EM (SEM) algorithm of Meng and Rubin (1991). When this extended algorithm is ap-
plied to migration flow data, measures of precisions for imputations from Chapter 5 can
be derived.

The methodology developed in this thesis, and alternative frameworks presented in
Chapter 3, will be evaluated with respect to eight desirable criteria for methodologies in
estimating international migration flow tables of comparable data. These are shown in
Table 1.1. Criteria are divided into two groups: properties of estimates and properties
of the methodology for their estimation. These are not mutually exclusive or exhaustive,
and data users may require further criteria in estimates or the methodology. However,
they do provide guidance for comparisons between estimates and their frameworks which

may otherwise be difficult to evaluate.

Table 1.1: Desirable Criteria for Methodologies in Estimating International Migration
Flow Tables of Comparable Data.

Estimates:

Complete
Consistent
Reliable

With associated precision measures

Methodology:

Model based imputations for missing data
Incorporate expert opinion
Easily replicable

Flexible to different time periods and regions

The first three criteria for estimates were originally outlined by Willekens (1994) for
future work on combining data sources to create a statistical data base of international
migration flows. When present, these characteristics will result in comparable data which
can allow users to better understand population behaviour and change. One additional
desirable criterion, for a measure of precision in the estimates, is also given. As estimation

techniques are used to provide comparable data, an associated measure of precision can



further aid data users to understand the possible variation associated with estimated
values.

Willekens (1994) also suggested that a methodology for estimating a data base of com-
parable international migration flows should allow for the imputations of missing values
to be based on models of migration and incorporate expert opinion. Models of migration
counts create a description of each flow in the table in relation to other data. Once the
model is specified, it may be used to impute or update data while preserving imposed
structures or constraints. In addition, model based imputation methods can allow esti-
mates to be based on likelihood methods, to obtain the most likely estimates given the
data. Estimation methodologies can be aided by the inclusion of expert opinion, which
may provide a useful supplementary data source to inform the estimation procedure. In
addition to these two methodological criteria, two additional factors are also proposed.
First, a methodology should be easily replicable to allow users to reproduce results with
relative ease and understand at what stage (if any) erroneous estimates occur. Second, a
degree of flexibility in the methodology is desirable. This can allow data users to apply
the framework to different time periods or sets of countries.

Further desirable criteria, not listed in Table 1.1, may also be considered. Willekens
(1994) suggested international migration flow data should be applicable to national de-
mographic accounts. Hence, the net migration derived from the difference of the number
of migrants received and sent in a single time period should be equal to the current pop-
ulation minus the population of the previous time period plus the natural change from
births and deaths. Data users may also desire a methodology to estimate comparable mi-
gration flow data for migration by individual characteristics of migrants such as age and
sex, to allow the further analyses of population behaviour and change. These additional
properties are deemed beyond the scope of this thesis. The incorporation of international
migration estimates into national demographic accounts would only be appropriate if an
estimated migration table contained flows to and from all possible destinations in the
world. However, this thesis is restricted to estimating aggregated flows between a selected
set of nations.

The methodology developed in this thesis is applied to data from 15 countries in the
European Union (EU) before the expansion of May 2004 (EU15). A series of tables, from
2002 to 2006 are studied. Larger sets of countries from alternative geographies such as the
EU27 or EU31 are not studied in this thesis in order to provide a more concise illustration
of reported data, estimates and the methodology. A concentration on European data is
taken for a number of reasons. First, the study of international migration data in Europe
is of growing importance due to the political reforms agreed by the European Parliament
in 2004. These reforms have allowed citizens in the EU the right to move between, and
reside freely in, member states (Kraler et al., 2006). Second, data from multiple countries
in Europe are accessible from a number of international organizations, including Eurostat
(the statistical office of the EU). Availability has been aided by policy makers of the Euro-

pean Parliament who have introduced legislation for the supply of international migration



flow data. In 1976, Community Regulation No 311/76 required members to supply migra-
tion statistics annually to Eurostat. In 2007, Regulation No 862/07, obliged members to
provide migration statistics which comply with a harmonized definition. Third, countries
within EU vary in their population sizes and economic statuses but have relatively similar
political structures. Measures of differences in the first two of these areas are more read-
ily available, which will be of use for model based imputation methods. Fourth, recent
European research projects such as Towards the Harmonisation of European Statistics
on International Migration (THESIM) and MIgration MOdelling for Statistical Analyses
(MIMOSA) have allowed differences between data collection methods and measurements
used by national statistics institutes to be better understood. Finally, despite political
reforms, regulations, similarities in member states and research reports, reported interna-
tional migration flow data are still incomparable (see for example Nowok et al. (2006) or
Kupiszewska and Nowok (2008)). National statistics institutes have struggled (and may
continue) to adjust data collection and measurement procedures to provide data which is
consistent across the region. In addition, there remain a number of countries which do
not provide reported counts due to the lack of collection infrastructure or problems in the
dissemination of data.

The reported data used in this thesis is obtained directly from the Eurostat web site,
using origin-destination migration flows as supplied by sending and receiving countries
(with local definitions of a migrant flow). This is further discussed in Chapter 4. Compa-
rable data will be estimated according to the United Nations (UN) definition for a long
term migration flow, i.e., the number of people who move to establish the usual place of
residence in the destination country for twelve months or more (UN, 1998). This definition
is also contained in EU regulations for the provision of international migration statistics

by national statistics institutes (Giambattista and Poulain, 2006).

1.4 Thesis Structure

The study is structured in seven chapters. The following two chapters present known
methodologies in statistics and international migration flow table estimation. New ap-
plications and extensions of the previously outlined methods are then presented in the
remaining chapters of this thesis. Included in the early sections of these chapters are
known statistical techniques, not previously introduced, as they require specific attention
in the context of the study.

Chapter 2 introduces important statistical modelling techniques on which succeeding
chapters will be heavily reliant. This commences with an introduction to the mathemat-
ical notation followed by an overview of generalized linear models, a unified modelling
theory which can handle different response types. Included in this section are Poisson
and log-normal regression models which are commonly used in modelling migration flows.
The Iterative Reweighted Least Squares algorithm, a popular fitting method in statisti-

cal software for generalized linear models, is then outlined. This chapter concludes with



a description of the negative binomial regression model, a useful extension to a Poisson
regression model in the presence of overdispersion, but not a generalized linear model
itself.

Chapter 3 reviews previous modelling frameworks used for estimating international
migration flow tables. First, a brief outline of international migration flow tables and
their data issues are given. This allows a basic understanding of the problems which
motivated previous researchers to develop estimation techniques for European data. The
subsequent sections concentrate on detailing frameworks for estimating migration flow
tables, developed by Poulain (1993) and Raymer (2007). A comparison of the methods,
with reference to the criteria in Table 1.1, are made and possible areas for extended study
in following chapters are identified

Chapter 4 introduces a new methodological framework for the harmonization of inter-
national migration flow data. This uses constrained optimization techniques to estimate
correction factors to scale reliable reported data. The first section presents international
flow data for migration between EU15 countries, including background information and
expert opinion on the characteristics of reported counts from each national statistic insti-
tute. This information helps inform the constrained optimization procedure to select data
sources for which estimated correction factors are fixed to one, as they require no alter-
ation. Data from unreliable sources are ignored as the scaling of reported flows will have
no improving effect, and replacement values are estimated using missing data techniques
outlined in the later chapters. Constrained optimization routines in statistical software
are applied to minimize the difference in scaled reliable data. Estimates of harmonized
flows are then calculated to obtain a set of incomplete international migration flow tables
in each time period.

Chapter 5 uses the harmonized data of its preceding chapter to estimate missing mi-
gration flow data. It commences by reviewing models for migration flow tables. Negative
binomial regression models are used in order to account for overdispersion in the data. A
range of covariates on economic, demographic and geographical factors are considered. An
appropriate model is selected based on the Akaike Information Criterion (AIC) statistics
from the observed data. The model is then fitted by implementing the EM algorithm of
Dempster et al. (1977) which accounts for missing data in the parameter estimation and
imputes values for missing cells.

In Chapter 6, measures of variation for the imputations are obtained. The chapter
commences by reviewing the convergence properties of the EM algorithm. An extension
to the EM algorithm, the SEM algorithm of Meng and Rubin (1991) is then outlined. The
SEM algorithm uses iterations in the EM algorithms to calculate the variance-covariance
matrix of the parameters estimates and hence a measure of variability of imputations
for previously missing data may be deduced. The succeeding section reviews the AICcd
statistics (AIC for complete data) of Cavanaugh and Shumway (1998). The AICcd utilizes
the SEM algorithm to allow the comparisons of models based on complete (both observed

and missing) data, unlike in AIC statistics in Chapter 5.



Finally, Chapter 7 contains a summary of the findings, as well as the most important
conclusions from the study. Together with a synopsis of the main results with reference
to the criteria in Table 1.1, several recommendations for future research in the field of
international migration flow tables are considered. The study is concluded by reflecting
on the estimation framework in the context of international migration modelling and
international migration data. The thesis is accompanied by an Appendix containing the
S-Plus/R program codes used for the constrained optimization approach of Chapter 3,
distance measures of Chapter 4, the EM algorithm in Chapter 5 and the SEM algorithm
in Chapter 6.



Chapter 2

Statistical Modelling

2.1 Introduction

This chapter outlines the statistical modelling techniques for migration flow tables to set
the stage for future chapters. It commences by introducing the notation to be used,
demonstrated in a classic linear regression model. In the following section generalized lin-
ear models, a unified theory encompassing models for continuous, dichotomous and count
responses are outlined. Included are Poisson and log-normal regression models which
have often been used in modelling migration, as will be discussed further in Chapter 5.
This is succeeded by general formulations for the mean and variance terms, likelihood
equations and asymptotic variance-covariance matrix of parameters. These allow the Iter-
ative Reweighted Least Squares algorithm, which is a popular fitting method in statistical
software for generalized linear models, to be fully described. This algorithm is useful for
finding maximum likelihood parameter estimates. The negative binomial regression model
is then detailed. This model does not belong to the generalized linear model family but is a
useful extension to a Poisson regression model in the presence of overdispersion. Included
is a description of the Newton-Raphson method which is frequently used to fit parameters
for the negative binomial regression model. This fitting method and associated extensions
are also used in optimization problems, such as those implemented in Chapter 4. In the
final section, techniques for estimating parameters in the presence of missing data are

introduced.

2.2 Regression Models

In many scientific studies, interest lies in the relationship between two or more observable
quantities. Regression analysis allows an estimation of the change in one quantity, y
as a function of another, x. The quantity of primary interest in regression analysis,
y is called the response variable. In a statistical model, the value of y is considered
random in the sense that the observed values could have turned out differently due to the
sampling process or natural variation of the population. Additional variables which are

not considered as random, x are commonly known as covariates. In regression models,



the conditional distribution of y given z is of interest, and studied in the context of a
set of units ¢ = 1,...n, on which observed values y; and z; are measured. The set of
p explanatory variables used in a model define the linear predictor which is commonly
expressed as:

Bz + - + Bpip, (2.1)

where (31 ...03, are the parameter estimates of the effect of y on z;1...24. In many
applications the variable x;; is fixed at 1, so that (yx;1 is constant for all i. The linear
predictor of (2.1) may also be written in matrix notation as x! 3 or a component of X3,
where 8 = (1 .. .ﬁp)T, xI' = (i1 .. .xip) and X is a n x p matrix. In a classic linear

regression model the response variable is fully described by specifying the conditional

probability density of ¢ given the linear predictor,

y=X8+u, (2.2)

where y = (y1...yn)" are continuous responses and the residuals u = (uy...u,)? are

independently normally distributed with zero mean and constant variance o2 for all units,
u; ~ N(0,02). The classic linear regression model can be alternatively defined by setting

the conditional expectation of the responses, u;, given the linear predictor, equal to X%F,B:

i = E(yi|B,0,x]) = xi B3, (2.3)

where 3; are independent normally distributed with mean p; and variance o2.

2.3 Generalized Linear Models

Linear regression models are part of a range of statistical models, known as generalized
linear models (Nelder and Wedderburn, 1972). These models link together a variety of
random response variables to a systematic linear predictor. This includes models where
the assumption of a linear relationship or normal variations of a response variable may not
be appropriate, such as a log-linear relationship or a Poisson count response, both of which
will be expanded upon in this section. Agresti (2002, p116-7) outlines three components

used in the specification of generalized linear models:

(a) A random component identifying the natural parameter, 6;, where the distribution
of the response variable is a member of the natural exponential family. A natural
exponential distribution has probability density function of the form;

0iyi — a(0;)
c(9)

where a(-), b(-) and ¢(+) are functions depending on the distribution. The value of 6;

f(Wilts, ¢) = exp { + b(yi, ¢)} : (2.4)

may vary for units 7 = 1, ..., n, depending on the values of the explanatory variables.

The dispersion parameter ¢ is equal to unity for some distributions.

(b) A systematic component to relate the vector n = (91,...,7,)? to the explanatory

values, through a linear model, using the linear predictor, n; = xiTﬁ.
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(c¢) The link function, g(-), to connect the random and systematic components. When ;
is the conditional expectation of the response, a generalized linear model links u; to
7; by n;i = g(ui). As g(+) is a monotonic differentiable function, it can be expressed

in terms of explanatory variables by g(u;) = x! 3.

These three components transform the mean of a response variable, in the natural expo-

nential family distribution, from a non-linear to a linear model.

2.3.1 Normal and Log-Normal Distribution

In a continuous case, the response variable can be assumed to be independently normally
distributed with parameters (u;,0?) for the mean and variance respectively. The proba-
bility density function of this distribution is given by
1
A g2) = =
f(yl|:ul? a ) \/We

In the generalized linear model format we can re-express the probability density function

gz imm)?, (2.5)

in the representation of the natural exponential family of (2.4):

w 2
2y _ piyi — 5 1 2 Yi
f(yi|0;,0%) = exp {02 —3 log(2mo*) — 57 } ) (2.6)
07 1 2 v? 2
where a(0;) = 5, b(yi,¢) = —5log(270°) — 515, c¢(¢) = 0° and 0; = p;. Hence, the

expectation of the random variable in the generalized linear model format is p; and we
connect this to the systematic component using the (canonical) identity link function

g(pi) = p;. This gives the regression model of (2.3);
ni = pi =% B. (2.7)

A linear regression model may be applied in a generalized linear model framework
when the response is non-linear. When the assumption of normality does not hold a log
link function rather than the identity link of (2.7) is commonly used. The log-normal
distribution is typically assumed for response variables which take positive values on the
continuous scale, where there exist no theoretical possibility of a non-positive value oc-
curring. A traditional approach to modelling data that has log-normal distribution is to
normalize the response in (2.7), relative to the linear predictor, by calculating the loga-
rithm of each unit’s outcome. Hardin and Hilbe (2001, p59) noted that this method leads
to an inconvenient interpretation of fitted values and parameter estimates which are in
terms of a log response. They suggest an alternative approach is to internalize within the
model itself the log transformation of the response. This can be represented in the form

of the natural exponential family,

2
log (1:)yi — (log(p4)) 1 Y2
2\ _ 2 2 %
f(yi|0i,0%) = exp{ = ~3 log(2mo*) — 5,7 (7 (2.8)
where a(0;) = (B0 0) = ~Llog(2n0?) — Ls, ¢(¢) = o2 and 6; = log(:).

Hence, the log link function g(u;) = log(u;) is used to connect the random and systematic

11



components giving a log-linked normal regression model
_ R
ni = log i = x; B. (2.9)

2.3.2 Poisson Distribution

In a discrete case, a response variable of count data can be assumed to have a Poisson
distribution with rate parameter . The probability density function of this distribution

is given by -
e it

7.

In a generalized linear modelling format we can re-express the probability density function
in the representation of the natural exponential family of (2.4):

i log pi — g
I (yil6;) = exp {yg;ltu - 108;%!} , (2.11)

where a (6;) = €%, b(y;,¢) = —logy!, ¢(¢) = 1 and 6; = log ;. The expectation of
the random variable in the generalized linear model format is p;, and is connected to the
systematic component using the log link function g (u;) = log p;. This results in a Poisson

regression model,
ni = log i = x{ B, (2.12)

which is identical to the model expressed in (2.9), but where the response is no longer
assumed to be log-normal.

When modelling count data, it is often of interest to measure the rate at which the
count occurs rather than the count itself. The rate can be obtained by dividing the count

by the related exposure, e;, of each unit. Hence, a Poisson rates model can be derived

from (2.12) as
oz (1) = xIp
e;
log(pi) = log(e:) +x; 3 (2.13)

where log(e;) is a known offset term. Poisson regression models with offset terms have
been used in a previous framework for the estimation of international migration such as

Raymer (2007). This will be outlined in Chapter 3 of this thesis.

2.4 Fitting Generalized Linear Models

Maximum likelihood estimates are frequently used in migration models as they posses very
desirable asymptotic properties such as consistency, asymptotic normality and asymptotic
robustness (Sen and Smith, 1995, p457-69). In generalized linear models, such estimators
are found within most statistical software packages using the Iteratively Reweighted Least
Squares (IRLS) procedure, which McCullagh and Nelder (1989, p41-2) proved to converge
to the maximum likelihood solutions. In this section the IRLS fitting method will be

described after some necessary properties of generalized linear models are outlined.
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2.4.1 Mean and Variance

The mean and variance of the random component in a generalized linear model may be
obtained in a general form, allowing the maximum likelihood estimates to be found using
IRLS. Assuming the responses of all units are independent, the likelihood for a generalized

linear model is

L(Oly) = [ [ f(wil6:, ). (2.14)
=1

where 0 is the p-dimensional parameter vector. If we let [; denote the log-likelihood for

the it" observation then
16ly) = 1= _log f(yil6i¢). (2.15)
i—1 i—1

Therefore, using the probability distribution of the natural exponential family expressed

in (2.4) we may deduce by differentiation

o yi—ad(6)

;o)

8211' . a”(@i)

e 210

where a/(6;) and a”(6;) are the first and second derivatives of a(-) evaluated at 6;. As Cox

and Hinkley (1974) showed, the general likelihood results: E (%) =0and —F (gzl_g) =

2
E (géi) are satisfied by the natural exponential family, so

B(t55) -0

E(y:) = a'(6:), (2.17)

and hence

for the mean, and

the "(6:)(c(9))?
N ) 2 _ a '3 &
(E(yi) — i) @)
and
Var(y;) = a” (6;)c(o), (2.18)

for the variance. Hence, the mean and variance of any distribution from the natural
exponential family can be easily derived from (2.17) and (2.18). For example, for the
Poisson distribution, where a(6;) = €% = p; as 0; = log ;, the mean E(y;) = d/(6;) = p

and variance Var(y;) = a”(60;) x 1 = p;.
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2.4.2 Likelihood Equations

In order to obtain maximum likelihood parameter estimates for a generalized linear model
we must first obtain the likelihood equations. Assuming that the responses of n units are

independent, the likelihood for generalized linear model can be expanded from (2.15) as

1(Bly) = Zezyz_ +Zb Yir B), (2.19)

i=1
where [(By) reflects the dependence of 8 on the model parameters. The likelihood equa-
tions can then be derived by differentiating the log-likelihood with respect to an arbitrary

Bj, using the chain rule, and then equating to zero:

8l o al 80Z 8Mi 8m -

= = 2.2
95, ~ 06; 0: On; 08 (2.20)
As pi = E(y;) = d'(6:),

ﬂ _ Y~ a'(0;) Y —

06; c(9) c(9)

391 o 8ui -1 . 1 _ C(‘b)

o\ 00; ~a’(6;)  Var(y)

i _ 10 ol

o 9 (i), as mi = g(p;)

om; o T

aﬁj = Tij, a8 1)y = X; :6’ (221)

where z;; is the (7,7) element of X and ¢’(y;) is the first derivative of the link function

g(-) evaluated at p;. We may substitute these expressions into the likelihood equations to

give
O Y o)
08 o d9) Var(yi)g(m)ng ’
e iy =)
= ;wg (ha)- (2.22)

The likelihood equations for any distribution from the natural exponential family can be
directly obtained from (2.22). For example, a normal distributed response in a classic
linear regression model has Var(y;) = o2 and ¢'(11;) = 1. Hence, the likelihood equations

are
n

or Tij 7
87@' _ ; 021( 's)=o. (2.23)

2.4.3 Asymptotic Variance-Covariance Matrix of Parameters Estimates

The asymptotic variance-covariance matrix for parameter estimates is required to provide
a useful simplification in the IRLS procedure. This may be derived from the inverse of

the p x p Fisher (or expected) information matrix I(3), which has elements (I(3));r =

-F ( g;]l(%ﬁﬁ)k) for any two arbitrary parameters. Using the general likelihood results of
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Cox and Hinkley (1974) we may express I(3) as
27 Ol

—E( 0°l; ) _ E<all 6ll>
903;0Bk 953; O

. 2 (yi — i) ' i (Yi — i) ,
= E{ Var(y:) g (i) Var(7:) g(m)}

- E { x]x\fai%y_)f i)zg/(ﬂi)2}

= g )
= v 220

where E(y; — p1;)? = Var(y;) = V(u;)c(¢) and V(u;) is the variance function evaluated at
wi. Since [(B) = > 1;

PUO) \ _ N~ BTk o
_E <aﬁj8ﬂk> = Z EALE (2.25)

=1
which can be generalized to matrix formation for I(3) = X'WX, where W is a p x p
diagonal matrix with main diagonal elements
g'(pa)?
c()V (i)

The asymptotic variance-covariance matrix, V, of the parameters estimates, 3, is esti-

w; =

(2.26)

mated by

V =I8) '=(X'WX) !, (2.27)
where W is W evaluated at B The asymptotic variance-covariance matrix of any dis-
tribution from the natural exponential family can be directly derived from (2.26). For
example, a Poisson regression model has ¢(¢) = 1,V (p;) = p; and ¢'(p;) = pi. Hence W

2
in (2.27) has main diagonal elements w; = % = p;.

2.4.4 Tterative Reweighted Least Squares

For the likelihood equations of a classic linear regression model the maximum likelihood

estimators of B can be found by re-expressing (2.23) for 3, in a matrix notation:
XW(y —XB) =0

hence,

B=XW1IX)"'X'Wly (2.28)
where W is a diagonal matrix with diagonal elements equal to 0. As the residual variance
is homoscedastic with all diagonal elements of W equal, this term can be dropped leaving
an ordinary least squares estimate for 3. If the residuals are heteroscedastic, where c(¢) =
JZ-Q, then the maximum likelihood estimate of 3 can be found using a weighted least squares
estimator, as given in (2.28) with weights o7, as c¢(¢) = 02, V(u;) = 1 and ¢'(p;) = 1 in
(2.26). Hence the likelihood equations are linear in 8

ol - Tij T
-y <T@y —0. 2.2
aﬂj - 012 (yi—x; B) =0 ( 9)
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When the likelihood equations are non-linear, as in some generalized linear models,
we may use the IRLS algorithm to estimate 3. The algorithm works by linearizing the
likelihood equations for the application of weighted least squares at each cycle of the
iterative procedure. Each iteration cycle, r, estimates a current iterate, 8" = (4/,.. ., ﬁ;)T

with corresponding mean, p;, and a working variate, z;, where

2 =x; B+ (yi — i) g (1), (2.30)
hence ( - "
2T — x! 16
Y —ph =i 2.31
o g'(uf) (2.31)

Estimates of 3" can be updated using weighted least squares, from the working variate
vector z = (21,...,2,)7,

B = (X'WX) " IX'W"z", (2.32)
where the diagonal elements of W’ are given by ¢/(u?)%c(¢)V (ui). When this weight is

incorporated into (2.29) as if the model were linear, the likelihood equations,

n
CCZ'j

0 = 2 V)

=1

En: i (zf —x['B")
= g (u)e@)V (ki) 9" (1)

B ; 9 (1) e(o)V (1) (v = w), (2.33)

are the same as the original weighted least squares likelihood equations, (2.22), except

the weights are fixed at the estimates from the previous iteration, r. Hence, solving
these equation using weighted least squares of (2.32) gives estimates of B! which may
lead to new calculated weights, then new estimates using reweighted least squares and so
on, iterating until convergence. Skrondal and Rabe-Hesketh (2004, p192) noted that this
method is identical to Fisher Scoring, an alternative iterative method for solving likelihood
equations.

Generalized linear models are commonly applied by social scientists to model migration
data, as will be discussed in Chapter 5. This is often undertaken to gain a substantive
understanding of movements. In this thesis, the aspects discussed in this section have
an alternative use, to derive estimates for migration data that is currently unreliable.
In Chapter 5 the IRLS procedure is used within the Expectation Maximization (EM)
algorithm for fitting migration models to incomplete data. This allows imputations for
missing values to be obtained. In Chapter 6 the IRLS procedure is used within the
Supplemented EM algorithm to derive estimates of the asymptotic variance-covariance

matrix for model parameter estimates in the presence of missing data.

2.5 Negative Binomial Regression Models

The negative binomial distribution has two-parameters that allow a mean and variance

to be fitted separately, as opposed to a single parameter Poisson regression model. It
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may be considered in two ways: as a marginal distribution of a Poisson random variable
where the rate parameter has a gamma distribution or as a probability function in its own
right for the observation of y failures before a nth successes in a series of Bernoulli trials.
Hardin and Hilbe (2001, p140) noted that when considered as the first of these approaches
(as will be the case in this thesis), the negative binomial distribution is not a member
of the exponential family and hence cannot be considered in the generalized linear model

framework. Considered as such the probability density function can be expressed as

-1

C(yi+a™t) [ ap \” 1 ¢
i | L = ; =0,1,... >0, (2.34
f(yl’/j/“a) yilr(a_l) ].+Oé,U,Z ]-+Oé/iz Y yl 9 -9 9 o =z ) ( )

such that

pi = exp(x; B) (235)

where pu; is the mean of a Poisson distribution and « is a dispersion parameter. The
regression model of a negative binomial response takes the same format as the Poisson
regression model of (2.12). The model has a mean of y; and variance function of p; + ozu?.

When the overdispersion is zero the Poisson model is obtained.

2.5.1 Asymptotic Variance Covariance Matrix

Cameron and Trivedi (1998, p71) showed that for the negative binomial regression model

the maximum likelihood estimates are the solution to the first order conditions

—Hi T
. pr— . 2.
1 CrapX =0 (2.36)

Hence, the asymptotic variance-covariance matrix for the parameter estimates can be

derived as
()" o
a .
ﬁjﬂk 21 _1 , (237)
0 E ( Wz)

where the elements off the block diagonal are solutions to aﬁ a = 0 for each j. Thus the
variance-covariance between elements of the parameter vector 3 are the same as (2.27) for

a generalized linear model, where c(gf)) =1,V(p) = pit+ap?, ¢'(ui) = pi, and W has main

diagonal elements w; = o fiu? =73 +au Cameron and Trivedi (1998, p72) demonstrated
that by expressing % =[5 '(g+ o 1) in (2.34), the variance of « in (2.37) can
be deduced as

— 1 = 2 i h

;(14 log(1 + ap;) — gzl g+a +m . (2.38)

2.5.2 Fitting Negative Binomial Regression Model

Agresti (2002, p560-1) noted that a negative binomial model may be fitted in a simi-
lar manner as Poisson regression models when the dispersion parameter is known. This

can be implemented using the IRLS procedure. When the dispersion parameter is not
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known, three possible methods exist to obtain maximum likelihood parameter estimates:
a Newton-Raphson routine for fitting all parameters simultaneously; the evaluation of the
profile likelihood for various fixed «, and an alternation strategy of 1) using IRLS to solve
mean parameter estimates 3, for fixed a and 2) using Newton-Raphson to estimate « from
fixed @, until convergence.

The Newton-Raphson method (also known as an Newton optimizer) is an iterative
routine for finding roots in non-linear equations, in one or more dimensions. It can be
applied to likelihood functions to find local maxima and local minima often with rapid
convergence. The method is also used for other optimization problems in non-statistical
settings. The Newton-Raphson method considers an approximation of the derivatives of
the likelihood function, using a first order Taylor expansion around a parameter estimate
0:

L0+ A6) = L(0) + L'(0)A0 + %L”(H)(AH)Q, (2.39)

This expression attains its extremum when A solves the linear equation
L'(0) + L"(9)A6 = 0, (2.40)

and L”(0) is positive. Thus, provided that L(f]y) is a twice-differentiable function and
the initial guess of a working estimate, 6", is chosen close enough to the stationary point,
0*, then o)

ol =" — ) (2.41)
will converge towards 8*. When fitting a negative binomial regression model, this method
can be used to estimate the dispersion parameter, where = « in (2.41) and current esti-
mates of mean parameters, 3 are provided by IRLS. The asymptotic variance-covariance
matrix of (2.37) may then be fully obtained given the estimate of « for (2.38).

The Newton-Raphson routine can be generalized to several dimensions for multiple
parameters, @ = (0y,...,0,). Replacing the derivative of (2.41) with the p dimensional

gradient vector, v = (8%2911)’ ceey 8g(aip) ), and the reciprocal of the second derivative with

2
the inverse of the Hessian matrix, H, where an element h;, = ge_ngZ. Hence, a modified
J

iterative scheme for multiple parameters is obtained:
0t =0" — (H") v (2.42)

For a negative binomial regression model this generalized routine can also be used to
estimate all parameter, where 8 = (3, «).

In comparison with generalized linear models, negative binomial regression models
have been more limited in their application to migration data by social scientists. This
will be discussed further in Chapter 5 where negative binomial regression models are used
to obtain imputations for missing data. In Chapter 4, the quasi-Newton optimizer (related
to (2.42) with numerical estimates of v and H) will be used in a non-statistical setting
to estimate correction factors that minimize the distance between reported migration flow

counts, subject to a set of constraints.
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2.6 Statistical Modelling of Missing Data

International migration flow data is often missing. In order to estimate missing flows,
model based methods may be used to derive parameter estimates that account for data
incompleteness. In this thesis, the EM algorithm of Dempster et al. (1977) is used to find
maximum likelihood estimates of model parameters in the presence of missing data. In
Chapter 6, the Supplemented EM (SEM) algorithm of Meng and Rubin (1991) is used
to estimate the variance covariance matrix of parameter estimates when there is missing
data. Within these algorithms, methods described in this chapter, such as IRLS and the
Newton-Raphson routine are used repetitively. Unlike the fitting methods discussed in this
chapter, standard functions for these algorithms are unavailable in statistical software. To
this end, S-Plus/R functions were written to fit negative binomial regression models for
international migration flow data using the EM and SEM algorithms. A full discussion
of the algorithms, their properties and the functions written are hence deferred until the

appropriate chapters of this thesis.
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Chapter 3

A Review of Methodologies for
Estimating an International
Migration Flow Table of
Comparable Data

3.1 Introduction

At present, the responsibility for the collection of international migration flow data rests
with individual national statistics institutes. Consequently, data on a considered flow can
be missing, reported by the sending country, reported by the receiving country or reported
by both the sending and receiving country. For the last situation, in which two sources
of information are possible for one particular flow, data rarely match due to differences in
collection and measurement.

In this chapter, previous frameworks to estimate international migration flow tables of
comparable data are reviewed. The strengths, weaknesses and differences of methodologies
are made with reference to the desirable criteria shown in Table 1.1. The next section
commences with an outline of the problems in the comparability of international migration
flow data. The succeeding section provides an introduction to migration flow tables,
illustrated with generated counts. This allows a clear presentation of data issues and
frameworks for estimating flow values. The following sections concentrate on different
frameworks for estimating migration flow tables in a single year. The first, developed by
Poulain (1993), used a constrained optimization to estimate correction factors to scale
reported data. This method, and more recent extensions, are illustrated with an example.
The second methodology, initially introduced by Raymer (2007) modelled the components
of a saturated regression model applied to a migration flow table. Both methodologies are

discussed separately, before concluding with a comparative review.
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3.2 Problems of Comparability in International Migration

Flow Data

The lack of comparability in international migration data can be traced to the multi-
dimensional nature of migration (Goldstein, 1976). As a result, national statistics in-
stitutes have developed measures of migration solely suitable to their domestic priorities.
Full reviews of the international migration flow data and their issues can be found in Kelly
(1987), Willekens (1994), Nowok et al. (2006) and Kupiszewska and Nowok (2008). The
incomparability between data sources in any time period is predominantly derived from

(a) differences in data production techniques,

(b) differences in the dissemination of data.

Each is discussed in relation to measures of migration flows by origin or destination.

3.2.1 Data Production Techniques

Differences in the production of migration flow statistics can be derived from distinctive
data collection methods and definitional measurements used by national statistics insti-
tutes.

Data collection methods may influence the completeness and accuracy of reported mi-
gration flows (Nowok et al., 2006). National statistics institutes collect migration flow data
from a variety of sources. Computerized population registration systems that continuously
cover the target population often provide reliable and timely statistics. Where administra-
tive sources do not cover all or part of the target population, other registers such as alien
or residency permit data bases are sometimes used. Some nations rely on surveys carried
out during border crossings or among households inside a country. These can be more
problematic. For example, in Great Britain the International Passenger Survey (IPS) is
used to provide international migration flow data. In order to supply sufficient detail for
analysis, the sample size must be very large, otherwise unexpected irregularities appear
for specific origin-destination flows (Perrin and Poulain, 2006b).

Migration definitions can influence the reported volume of movements. Definitions of
migration flows involve a statement of duration and population coverage. The duration
of time used to identify international migrants varies between countries (Kupiszewska and
Nowok, 2008). For population register data, international migration may refer to persons
who have lived in a different country for three months, six months or one year. For census
or survey data, the entry date of international migrants is often unknown, only that they
lived outside the country one-year or five years prior to the census or survey date. For
some data sources the intended duration, rather than the actual duration is used. Under
an actual duration measure, reporting of counts are delayed to allow the period used in
the timing criteria to pass, whereas under an intended duration measure an assumption
that the intended period will become the actual duration is made. Nowok et al. (2006)

noted that some national statistics institutes measure intended duration measures for non-
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national immigrants by the period specified in the authorization to stay, which may hence
differ from the actual duration.

The coverage of difficult to measure population groups, such as asylum seekers, stu-
dents and illegal residents varies between data sources. Asylum seekers are generally
included as migrants when granted permission to stay. Exceptions to this rule are found
in some countries such as Germany and the Netherlands, where the registering of seekers
occurs at an earlier stage of the asylum procedure (Erf et al., 2006b). Erf (2007) noted that
students moving between EU countries are often not included in international migration
flow figures as they are not required to report their migration. However, in countries such
as Denmark, students are required to have residency permits on which migration data are
based. Data on undocumented migrants should be included in migration figures according
to most definitions used in European migration statistics regulations, but are often missed
due to collection difficulties. Among the EU member states, only Spain allows the regis-
tration of illegal migrants through a pardon system (Breem and Thierry, 2006b), allowing

the capture of data on this difficult to measure group.

3.2.2 Data Dissemination Methods

Differences in the dissemination of migration flow statistics can be derived from alternative
methods for handling migrants with unknown origins or destinations and limitations on
the collection of specific flow information.

National statistics institutes may struggle to fully disseminate information on the ori-
gin or destination of migrants. In such cases, the total flow in or out of the country is
often known, resulting in a count of migrants with unknown countries of origin or desti-
nation. For some nations, the size of these counts is relatively large with regard to the
total migration count. For other nations, this count may be small or zero. Hence, when
comparing differences in reported migration flows between multiple nations, the counts of
movements associated with unknown origins or destinations must be considered.

Migration flow data may be completely available, partially available or completely
unavailable. Partial availability can occur for data from countries that have a domestic
need to measure only certain flows. For example, in 2002 Ireland produced estimates of
total movements to and from only three areas: Great Britain, the United States of America
and the EU (Perrin, 2006). In other countries, partial completeness is caused by insufficient
data collection methods. For example, the IPS carried out during border crossings to and
from Great Britain are unable to provide estimates for individuals origins or destinations
where low volumes of movements exist (Perrin and Poulain, 2006b). For some countries, no
migration flow data may be produced. For data sources from member states of the EU this
failure appears to be random. For example, France, which has a large volume of migration,
does not register citizens entering or leaving the country (Breem and Thierry, 2006a).
Conversely, similar sized countries, such as Italy and Germany, regularly publish migration
flow data. In some years, migration flow data provided by countries to international

organizations (the main source of international migration flow data for multiple nations)
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can appear as incomplete. This might be caused by national statistics institutes not
providing, or the organizations not publishing data, despite collection procedures being in

place.

3.3 International Migration Flow Tables

Migration data are commonly represented in square tables, with off diagonal entries con-
taining the number of people moving from any given origin i, to any given destination j, in
a single time period. The diagonal entries in the migration flow table (which corresponds
to either counts of migration flows within an area or populations) are often omitted in an
international context. As a single flow can be counted by national statistics institutes of
both sending and receiving countries, two migration tables may be produced: one for re-
ceiving data collected at the destinations and one for sending data collected at the origin.
Observations of these flows can be represented in an array m;;,, where k = 1,2 indicates
receiving and sending flow tables respectively. A simple example of such tables is shown
in Table 3.1, where data is generated using a Poisson random process (from the rpois
function in S-Plus 6.2) with rate parameter equal to 10. Data were not generated for

migrants received and sent by region E.

Table 3.1: Simulated Migration Flow Tables from Receiving (left) and Sending (Right)

Countries
Origin Destination Total Origin Destination Total
A B C D E A B C D E

A 8§ 12 11 31 A 7 10 8 11 36
B 5 7 8 20 B 7 10 8 6 31
C 1 8 5 24 C 5 4 14 9 32
D 12 10 17 39 D 1 11 14 15 51
E 12 7 10 7 36 E

Total 40 33 46 31 150 Total 23 22 34 30 41 150

In both tables the origins are shown on the vertical axis and destinations on the
horizontal axis. Data collected by the receiving destination countries in the left hand
table form a vertical pattern. In the same manner, the origin reported values in the right
hand table, as collected by the sending nations, form a horizontal pattern.

For any single year, demand exists for a single table with one comparable flow value
for each origin-destination combination. As discussed in the previous section, data for
international migration flow tables often lack comparability (in the same manner as Table
3.1). Sources of the incomparability between a flow reported in each table can be attributed
to two areas: inconsistencies and incompleteness.

Where two sources of information exist for one particular flow, the data might or
might not resemble each other because of differences in definitions and collection systems.
These differences result in data inconsistencies similar to those shown in Table 3.1. For

example, the flows from country A to B are very similar (8 and 7 respectively), whereas
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the flows from country C to B are very different (8 and 4 respectively). Inconsistencies
in reported flow values create a confusing impression as to which data source (if any)
is to be preferred. In turn, more doubts are apparent when considering values in cells
where only a single value is reported (such as from country A to E). Values compared
across columns for receiving data or across rows for sending data could be higher or lower
depending on definitions and data collection methods rather than more or less migrants
entering or leaving countries. Where both reported flow counts are missing data users
are unable to obtain any idea of the level of flows between nations. Together, problems
of inconsistent and incomplete data make comparisons of migration flows across a set of
countries difficult.

Comparable international migration flow data are needed by researchers working on
identifying, understanding and monitoring migration flows. Governments and planners
can also use more comparable estimates to help forecast the demand for services that
are created by population changes, for which the role of international migration has a
significant influence. Previous methodologies for adjusting and imputing missing data
have been created to address this demand. These have tended to be broken into multiple
stages, addressing the problems of inconsistencies and incompleteness through a mixture

of methods.

3.4 Constrained Optimization

Estimates of a complete migration flow table between 28 European nations in 2004 were
calculated by Poulain and Dal (2007) (and Poulain and Dal (2008)) as part of the MI-
MOSA project. This involved decomposing the estimation of international migration flow
tables into three stages: harmonization of referee countries data using a constrained op-
timization, estimation of flows between referee and non-referee countries and estimation
of flows between non-referee countries. Refereed countries were chosen according to the
availability of flow data and expert judgement on their reliability. Full details on this
decision are left to the discussion section. In this section, the methodology of Poulain and
Dal (2008) is initially discussed mathematically, followed by an illustrated example from
the hypothetical data presented in Table 3.1.

The first step of the procedure of Poulain and Dal (2008) built on earlier work (Poulain,
1993, 1999) which used smaller migration tables of flows between selected countries without
missing data. The estimation of harmonized values in these studies required an underlying
assumption that differences in the reported counts of flows between countries are fixed.
Thus the distance between counts represent the non-random discordance in the collection
and measurement of migration flows between any two national statistics institutes. Under
this assumption the equality

TiMijL = 8iMiga, (3.1)

is believed to hold, where r;, scales receiving data reported in destination j, and s; scales

sending data reported in origin i. When correction factors are unknown, Poulain (1993)
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suggested that they can be estimated by minimizing the Euclidean distance,
Frj,silmige) = (rymijn — simija)®. (3.2)
i?j
Poulain and Dal (2007) proposed the replacement of this measure with a Chi-Squared

distance function to allow the sum of differences in adjusted cell counts to be weighted by

the observed data,

S V4
f(rj, silmijr) = Z (rymags = simig2) .

1,

(3.3)
mij1 + Mij2

Estimates for the correction factors from both distance measures can be obtained by
finding the root of the partial differential equation. The optimal solution to these equations
are for all correction factors to equal zero. In order to determine non-zero parameter values,

Poulain and Dal (2007) imposed a constraint,

c(B\mijk) = Z J Y 9 LY Z max(mijl, mijg). (34)
1,J 1,J

Earlier studies such as Poulain (1993) used alternative constraints, based on the reported
receiving data. In order to minimize (3.3) with respect to this constraint the method
of Lagrange multipliers was used. This can be illustrated by letting the distance and
constraint functions be denoted by f(8|mi;i) and c(@|m;j;) for the parameter set 8 =
(r,s), where r and s are the sets of receiving and sending correction factors for referee
data sources respectively. The method of Lagrange multipliers achieves the stationary

points of @ by setting the partial differentials of
L(6, Almiji) = f(Omiji) — Ac(]mijr), (3.5)

to zero where A is the Lagrange multiplier. For the Chi-Squared distance function and
constraint used in Poulain and Dal (2007), the partial derivatives for the parameter set

and Lagrange multiplier:

8L(0|mz-jk) _ Z 2mz~j1(7’jmij1 — Simijg) _ /\Z mz-jl -0
aT‘j mijg1 + mij;2 i 2

i7j

8L(0|mijk) —QmijQ (rjmijl — SimijQ) m;49
o Sl L L Z A -2y 2=
Z %: 2

0s; 7 myj1 + M52
OL(0|m;; 7M1 +i Mij
OL(Olmijk) 8|)\ ijh) = Z S W ”12 AL Zmax(mijl,miﬂ) =0, (3.6)
1, i,J

are all linear equations. These can be represented by a system of equations in matrix
format as such,
Af =D, (3.7)

where A includes the constant terms expressed in (3.6), 8 = (r,s,\)” and b is a vector

of zeros, with except the last element, which is equal to max(mj1, mi;2)-

.3
Poulain and Dal (2008) suggested that in order to harmonize values to a known defini-

tion the parameter set should be normalized to a selected country. This allows correction
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factors in 0 to be interpreted as the effect of different measurement and collection sys-
tems in each data source in reference to the selected (normalized) data source. In their
demonstrated example, this was implemented with Swedish receiving data, which were
highly regarded by data experts due to the collection methods and definitional measure
used (Herm, 2006a). Dividing all parameter estimates by the estimated parameter corre-
sponding to Swedish receiving data, resulted in the constraint of (3.4) no longer holding.

In the second and third stage, correction factors for all remaining data sources are
estimated by dividing the scaled flow values estimated using the correction factors from

the first stage with the original reported data,

. — D SiMijra
T Y mign
R

Sy = 25T (3.8)

Zj Mmirja
where ¢/ and j’ represent the respective row and columns corresponding to non-refereed
countries. When no original reported data exists for the estimation of the correction
factors in (3.8), alternative migration data such as origin-destination migrant stocks or
migration flows defined by country of citizenship (rather than country of previous/next
residence) are imputed.

Final estimated flow values, y;;, for the migration flows from origin i to destination
j, are derived by using the set of correction factors for both refereed and non-refereed

countries to scale the reported (or imputed) data according to a set of preferences,

%(ijz'jl + 5;m;2) if r; and s; exist

Yise = %(iji’jl + symyjo)  if r; exists and s; does not (3.9)
%(Tj’mij’l + Simijlg) if s; exists and r; does not
%(Tj’mi’j’l + Si’mi’j/Q) otherwise.

Hence, average scaled values are taken when reported flows are from either refereed or
non-refereed countries.

To illustrate the constrained optimization framework of Poulain and Dal (2008), the
generated data of Table 3.1 are used. If countries A to C are judged to be refereed nations,
corrections factors for r; and s; where 7,5 = (1,2,3) can be obtained from the partial

derivatives in (3.6). These systems of equations can be expressed in matrix notation using
(3.7):

292 0 0 0 -70 —-110 —-224 r1 0

0 256 0 —112 0 —64 —-216 T 0

0 0 386 —240 —140 0 —370.5 r3 0

0 —112 —-240 298 0 0 —314.5 s1 | = 0 (3.10)
—70 0 —140 0 298 0 —246.5 S92 0
—110 —64 0 0 0 82 —126 83 0

8 8 9.5 8.5 8.5 4.5 0 A 56
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A function to handle migration flow data and solve these equations for any sized table and
refereeing countries called poulain (shown in the Appendix) was programmed in S-Plus.
This function requires an array object of data and an indicator for countries that are
considered as non-refereed (nr). Using the solve command in S-Plus 6.2, the poulain
function simultaneously determines € in (3.7) for all refereed countries. When provided
with the data in Table 3.1, the solution in (3.10) were r = (1.0526,1.1514,1.0909) and s =
(1.3114,0.7598,2.3108). These correction factors were used to scale reported counts from
refereed countries using the average in (3.9). The estimated flows are shown in Stage la of
Table 3.2. During the calculation of the values, the constraint Zg’zl Z?Zl w =
S8 25:1 max(mij;1, mij2) = 56 is held, where the Lagrange multiplier is a small positive
value. In order to benchmark the correction factors to known definitions, as suggested by
Poulain and Dal (2008), values are divided by 1.0526, that of country A’s receiving data.
This creates new values for r = (1.0000,1.0938,1.0364) and s = (1.2458,0.7218,2.1952),
which are used to calculate the scaled averages given in Stage 1b of Table 3.2. In this

table, the sum constraint of (3.9) no longer holds.

Table 3.2: Example of Stage 1 in Poulain and Dal (2008) Framework

Stage la: Average (Original r; and s;)
A B C D E Total

A 9.19 13.10 22.29
B 5.29 7.62 12.91
C 11.56  9.22 20.78
D
E
Total 16.85 18.41 20.72 56.00

Stage 1b: Average (Adjusted 7; and s;)

A B C D E Total
A 8.74 12.45 21.19
B 5.03 7.24 12.27
C 10.99 8.76 19.75
D
E
Total 16.02 17.50 19.69 53.20

In the second and third stage, correction factors for non-refereed countries are deter-
mined from the ratio of scaled sending (receiving) data with the original receiving (sending)
values of refereed countries. For example, the calculation of r4 = % = 1.9364.
A function to estimate these correction factors and estimates of flows to and from non-
refereed countries, called poulain.comp (shown in the Appendix) was programmed in
S-Plus. In order to facilitate the estimation for missing flows involving country E, data
were generated using the rpois function in S-Plus 6.2 with rate parameter equal to 20 to
reflect a (higher) stock measure. These values are given in the Stage 3 display of Table 3.3,
which the poulain.comp function uses to estimate r5 = 0.6405. In addition, sending data

correction factors of sj = (1.1266,0.5176) for j/ = (4,5) were estimated. Non-refereed
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correction factors, ry and s;/, were used to estimate the final flows using the averages of

adjusted flows as in (3.9). This results in the final migration flow tables in Table 3.3.

Table 3.3: Additional Data and Final Estimates of Poulain and Dal (2008) Framework

Stage 3: Additional Data
A B C D E Total

A 16
B 25
C 18
D 17
E 22 22 14 18 76
Total 76 152

Final Estimates
A B C D E  Total

A 8.74 12.45 15.63 11.98 48.80
B 5.03 7.24 10.63 10.17  33.07
C 10.99  8.76 20.21 15.64 55.61
D 12.20 11.67 16.70 13.89  54.46
E 11.69 9.52 881 11.44 41.46

Total 39.91 38.70 45.20 57.91 51.68 233.40

3.5 Model Component Modelling

A multiplicative component approach was applied by Raymer (2007) to estimate interna-
tional migration flows between ten countries in Northern Europe in 1999. The procedure
is based on modelling components as separate objects of explanation rather than the flows
directly, similar to that of Willekens and Baydar (1986) or Rogers et al. (2002).
Migration flow tables can be disaggregated into four separate components (Rogers
et al., 2002): an overall component representing the level of migration, an origin component
representing the relative pushes from each nation, a destination component representing
the relative pulls to each nation and an origin-destination component representing the
connectivity between places not explained by the previous three components. Components

may be derived from a log-linear regression model;

log p;; = log 81 + log ﬂio + log ﬂjp +loge;; i# 7, (3.11)

where f1;; is the expected migration flow from origin ¢ to destination j. The overall effect
is denoted by 3, the origin (or row) effect by 8, the destination (or column) effect by
@D and the interaction effect by e;;. This is equivalent to the log linear model of (2.12)
where 3 = (log 31,1og 89, log ﬁjD, loge;;) and the explanatory matrix notation containing
information on flow origin and destination is implied in the constraint system of 3. The
log-linear model (3.11), can be expressed in a multiplicative component form, similar to

Raymer (2007),
pij = BB B ey i, (3.12)

where all terms have been exponentiated.
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Previous implementations of multiplicative components models in migration (such as
that of Rogers et al. (2002) or (Raymer et al., 2006)) have focused on the description
and analysis of internal migration flows. Raymer (2007), however, uses this approach for
the estimation of international migration flows through separate models for components
ﬂio , @D and e;;. The methodology begins by estimating all origin and destination com-
ponents for the migration flow table of interest using log-normal regression models and
scaling reported data. This process can be separated into three stages. In the first stage,
one model attempts to explain the total outflow of migrants from all nations (after scal-
ing reported outflows totals to net migration estimates using the demographic accounting
equation model). This model is used to interpolate missing marginal totals, which like
origin-destination flows are often missing. In the second stage, two models attempt to ex-
plain the migration to and from all other countries in the world not included in the desired
flow table, which are again used to interpolate missing values. The difference between the
total flow values (a combination of scaled and interpolated estimates) from the first and
second sets of models results in the total number of migrants sent and received (and hence
marginal totals) for all possible flows in and out the studied countries. This allows the
final estimated flow table to be expanded to include an additional row and column for
flows to and from all other countries. In the third stage, the total migration within the
studied flow table is derived by taking the median of the estimated total migrants sent
and received, which were not previously constrained to match. This overall total is the
estimate of 31, using the total-sum reference category coding scheme recommended by
Raymer (2007). Final estimates of ﬁio and ﬁjD are derived by dividing marginal estimates
by (1.

In order to estimate the final model parameter e;;, origin-destination migration flow
data are derived by preferring receiving data over sending data where both values exist.
The resulting observed values are then divided by expected values from the independence
model (3.11 without the log(e;;) term) obtained using Iterative Proportional Fitting (IPF)
algorithm of Birch (1963), where only knowledge of marginal totals and arbitrary stating
cell values are required. The observed to expected ratio cannot always be calculated for
every cell due to missing observed values. In order to account for incomplete data, Raymer
(2007) suggests a log-normal regression model involving a dummy covariate for contiguity
(for countries that share a border) to be fitted to the available ratios. This model can
then be used to interpolate the missing ratio values. These ratios are then entered into
the model of (3.11) in order to give a complete set of estimates for origin-destination
component. In order to fit the final log-linear (Poisson) regression model of (3.11), the
expected values are derived from the IPF algorithm using of ﬁio and ﬂ]D as marginal totals.
These expected values are then regressed on the constant and dummy covariates of origin
and destination with an offset of e;;.

The model component framework has been applied to larger migration tables over a
series of time periods by Raymer (2008) and Raymer and Abel (2008). These studies

included a greater number of covariates to explain and interpolate missing values for
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marginal totals and flows to the rest of the world. Raymer (2008) expanded the basic
origin-destination model of (3.11) by an extra dimension to estimate flows by age and
sex groups. As part of the MIMOSA project, Raymer and Abel (2008) included an ad-
hoc harmonization of available data as an initial step, in an attempt to account for data
inconsistencies. Additional models were also built on a ad-hoc basis to aid the fit of
interaction components for problematic cells. Brierley et al. (2008) conducted a study in
the Bayesian paradigm with direct parallels to the multiplicative component model, using
the same Northern European data as Raymer (2007). Estimates of marginal totals were

fixed to the adjusted estimates found by Raymer (2007).

3.6 Discussion of Frameworks

Discussion on the presented frameworks and possible extensions is undertaken in the suc-
ceeding subsections. Comparisons between frameworks with reference to the desirable

criteria outlined in Table 1.1 are outlined in the next section.

3.6.1 Constrained Optimization

The framework proposed by Poulain (1993) was the first effort to estimate an international
migration flow table of comparable data. It formalized the concept that rows and columns
in migration flow tables of reported data can be higher or lower due to differences in data
collection and measurement techniques, and hence a correction factor can be estimated to
equate data to single level. It requires some degree of expert judgement in the decision
of which countries data should be included as a refereed nation. Poulain and Dal (2007)
recommended that this judgement is informed by repeatedly estimating correction factors
for different combinations of refereed countries. Estimates for data sources that appear
unstable during this process to the analyst should be considered as non-refereed countries.

In earlier versions of the framework, the properties of estimated flows were not stated
and remained unclear. Through normalizing correction factors in the first stage, Poulain
and Dal (2008) were able to present a final table of estimates that possess the charac-
teristics of the selected data sources used to normalize other values. Consequently, the
constraint function of (3.4) no longer held. This may not be of deep concern for two
reasons.

First, the normalized correction factors can be directly deduced without the constraint.
These are estimated by reconstructing the matrix A and vector b in (3.10) to represent
the set of partial derivative equations of only 7; and s; without terms involving A. The

elements of A corresponding to r; can then be directly replaced with zero and ones in
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order to constrain the correction factors to unity as such,

1 0 0 0 0 0 r 1

0 256 0 —112 0 —64 ro 0

0 0 38 —240 —140 O rs 0
= (3.13)

0 —112 —240 298 0 0 s1 0

~70 0 —140 0 298 O 59 0

110 —64 0 0 0 82 53 0

A function for this direct method of calculating correction factors called poulain.direct
(shown in the Appendix) was programmed in S-Plus. It was reliant on the poulain func-
tion for the initial calculation of the A matrix. With larger flow counts, the use of substi-
tuting one to indicate fixed correction factors can create difficulties for the S-Plus function
solve. This can be overcome by using solve.default which may be altered to allow the
tolerance of the QR decomposition function (qr) used within the routine to be increased.
The solution for (3.13) were r = (1.0000, 1.0938,1.0363) and s = (1.2457,0.7217,2.1951),
which are very similar to the parameter values from the normalized estimates for the data
in Table 3.1.

Second, the right hand term in the constraint of (3.4) is justified by Poulain and Dal
(2007) to allow the adjusted cell average to be equal to the maximum reported cell values.
This restricts the parameter space for estimates to a level of reported migration based on
a maximum measure of mixed definitions and data collection methods aggregated over all
cells. This is counter to the concept of minimizing a distance function, which concentrates
on the difference between (rather than totals across) reported cell values. In a similar spirit
the Chi-Squared distance function of (3.3) is a weighted measure based on a denominator
of observed values. These values are known to be incorrectly reported and provide an
unrealistic distance measure for some flows. There exist alternative measures of distance,
discussed in the next chapter, which might better capture the inequality of reported data,
without a reliance on reported data.

Final estimates from the constrained optimization framework have distributions across
a given row or column that are different to the original data, as flows between refereed
countries are diluted to a mixture of sending and receiving patterns. This is problematic
from two standpoints. First, receiving data is often believed to be of better quality (Erf,
2007; Raymer, 2007), and hence it may be more appropriate to weight the average for the
calculation of the final flow estimates to reflect this consideration. The extreme of this
solution would be to ignore the scaled sending data and use only the scaled receiving data
for final estimates. This would result in column distributions of the original data being
preserved. Second, the categorization of countries as refereed data providers is dependent
on the belief that their data is consistent and complete. Taking an average of scaled data
produces final flow estimates that are no longer consistent with regards to the original
data distribution and hence may affect the plausibility of a final flow table estimates.

In the final stage of the methodology, correction factors are calculated and applied to a

mixture of migration data. This operation is performed to obtain estimates of previously
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unknown cell values. As a consequence, these estimates rely on some form of migration
data being available. In some cases, this might require inserting poor data solely to allow
final estimates to be obtained. Taking the average of the adjusted non-refereed data
assumes that the inserted data has the same row or column distributions to that of the
true flows. However, non-refereed data may be known to be a poor proxy for the true flows
and hence any adjustment by a scaling method may exaggerate differences in comparison

to a true unknown migration flow.

3.6.2 Model Component Modelling

The multiplicative component methodology of Raymer (2007) decomposes a flow table
into a number of model parameters whose values are estimated using statistical models.
In the first stage, estimates of the total number of migrants sent and received are adjusted
to reported flow totals derived from net migration figures. This is undertaken with the aim
of creating cell estimates based on a one year timing definition. The scaling assumes that
a country has the same measure in its sending and receiving data which is not always the
case. For example, the Netherlands defines immigration on a six month and emigration
on an annual timing criteria (Erf et al., 2006a). This can potentially inflate the receiving
totals in comparison to the sending totals for which no provision is made in the framework.
After the total flows have been adjusted, estimates for the total flows to nations outside
the set of countries in the table are modelled in order to obtain table margin estimates
for missing data. The models implemented to do this are often simplistic. In Raymer
(2007) a model involving population, median age and gross national income was used
to describe total outflows of ten Northern European nations. For the estimates of total
flows to and from non-Northern European nations, population, gross domestic product
and migration rates covariates were used. These variables are too simple when trying
to replicate the framework for more dissimilar nations, and variables have no justifiable
inclusion over other potential economic, geographic, demographic or social effects that
may better explain total migrants leaving a nation for a particular set of nations. A
more thorough method might involve the use of more complicated models to help describe
the complex nature of patterns of total flows across multiple nations, as demonstrated in
Raymer and Abel (2008). However, the use of multiple effects and interactions is limited
by the amount of nations providing data with a total. For example, in 2006 only eight
countries of the EU15 provided total counts for the number of migrants received and sent,
constraining potential models to use only seven parameters to be fully identified.

Once the missing marginal estimates were obtained, all values were then scaled (again)
so that overall sending and receiving totals match. These manipulations may result in
final estimates not bearing much resemblance to the original reported values. Notable
differences in the reported data and estimates of Northern European flows by Raymer
(2007) are apparent in both the marginal totals and the distribution to and from selected
countries. These differences might be justifiable for data considered unreliable, however

differences were also found when comparing data that are considered to be of a good
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standard. For example, a comparison of reliable data sources, such as Swedish receiving
data (Herm, 2006a), and the final predicted values in Raymer (2007) shows an overall
drop of 2,988, a 25% fall from the reported total. The distribution of these migrants
into Sweden also altered greatly, where some larger sending nations, such as Norway, were
estimated to send 1,970 less migrants than reported (in line with the fall in overall total) as
opposed to Finland, which was estimated to send 293 more migrants than reported. These
large alterations from the distribution of known good reported data affect the plausibility
of the final estimates. Raymer and Abel (2008) attempted to overcome this problem by
adjusting reported flows using an iterative weighting of counts, prior to the modelling of
any components. This included weights that fixed the flow values from receiving data
sources believed to be of good quality.

Without flexibility in the modelling of marginal totals, interpolations for missing values
may be unrealistic or even impossible. For example, Raymer (2007) had problems with
overestimating the Lithuanian margin resulting in large flows to and from other nations.
This over-prediction could be partly due to the simplistic models used or in the assumption
that countries with missing data (such as Lithuania) all have the same relationships with
the covariates used for the regression on available data. In addition, there is no restriction
in place on interpolated values for migration flows to and from the rest of the world. As
these values are deducted from total flows to attain a table margin, large interpolated
values for the rest of world flows could potentially be greater than total flows creating a
negative margin total. Once the final margins are estimated and scaled so that the overall
totals match, the complete set of interaction terms are derived, again using interpolation
from a simplistic model. This is based on receiving data where it exists, even if it is known

to be inconsistent or reliable sending data are available.

3.7 Summary and Conclusion

The methodologies presented in this chapter take vastly different approaches to estimating
a complete migration table. Comparisons of estimation frameworks are undertaken in
this section using the criteria of Table 1.1. The estimates of both methodologies can
be compared with respect to the completeness, consistency, reliability and measures of
precision criteria. Both methods obtain estimates of complete tables, with imputations for
previously unknown flows values, allowing comparisons of all flows. These are estimated
using ad-hoc methods based on alternative data or existing relationships derived from
simplistic models.

To account for inconsistencies, the framework of Poulain and Dal (2008) estimates
correction factors for sending and receiving data, in order to scale reported counts to a
definition in a selected country. Minimizing a distance function of the difference between
cell values allows an explicit relationship between countries reported data to be formulated.
It also allows a clear understanding of the properties of the resulting estimates. The

estimates from the framework of Raymer (2007) rely on scaling total flows of available data
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to net migration totals suggested by the demographic accounting equation. This demands
that additional row and columns for flows to all other countries outside those being studied
are required, which for some nations are not always available. Once estimated, total
margins for each nation are scaled, allowing the overall number of migrants to and from
all countries to match. This step can radically alter the original totals of reliable reporting
countries. As discussed, Sweden was one such country, which Raymer (2007) estimated
to have a 25% reduction in its total flows. Although the marginal estimates match the
calculated net migration, it appears unrealistic to assume that the marginal totals conform
to a comnsistent definition due to the multiple scaling steps in the estimation of marginal
totals. Inconsistent estimates might also derive from the estimation of the e;; term, which
is formed through a mixture of receiving and sending reported data with a variety of
definitions and data collection methods.

The reliability of estimates from both frameworks can be tentatively compared with
values and distributions of good quality reported data. Poulain and Dal (2007) estimated
migration flows between 28 European nations in 2004, (for the paper in 2008 no estimates
were given). For countries that were considered to have good quality data, such as Sweden,
estimates tended to be larger than receiving and sending reported data. These differences
are constant (and in most cases smaller) for flows to and from non-refereed countries due
to estimated correction factors close to unity. For flows between non-refereed countries
estimates tended to be further from the reported (stock) data and on some occasions are
reliant on very large correction factors. Consequently, unreliable estimates for originally
missing data can appear when applied to different data. As discussed previously, the
estimates from the framework of Raymer (2007) appeared unreliable when distributions
are compared with good quality data. A further measure of reliability could be undertaken
by comparing fully estimated migration flows tables across time. Correction factors for
refereed countries by Poulain and Dal (2008) are estimated in the succeeding chapter, and
demonstrate some stability across time. Neither frameworks considered in this chapter
allow estimates of precision measures to be obtained.

The methodology in both frameworks can be compared with respect to the use of model
based imputation methods, allowance for expert opinion, replicability for other users and
flexibility to alternative data from different countries and time periods. The constrained
optimization procedure imputes missing data in an ad-hoc manner, relying on alternative
data to be scaled according to correction factor estimates. In the multiplicative component
framework, missing components are interpolated from simple model based on available
data. Consequently, it is assumed that they share the same relationship as the observed
data. More considered methods exist in statistics, such as the Expectation-Maximization
algorithm of Dempster et al. (1977), which can more fully account for incomplete data.
This algorithm can be applied in either methodology to estimate missing data based on
models for the scaled flow data from refereed countries or for components of a migration
table. The former of these will be further studied in Chapter 5 of this thesis. An alternative

statistical approach to handle missing data could be undertaken in the Bayesian paradigm.
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Brierley et al. (2008) conducted such a study with direct parallels to the multiplicative
component model, using the same original data and marginal totals (which were fixed)
as Raymer (2007). Discussion of this method is left to the concluding chapter of this
thesis, as a concentration on harmonizing and modelling incomplete data in a Frequentist
approach in the remainder of this thesis is taken.

The constrained optimization framework allows a small degree of expert opinion in the
selection of refereed countries. Poulain (1999) selected refereed countries from an analysis
of the stability of correction factor estimates when systematically excluding data sources.
No explicit level of stability is mentioned and hence some level of expert opinion can be
used to determine which countries can be used to calculate refereed correction factors.
This feature is expanded further in the next chapter, to harmonize data that is reported
to be of good quality in recent literature on international migration flow statistics. The
approach of Raymer (2007) allows expert opinion to be used in the selection of covariates
in models for the interpolation of components for missing data. Brierley et al. (2008)
demonstrated that in a Bayesian framework, expert opinion can be fully incorporated to
alter estimates that are believed to be from unreliable data sources.

The replicability of the methodology of Poulain and Dal (2008) is considerably better
than that of model component modelling. As previously mentioned a S-Plus function was
created to quickly estimate correction factors and estimated flow tables. The methodol-
ogy of Raymer (2007) was more complicated, with multiple stages of data manipulations,
interpolation and model fitting. These can cause errors in the implementation of the frame-
work leading to different estimates. Unlike the constrained optimization framework, the
models to interpolate missing margins and interaction components require extra covariate
information, adding further complication. The Raymer and Abel (2008) extension of this
framework adds further stages, some of which are ad-hoc and dependent on estimates from
previous stages.

Both frameworks discussed in this chapter concentrated on European data. The frame-
work of Poulain and Dal (2008) had been previously applied (with alternative distance
functions and constraints) to alternative migration tables of different sizes and in time
periods. Due to the ad-hoc nature of estimating missing cell values it is dependent on
the availability other sources of migration data, such as stocks. These may not always be
available and up to date, which could severely affect the reliability of final estimates. The
model component framework has also been applied to larger European migration tables
over a series of time periods by Raymer (2008) and Raymer and Abel (2008). Both of
these studies included a greater number of covariates (allowed by working with a larger
table) to explain and interpolate missing values for marginal totals and flows to the rest of
the world. Additional models were also built on a ad-hoc basis to aid the fit of interaction
components for problematic cells.

In conclusion, two very different frameworks exist to estimate international migration
flow tables. Both fail to satisfactorily address all the criteria for migration flow table esti-

mation methodologies set out in Table 1.1. However, some elements of the methodologies
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provide useful guidance that could be used in a more comprehensive framework. Most
notable was the underlying concept introduced by Poulain (1993) of estimating correction
factors to adjust reported data to a consistent level. This was based on an underlying
assumption that differences in the reported counts can be considered as non-random mea-
sures of the discordance in the collection and measurement of migration flows between
reliable data sources. The following chapter will explore this aspect further, investigating
different distance measures, the use of alternative constraints and using current research
into data sources to further improve the comparability of international migration flow
data.
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Chapter 4

Overcoming Inconsistencies in

International Migration Flow
Tables

4.1 Introduction

The lack of comparability in international migration data can be traced to the multi-
dimensional nature of migration (Goldstein, 1976). As a result, national statistics insti-
tutes have developed measures of migration solely suitable to their domestic priorities.
When international migration data is compared across multiple countries in a single time
period, inconsistencies in reported flow values between data sources are apparent. Con-
strained optimization studies such as Poulain (1993) attempt to harmonize international
flow data by estimating correction factors to adjust reported data to a consistent level,
where differences in the reported counts are considered as non-random measures of the
discordance in the collection and measurement of migration by national statistics insti-
tutes.

The analysis and application of constrained optimization methods for international
migration flow data has been predominantly limited to a single time period offering only
a loose guidance on its application and neglecting the underlying causes of the incompat-
ibility in international migration flow data. The application of alternative distance and
constraint functions has remained partly ignored, driven by concerns of estimating missing
values for international migration flow tables of comparable data. This chapter concen-
trates solely on inconsistent data issues to develop a methodology for the estimation of
consistent migration flow data that are comparable across multiple nations. Included in
the study is an exploration of alternative distance and constraint functions. These will
be analyzed for reported flows over a series of time periods to allow added information to
inform the estimation of correction factors.

This chapter commences by presenting a series of migration flow tables for comparisons
over time for 15 countries of the EU before the expansion of May 2004 (EU15). Next,

expert opinion on the characteristics of data from these countries and levels of counts of
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migrations with unknown origins or destinations are presented. These allow a clearer ex-
planation of the differences in sending and receiving data and help in determining where
reported counts can be scaled to a comparable level. For some reported data, expert
opinion indicates that counts are inaccurate and hence a scaling of their values is not
considered as it would accentuate errors already present. The following section intro-
duces a methodology for creating comparable estimates from reliable data sources using
constrained optimization routines in statistical software. These allow the estimation of
correction factors to be easily obtained and with a great deal of flexibility in the speci-
fication of distance and constraint functions. This methodology is applied to a series of
international migration flow tables to estimate alternative sets of correction factors for
EU15 nations in two stages. First, correction factors for different constraint sets are esti-
mated using the same distance measures. Second, correction factors for a range of distance
measures on the same set of constraints are estimated. Comparing estimates across time,
the robustness of harmonization methods to changes in migration flows are assessed, under
the assumption that the sources of inconsistencies have remained the same. In the final
section, a generalization of the distance measures and constraint sets over time is carried
out to enable a larger number of observations to be used in calculating final estimates
of correction factors. This yields an incomplete set of international migration flow tables
which will facilitate statistical modelling in following chapters, allowing imputations for

missing flow values to be obtained for a complete harmonized table.

4.2 International Migration Flow Data for the EU15

International migration flow data may be obtained from a number of international orga-
nizations. One of the most comprehensive collections is provided by Eurostat. Data are
collected from individual national statistics institutes through a questionnaire on interna-
tional migration statistics sent annually to 55 countries, organized by five organizations:
Eurostat, United Nations Statistical Division, United Nations Economic Commission for
Europe, Council of Europe (CoE) and International Labour Organization. Eurostat pro-
cesses and disseminates data for the 37 European participants via their official data base,
New Cronos which is available online. The reported counts of these flows can also be
found in publications of individual national statistics institutes, the CoE and Systéme
d’Observation Permanente des MIgrations (SOPEMI) reports of the Organization for Eco-
nomic Co-operation and Development (OECD). Values of the same flows may not always
be the same in all international organization data bases. The cause of this difference is
not known due to insufficient documentation (Kupiszewska and Nowok, 2008).

The Eurostat data for flows between EU15 nations in years 2002 to 2006 was obtained
from the New Cronos web site (http://epp.eurostat.ec.europa.eu, accessed March
2008). This set of countries was chosen due to the availability of literature on international

migration statistics provided by national statistics institutes. In addition, a wide variety
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of the causes of incomparability in flow data, which will be discussed in the next section,
are present.

Reported values can be represented in two separate migration tables similar to Table
3.1 or as double entry tables shown in UN (1976), Kelly (1987) or Nowok et al. (2006).
For the 2006 data, a double entry matrix is displayed in Table 4.1, where origins are
shown on the vertical axis and destinations on the horizontal axis. Countries are labelled
according to three-letter classification by the International Standardization Organization
(ISO). Each cell comprises of two counts when both are available. The top values are
collected by the receiving destination countries and hence are read vertically. In the same
manner, the bottom value in each cell contains the origin reported values, as collected
by the sending nations, forming a horizontal pattern. As noted in the previous chapter,
reported counts may be very similar, such as the flow from Austria to the Netherlands, or
very different, such as the flow from Austria to Germany. These altering differences give
a confusing impression as to which data source, if any, to be preferred.

When data is collected over time a graphical representation of cell values allows an
easier viewing of migration levels and data issues. Plots of a series of migration flow tables
for the EU15 are shown on a logarithmic scale in Figure 4.1. Red lines represent receiving
country data and blue lines sending country data. Origins are shown on the vertical axis
and destinations on the horizontal axis.

When compared over time it is evident that some nations such as Belgium or France
never provide receiving data, and hence no red line appears in their columns. Other nations
such as Greece or Portugal never provide sending data, and hence no blue line appears
in their rows. Ireland consistently provides data only to Great Britain, with exception of
the last time period. In origin-destination cells where both sets of data are reported, the
lines are fairly parallel, a feature illustrated in Kupiszewska and Nowok (2008) for selected
flows between nations with good quality data collection procedures. Non-parallel lines are
visible for reported flows to and from some nations such as Great Britain, where British
counts tend to be more volatile than their reporting partners. For larger flows, such as
German and Spanish flows to and from Great Britain, British data are more volatile when
plotted on a non-logarithmic scale.

Reported flow values tend to be highest to and from of countries with the largest
populations such as Germany, Great Britain, France, Italy and Spain. Values between
neighbouring countries, such as Netherlands and Belgium or Germany and Austria, tend
to be larger than other values in the same row or column. Of the 1050 cells (corresponding
to a 15 x 15 non-diagonal mobility table over 5 years), 870 had values from at least one
reporting partner. In 332 cells, data from both sending and receiving countries were
available for which none reported the same value. In 225 cells there were no reported
values from either country. For 20 origin-destination combinations (out of a possible 210)
there is no data reported in any year.

A plot of the counts when both nations report data is shown in Figure 4.2. On the

right hand panel are counts as given in Figure 4.1, whilst on the left hand panel the counts
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Figure 4.1: Reported Migration Counts (000’s) for each available Origin-Destination Com-
bination of EU15, 2002-2006 of the Logarithmic Axis.
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Figure 4.2: Sending and Receiving Migration Flow Counts (left) and Logarithm of Counts
(right) for EU15 Countries, 2002-2006.
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in thousands are displayed. These plots demonstrate the correlation between sending and
receiving data when both are reported. If all data sources produced comparable data (from
identical data collection system and measurement) all points would lie on the solid diagonal
line where sender and reported values are equal. The logarithmic plot demonstrates that
the distance from this equality is not necessarily influenced by the size of the reported
flows when a transformation of the reported data is taken.

Some of the smallest differences occur for flows between the Nordic nations of Sweden,
Finland and Denmark. These nations all use registration systems to collect migration data.
An exchange system is in place for the reporting of movements between Nordic countries,
as migrants are only registered in one country at a time (Herm, 2006b). Consequently,
data for the number of migrants sent from one of these nations is recorded by the country
of destination, rather than origin. Reported counts of migrants sent between Nordic
countries, as collected by the sending data source, are unavailable. Differences in these
counts are attributed to dual citizens and time delays for migrations occurring at the end
of the year (Nowok et al., 2006).

4.2.1 Ratings of Migration Data for EU15

In order to obtain a comparison of the European migration flow data, Erf (2007) provided

subjective judgements by three characteristics: definitions of migration, measurement
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Table 4.2: Erf (2007) Ratings of Migration Data for EU15 from 2002 to 2006
Country Receiving Sending

Timing Completeness Accuracy Timing Completeness Accuracy

AUT 3 4 4 3 4 4
BEL 3 9 9 3 9 9
DNK  2(3) 4(4) A(4) 3 4 4
FIN 2(4) 4(4) A(4) 4 4 4
FRA 3 2 9

DEU 2 4 4 2 4 4
GRC

IRL 2 2 2 2 2 2
ITA 2(3) 3(3) 3(3) 4 3 3
LUX 2 3 3 2 3 3
NLD 3 4 4 4 4 4
PRT 4 9 9 3 2 2
ESP 2 3 3 2 3 3
SWE 4 4 4 4 4 4
GBR 4 2 2 4 2 2

0:Worst 1:Worse 2:Insufficient 3:Reasonable 4:Good 5:Excellent 9:Unknown

Scores in parentheses are for non-national, when national and non-national data are collected differently.

systems and intended coverage. For member nations of the EU15, ratings for both receiving
and sending data between 2001 and 2006 are shown in Table 4.2. Ratings based on timing
were judged by the degree of agreement with a twelve month timing criteria. This definition
is recommended by the United Nations (UN) to reflect long term migrants who have
changed their usual country of residence (UN, 1998). Ratings of completeness are based
on the degree of under-registration believed to be present in the measurement systems
used. Scores for accuracy are based on the coverage of the target population and the
collection, production and dissemination of data. Values for completeness and accuracy
measurements were judged by considering the data sources used and experience with vital
statistics. For most of the EU15 nations scores on the completeness and accuracy of
receiving and sending data were the same. Greece fails to provide any receiving flow data
and both France and Greece do not publish any sending migration data throughout the
time period. For Denmark, Finland and Italy receiving data are collected differently for
nationals and non-nationals, where the ratings for non-nationals are given in parentheses.

All scores are constant over the 2002-2006 time period.

4.2.2 Data Dissemination in the EU15

Plots of the available counts of migrants with unknown origins or destinations. as a
proportion of total sending and receiving countries, are shown in Figure 4.3 for EU15

nations between 2002 and 2006. Totals for this calculation were given by the New Cronos
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Figure 4.3: Proportion of Migrant Origins or Destinations Unknown for Available Receiv-
ing and Sending Data of EU15 in 2002-2006
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data base, which correspond to totals of all flows (including the counts of migrants with
unknown origins or destinations). As with the flow data, unknown counts are reported
according to local definitions and data collection methods. With the exception of Lux-
embourg, these plots demonstrate that sending data tend to have a lower proportion of
unknown destinations in comparison with the unknown origins in receiving data. For some
countries, such as Italy, Great Britain and Finland, the amount of unknown counts was
small, or zero. Larger percentages are found for sending data of Luxembourg, Spain and
the Netherlands. For Luxembourg, the large levels of unknowns are created from the non-
reporting of departures by emigrants and the non-collection of country of origin by local
municipalities (from which national level data is aggregated Perrin and Poulain (2006a)).
For Spanish data, there is a notable change in the level of unknowns between 2002 and
2003, with an increase from 69 (and 6) to 202,256 (and 38,339) received migrants (and sent
respectively). This pattern might be related to a switch in the data sources used to supply
the data requested by the Joint Statistical Questionnaire on International Migration in
2001 (Breem and Thierry, 2006b). In the Netherlands, emigrants have to deregister from
their municipal data base when they leave the country with the intention to stay abroad

for at least eight of the forthcoming twelve months. When people do not declare their
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departure, the register is later corrected without personal notification. For such adminis-
trative corrections, the country of destination is not known, creating the large unknown
counts (Erf et al., 2006a).

4.3 Methodology for Creating Comparable Data from Re-

liable Data Sources

In this section, a general methodology that allows the estimation of incomplete inter-
national migration flow tables is described. In order to provide comparable estimates,
inconsistencies in reported migration counts from differences in the production and dis-

semination, are addressed. This is undertaken in two stages
(a) correction for unknown counts,
(b) harmonization of reliable data,

Each stage is outlined in turn.

4.3.1 Counts of Unknown Migrant Origins and Destinations

As previously discussed, international migration flow data are accompanied by a count
of migrants with unknown origins or destinations. If we let migration flow tables of such
data be represented by array n;;i, where ¢ indicates migrant origin, j indicates migrant
destination and k& = 1,2 indicates receiving and sending flow tables respectively. For the
receiving flow table there exists a row n,;; which contains the counts of unknown flows
collected in destination j. In the same respect, the sending flow table there exists a n;y,o
which contains the counts of unknown flows collected in origin 7. In order to account for
these unknowns and thus avoiding bias towards data sources with no unknowns, corrected

migration flows, m;;; can be derived as follows,

1M1
mij1 = Nij1 + e
Ni+1 — Mgl
Nij2Miu2
Mijo = Nij2 + —=E ) (4.1)
Nyj2 — Nju2

where the index 4, j = 4+ denotes total flows including unknowns counts. This allocation
assumes that unknown counts are missing at random among all international origins or
destinations. If a certain type of migration, such as inter-continental moves, are more likely
to be captured and reported in the data collection dissemination then this allocation would

discriminate against more local moves whose origin or destination may not be known.

4.3.2 Constrained Optimization

Differences in counts between nations with better quality data can be considered as fixed,
where data production techniques do change over time. Thus, a distance measure of these

differences represents the non-random discordance in the collection and measurement of
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migration flows between any two national statistics institutes. Poulain (1993) took a
similar view in his attempts to harmonize migration data, whereby all reliable data were
considered to be influenced by some data source specific correction factor. As outlined
in the previous chapter, correction factors can be estimated to minimize these distances
using a constrained optimization method. Correction factors can then be used to scale
reported counts to a comparable level.

In this chapter, the constrained optimization method is extended to alternative dis-
tance measures, constraint sets and generalized across a series of migration tables. This

is implemented in five stages
(a) select reliable data and constraints on the basis of expert opinion,
(b) estimate correction factors for different distance measures and time periods,

(c) select a distance measure associated with the set of correction factors that are most

stable over time,

(d) generalize the distance measure to estimate a single correction factor for each data

source over the entire period,
(e) use the correction factors to scale reported data.

Each stage is discussed in turn.

Data sources for which distances can be considered as fixed are selected using expert
opinion. In this chapter, the rankings by characteristics outlined in Table 4.2 are used
to select data sources that provide reliable reported counts. When data sources are con-
sidered insufficient or data are not available, reported counts are ignored. This selection
criteria provides a set of migration tables (that may be non-square) of reliable sending and
receiving migration flow data. Expert opinion is also used to select a correction factor(s)
for at least one of the reliable data sources which will be constrained to equal one. This
allows other correction factors to be interpreted as the effect of different measurement and
collection methods in each data source with reference to the constrained data source(s).

Estimates of non-constrained correction factors are determined using constrained op-
timization routines in statistical software. These allow a great deal of flexibility in the
estimation of correction factors for a range of distance measures and constraint sets. In
this chapter, the nlminb function in S-Plus 6.2 is used. This routine can find a local
minimum for a twice differentiable function within a multi-dimensional bounded param-
eter space. Required arguments for the procedure are the function to be minimized and
suitable starting values for the parameters. If unrealistic starting values are used or the
function is complex, the solution may not be correctly determined. Gradient and Hes-
sian functions may also be considered by the routine to obtain solutions quicker. When
derivative functions are not available, the nlminb routine implements a quasi-Newton op-
timizer to find parameter values such that the given function is minimized. Alternative
routines such as fmincon in Matlab also employ a quasi-Newton optimizer for constrained

minimizations with multiple parameters.
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A quasi-Newton optimizer operates in a similar manner to the Newton optimizer of
(2.42), discussed in Chapter 2. When the gradient v, and Hessian, H, are not known, initial
values are calculated numerically. Approximations of v are taken using finite differencing.
Algorithms also exist to approximate the Hessian matrix and its inverses when unknown,
such as the BHHH routine of Berndt (1974) (see Nocedal and Wright (1999, p194-210) or
Skrondal and Rabe-Hesketh (2004, p181-2) for more details). These algorithms allow the
quasi-Newton optimizer to modify approximations of H in each iteration by combining
the most recently observed v and H with existing knowledge embedded in the current
Hessian approximation.

Correction factors estimated from alternative methods, such as the poulain and
poulain.direct functions discussed in the last chapter, can be compared with the nlminb
function. In this chapter, this comparison is undertaken by minimizing the Chi-Squared
distance function of (3.3) using the nlminb routine. In addition, different constraint sets
and the effect of ignoring data exchanges, such as those between Nordic countries, are
analyzed. These can provide a further insight on the effect of multiple constraints and
optimization procedures on the estimates of correction factors.

Comparisons between sets of estimated correction factors can be drawn from several
sources. Plots of correction factors over time allow a clear illustration of the effect of
different distance functions, estimation methods and constraints. As differences between
reliable reported flow data are considered fixed over time, the most effective distance
measure should provide the same correction factors in each year. This stability can be
empirically summarized by considering each set of correction factors 6, = (614, . . ., Hpt)T =
(log(rs), (log(s¢))T for time period ¢. The variance within correction factors over time can

thus be estimated as,
D)2
> i1 2t (Bar — 0a)
n—p
where n is the total number of correction factors over all time periods. Due to the asym-

) (4.2)

metry of scaling effects, the logarithmic transformation of correction factors are taken in
the estimation of (4.2). This allows the variation between larger correction factors to have
an equal effect as smaller correction factors.

As definitions and collection methods of all the reported data used in the estimation
are assumed fixed over time, the distance measure that possesses the smallest variation
can be regarded as the best measure for a constrained optimization of migration flow
data. For such a measure, a set of single correction factors for each data source over an
entire series of tables can be estimated. To estimate these correction factors, consider a
series of double entry migration flow tables noted as m;;;, where 7 indicates referee origin
countries, j indicates referee destination countries, ¢ the time period and k = 1, 2 indicates
receiving and sending flow tables respectively. Each column of the receiving data table,
m;j¢1 can be assumed to be influenced by some correction factor r; that scales the value
of reported counts based on the collection methods and definitions used in the respective

data sources. In the same respect, the sending table m;j;2 is influenced by row factors s;.
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Estimates of these correction factors can be derived from a constrained optimization on
the selected distance measures generalized over the entire array of reliable reported data.

Final correction factors are used to scale reported data as such,

T5MyG5¢1 if T and mijt1 exist at time t,
Yijt = § simgjr2  if s; and myj0 exist at time t and r; does not, (4.3)

Zijt otherwise,

where z;;; represents a subset of y;;; that have missing values depending on the lack
of corresponding correction factors. The application of correction factors in (4.3) is an
alternative strategy to the approach suggested by Poulain (1999) who took an average of
the scaled data. The correction of receiving data, when sending data are available, will
result in the distribution across a given column of migration flow table being preserved
to that of the reliable reported data. This preference is undertaken for two reasons.
First, receiving data is often believed to be of better quality (Erf, 2007; Raymer, 2007).
Second, receiving data from some countries are highly regarded, and hence an alteration
in their value might lead to implausible estimates. Scaled sending data is used when no
reliable receiving data is available. Consequently, an altered distribution of flows will be
estimated across a row when compared with the original data. This alteration will be to
greater effect than under an averaging of corrected flows, but will provide estimates for

counts in destinations where no reliable receiving data are available.

4.4 Estimating Comparable Data from Reliable Data Sources

In order to estimate comparable data from reliable data sources, reported counts are ad-
justed for unknowns produced in the dissemination of data by national statistics institutes.
Non-linear optimization routines are then applied to the EU15 data. This is undertaken
in two stages. First, different constraint sets and estimation methods are tested using the
same distance measures. This provides a better understanding of the effect of the nlminb
function in comparison with other constrained optimization techniques presented in the
previous chapter. Second, a range of distance measures on the same set of constraints
(suggested by data rankings) are estimated. Comparing results over time allows the ro-
bustness of distance measures to changes in migration flows to be determined from the

within variance statistic of (4.2).

4.4.1 Correction for Unknown Counts

All unknown counts, displayed in Figure 4.3 are distributed to origins and destinations
using the equations in (4.1). This reduces the difference between some reported counts,
such as flows into Luxembourg, where reported receiving data are persistently lower than
sending data of corresponding origin countries. For Spanish data, the addition of greater
unknown counts in years previous to 2002 increased counts to similar levels as the 2002

counts.
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4.4.2 Comparison of Estimation Methods and Constraint Sets

The analysis of methods to estimate correction factors to minimize the Chi-Squared dis-
tance function was undertaken for reliable EU15 migration flow data in Figure 4.1. This
included data from all sources ranked with scores of at least reasonable, for completeness
and accuracy characteristics, in Table 4.2. Since not all data, from sources considered rea-
sonable, were available for all time periods the size of tables and consequently the number
of estimated correction factors, changed for each time period. To compare estimation

methods three sets of correction factors were estimated using

(a) A total constraint and normalization to Swedish receiving data proposed by Poulain

and Dal (2008) using the poulain function,

(b) A single constraint to Swedish receiving data using the poulain.direct function

presented in the previous chapter,
(c) A single constraint on Swedish receiving data estimated using the nlminb function.

To compare constraint sets and the effect of ignoring data exchanges, estimates from (c)

can be compared with correction factors estimated using

(d) Multiple constraints on correction factors corresponding to data sources ranked with
scores of good for timing, completeness and accuracy by Erf (2007) estimated using

the nlminb function,
(e) A repeat of (d), excluding data for flows between Nordic countries.

For the last three applications (all of which use the nlminb function) lower and upper
bounds were defined for all parameters to be between 0.1 and 10 with the exception of
correction factors with constraints where both bounds were set to 1.0. All initial parameter
estimates for the function were set to 1.0. The S-Plus/R Chi-Squared distance function is
shown in the Appendix.

Correction factors from the different estimation methods were obtained in each time
period. In all cases the function successfully converged to a minimal distance value.
Comparisons of estimated values are displayed in Figure 4.4. These plots illustrated some
clear differences in correction factors resulting from different estimation techniques.

Estimated correction factors for Swedish receiving data from all estimation methods are
unity and hence their plots overlap. Estimates from the normalization to Swedish receiving
data proposed by Poulain and Dal (2008) (calculated using the poulain function) are
comparatively higher than all other methods illustrated. This is caused by the constraint
on the summation of reported values which inflates correction factors to levels artificially
high to meet the total constraint, before the normalization to Swedish receiving data is
taken. Consequently, the minimal Chi-Squared distance in each time period is often higher
than alternative methods, as shown in Table 4.3. Estimates from the poulain.direct
function (shown by the green line of Figure 4.4), is similar to estimates from the nlminb

function (shown by the blue line). In the latter, the within data source variance (provided
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Figure 4.4: Receiving (r;) and Sending (s;) Correction Factors from 2002-2006 using the

Chi-Squared Distance Function
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in Table 4.3) is lower whilst correction factors tend to be higher. These differences are
the result of two features. First, the direct method relies upon the solve function of
S-Plus, and hence require square matrices during the inversion process, unlike the non-
linear minimization function. As a result, this method is unable to provide correction
factor estimates for Luxembourg’s sending data in 2006 as no receiving data is reported.
This results in less distance measures considered in the poulain.direct function. Second,
the quasi-Newton method considers an estimate of the second differential of the distance
function in the estimation of correction factors, unlike the method of Lagrange Multipliers.
This allows estimates of correction factors to fully consider the curvature of distance
function when searching for minimal values.

In order to compare different constraint sets, multiple correction factors for Swedish,
Finnish and Dutch sending data (as well as Swedish receiving data), were all fixed to 1.0 in
the nlminb routine, as all data sources were given ratings of good for timing, completeness
and accuracy by Erf (2007) (Table 4.2). The multiple constraints lead to a reduction in the
variance and higher minimum distances in comparison to the correction factors estimated

with a single constraint on Swedish receiving data. Higher minimum values are caused
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Table 4.3: Summary of Constrained Optimization Methods on the Chi-Squared Distance

Function
Constraints Estimation Distance at Minimum Variance
2002 2003 2004 2005 2006
Single poulain 3754 5122 3236 3252 2554 0.0850
Single poulain.direct 2240 2754 2141 2239 1951 0.1376
Single nlminb 2016 2468 1887 1965 2075 0.1154
Multiple nlminb 3827 5095 3706 3596 3489 0.0824
Multiple* nlminb 3167 4494 3282 3101 3087 0.0868

*Excluding Inter-Nordic Flows

by correction factors for Dutch and Swedish sending data becoming constrained to unity,
where previously their values were below one.

The removal of distance measures, derived from inter-Nordic data leads to a small
increase of the variance in correction factors. Correction factors with and without these
measures were very similar with the exception of Danish and Finnish (receiving) data for
which correction factors were estimated further from unity when inter-nordic flows where
ignored. Minimal distance measures (in Table 4.3) with multiple constraints were lower in
most years when inter-Nordic flows were dropped. This is due to fewer observed measures

considered in the distance function.

4.4.3 Comparison of Distance Measures

Alternative distance functions, to the Chi-Squared distance measure, could provide more
stable correction factors over time, and hence better reflect the assumption that data
collection methods and definitions remain constant. The range of distance functions con-

sidered (f(rj,si|mji)) for the routine are shown Table 4.4.

Table 4.4: Alternative Distance Metrics and Estimated Variance from 2002-2006 Data

Distance f(rj, silmij) Variance

Manhattan Z” 7M1 — simja| 0.0877
Euclidean (Zi,j |ijij1 - simij2|2)% 0.0944
Canberra 37, % 0.0740

Clark >, i —simigel 0.0892

(rjmij1+simize)?

The first two measures considered were the Manhattan and Euclidean measures, (the

latter equivalent to the Euclidean distance of (3.2) used by Poulain (1993)). The general
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form of these measures are also known as Minkowski distance of order p or p-norm distance,

n

(Z |rjmijt — simija|P) Y/ (4.4)

i=1
where p = 1 or p = 2 for a Manhattan and Euclidean distances respectively (Deza and
Deza, 2006, p126). Both provide equal weighting for each reported flow, and hence an
optimization procedure depends solely on minimizing all distances regardless of the flow
sizes. The third and fourth distance functions are based on the Canberra and Clark
measures (Lance and Williams, 1967). These use weightings to allow differences to be

measured relative to the scaled reported data.

Figure 4.5: Receiving (r;) and Sending (s;) Correction Factors, 2002-2006 for Different

Distance Functions
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Estimates for the correction factors from these measures in each time period are given
in Figure 4.5. As with the final estimates of correction factors in the previous subsection,
these were estimated on tables of reliable flows (adjusted for unknown counts) between
2002 and 2006, ignoring inter-Nordic data and using the nlminb routine. In all cases the
function successfully converged to a minimal distance value.

For the first two measures (orange and green lines respectively), estimates tend to
have similar values for each data source as they provided equal weighting for each double-

counted cell in each migration flow table. The last two measures (light and navy blue) also
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resemble each other and on occasions differ from the previous two measures, as demon-
strated by higher estimates in Luxembourg’s receiving data correction factors. This was
due to the weighting that both measures employ, allowing differences to be compared
relative to the scaled reported data.

With a few exceptions, estimated correction factors tend to be similar over time and
consistently greater or less than one. In a few cases, such as sending data from Luxem-
bourg or Austria, the choice of distance measures would not alter the direction of scaling.
Spanish estimates fluctuate greatly in comparison with others, with values for most dis-
tance measures falling for 2003. This might be related to the changes in the level of
unknowns discussed earlier.

For comparative purposes, the correction factors from the Chi-Squared distance func-
tion in Figure 4.4 are also plotted using the dashed red line. The estimates from this
distance measure are regularly between the weighted and non-weighted versions, as the
denominator is the summation of unweighed flows. Its variance, shown in Table 4.3 is sim-
ilar to estimates from the Manhattan distance function. The smallest variation over time

in correction factors, calculated using Equation (4.2), is that of the Canberra measure.

4.4.4 Constrained Optimization Over Time

For the distance measure associated with the smallest variance, a new set of time constant
correction factors (r,s) are estimated. This is undertaken by generalizing the Canberra
distance function (which had the smallest variation) for an array of migration tables over

time,

TCssimgn) = 3 i sl (4.5)
Thus estimates are based on a number of distance measures for each origin-destination
combinations over a series of annual flow tables. This optimization was undertaken with
constraints on correction factors for data rated as good by Erf (2007). As in the previous
section, unknown counts were used to adjust reported data, ignoring inter-Nordic flows
and using the nlminb function. The resulting estimates of correction factors are given in
Table 4.5. Comparisons of these values with past estimated correction factors estimates are
difficult due to different constraint systems used. However, their values can be considered
in general terms by their relation to unity. Correction factors greater than one result in an
increased scaling of reported counts, whereas values lower than one result in a decreased
scaling. Past estimated correction factors for the countries in Table 4.5, such as from
Poulain (1993) or Poulain and Dal (2008) have similar effects. Notable exceptions are the
values of Luxembourg for which Poulain and Dal (2008) estimated receiving and sending
correction factors to be 0.991 and 1.194. These differences may be explained by the
allocation of counts of unknown origin and destination for each data source previous to

the estimation of correction factors in Table 4.5. Differences were also found for Austrian

data where sending and receiving correction factors where estimated to be 1.039 and 1.694
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Table 4.5: Estimated Correction Factors for the Series of Migration Tables

Country T S;

AUT 0.6926 0.7594
DNK 0.6357 0.5751

FIN 1.8096 1.0000
DEU 0.5637 0.7067
ITA 1.6502 2.8339

LUX 1.9691 0.6665
NLD 0.8227 1.0000
ESP 0.7715 2.6730
SWE 1.0000 1.0000

The correction factors were applied to existing data to create a series of migration
flow tables using (4.3). The resulting harmonized flow values, for the data presented
in Figure 4.2, are shown in Figure 4.6. The black line shows the harmonized values of
yijt and red and blue lines the receiving and sending data, adjusted for unknown counts.
For selected origin-destination pairs, receiving values are scaled by their country specific
correction factors, r;, when available. An example of this is shown by the reduction in
German destination values, regardless of sending values, where a constant difference in
the harmonized and receiving values is visible. For cells in a flow table with no receiving
correction factor but in rows (from origins) with a sending correction factor, an scaling
of s; was made. An example of this process is shown for harmonized data for flows from
Germany which take the same pattern as German sending data only in destinations where
no receiving correction factors are present (such as to Great Britain). All other reported
data is ignored, hence no black line is shown in cells such as Belgium-Great Britain as the
only data available are considered unreliable.

For 2006, the estimated migration flow table of harmonized data are shown in Table
4.6. In contrast to the original reported double entry table for the same year in Table
4.1, only one value is estimated for each cell. For flows to and from countries that had
correction factors constrained to unity, values are the same or have small differences from

the allocation of unknown flows.

4.5 Summary and Conclusion

In this chapter a methodology for the harmonization of data for international migration
flows tables was outlined. It commenced by considering a set of tables over time, with
adjustments to reported data for flow values that may be reported differently through data
exchanges and data dissemination problems. Comparisons of constrained optimization
methods for international migration flow data was then analyzed across time. This was

undertaken for data considered by experts to be of a reasonable quality, and resulted in
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Figure 4.6: Harmonized and Reported Migration Counts (000’s) for each available Origin-
Destination Combination of EU15, 2002-2006.
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fairly stable correction factor estimates between each time period. The Canberra distance
measure was identified as having the lowest variance across time periods, and thus was
generalized for the calculation of a single correction factor for each data set over a series
of migration flow tables. These factors were used to scale a series of migration data that
experts believed to be of reasonable quality at a harmonized level.

The constrained optimization techniques used in this chapter estimated an incomplete
set of data that can be used within an overall methodology for estimating international
migration flow tables of comparable data. In reference to the desirable criteria in Table
1.1, estimates can be considered consistent and reliable. Data sources that were ranked
with scores of good for timing, completeness and accuracy by Erf (2007) had their cor-
rection factors constrained to unity. The remaining correction factors were applied to
reported flows to allow scalings in their values towards the levels in the constrained data
sources. Reliability in some data sources was ensured by preserving the original receiving
data distributions of reasonable data and constraining good data. Other desirable criteria
suggested in Table 1.1 for the estimation of international migration flow tables of compa-
rable data, namely, completeness and an associated precision measure, were not obtained
in this chapter. However, these criteria will be addressed in the next two chapters of this
thesis.

The methodology presented allows expert opinion to determine which data sources can
be considered of reasonable quality and which should be ignored and treated as missing.
Expert opinion may also help in the treatment of counts that have an unknown origin or
destination, as will be discussed later in this section. The methodology can be relatively
easily replicated. Alternative routines such as fmincon in Matlab produced very similar
results to those from S-Plus presented in Table 4.4. The portability of the methodology
to different countries is dependent on the availability of reliable data and expert opinions
that are comparable over multiple data sources.

The harmonization methodology in this chapter relies on a number of assumptions.
First, prior to the application of a constrained optimization procedure, counts of migrants
with unknown origins or destinations were distributed evenly across all countries. This
procedure assumes that the location of the future or past residence is independent of
the missing process. This could potentially be untrue in some countries, where counts
from or to origins or destinations might be more likely to be unavailable than others.
Further expert opinion on data sources could help avoid such an issue. Second, constraints
were placed on sending data with the assumption that a ranking score of good for all
data characteristics is the same as a ranking of good for receiving data. However, it is
generally considered that receiving data is of a better quality than sending data due to the
difficulties in tracking migrants leaving a destination in comparison to arrivals. Third, it
was assumed that measurement systems in all countries with estimated correction factors
remained unchanged throughout time. In the case of Spain this might have been over
optimistic, as a volatile pattern in the counts of unknown origins or destinations is present.

However, most counts to specific origin and destinations are fairly stable over the time
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period and the literature considered (Breem and Thierry, 2006b) suggests that changes in
the measurement and collection occurred previous to the studied time period.

Future research on the methods used in this chapter may further enhance estimates
and the methodology. Improved correction factors could be obtained using data from a
longer period, such as reported counts previous to 2002. Efforts were made to attain a
longer series of origin-destination flow data collected by Eurostat in the Joint Statistical
Questionnaire on Migration. Problems appeared in the validity of reported sending values
which, when entered in a migration flow table, produced vertical patterns. After corre-
spondence with the Eurostat support office, it was discovered that this unusual pattern
was caused by the deletion of some data. If available, a greater amount of information
could be incorporated into the estimation of correction factors, given the assumption that
migration data collection methods by national statistics institutes remained unchanged.
More data could also be helpful in detecting flows that have large amounts of variation in
comparison with other collection sources. Plots of comparative flows across time, as seen
in Figure 4.1, allowed the easy discovery of some questionable data sources such as those
provided by Great Britain. With a longer series of data these plots could help inform
users as to which data sources are eligible for the estimation of a correction factor to scale
their data. In this chapter, recognition of reliable sources was taken from a single report
of Erf (2007) which created a quantitative representations of data collection techniques.
Further work in this area could have the potential to incorporate such measures into dis-
tance functions. For example, a weighting of distance measures could be implemented to
reflect different timing criteria used in each data source.

The use of non-linear optimization routines in statistical software allowed a great deal of
flexibility to change constraints and distance measures. Plots of correction factors provided
a number of useful indicators to the performance of optimization routines, constraint sets
and the effect of ignoring specific flow values. Further alterations to these manipulations
could be studied such as introducing more realistic bounds for correction factors from
expert opinion. Final estimated correction factors in Table 4.5 differed from previous
estimates from alternative methodologies, although comparisons are difficult to make due
to different constraints and data used. Final receiving correction factors tended to be
lower than those of Poulain and Dal (2008). This is partly driven by the exclusion of
inter-Nordic flows and the lack of a constraint on total flows. If required, correction
factors could be altered either directly through constraints or indirectly though estimation
boundaries. For example, if an expert judges the level of under-counting of receiving data
in Finland, a new constraint, different from one, could be imposed to reflect the missing
percentage. Alternatively, tighter bounds in the parameter space could force estimates
to be in the neighbourhood of those supplied by expert opinion. Routines might also
be easily constrained to harmonize data to an alternative set of countries that may use
different timing criteria in their migration definition, such as a six month definition, as

used by multiple migration data sources in the EU15.
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In conclusion, differences in available migration data from reliable reporting countries
represent a measure of inconsistencies between reporting data sources. By scaling counts
using correction factors, these distances can be minimized resulting in a harmonized data
set. There exist multiple methods to measure these distance and strategies to minimize
their overall levels. In this chapter, a non-linear optimization routine was used which
allows boundaries to be easily set to constrain the parameter estimates. Using sub-tables
composed on reliable data, as informed by expert opinion on various aspects of the data
collection process, correction factors were estimated in multiple time periods. This proved
a useful exercise, allowing the best distance measure to be determined for the estimation
of time constant correction factors across a series of migration tables. After applying
these correction factors the resulting data have the potential to be studied in relation to
covariates factors suggested by international migration literature. As demonstrated in the

next chapter, model based methods can be used to allow imputations for missing data.
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Chapter 5

Estimating Missing Data in
International Migration Flow
Tables

5.1 Introduction

In this chapter, model based imputations for missing data in flow tables are derived.
International migration flow table often contain missing data, creating difficulties in the
analysis of population behaviour and change. Data may be missing for a number of reasons.
First, national statistics institutes in some countries do not provide reported counts due
to the lack of a data collection infrastructure. Second, international migration flow data
tends to be collected to meet a domestic demand. Flows to or from certain countries, that
are not of interest to their governments, might not be measured. Third, some countries
may have insufficient data collection methods to report migration by origin or destination.
For example, in Great Britain the International Passenger Survey (IPS) is used to help
provide international migration flow data. Carried out during border crossings to and
from Great Britain, estimates for the origin or destination or migrants where low volumes
of movements exist are inadequate (Perrin and Poulain, 2006b). Finally, in some years,
migration flow data provided by countries to international organizations (the main source
of international migration flow data for multiple nations) can appear as incomplete. This
can be caused by national statistics institutes not providing, or the organizations not
publishing data, despite collection procedures being in place.

As migration flows can potentially be counted by both sending and receiving coun-
tries incompleteness for some cells in a double entry migration table may not always be
problematic. When data is not collected by one of these sources, the partner country
may provide an adequate estimate for the flow value. If the reporting partner’s data is
believed to be of good quality but uses alternative methods or definitions, there exists the
possibility that estimates can be scaled to a given definitional requirement, as discussed

in the previous chapter.
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Alternative methods to impute missing cell values into international migration flow
tables have been ad-hoc (see for example Raymer (2007) or Poulain and Dal (2007)). Al-
though not without value, there exists a limited amount of research into their theoretical
properties. A more comprehensive understanding of imputations techniques can be ex-
plored using statistical methods based on likelihood theory for analysis with missing data.
One such method is the Expectation-Maximization (EM) algorithm of Dempster et al.
(1977), a general purpose routine for maximum likelihood estimation.

In order to maximize the likelihood, a distributional assumption regarding the data
is required. This typically takes the form of a statistical model which describes the be-
haviour of a random variable, such as a migration flow. Models for migration flow tables
reside predominantly in internal migration research, for which a range of distributional
assumptions have been explored (see, for example, Congdon (1991). This chapter intends
to use similar models for the modelling of incomplete international migration flow tables.
Using covariate information drawn from international migration theory, imputations for
missing data are derived using the EM algorithm.

This chapter commences by reviewing models for population mobility tables, which
have been found to have statistical equivalences to generalized linear models (introduced
in Chapter 2). The following section outlines the EM algorithm. Models are then fitted
by implementing the algorithm on the harmonized migration flows for the EU15 between
2002 and 2006 (see previous chapter) in order to account for the missing data. This new
application of a popular statistical missing data technique allows imputations for missing

cell values often found in international migration flow tables.

5.2 Models for Migration Flow Tables

Flowerdew (1991) outlined two main approaches to the analysis of flow tables that are
commonly used for internal mobility data: the gravity model and the spatial interaction
model. The gravity model approach derives from movements between regions in a similar
manner to particle responses to two gravitational masses, as proposed by Newton in Prin-
cipia Mathematica. Stewart (1941) and Zipf (1942) framed this approach for migration
data, relying on statistical estimation of migration levels, given information on each ori-
gin, destination and a measurement of interactions between them. The spatial interaction
models, associated with Wilson (1970) are based on mathematical algorithms to calibrate
a constrained model to origin and destination totals. There are numerous formulations
of spatial interaction models such as bi-proportional adjustment, information gain mini-
mizing and entropy maximizing which include various constraints and interaction terms
(Willekens, 1983).

Poisson regression models have become a popular method for representing migration
models as they relate gravity and many spatial interaction models in a single compara-
tive framework. Flowerdew (1982) and Willekens (1983) showed that a Poisson regression

model with either row or column dummy covariates are equivalent to an origin or des-

61



tination constrained spatial interaction model, and where both covariates are present, a
doubly constrained spatial interaction is obtained. Such representations, with only cate-
gorical covariates, are also known as log-linear regression models of Birch (1963). When
row or column dummy covariates are not included, but other origin and destination specific
factors are, a gravity model with an assumed Poisson distributed response is represented
(Flowerdew, 1991).

As explained in Chapter 2, Poisson regression models are part of a range of statisti-
cal models known as generalized linear models of Nelder and Wedderburn (1972), which
link together a number of models that relate a random response variable to a systematic
linear predictor. This statistical formulation of a migration table has several important
advantages over more traditional approaches. Willekens (1983) noted that Poisson regres-
sion models enhance the structural analysis of spatial interaction, have greater clarity and
simplification of parameter estimation and open the opportunity to apply a wide range
of statistical theory. Guy (1987) expanded upon this final point for all Poisson regression
models, noting the ability to provide standard diagnostics and better model specification.
In addition, non-specialist statistical software may be used to fit generalized linear models
using efficient algorithms for obtaining maximum likelihood parameter estimate. These
also have greater flexibility for alternative functional forms to extend models beyond con-
ventional size and distance variables and with a choice of error specifications.

Flowerdew and Aitkin (1982) noted some drawbacks in implementing Poisson regres-
sion models to migration flow tables. Arguably, the most prominent of these was an
inability to provide an adequate fit to data. Previous attempts to fit log-linear models,
such as that of Flowerdew and Lovett (1988) and Flowerdew (1991), showed that the
best fitted models contained origin and destination (or table row and column) covariates.
Despite adding further interaction-based explanatory factors, which improved model fits,
the remaining deviances of models were still deemed unsatisfactory. The lack of fit was
attributed to the equivalence of the first and second moment in a Poisson distribution.
The use of a single parameter distribution assumed each movement from a given origin to
a destination occurred independently, having controlled for explanatory factors. However,
data in origin-destination tables are aggregated over individual characteristics. Congdon
(1991) noted that without the ability to disaggregate data by more individual level factors,
such as migrant age or sex, Poisson regression models fit poorly.

One solution to this problem was to fit a linear regression to the logarithm of migrant
counts. Flowerdew and Aitkin (1982) noted this approach had a number of problems when
fitted to migration count data. First, the introduction of the logarithmic scale creates
a bias in the estimate of the mean when the antilogarithm was taken. Consequently,
wrongly signed or insignificant coefficients may be included in a model. Second, a log-
normal assumption for a count response has a theoretical dissatisfaction of modelling a
discrete valued process by a continuous distribution. Finally, a log-normal regression
model presupposes a common variance for mobility table data where there is often a

wide variation in cell values. Davies and Guy (1987) suggested three alternative solutions
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for when a Poisson assumption in mobility tables was violated: a parametric approach
using negative binomial regression model, a quasi-likelihood approach of introducing a
new parameter for the mean-variance ratio and a pseudo likelihood approach of estimating
a variance-covariance matrix of parameter estimates given a misspecified model. In this
chapter the former of these three is further explored as its parameter estimates are based
on full likelihood methods. This allows missing data techniques such as the Expectation-
Maximization (EM) algorithm to be fully utilized under a negative binomial assumption

for a response variable.

5.3 The Expectation-Maximization (EM) Algorithm

The EM algorithm is an iterative algorithm for maximum likelihood estimation in incom-
plete data problems. Used in multiple statistical settings, the EM algorithm is a prominent
tool in estimation when there are missing data on random variables, such as the number
of migrants between two countries, whose realizations would otherwise be observed. De-
veloped by Dempster et al. (1977), the motivating idea behind the EM algorithm is to
augment the missing parts of a data set with temporary values to complete the data and
allow the estimation of model parameters to proceed in a cycle of simple estimation steps.

Each cycle of the EM algorithm consists of two steps.

1. If we let 8" denote the current guess of the parameters at iteration r, y, be the
observed data and z denote the missing data to be augmented. The E-step (expec-
tation step) finds the expected augmented log-likelihood Q(0) if 8" were 8. This can

be expressed as

Q016") = El(8lyo, 2)|yo, ") (5.1)
where [(0]y,, z) is the log likelihood of @ given the augmented data.

2. The M-step (maximization step) determines 8" by maximizing the expected aug-

mented log-likelihood.

The algorithm is iterated until ||6""! — 6" || or ||Q (671" (6") — Q (" 16")|| is sufficiently
small, and hence a maximum of the augmented log-likelihood is reached.

The EM algorithm has a number of appealing proprieties relative to other iterative
algorithms for finding maximum likelihood estimates. Little and Rubin (2002, p167) noted
that the EM algorithm is numerically stable as each iteration increases the likelihood, has
fairly reliable convergence and often easy to program as no evaluation of the observed
likelihood nor its derivatives are involved. In addition, the M-step can be easily imple-
mented in standard statistical software by performing a fit to the current complete data
at each step. Mclachlan and Krishnan (1996, p33-4) noted associated problems of the
EM algorithm including: a slow convergence rate which may occur when there is a large
fraction of missing data, the lack of a built-in procedure for producing an estimate of

the covariance matrix of parameter estimates and the lack of a guaranteed convergence
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to a global maximum. The first two problems can be alleviated by choosing appropriate
starting values and using a supplementary methodology that will be further explored in
the following chapter. The possibility of not converging to a global maximum is a problem
faced by all optimization algorithms and the EM algorithm is no different in this respect.
In some cases this can be alleviated by using multiple starting points, as used throughout
the remainder of this thesis, to check that the maximum reached is not localized. There ex-
ist other procedures such as simulated annealing to tackle more intricate situations which

tend to be complicated to apply, as discussed by Little and Rubin (2002, p167).

5.4 Modelling Incomplete International Migration Flow Ta-
bles

In this section, negative binomial regression models are fitted to incomplete international
migration flow data for the EU15 countries, presented in Figure 4.6. In order to account
for the missing data, model parameters are estimated using a EM type algorithm. In
keeping with statistical modelling, the harmonized data are treated as observed values.

Of the 1050 cells (made from a 15 x 15 x 5 non-diagonal mobility table over 5 time
periods), 819 have observed, harmonized values. In the 210 flows for which reported counts
could potentially be produced, 30 had no observations of harmonized data in any years.
This was greater than the actual reported data (20), as some values are ignored due to
their poor quality.

A function was written in S-Plus to obtain estimates of parameters in a negative
binomial regression models using a EM type algorithm (shown in the Appendix). The
function requires a fitted model object of class negbin, for which the model matrix of
the specified model is utilized in the M-step. This can be obtained by fitting a proposed
model using the glm.nb function of the MASS library (Venables and Ripley, 2003) and
omitting any missing data. Given the model matrix, parameter estimates are generated in
the routine by augmenting the missing flow counts with temporary values. These values
are estimated in the M-step of the algorithm using the glm.nb function. The routine
continues until the specified stopping criteria are met. Included in the output is a record
of parameter and imputations at each iteration.

Note, this routine is not a true EM algorithm as in the M-Step it maximizes the
negative binomial likelihood augmented with expected values of the missing data at each
step. This is opposed to taking the expectation of the augmented likelihood as presented
in the previous section. Hence, in the estimation of the parameters, the correct Q(0]0")
is not maximized . This is because the in the correct Q(€|6") requires the expectation of
the log(%) (derived from the first terms in the probability density function shown
in (2.34)).

As a result of using the routine in the Appendix, derived estimates of « are not
maximum likelihood estimates and may further impact the calculations of other model

parameters and their associated variances. Further work is required to better understand
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these effects (which are believed to be minor), including using a more suitable EM type
algorithms. For example, the Monte Carlo EM algorithm of Wei and Tanner (1990) avoids
the direct calculation of the expected augmented likelihood in the E-Step by simulating
missing values from their condition distribution to provide maximum likelihood estimates
of parameters.

Initially, a spatial interaction model that was equivalent to a quasi-independent model

was fitted. This can be specified in a similar manner as (2.35),
o 0N . ADP.
log ,Uz]t - ﬁl + /61 OZ + /Bj Dj7 (5'2)

where ;s = E(yi;e| 8, o, x?) and (1 is a constant parameter for the baseline category, ﬂio
the set of 14 origin parameters and ﬂjD the set of 14 destination parameters, corresponding
to origin O; and destination D; respectively. As previously mentioned, spatial interaction
models give superior over gravity models but at the cost of aliasing out additional origin
and destination effects. They also allow a level of basic measure in the overall attrac-
tiveness of countries for migrants moving to and from each nation to be obtained. Such

measurements are commonly referred to as push and pull factors (Lee, 1966).

Figure 5.1: Exponentiated Covariate Parameter Estimates, 6 (left) and Missing Data
Values, z in 000’s (right) of Quasi-Independent Fit
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All parameters are successfully estimated using the EM algorithm. Final estimates, and
standard errors (from the observed data) are shown in the first two columns of Table 5.1
(other columns are discussed later in this section). Figure 5.1 shows a trace of the iterative

estimates from the EM algorithm of this model (right plot), alongside the imputed values
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Table 5.1: Mean Parameter Estimates from EM algorithm

Parameter  Spatial Interaction

Main Effects

French Interaction

exp(8)  se(B) exp(B) se(B)  exp(B)  se(f)
Constant 212.7620  0.1688  0.0007 0.6737 0.0001  0.8489
Origin:
BEL 4.3495 0.1852  1.2615 0.1252 1.1555  0.1418
DEU 18.7707  0.1582  7.8271 0.8397 0.0460  2.5020
DNK 1.1711 0.1583 1.5461 0.1428 1.6387  0.1642
ESP 5.5379  0.1582  3.1334 0.4991 0.3182  1.2018
FIN 0.7756  0.1583  0.4540 0.1725 0.5433  0.1897
FRA 6.7664  0.1852  4.6928 0.7352 9.6826  3.7769
GBR 8.6948  0.1852 14.5710 0.7570 0.3648  1.7986
GRC 1.0894  0.1853  1.0140 0.1139 0.8751  0.1423
IRL 0.6916  0.1854  0.8422 0.2014 1.0365 0.2349
ITA 3.4470  0.1701  2.5763 0.6758 0.0886  1.7146
LUX 0.5038  0.1667  0.5314 0.8230 1.1143  0.8277
NLD 3.9895 0.1582  3.1579 0.2867 1.5833  0.3779
PRT 3.1251  0.1852  0.2257 0.2706 0.2041  0.2722
SWE 3.1787  0.1582 1.8473 0.1521 1.4836  0.1506
Destination:
BEL 4.6995 0.1867  0.7024 0.1193 0.6172  0.1362
DEU 11.2890  0.1582  0.1182 0.8379 0.0008  2.5082
DNK 0.9953  0.1583  2.4038 0.1439 2.5266  0.1651
ESP 6.4067  0.1582  0.8533 0.4993 0.0907  1.2055
FIN 1.4570  0.1583  6.7173 0.1740 8.2222  0.1919
FRA 5.6295  0.1866  0.1655 0.7329 0.0017  1.8192
GBR 8.0547  0.1866  0.5504 0.7529 0.0151  1.8029
GRC 1.0608  0.1868  2.0992 0.1069 1.7619  0.1379
IRL 0.8179  0.1869  4.2119 0.2068 5.1961  0.2404
ITA 3.2706  0.1710  0.4308 0.6750 0.0161  1.7195
LUX 1.5046  0.1619  1.8496 0.8655 3.2087  0.8686
NLD 2.2212  0.1583  0.5530 0.2825 0.2988  0.3763
PRT 1.6291  0.1867  5.4726 0.2283 5.0024  0.2319
SWE 3.8221  0.1582  1.7893 0.1485 1.4742  0.1471
Main Effects:
GNI 6.7608 0.3076 6.8078  0.2997
GDP 2.3310 0.3688 2.2718  0.3540
Trade 1.3431 0.0306 1.3704  0.0322
Euro 1.4333 0.0970 1.3838  0.0934
Stock 1.8190 0.0192 1.8641  0.0196
French 3.3312  0.1718 1.9649 0.1884
English 0.4017  0.2957 0.5557  0.2957
Population 0.9647  0.0142
Time 1.0689  0.0319
French Origin Interaction:
GNI 3.8759  0.4917
Euro 0.5698  0.1750
Population 1.0183  0.0052
Stock 0.7305  0.1079
Distance 0.5696  0.3278
French Destination Interaction:
Stock 125.6465  0.8586
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for 231 missing cell values (left plot). An initial value of one was chosen for all parameter
estimates whose values all met a convergence criteria of ||Q (8”7 |6") — Q (687 |6")|| <
107> after 36 iterations.

The exponentiated origin parameter estimates from the quasi-independent model mea-
sure the level of attraction over the entire time period, in comparison to Austria, which
was used as a reference category. Values varied from 18.7707 and 8.6948 for Germany
and Great Britain to 0.5038 and 0.6916 for Luxembourg and Ireland, respectively (with
reference to unity for Austria). Exponentiated destination parameter values (where Aus-
tria was again the reference category) varied from 11.2890 and 8.0547 for Germany and
Great Britain to 0.8179 and 0.9953 for Ireland and Denmark, respectively. The dispersion
parameter was estimated as 1.2863 (using the glm.nb function), which is equivalent to the
inverse, 0.7774 for « in equation (2.34). A Z-test provided strong evidence that a > 0,
suggesting the data was overdispersed and hence the negative binomial model was more

appropriate than an equivalent Poisson model.

5.4.1 Additional Information

In order to provide more reasonable imputations, the quasi-independent model was ex-
panded upon. There are many theories that explain international migration, see for exam-
ple Massey et al. (1993) or Greenwood and Hunt (2003). Data for economic, geographical
and demographic factors suggested by these theories are often comparable across multi-
ple nations and available from data bases of international organizations. Data on nine
of these factors were chosen. Where possible, information across time was taken to help
reflect trends in migration flow counts seen in Figure 4.6.

Four covariates on economic systems were constructed: the origin-destination ratio
of Gross National Income (GNI) per capita and Gross Domestic Product (GDP), the
logarithm of the total value of trade for each corresponding flow and a dummy variable
for the circulation of the Euro currency in both origin and destination countries.

Data for GNI and GDP were obtained from the World Bank, World Development
Indicators Database (http://www.worldbank.org/data). Measures with a purchasing
power parity adjustment, to account for differences in relative living costs and inflation,
were used. A per capita measure for GNI was taken to reflect a macro measurement of the
differences in wages between origins and destinations. GDP was measured on a national
level (rather than per capita) to reflect differences in economies income and output. The
logarithm of this ratio was taken due to the high level of asymmetry created by the
comparison of large economies such as Germany, France and Great Britain to smaller
nations such as Luxembourg. A covariate measure on trade was collected in order to
reflect economic linkages between nations. Data for the value of all commodities imported
into each country for all origin nations was obtained from the UN Commodity Trade
Statistics Database (http://comtrade.un.org/). A final economic covariate measure

was constructed to represent countries using the Euro, to potentially explain higher flows
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between countries where levels of economic and political integration may be even greater
than flows from other EU15 nations due to a common currency.

Two measurements of geographical links were created: distance and contiguity. A
weighted distance between two countries was obtained from Mayer and Zignago (2006).
Measurements are calculated in kilometres between the principal cities of countries weighted
by their population size and thus account for the uneven spread of population across a
country. A separate dichotomous measure for contiguity was taken as internal migration
studies have sometimes shown its impact to be distinct from that of distance (Flowerdew
and Lovett, 1988). Data for this variable was obtained from Stinnett et al. (2002) where
countries separated by land, river border or 12 or less miles of water are considered con-
tiguous.

Three covariates on population were considered: size, migrant stocks and language. A
covariate for population was used to control for higher migration flows between countries
with large populations such as Germany and France. For each flow, a measure from the
sum of origin and destination populations was calculated. Hence, the same covariate value
is obtained regardless of the flow direction. Data was obtained from the World Bank, World
Development Indicators Database. An origin-destination migration stock table was derived
from Parsons et al. (2005) who complied a global bilateral data base from the 2000 round
of population censuses. Covariates on languages were considered to further reflect social
and linguistic similarities. These were derived from a European Commission’s Eurobarom-
eter survey on European’s and their Language (http://ec.europa.eu/public_opinion).
Variables for the official languages used in more than one of the EU15 (English, French and
German) were based on the surveys estimates of the knowledge of each tongue as a foreign
language in each nation. The product of origin and destination language prevalence were
then calculated, after setting values for foreign languages levels in countries, where it was
officially spoken, to 100 percent (lower levels were recorded as a non-native speaking sur-
vey respondent considered the official language as a foreign tongue). For example, values
representing the commonality of English and French for the Netherlands to Great Britain
flow were 0.8700 (from 0.87 x 1.00) and 0.0667 (from 0.29 x 0.23) respectively, indicating
a higher overall level of English in the two nations. An additional continuous covariate for
time was also added to account for changes in the level of migration flows and correlation

amongst repeated counts of the same origin-destination pair, over the time period.

5.4.2 Main Effects Model

In order to attain a better model fit and more realistic imputation the Akaike Information

Criterion (AIC) was used to select the most suitable variables for a main effects model.
AIC = =21(0)y,) + 2p, (5.3)

where [(0]y,) is the log likelihood of @ given the observed data, y,, and p is the dimension
of 8. Comparisons of potential models were undertaken using the stepAIC function in

the MASS library (Venables and Ripley, 2003). The function operates by examining the
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inclusion of potential covariates by their contribution to the AIC of the model, performing
a stepwise search in both directions, adding and dropping variables. Included in a pre-
condition in the scope of models to be searched were origin and destination covariates.

The final model selected by the stepAIC function can be specified as,

log piije = B1+ B 0i+ B D; (5-4)
—{—BQGNIijt + B3 log GDPijt + (G4 log TRADEZ]t + B5EUROU
+ 3 log STOCKU + ﬂ7FRENCHZ'j + ﬁgENGLISHij

where all covariates are flow specific, and GNI, GDP and trade were time-varying. Co-
variates for distance, contiguity and the German language were found to be ineffective in
reducing the AIC. The remaining covariates were included in the final main effects model
which had an AIC statistic of 12,101 in comparison to 13,548 of the quasi independent
model (shown in Table 5.2). Convergence when fitted with the EM algorithm was obtained
after 43 iterations with stopping criteria of 1075, Fitted values are shown by the solid
red line where original data existed, and by red marks for the imputations on previously

missing data in Figure 5.2.

Table 5.2: Dispersion Parameter Estimates from EM algorithm and AIC

Spatial Interaction Main Effects French Interaction

o 0.7774 0.1557 0.1432
se(a) 0.0573 0.3168 0.3460
AIC 13547.69 12101.26 12047.97

Parameter estimates for the selected covariates are shown in the third and forth
columns of Table 5.1. Origin and destination effects strayed from their values found in the
quasi-independent as additional factors were controlled for. The estimated exponentiated
parameters effects for economic factors (6.7608 for the ratio of GNI per capita, 2.3210 for
the logarithm of the ratio of GDP, 1.3431 for the logarithm of trade volume and 1.4333 for
Euro region), logarithm of migrant stocks (1.8190) and French prevalence (3.3312) were all
greater than unity implying higher levels of these covariates were associated with higher
migration flows, conditional upon the value of all other covariates. Exponentiated coeffi-
cients estimates for English prevalence (0.4017) was less than unity indicating higher levels
in their covariates were associated with lower migration flows, given all other variables are
controlled for. This might be due to low covariate values being determined between coun-
tries with high migration flows. For example, the value of English prevalence for a migrant
moving from Sweden to Great Britain is 0.8900, compared to 0.5607 for (more popular)
moves from Sweden to Finland. Similar problems did not occur with other languages,
which tended to have much smaller levels throughout most origin-destination pairs. The

dispersion parameter was estimated to be 0.1557 with standard error 0.3168 (as displayed
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Figure 5.2: Data and Main Effects Model Fits of Migration Flows (000’s) from each
Origin-Destination Combination of EU15, 2002-2006.
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in Table 5.2). This was noticeably smaller than the quasi-independent fit indicating evi-

dence for a control on overdispersion in the main effects models.

5.4.3 Interaction Models

To gain a further superior fit the stepAIC function was run once more with an extended
scope of models to consider all two-way interactions, with one exemption, the origin-
destination interaction. This was not included as for some levels, such as the flows between
Britain and France, no data existed and hence such a parameter could not be identified.
The fitting function selected two new main effects (German and distance) and 24 new
interaction covariates. From the total of 26 new covariates many involved origin or des-
tination interactions and hence multiple levels. This resulted in producing a total of 243
new parameters (not shown in Table 5.1). Many of these parameters were unidentified
and imputations were unreasonable as large shares of available information in the observed
data are used to fit model parameters for the complete data. Consequently, the observed
value all had extremely good fits in all years (not shown on Figure 5.2). This was reflected
by AIC statistics as low as 11,072 (not shown in Table 5.2) a large reduction from the
main effects model (12,101). In addition to these problems, different parameter values
are estimated for different starting values. This is also due to the lack of observed data
relative to the number of parameters

Whilst a single model with many interactions and multiple parameters may not be
plausible for a migration table involving many countries, interactions for single countries
can be constructed to improve model imputations where deemed necessary. Analysis of
the fits from the main effects model in Figure 5.2 showed reasonable imputations for
most previously missing cells. Clear exceptions are selected flows to and from France. For
example, the number of migrants sent from France to Belgium was higher than movements
to other neighbouring countries of greater population size and economic power, such as
Spain or Germany. For these countries, fitted values to and from France tended to be
greater than the harmonized values, creating large residuals. This might be caused by
the general nature of the main effects to model, where effects of some factors may vary
substantial for migration flows to or from individual nations.

A closer fit was obtained by considering interactions for the 11 covariate parameters
(including 3 languages effects) outlined in Subsection 5.4.1 with France as both an origin
and destination. The 22 additional covariates where considered by the stepwise model

fitting algorithm. The final model selected by the stepAIC function was,

loguije = b+ B70i+B7D; (5:5)
+B2GNLijy + B3 log GDPyjy + By log TRADEyjy + 35 EU RO,
+85log STOCK;; + fFRENCHyj + fsENGLISH;; + foPOP;j;
+B10TIME;
+6110FrRA : GNIiji + $120FrRra : EURO;; + $130FRA : POP;;
+0514log Oppa : STOCK;j + p150Frra : DIST;; + B16log Drpra : STOCK;;,
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where covariates are flow specific, and are equal to zero in non-French rows (or columns)
corresponding to interaction terms with France as a origin (or destination). The AIC of
final selected interaction model was 12,047 (as displayed in Table 5.2) a further reduction
in comparison to the main effects model but with more parameters (from 37 to 45), see
Table 5.1. Of these, six were new interaction covariates and two more main effects for
population and time. Additional main effect covariates are included, partly as higher level
interactions with other covariate with France were effective and hence its main effects
are also useful. Alternatively, these have been included as parameter estimates from the
original main effects model are altered by the inclusion of interactions and thus more or
less factors might be added to cover the change in model fit.

Of the six new interactions, five (GNI ratio, population sum, the Euro zone, stock and
distance) were with France as an origin and one (stock) were with France as a destination.
Their inclusion indicated evidence for different effects for a French origin (or destination)
on the expected migration flows leaving (or arriving) in comparisons with a general effect
for all nations. All parameters were identifiable and led to a noticeable change in the fit
on flow values in the French row and column. These are shown in Figure 5.2, where fitted
values are shown by the solid blue line where original data existed, and by blue marks for
the imputations on previously missing data. For flows from Italy to France, imputations in
later years follow neatly from harmonized data in the first two time periods. In addition,
flows from Belgium, which were considered unusually high have fallen, whilst flows to and
from larger countries such as Great Britain have increased. The dispersion parameter was
estimated to be 0.1432 (shown in Table 5.2), again noticeably smaller than the previous
model, indicating further control on overdispersion in the interaction model.

For 2006, the complete migration flows table is shown, where bolded values are from
scaled reported flows in Table 4.6 and non-bolded values are imputations from the model.
For all cells in the table there exists an estimate. The non-bold estimates are fixed in the
EM algorithm, as observed values, are unchanged regardless of the model used. Estimates
for cells that were previously missing are dependent on the model used to base imputations

on.

5.5 Summary and Discussion

In this chapter, a complete set of estimates of international migration flow tables are
created, using a spatial interaction model fitted using the EM algorithm on the harmonized
flows from the previous chapter. The choice of model was, for the most part, left to an
stepwise model selection program, although some form of expert opinion was used to
allow consideration of further parameters for models where imputations were initially
unreasonable.

In reference to the desirable criteria in Table 1.1, estimates for the international migra-
tion tables in Figure 5.2 are now considered complete, consistent and reliable. Complete-

ness and consistency of estimates was achieved using the EM algorithm to fit negative
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binomial regression models based on the harmonized flows from the previous chapter.
Hence, the resulting imputations share the characteristics of the data sources that were
ranked with scores of good for timing, completeness and accuracy by Erf (2007). Further
checks for reliability of the estimates were taken in this chapter by comparing imputa-
tions over time. For flows to and from countries with only partially available harmonized
data (Austria, Italy and Luxembourg) checks across time helped further inform the model
fitting process. Using a model based imputation method based, in statistical theory, mea-
sures of estimates precision can potentially be found. One such technique to obtain these
measures is the Supplemented EM algorithm of Meng and Rubin (1991) which will be
further explored in the next chapter.

The techniques shown in this chapter have also addressed the suggested criteria for the
methodology to be used in international migration flow table estimation. As Willekens
(1994) suggested, a model based method has been used for the estimation of missing data.
This allowed some substantive understanding of flows and imputations to be based on
likelihood methods. For the EU15 region studied in this chapter parameter effects for the
selected covariates predominantly had the expected direction suggested by international
migration theory. This could be considered to further enhance the justification for esti-
mates to be deemed reliable, as unlike more ad-hoc impaction techniques, their values are
based on the relationship with factors that are believed to influence migration. Expert
opinion can be used in the model building process. In this chapter model selection was
in the most part left to an automated procedure, where the covariates considered were
based on past literature of international migration. Alternative covariates and modelling
strategies may be pursued as and when an expert deems necessary, as discussed later on
in this section.

The methodology can be relatively easily replicated given replicated in S-Plus/R given
the data and function supplied in the Appendix of this thesis. The use of the EM type
algorithm, for incomplete migration flow tables can be applied to models for alternative
international migration tables. This can include both smaller or larger tables and ad-
ditional data for previous or subsequent time periods. In this study a restriction to 15
nations was used to enable effective models for flows between politically similar countries
with only a few main effects. In a more diverse set of countries, political differences be-
tween nations that may influence migration, would require additional care to obtain more
reasonable estimates. The EM algorithm may also be used to estimate missing cells in
international migration tables based on other types of data and populations. For example,
Abel (2008) modelled incomplete tables of the stock of student migrants present in nine
countries spread across the globe.

When missing data was present, the success of imputations from the spatial interaction
model fitted using the EM algorithm is dependent on amount of data available. As a pre-
requisite for a quasi-independent model, some data on the number of flows to and from
each country must be present to identify all parameters. In this study, this was achieved

by combining harmonized sending and receiving data from the last chapter and analyzing

74



trends over multiple time periods. The spatial interaction model was chosen in order to
provide the best fit to the data.

Better fits for spatial interaction model could be further achieved by considering al-
ternative covariates or redefining existing ones. For example, the time covariate was
considered to be continuous for ease of interpretation, but it could have been considered
as a categorical factor. This would allow time-specific effects to be estimated in the same
manner as origin-specific and destination-specific resulting in a superior fitting model, but
at the cost of more parameters. Interactions terms between these covariates would lead
to a saturation of the model but effects may not always be identifiable in incomplete data
situations if no counts exist in a given time period for a given origin or destination. It is
useful to note that if interest lay in controlling for specific origin-destination combinations,
such as the migration flow from Great Britian to Spain, a covariate could be built to in-
clude this term and induce a better model fit in that cell. Further covariates may improve
model fits. For example, large flows such as from Germany to Italy or from Great Britain
to Spain were underestimated by the main effects model. These flows may have involved
moves for retirements. Covariates on related factors such as climate or migrant age could
be beneficial for model fits, including imputations for missing data. The negative bino-
mial regression model proved an effective tool to deal with overdispersion of the data. The
use of an alternative error assumptions, such as a Poisson distribution, would have lead
to worse fitting models and non robust standard errors in the presence of overdispersion
(Davies and Guy, 1987).

The inclusion of interaction covariates with multiple levels can lead to unidentifiable
parameters and unrealistic imputations for unobserved cells when implementing the EM
algorithm. An alternative strategy was explored by adding interaction terms only with
country specific levels, where better model fits were obviously needed. This was done for
flows to and from France, resulting in improved imputed values. Better fits could have
also been obtained using a similar framework for other countries where expert opinion
may deem imputations unrealistic. Alternatively, a more automated approach would be
to consider all levels of interactions individually for inclusion into a model via a stepwise
modelling approach. However, this would require a considerable amount of computations,
as the number of potential models would become very large. In addition, the inclusion
of further levels of interactions for countries where existing model fits are poor may not
be of great use when estimating missing values. For example, country-level interaction
parameters were tentatively estimated for all flows originating from Germany and all flows
into Spain. The resulting model from a stepwise model selection enhanced the fits for flows
from Germany and into Spain, but only slightly altered imputations in non-German and
non-Spanish flows.

The use of expert opinion in selecting covariates in the modelling process may be
beneficial when the harmonized data are heavily reliant on the selected distance measure.
Although the distance measures studied in Chapter 4 produced correction factors that

were alike in most time periods, for different data the choice of distance measure might be
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very influential on the estimated harmonized data. In such a case, an alternative model is
likely to be selected for the imputation of missing flows by a stepwise routine. However,
expert opinion can help inform the selection process if the resulting estimates for missing
cells are judged to be unrealistic. As discussed, this might involve the addition of new
covariates or interaction terms to help improve model fits.

Alongside modifying interactions to country-specific levels further improvements to
modelling international migration flow tables could be explored. The building of models in
this chapter relied upon comparisons of competing AIC calculated using the log-likelihood
of the observed, rather than, complete data. As Cavanaugh and Shumway (1998) noted it
is more desirable to fit a model based on the complete data for which models are originally
postulated. Criteria, such as the AICcd of Cavanaugh and Shumway (1998) and KICcd of
Seghouane et al. (2005), allow the calculation of the separation between the fitted model
for the complete data and the true or generating model. Both criteria require models to be
fitted by implementing the Supplemented-EM algorithm of Meng and Rubin (1991) which
requires further computations during the EM algorithm. This will be further explored in
the succeeding chapter.

An alternative approach for modelling data across time when estimating missing data
is to consider origin-destination combinations in a marginal model, which are typically
fitted using the Generalized Estimating Equation of Zeger et al. (1988). Marginal models
would enable the exclusion of origin and destination specific parameters, allowing more
complex categorical covariates to be fitted. These methods have been used in previous
panel data studies of international migration data by Pedersen et al. (2004) and Mayda
(2007). Both studies used unbalanced receiving migration flow counts from the SOPEMI
reports of the OECD, where procedures to handle inconsistencies in data sources are
not used. The use of marginal models for imputing missing data would require more
complex parameter estimation techniques in the M-step of the EM algorithm and an
assumption for the correlation structure of data. Cohen et al. (2008) used a log-normal
regression model (involving origin, destination, geographic and demographic factors) to
project future migration between two countries. This was based on inconsistent data from
11 countries between 1960 and 2004. Missing data was not accounted for in the estimation
of parameters; however, covariates to account different data sources were included to
account for differences in collection and measurers. Such covariates could be identified,
despite the including of origin and destination covariates, due to the unbalanced nature
of the data.

Despite the common occurrence of missing data in international population mobility
tables, the application of the EM algorithm is sparse. Willekens (1999) suggested the EM
algorithm as a possible method to fit spatial interaction models to constrained margins.
This model was further expanded by Raymer et al. (2007) where we found the EM al-
gorithm to be equivalent to a conditional maximization given the marginal constraints.
Imputations for missing cells in international tables have tended to focus on mathematical

relationships of different data sets rather then statistical solutions. Parsons et al. (2005)
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used an entropy measure between different migrant stock definitions, whilst Poulain (1999)
and Raymer (2007) applied more ad-hoc methods outlined in Chapter 3.

In conclusion, the EM algorithm allows missing values in international migration flow
tables to be estimated. These are based on statistical assumptions and covariate infor-
mation from international migration theory. There exist a number of options for building
models. In this chapter, negative binomial regression models were compared using their
AIC statistics. This proved an effective strategy to deal with overdispersion and help in

the model selection procedure.
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Chapter 6

Estimating Measures of Precision
for Missing Data in International

Migration Flow Tables

6.1 Introduction

In this chapter, estimates for the measures of precision of missing cells in international
migration flow tables are derived. These measures allow data users to obtain a better
understanding of the possible variation of missing data estimates. As demonstrated in
the previous chapter, likelihood based methods for imputing missing data allow the most
likely estimates to be obtained given the data. In incomplete data situations, the Expecta-
tion Maximization (EM) algorithm allows maximum likelihood estimates to be calculated.
However, unlike fitting methods readily used in complete data situations (such as IRLS
or the Newton optimizer), the asymptotic variance-covariance matrix for parameter esti-
mates is not an automatic by-product of its procedure. These matrices are useful when
conducting statistical inference, allowing test statistics and standard errors to be derived.

More detailed routines exist that may account for missing data in the estimation
of the variance-covariance matrix. One such method is the Supplemented EM (SEM)
algorithm of Meng and Rubin (1991). The SEM algorithm, unlike alternative estimation
methods, such as that of Louis (1982), do not require extra analytical calculations beyond
those needed to calculate maximum likelihood estimates. This property is of considerable
benefit when models include many parameters, as used in spatial interaction models with
multiple regions. A further contribution of the SEM algorithm is the ease to calculate the
AIC complete data (AICcd) criteria of Cavanaugh and Shumway (1998), which can enable
the selection of models having accounted for missing data.

This chapter commences by reviewing the convergence properties of the EM algorithm.
The SEM algorithm is based upon the rate of convergence of an EM algorithm being
governed by the fraction of missing information. As explained, this principle is used to
find the increased variation due to missing information which is then incorporated into the

estimate of the complete data variance-covariance matrix. The following section outlines
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the algorithm for which a measure of the missing information can be computed. A review
is then given of the AICcd which uses output from the SEM algorithm in its calculation.
The SEM algorithm and AICcd are then applied to the fitting and selection of main effects
models using the parameters discussed in the previous chapter. This new application of
statistical techniques to international migration flow data enables both a model selection
based on the observed and missing information, and the appropriate variance-covariance
matrix for parameter estimates in such a model, to be determined. The latter of these
results will thus allow confidence intervals for fitted values, including the imputed missing

data estimates, to be obtained.

6.2 Properties of the EM Algorithm

The derivation of the SEM algorithm is dependent on both analytical expressions for the
rate of convergence of the EM algorithm and manipulations of the asymptotic variance-
covariance matrix of parameter estimates. Both of these are further outlined in the fol-

lowing subsections.

6.2.1 Rate of Convergence in the EM Algorithm

For the EM algorithm described in Section 5.3, the mapping @ — M (6) from the parameter

space of 8, to itself is implied. Consequently for every iteration,
0" = M(0"), forr=0,1,.... (6.1)

Hence, when the parameters converge to a stationary point 8* and a given M (0) is con-

tinuous,

0" = M(6%). (6.2)

As Meng and Rubin (1991) noted, in the neighbourhood of 8* by a Taylor series expansion
0! — 6" ~ (6" — 6*)DM, (6.3)

where

pm - (20 (6.4)

is a p x p Jacobian matrix for M(0) = (M;(6),...,Mpy(0)), known as the rate matrix.

Thus the EM algorithm converges in a linear fashion in the neighbourhood of 6*. The rate
of convergence is governed by the rate matrix which, as shown in the following subsection,
represents the fraction of missing information.

6.2.2 Asymptotic Variance-Covariance Matrix

The distribution of the complete data, y, can be factored into components of observed

data, y,, and missing data, z:
f(10) = [ (Yo, 2160) = f(10|0) f (2|yo, 6), (6.5)
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where f(y,|0) is the density of observed data and f(z|y,, @) is the density of missing data
given the observed data. Thus the log likelihood of @ given y is

1(8ly) = 1(8]y,) + logf(z]yo, 0). (6.6)

When working with complete data it is common practice to use the asymptotic variance-
covariance matrix, V of (8 — 0) based on y. This can be found using the inverse of the

observed information matrix,

vV =1"(6"y), (6.7)

2
where I(6) = %fégw). However, in the presence of missing data this function can

be difficult to evaluate directly using methods based solely on the observed data. With
incomplete data the observed component of the complete data information, I,., can be

deduced as
Lo = E[IO(O*’?JO)‘%; 0)”9:9*7 (6'8)

This can be obtained from the inverse of the variance-covariance matrix when 8 = 6*
using standard methods as in (6.7). In order to deduce the missing information consider

the second derivatives of (6.6) averaged over f(z|y,,0) and evaluated for 8 = 6" as

Io(e*‘yo) =TI, — L, (69)

821 |0 02 0,0
where I, = — F %ﬂ‘”y, 0} ‘9:9* and I, = —F %‘ymo} ‘9:0*~ I, can be

thought of as the missing information and thus (6.9) can be interpreted neatly as
observed information = complete information - missing information, (6.10)

otherwise known as the missing information principle of Orchard and Woodbury (1972).

The above equation may also be written as
10(0*|y0) = (I - ImI(;cl)IOC7 (611)

where [ is an identity matrix. As Dempster et al. (1977) noted, if Q(6|6"), the augmented
log likelihood of (5.1), is maximized in the M step by setting its first derivative to zero,
then the differential of the parameter mappings in (6.4) is

DM =1,I,}. (6.12)

This property can be substituted into (6.11) and inverted to give an expression for the

asymptotic variance-covariance matrix of the parameter estimates from incomplete data,

vV = I}(I-DM)!
= I.'+AV (6.13)

where AV = I_'DM(I — DM)~}, and V is a symmetric matrix.
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6.3 Supplemented EM algorithm

The estimation of AV in (6.13) can be obtained using the SEM algorithm introduced by
Meng and Rubin (1991). The SEM algorithm consists of three parts, the evaluation of I_ !,
the computation of DM and the evaluation of V. I_! can be obtained relatively easily
using the standard complete data variance-covariance matrix evaluated at @ = 8*. Hence,
I_.! can be determined from the final imputations in the E step. Computations of the DM
matrix are often more complicated. As described in the previous section, the DM matrix
represents the differential of parameter mappings during the EM algorithm. Hence, each
element of the matrix represents a component wise rate of convergence of iterations in the
EM algorithm. This can be derived numerically by considering the (i, j)th element of the

DM matrix to be a;; and defining 8" (i) to be a semi-active parameter set:

0 (i) = (05,...,00 1,005, ....,05), (6.14)

%

where only the ith component in 8" (i) takes a value different from its maximum likelihood

estimate. Thus from (6.4) we can define a;; as

M. *
aj = oMAT) (‘;9(:9 ) (6.15)
—  lim M;(07,...,07_1,0:,07 ,...,05) — M;(8%)
0;,—07 ;i — 0:(
M(0T) (i) — p*
= lim i ()(Z)) . = lim az(-;).
r—00 QAT — B r—00

As M(0) is obtained automatically by the output of the EM algorithm, all elements of
a;; can be estimated using a record of M-step iterations, including the converged set of
estimates 6™ (which could have been estimated from another procedure) and a set of
starting points 6 not equal to 8" in any component. These are used in each cycle of the

SEM algorithm consisting of three steps:

1. Run a single iteration of the EM algorithm given 0" to obtain O Y.

Repeat steps 2 and 3 for i =1,...,p.

2. Calculate a semi-active parameter set " (1) from (6.14) to be used as a current
(r+1)
(i)

estimate of #. Run a single iteration of the EM algorithm to obtain 0 7).

3. Calculate the ratio

ro_ _J J M
al. = PO ,forj=1,...,p. (6.16)

6 (i) — o

After a single cycle, estimates of 87D and {ag),i,j = 1,...,d} are obtained. The
r) g+
ij 0 Mg

different parameters in the initial o) may be closer to 8* than others for any 91(7"), the

algorithm repeats for r cycles until the sequence of a is stable for some r. As

number of iteration steps taken for stability of given elements of DM may vary. Hence,

when all elements of the ith row of DM have been obtained, there is no need to repeat
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steps 2 and 3 for that parameter in subsequent iterations. Given the value of the converged
DM matrix and I} the asymptotic variance-covariance matrix for parameter estimates
can be obtained using the expression of V in (6.13) where the resulting matrix should be

numerically symmetric.

6.4 Akaike Information Criterion for Incomplete Data

Finding a suitable dimension for parameters 8 can be undertaken by comparing several
models based on their values of an information criteria, such as the Akaike Information
Criterion (AIC) of (5.3). This criterion can be thought of as a measure of separation
between a fitted model for the incomplete data, f (yo\a) and the true or generating model
which gave rise to the incomplete data, say f(yo|@4). Shimodaira (1994) noted that it
may be more natural to use a criteria based on the complete data, assessing the separation
between the fitted model f (y\a) and the generating model f(y|6@,). Such an approach is
advantageous for a number of reasons. Firstly, model families fitted by the EM algorithm
are postulated for the complete data, and thus the model selection should reflect both
observed and missing data. Secondly, as Meng and Rubin (1991) noted, the EM algorithm
utilizes the computing power and complete data tools in handling missing data. Thus, the
use of complete data tools can be incorporated to calculate a selection criteria based on
these quantities rather than an analogous incomplete data criteria. Finally, as illustrated
in (6.6) the complete data is a product of observed and missing densities. If the missing
density is substantially affected by deviations of the true parameters then a model selection
criteria based on incomplete observed data may not account for these alterations effectively.

In order to address these problems Cavanaugh and Shumway (1998) developed a cri-
terion based on the complete data. The AIC of (5.3) when typically considered in an the

complete data setting can be represented as
AIC = =2I(6|y) + 2p, (6.17)

where the first and second terms on the right hand side are commonly referred to as the
goodness of fit and penalty terms respectively. When the observed data is incomplete
Cavanaugh and Shumway (1998) derived a equivalent statistic to (6.17) for the complete

data as

AICed = —2Q(0)6) + 2p + 2 trace[Loc(0]yo)1,. (0|y,) DM (I — DM) ]
= —2Q(0)|0) +2p + 2 trace(DM(I - DM) 1), (6.18)

where the goodness of fit in the first term is twice the augmented log likelihood of
(5.1). The penalty term is formed by the summation of the AIC penalty term and
I,1(0)y,)DM(I — DM)~!. As seen in (6.13), the latter term represents the increase
in variance of 8 due to missing information when @ = 6*. Thus the trace of the penalty
term in (6.18) can be conveniently viewed as a measure on the amount of data which is

missing in y, or more precisely as a measure of the extent to which the missing data affects
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the fitted model. It is useful to note that if there was no missing data the trace of this
term would be zero (as DM = 0) and also, as the amount of missing data increases, so

will the penalty term.

6.5 Estimates of Precision for Missing Data in International

Migration Flow Tables

The SEM algorithm can be utilized in the estimation of international migration flow
tables. In the remainder of this chapter, the analysis of the algorithms application to
the EU15 data (where the harmonized data were treated as observed values) is divided
into two parts. First, the convergence of the a;; elements is studied in order to obtain
a better understanding of the SEM algorithm for which a careful monitoring is required
when considering large parameter vectors. Second, the AICcd statistics is used to select a
model using the complete data, rather than the incomplete observed data (as used in the
previous chapter). This is undertaken using a systematic fitting of a range of main effects

models.

6.5.1 Convergence

In order to calculate the asymptotic variance-covariance matrix for parameter estimates,

three functions were written in S-Plus for
(a) the calculation of a single step in the EM algorithm,
(b) the numerical calculation of a Jacobian matrix of model parameters,

(c) the SEM algorithm.

These functions are displayed in the Appendix. The first function (em) is a general routine
for a single step of the EM algorithm to be called in other functions. This requires
values of the initial set of parameters, a negbin model from the MASS library of S-Plus
Venables and Ripley (2003) and a data frame. This function can be run inside a loop
routine until the difference in consecutive parameter values (beta) or the augmented log
likelihood (m$twologlik) given by the function are less than a desired stopping criteria. A
routine for the numerical calculation of the Jacobian matrix (jac) was used to cacluate the
DM matrix from (6.16) for a given initial set of parameters (b.init) and the maximum
likelihood estimates (b.star). The SEM algorithm is implemented using the sem function.
Initially two consecutive Jacobian matrices from a given set of initial parameter values

are calculated in order to deduce all elements of a two initial rate matrices agl-) and

i
ag-). In further iterations of a;j, calculations are performed within a loop in tljle sem
function, calculating elements for rows where the maximum difference in elements are
above the stopping criteria. Excluding further calculations in rows where all elements have
already converged is beneficial from two standpoints. First, computing speed is increased,

which is particulary relevant for the spatial interactions models with large numbers of
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Figure 6.1: Trace of DM Matrix for Selected Main Effects Model Parameters
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parameters used. Second, without a row-dependent stopping criteria, previously converged
components of the DM matrix can become unstable and hence convergence would not
obtained.

A trace of iterations in the DM matrix is displayed in Figure 6.1 for the main effects
model found in Section 5.4 with a tolerance level of 1073, Excluded are row and columns
for the dispersion, intercept, and origin and destination terms. The traces demonstrate
how for the selected parameters, convergence of elements in the DM matrix is dependent
on the row, whereby some rows converge quickly to a stable values whilst others, such as
trade and stock, take longer. For the element of DM matrix representing the covariance
between French and GNI parameters only a very small change occurred before convergence
at the third iteration, which could not be illustrated effectively by graphics in S-Plus 6.2.
Using the converged values of the DM matrix an estimated asymptotic variance-covariance
matrix for parameter estimates was obtained using (6.13). The lower right hand corner of

the final matrix corresponding to the main effects parameters is
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0.12811 -0.02132  0.00329 —0.00153 —0.00253  0.00696  0.00511
—0.02051  0.18688 —0.00067  0.00083  0.00037 —0.00676 —0.00102
0.00353 —0.00080  0.00148 —0.00031 —0.00053 —0.00335 —0.00535
—0.00130  0.00061 —0.00032  0.01184 —0.00054  0.00187 —0.01236
—0.00274  0.00046 —0.00051 —0.00055  0.00064 —0.00073  0.00133
0.00706 —0.00635 —0.00353  0.00176 —0.00059  0.06145  0.01853
0.00344 —0.00025 —0.00544 —0.01187  0.00143  0.01811  0.13682

(where parameters are arranged in the order given in Figure 6.1). The square of diagonal
elements represents the variance of parameter estimates. These can be compared to the
standard errors for the main effects model in Table 5.1.

This matrix is symmetric when rounded to two decimal places. A more precise measure
of the variance-covariance matrix could not be obtained. A tolerance level of 10710 was
taken for an estimate of b.star from the EM algorithm. Meng and Rubin (1991) suggest
that the square root of the EM algorithms stopping criteria should be used (i.e. 107°).
However, with such a tolerance level the convergence for all elements of the DM matrix
is never obtained.

This feature is displayed in Figure 6.2 where the traces from Figure 6.1 are also plotted,
but on the larger vertical axes appear flat. For most rows, convergence takes longer under
a higher tolerance level, and for GNI, GDP and the FEuro parameters slightly different
values are obtained. Rows in the DM matrices for trade and stock parameters never
converge. Only the first 12 iterations are shown in Figure 6.2 but the divergence of trade
and stock parameters values continues until the number of iterations equals that of the
EM algorithm. This ultimately creates an asymmetry in the respective rows and columns
of the asymptotic variance-covariance matrix. This failure may be due to the large size of
the DM matrix in comparison to examples used by Meng and Rubin (1991). Most plots
in rows where convergence is not obtained have some degree of flatness in early estimates
and hence convergence of their individual elements may have been obtained using a less
stringent tolerance level. However, new values for a complete row are estimated if any
element in the selected row fall short of the stopping criteria and thus elements that may
have appeared stable continue to be estimated. An example of this process is illustrated in
selected plots in Figure 6.2. For the DM elements related to the covariance of stock and
GDP and the variance of stock, consecutive estimates do not stabilize below the stopping
criteria, shown by the traces becoming nearly horizontal, but not completely flat, unlike
other elements in the same row. With a lower tolerance level, the algorithm would have

stopped estimating elements in this row when the troubled elements were nearly horizontal.

6.5.2 Modelling of Complete Data

As no implementable stepwise model selection routine existed for incomplete data, a fit

all models function was written to run the SEM algorithm on the complete range of main
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Figure 6.2: Trace of DM Matrix for Selected Main Effects Model Parameters for Low
(1073) and High (10~%) Tolerances
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effects models from the covariate set proposed in Section 5.4.1. Included as a prerequisite
in all models were origin and destination covariates. Consequently, from the 12 possible
parameters (including time), there existed 211)2:0 p!(112721p)! = 4096 different models. For
each of these models the EM algorithm was run to obtain estimates for b.star in the sem
algorithm. Converged estimates of the DM matrix from the sem algorithm were then used
to calculate the AICcd statistic of (6.18). This was performed with a stopping criteria of

10719 for the EM algorithm and 1073 for the SEM algorithm.

Table 6.1: AIC, AICcd and Number of Parameters (p) for Selected Models

Selection AIC AICcd P

stepAIC 12101.26 15366.02 36
Minimum AICcd 12102.10 15363.04 38
Minimum AIC 12098.02 15365.23 38

The model found with the lowest AICcd included the same covariates of the model

found by the stepAIC function in the previous chapter (GNI, GDP the Euro currency area,
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trade, migrant stocks and the level of French and English), as well as, time and distance
parameters. The value of the AICcd statistic, shown in Table 6.1 is higher than the AIC
for the same model due to the expansion of the penalty term in (6.18). Imputation for
model with the lowest AICcd were very similar to that from the original main effects model
in Table 5.1 as the exponentiated estimates for time and distance were both near unity
(0.9808 and 1.0699, respectively) whilst values for other parameters altered only slightly.
For comparative purposes, the AIC for the observed data was also found for each model.
The model with smallest AIC included parameters for time and population (again with
exponentiated values close to unity 0.9630 and 1.0789, respectively) in addition to the
main effects model in Table 5.1. The model selected using the stepAIC function had the
tenth smallest AIC of all possible models. The number of parameters in the model with
the smallest AIC is equal to that of the model with the smallest AICcd. Cavanaugh and
Shumway (1998) found in a simulation study on models for bivariate normal data that this
result is reasonable, noting that the AICecd tended to overfit (select more parameters than
the true model) to a comparable or to a slightly lesser degree than the AIC. This property
was attributed to be a result of incorporating the missing data into the penalization term,
lacking in the AIC statistics.

The estimated asymptotic variance-covariance matrix of the parameter estimates from
the SEM algorithm can be used to create measures of precision for a vector of imputations,

z. These can be expressed as confidence intervals, where

Var(log z) = Var(Xg) (6.19)
= Var(XVXT)

Hence, scaling covariate values in the model matrix by the estimated asymptotic standard

errors and a Z-value based on a 95% confidence level imputation is
logz + 1.96XVXT, (6.20)

where the logarithmic transformation is applied component wise. Exponentiated confi-
dence limits are shown for imputations given under the model selected by the AICcd
in Figure 6.3 for the EU15 flows. To allow a clearer illustration, flows between the six
countries of the European Coal and Steel Community (ECSC), a forerunner of the EU
are shown in Figure 6.4. The width of intervals in these plots is greater for larger flows.
These bounds demonstrate that with a 95% confidence level the flow value under the main
effects model (in Table 5.1) lies within this interval. Note, these intervals only represent
the variability of the mean response, derived from the parameter estimates. An additional

term is required to fully represent the variability of the predicted flows.

6.6 Summary and Discussion

The SEM algorithm provides a useful technique when applied to international migration

flow tables, where data is often incomplete. Obtaining an estimate of the asymptotic
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Figure 6.3: Imputations and 95% Confidence Bounds of Estimated Migration Flows (000’s)
from each Origin-Destination Combination of EU15, 2002-2006.
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Figure 6.4: Imputations and 95% Confidence Bounds of Estimated Migration Flows (000’s)
from each Origin-Destination Combination of ECSC, 2002-2006.
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variance-covariance is beneficial in gaining a better understanding of the variance of im-
puted values, allowing a confidence interval to be constructed. In addition, the SEM
algorithm estimates the rate of convergence matrix, DM, which is used in the AICcd
statistics to select models based on the complete data.

The SEM algorithm can be performed using only the code for an EM algorithm, com-
putations for asymptotic complete data variance-covariance matrix and standard matrix
procedures. More complicated methods for estimation of asymptotic variance-covariance
matrices such as that of Louis (1982), require the observed information to be approximated
using conditional expectations of first and second moments of the gradient and curvature
of the complete data introduced within the EM framework. However, as Meng and Rubin
(1991) noted this method (along with others such as Carlin (1987) and Meilijson (1989)),
besides requiring evaluation of the likelihood, are subject to the inaccuracies and difficul-
ties of any numerical differentiation procedure with large matrices. The SEM algorithm is
also more stable than alternative methods which rely on pure numerical differentiation. In
the SEM algorithm, the rate of change matrix is being added to an analytically obtained
matrix (I,.), rather than the whole covariance matrix. This allows a degree of stability, as
when missing data is plentiful, the convergence of EM algorithm is slow and hence a long
sequence of iterates is provided from the linear rate of convergence leading to high levels
of accuracy. When there is less missing data, the convergence of the algorithm is quick
but the estimate of I, is fairly accurate. Hence, the increase in variance from missing
data does not dominate the calculation the complete variance-covariance matrix.

The stability of the SEM algorithm and the ease of implementation were exploited in
this chapter by fitting all possible model formulations when choosing from 12 different pa-
rameters. This resulted in a model fairly similar to that obtained using the observed data.
This is predominantly explained by the automatic inclusion in all models of the origin and
destination terms. These provide a lot of information on the push and pull effects for each
country, which limits the other parameters to modify the interaction between countries,
conditional on the inclusion of the country specific variables. Alternatively these terms
could be excluded and hence a gravity model formulation for international migration flow
tables would be used. However, as Flowerdew and Lovett (1988) and Flowerdew (1991)
noted for internal migration tables, these often provide worse fits. Another alternative
would be to search amongst all interaction models for the lowest AICcd. With a 15 x 15
table this would lead to a vast amount of covariates with parameters for multiple levels to
be estimated. As seen in the previous chapter with such models parameter identification
with only five time periods becomes an issue. Further consideration could be taken for
selecting models based on the AICcd for interactions between countries with incomplete
data and unsatisfactory imputations from a main effects model (as performed in the last
chapter using the AIC for selecting interactions with France as an origin and destination).
A routine to fit all models with the 22 extra covariates would involve fitting approximately

6.87 x 10? potential models using the SEM algorithm. A suitable model could be more effi-
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ciently found using a stepwise search algorithm such as stepAIC adapted to select models
based on the AICcd.

The stopping criteria for the SEM algorithm, when fitting spatial interaction models,
were taken to be lower than that recommended. This was necessary for convergence
and, in some cases, resulted in different values in the DM matrix than under more strict
stopping criteria. When such differences occurred, they were very small and did not effect
the symmetry of the variance-covariance matrix in their respective rows and columns. For
some parameters, their elements in the DM did not converge for high tolerance levels.
Parameter estimates are from a model distribution not in the exponential family and
thus the estimate of the dispersion parameter depended on asymptotic approximations in
M-Step, using the glm.nb function. Consequently, estimates are based on linearizations
using the Newton-Raphson routine, which as noted may create numerical inaccuracies in
comparison to parameter estimates of V, from distributions in the exponential family,
using for example, IRLS. These inaccuracies may have affected the calculation a;; in later
iterations, which after a certain amount of iterations begin to use ever smaller numbers in
both the numerator and denominator leading to the divergent behaviour shown in Figure
6.2.

In conclusion, the SEM algorithm is a powerful tool when modelling international
migration flow tables. It allows information on the second moment to be derived from
the complete data asymptotic variance-covariance matrix for parameter estimates and for
the selection of a model to account for missing data. This facilitates the creation of a
confidence interval for model based imputations and thus provides added information to
data users to gain a better understanding of the reliability of estimated flows where no

previous data exist.
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Chapter 7

Conclusion

7.1 Summary

This study applied computationally intensive mathematical and statistical techniques to
develop a methodology to estimate international migration flow tables of comparable data.
Such tables commonly suffer from problems of inconsistent and incomplete data which
previous estimation frameworks outlined in Chapter 3 failed to fully address.

The methodology developed in this thesis can be judged against the desirable crite-
ria for estimating international migration flow tables introduced in Table 1.1. Complete
estimates were obtained in Chapter 5 by modelling incomplete migration flow tables. Pa-
rameters for these models were estimated using the EM algorithm which also provided
imputations for unknown migration flow counts. Consistent migration flows across mul-
tiple nations were obtained using estimated correction factors to scale reported data. In
Chapter 4, constrained optimization techniques were used to estimate correction factors
alongside expert opinion on the quality of migration statistics produced by national statis-
tics institutes. The calculations of these correction factors required that reported flows
were of a reasonable quality and hence the scaling of reported data was only performed
for data from reliable sources. Checks for reliability were made throughout each stage of
the methodology. These were partly undertaken by considering data across multiple time
periods, which is discussed further in this chapter. Reliability checks for inconsistent data
were made by comparing observed distributions for reported data from reliable sources
with estimates. As discussed in Chapter 4, for receiving data these distributions remain
unchanged as the estimates were a scaled version of reliable reported data. Reliability
checks for missing data considered estimates in relation to expected results under interna-
tional migration theory. As demonstrated, in Chapter 5 models were expanded to include
further covariates to help improve estimates of flows to and from France which were ini-
tially believed to be unreliable. In Chapter 6, measures of precision for missing data were
derived by estimating the asymptotic variance-covariance matrix of parameter estimates
using the SEM algorithm. Combined, the procedures for dealing with inconsistencies and
incompleteness, introduced in this thesis, allowed the estimation of migration flow tables

that are comparable across nations and time.
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The methods in this thesis used a number of the desirable properties for estimation
techniques introduced in Table 1.1. In Chapter 5, Missing data estimates were based
on models, selected from fits on the observed data, for which parameters were estimated
using the EM algorithm. In Chapter 6, the AICcd was used to select a main effect
model based on the complete data. Model based techniques for imputations allowed a
great deal of flexibility to ensure missing data are of reasonable quality. For example,
complex models were fitted in Chapter 5 that included interaction terms to allow more
realistic imputations to be estimated. However, the use of multiple interactions caused
issues with parameter identification due to the limited amount of observed data. Expert
opinion was used in estimating consistent and complete flows. This included selecting data
to be unchanged, scaled (or ignored) in the constrained optimization procedure and the
collection of appropriate covariate factors for model based imputations. The latter of these
may be beneficial when the harmonized data are heavily reliant on the selected distance
measure. Although the distance measures studied in Chapter 4 produced correction factors
that were alike in most time periods, for different data the choice of distance measure might
be very influential on the estimated harmonized data. In such a case, an alternative model
is likely to be selected for the imputation of missing flows by a stepwise routine. However,
expert opinion can help inform the selection process if the resulting estimates for missing
cells are judged to be unrealistic. As discussed, this might involve the addition of new
covariates or interaction terms to help improve model fits.

The methodology presented in this thesis can be relatively easily replicated in S-Plus/R
given the data and the functions supplied in the Appendix. The constrained optimization
techniques and modelling of incomplete migration flow tables using the EM algorithm can
be applied to models for alternative international migration tables. This can include both
smaller or larger tables and additional data for previous or subsequent time periods. In
this thesis, EU15 nations were used to enable effective models for flows between politically
similar countries with only a few main effects. In a more diverse set of nations (or a longer
time period) additional care would be required to obtain more reliable estimates. This
might be in the form of more correction factors to account for changes in data sources, or
additional covariates to account for more diverse sets of nations.

The remainder of the current chapter summarizes some of the key results of this thesis.
These will be discussed alongside some of the selected contributions found in this thesis
and recommendations for potential future research. This will be broken into five areas:
estimating tables over time, accounting for counts of known migrants with unknown origin
and destinations, ignoring poor quality data, model selection and variation measures. A
more general discussion on the conclusions from this thesis is then put into the context of

international migration estimation from the modelling and data perspectives.

7.1.1 Estimation Over Time

The relative stability in migration definitions and data collection systems provides a basis

for harmonizing international migration flow data. These can be visualized through plots
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of selected flows, as demonstrated by Kupiszewska and Nowok (2008) or through plots of
migration flow tables over time as shown in Figure 4.1. Previous methods for harmoniza-
tion of reported data used differing methods and typically concentrated on tables for a
single year (with the exception of Raymer and Abel (2008)).

In Chapter 3 of this thesis two existing frameworks (which incorporated systems for
estimating missing data as well) were outlined. The framework of Poulain (1993) used a
constrained optimization to minimize a single distance function of scaled flow data, whilst
the methodology of Raymer (2007) relied upon the demographic accounting equations in
each nation. The latter of these methods proved difficult to evaluate due to manipulations
in marginal estimates and interpolation methods for missing data. The former of the
previous frameworks provided a useful basis for further analysis. Chapter 4 of this thesis
explored different measures and alternative constrained optimization techniques. Compar-
isons of estimates were undertaken through evaluations based on the variance within the
set of correction factors across time. Plots of estimates also allowed an easy comparison
of different constraint systems. The most stable distance function was generalized over
time to allow single correction factors for each data source to be estimated, under the
assumption that definitions and data collection systems were unchanged.

Modelling only a single flow table could potentially restrict the number of model pa-
rameters to be identified, especially when data are incomplete. Including multiple tables
for analysis and controlling for time allows a far greater number of parameters to be
estimated. In addition, flows for which only partial data were available provided useful in-
formation in the estimation of parameters and comparison of imputations for flows where
no data were present. Within the modelling framework outlined, such imputations could
be further improved by controlling for specific origin-destination combinations that are
partially observed by including the relevant dummy covariate in a potential model.

The benefits of expanding migration flow tables over time could be improved by using
a longer series of migration data if available. Reported flows between the EU15 previous to
2002, provided by Eurostat, appeared incorrect. In this data, the presented sending data
appeared to be reported by destinations (forming vertical patterns when arranged into a
migration table) rather than origins. If such values were corrected, a greater amount of
information could be used in the estimation of correction factors and imputations, given
the assumptions of constant methods of migration data collection and definitions hold.
If changes did occur in the data collection or definitions for a given country, additional
parameters for before and after any structural break can be included in the estimation
of the correction factor in place of a single parameter for the entire time period. Such
modifications are easy to implement in the non-linear optimization routines outlined in
Chapter 4. Further data across time may also help inform judgment of experts on the
quality of data sources and inform the eligibility criteria for the estimation of harmonized
values. From a modeling perspective longer time series could be alternatively handled
using marginal models which may allow more complex categorical covariates to be fitted.

Imputations for missing data under such models would require more intricate parameter
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estimation techniques in the M-step of the EM algorithm and an assumption for the

correlation structure of data.

7.1.2 Accounting for Data Dissemination Problems

As a prelude to the estimation of correction factors, counts of known migrants with un-
known origins or destinations were accounted for by distributing these flows according
to the existing distributional patterns. For some countries, the addition of these values
altered the reported flows greatly. Consequently distance measures for the harmonization
process were modified. Previous constrained optimization procedures for migration data
had not considered such values. Comparisons of these values across time in Figure 4.3
revealed some notable insights. For Spanish data the number of known migrants with un-
known origin and destinations were extremely different in 2002 than in subsequent years.
However, most counts to specific origin and destinations are fairly stable over the time
period once the unknowns were accounted for, and the literature considered (Breem and
Thierry, 2006b) suggested that changes to the data measurement occurred previous to the
studied time period.

More widespread documentation of the unknown counts in international migration flow
data and the use of expert opinion could help account for the allocation of these flows. For
example, if large portions of the unknown counts were to or from countries in a different

continent the assumption of an equal distribution should be altered to reflect this failure.

7.1.3 Ignoring Poor Quality Data

Careful consideration was taken in deciding the eligibility of countries for the estimation
of correction factors to scale reported data. This decision was based on recent literature
by Erf (2007) that gave a quantifiable comparisons between migration sources. As a re-
sult, data which were judged to be of poor quality are ignored to enable a more effective
estimation of parameters. Replacement values for ignored data were provided by impu-
tations from a spatial interaction model estimated using the EM algorithm. The ratings
of Erf (2007) were also used to select data sources, for which correction factors would be
constrained to be one, and hence act as a reference for all estimates. Before correction
factors were estimated, sending data from countries with migration data exchanges were
also ignored as they are repetitions of data collected by receiving partner countries.
Further research into the comparison of migration definitions and data collection tech-
niques may further inform the decision to ignore lesser rated data sources. For example,
ratings for sending and receiving data were treated equally although literature suggests
that this is not the case. As comparable ratings are only provided within data types, no
distinction could be made between sending and receiving data qualities. Ratings provided
across all data sources may enhance the decisions for which data sources should be ig-
nored, require a correction factor to be estimated or constrained. They may help inform a
preference system to obtain a single flow value in each cell, where for example, a particular

sending data source might be considered better than any other receiving data.
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Alterations in the eligibility of data sources for the application of correction factors
due to new expert opinions or further documentation can be easily incorporated. The use
of non-linear optimization routines in statistical software allowed a great deal of flexibility
to change constraints and use alternative distance measures. In addition, more realistic
bounds for correction factors could be introduced. For example, tighter bounds in the
parameter space could force estimates to be no lower or greater than a value supplied
by expert opinion. Routines might also be easily constrained to harmonize data to an
alternative set of countries’ reported flows, which may use different timing criteria in their
migration definition, such as a six month definition as used by multiple migration data
sources in the EU15. Models might then be fitted to the new harmonized level of data
using the EM algorithm to provide comparable data for shorter timing criteria.

Additional data on sending flows between countries that currently have data exchange
agreements would enable more measures of data discrepancies to be obtained. For example,
reported sending counts of movements from Denmark to other Nordic nations, which may
already be collected but not published, would be valuable in estimating correction factors
for all concerned countries. The inclusion of extra migration flow data from countries with
reliable sources but outside the migration table of study could also be used to provide more
distance measures in the estimation of parameter values. For example, receiving data from
Norway is regarded to be of good quality and uses a one year definition (Erf, 2007). A
distance measure between its estimates and other countries sending data may further

improve the credibility of correction factor estimates.

7.1.4 Model Selection

The EM algorithm was used to impute missing migration flow values. An underlying
negative binomial regression model in Chapter 5 was selected using a stepwise search
routine to compare the AIC of models. This routine was initially run to select main ef-
fects parameters only, followed by a wider consideration for interaction terms. Although
computationally fast this procedure was based on observed data, and hence made no con-
sideration for the missing data. In addition, when parameters were fitted by implementing
the EM algorithm problems occurred with identification for some levels of interaction co-
variates. This was due to the limited amount of observed data being used to estimate a
large number of parameters. In Chapter 6, new main effects models were selected based on
the complete data through comparisons of the AICcd. This required models to be fitted
by implementing the SEM algorithm, slowing the computational time. No implementable
stepwise routine existed to compare models based on the AICcd and hence an all models
routine was used.

Interaction terms to improve imputations can be added by considering expert opinion.
In Chapter 5, for flows to and from France considered interactions of origin and destina-
tions with other covariates. Further improvements to the model fit, and hence imputations,
could be undertaken by including other country specific interactions where recommended

from data experts. Additional main effects and redefining the origin-destination rela-
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tionships in existing covariates may also improve a models fit if selected. For example,
comparative measures of unemployment or climate could be utilized if comparative mea-
sures for the duration of the time period studied are available. Information on population
groups, such as students, may also be beneficial to model fits. Its inclusion might be
interacted with a dummy covariate to indicate if the population group has or has not been
included in the data collection process. Analysis of lagged or quadratic relationships may
also provide useful contributions to models. Negative binomial regression models were
used throughout the modelling process in this study. This was undertaken to account for
the overdispersion in aggregate level migration data.

The selection of a main effects model based on the AICcd required a far greater number
of calculations, and hence computational time than the stepwise model selection routine.
A suitable model could be found more efficiently using a stepwise search algorithm adapted
to select models based on the AICcd.

7.1.5 Measures of Variation

The SEM algorithm was used in Chapter 6 to obtain an estimate for the asymptotic
variance-covariance matrix for parameter estimates, using only the code for an EM algo-
rithm, computations for asymptotic complete data variance-covariance matrix and stan-
dard matrix procedures. This allowed a better understanding of the possible variation of
imputed values under a selected model, allowing a confidence interval to be constructed.
The stopping criteria for the SEM algorithm, when fitting spatial interaction models, were
taken to be lower than those recommended. This was necessary for convergence as the dis-
persion parameter in the negative binomial distribution depended on a Newton-Raphson
routine which created numerical inaccuracies in comparison to parameter estimates of
distributions in the exponential family.

More accurate measures of the asymptotic variance for a selected model could be de-
rived using alternative methods, such as Louis (1982), although the generalisability is more
limited than the SEM, whereby conditional expectations of first and second derivatives of
the complete data are required. This would prove problematic if fitting multiple models
with different numbers of parameters.

Imputations and their confidence intervals assume that there exists no error in the
estimation of correction factors. As shown in Figure 4.5 estimates are not constant across
time, where some correction factors fluctuate greatly. In such situations, the assumption
that a distance measure for the discordance between data collection and definitions from
reliable data sources are fixed, may not be valid. Methods exist in the Bayesian paradigm
(see the next section) that may allow this assumption to be relaxed and hence measures

of variation to be more fully obtained for imputed values.
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7.2 Context of Study

7.2.1 Modeling International Migration

There exists a wide range of literature on modeling migration (see for example, Massey
et al. (1993) or Greenwood and Hunt (2003)). Due to data limitations, most empirical
studies concentrate on internal migration or flows in or out of single countries. The use
of migration flow tables allows comparisons of data sources to be analyzed and differences
to be addressed. In this thesis, comparisons were extended over time to further analyze,
correct for inconsistencies and enable the estimation of complex models for incomplete in-
ternational migration tables. Such procedures relied on modern computationally intensive
mathematical and statistical methodologies.

Alternative statistical approaches to the modelling of international migration data have
been undertaken in a Bayesian framework. Brierley et al. (2008) proposed one such method
using similar model component methodology of Raymer (2007) to estimate posterior dis-
tributions of both internal and international migration flows. For international data, prior
distributions were assigned to parameters in a model similar to (3.11) under the assump-
tion that receiving data took a log-normal distribution, allowing posterior distribution for
a complete migration flow table to be obtained. As with the Raymer (2007) their analysis
of Northern European receiving flow data produced final estimates for Lithuania which
were too high and altered patterns in original good data such as Sweden. These problems
had been driven by the assumption that all marginal data were complete and consistent.
As discussed in Chapter 3, this is not the case with international migration where prob-
lems of both inconsistencies and incompleteness also appear in the marginal totals. In
addition, simple models with only a single parameter to explain spatial interactions were
used.

A Bayesian modelling framework for international migration flow tables could provide
a number of advantages. Using a similar approach to the methodology outlined in this
thesis we may express the distribution of migration flow data as observations from a true
negative binomial distribution w;;; ~ NB(uj¢, ) where ;5 and o are the mean and
dispersion parameters, respectively. Observations from this distribution, ;s in receiving

and sending countries are subject to a scaling dependent on the data source,

yiju|rj, o, Boxt ~ NB(rjpiji, o) (7.1)
Yijea|sis o, By x; ~ NB(sipje, @), (7.2)

where log;j; = x;f,B Hence, if individual level covariates exist in Xgp

, the true model can
be modified to set &« = 0, and thus a Poisson distribution is derived. Appropriate prior
distributions for the parameters, p(r;), p(s;), p(a) and p(B3), where the dimension of 3 is
already known, can also be expressed. This allows the joint posterior distribution for all

parameters,

p(sis 75, 0, Blyijen, vijiz, X ) = p(r)p(s:)p(@)p(B)p(yijer |1, v, B %7 )p(yijez| si, o, By X7 ),
(7.3)
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to be estimated. This can be computed using Markov Chain Monte Carlo methods, given
some crude initial estimates for parameters; see for example Gelman et al. (2003, p283-
307). Once obtained, estimates for the entire distributions of flows in each cell of a series
of migration tables can be deduced.

Such an approach provides a number of advantages. As discussed previously, correction
factor estimates may posses some element of error. A Bayesian model can provide a more
realistic account for fluctuations in their estimates shown in Figure 4.5. As a result,
variation in estimates of r; and s; can be accounted for in the estimation of the marginal
distributions of 3, and thus the imputations for missing data. If an analyst assumes that
there is no error in the difference between reported values, as was taken in this study, prior
distributions for p(r;) and p(s;) may be defined with very low or zero variances. In the
latter case, this would allow reported values from countries with excellent data collection

methods and using the desired definition to be preserved.

7.2.2 International Migration Data

International migration flow data is often incomparable across multiple nations. The
increasing concern of governments in the production of international migration statistics
may in future lead to data provided by statistics institutes becoming more readily available
and of higher quality. In Europe this process may become reality due to recent regulations
agreed by the European Parliament for member states to provide migration statistics that
comply with a harmonized definition. However, within Europe and other parts of the world
an increase in population mobility, a reduction in administrative and regulatory barriers
to movement and an increase in irregular migration have created greater pressures on the
current ability for statistical systems to measure migration effectively. Inconsistencies are
likely to occur for the foreseeable future and data collection methods may continue to
struggle to capture movements.

In the context of the framework of this study, a greater amount of good quality data
provided by national statistics institutes may improve both the estimation of correction
factors for the harmonization of reliable flows and provide a more complete data set to
estimate missing counts. Alongside better migration statistics, more documentation of
summaries and comparisons of data, further improvement in the estimation of comparable
migration flow data may be gained. The methodology presented in this thesis allows a
great deal of flexibility for the estimates of comparable data from alternative regions and
different size tables. Caution should be taken for flow tables of migration between nations
that are very different, as models may struggle to explain all moves, especially those for
political or legal factors. Additional dimensions for migrant characteristics such as age
and sex might also be incorporated, if and when data become available. In addition,
the methods developed in this thesis could be used for other measurement of transition
between regions or states in which problems in inconsistencies and incompleteness occur.

This thesis has developed an estimation methodology for migration flow tables of com-

parable flow data between a set of countries. A concentration on two predominant factors,
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inconsistencies and incompleteness, were discussed and addressed via computationally in-
tensive mathematical and statistical techniques. This allowed estimates of a complete
table of comparable international migration flows that can be used by regional policy

makers and social scientists alike to better understand population behaviour and change.
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Appendix A

S-Plus/R Code

A.1 Poulain Constrained Minimization

poulain <- function(M, nr, base)
{
if (dim(M) [3] != 2)
stop("M must be a array of dimensions n x n x 2")

#tidy up data to exclude non-referee (nr) regions

M[is.na(M)] <- 0

X <- matrix(NA, dim(M)[1], 2)

dimnames(x) <- list(dimnames(M) [[1]], c("r", "s"))

M<-M[-nr, -nr, ]

n <- dim(M) [1]

#create A

A <- matrix(NA, c(n * 2 + 1), c(n *x 2 + 1))

Alc(n + 1):c(2 * n), 1:n] <- -2 x M[, , 11 * M[, , 2]

Alc(n + 1):c(2 * n), c(n + 1):c(2 * n)] <~ 2 * diag(rowSums(M[, , 2]172))

Alc(n + 1):c(2 * n), 2 *x n + 1] <- -0.5 * rowSums(M[, , 2]) *
(rowSums(M[, , 1]1) + rowSums(M[, , 2]1))

Af[1:n, 1:n] <- 2 * diag(colSums(M[, , 11°2))

Alt:n, c(a + 1):c(2 * n)] <= -2 % tM[, , 1] = M[, , 2])

All:n, 2 * n + 1] <- -0.5 * colSums(M[, , 1]) * (colSums(M[, , 1]) +
colSums (M[, , 21))

A[2 *xn + 1, 1:n] <- 0.5 * colSums(M[, , 1]1)

A[2 *xn+ 1, c(n + 1):c(2 *x n)] <- 0.5 * rowSums(M[, , 21)

A[2 *n+ 1, 2 *xn+ 1] <- 0

#set up vector for constraints for corrections

b <= c(rep(0, 2 * n), sum(apply(M, c(1, 2), max)))

#calulate initial corrections

xx <- solve(A, b)

#correction factors by r and s

x[ - nr, 1] <- xx[1:n]

x[ - nr, 2] <= xx[c(n + 1):c(2 * n)]

#normalisation setting a r value (base) to 1

if(is.integer(base) == T) x <- x/x[base, 1] else x <- x

y <- (matrix(x[is.na(x[, 1]) == F, 1], n, n, byrow = T) = M[, , 1] +
matrix(x[is.na(x[, 2]) == F, 2], n, n) * M[, , 2]1)/2

#average values for refereed countries

n <- dim(M) [1]

r <- matrix(x[ - nr, 1], n, n, byrow = T)

s <- matrix(x[ - nr, 2], n, n)

list(A = A, b=Db, y =y, x = x, dist = sum((r * M[, , 1] - s * M[, , 2])°2/
™ML, , 11 + ML, , 2]1), na.rm = T))
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poulain.comp <- function(M, nr, base)

{
#obtain correction factors for refereed countries
p <- poulain(M, nr, base)
n <- dim(M) [1]
x <- p$x
r <- matrix(NA, n, n)
s <- matrix(NA, n, n)
r[, - nr] <- rep(x[ - nr, 1], each = n)
sl - nr, ] <- rep([ - nr, 2], times = n)
#obtain correction factors for non-refereed countries
x[nr, 1] <- apply(s[, nr] * M[, nr, 2], 2, sum, na.rm = T)/
apply(M[ - nr, nr, 1], 2, sum, na.rm = T)
x[nr, 2] <- apply(rlnr, ] * M[nr, , 1], 1, sum, na.rm = T)/
apply(M[nr, - nr, 2], 1, sum, na.rm = T)
r[, nr] <- rep(x[nr, 1], each = n)
s[or, ] <- rep(x[nr, 2], times = n)
#averages of scaled data
y <= (r = M[, , 11 +s x M[, , 2]1)/2
list(y =y, x = x)
}
poulain.direct<-function(M, nr, base)
{
#get original A from poulain function
temp <- poulain(M, nr, base)
#remove lagrange partial derivative
A <- temp$A
A <- A[ - dim(A)[1], - dim(A)[2]]
#replace with 0’s and a constant (not too small)
A[base - sum(nr < base), ] <- 0
A[base - sum(nr < base), base - sum(nr < base)] <- max(A)
#obtain b
b <- temp$b
b <= b[ - length(b)]
b[base - sum(nr < base)] <- max(A)
#obtain x
X <- temp$x
n <- dim(M) [1] - length(ar)
#calcualte r and s
xx <- solve(A, b)
x[ - nr, 1] <- xx[1:n]
x[ - nr, 2] <- xx[c(@a + 1):c(2 * n)]
r <- matrix(x[ - nr, 1], n, n, byrow = T)
s <- matrix(x[ - nr, 2], n, n)
list(A = A, b = b, x = X,
dist = sum((r * M[ - nr, - nr, 1] - s * M[ - nr, - nr, 2])°2/
(M[ - nr, -nr, 1] + M[ - nr, - nr, 2]), na.rm = T))
}

A.2 Distance Functions for Constrained Optimization

ChiSq <- function(x, M1, M2)

{
n <- length(x)
a <- matrix(x[1:c(n/2)], dim(M1) [1], dim(M1) [2], byrow = T)
b <- matrix(x[c(1 + n/2):n], dim(M2)[1], dim(M2) [2])
sum(abs(a * M1 - b *x M2)"2/(M1 + M2), na.rm = T)

}
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Man<-function(x, M1, M2){
n<-length(x)
a<-matrix(x[l:c(n/2)], dim(M1) [1], dim(M1) [2], byrow=T)
b<-matrix(x[c(1+n/2):n], dim(M2)[1], dim(M2) [2])
sum(abs (axM1-b*M2) ,na.rm=T)

}

Euc<-function(x, M1, M2){
n<-length(x)
a<-matrix(x[1:c(n/2)], dim(M1) [1], dim(M1) [2], byrow=T)
b<-matrix(x[c(1+n/2):n], dim(M2) [1], dim(M2) [2])
sqrt (sum(abs ((a*M1-b*M2) “2) ,na.rm=T))
}

Can<-function(x, M1, M2){
n<-length(x)
a<-matrix(x[l:c(n/2)], dim(M1) [1], dim(M1) [2], byrow=T)
b<-matrix(x[c(1+n/2):n], dim(M2) [1], dim(M2) [2])
sum( abs(a*M1-b*M2)/(a*M1+b*M2) ,na.rm=T)
+

Cla<-function(x, M1, M2){
n<-length(x)
a<-matrix(x[l:c(n/2)], dim(M1) [1], dim(M1) [2], byrow=T)
b<-matrix(x[c(1+n/2):n], dim(M2) [1], dim(M2) [2])
sum( abs(a*M1-b*M2) "2/ (a*M1+b*M2) "2 ,na.rm=T)

A.3 EM Algorithm for Negative Binomial Regression Model

glm.nb.EM <- function(model, data, tol, max.it, z0)

{
if(all(is.missing(pmatch(names(data),"y")))==T)
stop("data must have a response column named y with some missing data")
data$original <- data$y
#Initial E-step with some unknown parameter set
data$y[is.na(data$original)] <- z0
z <- data$y[is.na(data$original)]
#Initial M-step
m <- glm.nb(formula(model), data, maxit = max.it)
fit <- m$fit
#Record convergence
lik <- cbind(model$twologlik/2, m$twologlik/2)
beta <- cbind(c(model$coef, model$theta), c(mPcoef, m$theta))
#Second E-step before loop
data$y[is.na(data$original)] <- c(fit) [is.na(data$original)]
i<-2
while(any(c(abs(betal, i] - betal, i - 1])) > tol, na.rm = T)) {
m <- glm.nb(formula(model), data, maxit = max.it)
fit <- m$fit
data$y[is.na(data$original)] <- c(fit) [is.na(data$original)]
z <- cbind(z, data$yl[is.na(data$original)l)
lik <- cbind(lik, m$twologlik/2)
beta <- cbind(beta, c(m$coef, m$theta))
i<-1i+1
}
return(list(z = z, beta = beta, beta.se = beta.se,
final .model = m, final.data = data, lik = lik, it = i))
}
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A.4 Supplemented EM Algorithm

em <- function(betal, model, data)

{
#E step
fit <- exp(model.matrix(model, data) %*’, betal)
data$y[is.na(data$original)] <- c(fit) [is.na(data$original)]
#M step
m <- glm.nb(formula(model), data, maxit = 100)
beta <- c(m$coef)
list (beta=beta, m=m)
}
jac<-function(b.star, b.init, model, data)
{
dm <- matrix(0, length(b.init), length(b.init))
for(i in 1:length(b.init)) {
#sequential replace each element of b.star with b.init
b.temp <- b.star
b.temp[i] <- b.init[i]
#run one iteration of em with altered beta (a mix of b.star,
with one element of b.init)
u <- em(b.temp, model, data)
#£fill in the relevant dm row with rate of change
dm[i, ] <- c(u$beta - b.star)/(b.init[i] - b.star[i])
}
list(dm = dm)
}
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sem<-function(b.star, b.init, model, data, tol)

{

#get first and second dm for comparison

b.star <- em(b.star, temp.mod, data)$beta

dm <- jac(b.star, b.init, model, data)$dm
storedm <- array(c(dm), c(dim(dm), 1))

b <- em(b.init, temp.mod, data)$beta

dm <- jac(b.star, b, model, data)$dm

storedm <- array(c(storedm, dm), c(dim(dm), 2))
#set up monitoring objects

r <- 2

err <- apply(abs(storedm[, , r - 1] - storedm[, , r]), 1, max)

converge <- c(err > tol)
print(converge)

#estimate mapping differential depending on row (i) until all

errors less than tolerance
while(any(err) > tol) {
for(i in 1:dim(dm) [1]) {

#if given row is not converged estimate the mapping differential

if(err[i] > tol) {

#sequential replace each element of b.star with current b

b.temp <- b.star

b <- em(b, temp.mod, data)$beta
b.temp[i] <- b[i]

u <- em(b.temp, model, data)

dm[i, ] <- c(u$beta - b.star)/(b[i] - b.star[i])

}
if (err[i] < tol) {

#if given row has converged, set row of dm to previous values

dm[i, ] <- storedm[i, , r]

3

r<-r +1

storedm <- array(c(storedm, dm), c(dim(dm), r))
err <- apply(abs(storedm[, , r - 1] - storedm[, , r]l), 1, max)
converge <- rbind(converge, c(err > tol))
print(converge[r - 1, 1)
}
return(list(dm = dm, dm.it = storedm, converge = t(converge)))
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