
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

System Level Performance and Yield

Optimisation for Analogue Integrated

Circuits

by

Sawal Hamid Md Ali

A thesis submitted for the degree of

Doctor of Philosophy

in the

Faculty of Engineering, Science and Mathematics

School of Electronics and Computer Science

November 2009

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINNEERING, SCIENCE AND MATHEMATICS

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Sawal Hamid Md Ali

Advances in silicon technology over the last decade have led to increased integration

of analogue and digital functional blocks onto the same single chip. In such a mixed

signal environment, the analogue circuits must use the same process technology as

their digital neighbours. With reducing transistor sizes, the impact of process

variations on analogue design has become prominent and can lead to circuit

performance falling below specification and hence reducing the yield.

This thesis explores the methodology and algorithms for an analogue integrated

circuit automation tool that optimizes performance and yield. The trade-offs between

performance and yield are analysed using a combination of an evolutionary algorithm

and Monte Carlo simulation. Through the integration of yield parameter into the

optimisation process, the trade off between the performance functions can be better

treated that able to produce a higher yield. The results obtained from the performance

and variation exploration are modelled behaviourally using a Verilog-A language. The

model has been verified with transistor level simulation and a silicon prototype.

For a large analogue system, the circuit is commonly broken down into its constituent

sub-blocks, a process known as hierarchical design. The use of hierarchical-based

design and optimisation simplifies the design task and accelerates the design flow by

encouraging design reuse.

A new approach for system level yield optimisation using a hierarchical-based design

is proposed and developed. The approach combines Multi-Objective Bottom Up

(MUBU) modelling technique to model the circuit performance and variation and Top

Down Constraint Design (TDCD) technique for the complete system level design.

The proposed method has been used to design a 7
th

 order low pass filter and a charge

pump phase locked loop system. The results have been verified with transistor level

simulations and suggest that an accurate system level performance and yield

prediction can be achieved with the proposed methodology.

DECLARATION OF AUTHORSHIP

I, Sawal Hamid Md Ali, declare that the thesis entitled System Level Performance and

Yield Optimisation for Analogue Integrated Ciruits and the work presented in it are

my own. I confirm that:

 this work was done wholly or mainly while in candidature for a research

degree at this University;

 where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been

clearly stated;

 where I have consulted the published work of others, this is always clearly

attributed;

 where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work;

 I have acknowledge all main sources of help;

 where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed

myself;

 parts of this work have been published as:

o Sawal Ali, R. Wilcock and P.R. Wilson, ―Improved performance and

variation modelling for hierarchical-based optimisation of analogue

integrated circuits‖, Design, Automation and Test in Europe (DATE)

2009, Nice, France.

o Sawal Ali, R. Wilcock, P.R. Wilson and A.D. Brown, ―A new

approach for combining yield and performance in behavioural model

for analogue integrated circuits‖, Design, Automation and Test in

Europe (DATE) 2008, March 3-7, Munich.

Signed: ..

Date: ...

Acknowledgements

Alhamdulillah, I thank to Allah for giving me a good health and the opportunity to

continue my life and finish my study successfully.

I wish to express my sincere gratitude to my supervisor, Dr. Peter R. Wilson for

providing the opportunity to carry out this study, and for guidance and support. I am

deeply indebted to Dr. Reuben Wilcock for his valuable suggestion and active

cooperation and having been a part of every single stage of my thesis, from inception

to completion.

I wish to extend my warmest thank to all the staff in the Electronics System Devices

Group, School of Electronics and Computer Science who have helped me in my work

throughout my study.

Collective and individual acknowledgments are also owed to my colleagues at ESD

group whose present somehow perpetually refreshed, helpful and memorable

especially to Noohul Basheer, Abu Bakar, Sankalp Modi, Karthik Badam, Arash

Ahmadi, Biswajit Misra, Li Ke, John Goodwin, Julian Bailey, for giving me such a

pleasant time and valuable advice.

I convey my special acknowledgements to the National University of Malaysia

(UKM), Ministry of Higher Education of Malaysia and Malaysian government for the

financial support given to me and my family. I gratefully thank Tun Dr. Mahathir

Mohamad, the ex-prime minister of Malaysia for being a role model for hard working

person and for all his encouragements towards hardworking ethics.

My sincere thanks are given to my parents, Md Ali bin Daud and Sabura abd Karim

for their inseparable support and prayers. I would like to offer my greatest

appreciation to my wife Siti Anom and my little prince and princess, Syafique Azra‘ei

and Syra Arisha for being understanding and always stand by me with love and

prayers. Thank you very much for letting me do this ―geek‖ thing and I‘m glad we‘re

travelling together through this journey called life! I love all of you.

List of Contents iv

List of Contents

Chapter 1 Introduction 1

1.1 Integrated Circuits 1

1.2 Challenges in analogue design 3

1.3 Project motivation and goal 4

1.4 Project Scope 5

1.4.1 Introduction 5

1.4.2 Structure of the Project 5

1.4.3 Project Hypotheses 8

1.5 Thesis Structure 8

1.5.1 Chapter 1 : Introduction 9

1.5.2 Chapter 2 : Review of Analogue circuit Design and 9

 Statistical Design Techniques

1.5.3 Chapter 3 : Review of Simulation & Modelling 9

1.5.4 Chapter 4 : Yield Optimised Design 9

1.5.5 Chapter 5 : Performance and Variation Modelling 10

1.5.6 Chapter 6 : Hierarchical-based Design Optimisation 10

1.5.7 Chapter 7 : Mixed Signal System Level Application 10

1.5.8 Chapter 8 : Conclusion and Future Work. 10

Chapter 2 Review of Analogue Circuit Design and Optimisation 11

2.1 Introduction 11

2.2 Automatic Circuit Sizing 14

2.2.1 Knowledge-Based Design 14

 IDAC 15

 OASYS 15

 BLADES 16

2.2.2 Optimization-based Circuit Sizing 17

 Equation-based Optimisation 18

 OPASYN 19

 Maulik 19

 GPCAD 20

 Simulation-based Optimisation 20

 DELIGHT.SPICE 21

 FRIDGE 22

 ASTRX/OBLX 22

 ANACONDA and MAELSTROM 23

2.4 Optimization Technique 25

2.4.1 Direct Search Optimisation 25

 Tabulation Method 25

 Sequential Method 26

 Linear Method 26

2.4.2 Gradient-search Optimisation 27

List of Contents v

 Steepest Descent Method 27

 Newton‘s Method 28

2.4.3 Simulated Annealing 29

2.4.4 Genetic Algorithm 30

2.4.5 Multi Objective Optimization 33

 Weighted-based GA 34

 Non-dominated Sorting GA-II 34

2.5 Statistical fluctuations in integrated circuit 36

2.6 Parametric Yield Maximization 37

2.7 Variation Analysis 40

 2.7.1 Worst Case Analysis 40

 2.7.2 Simplicial Approximation 41

 2.7.3 Monte Carlo Method 42

2.8 Variation-aware Design 42

 2.8.1 Direct Method 43

 2.8.2 Indirect Method 44

2.9 Integrated Yield Optimization in Circuit Synthesis 45

2.9.1 ASTRX/OBLX Extension 46

2.9.2 Simultaneous Yield and Robustness Optimization 46

 2.10 Summary 47

Chapter 3 Review of Circuit Simulation and Modelling 48

3.1 Introduction 48

3.2 Analogue Circuit Simulation 49

3.2.1 Circuit Neltlist 49

3.2.2 Types of Analysis 50

 DC Analysis 51

 AC Analysis 51

 Transient Analysis 52

3.3 Modelling Theory 53

3.3.1 Definition of a Model 53

3.3.2 Device Modelling 54

 MOS Level 1, 2 and 3 54

 BSIM Model 54

3.3.3 Hardware Description Language (HDL) modelling 55

 3.4 Summary 57

Chapter 4 Yield Optimised Design 58

4.1 Introduction 58

4.2 Integrated yield optimised model 59

4.3 Design Example for Yield Optimised Model 61

4.3.1 OTA design and objective functions 61

4.3.2 Comparison With Design Centring Approach 65

4.4 Improved yield optimised algorithm 66

4.5 Design Example for Improved Yield Optimised Algorithm 68

4.5.1 Pareto front and feasible region 68

List of Contents vi

4.5.2 Monte Carlo simulation 70

4.5.3 Comparison with NeoCircuit Optimisation Tool 72

4.6 Summary 74

Chapter 5 Performance and Variation Modelling 75

5.1 Introduction 75

5.2 Pareto-front modelling 76

5.2.1 Pareto-front modelling – performance 77

5.2.2 Pareto-front modelling – variation 78

5.2.3 Interpolation from a lookup table 78

 Linear Spline 80

 Quadratic Spline 80

 Cubic Spline 81

5.3 Modelling Example 82

5.3.1 Performance and Variation Model 83

5.3.2 Table Model function implementation 85

5.3.3 Interpolation example 88

5.3.4 Model Verification 89

5.3.5 Topology Comparison 91

5.3.6 Summary of Example 91

5.4 Application Example 92

5.4.1 System level design 92

5.4.2 Silicon Prototype 95

5.5 Summary 97

Chapter 6 Hierarchical-based design optimisation 98

6.1 Introduction 98

6.2 Hierarchical-based design 99

6.3 Hierarchical-based Design Methodology 100

6.3.1 Bottom-Up Methodology 100

6.3.2 Top-down Constraint-Driven Methodology (TDCD) 101

6.3.3 Feasibility Modelling Bottom-up (FMBU) + TDCD 101

6.3.4 Multi Objective Bottom-up Methodology (MUBU) 102

6.4 Multi Objective Bottom Up (MUBU) + TDCD Architecture 103

6.5 Design Example: 7
th

 order elliptic low pass filter 105

6.5.1 Circuit Decomposition 105

6.5.2 Design Initialisation 106

6.5.3 Optimisation 107

6.5.4 Performance and Variation Model 107

6.5.5 Behavioural Description 109

6.5.6 System level optimisation 115

6.7 Summary 118

Chapter 7 Mixed-signal System Level Application 120

7.1 Introduction 120

7.2 PLL system 122

List of Contents vii

7.2.1 Phase Frequency Detector 122

7.2.2 Charge Pump and Loop Filter 124

7.2.3 Voltage Controlled Oscillators 125

7.3 PLL System Performances 126

7.3.1 PLL transfer function 127

7.3.2 PLL phase noise 130

7.3.3 Extracting individual phase noise contribution 131

 VCO Noise 131

 PFD/CP and loop filter noise 132

7.3.4 Behavioural Modelling of Noise Sources 133

7.4 Design Example 136

7.4.1 Charge Pump (CP) performance and variation model 137

7.4.2 Voltage-controlled Oscillator (VCO) performance and

 variation model 142

7.4.3 PLL System Level Design 150

7.4.4 Design Summary 158

7.5 Summary 160

Chapter 8 Conclusions and Future Work 161

8.1 Conclusion 161

8.2 Accuracy, generality and limitations of the method 163

8.3 Project Objectives Achieved 164

8.4 Contribution 166

 8.4.1 Specific Contribution 166

 8.4.2 Publications 167

8.5 Future Work 167

8.5.1 Topological Automation 167

8.5.2 Hybrid Analytical and Simulation-based Approach 167

8.5.3 Parallel Optimisation 168

Publications 169

Reference 171

Appendix A Spice Model Listings 181

Appendix B Algorithm Model Listings 195

Appendix C Verilog-A Model Listings 206

List of Figures

Figure 1.1 : Transistor complexity‘s trend – Moore‘s Law 2

Figure 1.2 : Project structure 7

Figure 2.1 : Typical design flow for analogue IC design 13

Figure 2.2 : Optimisation-based design 17

Figure 2.3 : Flowchart of Genetic Algorithm 31

Figure 2.4 : Example of genetic algorithm report 32

Figure 2.5 : Relationship between parameter space and objective space 34

Figure 2.6 : NSGA-II Procedure 35

Figure 2.7 : NSGA-II Algorithm 36

Figure 2.8 : Acceptability region in performacne space 38

Figure 2.9 : Design centring to maximise yield 45

Figure 3.1 : Circuit diagram for differential pair 49

Figure 3.2 : Netlist for differential pair 50

Figure 3.3 : Resistor model 53

Figure 3.4 : Typical hierarchy level in analogue circuit design 56

Figure 4.1 : Integrated yield optimised model 60

Figure 4.2 : Symmetrical OTA topology 61

Figure 4.3 : GA string 63

Figure 4.4 : Convergence criteria 64

Figure 4.5 : Yield targeted algorithm 67

Figure 4.6 : Objective space and Pareto-front 69

Figure 4.7 : Detail view of feasible region 69

Figure 4.8 : Process variation parameters 70

Figure 4.9 : Monte Carlo histogram for gain and phase margin 73

Figure 5.1 : Performance and variation‘s model development flow 77

Figure 5.2 : Symmetrical OTA topology 82

Figure 5.3 : Miller OTA topology 83

Figure 5.4 : Symmetrical OTA Pareto plot 84

Figure 5.5 : Miller OTA Pareto plot 84

Figure 5.6 : Table model file for OTA performance model 87

Figure 5.7 : Table model file for gain and phase margin variation model 87

List of Figures ix

Figure 5.8 : Verilog-A model for OTA performance and variation lookup table 87

Figure 5.9 : Behavioural and transistor level simulation comparison 90

Figure 5.10 : Open loop gain comparison for Miller-OTA 90

Figure 5.11: Pareto comparison between topology 91

Figure 5.12 : 2
nd

 order lowpass filter topology 93

Figure 5.13 : Filter specification 93

Figure 5.14 : Layout view of silicon prototype 95

Figure 5.15 : Testboard snapshot 96

Figure 5.16 : Chip measurement result 96

Figure 6.1 : Hierarchy design methodology 100

Figure 6.2 : Multi Objective Bottom Up hierarchical methodology 102

Figure 6.3 : MUBU + TDCD architecture 104

Figure 6.4 : Circuit decomposition 105

Figure 6.5 : Single stage OTA topology 106

Figure 6.6 : GA string for the design example 107

Figure 6.7 : Verilog-A table model function 108

Figure 6.8 : OTA small signal model 110

Figure 6.9 : OTA schematic with parasitic capacitance 111

Figure 6.10 : OTA high frequency small signal model 112

Figure 6.11 : Verilog-A code for the OTA 114

Figure 6.12 : Comparison between behavioural model and transistor model 115

Figure 6.13 : 7
th

 order low pass elliptic filter 116

Figure 6.14 : Filter specification 116

Figure 6.15 : Monte Carlo plot of filter response 118

Figure 7.1 : PLL system block diagram 121

Figure 7.2 : Phase detector concept 122

Figure 7.3 : Phase detector plots 123

Figure 7.4 : Phase frequency detector schematic 123

Figure 7.5 : PFD/CP illustration and its signal plot 124

Figure 7.6 : Loop filter 125

Figure 7.7 : VCO as a linear function of control voltage 126

Figure 7.8 : A linear PLL model 127

Figure 7.9 : Bode plot of a 3
rd

 order PLL 129

Figure 7.10 : Noise analysis model for PLL system 130

List of Figures x

Figure 7.11 : VCO phase noise illustration 132

Figure 7.12 : A schematic for PFD/CP and loop filter noise simulation 133

Figure 7.13 : Illustration of PFD/CP and loop filter noise 133

Figure 7.14 : VCO behavioural model 135

Figure 7.15 : PFD/CP behavioural model 135

Figure 7.16 : Charge pump preparation stage 137

Figure 7.17 : Charge pump (CP) schematic diagram 138

Figure 7.18 : Nominal, minimum and maximum plot for charge pump noise 139

Figure 7.19 : Charge pump Pareto-front with variations 140

Figure 7.20 : PFD/CP table model function for nominal performance 141

Figure 7.21 : PFD/CP table model function for minimum performance 141

Figure 7.22 : PFD/CP table model function for maximum performance 142

Figure 7.23 : VCO preparation stage 142

Figure 7.24 : 5-stage ring VCO schematic 143

Figure 7.25 : VCO GA string 144

Figure 7.26 : Nominal, minimum and maximum plot for VCO phase noise 146

Figure 7.27 : VCO table model function for nominal performance 147

Figure 7.28 : VCO table model function for minimum performance 148

Figure 7.29 : VCO table model function for maximum performance 149

Figure 7.30 : PLL top level behavioural model 151

Figure 7.31 : Noise simulation result of PLL with all the contributing sources 152

Figure 7.32 : Phase noise plots for design point no. 4, 9 and 10 154

Figure 7.33 : PLL output frequency range 157

Figure 7.34 : PLL locking time for minimum and maximum frequency 158

List of Tables

Table 2.1 : GA control parameters 32

Table 4.1 : Performance function and specifications 62

Table 4.2 : Design paramters 63

Table 4.3 : Simulation result and comparison 65

Table 4.4 : Design specifications 68

Table 4.5 : Design point yield percentage 71

Table 4.6 : Yield optimised design comparison 73

Table 5.1 : Interpolation degree for table_model function 82

Table 5.2 : Performance and variation table 85

Table 5.3 : Interpolation example 89

Table 5.4 : Performance comparison 89

Table 5.5 : Summary of examples 92

Table 5.6 : Miller-OTA performance and variation values 94

Table 5.7 : 2
nd

 order low pass filter optimisation results 94

Table 6.1 : Performance and variation samples 109

Table 6.2 : Pareto-front samples for filter optimisation 117

Table 7.1 : PLL system level specifications 136

Table 7.2 : VCO Design parameters 144

Table 7.3 : Pareto-point samples for VCO 145

Table 7.4 : Design parameters for Pareto-point samples 145

Table 7.5 : Sample points from VCO lookup table 147

Table 7.6 : PLL system designable parameters 152

Table 7.7 : PLL system level optimum samples 155

Table 7.8 : PLL design parameters for individual blocks 156

Table 7.9 : PLL performance results 158

Table 7.10 : PLL system design summary 159

Chapter 1

Introduction

1.1 Integrated Circuits

In 1965, Gordon Moore predicted that the number of transistors on a chip will double

about every two years [1]. This statement also implies that the density of a single chip

will increase due to the higher number of transistors integrated. Since then, the field

of electronics had seen a huge development that has revolutionised many aspects of

consumer electronics. Moving from a small number of transistors to multi million

transistor circuits has provided the functionality that past generations could only

dream of. Figure 1-1 shows the trend in transistor complexity for microprocessors that

follow the Moore‘s law prediction.

One of the main reason for this prediction continue to be valid is the continuous

development in transistor size reduction. This trend allows the integration of several

functional blocks that previously occupied one or more boards onto a single chip, a

technique that is termed as System-On-Chip (SoC). Although most of the functional

blocks in an integrated system are digital, analogue circuits are still needed to

interface to the real world which drives to the integration of analogue and digital

circuits in a single system known generally as mixed-signal. This integration is very

Chapter 1 Introduction 2

attractive due to the significant reduction that can be made to the device size and

hence to the overall cost of the system.

One of the most important applications of analogue circuits is to bridge the gap

between the `real‘ world and the digital domain. The need to go from analogue to

digital processing have made the use of analogue-to-digital and digital-to-analogue

converters indispensable. Several other important analogue components include

filters, amplifiers, integrators and reference circuits for biasing. All these components

are found in various applications such as communication systems, signal processors

and radio frequency (RF) circuits. It is thus clear that analogue circuit integration is

important and necessary in a large range of applications especially when considering

SoCs where the link between the analogue and the digital domain will be required in

practically every circuit.

With the rising level of integration, the complexity and the challenges of the

integrated circuits increases. Such complexity has increased the requirement to use

CAD tools for design automation that supports the design on several hierarchy of

abstractions. The following section will discuss some of the challenges faced by the

analogue circuits. This discussion will lead to the motivation behind the research that

is to explore a methodology that can be used for automating and optimising the design

flow of analogue circuits.

Figure 1-1: Transistor Complexity‘s Trend – Moore‘s Law

Chapter 1 Introduction 3

1.2 Challenges in analogue design

In a complex mixed-signal system, the analogue circuit may occupy a small area

compared to the digital circuit but the design time of the analogue circuit is often

much longer and can therefore cause a bottleneck in the overall system design [2].

The reasons for this are generally the circuit complexity and the lack of automation

tools that can speed up the design process. Unlike digital circuits which can be rapidly

synthesized by computer-aided-design tool, most of the analogue circuits are still

essentially designed manually.

Another challenge faced by the analogue circuit in a mixed-signal environment is

often the requirement to use the same transistor process technology as the digital

circuits. For digital circuits, process technology downscaling is desirable due to the

capability to reduce power consumption, area and delay. However, this is not

necessarily helpful for analogue circuits. For example, a reduction in supply voltage

due to the small transistor size, limits the voltage swing of the signals in the circuit

and this can increase the signal to noise ratio and total harmonic distortion of the

circuit. This has proved to be a significant challenge to analogue circuit designers in

term of optimising the design for better performances and meeting the specifications.

Furthermore, as the transistor sizes are scaled down, the resulting variability increases

and adversely effect yield. These variations in the process technology have a large

influence to the quality and yield of a designed and manufactured circuit. With

further shrinking of process technology, the variation is getting worse for each

technology node. For technologies larger than 180nm feature sizes, variations are

mostly in a range of below 10%. However, shrinking technologies down to 90nm,

65nm and below cause the variations to be more than 50% [3]. With a high correlation

of circuit yield to profit, yield maximisation has became a major issue in deep sub-

micron integrated circuit design and has been considered as an important factor in the

design stages.

This thesis addresses one of the important topics in analogue IC design, which is to

optimise the performance and yield of deep submicron integrated circuit design. The

method proposed in the thesis starts with performance and variation model

Chapter 1 Introduction 4

development using a Pareto front approach and is followed by a top-down system

design methodology using a hierarchical flow, that provides the designer with the

ability to optimise the design for better performance and higher yield at the system

level.

1.3 Project motivation and goal

The difficulties in the design of analogue integrated circuit (IC) discussed earlier

shows some of the challenges faced by the analogue designer. Increase of design

complexity, impact of process variations and demand for design cycle time reduction

increase the need to have a new improved methodology for analogue design

automation tool. Recent advances in design automation have led to a gradual

transition from ―hand-calculation‖ based design to a simulation-based sizing

methodology [4]. A Simulation-based approach tests many circuit candidates during

the sizing process and evaluates each candidate via detailed circuit simulations. For a

large circuit, the searching space for optimization can be very large and this increases

the simulation time significantly. One of the solutions to this problem is modelling the

performance space of the circuits behaviourally such that the optimisation can be done

without the need of repeating extensive circuit simulation, at a transistor level.

In addition, the higher impact of process variation on the design yield has led to the

integration of a yield parameter as one of the performance parameters in the design

process. Although there is extensive research in this area, most do not model the

performance variation together with their performance model and hence has no ability

to predict the yield directly. Most of the current methods exist in yield optimised

design are based on an approximation model and only focus at circuit level

optimisation [5, 6, 7, 8]. The methodology presented in this thesis focuses on

performance and variation modelling, and a top-down hierarchical design technique

that is suitable for performance and yield optimisation for both at circuit level and

system level design. The specific objectives of this project are discussed in the

remainder of this chapter.

Chapter 1 Introduction 5

1.4 Project Scope

1.4.1 Introduction

The scope of this project is to develop the ideas for modelling circuit performance and

their variation that can be used efficiently and accurately in the design of analogue

integrated circuits.

Specifically, the project involves several activities including:-

 Parameter extraction that relates the circuit performances and their design

parameters.

 Yield characterizing that relates the performances and their variations through

a minimum and maximum estimation from a Monte Carlo simulation.

 Construction of behavioural model of a circuit example to model the

performance and variation.

 Hierarchical-based optimisation design flow for system level design, and

 Methodology verification with practical examples.

When considering a performance and variation model of an analogue circuit, one of

the most important factors is the accuracy of the model. Often a trade-off is being

made that trades the accuracy for speed of simulation. In this thesis, the accuracy of

the model is given a high weighting and the technique chosen for the model

development reflects this intention. Several examples have been chosen to

demonstrate the model application that includes a complete design flow from design

specifications through to silicon implementation.

1.4.2 Structure of the Project

The project was split into three main phases and can be illustrated as shown in figure

1-2 :-

Chapter 1 Introduction 6

Phase 1: To establish the methods for modelling the performance and variations of a

circuit design. This involves extensive review of analogue synthesis techniques and

yield optimization methodologies. The transition of design automation and techniques

from hand-calculation based to simulation-based was carefully studied in order to

choose the suitable and accurate method for the synthesis technique. Comparison was

made with other methods especially for yield optimisation technique including design

centring methods and the use of commercial optimisation tools.

Phase 2: To build the performance and variation model of an example circuit design.

This model was built from optimal performance points of the objective space and their

minimum and maximum variation estimation based on a 6
th

 standard deviation range.

Both of the performance and variation model were developed behaviourally making it

suitable for fast behavioural level simulation. A silicon prototype of a 2
nd

 order filter

was developed to demonstrate the practicality of the model and to validate the

proposed methodology.

Phase 3: To develop a new hierarchical-based design technique that can be used for

system level design. The performance and variation model developed in previous

phase was used in the hierarchical design flow to design and optimise a system level

block for performance and yield. A mixed-signal charge pump phase locked loop was

used to demonstrate the full bottom up and top down design flow of the system for

performance and yield optimisation.

Chapter 1 Introduction 7

F1

F2

Variation

Space

Nominal

Pareto

AD

C

A to D

Converter

ADC

Architecture

S/

H
S

H(z

)
DA

C

OSR

Digital

• System architec.

• Cct decomposition

• top level model

• NSGA setup

• Run MOO

• Pareto & Variation

• choose solution

3

Objective

space

f1

f2

µ +6σ-6σ

//lookup table for pfd variation

lfpwhmin = $table_model(lfpwh,

"pfdmin_data.tbl", "3L");

V(out) <+ kd*(V(in1) - V(in2))

 + flicker_noise(lfpfl, 1,

"pfd_flicker")

 + white_noise(lfpwhmin,

"pfd_white");

$fclose(file_ptr1);

endmodule

• NSGA setup

• Run MOO

• MC on Pareto

• SD on MC

• Lookup table

• Behavioural model

2

Vi

n+
Vin-

Vout

Ibias

M1 M2

M3 M4

WPair2 LPair2WPair1 LPair1

.option post

V1 ref 0 pulse 1.2 0.0 0ns

1fs 1fs 900p 1.8n AC=1mV

...

xa1 ref pll_out pll_top

+ Icp=pfd_current

+ lfpfl=0.0

.PARAM pfd_current=100e-6

.PARAM min_freq=437e6

.ac dec 20 1k 100Meg

.probe ac vdb(pll_out, ref)

….

….

….

• Schematic drawing

• Netlist

• dsg params (.param)

• objective (.measure)

• GA string

1

1 – Setup Phase 2 – Modelling Phase

Vin

+
Vin-

Vout

Ibias

M1 M2

M3 M4

Sized Transistor

L1 = 0.35u

L2 = 0.35u

L3 = 1u

L4 = 1u

W1 = …

W2 = ...

• Dsg interpolation

• transistor level schem

• spice simulation & MC

 verification

• finish

4

3 – System Level Optimisation

Phase
4 – Verification Phase

Figure 1-2: Project structure

Chapter 1 Introduction 8

1.4.3 Project Hypotheses

As a basis for the research in this project, several specific hypotheses were made as

follows:-

 Existing yield optimised design methodologies have several inadequacies

including the ability to predict and optimise the yield at system level design.

 In deep sub-micron technology, where the design complexity and variability

has become a significant challenge, the accuracy and the ability to translate the

simulated results into a real design is very important.

 Existing approaches for system level design using a hierarchical-based

optimisation method do not consider the variations of the sub-block circuits

leaving the yield optimisation for the system until the end of the design flow.

 A new hierarchical-based optimisation is needed that can incorporate the

performance and variation model of analogue circuits into a top down system

level design flow.

 The application of behavioural modelling languages such as Verilog-A allow

the ability to model a system that include mixed-signal blocks and offers a

huge potential saving in terms of simulation time.

1.5 Thesis Structure

This section explains briefly the main points of each chapter in the thesis. The first

part of the thesis, chapters 1-3 contain the background theory and literature review

which leads to chapter 4 & 5 describing the implementation of the performance and

variation model for analogue circuits. The last part of the thesis investigates a

demonstrator application using a proposed hierarchical-based optimisation for mixed-

signal system level design. This is covered in chapter 6 and 7. Chapter 8 concludes the

project and recommends areas for the future work.

Chapter 1 Introduction 9

1.5.1 Chapter 1: Introduction

The introduction of the thesis describes the motivations and goals to the project. The

challenges in analogue circuit design are briefly explained which define the research

landscape for the project.

1.5.2 Chapter 2: Review of Analogue circuit Design and Statistical Design

Techniques

This chapter reviews the techniques and developments in analogue circuit design

automation which can be divided into three main categories : Knowledge-based,

analytical-based and simulation-based design. The optimisation techniques are

reviewed and compared to provide initial understanding that is suitable in this project.

Statistical design techniques for analogue circuit are reviewed and their limitations

are defined in this chapter.

1.5.3 Chapter 3: Review of Simulation & Modelling

The aim of this chapter is to review and explain the modelling principles and

techniques used for electronic circuits. Basic concepts of behavioural modelling are

introduced here and the advantage given by the behavioural model in a system level

design is described.

1.5.4 Chapter 4: Yield Optimised Design

This chapter demonstrates how to implement the performance and yield optimization

model for analogue circuit design. The method of characterizing the performance and

yield space is proposed. The concept of performance trade-offs and Pareto-front that

will be used for the remainder of the thesis are introduced in this chapter. The

algorithm for the optimization is discussed, with examples, and is compared with

existing methodologies to demonstrate the effectiveness of the approach.

Chapter 1 Introduction 10

1.5.5 Chapter 5: Performance and Variation Modelling

This chapter describes how the multi-objective optimisation discussed in the previous

chapter is used to model the performance and variation of a circuit design. The

concept of performance and variation modelling from the objective space and Pareto-

front are introduced in this chapter. A new approach for combining the performance

and variation model using a lookup-table implementation in Verilog-A is proposed

and the implementation with a behavioural table model function is explained. An

example is used to illustrate the development of the performance and variation model

and a practical example with a silicon prototype is shown for the practicality aspect of

the methodology.

1.5.6 Chapter 6: Hierarchical-based Design Optimisation

This chapter describes how the performance and variation model can be used in a

system level design using a hierarchical-based optimisation technique. A new

modification is done to the hierarchical-based method to include both the multi-

objective bottomup modelling and top-down constrained design in the algorithm. A

7th order elliptic filter for video applications is used to demonstrate the methodology.

1.5.7 Chapter 7: Mixed Signal System Level Application

In this chapter, A charge pump PLL is used as a mixed-signal system example with

higher number of design parameters, objective functions and mixed domain

simulations to demonstrate the effectiveness of the proposed methodology to optimise

the performance and yield for significant circuit sizes.

1.5.8 Chapter 8: Conclusion and Future Work.

In this chapter, the results obtained are discussed. The accuracy of the model

especially in a practical example is discussed. Conclusions are drawn from these

discussions and a statement about the hypotheses is made. Finally the areas that could

provide the basis of future work are highlighted.

Chapter 2

Review of Analogue Circuit Design and Optimisation

2.1 Introduction

Analogue circuit design can be divided into two main tasks: The selection of an

appropriate circuit topology and circuit sizing. The design starts with a circuit

specification that defines the performance functions and their upper and lower limits.

Based on the specification, a topology will be selected. There is the possibility that

several topologies existed, that implements the required functionality. Usually the

topology selection is based on design heuristics. The knowledge or experience of the

designer is often the main approach used to find the suitable topology that can meet

the design requirements. The next step is to determine the size of the devices for the

selected topology. This step is called circuit sizing and the parameters to be sized are

called design parameters. The sizing process of design parameters will determine the

performance of a circuit. This step is a complicated task due to the nonlinear

relationship between the design parameters and circuit performance.

Chapter 2 Review of Analogue Circuit Design and Optimisation 12

 Usually the sizes of the design parameters are approximated using simplified hand-

calculations. The formulas are based on simple approximations of the transistor

characteristics that may differ from the real devices. The approximated circuit sizes

will be used as the initial point for the performance evaluation using a circuit

simulator such as HSPICE [9] or Spectre [10]. For the purpose of the simulation, a

test bench is created where a set of suitable input signals are applied to the circuit in

order to extract the performance functions. This will give the initial performance of

the circuit and most certainly will not meet the specification. Thus, the device sizes

must be adjusted through the optimisation process. Some simulators offer a simple

form of optimisation to adjust the device parameters in order to fine-tune the

performance functions. If no feasible solution is found during the optimisation and the

specifications are not met, a different circuit topology must be selected and the sizing

and optimisation processes will need to be repeated. This will eventually increase the

design cycle time of the analogue circuits and becomes the bottleneck in the design

process. According to [11], the design cycle time reduction can be managed only by

the use of computer aided design. Therefore, over the years, the research community

has been aggressively working towards the development of computer aided design

tools for analogue circuits. A good survey of analogue synthesis techniques is

available in [12] and will be reviewed later in this chapter.

Chapter 2 Review of Analogue Circuit Design and Optimisation 13

Performance Specification

Sizing and Biasing

L ? W?

Topology Selection

-Vss

-Vss

Vdd

Vin- Vin+

Vout

IDC

Lpair1

Lpair2Lpair3

Lpair4

Layout generation

Figure 2.1 Typical design flows for analogue IC design

Figure 2.1 shows a typical design flow in analogue IC design. One of the most

important aspects in the design flow are the time spent on designing the low-level

cells. The time required to design an amplifier for example might be in the order of

weeks [13] when all design steps are considered. Decreasing the time spent on the

design process through automation techniques for instance will have a large impact on

the time-to-market for the whole chip. This automation can be applied at different

steps in the design flow, for example, topology selection or circuit sizing. This thesis

will focus on circuit sizing automation techniques and the performance and variation

models were targeted at the circuit sizing stages. The remainder of this chapter will

review the existing approach for analogue circuit sizing.

Chapter 2 Review of Analogue Circuit Design and Optimisation 14

2.2 Automatic Circuit Sizing

The approach in automatic circuit sizing can be classified into two main categories,

namely knowledge-based design and optimization-based design. Optimization-based

design can be further divided into two approaches, equation-based optimization and

simulation-based optimization.

2.2.1 Knowledge-Based Design

This is one of the earlier approaches in automated circuit sizing. The basic idea is to

have a predefined design plan or design rules on how to size circuit components to

meet the performance specifications. The design plan generally consists of a set of

design equations for a particular circuit topology. In knowledge-based design, these

equations are formulated so that with a given circuit performances, the size of the

circuit can be determined.

Once the design plan has been created, the execution time of this approach is short.

However, the approach suffers from several disadvantages. First, a design plan must

be created for each circuit to be designed. This is a difficult task and requires the

knowledge of a skilled designer. It was reported in [14] that the average time to create

such a plan was four times longer than manually designed circuit.

In addition to that, the design plan is technology dependent. This means, when the

process technology migrates to a new technology, a new design plan must be updated

which again requires analogue experts intervention.

Another limitation to the approach is the accuracy which is generally limited. In order

to derive the design equations for the design plan, they are bound to be simple. This

will result in large deviations in the performance metrics when modern process

technologies are used.

This section reviews some of the tools that were developed using this approach.

Chapter 2 Review of Analogue Circuit Design and Optimisation 15

IDAC

IDAC [15] is one of the first and well-known approaches for knowledge-based design

techniques. It was developed in 1980 and support quite large design variety of circuits

such as amplifiers, comparators and A/D converters. This tool relies upon a library of

circuit design plans. Each design plan contains a set of design equations for particular

topologies created by an experienced designer.

From a set of design specifications, a design plan for a particular circuit topology is

executed. From this execution, a set of design parameters will be known and a circuit

simulator is used to verify the performance of the circuit. If it fails to meet the

specifications, the parameters are adjusted and the design plan is executed again.

IDAC contains a predefined library of circuit designs, so the design time is short for

circuits already in the library. However, if the designer wants to make changes to the

topology for example to improve the performance, a completely new set of design

plans must be developed.

While the execution time might be fast for a circuit already in the library, IDAC

presents several disadvantages. As mentioned above, the design plan is created by

expert designers thus it is highly dependent on the experts whenever a new design or

topology needs to be developed. Second, it is not possible to solve equations for high

accuracy device models, thus the method is limited to simple models. This yields

relatively poor estimation of the circuit performance.

OASYS

OASYS [16] was developed in 1989 at Carnegie Mellon University. This method

describes the design problem in a hierarchical style implementation where the circuit

is partitioned into several sub-blocks. From the design specification, the tool selects a

suitable topology. This topology is then divided into several sub-blocks that

correspond to the performance specification. In this way, the problem is decomposed

into separate design tasks. There is a possibility that there may be several sub-blocks

Chapter 2 Review of Analogue Circuit Design and Optimisation 16

with the same functionality. The tool generates a range of possible options, or ―styles‖

and selects the one with the best performance. This is called style selection.

A translation process in the methodology will map the performance specification to

the sub-block. In a design, there might be several hierarchical levels and style

selection steps and translations. At the bottom level (transistor level), simple device

models are used to determine the device sizes based on a knowledge-based approach.

Sometimes, there might be a discrepancy in the estimation of the performance of low

level blocks. This is overcome by utilizing backtracking strategy to refine the design.

This is an iterative process and may be seen as simple form of optimization.

The method forms some sort of reusability since the sub-blocks can be used

repeatedly in a large range of circuits. The disadvantages of this method are first, the

use of simple device models to determine the device size which yields relatively poor

estimation of the performance. Second, the task of creating design plan consume a lot

of design time as reported in [16] where the creation of the first design plan required

18 months to be completed.

BLADES

BLADES (Bell Laboratories Analogue Design Expert system) [17] relies on artificial

intelligence to partition and size the circuits. As with OASYS, the strategy is to divide

the circuit into several sub-blocks. For example, an operational amplifier might

consist of a differential input stage, gain stage and output stage. The rules on how to

divide the circuit into sub-blocks are written in ―if-then‖ statements. For the

operational amplifier, the tool consists of about 250 different rules.

The bottom level is the transistor level. The transistors are sized in a similar manner to

the sub-block composition where a set of rules is used to size the transistor. Here, the

decision about the size is decided based on the rules given in the combination of look-

up tables where the simulated results for each sub-block are stored.

Chapter 2 Review of Analogue Circuit Design and Optimisation 17

As with other knowledge-based approaches, the disadvantage of this tool is the

requirement to create the design rules for each adjustment and/or addition to the

topology of the circuit.

2.2.2 Optimization-Based Circuit Sizing

Knowledge-based techniques rely on design plans created for specific topologies. In

other words, it is a topology dependent approach. In order to increase the generality of

circuit sizing and make it independent of circuit topology, optimization-based design

was developed. In this approach, the decision to size the circuit is based on an

optimization algorithm rather than design plan. Two important stages of this approach

are optimization and evaluation as depicted in figure 2.2.

Figure 2.2 : optimization-based design

There are two types of optimization-based design. The first type is based on a circuit

simulator such as SPICE which is used to evaluate the performance of the circuit. A

circuit simulator is called at each iteration to determine the performance for a set of

design parameters. This approach is called simulation-based optimization.

Another type that is used is equation-based optimization. In this approach, a set of

equations that relate the circuit performance and the design parameters is derived.

These equations are used to evaluate and determine the performance for a set of

Optimization

Block

Performance

Evaluation

Ok?

Specifications

Sized circuit

Chapter 2 Review of Analogue Circuit Design and Optimisation 18

design parameters. This process is continued iteratively until the performance is

optimized.

2.2.2.1 Equation-based Optimization

Equation-based optimization uses equations to evaluate the circuit performance as

oppose to the use of circuit simulator for the simulation-based optimisation. The

equations can be derived manually or using symbolic analyzers [18, 19, 20].

The advantage of equation-based optimization is in the execution time since the

performance evaluation is performed by evaluating symbolic equations directly [21].

Thus, the equation-based approach offers significantly shorter execution times

compared to simulation-based optimization.

The accuracy of the performance predictions is extremely reliant on the design

equations. Manually derived equations are usually simplified compared to equations

derived by symbolic analyzers. Most of the equations are based on simple device

models and are therefore not accurate enough to be used in modern process

technologies. Sometimes, if high accuracy device models are used, the equations

created are based on approximations in order to reduce the size of expressions for the

performance metrics. Small expression sizes will increase the computational

efficiency in the expense of accuracy. This is one of the disadvantages in this

approach, in that there is clearly a trade-off between accuracy and speed.

Furthermore, using symbolic analyzers to generate the equations automatically will

increase the setup time for this approach. With designer instruction, a symbolic

analyzer will generate the equation expression for each performance metric. Thus,

introducing new types of performance metric into the symbolic analyzer can be time-

consuming.

Another disadvantage of this approach is that the generality of the method is limited

by the ability to derive the equations for the performance. A symbolic analyzer can be

used to derive small-signal performance metrics but for other performance (for

example one that uses time-domain analysis such as slew-rate), there is no method to

Chapter 2 Review of Analogue Circuit Design and Optimisation 19

automatically generate the equations. These type of equations need to be derived

manually. For a different device model, new equations must be derived to include the

additional parameters of the device model. On top of that, the equations are created by

an experienced designer and stored in a library. Thus, the method is often only

applicable to a predefined topology in the library.

This section reviews some of the tools that have been developed using this approach.

OPASYN

OPASYN [22] was developed in 1990 at the University of California in Berkeley,

USA, and uses simple analytical equations to synthesise and optimize a circuit. It

features a design database that contains information on each step in the design flow,

including heuristic selection of circuit topology, circuit sizing and optimization and

circuit layout.

From a set of performance specifications, a circuit topology is selected from the

database. The selection is done using a decision tree where all available topologies are

classified according to some key criteria and analytical models is used to size and

optimize the circuit. The models consist of manually derived symbolic design

equations, netlist descriptions of a particular topology, independent design parameters

and upper and lower bounds for the design parameters. The optimization method used

is a steepest descent algorithm and to avoid local-minima problem, the optimization is

carried out on several starting points.

The disadvantage of the tool is the accuracy of the models. It was reported in [23]

that the models have an error of over 200% when compared to SPICE simulations.

Although fitting parameters are added to improve the model, the error is still in the

order of 20%.

Maulik

Maulik [24] was developed at Carnegie Mellon University in Pittsburg, USA. This

tool selects the topology and size the circuit simultaneously. Additional optimization

Chapter 2 Review of Analogue Circuit Design and Optimisation 20

parameters are used to determine the topology such as the type of the input stage (for

example cascade or not). The performance functions are computed from circuit

equations and these are used to size the circuit.

Maulik uses a relaxed DC formulation to solve for the correct DC operating point. In

this approach, Maulik uses Kirchhoff‘s law for the DC operating point equation and

this is made as a part of the cost function. With a relaxed DC formulation, Maulik

avoids the need to re-evaluate the DC operating point at every iteration.

One of the disadvantages of this tool is the requirement to derive the equations

manually which leads to the simplified expression thus limiting the accuracy.

GPCAD

GPCAD [25] is a device sizing tool dedicated to the design of operational amplifiers.

It uses geometrical programming (GP) to formulate the sizing task. This is done by

writing the design equations (i.e. the cost function and inequality constraints) as

posynomial equations. This results in a convex optimization from which a global

optimum point can be found in a relatively short time.

Even though the geometric programming formulation simplifies the optimization task

and reduces the optimization time, this method suffers from an accuracy problem due

to the limitation of using high accuracy models that cannot be formulated as

posynomials easily [23]. Furthermore, this tool does not include automatic generation

of the equations thus limiting the usage to only predefined circuit structures.

2.2.2.2 Simulation-Based Optimization

Simulation-based design uses a standard circuit simulator in the optimization loop to

evaluate the circuit performance. In this way, the method can handle a large variety of

analogue circuits.

One of the advantages of this approach is that the predicted performance will have the

same accuracy as the models used in the circuit simulator, i.e., the same accuracy as

Chapter 2 Review of Analogue Circuit Design and Optimisation 21

obtained by manual design. Even with the new process technologies, the level of

accuracy can be maintained if the process model is used in the simulation.

Another advantage of simulation-based design is short setup time. This is true as long

as the circuit performance can be measured using the output of the circuit simulator.

The only requirement is to create the test bench in the simulator environment. The test

bench describes the simulation environment to measure each performance function for

the optimisation.

Furthermore, the generality of simulation-based design is high since the performance

can be defined just by extending the test bench. Thus, new circuits can be included

easily as long as the circuit simulator can be used to extract the performance metric.

The only disadvantage of this approach is the execution time. In the simulation-based

approach, a circuit simulator is called at each of the optimization run. Some of the

performance functions such as slew rate which require time domain simulation may

consume significant amounts of simulation time. However this factor can be mitigated

with the continual advance of computer hardware.

This section reviews some of the tools that have been developed using this approach.

DELIGHT.SPICE

DELIGHT.SPICE [26], was developed in 1980‘s at the University of California,

Berkeley, USA. The tools combined an interative optimisation based design called

DELIGHT with a standard circuit analysis program, SPICE.

The tool also derives the sensitivity of the design parameter variations to the

performance functions which enable design centring and yield optimization. The

optimization algorithm in DELIGHT.SPICE uses a subset of worst performance and

constraint functions to direct the searching process.

The algorithm consists of 3 phases: phase I, the optimisation algorithm tries to

decrease the hard constraint violation. Hard constraint is the constraint that must be

Chapter 2 Review of Analogue Circuit Design and Optimisation 22

satisfied and do not take part in design trade-off. In phase II, the worst normalised

values of the objective functions and soft constraint are improved while maintaining

the hard constraint satisfaction. In phase III, the worst normalised value of objective

functions is improved while both the hard constraint and soft constraint are satisfied.

However, the tool still requires several hours to perform the optimization and in

addition to that, a good starting point is needed for the optimization process in order

to avoid divergence problem in SPICE [27].

FRIDGE

FRIDGE [28] is a simulation-based optimization approach that performs global

searching techniques together with a gradient search for the optimization algorithm.

The tool uses modified simulated annealing for the optimization. Instead of slowly

cooling scheme of traditional simulated annealing method, this tool uses adaptive

cooling where a series of fast cooling and reheating method are used.

The optimization is divided into two stages. The first is to quantize the design

parameters according to a grid and the performance of the design parameters that

corresponding to one node of the grid is stored. This is used to avoid repeated

simulation of the same node. Once the global optimization is completed, a gradient

based optimization is used to search in the vicinity of the best grid point.

ASTRX/OBLX

ASTRX/OBLX [4] have been developed in 1996 at the Carnegie Mellon University.

The tool relies on asymptotic waveform evaluation (AWE) [29], encapsulated device

evaluators, simulated annealing and relaxed DC formulation to size and optimize the

circuit.

AWE [29] is used to reduce the long simulation times normally associated with circuit

simulators in simulation-based design and low accuracy that is normally achieved in

simple models used in equation-based design. AWE uses a reduced complexity model

to predict the small signal circuit performance. This approach is efficient to analyse

Chapter 2 Review of Analogue Circuit Design and Optimisation 23

linear circuits is considerably faster than using a SPICE-like simulator. The rest of

the performances (other than small signal) are computed from circuit equations.

Simulated annealing is used to solve the optimization problem. The constrained

optimization formulation given in equation 2.1 is solved in an unconstrained fashion.

Here, x is the independent variable – size of semiconductor devices or passive

components value that need to be find,)(xf is a set of objective functions that need

to be optimized,)(xg is a set of constraint functions that specify the specifications

and iw is the scalar weight to balance the competing objectives.

 Minimize )(xfw ii , 0)(xg (2.1)

The constrained optimization formulation is converted to an unconstrained

optimization with the use of additional scalar weights for the constraint parameters.

As a results, the goals become a minimization of scalar cost function)(xC , defined in

equation 2.2.

 )()()(xgwxfwxC jjii (2.2)

To solve the DC operating point for each perturbation of design variables, a relaxed

DC formulation was used in this tool. Kirchhoff‘s Law was used to solve the DC

operating point and this is included in the constraint function of the optimization

formulation similar to Maulik [24] method.

One drawback of this tool is the inability of AWE approach to model nonlinear circuit

behaviour. Furthermore, the approximation of the circuit transfer function with a low-

order model limits the accuracy of the method.

ANACONDA and MAELSTROM

Both of these simulation-based techniques were developed at the Carnegie Mellon

University in 1999 for MAELSTROM [30] and 2000 for ANACONDA [31]. The

difference between these two is in the optimization algorithm. MAELSTROM uses a

Chapter 2 Review of Analogue Circuit Design and Optimisation 24

combined genetic and annealing algorithm whereas ANACONDA uses a stochastic

pattern search.

The tools rely on three key concepts: simulator integration, global search techniques

and a parallelism approach to reduce the overall computation time where the

searching tasks and circuit evaluations were distributed across a network of cluster

workstations.

The optimization formulation was adopted from the OBLX strategy where a

constrained optimization formulation that is solved in an unconstrained fashion was

used. As with OBLX, this technique introduce scalar weight values to the

optimization formulation and the goal becomes minimization of a scalar cost function.

The optimization engine in MAELSTROM is based on a combination of simulated

annealing and genetic algorithm. The simulated annealing engine is called Anneal++

that offers a range of annealing cooling schedules, move selection techniques and

dynamic update of the cost function weights. The genetic algorithm is used for the

purpose of parallel search. The combination of genetic algorithm and annealing in this

method is known as the Parallel Recombinative Simulated Annealing (PRSA) as

proposed by Goldberg [32].

ANACONDA uses a combination of population search of circuits with pattern search

in finding the circuit solution. The pattern search method proposed by Torczon [33] is

a direct-search techniques that sample cost function in a deterministic locus around a

given solution point and use this sample to construct a deterministic direction and

distance to a probable better solution. The combination of population search and

pattern search helps the optimization engine to explore a diverse set of samples of the

objective (cost) surface.

Chapter 2 Review of Analogue Circuit Design and Optimisation 25

2.4 Optimization Techniques

One of the key components in an optimization-based approach is obviously the

optimization block. The function of this block is to optimize the design by searching

for the best solution points which are determined by the design parameters. In this

context, the purpose of the optimizer is to find the design parameters that will produce

the best performance value. The process between the optimizer and the performance

evaluator is an iterative one where the performance for a particular design parameters

will be evaluated and the design parameters will be changed from run to run in order

to improve the performance. The process will be continued until the optimization

objective or stopping criteria has been met.

Generally, with the rapid development in optimisation algorithms, the algorithms can

be divided into two main categories: population based and single initial solution

based. The difference between the two is the type of initial solution. Population based

approach starts with a set of solutions called a population while single initial solution

starts with one initial solution. Recently, an optimisation approach that uses a

heuristic process consisting of many optimisation runs starting from different initial

points has been proposed [34]. In this way, the optimisation process becomes a group

of individual optimisation runs. The rest of this section will review some of the

optimisation techniques that have been used for the circuit optimisation.

2.4.1 Direct search Optimisation

This section will discuss several optimisation methods known generally as direct

search algorithms. Box et al [35] identified three main types of direct search

algorithms: tabulation, sequential and linear methods.

2.4.1.1 Tabulation Method

In this method, a user chooses number of points either using a random tabulation or a

grid tabulation strategy. The objective function is evaluated at each point and the

point with the lowest function value is returned as the optimum solution.

Chapter 2 Review of Analogue Circuit Design and Optimisation 26

2.4.1.2 Sequential Method

In this method, a geometrical figure of the same dimension as the decision space

(design variables) are created and the performance function is evaluated at each of

the geometrical nodes (vertices) in order to find the minimum point. Decisions are

taken on the basis of comparing function values corresponding to the vertices of the

geometrical figure. Evolutionary operation [36] was the first sequential method

developed. This is followed by an improved algorithms known as simplex method

[37]. The geometrical figure used in the simplex method has n + 1 nodes where, n

represents the number of design variables. Thus, the simplex is a triangle for n=2,

tetrahedron for n = 3 and hypertriangle for n > 3. Once the figure has been

determined, the performance is evaluated at each of the nodes and a convergence test

is applied. The convergence is said to be met if the standard deviation of the function

values at all vertices are less than a user-defined level (to be determine by trial and

error).

2.4.1.3 Linear Method

This method involves a set of searching sequences along lines in the decision space

and can be divided into two main categories : univariate search (and its derivatives)

and Powell‘s method [38] (and its derivatives). In univariate search, the optimisation

starts with user specified initial values of the n design variables. Each of the design

variables will be evaluated one at a time to determine the performance function and

the design variable will be adjusted until the performance function is minimised. The

optimisation is stopped when a user-defined maximum iteration count is exceeded or

the performance function at any point falls below a user-defined acceptance level.

Even though the univariate search is simple to implement, it has two major

limitations. Firstly, the search is carried out sequentially and secondly, the search

procedure is completely deterministic which would generally result in a premature

convergence to some relatively poor local minima [39]. In addition to that, the

convergence rate is relatively slow as the minimum point is approached. The slow

convergence rate is enhanced by introducing a pattern move algorithm [40] that

involves two procedures: the exploratory move and pattern move. In the exploratory

move, a fixed user-defined increment is applied to the initial points. The performance

Chapter 2 Review of Analogue Circuit Design and Optimisation 27

function is evaluated at this new points with the increment. If the performance is

minimised, the incremented point will be the new base point. Following a successful

exploratory move, a pattern move procedure is performed where both the previous

base point and the new base point are connected and used as the new searching

direction. Even though the pattern move algorithm improves the convergence rate,

there are several other methods that have been developed to improve the efficiency of

the algorithm. Bandler introduced `Razor Search‘ [41], in which a second increment

size is added if the initial increment manage to minimise the performance function.

This new increment size is related to the distance between the previous two base

points. A second-order pattern move was proposed by Massara and Fidler [42] that

involves the use of original pattern move followed by a searching along a quadratic

curve fitted to the last three base points. Emery proposed the `spider search [43]‘

which performs the exploratory move in a randomly selected sets of orthogonal

directions.

2.4.2 Gradient-search Optimisation

Gradient methods involve the use of first and/or higher derivatives of the objective

function to determine a suitable search direction. There are three main categories in

this method: steepest descent (the use of first order derivatives), Newton‘s method

(second-order derivatives) and quasi-Newton methods.

2.4.2.1 Steepest Descent Method

The steepest descent method (SDM) [44] is a gradient search method where it uses the

derivatives to find the downhill direction of the objective function. To find a local

minimum to an objective function, from a starting point, a search is conducted for a

minimum points towards the negative gradient of the function. This method was used

in one of the earliest reported applications of optimisation to electronic circuit design

for the design of lossy ladder filters [45]. The method of steepest descent is defined by

the iterative algorithm based on equation 2.3.

kkkk gxx 1 (2.3)

Chapter 2 Review of Analogue Circuit Design and Optimisation 28

Where k is the scalar for function minimization. In this equation, the starting point

of the minimization is kx and from this starting point, a search is conducted along the

direction of the negative gradient kg to find the minimum point on this line. The

minimum point is denoted by 1kx .

The steepest descent method or gradient method has several disadvantages searching

for optimal solutions. Firstly, the convergent speed of the method is slow due to the

step size in the searching process in a single line search. Furthermore, the derivation

of a system function is difficult and prone to approximation errors [46]. Also, the

solution may not be the global optimum solution for the problem. The reason for this

is that the method will only converge to a local minimum based on the starting point.

Hence, for a poor initial starting point, the resulting solution may be far from the

global minimum.

2.4.2.2 Newton’s Method

This is one of the most widely used optimisation method based on gradient calculation

[47]. In this method, from an initial guess x
o
, a correction vector, Δx is determined to

find the minimum point, x
min

 of a quadratic function. From a Taylor series expansion

and differentiation, an expression for x
min

as given in equation 2.4 is obtained where g

is the first partial derivative and H is the

)()(1min ooo xgxHxx  (2.4)

Hessian matrix of the second partial derivatives. From this expression, a new point

x
r+1

 is derived and determined according to a user-defined line search strategy.

The Quasi-Newton method is based on Newton‘s method but without the explicit

evaluation of the Hessian matrix and its inversion, which may cause divergence. The

quasi-Newton methods use an approximation to the Hessian inverse [48]. Thus the

Hessian inverse, H
-1

 is replaced by H
r

representing the approximation after r

iterations.

Chapter 2 Review of Analogue Circuit Design and Optimisation 29

2.4.3 Simulated Annealing

The simulated annealing optimisation method was investigated by KirkPatrick et. al

[49] in 1983. It uses the mathematical analogy of heating and controlled cooling

processes to solve for an optimal solution. The proposed method is based on a

procedure to make the strongest possible glass. The procedure starts with heating the

glass to a high temperature so that the glass is liquid (atom move freely). Then, the

temperature of the glass is slowly lowered so that the atom can move and relax into a

stable condition. The slow cooling process is known as annealing.

The equation for the probability of a system to be at the energy level, 0E is given by

equation 2.5.








 


)(

)/
exp)(0

0
TZ

TkE
E B (2.5)

Where Bk is the Boltzmann constant, T the temperature and)(TZ is a normalizing

function.

The standard simulated annealing (SA) procedure starts with generating an initial

solution randomly. A new solution is generated by perturbation of the previous

solution. The objective function value of the new solution is evaluated and compared

with the previous solution. A move is made to the new solution if it has a better value

than previous value or the probability function)(E is higher than a randomly

generated number. Otherwise a new solution is generated and evaluated. Simulated

annealing employ uphill moves to avoid local minima. Therefore, the method has a

better capability to find a global optimum solution in a given problem.

2.4.4 Genetic Algorithm

The Genetic (or Evolutionary) Algorithm is one of the stochastic methods that is

widely used in optimization. Stochastic methods incorporate probabilistic (random)

elements in the algorithm. This approach is based on the mechanics of natural

Chapter 2 Review of Analogue Circuit Design and Optimisation 30

selection and natural genetics where they combine the fittest individuals among the

population in order to search for the best individual [32].

The random nature of Genetic Algorithms may not find the absolute best solution, but

it has a greater chance of finding a good solution, quickly, for difficult problems [50].

On top of that, Genetic Algorithms are a population based algorithm making it a

suitable candidate to search for a several optimal solutions in one run.

The algorithm consists of several stages including coding the problem (chromosome

representation), generating initial population, evaluating fitness function, crossover

and mutation. It starts with a randomly generated population which will be evaluated

and scored according to the performance. From this population, the next generation

will be bred using selection and recombination procedure to produce new offspring.

As with genetic of living organisms, combination of two good individuals often will

produce offspring that are better adapted to the environment, thus having a better

fitness score. A small mutation probability is then added to the new offspring. This is

the stage that mimics the mutation that happens in living organisms. In nature,

mutation happens when the genetic of the organism is accidentally changed that will

change the DNA of the individual. In this algorithm this situation is carried out by

selecting few genes in the chromosomes and randomly changing them to a new gene

but the mutation occurs depending on the probability that has been defined. As in

biological systems, the mutation adds new variation to the population. Once the new

generation has been generated, the whole process will be repeated until the final

number of iterataions or stopping criteria is met. Figure 2.3 shows a flowchart of the

algorithm.

Chapter 2 Review of Analogue Circuit Design and Optimisation 31

Chromosomes Representation
(Coding of the parameter set)

Initial Population Generation

Fitness Evaluation

Individual Selection

Crossover

Mutation

Stopping

Criteria Met ?

Begin

Finish

Yes

No

Figure 2.3: Flowchart of Genetic Algorithm

Prior to the optimisation, several parameters of the genetic algorithm need to be

specified. The parameter analysis is beyond the scope of this research as the objective

of the research is to demonstrate the methodology that can be used to optimize the

performance and yield of a system level design and the GA is a tool used for the

optimization. Therefore, the parameter settings for the genetic algorithm presented in

the thesis were chosen based on the DeJong [108] recommendation. However, in

certain circuit examples, some of the parameters such as the population size might be

different from the recommended setting in order to reduce the optimisation time. The

GA control parameters used in this thesis are shown in table 2-1. Figure 2.4 shows an

example of an output report from a multi objective optimisation showing all the

control parameters used by the GA.

Chapter 2 Review of Analogue Circuit Design and Optimisation 32

GA Parameter Setting

Population size 50
No. of generation 100
Crossover type Single point
Crossover probability 0.6
Mutation probability 0.01

Table 2-1: GA parameter setting

Figure 2.4: Example of genetic algorithm report

The population size parameter is the initial random number of individuals created for

the optimisation. A large population will consume higher optimisation time whereas a

small population can lead to a premature convergence which will reduce the ability to

find the best solution. Even though a population size of 50 was used in most of the

examples shown in this thesis but for a complex circuit such as PLL in chapter 7,

smaller population size is used in order to reduce the optimisation time. The number

of generations represents the number of iterations needed before the optimisation is

terminated. However, convergence criteria can be added to the algorithm that can be

used to stop the optimisation early if the criteria are met. An example of using a

stopping criteria is shown in chapter 4. Crossover is a process of creating ‗offspring‘

from two individuals by swapping part of their chromosomes (GA string). This

process is intended to simulate the process of recombination that occurs to the

choromosomes during sexual reproduction in biology system. One of the common

forms of crossover used in this research is single point crossover where a single point

of exchange called crossover point is set at a random location in the two individual

genomes. One individual will contribute all the parameters from before that point and

GA PARAMETERS

Population Size ->50

No. of generations ->100

No. of Functions ->3

No. of Constraints ->0

No. of real-coded variables ->11

Selection Strategy is Tournament Selection

Variable bounds are rigid

Cross-over Probability ->0.600000

Mutation Probability for real-coded vectors -> 0.010000

Results in a file

Chapter 2 Review of Analogue Circuit Design and Optimisation 33

the other will contribute parameters from after that point to produce an offspring.

However, the crossover does not always occur and this is based on a determined

crossover probability. The probability of crossover occurring in this research is set at

0.6 or 60%. When there is no crossover, the parents are copied directly to the new

population. Another GA control parameter is called mutation. This process is used in

order to make sure the individuals are not all exactly the same by changing one

parameter from the GA string. The rate of the mutation occurs is controlled by the

mutation probability. All the examples in this thesis use 1% or 0.01 mutation

probability.

2.4.5 Multi Objective Optimization

Circuit performance is a function of designable parameters. The design goal is to find

a parameter set solution that meets all the performance functions and any imposed

constraints. The optimization formulation for more than one objective function is

called multi-objective optimization which can be generally stated as given in equation

2.6.

Minimise / Maximise Mmxfm ,....2,1),(

Subject to ,0)(xg j Jj ,...2,1 (2.6)

Where)(xfm is the set of M performance functions and)(xg j is the set of J

constraints. In a design that involves multiple conflicting objectives there is not

usually a single optimum solution which simultaneously optimizes all objectives. The

outcome from multi-objective optimization is therefore a set of optimal solutions.

The outcome of the multi-objective optimisation is a set of solutions that define the

objective space with the number of dimensions equal to the number of objectives.

Figure 2.5 shows the relationship between the parameter space and objective space.

Each point in the parameter space is a solution that corresponds to a point in the

objective space. The black curve on the objective space is called the Pareto front and

all solution points lying on this curve are called Pareto-optimal solutions. Point B in

the solution space is an example of a non-Pareto optimal point since a more optimal

Chapter 2 Review of Analogue Circuit Design and Optimisation 34

solution exists, point (A). Several algorithms [51] for Multi-Objective Optimisation

have been proposed and will be discussed in the following sub-sections.

Objective 1

O
b

je
c
ti
v
e

 2

Parameter 1

P
a

ra
m

e
te

r
2 Pareto front

A

B

Parameter

space

Objective

space

Figure 2.5: Relationship between parameter space and objective space

2.4.5.1 Weighted-based Genetic Algorithm

One of the simple algorithms used for multi-objective optimisation is Weighted-Based

Genetic Algorithm (WBGA) [51, 52]. In WBGA, all the performance measures are

combined into a single objective using a weighted summation method as shown in

equation 2.7. Wm is the weighting for each of the performance functions, fm.

  Mmxfw mm ,...2,1),((2.7)

In WBGA, the weight of the summation is determined by Genetic Algorithm. This is

done to overcome the problem of finding suitable weight parameters that normally

associated with classical weight summation method.

2.4.5.2 Non-dominated Sorting Genetic Algorithm-II (NSGA-II)

NSGA-II [51] is one of the widely used evolutionary algorithms for multi-objective

optimisation. This algorithm is categorized as elitist-based as it allows the elite

individuals to be carried over to the next generation in order to ensure that the

population‘s best solution does not deteriorate. In this way, a good solution found

early on in the run will never be lost unless a better solution is discovered.

Chapter 2 Review of Analogue Circuit Design and Optimisation 35

The algorithm starts by creating an offspring population Qt from a parent population,

Pt. These two populations are combined together to form Rt (the combination of Pt

and Qt)of size 2N (N is the size of each population). Then, a non-dominated sorting

approach is used to classify the entire population Rt. This step checks for non-

dominated points among the individuals and sorts accordingly. The next step is to

generate a new population with size N and fill this population with solutions of

different non-dominated fronts from the previous sorting. The filling starts with the

best non-dominated front, followed by second best and so on. Since the population

size is N which is smaller than the size of Rt which is 2N, not all fronts can be

accommodated in the new population. All fronts that cannot be accommodated in the

new population are discarded. Sometimes, there exists a condition where the last front

has more solutions (individuals) than the available space in the population. In this

case, a crowding distance metric is used to choose which members of the last front are

placed in the new population. Figure 2.6 illustrates the strategy employed by NSGA-

II. Once the new population is filled with all fronts, the selection, crossover and

mutation operators will be applied to this population to create new offspring and the

whole process is repeated again until the final number of generations has been

reached. The step-by-step algorithm flow in NSGA-II is outlined in figure 2-7.

Pt

Qt

Rt

F1

F2

F3

Pt+1

Rejected

Non-dominated

sorting

Figure 2-6: NSGA-II Procedure

Chapter 2 Review of Analogue Circuit Design and Optimisation 36

NSGA Algorithm

- Generate initial random population, size N.

- Create offspring population.

- Combine parent and offspring population to form Rt. (Rt=Pt U Qt)

- Perform non-dominated sorting and identify fronts, Fi (i=1,2...etc)

- Set new population, Pt+1 = 0, and fill Pt+1 with Fi ,(Pt+1 U Fi) as long as |Pt+1|+|Fi|<N.

- Perform crowding sort and place most widely spread solution in Pt+1

- Create offspring populaiton Qt+1 from Pt+1 and repeat until last number of generation.

Figure 2-7: NSGA-II algorithm

Other than WBGA and NSGA-II algorithms, there are several other evolutionary

algorithm for multi-objective optimisation such as NPGA (niched Pareto genetic

algorithm) [53] and SPEA (strength Pareto evolutionary algorithm) [54]. NPGA is

based on a non-domination concept as NSGA-II and uses binary tournament selection

for the selection procedure. The motivation behind the procedure is coming from the

genetic algorithm (GA) theoretical studies [55] that show the advantage of tournament

selection in terms of better growth and convergence properties. SPEA was proposed

by Zitzler and Thiele [54] and is one of the elitist-based algorithm similar with

NSGA-II. The elitism is introduced by explicitly maintaining an external population.

This population contains a fixed number of the non-dominated solutions that are

found in the beginning of a simulation. At every generation, newly found non-

dominated solutions are compared with the existing external population and the

resulting non-dominated solutions are preserved.

2.5 Statistical fluctuations in integrated circuit

During the fabrication process of integrated circuit, the components and their

interconnections are fabricated simultaneously in a series of process steps. Statistical

variations in these processing steps lead to variations in the component parameters

and hence in circuit performances. If the performance of the integrated circuits is

measured, the results will be found to have deviated from the nominal (designed)

values. The extent of this deviation may be such that the performances of the circuit

fail to meet the specifications. This will result the manufacturing yield to be less than

100%.

Chapter 2 Review of Analogue Circuit Design and Optimisation 37

The manufacturing of integrated circuits often suffers from statistical fluctuations

(variations) in the fabrication process. The variations can be divided into two types:

inter-die (die-to-die) and intra-die (within-die) variations. As described in chapter 1,

these fluctuations are getting worse in deep submicron process technology. It was

reported that the magnitude of intra-die channel length variations has been estimated

to increase from 35% of total variation in 130nm, to 60% in 70nm process [56].

Statistical variations can cause a failure in the manufactured circuit. These failures can

be either catastrophic or parametric. Catastrophic failures cause a change or

unexpected functionality to the circuit while parametric failures cause the

performance of a circuit to deviate from the targeted value. The ratio of circuits that

meets the specifications to the total number of fabricated circuits is called the yield. A

low product yield implies a financial loss to the IC manufacturer and due to the high

correlation between high yield and high profits, the yield has been a big concern. The

design approach to maximize the yield during the design stage is known as Design for

Yield or Design for Manufacturability (DFY/DFM).

2.6 Parametric Yield Maximisation

Yield maximisation techniques attempt to find a suitable set of nominal design

parameters such that most of the circuit that are manufactured will meet the

specifications of the performance functions. The performance space of a design is

defined as a series of performance of interest by n as given in equation 2.8.

1(,...)n
   (2.8)

Parameter space is defined by the set of design parameters that determine the

performances, by the pn vector as given in equation 2.9.

1(,...,)
pnp p p (2.9)

Chapter 2 Review of Analogue Circuit Design and Optimisation 38

A manufactured circuit will be considered acceptable if all of its performances fall

within acceptable limits (meet the specifications) which can be represented by

equation 2.10.

,L U

k k k    1,...,k n (2.10)

Where, L

k is the low limit and U

k is the upper limit. Equation 2.10 defines a region

of acceptability, A in the n dimensional performance space. The specifications

determine a region in the performance space where the circuit is acceptable. Figure

2.8 illustrate the acceptability region for a 2 dimensional performance space.

φ1

φ2

φ2
U

φ2
L

φ1
Uφ1

L

Aφ

Figure 2.8: Acceptability region in performance space

The circuit parameters, p can be modelled as functions of their deterministic nominal

values, 0p and a set of random variables that characterize process variations,  , as

given in equation 2.11.

0(,)p p p  (2.11)

The circuit performances can be modelled as a functions of the nominal parameter

values and the statistical variations shown in equation 2.12.

Chapter 2 Review of Analogue Circuit Design and Optimisation 39

0(,)p   (2.12)

The region of acceptability in the variations space, 0()A p consists of all the possible

combinations of variations that can occur in the manufacturing of a circuit which

specific nominal parameter values do not result in acceptable performance. The region

of acceptability can be defined by equation 2.13.

 0 0() | ((,))L UA p p        (2.13)

The yield of a design can be calculated in the design parameter space or circuit

performance space. In performance space, yield is formulated as given in equation

2.14.

  ()
A

Y prob A f d



       (2.14)

Where ()f  is the joint probability density function (jpdf) of the circuit

performance . In the parameter space, yield is defined by equation 2.15.

  0(,)

p

p p

A

Y prob p A f p p dp    (2.15)

However, the calculation of yield is complicated by the fact that in either space, one

of the two elements is not known explicitly: the statistical variations are known in the

device parameter space but not in the circuit performance space, whereas the

acceptability region is known in the performance space but not in the parameter space

[57]. This makes yield prediction and maximization a difficult task and both spaces

have to be considered. There are two important aspects related to yield prediction

analysis and maximisation: variation analysis (the impact of variation towards circuit

performance) and variation-aware design (the method to maximise the yield of a

circuit design). In order to maximise the yield of a circuit design, the variation of the

design parameters and the impact it has over the circuit performances must be

analysed.

Chapter 2 Review of Analogue Circuit Design and Optimisation 40

2.7 Variation Analysis

According to [58], analysis on the impact of variation to the circuit performance can

be grouped into two main categories: worst case and non-worst case. In the first

category, the analysis is done towards finding the circuit with the worst response with

respect to the nominal value. The second category can be further divided into

sampling and non-sampling methods. Method of moments, is one of the non-sampling

methods which is based on the transformation of parameter tolerances into response

tolerances. The objective of the transformation is to predict the distributions of the

performance metrics based on the parameter distributions. The second category of

non-worst case analysis, the sampling methods, are performance exploration

techniques which perform circuit analysis at sample points in parameter space. The

sample points may be chosen in a systematic (deterministic) manner as in simplicial

approximation methods [61] and non-linear programming method [63], or randomly

(statistically) as in Monte Carlo method.

2.7.1 Worst Case Analysis

The basis of this analysis is to identify the extreme (worst) values of performance

resulting from the variations in parameter value. Since the only interested indication is

the worst performance values, this technique does not requires the knowledge of the

probability density function (statistical distribution) of the parameter values or the

performance values. The procedure involves analysis of the worst case corners of the

circuit performance based on some worst case combinations of the device parameters

(e.g. slow-slow, fast-fast). The main drawback of this approach is that of identifying

which combinations of the device parameters result in worst case corners [59].

Another limitation of worst case analysis is large overestimations of the circuit

performance which is not suitable to predict the true relationship between the device

parameter and their performance. [60] have systematically tackled the problems of

worst case analysis for integrated circuits. They suggest to use worst case analysis in

the intermediate stages of a design and only carry out worst case analysis of generic

cell types and extrapolate to that of a larger proportion of the integrated circuit. On

top of that, [60] suggest to treat process parameters as the basic component

parameters. That is, starting from worst-case process parameters, worst-case device

Chapter 2 Review of Analogue Circuit Design and Optimisation 41

parameters are obtained using a process simulator. The worst case device parameters

are then fed into a standard circuit simulator to obtain the corresponding performance

values. With the process simulator, Nasif et al. [60] proved that the approach manages

to avoid over-pessimistic results.

2.7.2 Simplicial Approximation

Simplicial approximation [61] is a method that approximates the boundary of the

region of acceptability by deterministic sampling of the design parameters. In order to

develop the boundary of the acceptability region, a sufficient points in the parameter

space is determined. From initial design parameters, a circuit simulation is carried out

to determine the satisfaction to the performance specifications. A search for the

boundary is carried by varying one of the design parameters while maintaining all

others fixed. At each step in the search, a circuit analysis is carried out to determine

whether the circuit pass or not. The search is undertaken in all direction from the

initial design parameters. The process can be repeated as many times as necessary to

obtain the required approximation to the acceptability region (a region where all the

parameters pass the specifications). Once the approximate region of acceptability has

been obtained, a location of the tolerance region for the design parameters is

determined. The tolerance region is obtained from the probability density function of

the design parameters. With the tolerance region, it is easy to determine for each

sample points, whether it lies within or without the approximation of the region of

acceptability. The yield is estimated by dividing the number of sample points that lie

in the acceptability region over the number of samples points generated. The main

drawback of simplicial approximation is that it requires the acceptability region to be

convex and simply connected. Unfortunately it is not possible to ascertain whether the

acceptability region and performance specifications is convex or not. In addition to

that, the computational cost of this approach is less only for a circuit with small

parameter space (small circuit). With a bigger circuit (more parameters), the

computational cost become high. This phenomena is termed as `curse of

dimensionality

Chapter 2 Review of Analogue Circuit Design and Optimisation 42

2.7.3 Monte Carlo Method

In the Monte Carlo approach for variation analysis, the sample points in parameter

space are generated in a random manner to simulate the actual manufacturing process.

The method directly mimics the process of random component value selection

(including the correlations) by generating component values according to the known

component probability density functions. The distribution of sample points in the

parameter space can be either uniform or Gaussion (normal) function. The N circuit

samples generated are then simulated using circuit simulator and their performance

checked against the specification. Thus, a Monte Carlo analysis is akin to

measurement made on N actual manufactured circuits. The yield for the circuit can be

calculated as the fraction of samples that pass the specification, Np over total number

of samples, N. If N is sufficiently large, the yield provides a reasonable estimate of

the yield that will be obtained from actual manufacturing process. As a rule of thumb,

the number of samples is not fixed at the beginning. Instead, one or more

performance-spread measures will be monitored and when no changes occur during

the repeated simulations, the process can be terminated. One of the significant

attributes of the Monte Carlo method is the accuracy of approach that is independent

of the number of parameters. It is this property that allows Monte Carlo analysis to be

employed for medium and large-size circuits.

2.8 Variation-aware Design

Variation-aware design deals with a design method to reduce the impact of process

variations on the circuit performance. Generally, the approach for tolerance design

can be divided into two phases [47]. First, the optimisation method (described in

section 2.4) is used to find the nominal values of the parameters that will give the

nominal optimum response. This phase is called the nominal-design phase. Several

approaches have been developed for the nominal design that use analytical methods or

simulation-based methods as described in chapter 2 in this thesis. In [62], the

parameter distance that considers both the performance distance from the

specifications and its sensitivity with respect to the design and operational parameters

is used as the objective to find the optimum nominal design for the circuit. After the

nominal design parameters has been solved, the tolerance of the parameters are

Chapter 2 Review of Analogue Circuit Design and Optimisation 43

determined from the response tolerance. Variation-aware design tries to minimise the

impact of the parameter tolerances to the responses or performances. The method can

be seen as an approach to maximise the yield of a circuit design which can be divided

into two main categories : indirect and direct. The key difference between these two is

the way the yield is considered in the design stage. The direct method considers yield

as one of the objective function whereas indirect method does not.

2.8.1 Direct Method

Direct methods maximize the yield directly by employing yield as the objective

function. Traditionally, this maximization is done at the end of the design process. In

integrated circuits, yield can be expressed as multi-dimensional integral which can be

evaluated numerically by Monte Carlo based methods. Monte Carlo simulation is the

most straightforward statistical approach to predict the yield. In a Monte Carlo

approach, the sample points in parameter space are generated in a pseudo-random

manner to simulate the actual manufacturing process. For each sample, a SPICE

simulation is performed and the resulting performance data sets are combined to

derive the statistical distribution of the circuit performance as explained previously.

Monte Carlo analysis for a circuit design requires at least a circuit topology, device

models and variations and mismatch model of the device parameters in the form of

probability density functions (PDF). The process and mismatch model normally is

given by the device vendor through their design kits. The set of values for the various

device parameters are selected via a pseudo-random process from the known PDF. A

circuit simulation is used to predict the performance of the circuit made up from the

randomly selected set of parameter values. The procedure of random parameter

selection and circuit simulation is repeated a number of times, and the parameter

values and the corresponding predicted performance are recorded. The yield of the

circuit would be found by comparing the predicted performance with the

specifications, and establishing what fraction of the circuits satisfied the

specifications.

One of the main advantages of Monte Carlo method is its dimensional independence

characteristic [64]. What this means is that, the sample size required by random

Chapter 2 Review of Analogue Circuit Design and Optimisation 44

sampling is independent of the dimensionality(independence to the number of design

parameters). For a comparison, the number of circuit simulations required for

simplicial approximations is roughly exponential to the number of design parameters.

This means in simplicial approximation, the number of circuits simulations is

extremely large for a large circuit. This is not the case for Monte Carlo method.

In addition to that, the Monte Carlo method is very useful in hierarchical design for

the purpose of exploring sub blocks performance variations. In a system level view, a

design may be partitioned in to several sub blocks which can be realized by separate

circuits. Generally, no specific performance requirements would have been placed on

theses sub blocks, so the question of yield is not directly relevant to the sub blocks.

One would have to estimate the performance spreads associated with the various sub

blocks, perhaps with an initial allocating of allowed spreads among the properties of

sub blocks and explore the trade-offs among them. In this case, Monte Carlo would be

useful for its ability to provide estimates of the various performance distributions.

The disadvantage of the Monte Carlo method is the requirement to perform circuit

simulations at every Monte Carlo point that would result to a very high computational

cost. Several methods have been developed to reduce the computational cost. One of

them is by using response surface method proposed by [65]. This two step method

starts with parameter space sampling (as with the Monte Carlo method) with

controlled simulations according to some design-of-experiments (DOE) scheme. For

each performance characteristics, a response surface is then constructed by fitting a

simple function of the device parameter to the simulated performance data. By initial

screening, unimportant device parameters can be eliminated. In the second step, the

evaluation of these simple response surface models analytically replaces full circuit

simulation during the yield calculation. The limitation of this approach is the accuracy

that is highly depend on the response surface models.

2.8.2 Indirect Method

The indirect method does not define yield as the objective function, hence the

maximization towards yield is done indirectly by other alternative objective functions.

Chapter 2 Review of Analogue Circuit Design and Optimisation 45

One example of indirect method for variation-aware design is design centering [66].

Several design centering algorithms based on statistical [67, 68] and deterministic

methods [69, 70] have been proposed. This method attempts to place the nominal

design in the centre of the acceptability region. Figure 2.9 shows how yield

maximization is achieved by moving the parameter tolerance region towards the

centre of the acceptability region. In this figure, P1 and P2 are the parameters, RT is the

region of tolerance of the parameters and RA is the acceptability region of the design.

By adjusting the nominal values of the parameters so that the region of tolerance can

be moved towards the centre of the region of acceptability, the yield can be increased.

P2

P1

RA

Old RT

New RT

Figure 2.9: Design centring to maximize yield

Another design centering approach that indirectly optimizes the yield was proposed

by [63]. Instead of geometric approximation, this approach explicitly approximates

the acceptability region boundaries by the performance specifications. The author

approximates the circuit performances based on quadratic function determined by an

interpolation method. A nonlinear programming approach was used to optimize the

performance function of a circuit with a minimum yield constraint.

2.9 Integrated Yield Optimization in Circuit Synthesis

Most of the earlier approaches in analogue circuit design consider yield as a separate

step in the optimization process. In general, the synthesis starts with nominal-circuit

Chapter 2 Review of Analogue Circuit Design and Optimisation 46

design to meet the requirements and in the next step, the yield was evaluated and

optimized by changing the nominal values. It is a great challenge to incorporate yield

optimization as an integrated part of the circuit synthesis due to the large

computational effort needed for such optimization. There have been several attempts

with regards to the integration of yield in the optimization formulation. Some of these

attempts will be discussed in this section.

2.9.1 ASTRX/OBLX Extension

The first attempt in this direction was proposed by Mukherjee [5]. In this approach,

the author combines the statistical parametric variations, operating point variation and

analogue circuit synthesis to form a system that can synthesize manufacturable

analogue circuits. Mukherjee extended the synthesis strategy of ASTRX/OBLX to

include operating range and parametric manufacturing variations to the methodology.

The Non Linear constrained optimization Problem (NLP) formulation in

ASTRX/OBLX is extended to a Non-Linear infinite programming (NLIP)

formulation. The mathematical programming approach used is called infinite

programming because of the infinite number of objective functions due to the

inclusion of variation range in the objective functions. This approach employs worst

case corners as the method to optimize the circuit design for performance and yield.

2.9.2 Simultaneous Yield and Robustness Optimization

In order to reduce the computational overhead of yield optimization, Debyser [6]

proposed a technique that based on symbolic equations [71] and constraint satisfaction

approach [72] to derive sizing plan and yield estimation plan for the optimization.

Both plan (sizing and yield estimation) are simultaneously evaluated in the inner loop

of a global optimization routine. The result of the optimization is a circuit design point

that fulfills all the specifications and at the same time has pushed away the

performances from specification boundaries under the influence of the yield.

The sizing plan of the analogue circuit is derived from a declarative analytical model.

This model can be obtained through symbolic methods on the circuit‘s graph

topology. For the yield estimation plan, a reduced set of independent technology

Chapter 2 Review of Analogue Circuit Design and Optimisation 47

parameters is derived from a statistical transistor model. Then, a nominal design point

and the variance of all performance parameters with respect to the reduced set of

technology parameters are calculated. Using the perforamance variances, a yield

representation based on two capability indices, Cp and Cpk is developed. Both of the

indices strongly depend on the variance of the performances. Both of the sizing plan

and yield estimation plan are used in the inner loop of the optimization routine to

search for the best solution for performances and yield.

2.10 Summary

Due to the increasing demand for the design cycle time reduction for analogue circuit

design, it has attracted huge interest among research community towards analogue

circuit design automation. This chapter reviews some of the research works that have

been devoted to the development of automation tools for analogue circuit. The

automation tool development can be divided into 3 techniques namely, Knowledge-

based, analytical-based and simulation-based. All of the techniques have advantages

and disadvantages and quite often, the decision is made based on the trade-off

between speed and accuracy. One of the important blocks in optimisation-based

approach is the optimisation technique. Some of the optimisation techniques including

multi-objective optimisation were discussed in the second part of the chapter. Another

important subject in analogue circuit design is the impact of process variations to the

circuit performances. The last part of the chapter reviews some of the techniques that

have been used to consider the process variation in the design stage and optimise the

circuit yield. All the discussions in this chapter provide the fundamental

understanding in the motivation behind the technique used for the work presented in

this thesis.

Chapter 3

Review of Circuit Simulation and Modelling

3.1 Introduction

One of the important components for the simulation-based optimisation design

technique reviewed in previous chapter is the circuit simulator. This chapter discusses

the fundamentals behind circuit simulation including type of analyses involved and

device modelling related to the simulator.

Computer-aided simulation is a powerful aid during the design or analysis of VLSI

circuits and is considered as an essential step in the design of modern integrated

circuits. In circuit simulation, a simulator is used to solve non-linear ordinary

differential equations that describe the behaviour of the system. The mathematical

equations that describe the component behaviour is called a model. The simulator

interprets the list of individual models and construct a matrix of equations for the

complete system to be solved. The most widely known and used circuit simulation

program is SPICE (simulation program with integrated circuit emphasis) [73].

Chapter 3 Review of Circuit Simulation and Modelling 49

3.2 Analogue Circuit Simulation

Circuit simulation is a method whereby electric circuits are modelled using

mathematical equations representing individual elements that to be solved to

determine the function of the circuit. This section reviews the key concept involved

for analogue circuit simulation.

3.2.1 Circuit Neltlist

In circuit simulation, a system is described as a list of individual models, called a

netlist. The netlist provides a description of the topography of a circuit and is simply a

list of elements that make up the circuit. The individual model represents all the

elements in the circuit diagram. Circuit nodes are formed whenever two or more

elements meet. Figure 3.1 and 3.2 show a circuit diagram for a differential pair

topology and the netlist of the circuit respectively.

V2V1

Vdd

R1 R2

Idc

M1 M2

1

2

3 4

0

0

0

0

1k 1k

5V

2V 2V

10u

5 6

Figure 3.1 Circuit diagram for differential pair

1kΩ 1kΩ

10µA

Chapter 3 Review of Circuit Simulation and Modelling 50

Figure 3.2 Netlist for differential pair

In SPICE, the circuits are represented by a system of ordinary differential equations.

These equations are solved using several different numerical techniques. The

equations are constructed using Kirchhoff‘s voltage and current laws (KVL and

KCL). KCL is used to solve the current flowing into each node. One equation is

written for each node in the circuit except for ground node. Normally, the ground

node in circuit netlist is numbered as zero. KVL is used to represent the voltage

source or inductors elements as a function of the branch voltage in a circuit design. A

loop equation based on KVL is written around each voltage source or inductor.

Therefore, the total number of equations to be solved in circuit simulation is the

number of nodes plus the number of voltage sources.

3.2.2 Types of Analysis

In circuit analysis, there are three types of analysis that are commonly used: DC, AC

and transient analysis. DC analysis is used to examine the steady-state operation of a

circuit. It tells about the voltages and currents if the inputs were held constant for an

infinite time. AC analysis is used to examine circuit performance in the frequency

domain and transient analysis is performed in the time domain and it is

computationally intensive compared to the other two analyses.

VDD 1 0 5V

R1 1 5 1k

R2 1 6 1k

I1 2 0 10µ

V1 3 0 2V

V2 4 0 2V

M1 5 3 2 2 N_MOS l=2u w=10u

M2 6 4 2 2 N_MOS l=2u w=10u

.MODEL N_MOS NMOS (LEVEL = 1

+ KP = 20u

+VTO = 0.8V

+LAMBDA = 0.095)

.MODEL P_MOS PMOS (LEVEL =1

+ KP = 20u

+ VTO = -0.8V

+ LAMBDA = 0.095)

Chapter 3 Review of Circuit Simulation and Modelling 51

3.2.2.1 DC Analysis

DC analysis calculates the steady-state response of a circuit (with all inductors shorted

and capacitors opened). There are several analyses that can be done in this type

including operating point analysis (.OP), DC solutions over the range of input

condition (.DC) and small signal DC transfer function (.TF). Operating point analysis

is used to determine the DC bias point (Q-point) of the circuit. .DC statement is used

to sweep the specified voltage source over specified range while determining the DC

bias point.

To calculate the DC solution, Kirchoff‘s equations need to be solved. However, due

to the non-linear characteristics of the circuit elements, a non-linear solution

technique such as Newton‘s method [47] is used. The basic Newton‘s method formula

is given in equation 3.1 where F(X) = 0 is the equation to be solved, where both F and

X are vectors of dimension N. (F is the system equations from modified nodal

analysis, and X is the vector of voltages and current that are solving for). X
i
 is the

initial value of X and X
i+1

 is the value of X a the next iteration. The term J is a NxN

square matrix of partial derivatives of F, called the Jacobian [74].

)(.11 iii XFJXX   …………………….(3.1)

The equation is used iteratively until the vector x converges to the correct solution.

Most of the works in calculating the solution is involved in calculating J and its

inverse J
-1

. Simulator programs such as SPICE may require 50 or more iterations to

achieve convergence. This is normally depends to the initial value. For a poor initial

value, the convergence is not obtained until the last few iterations.

3.2.2.2 AC Analysis

AC analysis is used to calculate the frequency response of linearized behaviour of a

system. The analysis is useful for calculating frequency domain function such as

gain, 3db frequency, phase response and others. In this analysis, all signals are

represented as a DC component, Vdc plus a small sinusoidal component, Vac. The

Chapter 3 Review of Circuit Simulation and Modelling 52

steps in AC analysis start with calculation of DC operating point of the circuit. A

linerized circuit is constructed at this Q-point. This is done by replacing all the

nonlinear elements with their linearized equations and all inductors and capacitors are

replaced by complex impedances. Nodal analysis is then used to reduce the circuit to a

matrix form and can be solved using Gaussian Elimination to calculate the node

voltages.

3.2.2.3 Transient Analysis

Transient analysis is one of the powerful circuit analyses and justifies the benefit of

circuit simulator due to the difficulity to analytically calculate the transient response

of a circuit [75]. This analysis can be used to analyse many circuit characteristics in

the time-domain such as distortion, switching speed, slew rate and others. It is also the

most CPU intensive and takes longer simulation time compared to AC or DC analysis.

In a transient analysis, time is discretized into intervals called time steps. Typically,

the time steps are of unequal length, with the smallest steps being taken during

intervals where the circuit voltages and currents are changing more rapidly. The first

step performed by SPICE in transient analysis is to compute the initial DC or bias

point condition with the assumption of voltage across capacitors is zero, current

through inductors is zero and the value for dependent sources is zero. Once the initial

bias point has been calculated, iterative numerical techniques are used to obtain a

solution. One example of a numerical method employ by SPICE is the Trapezoidal

Method. Trapezoidal method uses one past time information to calculate the next time

point solution. For example, using trapezoidal method, the current, I in capacitor in

the next time step is given by 3.2.

)(
))(())((

2)(1

1 k

kk

k tI
h

tVQtVQ

dt

dQ
tI 


 

 ………………(3.2)

Where h is the time step given by kk tth  1 . All modern circuit simulators feature

automatic time step control so that the time step is allowed to be variable during

simulation. This feature selects small time steps during intervals where changes are

Chapter 3 Review of Circuit Simulation and Modelling 53

occurring rapidly and large time steps in intervals where there is little change. This

will improve the efficiency of the simulation with regards to the computing power

requirement.

3.3 Modelling Theory

3.3.1 Definition of a Model

In circuit simulation, a model represents physical elements of a system that are to be

studied or simulated. For example, an amplifier may contain several elements and

during circuit simulation, these elements are represented by their own model such as

transistor model, resistor model and capacitor model. The model consists of a set of

equations and parameters that characterize the exact behaviour of the physical element

between the connection points. Figure 3.3 shows how a resistor can be modelled in a

circuit simulation. This model represents the resistor behaviour in term of voltage and

current between the connection points.

n1 n1

V(n1,n2) = I(n1,n2) x R

Figure 3.3: Resistor Model

The SPICE circuit simulator has a number of built-in elements such as resistors,

capacitors, inductors, voltage and current sources, MOSFETs, BJTs and others. For an

active element like a MOSFETs, the model contains a number of parameters that

represents the transistors. This model with the set of parameters is used in a circuit

simulator to simulate how a particular circuit will behave. The accuracy of the model

depends on how closely the model matches the actual behaviour of the transistor.

Chapter 3 Review of Circuit Simulation and Modelling 54

3.3.2 Device Modelling

Active elements in a circuit, such as a transistor, contain a set of parameters that

characterise the behavioural of the element. This set of parameters is called device

model. A number of MOSFET device models have been provided over time with the

simulator program, SPICE. This section concentrates on the standard MOS models

provided by UC Berkeley‘s SPICE program because these models have become the

standard models used by most circuit simulator programs.

3.3.2.1 MOS Levels 1, 2 and 3

These are the earliest MOS device models that come with SPICE program. Level 1 is

a first order model and is rarely used. Level 2 and 3 are the extensions of level 1

model and have been used extensively [75]. Level 2 and 3 contain small number of

parameters and suitable for circuit simulation down to 1µm channel length. There are

a lot of limitations in these models for analogue application due to the lack of certain

parameters such as Gds (derivative of drain current with respect the drain voltage) and

mobility degradation. Newer models have to be developed to increase the number of

parameters that can accurately describe the component behaviour.

3.3.2.2 Berkeley Short-Channel Igfet Model (BSIM)

To overcome the shortcomings of level 2 and 3, the BSIM models were developed.

The main difference between BSIM models and level 2 and 3 is the approach in

incorporating the geometry dependence [75]. In level 2 and 3 models, the geometry

dependence is built in directly into the model equations while in BSIM models, each

parameter is written in terms of combination three terms given by equation 3.3

eff

W

eff

L

W

Par

L

Par
ParParameter  0 ……………….. 3.3

Where 0Par is the zero order term, LPar is for the length dependence of the

parameter, WPar is for width dependence and effL and effW are the effective channel

Chapter 3 Review of Circuit Simulation and Modelling 55

length and width respectively. On top of that, the number of parameters for BSIM

models is larger than level 2 and 3.

The original goal for BSIM model is to fit better than level 2 and 3 for submicron

channel length technology. However, the shortcomings of the early BSIM model are

the inability to fit over a large number of geometry variations and there is still no Gds

parameter in the model that is needed for analogue application. BSIM2 model was an

extension of BSIM model that was developed to address the limitations. BSIM2

model includes parameters to model the Gds in transistor and with several other

modifications, BSIM2 model fit better compared to BSIM model. However, BSIM2

model comes with more than twice as many parameters as BSIM. Even with all the

extension, it still does not address the problem of fitting large geometry variations

faced by previous model. Due to the shortcomings of BSIM2 model, Berkeley

introduced the BSIM3 model. However, BSIM3 is not an extension of the BSIM2

model, but it is entirely new model and in some sense is more related to level 2 and 3

models. BSIM3 revert back the geometry dependence into incorporating directly into

the model equations as level 2 and 3 models. It is still an evolving model where it can

be modified to fit better and improve the accuracy. One of the models in BSIM3

variants is BSIM3v3 and this is the type of model used in the design examples shown

in this thesis.

3.3.3 Hardware Description Language (HDL) modelling

One of the advantages of HDL modelling is the capability to represents the system at

various levels and is often considered as a multi-domain language. As discussed

earlier, SPICE models ares used to represent a system in a circuit level which is the

lowest level in the circuit design. HDL language such as Verilog-A were designed to

be compatible as an extension of SPICE to represent the system at multiple

abstraction level including circuit level [76].

Mathematical equations can be entered directly into Verilog-A language as well as

SPICE-like circuit elements. Equations can be used to construct new models for

electrical devices. Behavioural models and structural models can be constructed to

model complex circuits such as op-amps, Voltage Control Oscillators, Phase Lock

Chapter 3 Review of Circuit Simulation and Modelling 56

Loops, etc. The behavioural simulation can be done in a small fraction time compared

to circuit level simulation. With special interface elements, it is possible to connect

an analogue block to a digital simulator, making mixed-mode simulation possible.

The analogue behavioural capability allows the designer to span the abstraction levels,

allowing direct access to the underlying technology while maintaining the capability

of system-level modelling and simulation. As such, the analogue and mixed-signal

system can be described and simulated at a high-level of abstraction early in the

design cycle to facilitate full chip- architectural trade-offs.

In general, a system consists of interconnected components or blocks that output a

response based on given stimulus or input. Verilog-A allows the system of analogue

and mixed-signal to be described in terms of circuit components and modules. A

structural description in Verilog-A is a description where another modules are

instantiates or called within its definition.

 ADC

A to D Converter

Low Pass Filter

ADC Architecture

S/H S H(z)

DAC

 OSR
Digital

OTA

Vin

Vout

OTA

Vin

Vout

Low Pass Filter

OTA

Vin+

Iout

Vin-

S

D

G B

BSim3v3 NMOSS

D

GB

BSim3v3 PMOS

Figure 3.4: Typical hierarchy level in analogue circuit design

Structural description allows the designer to pass the parametric specifications and

connections throughout the levels of hierarchy in the design. Figure 3.4 shows a

Chapter 3 Review of Circuit Simulation and Modelling 57

typical hierarchy level in analogue circuit design. This figure shows the hierarchy

design for analogue to digital converter (ADC) that consists of several levels of

hierarchy moving from functional blocks to individual transistors. In hardware

description language, the structural description of ADC can be made by instantiating

all other modules underneath it.

In a module, analog and mixed-signal circuits can be described in a behavioural

description. The descriptions in a module are the mathematical equations that mapped

the input signal to the output. For example, equation 3.4 shows a behavioural

description of output voltage that is described as the multiplication of the input

voltage and gain parameter. Once the behavioiural model has been completely

described, SPICE simulator such as Cadence Spectre and HSpice can be used to

simulate the behavioural system n a similar way as circuit simulation.

)(*)()(gaininpVoutV  …………………(3.4)

3.4 Summary

The circuit simulator plays an important role in simulation-based design and it is one

of the major factors that contribute to the high computational cost of the technique.

The accuracy of the simulator highly depends on the model that being used during the

simulation. An accurate device model will provide accurate simulation but with the

expense of design speed. The computational cost is worsening for a large analogue

system. Therefore, hierarchical-based design and behavioural modelling have been

used to overcome this limitation. Both of the hierarchical-based design and

behavioural modelling will be used for various design examples in the thesis.

Chapter 4

Yield Optimised Design

4.1 Introduction

One of the big challenges faced by analogue circuit designers in a deep sub-micron

design is the process variations which cause the designed circuit to deviate from its

nominal performance and thereby result in a low yield. The impact of the process

variations to the analogue circuit has been discussed in chapter 2. Due to the close

relationship between higher yield and higher profit, this problem has became a major

concern in circuit design and led to early consideration in the design process , a

technique termed as Design For Yield (DFY) [77].

The research focus for analogue integrated circuit automation often requires a trade-

offs to be made between speed and accuracy. The simulation-based optimisation

approach offers a great accuracy at the expense of design time while an analytical

Chapter 4 Yield Optimised Design 59

approach is fast but suffers from accuracy limitations. The same can be said for yield

optimised design where an approximation based approach is fast but lacking accuracy,

compared to a Monte Carlo simulation based approach which produces high accuracy

results at the cost of computational time.

The complexity and variability associated with modern deep sub-micron transistor

technology, has motivated this research to choose a high accuracy approach. A higher

accuracy method produces a product that meets the specifications and at the same

time promises a higher yield. This has also motivated the simulation-based

optimisation approach that to overcome the failure of other approaches to translate the

designed circuit into practical use [31]. Therefore the works presented in the

remaining of this thesis are primarily based on simulation-based optimisation and

Monte Carlo simulation methods.

This chapter will address the integration of yield performance parameters to the

simulation-based optimisation methodology for analogue circuit design. The chapter

starts with a modification made to the simulation-based optimisation algorithm to

include Monte Carlo simulation as part of the design flow. This approach is compared

to other yield optimisation approach in order to demonstrate the advantage given by

the proposed method. In order to reduce the simulation time, the method is improved

by introducing a multi-objective optimisation approach in the design flow. The

improved yield optimisation methodology is then compared with NeoCircuit [10], a

commercial circuit optimiser and will demonstrate the advantage of the MOO

approach. The concept of yield optimised-design through Multi-Objective

Optimisation and Monte Carlo simulation introduced in this chapter provides the key

components to the works presented in this thesis.

4.2 Integrated yield optimised model

In yield optimised design strategy, yield is integrated as one of the performance

functions. This strategy is modelled as illustrated in figure 4-1.

Chapter 4 Yield Optimised Design 60

Performance

Evaluation

Yield

Evaluation

Total

Objective

Function

Optimization

Block

E
v
a

lu
a

tio
n

B
lo

c
k

Design

Parameters

Fitness

Score

Specifications

Variations &

 Mismatch Model

Figure 4-1: Integrated yield optimised model

The model shown in figure 4-1 is based on the simulation-based optimization

approach with a small modifications in the performance evaluation block. As

discussed in chapter 2, the performance evaluation block is a SPICE simulation that

will simulate all the performance functions including the yield of a design. The yield

is estimated using Monte Carlo simulation incorporating all the process variations and

mismatch model of a particular technology. All the performance functions and yield

results from the simulations are added together using a weight-summation method in

order to find the total cost function. This is similar to the conversion of constrained

optimisation formulation to unconstrained fashion employs by various simulation-

based techiwques. The total cost function will be used by the optimizer block as the

score indicator for the individuals (set of design parameters). The optimizer block will

iteratively generate design parameters using Genetic Algorithm to optimize/improve

the total cost function until convergence criteria is met. The convergence criteria is

met when in a single generation, the mean of the total cost function closely match

(within 0.5% different) with the value of the best total cost function as explained in

chapter 2. At the end of the optimization, a circuit solution is found that gives the best

trade-offs among the performance function and at the same time able to achieve

higher yield.

Chapter 4 Yield Optimised Design 61

4.3 Design Example for Yield Optimised Model

This section demonstrates the model introduced previously with a simulation of

circuit example. The proposed method was applied to a Symmetrical-OTA circuit

topology. The OTA was chosen as the case study because it is a fundamental block

that is widely used in numerous analogue circuit design applications.

4.3.1 OTA design and objective functions

The chosen circuit topology is shown in figure 4-2. It consists of differential input,

current mirror and single ended output stage. Transistor pair M1, M2 is a current

mirror that provide the current source for differential input pair M4,M5. Drain current

of M4 is mirrored to drain of M9 by current mirror pair M7,M9 and drain current of

M5 is mirrored to drain of M6 by current mirror pair M10,M8 and M3,M6. Since a

matching transistor size is very important in differential pair and current mirror, all

the transistors are grouped as pairs. This is to ensure the size of the transistor

generated by the optimizer is same for both of the transistor in the pair.

Vin+Vin-
Vout

Ibias

M10 M8 M7 M9

M5 M4

M2

M3 M6

M1

Figure 4-2: Symmetrical OTA topology

Chapter 4 Yield Optimised Design 62

In this example, there are 4 transistor pairs that need to be sized make up a total of 8

designable parameters. Transistors M1 and M2 in this example are fixed since this is

simply a mirror for the current source. There are 8 performance functions to be

optimized including the overall yield. Table 4-1 shows the performance functions and

their specifications.

Performance function: Specification:

Open Loop Gain > 50db

Phase Margin > 60 deg

GBW >15 MHz

Voltage Offset < 15mV

Slew Rate > 15 V/µs

Power Minimized

Area Minimized

Yield Maximized

Table 4-1: Performance functions and specifications

The designable parameters are constrained to a reasonable range so that the total area

of the design will not exceed 2mm
2
 in size. This defines the decision space of the

optimisation. The range of the designable parameters is shown in table 4-2.

Chapter 4 Yield Optimised Design 63

Design Parameter: Range:

W1 (M5,M4) 10um - 60um

L1 (M5,M4) 0.12m - 4m

W2 (M7,M9) 10um - 60um

L2 (M7,M9) 0.12m - 4m

W3 (M10,M8) 10um - 60um

L3 (M10,M8) 0.12m - 4m

W4 (M3,M6) 10um - 60um

L4 (M3,M6) 0.12m - 4m

Wg1-Wg8 (weight) 0.1 – 1.0

Table 4-2 Design Parameters

As mentioned earlier in this chapter, the total cost function is calculated using weight-

summation method. The weight valules for the summation are determined by the

optimizer block. Therefore in this algorithm, the optimizer (Genetic Algorithm) will

not only generate the designable parameters but also the weight for the performance

function. In table 4.2, Wg1-Wg8 are all the weights for the performance functions. Each

individual generated by the GA will consist of a set of designable parameters for the

circuit and weight values for the performance function as defined by the GA string.

Figure 4-3 shows the construction of the GA string for this example.

W1 L1 W2 L2 W3 L3 W4 L4 Wg1 Wg2

Figure 4-3: GA String

Once the GA string for the optimization has been constructed, the optimization will

start with a random set of designable parameters. The design parameters generated by

GA will be used to replace the parameters in SPICE netlist for the performance

simulation. For the yield estimation, a Monte Carlo simulation with 200 samples is

used for all of the performance functions. Based on the specification, the yield of the

individual performances is calculated. The yield for the individual performance is

Wg1...Wg8

Chapter 4 Yield Optimised Design 64

compared to determine the overall yield of the design. All the results from the

evaluation of 8 performance functions are multiplied with their respective weights and

are summed together to determine the overall cost function. The objective of the

optimisaton is to maximise the total cost function. For minimisation type

performance, for example voltage offset, the performance is multiplied with -1 in

order to convert it into maximisation formulation. From one generation to another,

GA will try to maximise the cost function which in turn will maximise/minimise all

the performance functions accordingly. The optimisaton process is repeated until the

convergence criteria is met. Once the criteria is met, the optimization is stopped and

the result is a design that gives the best performance trade-offs and higher yield.

The convergence criteria is met when the mean(average) of the cost function in a

generation closely match the maximum cost function of the generation. Maximum

cost function is the best individual with the highest fitness score in the generation. The

average fitness score in the generation is calculated and compared with the best

individual. Once the mean fitness score closely match to the max fitness score, the

optimization is said to converge. Figure 4-4 shows the convergence of the

optimization that is achieved after 30 generations.

Objective Function Evolution

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20 25 30 35

No. Of generation

O
b

je
c

ti
v

e
 F

u
n

c
ti

o
n

Max function

Mean Function

Figure 4-4: Convergence Criteria

Chapter 4 Yield Optimised Design 65

4.3.2 Comparison With Design Centering Approach

One of the benefits of integrating yield as one of the performance functions is the

ability to optimize the yield with respect to the trade-offs of the performance

functions. In this way, the optimization of the performance functions is balanced

between each other in order to avoid excessive performance in some of the objective

functions that can limit the overall yield. To show the advantage of the approach, a

comparison is made with design centring method. As described in chapter 2, design

centering is an indirect method for yield optimization that attempt to place the

nominal design at the centre of the acceptability region. In such attempts, all the

performance functions will be pushed as far as possible from the boundary

(specification) to maximized the yield. Table 4-3 shows the comparison result.

 Yield-Optimised Design Centring
 Approach Approach

Performance
Spec Result

Indiv.
Result

Indiv.

Function Yield Yield

Gain > 50dB 50.7 dB 100% 50.9 dB 100%

Volt. Offset < 15mV 7.5 mV 89% 10.77 mV 72%

GBW > 15 MHz
16.67
MHz

96%
17.08
MHz

100%

Phase Margin > 60 deg 68 deg 94% 69.8 deg 100%

Slew Rate > 15 V/us 16.1 V/us 17.7 V/us

Power Minimised 256.2 uW 255.7 uW

Area Minimised 209.3um² 195.3um²

CPU Time 2h 40m 1h 05m

Table 4-3: Simulation result and comparison

Chapter 4 Yield Optimised Design 66

As can be seen from table 4-3, with yield as a performance function, the optimization

is targeted towards the trade-offs among the competing objectives similar to multi-

objective optimisation approach. In the design centring approach, there are 3

performances (gain, GBW and phase margin) that achieve 100% yield. However with

such performances, the improvement/optimisation for voltage offset is limited and

becomes very low and might affect the overall yield. This observation leads to the

consideration of multi-objective optimisation technique in the yield-optimised

approach and become the key component in the methodology presented in this thesis.

4-4 Improved yield optimised algorithm

The method proposed in the previous section shows the improvement that can be

achieved compared to traditional yield optimization approach. However, the limitation

of this approach is high CPU runtime. This is due to the Monte Carlo simulation that

need to be run for each design sample during the optimization. In this section, this

issue is taken into consideration to reduce the design time. There are two important

modifications in the approach: first, instead of searching for single optimum solution,

a set of optimum solutions that is called pareto-points are explored. This is done by

running multi-objective optimization using WBGA to obtain the Pareto-front. The

concept of Pareto has been explained in chapter 2. Second, Monte Carlo simulation

will only need to be applied on a set of solutions in the feasible region that is defined

by the performance specification. This reduces the number of Monte Carlo simulation

significantly and thus reduces the overall design time. Figure 4-5 shows the design

flow for the improved algorithm.

Chapter 4 Yield Optimised Design 67

Determine objective function and

designable parameter space

Run multi-objective optimisation

using evolutionary algorithm

Plot Pareto front from

optimisation results

Determine feasible region and

solution points from specification

Run Monte Carlo analysis

 on each solution point

Select best solution as

point with highest yield

F
o

u
n

d
ry

 v
a

ri
a

ti
o

n
 &

m
is

m
a

tc
h

 m
o

d
e

ls

Circuit topology Process models

Generate netlist

Figure 4-5: Yield targeted algorithm

In multi-objective optimization, where multiple conflicting objectives are important,

there generally will not be a single optimum solution that optimizes all the objectives.

The optimization will result to a number of optimal and non-optimal solutions. It is

necessary at this point to determine the Pareto front which consists of the most

optimal, non-dominated solutions in the objective space. The solution points on the

Pareto-front is the optimal solution that gives the best trade-offs among the competing

objectives.

Once the Pareto-front has been obtained, the specifications can be added to the plot.

This will result to a small region defined by the specifications that is called feasible

region. This region contains all the solutions that meet the specifications. However,

due to the statistical variations, the solutions on this region may still fall below

specification when fabricated. In order to find the solution that will give high overall

yield, Monte Carlo simulation is done on all the solution points on the Pareto-front in

this region. Compared with previous example, this approach requires far fewer Monte

Chapter 4 Yield Optimised Design 68

Carlo simulations due to the small number of solutions in the feasible region,

mitigating the computational overhead. Once the Monte Carlo simulation for all

solution points completed, the solution that gives the highest yield is then selected as

the best solution for the design.

4.5 Design Example for Improved Yield Optimised Algorithm

This section demonstrates the newly proposed algorithm with the same example

shown in figure 4-2. For illustrative purpose, performance objective is reduced to two

functions, Open loop gain and Phase Margin. The number of designable parameters

and GA string construction is same as previous example. The specifications for this

example are shown in table 4-4.

Objective function: Specification:

Open loop gain >50dB

Phase margin >74deg

Area minimized

Power minimized

Table 4-4: Design specifications

4.5.1 Pareto front and feasible region

Multi-Objective optimisation (WBGA) was applied to the design example and from

this, the objective space of the optimisation has been plotted. Figure 4-6 shows the

plot of the objective space for open loop gain and phase margin and its Pareto-front.

All the solutions lie on this front are the optimal solutions that best describe the trade-

offs of the objectives. To find the feasible region of the design, specifications line for

both of the performance functions are inserted in the plot.

Chapter 4 Yield Optimised Design 69

Figure 4-6: Objective space and Pareto-front

The in-specification area shown in figure 4-6 narrows down the solution space into

small feasible region. This region is shown in detail in figure 4-7. It can be seen from

this figure, that there are only 10 optimal solution points on the Pareto-front of the

region as labelled by the number. These are the points that will be used in the next

step of the algorithm to determine the best solution that gives high yield.

73.5

74

74.5

75

75.5

76

76.5

49.8 50 50.2 50.4 50.6 50.8 51 51.2

Gain (dB)

P
h

a
s
e
 M

a
rg

in
 (

d
e
g

)

>98%

>90%

>80%

>70%

>50%

o
u

t
o

f
s

p
e

c
if

ic
a

ti
o

n

out of specification

in specification1

2

3

4

5
6

7

8

9
10

Figure 4-7: Detail view of feasible region

Chapter 4 Yield Optimised Design 70

4.5.2 Monte Carlo simulation

All the optimal solutions within the feasible region undergo a Monte Carlo simulation

using foundry process variations and mismatch model. Some examples of the

parameters used during the simulation are shown in Figure 4.8.

Figure 4.8: Process variation parameters

The variation in these parameters such as threshold voltage (VT) and sheet resistance

come from the variation in the fabrication process such as oxide thickness and

diffusion depths. For example, the threshold voltage can vary due to the changes in

oxide thickness, polysilicon impurity levels and surface charge. All the process-

*--

* nmoshs

*--

.param nmoshs_vth0 = '0.13+0.5*0.015*nsigma_nmoshs_vth0'

.param nmoshs_dmu = '0.0+0.5*5e-2*nsigma_nmoshs_dmu'

.param nmoshs_drdsw = '0.0+0.5*5e-2*nsigma_nmoshs_drdsw'

.param nmoshs_dcjb = '0.0+0.5*10e-2*nsigma_nmoshs_dcjb'

.param nmoshs_dcjgate = '0.0+0.5*20e-2*nsigma_nmoshs_dcjgate'

.param nmoshs_dcjsw = '0.0+0.5*20e-2*nsigma_nmoshs_dcjsw'

.param nmoshs_djsdbr = '0.0+0.5*1*nsigma_nmoshs_djsdbr'

.param nmoshs_djsdgr = '0.0+0.5*1*nsigma_nmoshs_djsdgr'

.param nmoshs_djsdsr = '0.0+0.5*1*nsigma_nmoshs_djsdsr'

.param nmoshs_djsgbr = '0.0+0.5*1*nsigma_nmoshs_djsgbr'

.param nmoshs_djsggr = '0.0+0.5*1*nsigma_nmoshs_djsggr'

.param nmoshs_djsgsr = '0.0+0.5*1*nsigma_nmoshs_djsgsr'

.param nmoshs_rstir = '4000+0.5*1200*nsigma_nmoshs_rstir'

.param nmoshs_rstil = '0+0.5*0*nsigma_nmoshs_rstil'

*--

* pmoshs

*--

.param pmoshs_vth0 = '-0.19056+0.5*0.015*nsigma_pmoshs_vth0'

.param pmoshs_dmu = '0.0+0.5*5e-2*nsigma_pmoshs_dmu'

.param pmoshs_drdsw = '0.0+0.5*5e-2*nsigma_pmoshs_drdsw'

.param pmoshs_dcjb = '0.0+0.5*10e-2*nsigma_pmoshs_dcjb'

.param pmoshs_dcjgate = '0.0+0.5*20e-2*nsigma_pmoshs_dcjgate'

.param pmoshs_dcjsw = '0.0+0.5*20e-2*nsigma_pmoshs_dcjsw'

.param pmoshs_djsdbr = '0.0+0.5*1*nsigma_pmoshs_djsdbr'

.param pmoshs_djsdgr = '0.0+0.5*1*nsigma_pmoshs_djsdgr'

.param pmoshs_djsdsr = '0.0+0.5*1*nsigma_pmoshs_djsdsr'

.param pmoshs_djsgbr = '0.0+0.5*1*nsigma_pmoshs_djsgbr'

.param pmoshs_djsggr = '0.0+0.5*1*nsigma_pmoshs_djsggr'

.param pmoshs_djsgsr = '0.0+0.5*1*nsigma_pmoshs_djsgsr'

.param pmoshs_prwb = '-0.18544+0.5*0.133*nsigma_pmoshs_prwb'

.param pmoshs_rstir = '2200+0.5*660*nsigma_pmoshs_rstir'

.param pmoshs_rstil = '0+0.5*0*nsigma_pmoshs_rstil'

Chapter 4 Yield Optimised Design 71

specific information including the parameters, statistical variations and the transistor

model are provided by the foundry in a process design kit which is part of the model

file in the Cadence Spectre environment. During the Monte Carlo simulation, the

process parameters are randomly changed according to the statistical variation to

imitate the actual fabrication process. As explained earlier in this chapter, the Monte

Carlo simulation consumes higher CPU time, but in this example, due to the small

number of solution points (10 points), the simulation time is reduced significantly.

The Monte Carlo simulations for all the optimal solution points were done with 500

samples and the yield percentage is calculated. Table 4-5 shows the 10 optimal

solutions in the feasible region and their yield percentage.

Design Point: Gain (dB): Phase Margin (deg): Yield (%):

1 50.17 75.8 98

2 50.35 75.5 100

3 50.45 75.3 99

4 50.54 75.2 98

5 50.57 75.1 97

6 50.72 74.9 94

7 50.81 74.6 91

8 50.86 74.5 88

9 51.04 74.2 58

10 51.06 74.1 55

Table 4-5: Design point yield percentage

From the table, the yield spread from 55% to 100% highlights the benefit of the

proposed technique. For without knowledge of the yield for these optimum solutions,

a designer may unwittingly choose a poor design point. From this result, design point

number 2 is the best design that will produce highest yield with the process variations

and mismatch during the fabrication process. By concentrating only on the feasible

region for the yield estimation, the computational overhead is reduced and the entire

design cycle for this example took only 48 minutes on a 1.2GHz Ultra Sparc 3

workstation.

Chapter 4 Yield Optimised Design 72

4.5.3 Comparison with NeoCircuit
tm

 Tool

To demonstrate the advantage of Pareto based optimization over conventional

simulation-based approaches, a comparison has been made using the same example

with NeoCircuit, a commercial optimization tool that optimizes circuit performance

and yield. The tool is based on a global optimization approach that combines

evolutionary and simulated annealing algorithms. The approach starts with

performance optimization to meet a given specification and is followed by yield

maximization to push the design far from the specification boundaries. Since there is

no Pareto type exploration in the algorithm, a penalty scheme is used to reduce

instances of excessive performance that may occur during yield maximization in order

to maximize overall yield. This involves several iterations during the yield

maximization. For example, during the first iteration, a performance function f1

might be overdesigned and cause the optimization on performance f2 to be limited

hence resulted to a low yield. In order to increase the yield, the performance f2 must

be improved which means the performance of f1 must be reduced. Several stages of

iteration are required in order to maximize the overall design yield.

Pareto-based optimization uses a different approach where all the design

performances are represented as a trade-off to make it easier to select a more balanced

solution and maximize the yield. Table 4-6 summarizes the comparison between

NeoCircuit tool and the proposed design methodology with the Monte Carlo

histogram shown in Figure 4-9. It can be clearly seen that the Pareto-based yield

optimization method performs significantly faster and produces better results than the

NeoCircuit optimization. In this comparison, the Pareto-front technique completed the

optimization in 48 minutes and produced a 98% overall yield whilst NeoCircuit took

1hr 29 minutes and produced a 96.5% overall yield. The comparison with NeoCircuit

is useful as a ―benchmark‖ to establish that the proposed method is at least as good as

and at least as fast as NeoCircuit. However, the real benefit will become apparent later

on when the Pareto-based optimisation is used to model the performance and variation

of an analogue circuit and when the hierarchical-based optimisation is undertaken for

system level design. Hierachical-based optimisation will be explained in the next

chapter.

Chapter 4 Yield Optimised Design 73

 Parameters: Pareto-based optimization: NeoCircuit

Gain 50.58 dB 50.14 dB

Gain Yield 99% 96.5%

PM 75.14 deg 75.24 deg

PM Yield 98% 98%

Overall Yield 98% 96.5%

CPU Time 48 minutes 1hr 29 minutes

Table 4-6: Yield optimised design comparison

49.75 50.0 50.25 50.5 50.75 51.0 51.25
0.0

5.0

10

15

20

25

30

35

Phase MarginOpen Loop Gain

Mu = 50.4989

Sd = 250.306m

N = 200

72 73 74 75 76 77 78
0.0

10

20

30

40

50

60

Mu = 75.1874

Sd = 579.228m

N = 200

a)

72 73 74 75 76 77 78
0.0

10

20

30

40

50

60

Mu = 75.0851

Sd = 578.68m

N = 200

Phase MarginOpen Loop Gain

49.75 50.0 50.25 50.5 50.75 51.0 51.25
0.0

5.0

10

15

20

25

30

35

Mu = 50.5368

Sd = 242.703m

N = 200

Figure 4-9: Monte Carlo histogram for gain and phase margin. a) NeoCircuit. b)

Proposed methodology

Chapter 4 Yield Optimised Design 74

4.6 Summary

In this chapter, a yield optimised design methodology has been introduced. In the

proposed design model, yield integration to the optimization loop has been

investigated as a method of exploring the trade-offs between the performance

objectives. An example has been shown to demonstrate the benefit of yield-optimised

approach compared to design centring method with 17% improvement in overall

yield. However, this improvement comes with one drawback, CPU runtime. Due to

the Monte Carlo simulation for all of the solutions in the objective space, the total

design time becomes very high. Therefore an improvement is proposed to overcome

this problem using Multi Objective Optimisation and feasible region Monte Carlo

simulation.

In the new improved algorithm, a concept of Pareto-front and feasible region were

introduced. Pareto-front is the outcome of a multi-objective optimization that tells the

best optimal solution‘s trade-offs between the objective functions. Once the Pareto-

front has been determined, a feasible region is defined based on the performance

specifications. With such feasible region, the number of Monte Carlo simulation

needed to find the yield is reduced hence, reduced overall design time. An example

has been shown to demonstrate the new yield targeted algorithm that manage to

reduce the design time significantly and a comparison with NeoCircuit optimiser tools

shows the advantage of the proposed approach.

Chapter 5

Performance and Variation Modelling

5.1 Introduction

The first part of this thesis has introduced the concept of simulation-based design

technique for analogue design automation. This approach has been used as the basis

for the yield optimization algorithm proposed in chapter 4. That chapter has

demonstrated the capability of multi-objective optimisation combined with Monte

Carlo simulation to optimise for performance and yield. Other than high accuracy

result associated with simulation-based technique, this approach creates a wholly new

opportunity for circuit modelling. This is due to the high number of simulated samples

that can be obtained from the optimization process. With such number of design

samples, a performance model that relates the design parameters with the performance

functions can be created. The idea of performance and variation modelling from

multi-objective optimisation result will be presented in this chapter.

Chapter 5 Performance and Variation Modelling 76

The use of simplified macromodels for analogue circuits to accelerate and enhance

design exploration has a long history in mixed-signal design [78, 79]. The earliest

techniques for macromodel construction relied on design expertise to create a

simplified circuit model, and analytical equations needed to map the performance of

the full circuit into parameters for the macromodel. More recent techniques combine

the design expertise of the model structure with curve fitting method to fit

macromodel parameters from samples of the full circuit‘s performance obtained from

simulation. [80] Proposed a neural network-based methodology for creating models

for estimating the performance parameters of CMOS operational amplifier topologies.

This model is used together with genetic algorithm-based circuit synthesis system that

demonstrates the efficiency of the performance models in operational amplifier

design.

The introduction of standardized behavioural description languages offers designers

the ability to mix device-level models, behavioural model and digital blocks all in the

same simulation environment. Behavioural models capture the overall functionality of

the circuit in terms of equations or simple circuit elements that are faster to simulate

compared to the complete transistor level. Some of the concepts in circuit modelling

and behavioural modelling have been described in chapter 3.

In this chapter, a behavioural modelling method is used together with the simulation-

based technique to create a performance and variation model for analogue integrated

circuit. The behavioural model is very helpful in a large system design where the CPU

runtime often become one of the drawbacks in simulation-based approach. The idea is

to use the Pareto-front from a multi objective optimization to capture the performance

and variation behaviour of a circuit. Behavioural description language is then being

used to implement this model that can be used for system level circuit design.

5.2 Pareto-front modelling

Pareto-front from a multi-objective optimisation represents the best trade-offs

between the performance functions across the whole design space. Pareto-front

modelling has been used previously for analogue circuit design [81], but most of the

models do not include variation behaviour, hence are not suitable to predict the yield

Chapter 5 Performance and Variation Modelling 77

of the design. In this chapter, Pareto-front modelling that is capable to model the

performance and the variation is proposed making it a suitable solution for a robust

design technique for analogue circuit design. Figure 5.1 shows a complete design flow

for the proposed methodology.

Determine objective function and

designable parameter space

Run multi-objective optimisation

using evolutionary algorithm

Plot Pareto front from

optimisation results

Generate Verilog-A

table model function

F
o

u
n

d
ry

 v
a

ria
tio

n
 &

m
is

m
a

tc
h

 m
o

d
e

ls
Circuit topology Process models

Generate netlist

Extract Pareto optimal

solutions and parameters

Run Monte Carlo analysis

on all Pareto solutions

Construct

performance table

Construct

variation table

Figure 5.1: Performance and variation‘s model development flow

5.2.1 Pareto-front modelling – performance

The performance model of a circuit design is a model that relates the performance of a

circuit with its design parameters. In multi objective optimization, the parameter space

is explored to find a solution for a circuit problem. The solution space (objective

space) shows all the possible solutions that corresponding to the parameter space. The

optimal performance trade-offs are represented by a Pareto-front. To model the

performances, the solutions on the Pareto-front (optimum solutions) are taken and the

design parameters corresponding to these solutions are recorded. All this information

is stored in a text file and represents the performance model of the circuit. The model

Chapter 5 Performance and Variation Modelling 78

can be used to design the circuit for any design requirements that related to the

modelled objective space.

5.2.2 Pareto-front modelling – variation

The Pareto-front gives optimum solutions for a circuit design. However, the solution

points do not tell how the design will behave under process variations. Even though

the points on the Pareto-front are the best optimal solutions, but with process

variations, these performances may still fail the specifications. Therefore if a design is

chosen from this Pareto-front for particular specifications, it may still result in a low

yield. Variation modelling on the Pareto-front solutions can be used to observe the

behaviour of the performances under process variations. As a result, a solution taken

from both of the performance and variation model will meet the specifications and at

the same time can provide information regarding the yield that can be expected from

the design.

In order to model the variations, a Monte Carlo simulation using process variation and

mismatch model is applied to all of the solution points on the Pareto-front. A standard

deviation from the Monte Carlo result is calculated and a 6-sigma range (±6σ) is

estimated. The minimum and maximum values of the 6-sigma range are taken as the

variation for the performance. The variations for all the Pareto performances are

stored in a text file and represent the variation model of the circuit.

5.2.3 Interpolation from a lookup table

All of the data stored in the text file (performance and variation data) can be

implemented as a lookup table using a behavioural description language. Verilog-A

supports a function called table_model() function that represent a set of data points

from a lookup table. This function allows the module to approximate the behaviour of

the system by interpolating between the sampled data points. The syntax for this

function is given in equation 5-1.

 $table_model(input variables, ―table file‖,control string); 5-1

Chapter 5 Performance and Variation Modelling 79

Where the input variables are the independent variables of the model, table file is a

text file that contains the sample points of the model and the control string determines

the interpolation and extrapolation method. The control string must be provided for

each independent variables used in the function. There are three types of interpolation

setting (1,2 or 3) and extrapolation setting (C,L or E) that can be defined using the

control string indicating the chosen interpolation and extrapolation method. However,

in the presented work, no extrapolation is used in order to avoid approximation of the

data beyond the sampled data points that may affect the accuracy of the result. An

example of the table model function including the data file is shown in section 5.3.2.

With this function, the model for performance and variation can be developed

behaviourally and can be used as a part of behavioural description for a larger system

design. The table model approach has been used previously for modelling electrical

characteristics of microelectronic devices in [82].

Interpolation is a method to connect discrete data points in a plausible ways to get a

reasonable estimate data point [83]. Interpolation takes into account all the data points

on the curve. The accuracy of the table model is influenced by several factors

including the type of interpolation and the number of samples in the table.

Table model function of Verilog-A uses spline interpolation to interpolate new data

points. Spline interpolation uses low degree polynomials that are fast and less error

compared to polynomial interpolation. The principle behind spline interpolation is to

divide the interpolation interval into small subintervals. Each of these subintervals is

interpolated by using up to a third-degree polynomial. With a low degree polynomial,

the problem of Runge's phenomenon can be avoided. Runge‘s phenomenon is a

problem that occurs when using high degree polynomial for interpolation where the

error between the interpolating polynomial and the function grow without bound. Due

to this phenomenon, at the interpolating points, the error between the points and the

actual function points is small, but at the gap between the interpolating points, the

error is big. Verilog-A support three type of interpolation: linear spline, quadratic

spline and cubic spline interpolation.

Chapter 5 Performance and Variation Modelling 80

5.2.3.1 Linear Spline

Linear spline interpolation is the simplest form of interpolation which deals with a

spline that consists of first-degree polynomials. This is equivalent to linear

interpolation. Linear spline interpolation is quick and easy but provides low precision

results. The higher the distance between the data points, the higher the error of the

interpolation. Here, the number of data points is very important to maintain the

accuracy of the interpolation. Linear spline interpolation can be defined as

)()(
1

1

i

ii

ii

ii xx
xx

yy
yxS 








 5-2

Generally, linear spline interpolation interpolates data from two consecutive data

points. Between the data points, the slope changes abruptly and not smooth. This

limitation which affects the accuracy of the interpolation can be improved by using

quadratic spline or cubic spline interpolation.

5.2.3.2 Quadratic Spline

In a quadratic spline, a quadratic polynomial approximates the data between two

consecutive points. for a given data points),,(),,)...(,(),,(111100 nnnn yxyxyxyx  the

quadratic splines are given by

 )(xS

nnnnn xxxcxbxa

xxxcxbxa

xxxcxbxa







1

2

2122

2

2

1011

2

1

......

......

.......

 5-3

From the above equations, there are 3n coefficients for splines: a, b and c. To solve

for these coefficients, 3n equations are needed. From two consecutive data points, 2n

equations can be derived. In order to get one more equation, an assumption must be

made. The first spline can be assumed linear. Therefore the coefficient for 1a can be

made 0. Even with quadratic spline, the curve is not smooth enough. For this reason a

Chapter 5 Performance and Variation Modelling 81

third degree polynomials for each of the subinterval data points are often used to

interpolate the data points.

5.2.3.3 Cubic Spline

In a cubic spline, the piece-wise interpolation curve is constructed by using third

degree polynomials for each of the subinterval points. Cubic spline polynomial can be

defined as

iiiiiiii dxxcxxbxxaxS )()()()(23 for  1,  ii xxx 5-4

Since there are n intervals for ni ,...1,0 and 4 coefficients, 4n parameters are required

to define the spline. One of the requirement of this spline is that the cubic polynomial

to match the values of the table at both end of the intervals. This gives two conditions

for each of the intervals: ii yxS )(and 11)(  iii yxS .These result in a continuous

piece-wise function.

To make the interpolation as smooth as possible, the first and second derivatives must

also be continues:-

)()(

)()(

''''

1

''

1

iiii

iiii

xSxS

xSxS








 5-5

Table model function of Verilog-A allows the module to approximate the behaviour

of a system by interpolating between user-supplied data points. The set of data points

is stored in a text file and will be called by verilog-A module during simulation. Other

than interpolation, this function can also be used to extrapolate a new data point.

However, extrapolation can be inaccurate and is avoided in the presented work. The

interpolation type can be selected by inserting the interpolation degree in the table

model function statement as shown in Table 5.1

Chapter 5 Performance and Variation Modelling 82

Interpolation Char. Description

1 Linear Spline (degree 1)

2 Quadratic Spline (degree 2)

3 Cubic Spline (degree 3)

Table 5.1: Interpolation degree for table_model function

5.3 Modelling Example

The OTA is a fundamental building block, often employed in analogue circuit

applications such as filters. This section presents a complete design example for

performance and variation modelling using two different topologies for an operational

transconductance amplifier (OTA) circuit: symmetrical OTA and Miller-OTA. The

symmetrical OTA topology shown in figure 5-2 was used in the chapter 4 for the

integrated yield optimisation example. Figure 5-3 shows the topology of the Miller-

OTA. All the simulations were performed using the industry standard Cadence

Spectre simulator with foundry level BSim3v3 transistor models from a standard

0.12um CMOS process technology.

Vin+Vin-
Vout

Ibias

M10 M8 M7 M9

M5 M4

M2

M3 M6

M1

Figure 5.2: Symmetrical OTA topology

Chapter 5 Performance and Variation Modelling 83

V in+V in -

M5

M1 M2

M3 M4

M6
M7

M8

C1

Ibias

Vout

Figure 5-3: Miller-OTA topology

All transistor lengths and widths for the circuits are the designable parameters and two

objective functions were chosen for this example: open loop gain and phase margin.

The designable parameters are constrained within a reasonable range. All transistor

lengths were specified to be between 0.12um and 4um and transistor widths were

specified to be between 10um and 60um. These ranges were chosen so that the design

area will not exceed the targeted transistor active area of 2mm
2
. For the purpose of

performance evaluation, a test-bench netlist must be created for each of the objective

functions. A multi objective optimization using genetic algorithm was carried out to

maximize both of the objective functions.

5.3.1 Performance and Variation Model

The result of the multi objective optimization is a plot of objective space as shown in

figure 5.4 and 5.5 for symmetrical and Miller-OTA respectively. The thick grey line

on both of the plots are the Pareto-front of the objective space that represents the best

optimal solutions for the design.

Chapter 5 Performance and Variation Modelling 84

Figure 5.4: Symmetrical-OTA Pareto plot

Figure 5-5: Miller-OTA Pareto plot

Chapter 5 Performance and Variation Modelling 85

Once the Pareto-front of the design is determined, all the solutions on these curves are

taken together with their corresponding design parameters. These information are

stored in a text file which define the performance model for each topology.

The next step is to create the variation model for the Pareto-points. Every optimal

solution on the Pareto-front undergoes a Monte Carlo simulation using process

variation and mismatch models. 200 samples were chosen for the MC simulation and

from these a standard deviation is calculated for each of the performances. The

standard deviation values are multiplied by 6 for its 6th-standard deviation minimum

and maximum variation. All the variations data for each of the Pareto-points are

stored in another text file and represents the variation model for the circuit.

5.3.2 Table Model function implementation

The performance and variation behavior for the symmetrical OTA is modelled as a

lookup table using a Verilog-A table model function. There will be two different table

models that represent the performance behavior and the variation behavior for each of

the performance point on the Pareto front. Table 5.2 shows some selection points of

the Pareto front obtained from the multi-objective optimization.

Design: Gain (dB): ∆Gain (%): PM (deg): ∆PM (%):

21 49.78 0.52 76.3 1.50

22 49.90 0.52 76.1 1.51

24 49.98 0.51 76.0 1.51

25 50.17 0.51 75.8 1.52

26 50.35 0.50 75.5 1.56

27 50.45 0.49 75.3 1.57

32 51.06 0.44 74.1 1.69

35 51.14 0.51 74.0 1.71

37 51.24 0.42 73.8 1.69

38 51.62 0.42 73.2 1.68

Table 5.2: Performance and Variation table

Chapter 5 Performance and Variation Modelling 86

Figure 5-6 shows the table model data file for the OTA performance obtained from

the Pareto front. For a given performance value (in this example, gain) the other

feasible performance value can be interpolated by the table model function. The table

model function for the performance model can be written as shown in equation 5-6.

pm = $table_model(gain, ―pareto.tbl‖, ―3E‖); 5-6

This statement will interpolate the phase margin performance from the given gain

value. ―pareto.tbl‖ is the file name and ―3E‖ represents the interpolation and

extrapolation type where cubic interpolation (‗3‘) and no extrapolation (‗E‘) are used.

With the table model function, the feasibility of the performance can be maintained

where the interpolation will only consider the values within the sampled domain. The

variation table model can be used to determine the variation for each of the

performances as shown by the data file in figure 5-7. The table model function for

each of the performance variation can be written as shown in equation 5-7 and 5-8.

gain_var = $table_model (gain, ―gain_var.tbl‖, ―3E‖); 5-7

pm_var = $table_model (pm, ―pm_var.tbl‖, ―3E‖); 5-8

Based on the variation table (figure 5-7), the variation for a particular performance

value can be interpolated. This interpolation will tell the minimum and maximum

limit of the performance and can be used to determine how good the performance

compared with the specification boundary and hence can be used to look for another

solution that can maximize the yield. The resulting Verilog-A listing for the

behavioral model is shown in figure 5-8.

Chapter 5 Performance and Variation Modelling 87

Figure 5-6: Table model file for OTA performance model

Figure 5-7: Table model file for a)gain and b)phase margin variation model

Figure 5-8: Verilog-A model for OTA performance and variation lookup table

pareto.tbl

table model example for

symmetrical-OTA Pareto

front

Gain PM

49.78 76.3

49.90 76.1

49.98 76.0

50.17 75.8

50.35 75.5

50.45 75.3

51.06 74.1

51.14 74.0

51.24 73.8

51.62 73.2

gain_var.tbl

table model example for

gain variation of the Pareto front

Gain Variation(%)

49.78 0.52

49.90 0.52

49.98 0.51

50.17 0.51

50.35 0.50

50.45 0.49

51.06 0.44

51.14 0.51

51.24 0.42

51.62 0.42

pm_var.tbl

table model example for

PM variation of the Pareto front

PM Variation(%)

76.3 1.50

76.1 1.51

76.0 1.51

75.8 1.52

75.5 1.56

75.3 1.57

74.1 1.69

74.0 1.71

73.8 1.69

73.2 1.68

analogue begin

 pm = $table_model(gain, ―pareto.tbl‖, ―3E‖);

 gain_var = $table_model (gain, ―gain_var.tbl‖, ―3E‖);

 pm_var = $table_model (pm, ―pm_var.tbl‖, ―3E‖);

 gain_new = ((gain_var)/100)*gain) + gain;

 pm_new = $table_model(gain_new, ―pareto.tbl‖, ―3E‖);

 $display (―Propose new gain value : %e‖ , gain_new);

 gain_in_v = pow(10, gain_new/20);

 V(out) <+ V(inp) * (-gain_in_v) – I(out) * ro;

end

Chapter 5 Performance and Variation Modelling 88

5.3.3 Interpolation example

The performance and variation model can be used to find a circuit solution for a given

performance specification. This avoids the need to re-run the simulation-based

optimization and will significantly reduce the design cycle time. To find a solution,

the variation model will be used to interpolate a new performance value from a given

specification. From the new performance value, a set of design parameters will be

interpolated using the performance model. Table 5.3 shows an example for the

interpolation where the required performance is a gain greater than 50dB and a phase

margin of greater than 74 degrees.

The variation for gain and phase margin performance is obtained by interpolation

from the table model function. In this case, the relevant look-up table points are those

shown in Table 5.2 where it can be seen that the gain of 50dB is between design point

24 and 25. The variation interpolation given between these points is 0.51%. Using this

variation value, it can be said that the actual gain may vary from 49.75dB to 50.26dB

and therefore, in order to achieve maximum yield, the specified gain of the design

must be at least 50.26dB. If we choose a design point with a 50.26 dB gain value, and

with 0.51% variation, the gain will vary between 50.01dB to 50.51dB. This will

ensure that the required 50dB gain will be achieved within the process extremes. The

value of 50.26 dB therefore becomes the new targeted performance value and this

value will be used to interpolate the feasible phase margin performance from the

lookup table. From the lookup table (table 5.2), the phase margin value that will be

interpolated based on 50.26dB gain is between 75.5 and 75.8 degrees. This value met

the specification for the phase margin. The variation model of the phase margin is

used to determine the variation of this new phase margin value. The interpolated

variation is 1.53% which will make the phase margin to vary between 74.36 to 76.64

degrees. This variation is still within the given specification. With the new

performance values for gain and phase margin, the design parameters that will give

the required performances can be determined from the Pareto front.

Chapter 5 Performance and Variation Modelling 89

Performance: Required Performance: Variation: New Performance:

Gain > 50dB 0.51% 50.26dB

Phase Margin > 74 deg 1.53% 75.60 deg

Table 5.3: Interpolation example

5.3.4 Model Verification

To verify the performance and yield interpolated by the behavioural model, a

comparison has been made with transistor level simulation using the design

parameters obtained from the table model function. This comparison is shown in table

5.4. The percentage error in passband gain and phase margin was calculated between

the OTA transistor simulation and interpolated values from the Verilog-A model. The

error is the different between the transistor model and the behavioural model

performance. Figure 5.9 shows the open loop gain for the Verilog-A model and

transistor model. It can be seen from these comparisons that the Verilog-A function

matches closely with the transistor level simulation. A Monte Carlo simulation using

500 samples was carried out and verified overall a yield of 100% for the OTA design.

Figure 5.9 shows a divergence in the comparison above 40MHz which is attributed to

parasitic poles in the transistor circuit. Although these higher order effects are not

modeled in this example, they could be incorporated if required. For example, figure

5.10 shows another example of the open loop gain comparison for Miller-OTA that

includes the higher order effects that comes from parasitics poles in the circuit. A

detail behavioural modelling of the OTA with all the parasitic poles will be discussed

in chapter 6.

Performance Functions Transistor Model Verilog-A Model % error

Gain 50.73 50.26 0.93%

Phase Margin 76.06 75.60 0.60%

Table 5.4: Performance comparison

Chapter 5 Performance and Variation Modelling 90

G
a

in
 (

d
B

)

Frequency (Hz)

Transistor Level

Simulation

Behavioural

Figure 5-9: Behavioural and transistor level simulation comparison

Frequency (Hz)

G
a

in
 (

d
B

)

Behavioural

plot

Transistor

level plot

Figure 5-10: Open loop gain comparison for Miller-OTA

Chapter 5 Performance and Variation Modelling 91

5.3.5 Topology Comparison

The interpolation example shown previously demonstrates how the table model

function can be used to search a design solution for a particular circuit topology.

However, the model will not find a solution if the new targeted performance is not

feasible within the chosen topology. In this case, a search across a different topology

could yield the solution. Figure 5-11 shows two Pareto-fronts for the symmetrical

OTA and the Miller OTA. The Pareto-fornt can be used to search for a feasible

solution. For example, assume the gain specification is >54dB and Phase Margin is

>70 degrees. Looking at figure 5-11, these requirements are not feasible for

symmetrical OTA but feasible for Miller OTA as shown by the shaded area.

Therefore, in this case the performance and variation model of Miller OTA must be

used to interpolate the variations and to find the design solutions for the requirements.

This come in handy if a library of Pareto-front and the performance and variation

model can be developed for a various type of circuit topology.

40.0

50.0

60.0

70.0

80.0

50.0 55.0 60.0 65.0

Gain

P
h

a
s

e
 M

a
rg

in

45.040.0

Pareto-Front

Symmetrical OTA

Miller OTA

54.0

In Specification

Figure 5-11: Pareto comparison between topology

5.3.6 Summary of Examples

Table 5-5 summarizes the model development activity. A total of 10,000 simulations

were run in the initial MOO step for the performance model for both of the OTA

Chapter 5 Performance and Variation Modelling 92

topologies and Monte Carlo analysis was performed on 1022 Pareto Optimal points of

symmetrical OTA and 987 points of Miller-OTA for the variation model. The whole

model development stage took 4 hours to complete for the symmetrical OTA and 3

hours 40 minutes for the Miller-OTA on a 1.2GHz Ultra Sparc 3 computer system.

The effort involved in developing the performance and variation model can be

compared with the transistor level optimization strategy such as that used in

NeoCircuit optimization. Refer back to NeoCircuit optimization example for

symmetrical OTA shown in chapter 4, which requires 1hr 29 minutes to optimize the

OTA, the cost involved for the symmetrical OTA model development (in terms of

CPU time) therefore will be paid off after 3 repeated uses.

Parameters: Symmet-OTA: Miller-OTA:

No. Generations 100 100

Evaluation Samples 10,000 10,000

Pareto Points 1022 987

CPU Time (1.2GHz Sparc 3) 4 hours 3h 40m

Table 5-5: Summary of examples

5.4 Application Example

5.4.1 System level design

The combined performance and variation model developed in previous example was

used to design a 2
nd

 order low pass filter. The filter topology is shown in figure 5-12

and was designed to the anti-aliasing specifications shown in figure 5-13. The

specifications for the open loop gain and phase margin for the OTA are 60dB and 60

degrees respectively. Based on the OTA specifications, a feasible topology is selected.

Chapter 5 Performance and Variation Modelling 93

OTA
Vin

Vout

OTA

-

+

-

+

C1

C2

C3

Figure 5-12: 2
nd

 order lowpass filter topology

G
a

in
 (

d
B

)

Frequency (Hz)

Fp = 1.2 MHz Fs = 10 MHz

Attn = 50 dB

Figure 5-13: Filter specification

As explained in previous example, the Pareto plot can be used to compare topologies

in order to choose which is feasible. In this case the Miller-OTA topology satisfies the

specifications and was selected for the filter design. The performance and variation

model of this OTA was used to select the OTA solution that met the specifications

taking into account their variations. Table 5-6 shows some selection samples of the

Miller-OTA design points with their performance and variation values.

Chapter 5 Performance and Variation Modelling 94

Design: Gain (dB): ΔGain (%) PM(deg) ΔPM(%)

45 59.98 0.52 68.0 1.50

46 60.17 0.62 66.8 1.51

47 60.35 0.61 66.1 1.51

48 60.45 0.61 65.3 1.52

49 61.06 0.60 65.0 1.51

50 61.24 0.59 64.2 1.52

51 62.48 0.61 60.9 1.53

52 62.71 0.61 59.1 1.53

Table 5-6: Miller-OTA performance and variation values

From the table, 3 design points (48 ~ 50) meet the OTA specifications when variation

is considered. Design point 47 fail the gain performance due to the variation and

design point 51 fail the phase margin performance due to the variation. The chosen

design points (that meet the OTA specifications) are then used in another multi-

objective optimization for the filter in order to find an optimum solution for capacitor

values C1, C2 and C3. Table 5-7 shows the result of this optimization. Monte Carlo

analysis was performed on all the design solutions to find the solution with the highest

yield.

Design Points: Performance:

OTA C1 C2 C3 Attn fp fs Yield

OTA1 575.5 2.412 759.2 57.85 1.21 8.56 54

OTA1 612.1 2.171 695.6 53.21 1.59 9.11 100

OTA2 564.0 2.160 817.8 54.65 1.55 8.17 100

OTA2 542.5 2.540 951.2 55.21 1.42 7.69 95

OTA2 480.1 2.493 854.7 59.21 1.18 8.62 27

OTA3 521.2 2.566 766.2 50.12 1.65 9.76 67

Table 5-7: 2
nd

 order low pass filter optimisation results

Chapter 5 Performance and Variation Modelling 95

For verification, a circuit level simulation of the sized low pass filter is used. A Monte

Carlo simulation with 500 samples confirmed a yield of 100%.

5.4.2 Silicon Prototype

A silicon prototype for the 2nd order low pass filter designed previously based on the

proposed methodology was developed and fabricated. Figure 5-14 shows a layout

view of the designed chip. A test board for the chip measurement was designed as

shown in figure 5-15. The chip performance has been measured and compared with

simulation data.

Figure 5-14: Layout view of silicon prototype

Chapter 5 Performance and Variation Modelling 96

Figure 5-15: Test board snapshot

Figure 5-16 shows the filter response of all prototype samples overlaid with the

simulation plot, showing that all the prototypes closely match within ±3% with the

simulation data. These results confirm the accuracy and effectiveness of the technique

in practice.

-60

-50

-40

-30

-20

-10

0

10

100K 1M 10M 100M

pr_6

pr_5

pr_8

pr_9

pr_10

pr_26

pr_19

pr_17

pr_22

pr_7

pr_11

pr_18

pr_12

pr_13

pr_21

pr_14

pr_15

pr_2

G
a

in
 (

d
B

)

Frequency (Hz)

Simulation result

Measurement result

Figure 5-16: Chip measurement result

Chapter 5 Performance and Variation Modelling 97

5.5 Summary

This chapter has presented a new approach that combines performance and variation

objectives in a behavioral model for analogue circuits. Multi-objective optimization

based on an evolutionary algorithm is used to explore tradeoffs between performance

and yield, leading to a set of Pareto optimal solutions for the design. Monte Carlo

variation analysis is performed on all the Pareto optimal solutions, and a table is

constructed for both the performance and variation analysis. A behavioral model

developed in Verilog-A is used together with this table to determine the parameters

required to achieve the highest yield within a given specification. The model

developed can be used in a hierarchical system design and demonstrates significant

benefits especially in terms of design cycle time. After the initial time investment to

create the model, there are significant improvements in overall simulation time and

efficiency compared to conventional simulation based approaches. These benefits are

enjoyed without a corresponding drop in accuracy. Two benchmark OTA topologies

and a standard filter design have been presented to demonstrate the proposed

algorithm and the behavior has been verified through transistor level simulations and

measured silicon results.

Chapter 6

Hierarchical-based Design Optimisation

6.1 Introduction

A simulation-based design approach usually requires a high CPU computational effort

as has been demonstrated in the examples from chapter 4 and 5. This is due to the fact

that the performance of the circuit must be evaluated for a large number of different

circuit variables, a process known as design space exploration. The bigger the circuit,

the bigger the design space that must be explored. Running the entire performance

evaluation at transistor level is computationally intensive. Therefore most of the tools

developed using this approach are limited to rather small building blocks [84, 85].

Due to the increasing complexity of electronic systems and high demand of design

cycle time reduction, the research focus for large analogue mixed-signal system has

shifted towards a hierarchically based design technique. Hierarchical design employs

divide and conquer approach involving breaking down a large system into its smaller

constituent building blocks that can be designed and optimized individually.

There are many methodologies available for designing a large system depending on

how the performance and design space are organized and traversed [86]. The design

space of a complete system can be handled as a whole where all design variables in

the system are considered at once (known as `flat‘ design) or it can be organized

hierarchically into sub-systems and traversed according to the hierarchical flow. There

Chapter 6 Hierarchical-based Design Optimisation 99

are many methods available for hierarchical design which will be discussed in the

remainder of this chapter.

The discussion starts with a brief overview of standard hierarchical design methods.

After outlining the basic structure of hierarchical design flow, a new methodology that

combines the Pareto modelling and top-down design of a system is proposed. As a

design application, a 7
th

 order elliptic low pass filter is used to demonstrate the

proposed methodology. This example will demonstrate a complete design flow from

bottom-up performance and variation modelling for the sub-block circuit and top

down design for the whole system.

6.2 Hierarchical-based design

Generally, a hierarchical design methodology consists of a top-down design and

bottom-up verification process as depicted in figure 6-1 [87],[59]. The whole process

is based on two important design aspects: circuit decomposition and specification

propagation. Circuit decomposition involves breaking down the system level

architecture into smaller, less complex, subsystems. When the subsystems are still too

complex to design, a second decomposition is performed. This decomposition will

continue until all subblocks are manageable for design. The lowest hierarchical level

is the transistor level where the block can be simulated by a Spice-like simulator to

extract its performance. Specification propagation involves translation of system level

specifications into lower level specifications. This is a very important aspect of

hierarchical design in order to avoid the failure to find optimum design due to non-

feasible solutions that may occur if the lower level blocks can not meet the system

level specifications. On top of that, the specification propagation step helps to

determine the system level yield. The yield is defined based on the system level

specifications but it is determined by the circuit level variations. Therefore, in order to

predict and optimise the yield for the system level design, the variation of the lower

level must be propagated to the top level.

Chapter 6 Hierarchical-based Design Optimisation 100

System

level

Behavioural

level

Circuit

level

Layout

level

T
o

p
-D

o
w

n
 D

e
s
ig

n
B

o
tt
o

m
-U

p
 V

e
ri
fi
c
a

ti
o

n

Figure 6-1: Hierarchy design methodology

6.3 Hierarchical-based Design Methodology

Several hierarchical-based methodologies exist that can be used to overcome the

design complexity of a large mixed-mode system. This section discuss some of these

methodologies.

6.3.1 Bottom-Up Methodology

In this method, the design starts with the system specifications. Based on the

designer‘s knowledge, the system is broken down into sub systems until reaching the

lowest level of transistor blocks. Next, all the blocks are designed in a bottom-up

fashion. To cope with the feasibility problem, the lower-level blocks tend to be

overdesigned. Once the design reaches the top level, the design performances are

checked and compared with the specifications. If the system fail to meet the

specifications, a complete bottom-up redesign may need to be done all over again

which consumes precious design time.

Chapter 6 Hierarchical-based Design Optimisation 101

6.3.2 Top-down Constraint-Driven Methodology (TDCD)

TDCD methods traverse the design hierarchy, starting from a set of system level

specifications. Starting from the system level specifications, an architecture is chosen,

and designed (optimised) at the architecture level using an optimiser. In [88, 87, 89], a

set of equations were used to describe the feasible performance and the optimisation

at the architecture level was done towards the objective to maximise the flexibility.

The design space at this level is the objective space for the next lower-level block. In

this way, each sub-block will have their own specifications to be met. This is how the

system level specifications are propagated or transferred to the lower level. The next

lower level is then optimized in the similar way and the hierarchy is traversed down

until transistor level. During the transformation, if the sub-blocks are not feasible or

specifications cannot be met, the hierarchy is climbed-up again and a new architecture

is selected. Once all the hierarchy levels have been designed and the transistor level

block has been sized accordingly, a full bottom-up verification will be performed with

accurate transistor level simulation. In [90], the TDCD method was used as a part of

the simulation-based synthesis tool for analogue cell sizing called AMIGO. Here, the

subblock level performance parameters were used as the design variables for the

system level optimisation. Thus the performance of the lower level is specified while

optimising the system level block. Later, the lower level block can be optimised

separately to determine the transistor level parameters.

6.3.3 Feasibility Modelling Bottom-up (FMBU) + TDCD

The TDCD approach discussed previously suffers from feasibility problems and the

need to climb-up the hierarchy level several times if it fails to find feasible sub-

blocks. Due to this limitation, researchers have focused on developing the feasibility

model of a performance space in a bottom-up fashion and then followed by a TDCD

flow. The radial basis function [91], support vector machine [92] and spec-wise

linearised models [93] have been used to model the feasibility and the performance

space of the sub-block level. With this model, it can be repeatedly used without the

need to re-run the optimisation and over time, libraries of feasibility models can be

built. The main disadvantage of this methodology is considerable simulation effort is

Chapter 6 Hierarchical-based Design Optimisation 102

expended to model the whole feasibility region which includes all the design points,

including optimum and non-optimum design points.

6.3.4 Multi Objective Bottom-up Methodology (MUBU)

MUBU approach consists of two important ideas :

 only consider performance‘s trade offs rather than the whole objective

space and

 to use designed circuits rather than models.

The development in analogue CAD leads to the concept of multi objective

optimisation and Pareto-points which has been explained earlier in this thesis. In

MUBU method, the circuit/cell level Pareto points are directly exploited for system

level design. The design space of next level up is the selection of design space for

each of the sub-blocks and the hierarchy traversal proceeds in an upward flow as

illustrated in figure 6-2. This idea has been used in chapter 5 of this thesis for the

example of 2
nd

 order low pass filter design.

Objective

space

gm

PM

2

3

4

L1 W1 WnLn...Dsg

2 L1d2 W1d2 ... Lnd2 Wnd2

OTA Pareto

PMgm

gm2 PM2

Design Space Objective Space

3 L1d1 W1d1 ... Lnd1 Wnd1 gm3 PM3

4 L1d1 W1d1 ... Lnd1 Wnd1 gm4 PM4

Circuit Level

Objective

space

Attn

2

3

fc

Objective

space

Attn

1

2

fc

OTA2

Objective

space

Attn

1

2

3

fc

OTA3
OTA4

Cap ResOTA

1 C1... R1...

Filter Pareto

Attn

...

fc

...

Design Space Objective Space

Top Level

B
o

tt
o

m
-U

p
 D

e
s
ig

n

Figure 6-2: Multi Objective Bottom Up hierarchical methodology

Chapter 6 Hierarchical-based Design Optimisation 103

In contrast with TDCD, any design selected on any level in MUBU method is already

fully sized. Once the designer selects a solution at the system level that meets the

specifications, the design variables of the complete system have been specified. In this

approach, there is no need for specification propagation since all the optimum

performance trade-offs are being used at the system level and at system level, the one

that meet the specifications is chosen as the design solution. The Pareto optimal set

generated can be reused and can compensate the cost involve during the optimisation

process. Compared with the FMBU+TDCD method, which is applied to the whole

performance space, MUBU only consider the performance trade-offs and only

captures the good circuit candidates for the sub-block circuits.

6.4 Multi Objective Bottom Up (MUBU) + TDCD Architecture

In the MUBU approach, the design space for the next level up is the selection of a

design for each of the sub-blocks. However, in most cases, once the system level

specifications have been specified, it does not specify the requirements for the lower

level blocks. Therefore in the MUBU approach, to optimise at the system level, the

algorithm needs to jump among discrete points of the Pareto in order to find the

solution that meet the system level requirements. If all the solutions from the sub-

blocks level do not meet the system level specifications, the sub-blocks topology is

not feasible for the design and a new Pareto-points for a different topology need to be

created. Then, the system level optimisation need to be repeated again to find the

solutions.

Most of the hierarchical-based methodologies discussed so far do not consider

performance variation in the design flow hence they are unable to predict and

optimise the system level yield. In order to optimise the yield at system level, it is

necessary to take into account the variation of the sub-blocks level and there must be a

way to exploit this information during the bottom-up flow. This chapter proposes a

new hierarchical-based design methodology that model the variation of the sub-blocks

performances that can be used for system level yield prediction. The methodology is

illustrated in figure 6-3.

Chapter 6 Hierarchical-based Design Optimisation 104

F

1

F

2

Variation

Space

Nominal

Pareto

F

1

F

2

Variation

Space

Nominal

Pareto

ADC

A to D Converter

Low Pass Filter

ADC Architecture

S/

H
S

H(

z)

DA

C

OS

R

Digital

F

1

F

2

Variation

Space

Nominal

Pareto

M1

M9

Vi

n+
Vin-

Vout

Ibias

M1 M2

M3 M4

Sized CircuitM
u

lt
i-
O

b
je

c
ti
v
e

 B
o

tt
o

m
 U

p

T
o

p
-D

o
w

n
 C

o
n

s
tr

a
in

t
D

e
s
ig

n

Circuit Level

System Level

Figure 6-3: MUBU + TDCD Architecture

In this proposed approach, the multi objective bottom up design flow is used to

develop a performance and variation model of a sub-block circuits. Pareto points from

a multi objective optimisation will be extracted for the performances and Monte Carlo

simulation is applied on the Pareto-points for the variation modelling. Standard

deviation of the Monte Carlo result is calculated and a 6-sigma minimum and

maximum range is estimated. Both the performance and variation are modelled in a

lookup table using behavioural language which later can be used for system level

design and optimisation. Once the model has been developed, a TDCD method is

applied for the system level design. At the system level, behavioural modelling is used

for the optimisation and the system is optimised towards the system specifications.

With the inclusion of variation model from the sub-block level, the performance space

of the system level will include their performance variations. As a result, a solution

that meets the specification for nominal performances and its tolerances can be

selected which in turn will maximise the overall yield. The design parameters of the

system level will be the target specifications for the next lower-level sub-blocks. The

lower-level performance and variation model will be used to select the design

Chapter 6 Hierarchical-based Design Optimisation 105

parameters that meet the lower-level specifications. This top-down design process

flow will continue until the hierarchy reaches the transistor level. At the transistor

level, the whole system design has been sized to meet the system level specifications

and at the same time produce higher yield.

6.5 Design Example: 7
th

 order elliptic low pass filter

To demonstrate the proposed methodology, a system level of 7
th

 order elliptic low

pass filter is used as a design example. This section presents a complete design flow

starting from behavioural performance and variation model development for single

stage operational transconductance amplifier (OTA) to top down design strategy for

the whole filter system.

6.5.1 Circuit Decomposition

In a hierarchical-based design the flow starts with breaking down the system level

design into sub-blocks which is known as circuit decomposition. Therefore from a

system level description, the architecture/topology of the system and each of the

hierarchy level have to be determined until it reaches to the lowest transistor level.

Figure 6-4 shows the break down of the 7
th

 order elliptic low pass filter system.

Top Level

OTA

Vin

Vout
Vin

Nth order Low Pass Filter

OTA
Vout

OTA

Vin+

Iout

Vin-

OTA

OTA

Figure 6-4: Circuit Decomposition

Chapter 6 Hierarchical-based Design Optimisation 106

6.5.2 MUBU modelling – Design Initialisation

Multi objective bottom up methodology is used to develop the performance and

variation model for the sub-block circuit. In this case, the model that will be

developed is for the single stage OTA as shown in figure 6-5.

Vin+ Vin-

Vout

Ibias

M1 M2

M3 M4

Figure 6-5: Single stage OTA topology

The first step in the model development is to determine the designable parameters for

the topology. In this example, these are the transistor lengths and widths which make

up a total of 4 designable parameters. In order to avoid mismatch in the design

process for input pair and current mirror pair, the transistors are grouped as pair so

that transistor M1 and M2 will have the same length and width and so does current

mirror pair (M3 & M4). Three objective functions have been chosen for this example:

transconductance (gm), output resistance (ro) and phase margin (pm). For this

example, only three objective functions are chosen which is necessary and sufficient

for the system level design in order to reduce the number of simulations needed for

the multi objective optimisation. However, the performance objective is not limited to

any number and it can be as many as required if a generic OTA model is to be

developed and can be used in wide number of applications. Once the objectives have

been defined, a spice netlist including the testbench for each of the performance

Chapter 6 Hierarchical-based Design Optimisation 107

objective is created. In this example, only one testbench is required as all the

performance objectives can be simulated using single testbench with ac analysis.

6.5.3 MUBU modelling – Optimisation

Once the designable parameters have been determined, a GA string can be constructed

as shown in figure 6-6. As explained earlier in this thesis, the multi objective

optimisation has constrained some parameters including the decision space range. The

algorithm chosen for the multi objective optimisation is Non-dominated Sorting

Genetic Algorithm - II (NSGA-II) [51]. A brief overview of the NSGA-II algorithm

has been presented in chapter 2 and the code for the algorithm is shown in Appendix

B. The NSGA algorithm will generate the designable parameters according to the GA

string and the range constraints. These parameters are used in the spice netlist for the

performance evaluations. A total of 50 generations each with a population size of 400

were used in this case, giving 20,000 total samples for the optimisation.

WPair2 LPair2WPair1 LPair1

Figure 6-6: GA string for the design example

The testbench netlist is used to evaluate the performance for each design parameter set

(defined by GA) and the result of the simulations determines the fitness score of the

individuals. A non-dominated sorting and crowding distance sorting are applied to the

solution for each generation in order to find the final diverse set of Pareto-fronts. The

result of the optimisation is a full set of designable parameters confined by the

parameters range and their corresponding performance functions.

6.5.4 MUBU Modelling – Performance and Variation Model

The outcome of the previous multi objective optimisation for the OTA is a set of

optimal solution called Pareto-front. The Pareto points are the best performance trade-

offs among the competing objectives for the circuit. All the solutions on the Pareto

front are taken as the optimal performances and will be defined as the performance

model for the OTA. The variation model for the Pareto points is developed with a

Chapter 6 Hierarchical-based Design Optimisation 108

Monte Carlo simulation using process variation and mismatch models given by the

foundry. 200 samples were chosen for the Monte Carlo simulation and from these the

standard deviation of the sample is calculated. The standard deviation is multiplied by

6 for the 6-sigma minimum and maximum range. The minimum and maximum data

represent the variation model. This together with the performance data is stored in a

data file. As explained in chapter 5, a lookup table is used to model the performance

and variation of the circuit. The look-up table is defined using Verilog-A behavioural

language with $table_model() function as given in figure 6-7. Table 6-1 shows a

selection of the lookup table sample points that include the performance functions and

their variations.

Figure 6-7: Verilog-A table model function

analogue begin

 gm_delta = $table_model (gain, "gm_delta.tbl", "3E");

 ro_delta = $table_model (ro, "pm_delta.tbl", "3E");

 pm_delta = $table_model (pm, "pm_delta.tbl", "3E");

 gm_prop = ((gm_delta/100)*gm)+gm;

 ro_prop = ((ro_delta/100)*ro)+ro;

 pm_prop = ((pm_delta/100)*pm)+pm;

 p1 = $table_model (gm_prop,ro_prop,pm_prop, "p1_data.tbl","3E,3E,3E");

 p2 = $table_model (gm_prop,ro_prop,pm_prop, "p2_data.tbl","3E,3E,3E");

 p3 = $table_model (gm_prop,ro_prop,pm_prop, "p3_data.tbl","3E,3E,3E");

 p4 = $table_model (gm_prop,ro_prop,pm_prop, "p4_data.tbl","3E,3E,3E");

 fptr=$fopen("params.dat");

 $fwrite(fptr, "\n Generated Design Parameters\n ");

 $fwrite(fptr, "%e %e %e %e", p1,p2,p3,p4);

 $fclose(fptr);

 $display ("params: = %e %e %e %e", p1, p2, p3, p4);

End

Chapter 6 Hierarchical-based Design Optimisation 109

Design: gm : ∆gm: ro : ∆ro: pm: ∆pm :

2 109µ 0.75% 382k 0.75% 87.9 1.74%

3 109µ 0.75% 384k 0.75% 87.8 1.73%

19 110µ 0.74% 371k 0.74% 88.0 1.73%

34 111µ 0.75% 497k 0.74% 85.3 1.71%

35 111µ 0.73% 375k 0.75% 87.9 1.73%

61 112µ 0.73% 458k 0.74% 86.1 1.71%

209 120µ 0.70% 486k 0.74% 82.7 1.70%

211 120µ 0.70% 743k 0.72% 74.9 1.69%

Table 6-1 Performance and Variation Samples

6.5.5 TDCD flow – Behavioural Description

Once the multi objective bottom up model development has completed, a top-down

constraint design (TDCD) can be started. This design flow starts with system level

optimisation and transformation of the system level specifications to bottom level

blocks. In order to run system level optimisation, a behavioural model is used to

describe the system. This approach offers fast simulation and optimisation hence the

optimum solutions for the system can be quickly determined. Therefore, a complete

behavioural model has to be developed for the system level taking into account all the

sub-block circuits. The behavioural performance and variation model developed

during the MUBU stages can be combined together with the system level behavioural

to find the solution.

In this example, a behavioural model for an OTA is developed based on ac small

signal analysis. The OTA topology used in this example is not symmetrical hence

both side of the differential pair (LHS & RHS) must be taken into consideration for

the analysis. The differential input signal applied to the input is given by equation 6-1

and the input signal is given by equation 6-3.

)(inminpid vvv  6-1

 vin2 6-2

2/idvvin  6-3

Chapter 6 Hierarchical-based Design Optimisation 110

Where vid is the differential input signal, vinp is the positive input and vinm is the

negative input. Each side of the differential pair will be analysed individually to

derive the dc gain of the circuit. Figure 6-8 shows the small signal model for left hand

side (LHS) and right hand side (RHS) of the OTA.

Vout

-gm4Vm

-gm4Vm

ro4

1/gm3

-gm1Vid/2

Vinp Vid/2

Vm

-Vid/2

gm2Vid/2

Vinm

ro1 ro3

ro2

Figure 6-8: OTA small signal model

In the above model, the voltage at node m is given by equation 6-4 :-



































3

311

1
////

2 gm
roro

v
gmv id

m 6-4

Since
3

1

gm
 is very small, equation 6-4 can be reduced to :-





















3

1

1

2 gm

v
gmv id

m 6-5

Which can be re-written as :-











23

1 id

m

v

gm

gm
v 6-6

At the RHS, the voltage at the output of the OTA is given by equation 6-7.

   2442 //
2

rorovgm
v

gmv m
id

out 
















 6-7

Apply equation 6-6 into 6-7 for vm :-

 241

3

4
2 //

22
roro

v
gm

gm

gmv
gmv idid

out 







 6-8

m

Chapter 6 Hierarchical-based Design Optimisation 111

Since gm1 = gm2 = gm3 = gm4 = gm , equation 6-8 can be re-written as :-

 54 //. rorovgmv idout  6-9

Therefore, the gain for the OTA, Av is :-

 24 // rorogm
v

v
A

id

out

v  6-10

The above analysis represents the dc gain for the OTA at low frequency. To

accurately analyse the behaviour of the OTA for high frequency operation, all

parasitic capacitances have to be considered. Figure 6-9 and 6-10 show the OTA

schematic with parasitic capacitance and its small signal model respectively. Cn in the

small signal model is the total capacitance at the input node, n and Co is the total

capacitance at the output node, o.

3143 dbdbgsgsn cCCCC  6-11

Ldbgddbo cCCCC  442 6-12

Vin+ Vin-

Vout

Ibias

M1 M2

M3 M4

cdb3

cgs3 cgs4

cgd4

cdb4

cdb2 cgd2cdb1
cgd1

Figure 6-9: OTA schematic with parasitic capacitance

Chapter 6 Hierarchical-based Design Optimisation 112

Cn = Cgs3 + Cgs4 + Cdb1 + Cdb3

Co = Cdb2 + Cgd4 + Cdb4 + CCL

Vout

-gm4Vm

-gm4Vm

ro4 Co

Cn1/gm3

-gm3Vid/2

Cgd1

Vinp Vid/2

Vm

Cgd2

-Vid/2

gm2Vid/2

Vinm

ro1 ro3

ro2

Figure 6-10: OTA High frequency small signal model

At LHS, voltage at node m can be written as :-












 n

id
m C

gm

v
gmv //

1

2
1 6-13

Reactance obtained from 1/gm3 parallel with Cn can be expressed as :-

n

s
sCgm

X



3

1
 6-14

Therefore, vm can be written as :-

n

id

m
sCgm

v
gm

v



3

1
2 6-15

From 6-7, the output current for that equation can be expressed as :-

 m

id

out vgm
v

gmi 42
2

 6-16

m

Chapter 6 Hierarchical-based Design Optimisation 113

Replace vm from 6-15 into 6-16, :-

3

1

2

1

2

2

gm

sC

v
gm

v
gmi

n

id

id

out



 6-17

Looking at the RHS of the small signal model, the current flow to output resistance

parallel with output capacitance (ro4//ro2//Co).

 ooutout Croroiv //// 24 6-18

Equation 6-18 can be written as :-

o

outout

sC
ro

iv




1

1
 6-19

Where ro is the output resistance, a parallel combination or ro4 and ro2.

Substitute 6-17 into 6-19, :-


































rosC

gm

sC

v
gmrov

on

id

out
1

1

1

1
1

2

3

 6-20

The gain for the OTA can be expressed as :-





































3

3

1

2
1

1

1
)(

gm
sC

gm

sC

rosC
gmro

v

v
A

n

n

oid

out

v 6-21

Looking at equation 6-21, the first part is the dc gain of the OTA which is represented

by (gm * ro). The second part represents the pole frequency, fp1 which is shown in

equation 6-22. fp1 is the output pole which is dominant especially when a large load

capacitance is present.

roC
f

o

p
2

1
1  6-22

The last part of equation 6-21 represent the second pole frequency and a zero

frequency as shown in equation 6-23 and 6-24.

n

p
C

gm
f

2
3

2  6-23

Cn

gm
f z

2

2 3 6-24

Chapter 6 Hierarchical-based Design Optimisation 114

Once the small signal analysis has been done for both of the low frequency and high

frequency effect, the behavioural model can be developed to include all the

parameters from the small signal model. The behavioural description using Verilog-A

behavioural language for the OTA is given in figure 6-11.

Module ota(inp, inm, out)

 ….

 parameter real gm = 60e-6;

 parameter real ro = 1e+6;

 electrical inp, inm, out, vm;

 real vin;

analog begin

 // high frequency model

 vin = V(inp,inm);

 I(vm) <+ -gm*(vin/2); // gm transistor M1

 I(vm) <+ cin*ddt(V(vm)); // cin is the total input stage capacitance

 I(vm) <+ cgd1*ddt(vin/2); // miller effect of cgd1

 …

 I(out) <+ -gm3*V(vm);

 I(out) <+ -gm*(vin/2);

 …..

 V(out) <+ I(out)*ro;

 …..

end

endmodule

Figure 6-11: Verilog-A code for OTA

To verify the accuracy of the behavioural model, a comparison is made between the

behavioural model and transistor model for their frequency response. Figure 6-12

shows the response plot for behavioural model and transistor level simulation. As can

be seen from the figure, the behavioural model matches the transistor level response

with about 20% different. The different can be reduced by improving the behavioural

model to include higher number of equations to model some other circuit parameters

so that the response will match closely to the transistor level. However, this might

affect the simulation time. Therefore, a trade off has to be made between accuracy and

design speed.

Chapter 6 Hierarchical-based Design Optimisation 115

Figure 6-12: Comparison between behavioural model and transistor model

6.5.6 TDCD flow – System level optimisation

The behavioural OTA developed in previous section is instantiated in the filter system

level description. The topology for the 7
th

 order elliptic low pass filter is shown in

figure 6-13. The designable parameters for the filter are OTA transconductance (gm)

and all capacitor values (C1 ~ C10). The filter is optimised towards typical video filter

specifications [94] as shown in figure 6-14 which defines the objective space of the

optimisation.

Chapter 6 Hierarchical-based Design Optimisation 116

OTA

-

+

OTA

-

+

OTA

-

+

OTA

-

+

OTA

-

+

OTA

-

+

OTA

-

+

Vin

Vout

C1

C2 C3

C4

C5 C6

C7

C8 C9

C10

Figure 6-13: 7
th

 order low pass elliptic filter

G
a

in
 (

d
B

)

Frequency (Hz)

Fp = 5 MHz Fs = 9 MHz

Attn = 40 dB

Figure 6-14: Filter specifications

Chapter 6 Hierarchical-based Design Optimisation 117

A testbench was created to simulate the filter response. One testbench is sufficient to

simulate all the performance functions required for the filter. Once the spice netlist

has been created, a multi objective optimisation using NSGA-II algorithm is

performed on the filter design to locate optimum solution points. A total of 200

individuals and 50 generations were used for the optimisation process. Some samples

of the optimisation result are shown in table 6-2. This table shows all the design

solutions that meet the filter specifications. In the next step, the design parameters of

these solutions (i.e. gm) will be taken as the specification for the lower sub-block

(OTA). This particular step in the design flow propagates the system level

specifications to lower level sub-block. Once the lower level specification has been

determined, the performance and variation model of the sub-block is used to search

for the feasible and optimal solutions.

Based on the performance and variation model of the OTA (table 6-1), the only

feasible solutions for the filter are design points 15 and 70 (refer to table 6-2). The

other design points in the table require a higher transconductance value which is not

feasible for the OTA topology.

Design: gm (µs) : Attn (dB): Fp(MHz): Fs(MHz):

11 122.3 40.3 6.1 8.3

22 131.6 47.4 5.4 7.5

15 108.9 45.9 5.3 7.3

70 113.8 55.1 5.7 8.9

61 130.4 61.7 5.7 8.9

Table 6-2: Pareto-front samples for filter optimisation

From table 6-2, looking at design point 15 and 70, the specifications for the OTA are

108.9u and 113.8u. The variation model of the OTA is used to interpolate the

transconductance variation for these two values. For this example, the interpolated

variation values for both of the transconductances are 0.75% and 0.73% respectively.

These variations will be used to determine the minimum and maximum values for

Chapter 6 Hierarchical-based Design Optimisation 118

each of the transconductances. The minimum and maximum transconductance will be

used in behavioural filter simulation to determine the filter performance with the

effect of the variations. From the simulation, performances are compared with the

specifications and the one that passes all the specifications will be chosen as the

design solution. In this example, design point 15 and its variations pass all the filter

specifications hence is chosen for the OTA design. The design parameters of the OTA

will be interpolated from the transconductance value. The result of this hierarchical

optimisation is a complete filter design that has been optimised to meet high level

specifications taking process variations into consideration. To verify the predicted

yield given by the proposed approach, a final Monte Carlo simulation with 100

samples was run on the transistor level filter design. This simulation confirmed a yield

of 100% as shown in figure 6-15.

Figure 6-15: Monte Carlo plot of filter response

6.7 Summary

A new design flow for hierarchical-based circuit sizing is presented. The strategy

combines a multi objective bottom up (MUBU) modelling to model individual sub-

blocks and top down constrained design (TDCD) to break down the system level into

sub-blocks and propagate the specifications. The new hierarchical-based design

Chapter 6 Hierarchical-based Design Optimisation 119

demonstrated how the performance and variation model developed in the MUBU

stage can be exploited to predict the system level performance and its variations. This

prediction is very useful to estimate and optimise the system yield. An example of 7
th

order low pass filter demonstrates the ability of the method to design and optimise the

system for performances and yield.

Chapter 7

Mixed-signal System Level Application

7.1 Introduction

Chapter 6 has demonstrated the proposed methodology on a small system design. The

example in that chapter shows the applicability of the method to find solution for

small circuits with small design objectives. This chapter on the other hand will

demonstrate the capability of the methodology to deisgn and optimise a bigger and

complex mixed-signal system. A charge pump PLL that consists of a combination of

analogue and digital block that requires higher number of SPICE analysis is used as

the application example.

The PLLs is a typical analogue mixed signal system which plays an important role in

many applications ranging from frequency generators to clock recovery in

communication systems. Due to its mixed-signal nature, the design of PLLs becomes

a crucial part of the time-to-market for many products. Simulating a PLL at transistor

level takes a long time because of the large number of devices in the circuit. Also, the

Chapter 7 Mixed-signal System Level Application 121

phase noise specification for the PLL requires transient noise simulation with a very

well controlled time step and often takes considerable time to simulate. Due to this

limitation, behavioural modelling was commonly used to model the individual blocks

in PLL [95]. On top of that, hierarchical sizing methodology has been proposed to

accelerate the design process of a PLLs [96, 97, 98].

A charge pump PLL consist of five building blocks: phase frequency detector (PFD),

charge pump (CP), loop filter (LF), voltage controlled oscillator (VCO) and divider

(D) as shown in figure 7-1. One of the application of PLLs is frequency synthesis. In a

frequency synthesizer, the output frequency can be set to multiples of the reference

input frequency (Fref) by changing the divider ratio (N). The output frequency can be

written as :-

Fout = N x Fref 7-1

The phase frequency detector (PFD) detects the phase and frequency difference

between reference signal and the feedback signal from the divider. The charge pump

(CP) transforms the phase difference of the PFD into output current. This current is

delivered to the loop filter (LF) and the output of this filter is a control voltage (Vc)

that control the VCO. The oscillation frequency of the VCO is determined by the

control voltage. Once the feedback frequency match to the reference frequency, the

control voltage become constant and the vco will oscillate at a constant frequency.

This is the operation of PLL that is locked to a particular desired frequency.

PFD
Charge

Pump
VCO

Divider

Fref

Ffb
Fout

Figure 7-1: PLL system block diagram

Chapter 7 Mixed-signal System Level Application 122

In this chapter, the methods proposed in the previous chapter for performance and

variation modelling and hierarchical-based opitmisation are used to efficiently design

a complete PLL system. The process is divided into two stages: preparation stage for

the performance and variation model development and design stage for the complete

PLL system. The design and optimisation for the example will only consider the

analogue blocks of the system namely the charge pump, loop filter and voltage-

controlled oscillator (VCO), while the digital blocks are held as fixed.. The models

that to be developed during the preparation stage are charge pump and VCO. The next

section will briefly discuss the architecture of the PLL system.

7.2 PLL system

7.2.1 Phase Frequency Detector

The phase detector is a circuit whose the output is linearly proportional to the phase

differece of its two inputs. Ideally, the relationship between output voltage (Vout) and

phase difference (Δφ) is linear as depicted in figure 7-2. The slope of the line is the

gain of the phase detector, KPD and is expressed in V/rad.

Phase

Detector

V1(t)

V2(t)

Vout(t)

ΔΦ

Vout

Figure 7-2: phase detector concept

A simple example of phase detector is the exclusive OR (XOR) gate as shown in

figure 7-3. The plot shows how the width of the output pulses varies with the

difference of the inputs.

Chapter 7 Mixed-signal System Level Application 123

ΔΦ

V1(t)

V2(t)

Vout(t)

V1(t)

V2(t)

Vout(t)

Figure 7-3: Phase detector plots

One of the main limitations of the phase detector is in its acquisition range [99]. The

transition from the unlocked to the locked condition is nonlinear due to the inequality

in the frequencies and the locking range is very limited. It is often necessary to have a

wide acquisition range because the VCO oscillation frequency may vary considerably

with process and temperature variation. Due to this limitation, a frequency

comparison circuit is added to the phase detector so that the module can detect both

the phase and frequency differences. This block is called phase/frequency detector

(PFD) and a simple form of PFD circuit is illustrated in figure 7-4.

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

A

B

Vdd

Vdd

QA

QB

Figure 7-4: PFD schematic

Chapter 7 Mixed-signal System Level Application 124

7.2.2 Charge Pump and Loop Filter

A charge pump consists of two switched current sources: source and sink currents.

Current charge is steered into or out of the loop filter in a PLL according to two

logical inputs from PFD. Figure 7-5 illustrates a charge pump driven by PFD and

driving a capacitor. If the PFD inputs (QA and QB) are the same (no difference in

phase and frequency of signals A and B), switch S1 and S2 are off and Vout remains

constant. If QA is high and QB is low, then I1 will be steered to capacitor Cp (current is

steered into the loop filter) and if QB is high and QA is low, I2 will discharge the

capacitor (current is steered out of the loop filter). The plot in figure 7-5 shows the

rising up of Vout when signal A leads signal B.

t

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

A

B

Vdd

Vdd

Vdd

Vout

Cp

QA

QB

A

B

QA

QB

Vout

Figure 7-5: PFD/CP illustration and its signal plots

In figure 7-5, a capacitor, Cp is used in place of the filter. The loop filter for a PLL can

be made from a simple RC filter. Figure 7-6 shows a 2
nd

 order RC filter that is

commonly used in a PLL system. The filter is composed of a resistor R1 in series with

a capacitor C1. the charge pump current sources and the capacitor form an integrator

and the resistor introduces a zero point of the system. However, this configuration will

introduce a ripple of IpumpR1 on the output voltage, Vout and this ripple modulates the

I1

I2

S1

S2

Chapter 7 Mixed-signal System Level Application 125

VCO output frequency and may cause excessive jitter. In order to suppress this ripple

or voltage spike, a small capacitor C2 is added in parallel with R1 and C1. In practical

design, C2 is usually chosen to be about C1/10. A small C2 improves the phase margin

of the PLL system.

Ipump Vcont

R1

C2

C1

Figure 7-6: Loop filter

7.2.3 Voltage Controlled Oscillators

Oscillators play an important role in phase locked loop system. In general, a simple

oscillator produces a periodic output, usually in the form of voltage. In PLLs, the

oscillator is required to be tuneable i.e., the frequency oscillation is a function of a

control input, usually a voltage hence the name voltage-controlled oscillators (VCO).

An ideal voltage-controlled oscillator is a circuit that generates a periodic signal

whose the frequency is a linear function of its control voltage, as illustrated in figure

7-7. This linear relationship is expressed in equation 7-2.

).(minmin VVKff inVCOout  7-2

Where fout is the output frequency, fmin is the minimal frequency, Vin is the output

voltage from loop filter and Vmin is the minimum input voltage. KVCO denotes the gain

of the circuit which can be defined as in equation 7-3.

Chapter 7 Mixed-signal System Level Application 126

)(

)(

minmax

minmax

VV

ff
KVCO




 7-3

Voltage-Controlled

Oscillator
Vcont fout

Vcont

fout

Vmin Vmax

fmax

fmin

KVCO

Figure 7-7: VCO as a linear function of control voltage

7.3 PLL System Performances

A PLL system is usually designed to meet several requirements for a particular

application. For example, a frequency synthesizer may require a PLL to have a better

locking time, low phase noise, low power consumption, better stability and operate at

a wide tuning frequency range. Some of the performances commonly associated with

PLLs will be discussed in the remainder of this section. The discussion will be divided

into two sections : first section will discuss a group of PLL performances that can be

represented by the PLL transfer function such as loop bandwidth, locking time and

phase margin and the second sectin will discuss about PLL phase noise parameters,

extracting individual noise and behavioural noise modelling.

Chapter 7 Mixed-signal System Level Application 127

7.3.1 PLL transfer function

When the PLL is said to be in-lock, it can be represented in s-domain block diagram

as shown in figure 7-8. KPD is the gain of phase/frequency detector which is given by

equation 7-4, KVCO is the gain of the VCO and F(s) is the transfer function of the loop

filter. The open-loop transfer function of this model is represented by equation 7-5.

2
CP

PD

I
K  7-4

KPD F(s) KVCO/s

Divider

/N

-Φin Φout

Figure 7-8: A linear PLL model

Ns

K

sCCsCRC

sRCI

s

K
FKopen VCOCPVCO

SPD

in

out

)(

1

2
21

2

21

1
)(









 7-5

The system has a zero at :

RC
wz

1
 7-6

Based on equation 7-5, the close loop transfer function can be written as :

22

2

1

2

1

2

2

22

1

2

nn

nn

CPVCOCPVCO

CPVCO

close

in

out

ss

s

NC

IK
s

N

RIK
s

RC
s

N

RIK






























 7-7

Chapter 7 Mixed-signal System Level Application 128

Where n is the natural frequency and  is the damping factor. From this equation,

the natural frequency and damping factor can be expressed by equation 7-8 and 7-9.

12 NC

KI VCOCP

n


  7-8

2

1RCn
  7-9

The loop bandwidth can be expressed by equation 7-10.

 422 44221   nBW 7-10

From equation 7-10, it can be seen that the loop bandwidth is determined by KVCO

from the VCO block, ICP from the charge pump block, C1 and R from the loop filter

block. The locking time for a PLL system, according to [100] is given by equation 7-

11.

n

LockT


2
 7-11

The bode plot for the open loop transfer function given in equation 7-5 is illustrated in

figure 7-9. The unity gain bandwidth is the value of the frequency when the

magnitude of the open loop gain is 1 and can be expressed by equation 7-12. The bode

plot has a pole given by equation 7-13.

Chapter 7 Mixed-signal System Level Application 129

PM
-180

o

0
o

Open-loop

Gain

(dB)

ωωz ωugb

ωp

Figure 7-9: Bode plot of a 3
rd

 order PLL

R
N

KI VCOCP

UGB ..
2

  7-12

)//(

1

21 CCR
p  7-13

The phase margin (PM) of the system which is used to determine the stability can be

calculated using equation 7-14.


















p

UGB

Z

UGBPM






arctanarctan 7-14

Until this point, this section has discussed several PLL performances such as loop

bandwidth, damping factor, natural frequency, phase margin and locking time. In the

top PLL system, these performances are evaluated analytically using all the equations

discussed earlier in order to determine the PLL performances. Another important

performance function of the PLL system is phase noise or jitter (in time domain) and

this will be discussed next.

Chapter 7 Mixed-signal System Level Application 130

7.3.2 PLL phase noise

Every building block of the PLL will contribute to the total output noise, which is

characterized in terms of phase noise in the phase domain or jitter in the time domain

[101]. Figure 7-10 shows a PLL system with all the noise contributions from each

block. The noise sources Nref, NPFD/CP, NLF, NVCO and NDiv are placed respectively at

the corresponding nodes.

PFD/CP LF VCO

Divider

/N

+Φin

Φout++

+

+

nref

npfd/cp nLf nvco

ndiv

Figure 7-10: Noise analysis model for PLL system

In the PLL system, each block can be considered to have an individual effect to the

output noise and from all the individual noise sources, a superposition can be applied

to compute the total PLL output noise [102]. Each noise source can be derived as a

laplace transfer function that represents how the PLL output noise is shaped by them.

The noise transfer function originating from the reference oscillator, divider and

PFD/CP block will have a low pass response. Therefore the PLL output phase noise

will be strongly effected by the phase noise of these blocks at low offset frequencies.

The noise transfer function between output and VCO input tends to be a high pass

response and therefore the phase noise of the PLL output due to the VCO phase noise

will be affected at the high offset frequencies. For the loop filter, the injected noise

has a band pass response and will shape the PLL noise accordingly. The closed-loop

phase noise of the PLL (LPLL(f)) can be computed by performing a superposition over

each of the contributing noise sources with the assumption that no correlation exists

between them.

Chapter 7 Mixed-signal System Level Application 131

7.3.3 Extracting individual phase noise contribution

In order to calculate the PLL output noise, the phase noise contribution from each of

the individual block must be analysed and extracted. This can be done through a spice

phase noise analysis for each of the block separately. For the scope of this thesis, only

noise contribution from VCO block and PFD/CP+filter block will be considered and

this is discussed next.

7.3.3.1 VCO Noise

In most applications, the PLL phase noise is dominated by VCO phase noise [103].

This is because oscillators tend to amplify noise found near their oscillation frequency

and any of its harmonics. To extract the phase noise parameter of a VCO, a phase

noise analysis is done using a RF simulator such as SpectreRF [10] or HspiceRF [9].

The phase noise, L is measured for a range of frequencies offset from the centre

frequency [104, 105]. A graph for the phase noise value versus the offset frequencies

is as illustrated in figure 7-11. If flicker noise is present, there will be a range of low

frequencies for which the power noise drops at a rate of 30dB per decade. Above this,

the rate of drop will be 20dB per decade which is characterized as white noise region.

All these information from this plot (flicker and white noise) is extracted and will be

used in behavioural description of VCO to represent the phase noise slope.

Chapter 7 Mixed-signal System Level Application 132

Flicker noise sources

White noise sources

20dB per decade

slope

30dB per decade

slope

Δf

SΦ

Figure 7-11: VCO phase noise vs offset frequencies

7.3.3.2 PFD/CP and loop filter noise

Other than VCO noise, the noise combination of the phase frequency detector, the

charge pump and the loop filter also contribute to the PLL noise. The combination

noise can be extracted by simulating the PFD, charge pump and loop filter under open

loop conditions that approximate the PLL in a locked steady-state. The schematic for

this analysis is shown in figure 7-12. In this schematic, the phase frequency detector is

driven with an in-phase clock to represent a locked-state of PLL.

The output noise from the simulation can be extracted and represents another noise

contribution in the PLL closed-loop system analysis. Figure 7-13 shows an

illustration of the noise simulation result for PFD/CP and loop filter combination.

Chapter 7 Mixed-signal System Level Application 133

PFD CP

R

C2

C1

Vcont

Figure 7-12: A schematic for PFD/CP and loop filter noise simulation

Flicker noise sources

White noise sources

f

SI

Figure 7-13: Illustration of PFD/CP and loop filter noise plot

7.3.4 Behavioural Modelling of Noise Sources

Once all the noise contributions from individual blocks have been calculated, their

values can be represented using a behavioural model. Verilog-A provides a

flicker_noise function for modelling transitor model flicker noise, which has a power

spectral density proportional to 1/f
α
 with α typically close to 1. However, Verilog-A

does not limit the value of α, making the function well suited to model the oscillator

Chapter 7 Mixed-signal System Level Application 134

phase noise with α=2 for 20dB roll off noise and α close to 3 for 30dB roll off noise.

[106].

Typically the VCO phase noise contributions LVCO(f) can be modelled with a

frequency dependent phase noise expression given in equation 7-15.

EF

FW

VCO
f

K

f

K
fL




22
)(7-15

Where EF ≈ 1 is the flicker noise exponential used within the transistor models, KF

represent modulated flicker noise contributions and KW represent modulated white

noise contributions. The PFD/CP LPFD/CP(f) noise response can be modelled with a

frequency dependent phase noise expression given in equation 7-16.

WEF

F
CPPFD K

f

K
fL )(/ 7-16

Where KF represent flicker noise contribution and KW represent white noise

contribution.

With all the noise contribution transfer functions obtained above, a behavioural model

can be developed based on the expressions given in equation 7-15 and 7-16. One of

the advantages of Verilog-A is its ability to model both signal and noise

characteristics within the same module. In this way, the noise is modelled by adding

noise voltages to the voltage variables. Figure 7-14 shows a Verilog-A module for

modelling the phase domain VCO with noise. The phase signal model of a VCO is an

ideal integrator that converts frequency to phase based on the VCO gain providing a

transfer function as given in equation 7-17. A Verilog-A laplace transform operator,

laplace_nd is used to represent the transfer function. Added to the output voltage of

the VCO are two flicker noise function, flicker_noise(), that add f
-3

 to represent the

30dB roll off and f
-2

 to represent 20dB roll off noise distibutions.

s

K
sH VCO

VCO )(7-17

Figure 7-15 shows the Verilog-A code for implementing the PFD/CP behavioural

model. The output of the block is modelled by a simple constant gain coefficient, Kd,

Chapter 7 Mixed-signal System Level Application 135

that operates on the input different , Vin1-Vin2. As with the VCO model, the noise

voltages of flicker noise and white noise are added to the output of the PFD/CP

module.

// VCO behavioural model incorporating noise transfer function

 Module vco()

 ...

V(out) <+ laplace_nd(V (in), {fmax-fmin/1},{0,1})

 + flicker_noise(lffl, 3, "VCO_flicker")

 + flicker_noise(lfwh, 2, "VCO_white");

end

endmodule

Figure 7-14: VCO behavioural model

// PFD/CP behavioural model incorporating noise transfer function

 Module pfdcp

 …

 V(out) <+ kd*(V(in1) - V(in2))

 + flicker_noise(lfpfl, 1, "pfd_flicker")

 + white_noise(lfpwh, "pfd_white");

end

endmodule

Figure 7-15: PFD/CP behavioural model

In figure 7-14 and 7-15, Lffl, Lfwh, Lfpfl and Lfpwh are the VCO flicker noise, VCO

white noise, PFD/CP flicker noise and PFD/CP white noise contribution respectively.

With all the models for individual blocks developed, a top-level closed-loop PLL

noise analysis can be performed. The PLL phase noise plot from the top-level

simulation is shaped by the combination of the individual noise sources.

Chapter 7 Mixed-signal System Level Application 136

7.4 Design Example

A charge pump PLL system was designed using ST 0.12µm process technology and a

supply voltage of 1.2V. The Multi Objective Bottom Up (MUBU) + Top Down

Constraint Driven (TDCD) hierarchical design methodology discussed in chapter 6

was used to design the complete PLL system. The specifications for the PLL are given

in table 7-1 and the system level block diagram is as illustrated in figure 7-1. The PLL

was designed to generate frequency range of 500MHz to 1.2GHz from a 50 MHz

reference oscillator. Therefore the divider ratio can be selected between 10 to 24 for

the output frequency range. Only the analogue blocks of the charge pump (CP), VCO

and the loop filter (LF) are considered in the design process while the digital blocks

(PFD and Divider) are assumed to be ideal and held as fixed. As explained in chapter

6, the design methodology starts with multi-objective bottom up modelling to model

the performance and variation of the sub-blocks using the methodology proposed in

chapter 5. The work can be divided into 2 stages : preparation stage for the model

development and design stage for the whole PLL system. In the preparation stage, 2

sub-block models were developed using the MUBU technique. Both of these models

were used later for the PLL design using the TDCD method.

Performances Specifications

Output Frequency Range 500MHz to 1.2GHz

Locking time < 1us

Current consumption < 5mA

Phase noise (@ 1 MHz offset) < -100 dBc/Hz

Phase Margin > 45 degress

Table 7-1: PLL system level specifications

Chapter 7 Mixed-signal System Level Application 137

7.4.1 Charge Pump (CP) performance and variation model

PFD
Charge

Pump
VCO

Divider

Fref

Ffb
Fout

Figure 7-16: Charge pump preparation stage

The charge pump is a circuit that is used to steer the current into or out of loop filter

based on the up and down signal from phase frequency detector. The schematic for an

externally-biased charge pump is given in figure 7-17. The downup, , up and down

are coming from PFD circuit. When the up signal is active, the current flows into the

loop filter and causes the output voltage to rise up which in turn forces a higher

oscillation frequency from VCO. On the other hand, when the down signal is active,

the current flow out of the loop filter and causes the output voltage drops down and

force a lower oscillation frequency. A dummy switch is added in this design in order

to reduce the charge spike during switching.

Chapter 7 Mixed-signal System Level Application 138

upb up

dwbdw

up

dwb
Ibias

Dummy

switch

Out

Figure 7-17: Charge pump (CP) schematic diagram

For the charge pump, two performance functions are being evaluated: charge pump

current and output noise voltage. Multi objective optimisation was performed to the

design using NSGA-II algorithm [51] in order to search for optimum performance

trade-offs. A total of 30 generations with a population size of 50 were used giving a

total of 1,500 samples. The outcome of this optimisation is a set of Pareto-points that

represent the trade-off between competing performance objectives. All the points on

this Pareto-front are stored in a lookup table which represent the performance model

for the charge pump.

The next step is to develop a variation model based on the performance Pareto-points.

All the points on the Pareto front undergo a Monte Carlo simulation using ST 0.12µm

process variation and mismatch model. A 30 samples Monte Carlo simulation was

performed on each of the Pareto points. The outcome of this Monte Carlo simulation

is a set of performance variations deviated from its nominal value. For example,

figure 7-18 shows the nominal, minimum and maximum plots for charge pump noise

voltage for one of the Monte Carlo simulations. In order to estimate the minimum and

maximum region for the performance functions, the standard deviation of the samples

is calculated and this value is multiplied by 6 in order to get the 6 standard deviation

Chapter 7 Mixed-signal System Level Application 139

range from the mean value. Figure 7-19 shows the Pareto plot of the performances

(from MOO) and their variation obtained from Monte Carlo simulation. From the

plot, the Pareto front clearly shows the trade off between current consumption and

output noise voltage which indicates that a larger current will result in a smaller noise

voltage. In addition to that, the minimum and maximum Pareto show how the nominal

points will deviate due to the process variation and circuit mismatch.

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ
Δ Δ Δ

Δ

Δ

Δ

Ο

Ο

Ο

Ο

Ο

Ο

Ο

Ο

Ο
Ο Ο Ο

Ο

Ο

Ο

Φ
Φ

Φ
Φ

Φ

Φ

Φ

Φ

Φ
Φ Φ Φ

Φ

Φ

Φ

Maximum Noise

Nominal Noise

Minimum Noise

Δ

Ο

Φ

Figure 7-18: Nominal, minimum and maximum plot for charge pump noise

Chapter 7 Mixed-signal System Level Application 140

0µV

5µV

10µV

15µV

20µV

25µV

30µV

35µV

40µV

10 15 25 40 50 60 70 80 90 100

Bias Current (uA)

O
u

tp
u

t
N

o
is

e
 (

V
^

2
/H

z
)

Maximum

Nominal

Minimum

Figure 7-19: Charge Pump Pareto Front with Variations

The minimum and maximum performances obtained from MC analysis are stored in

another look up table. At this stage a complete performance and variation lookup table

has been developed for the PFD/CP and can be used in Verilog-A table model

function for the behavioural modelling of the charge pump circuit. A part of the

behavioural model incorporating the table model function nominal, minimum and

maximum performances are shown in figure 7-20,7-21 and 7-22 respectively.

In the nominal performance behavioural model (figure 7-20), the table model function

of the Pareto-front is used to interpolate the output noise, lfpwh, from a chosen bias

current, Icp. The minimum and maximum behavioural models (figure 7-21 and 7-22)

are used to interpolate and determine the performance variations (lfpwhmin and

lfpwhmax) of the nominal performances.

Chapter 7 Mixed-signal System Level Application 141

 Module pfdcp_nom

analog begin

 …

 //lookup table for pfd_cp noise

 lfpwh = $table_model(Icp, "pfd_data.tbl","3E");

 V(out) <+ kd*(V(in1) - V(in2))

 + flicker_noise(lfpfl, 1, "pfd_flicker")

 + white_noise(lfpwh, "pfd_white");

end

endmodule

Figure 7-20: PFD/CP table model function for nominal performances

 Module pfdcp_min

 …

 …

 //lookup table for pfd_cp noise

 lfpwh = $table_model(Icp, "pfd_data.tbl","3E");

 //lookup table for pfd variation

 lfpwhmin = $table_model(lfpwh, "pfdmin_data.tbl", "3E");

 V(out) <+ kd*(V(in1) - V(in2))

 + flicker_noise(lfpfl, 1, "pfd_flicker")

 + white_noise(lfpwhmin, "pfd_white");

 $fclose(file_ptr1);

end

endmodule

Figure 7-21: PFD/CP table model function for minimum performances

Chapter 7 Mixed-signal System Level Application 142

 analog begin

 …

 //lookup table for pfd_cp noise

 lfpwh = $table_model(Icp, "pfd_data.tbl","1E");

 //lookup table for pfd variation for maximum

 lfpwhmax = $table_model(lfpwh, "pfdmax_data.tbl", "3L");

 V(out) <+ kd*(V(in1) - V(in2))

 + flicker_noise(lfpfl, 1, "pfd_flicker")

 + white_noise(lfpwhmax, "pfd_white");

 $fclose(file_ptr1);

end

endmodule

Figure 7-22: PFD/CP table model function for maximum performances

7.4.2 Voltage-controlled Oscillator (VCO) performance and variation model

PFD
Charge

Pump
VCO

Divider

Fref

Ffb
Fout

Figure 7-23: VCO preparation stage

The VCO is one of the important blocks in PLL system and a major contributor to

PLL phase noise [81]. The chosen VCO topology is a 5 stage ring oscillator as shown

in figure 7-24. In this kind of VCO, the input voltage controls the current through the

delay cells which determines the delay time of each stage hence controlling the output

oscillation frequency. An ideal VCO generates a periodic signal whose frequency is a

linear function of the controlling voltage as explained earlier in this chapter.

Chapter 7 Mixed-signal System Level Application 143

M1 M2 M3 M4 M5 M6

M7 M8 M9 M10

M11

M12 M13 M14 M15 M16

M18 M19 M20 M21 M22M17

Vout

Vctrl

VDD

VSS

Wpctrl/

Lpnctrl

Wnctrl/

Lpnctrl

Wpdelay/

Lpdelay

Wndelay/

Lndelay

Figure 7-24: 5-stage ring VCO schematic

The first step in multi objective optimisation for the VCO is to determine the

designable parameters for the circuit. In this example, these include the transistor

lengths and widths making a total of 7 designable parameters. The parameters are

shown in table 7-2 and illustrated by dotted line in figure 7-24. The performance

functions for which the Pareto front must be generated are VCO phase noise, current

consumption, VCO gain, minimum frequency and maximum frequency. A testbench

netlist was created to evaluate these performance functions.

Chapter 7 Mixed-signal System Level Application 144

Block Design Parameters Range

Control

Length of M17 & M1 0.12µm – 1µm

Width of M17

10µm – 100µm
Width of M1

Delay Cell

Width of all PMOS

Width of all NMOS

Length of all PMOS
0.12µm – 1µm

Length of all NMOS

Table 7-2 Design Parameters

The designable parameters must be constrained within a reasonable range (based on

the targeted active area of the circuit) which defines the design space of the

optimisation. In this example, all transistor lengths and widths were specified to be

between 0.12µm-1µm and 10µm-100µm respectively as can be seen in table 7-2. A

GA string is constructed based on the designable parameters as shown in figure 7-25

and will be used by the NSGA-II algorithm to generate the parameters for the spice

simulation. A total of 30 generations each with a population size of 100 were used in

this example, giving a total of 3,000 samples for the optimisation.

Lpnctrl WpctrlLpdelay Lndelay Wnctrl Wpdelay Wpdelay

Figure 7-25: VCO GA string

The testbench netlist is used to evaluate each of the performance functions for every

design parameter set generated by GA and the result of the simulations determines the

fitness score of the individual sets. A non-dominated sorting and crowding distance

method of NSGA-II (as explained in chapter 3) was applied to the solutions to

determine the final set of Pareto-fronts.

From the MOO, a set of optimal solutions known as Pareto-fronts for the VCO was

obtained. Table 7-3 shows some samples from the Pareto-points and table 7-4 shows

the design parameters for those samples. All the points on the Pareto-front are the best

Wndelay

Chapter 7 Mixed-signal System Level Application 145

trade-off for the design for all of the competing objectives. All the points on the

Pareto-fronts and their corresponding design parameters represent the performance

model for the VCO and are stored in a data file.

Design:
Performance functions

Min. Freq Max. Freq VCO gain VCO jitter VCO current

1 80.3 MHz 568 MHz 487 MHz 9.46 ps 3.09 mA

2 130 MHz 760 MHz 630 MHz 8.66 ps 3.10 mA

3 147 MHz 906 MHz 758 MHz 7.33 ps 3.71 mA

4 183 MHz 843 MHz 659 MHz 0.83 ps 2.12 mA

5 204 MHz 657 MHz 453 MHz 0.36 ps 1.79 mA

6 217 MHz 2.04 GHz 1.83 GHz 0.71 ps 4.99 mA

7 222 MHz 808 MHz 586 MHz 0.37 ps 3.41 mA

8 238 MHz 1.41 GHz 1.17 GHz 0.33 ps 7.64 mA

9 284 MHz 1.20 GHz 917 MHz 0.43 ps 4.67 mA

10 312 MHz 2.67 GHz 2.36 GHz 0.34 ps 6.53 mA

Table 7-3: Pareto-point samples for VCO

Design:

Design Parameters

Lpnctrl Lpdelay Lndelay Wpctrl Wpdelay Wnctrl Wndelay

1 0.56 µm 0.38 µm 0.16 µm 88.78 µm 12.28 µm 10.09 µm 70.95 µm

2 0.58 µm 0.34 µm 0.22 µm 73.32 µm 13.60 µm 10.08 µm 45.77 µm

3 0.58 µm 0.27 µm 0.23 µm 89.48 µm 18.43 µm 10.09 µm 49.63 µm

4 0.60 µm 0.46 µm 0.20 µm 19.84 µm 23.58 µm 10.14 µm 10.83 µm

5 0.61 µm 0.43 µm 0.40 µm 12.79 µm 23.97 µm 22.08 µm 11.61 µm

6 0.53 µm 0.17 µm 0.19 µm 81.27 µm 51.14 µm 11.17 µm 11.36 µm

7 0.78 µm 0.17 µm 0.74 µm 17.35 µm 31.71 µm 87.48 µm 33.18 µm

8 0.90 µm 0.15 µm 0.40 µm 95.87 µm 49.08 µm 22.61 µm 66.15 µm

9 0.41 µm 0.41 µm 0.14 µm 38.82 µm 24.22 µm 27.16 µm 15.29 µm

10 0.90 µm 0.15 µm 0.17 µm 95.87 µm 51.86 µm 12.55 µm 30.75 µm

Table 7-4: Design Parameters for Pareto-point samples

Chapter 7 Mixed-signal System Level Application 146

To develop the variation model of the Pareto-front, as with PFD/CP, a Monte Carlo

simulation was performed to each of the optimal points using foundry variation and

mismatch models. 30 samples were chosen for the MC simulation and from these the

variation for each performance is calculated. The minimum and maximum range is

calculated from the standard deviation and multiplied by 6 for 6-sigma deviation

estimation from the mean. Figure 7-26 shows the minimum and maximum plots for

VCO phase noise from one of the Monte Carlo samples.

One important aspect that can be seen from the experiment is the sensitivity of the

performance functions towards process variations. Figure 7-26 shows a small

performance deviation when compared to PFD/CP deviation of figure 7-18. This

shows that, between these two circuits PFD/CP noise is more sensitive towards

process variations compared to VCO phase noise. Performance sensitivity towards

process variation is one of the reasons why it is important to use Pareto-based

optimisation method for yield optimisation as explained in chapter 4. The minimum

and maximum range of each of the performance functions define the variation model

for the VCO and are stored in a data file.

Maximum VCO Noise

Minimum VCO Noise

Figure 7-26-: Minimum and maximum plot for VCO phase noise

Chapter 7 Mixed-signal System Level Application 147

Both of the data files for performance (nominal) and their variation (minimum and

maximum) represent the lookup table for Verilog-A table model function. Table 7-5

shows a selection of sample points from the VCO lookup table. A part of the Verilog-

A listing for the VCO table model function for nominal, minimum and maximum

performances are shown in figure 7-27 to 7-29. In the listings, Ko is the gain of the

VCO and lffl is the VCO phase noise interpolated using the table_model() function

from a chosen Ko and VCO current (Ivco). The phase noise of the VCO (lffl) is added

to the VCO output using the flicker_noise() function. Similarly, the minimum and

maximum performances are determined and interpolated from the variation lookup

table.

Design: Kvco (Mhz/V): ∆Kvco: Jvco (ps): ∆Jvco: Ivco (mA) : ∆Ivco

20 997 0.50% 0.13 22% 8.62 2.9%

21 373 0.45% 0.11 22% 3.58 2.7%

22 1090 0.32% 0.29 25% 2.79 2.6%

23 1620 0.30% 0.19 23% 8.46 2.9%

24 2280 0.28% 0.36 26% 4.98 2.7%

27 1850 0.29% 0.21 23% 6.74 2.8%

28 1450 0.29% 0.12 22% 6.16 2.8%

29 1600 0.35% 0.30 25% 2.68 2.6%

Table 7-5: Samples Points from VCO lookup table

 analog begin

ko = (fmax-fmin)/(vmax-vmin);

lffl = $table_model(ko,Ivco, "vco_data.tbl", "3L,3L");

 V(out) <+ laplace_nd(V (in), {fmax-fmin/1},{0,1})

 + flicker_noise(lffl, 3, "VCO_flicker")

 + flicker_noise(lfwh, 2, "VCO_white");

end

endmodule

Figure 7-27: VCO table model function for nominal performance

Chapter 7 Mixed-signal System Level Application 148

 analog begin

 …

 …

//minimum variation for Ivco

 Ivco_min = $table_model(Ivco, "Ivcomin_data.tbl", "3L");

 $fwrite(file_ptr1, "%e", Ivco_min);

// minimum variation for fmin and fmax

 min_fmin = $table_model(fmin, "fmin_mindata.tbl", "3L");

 $fwrite(file_ptr2, "%e", min_fmin);

 min_fmax = $table_model(fmax, "fmax_mindata.tbl", "3L");

 $fwrite(file_ptr3, "%e", min_fmax);

 // minimum variation for ko

 ko_min = (min_fmax-min_fmin)/(vmax-vmin);

 $fwrite(file_ptr4, "%e", ko_min);

 ko = (fmax-fmin)/(vmax-vmin);

 lffl = $table_model(ko,Ivco, "vco_data.tbl", "3L,3L");

 // minimum variation for lffl noise

 lffl_min = $table_model(lffl, "lfflmin_data.tbl", "3L");

 V(out) <+ laplace_nd(V (in), {(fmax-fmin)/1},{0,1})

 + flicker_noise(lffl_min, 3, "VCO_flicker")

 + flicker_noise(lfwh, 2, "VCO_white");

 …

end

endmodule

Figure 7-28: VCO table model function for minimum performance

Chapter 7 Mixed-signal System Level Application 149

analog begin

…

…

// maximum variation for Ivco

Ivco_max = $table_model(Ivco, "Ivcomax_data.tbl", "3L");

$fwrite(file_ptr1, "%e", Ivco_max);

// maximum variation for fmin and fmax

max_fmin = $table_model(fmin, "fmin_maxdata.tbl", "3L");

 $fwrite(file_ptr2, "%e", max_fmin);

 max_fmax = $table_model(fmax, "fmax_maxdata.tbl", "3L");

 $fwrite(file_ptr3, "%e", max_fmax);

 // maximum variation for ko

 ko_max = (max_fmax-max_fmin)/(vmax-vmin);

 $fwrite(file_ptr4, "%e", ko_max);

 ko = (fmax-fmin)/(vmax-vmin);

 lffl = $table_model(ko,Ivco, "vco_data.tbl", "3L,3L");

 // maximum variation for lffl noise

 lffl_max = $table_model(lffl, "lfflmax_data.tbl", "3L");

 V(out) <+ laplace_nd(V (in), {(fmax-fmin)/1},{0,1})

 + flicker_noise(lffl_max, 3, "VCO_flicker")

 + flicker_noise(lfwh, 2, "VCO_white");

 …

 …

end

endmodule

Figure 7-29: VCO table model function for maximum performance

Chapter 7 Mixed-signal System Level Application 150

7.4.3 PLL System Level Design

Once the multi objective bottom up (MUBU) modelling process for performance and

variation has been completed, the top down design strategy (TDCD) can be started. At

the system level, a behavioural description of the complete system instantiating all

sub-blocks component must be developed. All the individual blocks in the system

including the PFD, CP, and VCO were behaviourally modelled using Verilog-A

language.

The top level PLL system is developed for nominal, minimum and maximum

performances. Each of the models correspond to the sub-blocks behavioural model for

nominal and their variations performances. Figure 7-30 shows the PLL top level

behavioural model for the nominal performance. The minimum and maximum

behavioural model are similar except the sub-block instantiation is taken from their

minimum and maximum model.

With the system level behavioural model completed, a top-level multi objective

optimisation for PLL can be executed. The PLL performance functions are output

frequency range, locking time, current consumption, phase margin and total phase

noise as shown earlier in table 7-1. The designable parameters for the PLL

optimisation are given in table 7-6. As with previous optimisation, the design

parameters are constrained within a reasonable range based on the PLL specifications

that define the decision space for the optimisation. A spice testbench netlist for the

top-level PLL simulation was created and a multi objective optimisation using NSGA-

II algorithm was performed on the PLL system in order to locate the optimum

solutions that meet the specifications. The simulation results of the top level

behavioural model for all performances are used to determine the quality of the

solutions against the optimisation requirement. The locking time and phase margin

were evaluated analytically during the optimisation. The total PLL phase noise is

calculated by superposition of all of the contributing noise sources as explained in

section 7.3.2. Figure 7-31 shows an example of the simulation result for PLL phase

noise which is shaped by all the noises from PFD/CP and VCO.

Chapter 7 Mixed-signal System Level Application 151

 module PLL_top(ref_in, pll_out);

inout ref_in, pll_out;

electrical ref_in, pll_out;

parameter real Icp = 10e-6 from(0:1.0);

parameter real lfpfl = 0.0 from [0:1.0);

 parameter real C_1 = 1.0e-12 from (0:1.0e-3);

 parameter real R_2 = 10.0e3 from (0:1M);

 parameter real C_2 = 3.0e-12 from (0:1.0e-3);

 parameter real fmin = 300e6 from (100e6:80e7); //hertz

 parameter real fmax = 500e6 from (200e6:40e8); //hertz

 parameter real Ivco = 13.2e-3 from (1e-3:30e-3);

 parameter real lfwh = 0.0 from [0:1.0);

 parameter real ratio = 1 from (0:inf);

pfd # (.Icp(Icp), .lfpfl(lfpfl))

pfd1(ref_in, divout, filin);

loopfilter # (.C_1(C_1), .R_2(R_2), .C_2(C_2))

loopfilter1(filin, vcoin);

vco # (.fmin(fmin), .fmax(fmax), .Ivco(Ivco), .lfwh(lfwh))

vco1(vcoin, pll_out);

div # (.ratio(ratio))

divider1(pll_out, divout);

endmodule

Figure 7-30: PLL top level behavioural model

Chapter 7 Mixed-signal System Level Application 152

Design Parameters

Parameter Ranges

Min. Frequency

100MHz – 500MHz

Max. Frequency

1.2GHz – 2 GHz

Charge pump current

10uA – 100uA

VCO current

1mA – 20mA

Resistor, R

1k – 20k

Capacitor, C2

10p – 20p

Capacitor, C1

C2/10

Table 7-6: PLL system designable parameters

Δ

Ο
Δ

Δ
Δ

Δ Δ
Δ

Δ
Δ

Δ
Δ

Δ
Δ

Δ Δ Δ Δ Δ Δ

Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο
Ο

Ο

Ο

VCO

PFD/CP

PLL

Δ

Ο

Figure 7-31: Noise simulation result of PLL with all the contributing sources

From the discussion on the PLL performances earlier in this chapter, it can be seen

that there are several performance trade-offs occurred in the PLL design. For

Chapter 7 Mixed-signal System Level Application 153

example, the locking time performance of a PLL system is inversely proportional to

its loop bandwidth [107] [100]. This means that, in order for the PLL to lock quickly,

the PLL bandwidth must be large. Based on equation 7-8, 7-9 and 7-10, loop

bandwidth is directly related to natural frequency and can be determined by VCO gain

(KVCO), charge pump current (ICP), C1 and R. Therefore, the locking time can be

reduced by increasing Kvco, ICP C1 and R. However, increasing KVCO will also

increase VCO noise hence will increase the total noise of the PLL. Increasing ICP will

increase the current consumption hence will influence the total PLL power

consumption. Due to this complex trade-off, it is very useful to run multi-objective

optimisation and select the best optimal solution from several solution points. In

addition to that, with the variation model included in the optimisation, a solution that

meets the performance specifications including their variations can be selected.

Table 7-7 shows some samples of the PLL optimal solutions obtained from the multi-

objective optimisation including the system minimum and maximum variation.

Looking at table 7-7, without looking at the minimum and maximum performances

that obtained from the variation model, design no.6 ,7,8,9 and 10 are all solutions that

meet the PLL specifications. However, with the variation considered, some of these

solutions fail below the specifications. There is only one solution that passes the

specifications with variation consideration, that is solution no.9. Therefore, with the

help of the variation model developed during MUBU stage, a solution that meets the

specifications and at the same time sustain the process variation can be determined.

This in turn, will improve overall yield of the PLL system. Figure 7-32 shows the

phase noise performances for 3 design points (design point 9, 4 and 10) with the

specification boundaries. As can be seen from the figure, design point no. 4 doesn‘t

meet the phase noise specification for the nominal, minimum and maximum

performances and design point no. 10 fails the specification at its maximum variation.

Only design point no. 9 meet the specification for nominal and its variations.

Therefore, choosing design point no. 9 will meet the specification even when

considering the variability.

Chapter 7 Mixed-signal System Level Application 154

Specification

Specification

Design No. 9

Design No. 10

Specification

Design No. 4

Figure 7-32: Phase noise plots for design point no. 4, 9 and 10

Chapter 7 Mixed-signal System Level Application 155

Design

Points

Nominal Minimum Maximum

Noise Itot PM Lt fmin fmax Noise Itot PM Lt fmin fmax Noise Itot PM Lt fmin fmax

1 -68.2 5mA 37.5 deg 330n 470M 2.75G -87.4 4.5mA 34.2 deg 313n 465.7M 2.45G -60.1 5.1mA 39.9 deg 353n 475M 3G

2 -108 5.1mA 28 deg 147n 470M 2.75G -114 4.6mA 25.8 deg 140n 465.7M 2.45G -94 5.2mA 31.3 deg 158n 475M 3G

3 -84.3 5mA 48.8 deg 233n 470M 2.75G -96.6 4.5mA 44 deg 211n 465.7M 2.45G -72.5 5.1mA 51 deg 256n 475M 3G

4 -83.4 7.7mA 47.2 deg 400n 238M 1.4G -95.5 7.6mA 43 deg 354n 233M 1.1G -71.5 7.7mA 51.3 deg 440n 241M 1.7G

5 -103 7.7mA 56 deg 281n 238M 1.4G -108 7.6mA 55 deg 251n 233M 1.1G -86.2 7.8mA 56.4 deg 311n 241M 1.7G

6 -110 4.1mA 60 deg 235n 407M 1.53G

-

114.6 4.05mA 49.9 deg 197n 402M 1.3G -97 5mA 56.3 deg 272n 410M 1.8G

7 -118 4.1mA 50 deg 181n 407M 1.53G -121 4.1mA 39.7 deg 153n 402M 1.3G -105 5mA 56 deg 210n 410M 1.8G

8 -116 2.9mA 50.1 deg 185n 437M 1.52G -120 2.81mA 40 deg 155n 432M 1.3G -103 3mA 56 deg 215n 440M 1.83G

9 -119 2.9mA 55.6 deg 491n 437M 1.52G -123 2.81mA 48.5 deg 424n 432M 1.3G -106 3mA 55 deg 510n 440M 1.83G

10 -108 2.8mA 54 deg 213n 437M 1.52G -113 2.7mA 45 deg 179n 432M 1.3G -94 2.95mA 56.3 deg 250n 440M 1.83G

 : Fail below specifications

 : All pass the specifications

Table 7-7: PLL system level optimum samples

Once the best design solution has been selected, the design parameters of this solution

will be taken as the specifications for the PLL sub-blocks (i.e. VCO, CP and LF) in

order to determine the circuit level design parameters (i.e. transistor size). Table

model function of the lower level sub-blocks can be used to determine the circuit

sizes. Table 7-8 shows the design parameters for the individual blocks of the PLL

system interpolated from the lookup table. Through this complete top down constraint

design methodology, the whole PLL circuit has been sized that will give the optimal

performances and produces better overall yield.

PLL Block Design Parameters

Chage pump

Transistor length : 0.12µm

Transistor Width : 0.35 µm

Bias current : 100uA

VCO

Lpntrl : 0.47µm

Wpctrl : 10.00 µm

Wnctrl : 10.45 µm

Lpdelay : 0.34 µm

Wpdelay : 26.02 µm

Lndelay : 0.15 µm

Wndelay : 18.15 µm

Loop filter

R1 : 5 kΩ

C1 : 1.5pF

C2 : 15pF

Table 7-8: PLL design parameters for individual blocks

There is a possibility that during the top level design, the optimisation process could

not find the solution that meets all the specifications. For example, let assume that the

phase noise specification for the PLL example is less than -110 dBc/Hz. In this case,

all the solutions in table 7-7 fail the phase noise specification at least at one of its

variation. If such condition happens, the designer has to decide the solution based on

the design priority. Perhaps a weighting parameter can be added to the performances

Chapter 7 Mixed-Signal System Level Application 157

based on the priority and the solution that meets the designer priority can be chosen

for the design solution.

A transistor level simulation based on the design parameters from table 7-8 has been

carried out for the PLL output frequency range and locking time. Figure 7-33 shows

the output frequency range for the PLL system based on the 50 MHz reference

frequency. The top plot in figure 7-33 is the reference frequency followed by the

output frequency showing 500 MHz signal when the divider ratio is 10 and the last

plot shows the output frequency at 1.2GHz when the divider ratio is 24. Figure 7-34

shows locking time plots when the PLL operate at minimum output frequency of 500

MHZ and at maximum output frequency of 1.2GHz. Table 7-9 summarises all the rest

of the PLL performances including their minimum and maximum range.

Figure 7-33: PLL output frequency range

Chapter 7 Mixed-Signal System Level Application 158

Figure 7-34: PLL locking time for minimum and maximum output frequency

Performance

Function
Specification

Nominal

Result

Minimum

Result

Maximum

Result

Frequency

Range

500MHz -

1.2GHz

437MHz –

1.52GHz

432MHz –

1.30GHz

440MHz –

1.83GHz

Total Current

≤ 5mA

2.9mA

2.81mA

2.9mA

Locking Time

< 1us

502 ns

424 ns

510 ns

Phase Margin

≥ 45 deg

55.6 deg

48.5 deg

55.7 deg

PLL noise

< -100dBc/Hz

-119 dBc/Hz

-123 dBc/Hz

-106 dBc/Hz

Table 7-9: PLL performance results

7.4.4 Design Summary

One of the important aspects of a design methodology for a large system is the

computational cost. The decision about design methodology is sometimes a trade off

that has to be made between speed and accuracy. As mentioned earlier in this thesis,

simulation based design consumes higher simulation time compared to an analytical-

Chapter 7 Mixed-Signal System Level Application 159

based design but produces better accuracy. With recent development in computer

technology, the computational overhead is not such a critical factor anymore.

In the PLL system design, the use of behavioural language together with hierarchical

optimisation methodologies accelerates the design process. The CPU computational

cost employed in the hierarchical-based design is much lower when compared to the

`flat‘ transistor level design and optimisation of a benchmark PLL circuit which

requires up to ―several weeks or months‖ [97]. For the proposed method, the higher

design time only occurs during the preparation stage where huge number of

simulations is needed for the circuit level performance and variation modelling. Table

7-10 summarises the cpu time involved for the complete PLL system design. All the

design simulations and optimisations were performed on Ultra Sparc 1.2GHz

workstation.

Design Tasks

CPU Time

Charge Pump MOO

9 hrs

Charge Pump Monte Carlo

16 hrs

Overall charge pump preparation time

25 hrs

Voltage Controlled Oscillator MOO

17 hrs

Voltage Controlled Oscillator MC

25 hrs

Overall VCO preparation time

42 hrs

PLL top level MOO

30 minutes

Overall CPU time

42 hrs 30 minutes

Table 7-10: PLL system design summary

From table 7-10, it can be seen that, the high CPU time occurred during the

preparation stage for the charge pump and VCO modelling.. The variation modelling

from the Pareto points can only be started after the multi-objective optimisation for

the particular circuit has been completed. Therefore the overall CPU time for the

Chapter 7 Mixed-Signal System Level Application 160

circuit optimisation is the combination of both multi-objective optimisation and

Monte Carlo simulation. For example, the overall CPU time for charge pump

performance and variation model development is 25 hrs. However, the performance

and variation model development for all the individual blocks can be done in parallel,

so the CPU cost is determined by the highest contribution which in this example

comes from the VCO. The reason for the high simulation time during the MOO is the

noise evaluation of the individual blocks that requires a transient noise simulation of

the circuit with a small and very well controlled time step. The noise simulation for

both of the blocks is the main contributor for the overall simulation time.

Once the preparation stage has been completed, the CPU time required for the PLL

design stage through a hierarchical-based optimisation is very fast. From table 7-10,

the design time for the PLL system is only 30 minutes. The circuit model developed

during the preparation stage can be re-used for other PLL design requirements

suggesting a huge time saving can be achieved for the design process.

7.5 Summary

This chapter has demonstrated a complete PLL system level design optimised for

performance and yield through a hierarchical-based optimisation methodology. The

idea of behavioural performance and variation modelling introduced in chapter 5 and

hierarchical optimisation design flow introduced in chapter 6 were used to design the

complex performance trade-offs of a PLL system. The PLL system is optimised to

meet the performances functions of locking time, phase margin, current consumption,

phase noise and output frequency range. The design methodology that integrates both

the performance and variation aware analysis, demonstrates its ability to optimise the

system level design not only for optimum performances but also for higher yield

output. This work shows an example of how the yield can be predicted and optimised

from system level point of view.

Chapter 8

Conclusions and Future Work

8.1 Conclusion

A significant portion of the work presented in this thesis has been devoted to the

characterization of performance and variation models that can be used for circuit

design and optimisation. With reviews of the previous works in this area, simulation-

based optimization approach together with Monte Carlo simulation for the variation

analysis have been chosen for the circuit design technique. This is due to the accuracy

of the proposed methodology that has been given a higher priority for the research

work.

The trade-offs among the competing performance objectives were explored using

Multi-Objective Optimization (MOO) technique which is based on the Evolutionary

Algorithm (EA). This optimization provides a set of solutions on the Pareto front that

can be extracted that define a group of solutions to model the performance and

Chapter 8 Conclusion and Future Works 162

variation of a particular circuit. The accuracy of the solution is maintained within the

transistor level by incorporating a spice simulator for performance evaluations and

Monte Carlo simulation for the variation analysis. In the beginning, the multi-

objective optimization used in the algorithm is based on Genetic Algorithm called

Weight-Based GA (WBGA). WBGA uses weight vectors that are generated by GA in

order to avoid the problem of selecting weight parameters manually. However, with

the limitations reported for WBGA in finding solution for non-convex front, a better

algorithm called NSGA-II has been used. NSGA-II utilises crowding distance method

and several non-dominated sorting procedures to produce a better spreading of Pareto-

points which is suitable for more complex circuits. The idea of yield optimisation

using multi-objective optimisation approach has been compared with other methods

such as design centering and NeoCircuit tool and the results show the benefits gained

by the multi-objective optimisation approach.

Simulation-based synthesis creates a good opportunity for modelling. This is due to

the huge number of simulation runs that produce a number of data points. The

presented research work has successfully built circuit model based on simulation-

based optimisation. From the optimal Pareto front which contains a set of trade-off

solutions, a lookup table has been constructed that relates all the design parameters to

their respective performance functions. For the variation model, a Monte Carlo

simulation was performed on the Pareto points and the 6-sigma range was determined

for the minimum and maximum points estimation. The variations for each of the

Pareto-point solutions are stored in another lookup table. These lookup tables were

modelled using table model function of Verilog-A behavioural language. The

interpolation method of this function has been used with circuit examples to

demonstrate the advantage of the developed model. The results obtained from the

circuit simulations show the ability of the model to synthesize a circuit and is

comparable with transistor level simulation. A silicon prototype has been produced

and the measurement results of the prototype that agree with the simulation data show

the ability of the methodology to translate the design into actual product.

In a large system level circuit, the design normally is broken down into smaller sub-

block circuits that can be designed and optimised individually. This approach creates

several levels of hierarchy. The behavioural performance and variation model is very

Chapter 8 Conclusion and Future Works 163

useful in hierarchical-based system level design. A new hierarchical-based

optimisation has been proposed that uses a combination of multi-objective bottom up

for performance and variation for sub-block circuits and top-down design for the

complete system. The full design flow of the hierarchical-based optimisation has been

demonstrated with a 7
th

 order elliptic low pass filter for video application. The results

of the optimisation proved that the model can be used to predict and maximised the

performances and yield at system level design. In order to demonstrate the application

of the proposed methodologies on bigger and complex example, a charge pump PLL

has been used as the target application. The higher number of design parameters,

complex trade-offs of performance functions and multi domain of circuit analysis

including time domain and noise simulation has proved the applicability of the

methodologies for a variety of circuit design. The PLL has been designed to meet all

the specifications even when process variations are considered. The outcome is a fully

sized PLL circuit optimised for performances and yield.

8.2 Accuracy, generality and limitations of the method

The accuracy of the technique has been given a high priority in the presented work.

Therefore the approach chosen for the design optimization reflect to this objective.

This can be seen in the technique used for the performance optimisation where a

simulation-based design and Monte Carlo analysis have been chosen despite the

higher computational effort associated with these two techniques.

All these techniques provide better accuracy during the characterisation stage at the

circuit level. However at the system level, when a behavioral model is used to

simplify the simulation process, accuracy might be limited depending on how close

the behavioral model matches the transistor level performance. For example, in

chapter 5, the performance of the OTA behavioral model for the filter simulation vary

at about 20% from the transistor level simulation. This will affect the accuracy of the

system level performances when the model is used at the top level. Therefore, a

careful trade-off has to be made during the modelling stage between the accuracy and

the complexity of the model. For example, higher number of equations can be added

to the behavioral model to improve the accuracy at the expense of the complexity.

Chapter 8 Conclusion and Future Works 164

The generality of the presented work is highly dependent on the number of

performance functions used for the model development. Most of the examples for the

OTA performance and variation model development were restricted to two

performance functions (Open loop gain and phase margin). In this case, the generality

of the model is only limited to the application that related to those performances. The

generality of the model can be improved by adding higher number of performance

functions. However, the higher the number of performance functions, the higher the

number of testbenches and Spice simulations needed that will increase the model

development time. This is another trade-off that has to be made at the design stage.

This thesis has presented some ideas that can be used for performance and yield

optimization at various hierarchy levels including at the system level design.

However, there are still some limitations in the proposed methodology especially

when a trade-off has to be made at the design stages. One of the limitations is the

accuracy of the method which is highly dependent on the modeling complexity and

design cycle time as explained earlier. Computational effort is also another limitation

where for a complex multi-domain mixed-signal system, the CPU time for the model

development increase significantly. For example, in chapter 7, the complex PLL

example has shown a higher preparation time which led to the consideration to reduce

some of the optimization parameters such as GA population size, number of GA

generation and Monte Carlo simulation samples. This will limit the accuracy of the

result that can be achieved by the proposed approach. Therefore, in the future work

section (section 8.5), some recommendations have been proposed to mitigate the

limitations.

 8.3 Project Objectives Achieved

The original hypothesis are reviewed in this section and an assessment of the progress

made given for each hypothesis.

 Hypothesis 1: Existing yield optimised design methodologies have several

inadequacies including in yield modelling and the ability to predict and

optimise the yield for system level design.

Chapter 8 Conclusion and Future Works 165

The first part of this thesis has shown the benefit of considering the process variation

parameters in analogue circuit design. A yield optimised design has been shown and a

comparison has been made with other techniques such as design centering and a

technique using NeoCircuit optimisation tool. The results show the advantage of the

multi-objective optimisation technique for yield maximisation and the ability for the

method to be used for performance and variation modelling for system level design.

 Hypothesis 2: In deep sub-micron technology, where the design complexity

and variability has became a great challenge, the accuracy and the ability to

translate the simulated results into actual product are very important.

The accurate simulation based optimisation method using multi-objective

optimisation and Monte Carlo analysis on the Pareto-points have been used to develop

the circuit performance and variation model. The model has been used to design a

silicon prototype of 2
nd

 order low pass filter. The measurement results of the

prototype and the yield of the prototype samples that agree with the simulation data

show the accuracy and efficiency of the method.

 Hypothesis 3: Existing approaches for system level design using a

hierarchical-based optimisation method do not consider the variations of the

sub-block circuits leaving the yield optimisation for the system at the end of

the design flow.

 Hypothesis 4: A new hierarchical-based optimisation is needed that can

incorporate the performance and variation model of analogue circuit in top

down system level design flow.

Hypothesis 3 and 4 are closely related and therefore combined. A new hierarchical-

based optimisation method that combines multi-objective bottom-up modelling for the

sub-block performance and variation parameters and top-down design flow for the

complete system design has been developed. With the help of the variation model, the

design methodology is capable to optimise the system level design for higher product

yield. A 7
th

 order elliptic low pass filter for video application has been designed to

Chapter 8 Conclusion and Future Works 166

demonstrate the methodologies. The performance and yield has been verified with

transistor level simulation.

 Hypothesis 5: The application of behavioural modelling technology such as

Verilog-A allows the integration of various type of systems including mixed-

signal and offers huge saving in terms of simulation time.

A complex mixed-signal charge pump PLL system design has been carried out using

the proposed methodologies. The behavioural performance and variation model for

individual blocks (analogue) in the system has been developed from a multi-objective

optimisation result. The top level behavioural simulation instantiating all the sub-

blocks is used for the PLL system level optimisation and from this the final design

that is optimised for performance and yield is obtained.

Overall, all of the original hypotheses have been addressed.

8.4 Contribution

8.4.1 Specific Contribution

The specific contributions made by this work include:

 Implementation of performance and yield optimisation technique for analogue

circuit design using Pareto-based optimisation.

 Development of a combination circuit performance and variation model for

analogue circuit design and has been presented at `Design, Automation & Test

in Europe (DATE) 2008‘ conference.

 Development of yield optimisation methodology targeted at system level

design using a hierarchical-based optimisation and behavioural performance

and variation model.

 System level yield optimisation for Phase Locked Loop (PLL).

Chapter 8 Conclusion and Future Works 167

8.4.2 Publications

As a direct result of this work, 2 journal papers have beenn published or accepted for

publications with a further 1 journal paper submitted for review. 6 papers have also

been presented at conferences. The complete list of publications is provided in the

`Publication‘ section of this thesis.

8.5 Future Work

8.5.1 Topological Automation

The methodology proposed in this thesis focuses on circuit sizing stage in analogue

synthesis. With the challenges and demand for higher performance circuits, one of the

further research area that can be undertaken is to explore automated topology

generation for analogue circuit and integrate this technique with the proposed circuit

sizing automation to optimise the circuit. In addition to that, the performance and

variation modelling technique can be applied to wide variety of analogue circuit

topology to create a cell library. With such activity, the performance limitation of a

particular topology can be overcome and a better tolerance design solution can be

determined.

8.5.2 Hybrid Analytical and Simulation-based Approach

One of the limitations of the simulation-based approach and Monte Carlo simulation

is huge computer simulation time. The CPU time consumption of the simulation-

based optimisation is directly related to the searching space of the optimisation. The

bigger the searching space, the higher the number of simulations required. A useful

further work can be undertaken in this area to investigate the ideas to reduce the

searching space. A hybrid analytical approach to the simulation-based technique

would be a good target. With the analytical approach, circuit equations can be used to

add additional constraints to the design parameter so that the decision space is

confined to a small area that will give a good result.

Chapter 8 Conclusion and Future Works 168

8.5.3 Parallel Optimisation

All the examples presented in this thesis were run on a single workstation. As the

computing power of PCs increase and the cost of a PC reduced, a parallel optimisation

of the circuit modelling can be explored. Simulation-based optimisation has to visit

several number of SPICE simulations depending on the number of objective function.

On top of that the Monte Carlo simulation need to be done on each of the Pareto-

solutions. With the parallel optimisation capability of evolutionary algorithm, the

optimisation and Monte Carlo simulations can be distributed to a cluster of

workstations and multi-core PCs. For example, 100 Monte Carlo simulations can be

reduced to 10 times if the work is distributed to 10 workstations. This will

significantly reduce the overall design cycle time for the model development.

Publications

The following are papers published or under review during the course of this thesis

work.

[1] Sawal Ali, P.R. Wilson and A.D. Brown, ― Yield predictive model

characterization in analogue circuit design‖, IEEE International Symposium on

Integrated Circuits 2007, September 2007, Singapore.

[2] Sawal Ali, R. Wilcock, P.R. Wilson and A.D. Brown, ―A new approach for

combining yield and performance in behavioural model for analogue

integrated circuits‖, Design, Automation and Test in Europe (DATE) 2008,

March 3-7, Munich.

[3] Sawal Ali, R. Wilcock, P.R. Wilson and A.D. Brown, ― Yield model

characterisation for analogue integrated circuit using Pareto-optimal surface‖,

Cadence Design Network, CDNLive 2008, 28 April, Munich.

[4] Sawal Ali, R. Wilcock, P.R. Wilson and A.D. Brown, ― Yield model

characterisation for analogue integrated circuit using Pareto-optimal surface‖,

IEEE International Conference on Electronics, Circuits and Systems, August

2008, Malta.

[5] Sawal Ali, R. Wilcock and P.R. Wilson, ―Behavioural performance and

variation modelling for hierarchical-based analogue IC design‖, IEEE

International Behavioural Modeling and Simulation Conference (BMAS)

September 2008, San Jose, California.

[6] Sawal Ali, R. Wilcock, P.R. Wilson and A.D. Brown, ―Combining yield and

performance in behavioural models for analog ICs‖, EDA Tech Forum

Journal, Volume 5, Issue 5, December 2008.

Publications 170

[7] Sawal Ali, R. Wilcock and P.R. Wilson, ―Improved performance and variation

modelling for hierarchical-based optimisation of analogue integrated circuits‖,

Design, Automation and Test in Europe (DATE) 2009, Nice, France.

[8] Sawal Ali, R. Wilcock and P.R. Wilson, ―System level yield optimisation

through hierarchical-based design flow‖, IET Electronics Letters, 2009.

[9] Sawal Ali, R. Wilcock, P.R. Wilson and A.D. Brown, ―Performance and

variation space modeling using multi-objective optimisation for analogue

integrated circuits‖, Submitted to ACM Transactions on Design Automation of

Electronic Systems, 2009.

Reference

[1] G. E. Moore, ―Cramming more components onto integrated circuit,‖

Electronics, vol. 38, 1965.

[2] D. L. Wim Kruiskamp, ―Darwin: Cmos opamp synthesis by means of a

genetic algorithm,‖ in Design Automation, 1995. DAC '95. 32nd Conference on, 1995,

pp. 433–438.

[3] A. Ripp, M. Buhler, J. Koehl, J. Bickford, J. Hibbeler, U. Schlichtmann,

R. Sommer, and M. Pronath, ―Date 2006 special session: Dfm/dfy design for

manufacturability and yield - influence of process variations in digital, analog and

mixed-signal circuit design,‖ in Design, Automation and Test in Europe, 2006. DATE

'06. Proceedings, vol. 1, 6-10 March 2006, pp. 1–6.

[4] E. Ochotta, R. Rutenbar, and L. Carley, ―Synthesis of high-performance

analog circuits in astrx/oblx,‖ Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on, vol. 15, no. 3, pp. 273–294, March 1996.

[5] C. L. Mukherjee T. and R. R.A, ―Synthesis of manufacturable analog circuits,‖

in Computer Aided Design, Nov 1995 (ICCAD) IEEE/ACM International Conference

on, Nov. 1995.

[6] G. Debyser and G. Gielen, ―Efficient analog circuit synthesis with

simultaneous yield and robustness optimization,‖ in Computer-Aided Design, 1998.

ICCAD 98. Digest of Technical Papers. 1998 IEEE/ACM International Conference

on, 8-12 Nov 1998, pp. 308–311.

[7] Technical Report, ―Neocircuit user's guide,‖ Cadence Inc., Tech. Rep., 2004.

[8] S. K. Tiwary, P. K. Tiwary, and R. A. Rutenbar, ―Generation of yield-aware

pareto surfaces for hierarchical circuit design space exploration,‖ in Proceedings of

the 43rd annual conference on Design automation. San Francisco, CA, USA: ACM,

2006, pp. 31–36.

[9] User Manual, www.synopsis.com., Synopsys Inc.

[10] Cadence Design Systems Inc., January 2008.

[11] P. Mandal and V. Visvanathan, ―Cmos op-amp sizing using a geometric

programming formulation,‖ Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on, vol. 20, no. 1, pp. 22–38, Jan. 2001.

http://www.synopsis.com./

Reference 172

[12] L. Carley, G. Gielen, R. Rutenbar, and W. Sansen, ―Synthesis tools for mixed-

signal ics: progress on frontend and backend strategies,‖ in Design Automation

Conference Proceedings 1996, 33rd, 3-7 June 1996, pp. 298–303.

[13] S. R. Hennig, E. and L. Charlack, ―An automated approach for sizing complex

analogue circuits in a simulation-based flow,‖ in Design, Automation and Test in

Europe, 2006. DATE '02. Proceedings, 2002.

[14] S. G. Beenker G., Conway J. and S. A., Analog CAD for Consumer IC.

Kluwer Academic Publication, 1993.

[15] M. Degrauwe, O. Nys, E. Dijkstra, J. Rijmenants, S. Bitz, B. Goffart, E.

Vittoz, S. Cserveny, C. Meixenberger, G. Van der Stappen and H. Oguey, ―IDAC: An

interactive design tool for analog cmos circuits,‖ Solid-State Circuits, IEEE Journal

of, vol. 22, pp. 1106–1116, Dec 1987.

[16] R. Harjani, R. Rutenbar, and L. Carley, ―Oasys: a framework for analog circuit

synthesis,‖ Computer-Aided Design of Integrated Circuits and Systems, IEEE

Transactions on, vol. 8, no. 12, pp. 1247–1266, Dec. 1989.

[17] F. El-Turky and E. Perry, ―Blades: an artificial intelligence approach to analog

circuit design,‖ Computer-Aided Design of Integrated Circuits and Systems, IEEE

Transactions on, vol. 8, no. 6, pp. 680–692, June 1989.

[18] A. Fernandez, F.V. Rodriguez-Vazquez, ―Symbolic analysis tools - the state-

of-the-art,‖ in Circuits and Systems, 1996. ISCAS '96. Proceedings of the 1996 IEEE

International Symposium on, 1996.

[19] G. Gielen, H. Walscharts, and W. Sansen, ―Analog circuit design optimization

based on symbolic simulation and simulated annealing,‖ Solid-State Circuits, IEEE

Journal of, vol. 25, no. 3, pp. 707–713, Jun 1990.

[20] G. Gielen, P. Wambacq, and W. Sansen, ―Symbolic analysis methods and

applications for analog circuits: a tutorial overview,‖ Proceedings of the IEEE,

vol. 82, no. 2, pp. 287–304, Feb. 1994.

[21] W. Daems, G. Gielen, and W. Sansen, ―Simulation-based generation of

posynomial performance models for the sizing of analog integrated circuits,‖

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,

vol. 22, no. 5, pp. 517–534, May 2003.

[22] H. Koh, C. Sequin, and P. Gray, ―Opasyn: a compiler for cmos operational

amplifiers,‖ Computer-Aided Design of Integrated Circuits and Systems, IEEE

Transactions on, vol. 9, no. 2, pp. 113–125, Feb. 1990.

Reference 173

[23] E. Hjalmarson, ―Studies on design automation of analogue circuit - the design

flow,‖ Ph.D. dissertation, Linkoping University, Institute of Technology, December

2003.

[24] P. Maulik and L. Carley, ―Automating analog circuit design using constrained

optimization techniques,‖ in Computer-Aided Design, 1991. ICCAD-91. Digest of

Technical Papers., 1991 IEEE International Conference on, 11-14 Nov. 1991, pp.

390–393.

[25] M. del Mar Hershenson, S. Boyd, and T. Lee, ―Gpcad: a tool for cmos op-amp

synthesis,‖ in Computer-Aided Design, 1998. ICCAD 98. Digest of Technical Papers.

1998 IEEE/ACM International Conference on, 8-12 Nov 1998, pp. 296–303.

[26] A. S.-V. William Nye, David C. Riley and A. L.Tits, ―Delight.spice: An

optimization-based system for the design of integrated circuits,‖ IEEE Transactions

on Computer-Aided Design, vol. 7, pp. 501–519, April 1988.

[27] E. S. Ochotta, T. Mukherjee, R. A. Rutenbar, and L. R. Carley, Practical

synthesis of high-performance analog circuits. Kluwer Academic Publishers, 1998.

[28] F. Medeiro, F. Fernandez, R. Dominguez-Castro, and A. Rodriguez-Vazquez,

―A statistical optimization-based approach for automated sizing of analog cells,‖ in

Computer-Aided Design, 1994., IEEE/ACM International Conference on, November

6-10, 1994, pp. 594–597.

[29] L. Pillage, X. Huang, and R. Rohrer, ―AWEsim: Asymptotic waveform

evaluation for timing analysis,‖ in Design Automation, 1989. 26th Conference on, 25-

29 June 1989, pp. 634–637.

[30] M. Krasnicki, R. Phelps, R. Rutenbar, and L. Carley, ―Maelstrom: efficient

simulation-based synthesis for custom analog cells,‖ in Design Automation

Conference, 1999. Proceedings. 36th, 21-25 June 1999, pp. 945–950.

[31] R. Phelps, M. Krasnicki, R. Rutenbar, L. Carley, and J. Hellums, ―Anaconda:

simulation-based synthesis of analog circuits via stochastic pattern search,‖

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,

vol. 19, no. 6, pp. 703–717, June 2000.

[32] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine

Learning. Addison Wesley Longman, Inc, 1989.

[33] V. Torczon, ―On the convergence of the multiderectional search algorithm,‖

SIAM , Optimization, vol. 1, Feb 1991.

Reference 174

[34] A. J.Puhan and T.Tuma, ―Analogue integrated circuit sizing with several

optimization runs using heuristics for setting initial points,‖ Can.J. Electronic

Computer Engineering, vol. 28, July/October 2003.

[35] S. W. H. Box M J, Davies D, ―Nonlinear optimization techniques,‖ ICI

Monograph, vol. 5, 1969.

[36] G. E. Box, ―Evolutionary operation: A method for increasing industrial

productivity,‖ Applied Statistics, vol. 6, pp. 81–101, 1957.

[37] J. A. Nelder and R. Mead, ―A simplex method for function minimization,‖ The

Computer Journal, vol. 7, no. 4, pp. 308–313, 1965.

[38] M. J. D. Powell, ―An efficient method for finding the minimum of a function

of several variables without calculating derivatives,‖ The Computer Journal, vol. 7,

no. 2, pp. 155–162, Feb. 1964.

[39] M. Al-Saleh and M. Mir, ―A modified univariate search algorithm,‖ in

Circuits and Systems, 1999. ISCAS '99. Proceedings of the 1999 IEEE International

Symposium on, vol. 6, 1999, pp. 306–309 vol.6.

[40] R. Hooke and T. A. Jeeves, ―Direct search solution of numerical and statistical

problems,‖ J. ACM, vol. 8, no. 2, pp. 212–229, 1961.

[41] J. Bandler, ―Optimization methods for computer-aided design,‖ Microwave

Theory and Techniques, IEEE Transactions on, vol. 17, no. 8, pp. 533–552, 1969.

[42] J.K. Fidler and R.E. Massara, ―Computer optimization of frequency selective

networks,‖ in Proc European Conference on Circuit Theory and Design IEE

Conference Publication, 1974.

[43] F. Emery, M. O'Hagen, and S. Nolte, ―Optimal design of matching networks

for microwave transistor amplifiers,‖ in MTT International Symposium Digest, 1966,

vol. 66, 1966, pp. 101–107.

[44] D.G. Luenberger, ―Linear and Nonlinear Programming‖, Addison Wesley,

1984.

[45] C. Desoer and S. Mitra, ―Design of lossy ladder filters by digital computer,‖

Circuit Theory, IRE Transactions on, vol. 8, no. 3, pp. 192–201, 1961.

[46] Y. Lam and M. Zwolinski, ―Analogue circuit synthesis from performance

specifications,‖ in Mixed-Signal AHDL/VHDL Modelling and Synthesis, IEE

Collloquium on, 1997.

[47] V. Litovski and M. Zwolinski, VLSI Circuit Simulation and Optimization.

Chapman & Hall, Dec. 1997.

Reference 175

[48] H. Y. Huang, ―Unified approach to quadratically convergent algorithms for

function minimization,‖ Journal of Optimization Theory and Applications, vol. 5,

no. 6, pp. 405–423, Jun. 1970.

[49] S. Kirkpatrick, C.D. Gelatt and M.P.J. Vecchi, ―Optimisation by simulated

annealing,‖ Science, pp. 671–680, 1983.

[50] P. Wilson, J. Ross, and A. Brown, ―Optimizing the jiles-atherton model of

hysteresis by a genetic algorithm,‖ Magnetics, IEEE Transactions on, vol. 37, no. 2,

pp. 989–993, March 2001.

[51] K. Deb, Multi-Objective Optimizatin Using Evolutionary Algorithms. John

Wiley & Sons Ltd, 2001.

[52] L. E. Hajela, P. and C. Lin, ―Genetic algorithms in structural topology

optimization,‖ in NATO Advanced Research Workshop on Topology Design of

Structures, 1993, pp. 117–133.

[53] J. Horn, N. Nafpliotis, and D. Goldberg, ―A niched pareto genetic algorithm

for multiobjective optimization,‖ in Evolutionary Computation, 1994. IEEE World

Congress on Computational Intelligence., Proceedings of the First IEEE Conference

on, 1994, pp. 82–87 vol.1.

[54] E. Zitzler and L. Thiele, ―An evolutionary algorithm for multiobjective

optimization: The strength pareto approach,‖ Swiss Federal Institute of Technology,

TIK-Report, vol. 43, 1998.

[55] D. Goldberg and K. Deb, ―A comparison of selection schemes used in genetic

algorithms,‖ Foundations of Genetic Algorithms 1 (FOGA-1), pp. 69–93, 1991.

[56] Y. Kumar and Chien-In Henry Chen, ―Process variation aware transistor

sizing for load balance of multiple paths in dynamic cmos for timing optimization,‖

Journal of Computer, vol. 3, pp. 21–28, 2008.

[57] S. Director, P. Feldmann and K. Krishna, ―Optimization of parametric yield: A

tutorial,‖ in Custom Integrated Circuits, 1992, IEEE Conference on., 1992.

[58] R. Spence and R. S. Soin, Tolerance Design Of Electronic Circuits. Addison

Wesley, 1988.

[59] G. Gielen and R.A. Rutenbar, ―Computer-aided design of analog and mixed-

signal integrated circuits,‖ Proceedings of the IEEE, vol. 88, pp. 1825–1852, 2000.

[60] S. Nassif, A. Strojwas, and S. Director, ―A methodology for worst-case

analysis of integrated circuits,‖ Computer-Aided Design of Integrated Circuits and

Systems,IEEE Transactions on, vol. 5, no. 1, pp. 104–113, 1986.

Reference 176

[61] S. Director and G. Hachtel, ―The simplicial approximation approach to design

centering,‖ Circuits and Systems, IEEE Transactions on, vol. 24, no. 7, pp. 363–372,

Jul 1977.

[62] R. Schwencker, F. Schenkel, H. Graeb, and K. Antreich, ―The generalized

boundary curve-a common method for automatic nominal design and design centering

of analog circuits,‖ in Design, Automation and Test in Europe Conference and

Exhibition 2000. Proceedings, 27-30 March 2000, pp. 42–47.

[63] J.W. Bandler and H.L. Abdel-Malek, ―Optimal centering, tolerancing, and

yield determination via updated approximations and cuts,‖ Circuits and Systems,

IEEE Transactions on, vol. 10, 1978.

[64] P. Cox, P. Yang, S. Mahant-Shetti, and P. Chatterjee, ―Statistical modeling for

efficient parametric yield estimation of mos vlsi circuits,‖ Solid-State Circuits, IEEE

Journal of, vol. 20, no. 1, pp. 391–398, Feb 1985.

[65] B. J. Guardiani C., Scandolara P. and N. G., ―Yield optimization of analog ic's

using two-step analytic modeling methods,‖ Solid-State Circuits, IEEE Journal of,

vol. 28, pp. 778–783, 1993.

[66] Y. Aoki, H. Masuda, S. Shimada, and S. Sato, ―A new design-centering

methodology for vlsi device development,‖ Computer-Aided Design of Integrated

Circuits and Systems, IEEE Transactions on, vol. 6, no. 3, pp. 452–461, May 1987.

[67] S. Aftab and M. Styblinski, ―IC variability minimization using a new cp and

cpk based variability/performance measure,‖ in Circuits and Systems, 1994. ISCAS

'94., 1994 IEEE International Symposium on, vol. 1, 30 May-2 June 1994, pp. 149–

152vol.1.

[68] M. Keramat and R. Kielbasa, ―OPTOMEGA: an environment for analog

circuit optimization,‖ in Circuits and Systems, 1998. ISCAS '98. Proceedings of the

1998 IEEE International Symposium on, vol. 6, 31 May-3 June 1998, pp. 122–125

vol.6.

[69] H. Abdel-Malek and A.-K. Hassan, ―The ellipsoidal technique for design

centering and region approximation,‖ in Circuits and Systems, 1989., IEEE

International Symposium on, 8-11 May 1989, pp. 2056–2059 vol.3.

[70] K.Krishna and S. Director, ―The linearized performance penalty (LPP) method

for optimization of parametric yield and its reliability.‖ IEEE Transactions on

Computer Aided Design of Integrated Circuits and Systems, vol. 14(12), pp. 1557–

1568, December 1995.

Reference 177

[71] F. Leyn, W. Daems, G. Gielen, and W. Sansen, ―A behavioral signal path

modeling methodology for qualitative insight in and efficient sizing of cmos opamps,‖

in Computer-Aided Design, 1997. Digest of Technical Papers., 1997 IEEE/ACM

International Conference on, 9-13 Nov. 1997, pp. 374–381.

[72] G. Gielen, K. Swings, and W. Sansen, ―An intelligent design system for

analogue integrated circuits,‖ in Proceedings of the conference on European design

automation. Glasgow, Scotland: IEEE Computer Society Press, 1990, pp. 169–173.

[73] D. Pescovitz, ―1972: The release of spice, still the industry standard tool for

integrated circuit design,‖ Lab Notes: Research from the Berkeley College of

Engineering, May/June 2002.

[74] R. E. Massara, Optimization methods in electronic circuit design. (Harlow,

Essex, England, New York): Longman Scientific & Technical, Wiley, 1991.

[75] W.K. Chen, The circuits and filters handbook. CRC Press, 2003.

[76] Dan FitzPatric and Ira Miller, Analog Behavioural Modeling with The Verilog-

A Language. Kluwer Academic Publishers, 1998.

[77] B. De Smedt and G. Gielen, ―Holmes: capturing the yield-optimized design

space boundaries of analog and rf integrated circuits,‖ in Design, Automation and Test

in Europe Conference and Exhibition, 2003, 2003, pp. 256–261.

[78] H. Liu, A. Singhee, R. Rutenbar, and L. Carley, ―Remembrance of circuits

past: macromodeling by data mining in large analog design spaces,‖ in Design

Automation Conference, 2002. Proceedings. 39th, 10-14 June 2002, pp. 437–442.

[79] T.K. Yu, S. M. Kang, I. Haji, and T. Trick, ―Statistical performance modeling

and parametric yield estimation of mos vlsi,‖ Computer-Aided Design of Integrated

Circuits and Systems, IEEE Transactions on, vol. 6, no. 6, pp. 1013–1022, November

1987.

[80] G. Wolfe and R. Vemuri, ―Extraction and use of neural network models in

automated synthesis of operational amplifiers,‖ Computer-Aided Design of Integrated

Circuits and Systems, IEEE Transactions on, vol. 22, no. 2, pp. 198–212, Feb. 2003.

[81] S.K. Tiwary, S. Velu, R.A Rutenbar and T. Mukherjee, ―Pareto optimal

modeling for efficient pll optimization,‖ in Tehcnical Proceeding, 2004 NSTI

Nanotechnolgy Conference and Trade Show, 2004.

[82] V. Bourenkov, K. McCarthy, and A. Mathewson, ―Mos table models for

circuit simulation,‖ Computer-Aided Design of Integrated Circuits and Systems, IEEE

Transactions on, vol. 24, no. 3, pp. 352–362, March 2005.

Reference 178

[83] W.Y. Yang, C. Wenmu, C. Tae-sang and J. Morris, Applied Numerical

Methods Using Matlab. John Wiley & Sons, 2005.

[84] T. Eeckelaert, T. McConaghy, and G. Gielen, ―Efficient multiobjective

synthesis of analog circuits using hierarchical pareto-optimal performance

hypersurfaces,‖ in Design, Automation and Test in Europe, 2005. Proceedings, 2005,

pp. 1070–1075 Vol. 2.

[85] T. Eeckelaert, R. Schoofs, G. Gielen, M. Steyaert, and W. Sansen,

―Hierarchical bottom-up analog optimization methodology validated by a delta–sigma

a/d converter design for the 802.11a/b/g standard,‖ in Proceedings of the 43rd annual

conference on Design automation. San Francisco, CA, USA: ACM, 2006, pp. 25–30.

[86] G. Gielen, T. McConaghy, and T. Eeckelaert, ―Performance space modeling

for hierarchical synthesis of analog integrated circuits,‖ in Design Automation

Conference, 2005. Proceedings. 42nd, 13-17 June 2005, pp. 881–886.

[87] H. Chang, A. Sangiovanlli-Vincentelli, F. Balarin, E. Charbon, U. Choudhury,

G. Jusuf, E. Liu, E. Malavasi, R. Neff, and P. Gray, ―A top-down, constraint-driven

design methodology for analog integrated circuits,‖ in Custom Integrated Circuits

Conference, 1992., Proceedings of the IEEE 1992, May 3-6, 1992, pp. 8.4.1–8.4.6.

[88] H. Chang, E. Charbon, U. Choudhury, A. Demir, E. Felt, E. Liu, E. Malavasi,

A. Sangiovanni-Vincentelli, and I. Vassiliou, A Top-Down, Constraint-Driven Design

Methodology for Analog Integrated Circuits. Norwell, Massachusetts 02061 USA:

Springer Verlag, 1999.

[89] S. Donnay, G. Gielen, W. Sansen, W. Kruiskamp, D. Leenaerts, S. Buytaert,

K. Marent, M. Buckens, and C. Das, ―Using top-down cad tools for mixed

analog/digital asics: a practical design case,‖ Analog Integr. Circuits Signal Process.,

vol. 10, no. 1-2, pp. 101–117, 1996.

[90] R. Iskander, M. Dessouky, M. Aly, M. Magdy, N. Hassan, N. Soliman, and

S. Moussa, ―Synthesis of cmos analog cells using amigo,‖ in Proceedings of the

conference on Design, Automation and Test in Europe: Designers' Forum - Volume 2.

IEEE Computer Society, 2003.

[91] R. Harjani and J. Shao, ―Feasibility and performance region modeling of

analog and,‖ Analog Integrated Circuits and Signal Processing, vol. 10, pp. 23—43,

1996.

 [92] F. D. Bernardinis and M. I. Jordan, ―Support vector machines for analog

circuit performance representation,‖ in Proceedings of DAC, pp. 964—969, 2003.

Reference 179

[93] G. Stehr, H. Graeb and K. Antreich, ―Feasibility regions and their significance

to the hierarchical optimization of analog and mixed-signal systems,‖ International

Series of Numerical Mathematics 146, pp. 167–184, 2003.

[94] I. Bezzam, C. Vinn, and R. Rao, ―A fully-integrated continuous-time

programmable ccir 601 video filter,‖ in Solid-State Circuits Conference, 1995. Digest

of Technical Papers. 42nd ISSCC, 1995 IEEE International, 15-17 Feb. 1995, pp.

296–297,383.

[95] K. Kundert, ―Future directions in mixed-signal behavioral modeling,‖ in

Behavioral Modeling and Simulation, 2002. BMAS 2002. Proceedings of the 2002

IEEE International Workshop on, 6-8 Oct. 2002, pp. 150–183.

[96] J. Zou, D. Mueller, H. Graeb, and U. Schlichtmann, ―Pareto-front computation

and automatic sizing of cpplls,‖ in Proceedings of the 8th International Symposium on

Quality Electronic Design. IEEE Computer Society Washington, DC, USA, 2007, pp.

481–486.

[97] J. Zou, D. Mueller, H. Graeb and U. Schlichtmann ―A cppll hierarchical

optimization methodology considering jitter, power and locking time,‖ in Proceedings

of the 43rd annual conference on Design automation. San Francisco, CA, USA:

ACM, 2006, pp. 19–24.

[98] J. Zou, D. Mueller, H. Graeb, U. Schlichtmann, E. Hennig, and R. Sommer,

―Fast automatic sizing of a charge pump phase-locked loop based on behavioral

models,‖ in Behavioral Modeling and Simulation Workshop, 2005. BMAS 2005.

Proceedings of the 2005 IEEE International, 2005, pp. 100–105.

[99] B. Razavi, Design of Analog CMOS Integrated Circuits, 1st ed. McGraw-Hill,

Aug. 2000.

[100] R. E. Best, Phase-locked Loops: Design, Simulation and Applications.

McGraw-Hill Profesional, 2007.

[101] A. Hajimiri, S. Limotyrakis, and T. Lee, ―Jitter and phase noise in ring

oscillators,‖ Solid-State Circuits, IEEE Journal of, vol. 34, no. 6, pp. 790–804, 1999.

[102] S. W. Wedge, ―Pll noise analysis with hspice rf 3rd edition,‖ Synopsys Inc.,

Tech. Rep., 2006.

[103] A. Demir and Sangiovanni-Vincentelli, ―Simulation and modeling of phase

noise in open-loop oscillators,‖ in Custom Integrated Circuits Conference, 1996.,

Proceedings of the IEEE 1996, 1996, pp. 453–456.

Reference 180

[104] J. Lee, K. Kundert, and B. Razavi, ―Modeling of jitter in bang-bang clock and

data recovery circuits,‖ in Custom Integrated Circuits Conference, 2003. Proceedings

of the IEEE 2003, 21-24 Sept. 2003, pp. 711–714.

[105] T. Lee and A. Hajimiri, ―Oscillator phase noise: a tutorial,‖ Solid-State

Circuits, IEEE Journal of, vol. 35, no. 3, pp. 326–336, 2000.

[106] Accellera, Verilog-AMS Language Reference Manual: Analog and Mixed-

Signal Extensions to Verilog HDL, version 2.3 ed., Accellera Organization, August

2008.

[107] P. Hanumolu, M. Brownlee, K. Mayaram, and Un-KuMoon, ―Analysis of

charge-pump phase-locked loops,‖ Circuits and Systems I: Regular Papers, IEEE

Transactions on, vol. 51, no. 9, pp. 1665–1674, 2004.

[108] K.De Jong and W.Spears, ―An analysis of the interacting roles of population

size and crossover in genetic algorithms,‖ Parallel problem solving from nature,

Springerlink, pp. 38-47, 1991.

Appendix A : Spice model Listings

M1 N005 N003 0 0 MODN L=2E-6 W=15E-6 AD=12.75E-12 AS=12.75E-12

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0

M2 N003 N003 0 0 MODN L=2E-6 W=15E-6 AD=12.75E-12 AS=12.75E-12

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0

M3 N002 N002 0 0 MODN L=leff4 W=weff4 AD=12.75E-12 AS=12.75E-12

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0

M4 N006 Vin+ N005 N005 MODN L=leff1 W=weff1 AD=12.75E-12 AS=12.75E-12

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0

M5 N004 Vin- N005 N005 MODN L=leff1 W=weff1 AD=12.75E-12 AS=12.75E-12

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0

M6 Vout N002 0 0 MODN L=leff4 W=weff4 AD=12.75E-12 AS=12.75E-12

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0

M7 N001 N006 N006 N001 MODP L=leff2 W=weff2 AD=12.75E-12 AS=12.75E-12

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0

M8 N001 N004 N004 N001 MODP L=leff3 W=weff3 AD=12.75E-12 AS=12.75E-12

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0

M9 N001 N006 Vout N001 MODP L=leff2 W=weff2 AD=12.75E-12 AS=12.75E-12

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0

M10 N001 N004 N002 N001 MODP L=leff3 W=weff3 AD=12.75E-12 AS=12.75E-

12

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0

I1 N001 N003 10u

V1 N001 0 3.3V

C2 Vout 0 1p

V2 Vin+ 0 1.6V AC 1mV

R1 Vout Vin- 1000000k

C1 Vin- 0 10u

.param leff1=1.20u

.param leff2=1.92u

.param leff3=0.73u

.param leff4=1.61u

.param weff1=15u

.param weff2=15u

.param weff3=15u

.param weff4=15u

.LIB 'L:\MyFolder\MyPhd\Simulation\spice\hspice\amsc35.lib' NOM

.ac dec 10 1k 100000E+06

.tran 1ns 1us

.measure tran tot_power avg power from=1ns to=1us

.measure ac gain find vdb(vout, vin+) at=1k

.measure ac flat2 find vdb(vout,vin+) at=5G

.measure ac fc when vdb(vout, vin+)=`gain-3.0'

.measure ac unifreq when vdb(vout, vin+)=0

.measure ac phase find vp(vout, vin+) when vdb(vout,vin+)=0

.measure attn PARAM=`gain-flat2'

.OPTIONS PROBE POST MEASOUT

.END

Listing A.1: Spice symmetrical-OTA netlist (AC analysis)

Appendix A Spice Model Listings 182

M1 N006 N004 N002 N002 MODN L=2u W=15E-6 AD=12.75E-12 AS=12.75E-12

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0

M2 N004 N004 N002 N002 MODN L=2u W=15E-6 AD=12.75E-12 AS=12.75E-12

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0

M3 N003 N003 N002 N002 MODN L=leff4 W=weff4 AD=12.75E-12 AS=12.75E-12

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0

M4 N007 Vin+ N006 N006 MODN L=leff1 W=weff1 AD=12.75E-12 AS=12.75E-12

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0

M5 N005 0 N006 N006 MODN L=leff1 W=weff1 AD=12.75E-12 AS=12.75E-12

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0

M6 Vout N003 N002 N002 MODN L=leff4 W=weff4 AD=12.75E-12 AS=12.75E-12

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0

M7 N001 N007 N007 N001 MODP L=leff2 W=weff2 AD=12.75E-12 AS=12.75E-12

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0

M8 N001 N005 N005 N001 MODP L=leff3 W=weff3 AD=12.75E-12 AS=12.75E-12

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0

M9 N001 N007 Vout N001 MODP L=leff2 W=weff2 AD=12.75E-12 AS=12.75E-12

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0

M10 N001 N005 N003 N001 MODP L=leff3 W=weff3 AD=12.75E-12 AS=12.75E-

12

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0

I1 N001 N004 10u

V1 N001 0 3.3V

C2 Vout 0 1p

V2 Vin+ 0 0V

V3 0 N002 3.3V

.param leff1=2u

.param leff2=2u

.param leff3=2u

.param leff4=2u

.param weff1=15u

.param weff2=15u

.param weff3=15u

.param weff4=15u

.LIB 'L:\MyFolder\MyPhd\Simulation\spice\hspice\amsc35.lib' NOM

.dc v2 -3v 3v 20mv

.probe v(vout)

.measure dc vos find v(vin+) when v(vout)=0V

.OPTIONS PROBE POST MEASOUT

.END

Listing A.2: Spice symmetrical-OTA netlist (voltage offset)

Appendix A Spice Model Listings 183

M1 N006 N004 N002 N002 MODN L=2u W=15E-6 AD=12.75E-12 AS=12.75E-12

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0

M2 N004 N004 N002 N002 MODN L=2u W=15E-6 AD=12.75E-12 AS=12.75E-12

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0

M3 N003 N003 N002 N002 MODN L=leff4 W=weff4 AD=12.75E-12 AS=12.75E-12

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0

M4 N007 Vin+ N006 N006 MODN L=leff1 W=weff1 AD=12.75E-12 AS=12.75E-12

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0

M5 N005 Vout N006 N006 MODN L=leff1 W=weff1 AD=12.75E-12 AS=12.75E-12

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0

M6 Vout N003 N002 N002 MODN L=leff4 W=weff4 AD=12.75E-12 AS=12.75E-12

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0

M7 N001 N007 N007 N001 MODP L=leff2 W=weff2 AD=12.75E-12 AS=12.75E-12

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0

M8 N001 N005 N005 N001 MODP L=leff3 W=weff3 AD=12.75E-12 AS=12.75E-12

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0

M9 N001 N007 Vout N001 MODP L=leff2 W=weff2 AD=12.75E-12 AS=12.75E-12

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0

M10 N001 N005 N003 N001 MODP L=leff3 W=weff3 AD=12.75E-12 AS=12.75E-

12

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0

I1 N001 N004 10u

V1 N001 0 3.3V

C2 Vout 0 1p

V2 Vin+ 0 PWL(0 0 200n 0 201n 3.3 500n 3.3)

V3 0 N002 3.3V

.param leff1=0.35u

.param leff2=1.99u

.param leff3=1.99u

.param leff4=2.00u

.param weff1=15u

.param weff2=15u

.param weff3=15u

.param weff4=15u

.LIB 'L:\MyFolder\MyPhd\Simulation\spice\hspice\amsc35.lib' NOM

.tran 1ns 1us

.print v(vout)

.probe v(vout)

.probe v(vin+)

.measure tran trise trig v(vout) val=0V rise=1 targ v(vout) val=2.8V

+rise=1

.OPTIONS PROBE POST MEASOUT

.END

Listing A.3: Spice symmetrical-OTA netlist (Slew Rate)

.subckt milota_g1 inm inp out vdd vss

c1 net39 out 0.5e-12

i0 net6 vss dc=Idc

xm8 net6 net6 vdd vdd ephsgp_bs3ju w=weff3 l=leff3 nfing=1

ncrsd=1.0

+number=1.0 srcefirst=1 ngcon=1 mismatch=1 po2act=-1.00000000e+00

nbti=0.0

Appendix A Spice Model Listings 184

xm6 net27 net6 vdd vdd ephsgp_bs3ju w=weff3 l=leff3 nfing=1

ncrsd=1.0

+number=1.0 srcefirst=1 ngcon=1 mismatch=1 po2act=-1.00000000e+00

nbti=0.0

xm5 out net6 vdd vdd ephsgp_bs3ju w=weff5 l=leff5 nfing=1 ncrsd=1.0

+number=1.0 srcefirst=1 ngcon=1 mismatch=1 po2act=-1.00000000e+00

nbti=0.0

xm2 net39 inp net27 net27 ephsgp_bs3ju w=weff1 l=leff1 nfing=1

ncrsd=1.0

+number=1.0 srcefirst=1 ngcon=1 mismatch=1 po2act=-1.00000000e+00

nbti=0.0

xm1 net35 inm net27 net27 ephsgp_bs3ju w=weff1 l=leff1 nfing=1

ncrsd=1.0

+number=1.0 srcefirst=1 ngcon=1 mismatch=1 po2act=-1.00000000e+00

nbti=0.0

xm4 out net39 vss vss enhsgp_bs3ju w=weff4 l=leff4 nfing=1

ncrsd=1.0

+number=1.0 srcefirst=1 ngcon=1 mismatch=1 po2act=-1.00000000e+00

xm3 net35 net35 vss vss enhsgp_bs3ju w=weff2 l=leff2 nfing=1

ncrsd=1.0

+number=1.0 srcefirst=1 ngcon=1 mismatch=1 po2act=-1.00000000e+00

xm0 net39 net35 vss vss enhsgp_bs3ju w=weff2 l=leff2 nfing=1

ncrsd=1.0

+number=1.0 srcefirst=1 ngcon=1 mismatch=1 po2act=-1.00000000e+00

.param Idc=15.3u

.param leff1=0.8u

.param leff2=1.0u

.param leff3=0.13u

.param leff4=0.5u

.param leff5=0.96u

.param weff1=21.5u

.param weff2=46.8u

.param weff3=13.3u

.param weff4=25u

.param weff5=13.3u

.ends milota_g1

xi5 inm inp out net028 net026 milota_g1

c0 out 0 1e-12

c1 inm 0 10e-6

r0 inm out 1e9

v4 inp 0 800e-3 ac 1e-3

v2 net026 0 0.0

v1 net028 0 1.2

.AC DEC 10.0000 1000.00 1000000E+06

.measure ac gain find vdb(out, inp) at=1k

.measure ac phase1 find vp(out, inp) when vdb(out, inp)=0

.probe vdb(out, inp)

.OPTIONS PROBE POST MEASOUT

.LIB 'L:\MyFolder\MyPhd\Simulation\spice\hspice\st12.lib' NOM

.END

Listing A.4: Spice Miller-OTA netlist

Appendix A Spice Model Listings 185

.subckt milota_g1 inm inp out vdd vss

c1 net39 out 0.5e-12

i0 net6 vss dc=Idc

xm8 net6 net6 vdd vdd ephsgp_bs3ju w=weff3 l=leff3 nfing=1

ncrsd=1.0

+number=1.0 srcefirst=1 ngcon=1 mismatch=1 po2act=-1.00000000e+00

nbti=0.0

xm6 net27 net6 vdd vdd ephsgp_bs3ju w=weff3 l=leff3 nfing=1

ncrsd=1.0

+number=1.0 srcefirst=1 ngcon=1 mismatch=1 po2act=-1.00000000e+00

nbti=0.0

xm5 out net6 vdd vdd ephsgp_bs3ju w=weff5 l=leff5 nfing=1 ncrsd=1.0

+number=1.0 srcefirst=1 ngcon=1 mismatch=1 po2act=-1.00000000e+00

nbti=0.0

xm2 net39 inp net27 net27 ephsgp_bs3ju w=weff1 l=leff1 nfing=1

ncrsd=1.0

+number=1.0 srcefirst=1 ngcon=1 mismatch=1 po2act=-1.00000000e+00

nbti=0.0

xm1 net35 inm net27 net27 ephsgp_bs3ju w=weff1 l=leff1 nfing=1

ncrsd=1.0

+number=1.0 srcefirst=1 ngcon=1 mismatch=1 po2act=-1.00000000e+00

nbti=0.0

xm4 out net39 vss vss enhsgp_bs3ju w=weff4 l=leff4 nfing=1

ncrsd=1.0

+number=1.0 srcefirst=1 ngcon=1 mismatch=1 po2act=-1.00000000e+00

xm3 net35 net35 vss vss enhsgp_bs3ju w=weff2 l=leff2 nfing=1

ncrsd=1.0

+number=1.0 srcefirst=1 ngcon=1 mismatch=1 po2act=-1.00000000e+00

xm0 net39 net35 vss vss enhsgp_bs3ju w=weff2 l=leff2 nfing=1

ncrsd=1.0

+number=1.0 srcefirst=1 ngcon=1 mismatch=1 po2act=-1.00000000e+00

.param Idc=18.3u

.param leff1=0.9u

.param leff2=0.9u

.param leff3=1.0u

.param leff4=0.30u

.param leff5=0.68u

.param weff1=15.0u

.param weff2=10.0u

.param weff3=10.7u

.param weff4=28u

.param weff5=40.0u

.ends milota_g1

.param capeff1=2p

.param capeff2=0.34p

.param capeff3=1p

c2 out 0 capeff3

c1 out in capeff2

c0 net20 0 capeff1

v2 net7 0 1.2

v1 net21 0 1.2

v0 in 0 600e-3 ac 1e-3

xi2 out net20 out net7 0 milota_g1

xi0 out in net20 net21 0 milota_g1

.ac dec 10 1k 1000000E+06

.measure ac gain find vdb(out, in) at=1k

Appendix A Spice Model Listings 186

.measure ac fc when vdb(out, in)=`gain-3.0'

.measure ac gainpeak max vdb(out, in)

.measure ac pbripp PARAM=`gainpeak-gain'

.measure ac minpoint min vdb(out, in)

.measure ac freqmin when vdb(out, in)=`minpoint'

.measure ac point1 when vdb(out, in)=`minpoint+2'

.measure ac peak2 max vdb(out, in) FROM=`point1' TO=500Meg

.measure ac attn PARAM=`gain-peak2'

.measure ac fs when vdb(out, in)=`peak2' fall=1

.measure ac steep PARAM=`fs-fc'

.measure ac fs1 when vdb(out, in) = `-40'

.measure ac fs2 when vdb(out, in) = `-60'

.LIB 'L:\MyFolder\MyPhd\Simulation\spice\hspice\st12.lib' NOM

.END

Listing A.5: Spice 2
nd

 order low pass filter netlist

.hdl 'otasimple.va'

V11 net047 0 ac=10e-3

C10 net0110 0 c=cap10

C6 net0117 net083 c=cap6

C5 net0117 0 c=cap5

C4 net0121 0 c=cap4

C8 net0118 0 c=cap8

C9 net0116 0 c=cap9

C2 net083 net047 c=cap2

C3 net083 0 c=cap3

C1 net085 0 c=cap10

C7 net0116 net0117 c=cap7

X7 net0110 net0116 net0110 ota ce=-126f gm=gm_ota gm3=117.3u

+cout=-150f ro=106.2k cgd1=-15f cgd2=-15f

X6 net0116 net0118 net0116 ota ce=-126f gm=gm_ota gm3=117.3u

+cout=-150f ro=106.2k cgd1=-15f cgd2=-15f

X5 net0118 net0117 net0116 ota ce=-126f gm=gm_ota gm3=117.3u

+cout=-150f ro=106.2k cgd1=-15f cgd2=-15f

X2 net083 net085 net083 ota ce=-126f gm=gm_ota gm3=117.3u

+cout=-150f ro=106.2k cgd1=-15f cgd2=-15f

X1 net085 net047 net083 ota ce=-126f gm=gm_ota gm3=117.3u

+cout=-150f ro=106.2k cgd1=-15f cgd2=-15f

X4 net0117 net0121 net0117 ota ce=-126f gm=gm_ota gm3=117.3u

+cout=-150f ro=106.2k cgd1=-15f cgd2=-15f

X3 net0121 net083 net0117 ota ce=-126f gm=gm_ota gm3=117.3u

+cout=-150f ro=106.2k cgd1=-15f cgd2=-15f

.param gm_ota=113.8u

.param cap1=2.00p

.param cap2=1.36p

.param cap3=8.27p

.param cap4=1.31p

.param cap5=5.07p

.param cap6=2.00p

.param cap7=2.78p

.param cap8=1.76p

.param cap9=6.81p

.param cap10=1.88p

.ac dec 10 1k 1000000E+06

.measure ac gain find vdb(net0110, net047) at=1k

.measure ac fp when vdb(net0110, net047)=`gain-3.0'

.measure ac minpoint min vdb(net0110, net047) FROM=`gain-3' to=30Meg

Appendix A Spice Model Listings 187

.measure ac freqmin when vdb(net0110, net047)=`minpoint'

.measure ac peak2 max vdb(net0110, net047) FROM=`freqmin' TO=5000Meg

.measure ac attn PARAM=`peak2'

.measure ac fs when vdb(net0110, net047)=`peak2' fall=1

.probe vdb(net0110, net047)

.end

Listing A.6: Spice 7
th

 order low pass filter Netlist

.subckt ota_g1 inm inp out

i0 net20 VSS! dc=10e-6

xm3 net23 net23 VDD! VDD! ephsgp_bs3ju w=weff2 l=leff2 nfing=1

ncrsd=1.0

+number=1.0 srcefirst=1 ngcon=1 mismatch=1 po2act=-1.00000000e+00

nbti=0.0

+lpe=0

xm2 out net23 VDD! VDD! ephsgp_bs3ju w=weff2 l=leff2 nfing=1

ncrsd=1.0

+number=1.0 srcefirst=1 ngcon=1 mismatch=1 po2act=-1.00000000e+00

nbti=0.0

+lpe=0

xm1 out inm net20 VSS! enhsgp_bs3ju w=weff0 l=leff0 nfing=1

ncrsd=1.0

+number=1.0 srcefirst=1 ngcon=1 mismatch=1 po2act=-1.00000000e+00

lpe=0

xm0 net23 inp net20 VSS! enhsgp_bs3ju w=weff0 l=leff0 nfing=1

ncrsd=1.0

+number=1.0 srcefirst=1 ngcon=1 mismatch=1 po2act=-1.00000000e+00

lpe=0

.param leff0=1u

.param leff2=1u

.param weff0=10u

.param weff2=10u

.ends ota_g1

XI15 VINM VINP VOUT ota_g1

C0 VOUT 0 1E-12

V4 VINP 0 600E-3 AC 1E-3

V5 VINM 0 600E-3

V3 0 VSS! 0.0

V0 VDD! 0 1.2

.AC DEC 10.0000 1000.00 1000E+06

.measure ac gain find vdb(VOUT, VINP) at=1k

.measure ac phase find vp(VOUT, VINP) when vdb(VOUT, VINP)=0

.probe vdb(vout, vin+)

.OPTIONS PROBE POST MEASOUT

.LIB 'L:\MyFolder\MyPhd\Simulation\spice\hspice\st12.lib' NOM

.END

Listing A.7: Spice single stage OTA Netlist

Appendix A Spice Model Listings 188

.param vctrl=0.4

C0 vcoout 0 1a

vctrl net2 0 DC vctrl

V1 vss 0 0

V0 vdd 0 1.2

X1 net2 vdd vcoout vss vco

.subckt vco vctrl vdd vout vss

XM21 vout net12 net28 vss ENHSGP_BS3JU w=wndelay l=lndelay nfing=1

+ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0

XM20 net12 net16 net32 vss ENHSGP_BS3JU w=wndelay l=lndelay nfing=1

+ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0

XM19 net16 net20 net36 vss ENHSGP_BS3JU w=wndelay l=lndelay nfing=1

+ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0

XM18 net20 net24 net40 vss ENHSGP_BS3JU w=wndelay l=lndelay nfing=1

+ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0

XM17 net24 vout net44 vss ENHSGP_BS3JU w=wndelay l=lndelay nfing=1

+ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0

XM16 net28 vctrl vss vss ENHSGP_BS3JU w=wndelay l=lndelay nfing=1

+ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0

XM15 net32 vctrl vss vss ENHSGP_BS3JU w=wndelay l=lndelay nfing=1

+ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0

XM14 net36 vctrl vss vss ENHSGP_BS3JU w=wndelay l=lndelay nfing=1

+ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0

XM13 net40 vctrl vss vss ENHSGP_BS3JU w=wndelay l=lndelay nfing=1

+ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0

XM7 net48 vctrl vss vss ENHSGP_BS3JU w=wnctrl l=lpnctrl nfing=1

+ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0

XM1 net44 vctrl vss vss ENHSGP_BS3JU w=wndelay l=lndelay nfing=1

+ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0

XM12 vout net12 net54 vdd EPHSGP_BS3JU w=wpdelay l=lpdelay nfing=1

+ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 nbti=0

+lpe=0

XM11 net12 net16 net58 vdd EPHSGP_BS3JU w=wpdelay l=lpdelay nfing=1

+ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 nbti=0

+lpe=0

XM10 net16 net20 net62 vdd EPHSGP_BS3JU w=wpdelay l=lpdelay nfing=1

+ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 nbti=0

+lpe=0

XM9 net20 net24 net66 vdd EPHSGP_BS3JU w=wpdelay l=lpdelay nfing=1

+ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 nbti=0

+lpe=0

XM8 net24 vout net70 vdd EPHSGP_BS3JU w=wpdelay l=lpdelay nfing=1

+ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 nbti=0

+lpe=0

XM6 net54 net48 vdd vdd EPHSGP_BS3JU w=wpdelay l=lpdelay nfing=1

+ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 nbti=0

+lpe=0

XM5 net58 net48 vdd vdd EPHSGP_BS3JU w=wpdelay l=lpdelay nfing=1

+ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 nbti=0

+lpe=0

XM4 net62 net48 vdd vdd EPHSGP_BS3JU w=wpdelay l=lpdelay nfing=1

+ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 nbti=0

+lpe=0

XM3 net66 net48 vdd vdd EPHSGP_BS3JU w=wpdelay l=lpdelay nfing=1

+ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 nbti=0

+lpe=0

XM2 net70 net48 vdd vdd EPHSGP_BS3JU w=wpdelay l=lpdelay nfing=1

+ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 nbti=0

+lpe=0

XM22 net48 net48 vdd vdd EPHSGP_BS3JU w=wpctrl l=lpnctrl nfing=1

Appendix A Spice Model Listings 189

+ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 nbti=0

+lpe=0

.param lpnctrl=1u

.param lpdelay=1u

.param lndelay=1u

.param wpctrl=171u

.param wpdelay=1u

.param wnctrl=57u

.param wndelay=1u

.ends vco

.OPTIONS PROBE POST

.options HBTRANINIT=100n

.options HBTRANPTS=20

.options HBCONTINUE=0

.options phnoise_lorentz=0

.sweepblock vtune_sweep

+ 0.4 1.2 0.2

.IC v(vcoout)=1V

.HBOSC tones=1200Meg nharms=12

+ probenode= vcoout,vss 0.6

+ sweep vctrl sweepblock=vtune_sweep

*--

* for plotting HB transient wavform of v(vcoout)

* The output file is ~.hr0

*--

.probe hbtran v(vcoout)

*--

* for plotting HB oscillation spectrum of v(vcoout) and i(v0) for the

current

* convert to time domain yield a transient waveform similar as hbtran

* The output file is ~.hb0

*--

.probe HBOSC v(vcoout)

.probe hbosc i(v0) [0]

*--

* for ploting harmonics frequency. the output file is ~.hb0

* with voltage control sweep, VCO gain can be determined

*--

.probe HB hertz[1]

*----------------------

* Phase Noise Analysis

*----------------------

.phasenoise V(vcoout,vss) dec 10 1k 1e7

*---

* for plotting phase noise again frequency

* output file is ~.pn0

*--

.probe phasenoise phnoise

*--

Appendix A Spice Model Listings 190

* for plotting jitter from phase noise analysis

* output file is ~.jt0

*--

.probe phasenoise phnoise jitter

*--

* for measuring RMS period jitter from phase noise result

*--

* period jitter measurement use the full offset frequency

* sweep range given in the phase noise analysis. The

* from and to parameters are ignored.

*--

.MEASURE PHASENOISE rjper PERJITTER phnoise from 1k to 10Meg

*.measure phasenoise rjper2 perjitter phnoise when v(vctrl)=0.2

*--

* To measure VCO Gain, Kvco

* Vmax-Vmin = 1.2V - 0.2V = 1.0V

*--

.measure hb freqmin min PAR(HERTZ[1]);1_Mag

.measure hb freqmax max PAR(HERTZ[1]);1_Mag

.measure hb deltafreq PARAM=`freqmax-freqmin'

.measure hb kvco PARAM=`deltafreq/1.0'

.measure phasenoise pn_freqmin find phnoise at 1k

*--

* To measure total maximum current and maximum power

* at DC frequency. Measured at power supply

*---

.measure hbosc totcurr max i(v0) [0]

.measure hbosc totpwr max p(v0) [0]

*---

* ST0.12um Models file for simulator hspiceS

*---

.lib '/home/sawal/phd/modelfile/st12/common_poly.lib' PRO_TT

.lib '/home/sawal/phd/modelfile/st12/common_active.lib' PRO_TT

.lib '/home/sawal/phd/modelfile/st12/common_go1.lib' PRO_TT

.lib '/home/sawal/phd/modelfile/st12/common_go2.lib' PRO_TT

.lib '/home/sawal/phd/modelfile/st12/mos_bsim3_HS.lib' moshs_TT

.lib '/home/sawal/phd/modelfile/st12/mos_bsim3_LL.lib' mosll_TT

.lib '/home/sawal/phd/modelfile/st12/mos_bsim3_3V3.lib' mos3v3_TT

.END

Listing A.8: Spice VCO netlist

.OPTIONS PROBE POST MEASOUT

R0 out net018 2K

C1 net018 0 10p

C0 out 0 1p

V2 net14 0 1.2

V1 net7 0 pulse 1.2 0.0 0ns 1fs 1fs 1n 2n

V0 net5 0 pulse 1.2 0.0 0ns 1fs 1fs 1n 2n

XI1 net19 net18 out net21 net20 net14 0 cp_1

XI0 net19 net18 net7 net5 net21 net20 pfd

Appendix A Spice Model Listings 191

.subckt cp_1 dw dwb out up upb vdd vss

 I2 vdd net045 dc=100u

 XM7 net049 net045 vss vss ENHSGP_BS3JU w=0.15e-6 l=0.13e-6

nfing=1 ncrsd=1

 +number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0

 XM10 net045 net045 vss vss ENHSGP_BS3JU w=0.15e-6 l=0.13e-6

nfing=1 ncrsd=1

 +number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0

 XM8 net20 net045 vss vss ENHSGP_BS3JU w=0.15e-6 l=0.13e-6 nfing=1

ncrsd=1

 +number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0

 XM5 out dw net20 vss ENHSGP_BS3JU w=0.15e-6 l=0.13e-6 nfing=1

ncrsd=1

 +number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0

 XM4 out dwb out vss ENHSGP_BS3JU w=0.15e-6 l=0.13e-6 nfing=1

ncrsd=1

 +number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0

 XM3 vdd dwb net20 vss ENHSGP_BS3JU w=0.15e-6 l=0.13e-6 nfing=1

 +ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0

 XM6 net33 net049 vdd vdd EPHSGP_BS3JU w=0.15e-6 l=0.13e-6 nfing=1

ncrsd=1

 +number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 nbti=0 lpe=0

 XM9 net049 net049 vdd vdd EPHSGP_BS3JU w=0.15e-6 l=0.13e-6

nfing=1 ncrsd=1

 +number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 nbti=0 lpe=0

 XM2 out up out vdd EPHSGP_BS3JU w=0.15e-6 l=0.13e-6 nfing=1

ncrsd=1

 +number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 nbti=0 lpe=0

 XM1 out upb net33 vdd EPHSGP_BS3JU w=0.15e-6 l=0.13e-6 nfing=1

ncrsd=1

 +number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 nbti=0 lpe=0

 XM0 vss up net33 vdd EPHSGP_BS3JU w=0.15e-6 l=0.13e-6 nfing=1

ncrsd=1

 +number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 nbti=0 lpe=0

.ends cp_1

.subckt inv_gate in out

 V0 net12 0 1.2

 XM1 out in 0 0 ENHSGP_BS3JU w=0.15e-6 l=0.13e-6 nfing=1 ncrsd=1

 +number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0

 XM0 out in net12 net12 EPHSGP_BS3JU w=0.15e-6 l=0.13e-6 nfing=1

 +ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 nbti=0

 +lpe=0

.ends inv_gate

.subckt and_gate A B out

 V0 net4 0 1.2

 XM5 out net28 0 0 ENHSGP_BS3JU w=0.15e-6 l=0.13e-6 nfing=1

ncrsd=1

 +number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0

 XM4 net9 B 0 0 ENHSGP_BS3JU w=0.15e-6 l=0.13e-6 nfing=1 ncrsd=1

 +number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0

 XM3 net28 A net9 0 ENHSGP_BS3JU w=0.15e-6 l=0.13e-6 nfing=1

ncrsd=1

 +number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0

 XM2 out net28 net4 net4 EPHSGP_BS3JU w=0.15e-6 l=0.13e-6 nfing=1

 +ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 nbti=0

 +lpe=0

 XM1 net28 A net4 net4 EPHSGP_BS3JU w=0.15e-6 l=0.13e-6 nfing=1

 +ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 nbti=0

Appendix A Spice Model Listings 192

 +lpe=0

 XM0 net28 B net4 net4 EPHSGP_BS3JU w=0.15e-6 l=0.13e-6 nfing=1

 +ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 nbti=0

 +lpe=0

.ends and_gate

.subckt dff_1 D Q Res clk

 XM7 Q net16 0 0 ENHSGP_BS3JU w=0.15e-6 l=0.13e-6 nfing=1 ncrsd=1

 +number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0

 XM6 net12 net20 0 0 ENHSGP_BS3JU w=0.15e-6 l=0.13e-6 nfing=1

ncrsd=1

 +number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0

 XM5 net16 clk net12 0 ENHSGP_BS3JU w=0.15e-6 l=0.13e-6 nfing=1

 +ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0

 XM4 net20 Res 0 0 ENHSGP_BS3JU w=0.15e-6 l=0.13e-6 nfing=1

ncrsd=1

 +number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0

 XM3 Q net16 D D EPHSGP_BS3JU w=0.15e-6 l=0.13e-6 nfing=1 ncrsd=1

 +number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 nbti=0 lpe=0

 XM2 net16 net20 D D) EPHSGP_BS3JU w=0.15e-6 l=0.13e-6 nfing=1

ncrsd=1

 +number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 nbti=0 lpe=0

 XM1 net20 Res net30 D EPHSGP_BS3JU w=0.15e-6 l=0.13e-6 nfing=1

 +ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 nbti=0

 +lpe=0

 XM0 net30 clk D D EPHSGP_BS3JU w=0.15e-6 l=0.13e-6 nfing=1

ncrsd=1

 +number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 nbti=0 lpe=0

.ends dff_1

.subckt pfd dw dwb fback fref up upb

 XI8 net7 net044 inv_gate

 XI9 net044 up inv_gate

 XI10 net7 upb inv_gate

 XI11 net3 dwb inv_gate

 XI12 net3 net036 inv_gate

 XI13 net036 dw inv_gate

 V0 vdd 0 1.2

 XI3 net7 net3 net8 and_gate

 XI1 vdd net3 net8 fback dff_1

 XI0 vdd net7 net8 fref dff_1

.ends pfd

.SN tone=500MEG nharms=10 trinit=100n

.SNNOISE V(out) V1

+DEC 20 1k 100MEG

+ [0,1]

.PRINT ACPHASENOISE PHNOISE JITTER

.PROBE ACPHASENOISE PHNOISE JITTER

.PROBE SN V(out)

.PROBE SNNOISE onoise

.lib '/home/sawal/phd/modelfile/st12/common_poly.lib' PRO_TT

.lib '/home/sawal/phd/modelfile/st12/common_active.lib' PRO_TT

.lib '/home/sawal/phd/modelfile/st12/common_go1.lib' PRO_TT

.lib '/home/sawal/phd/modelfile/st12/common_go2.lib' PRO_TT

.lib '/home/sawal/phd/modelfile/st12/mos_bsim3_HS.lib' moshs_TT

.lib '/home/sawal/phd/modelfile/st12/mos_bsim3_LL.lib' mosll_TT

Appendix A Spice Model Listings 193

.lib '/home/sawal/phd/modelfile/st12/mos_bsim3_3V3.lib' mos3v3_TT

.END

Listing A.9: Spice PFD/CP Netlist

.option post

.hdl 'lf.va'

.hdl 'vco.va'

.hdl 'pfd.va'

.hdl 'divider.va'

.hdl 'pll_top.va'

V1 ref 0 pulse 1.2 0.0 0ns 1fs 1fs 900p 1.8n AC=1mV

xa1 ref pll_out pll_top

+ Icp=pfd_current

+ lfpfl=0.0

+ C_1=cap1

+ R_2=res

+ C_2=cap2

+ fmin=min_freq

+ fmax=max_freq

+ Ivco=vco_current

+ lfwh=0.0

+ ratio=divide_by

.PARAM pfd_current=100e-6

.PARAM min_freq=437e6

.PARAM max_freq=1.52e9

.PARAM vco_current=2.79e-3

.PARAM divide_by=1

.PARAM res=5k

.PARAM cap2=10p

.PARAM cap1=cap2/10

.ac dec 20 1k 100Meg

.probe ac vdb(pll_out, ref)

.noise v(pll_out) v1

.print ac vdb(pll_out) onoise onoise(dB)

.probe ac vdb(pll_out) onoise onoise(dB)

.measure ac MSjitter integral `2.0*onoise*onoise'

+ from=1k to=100Meg

.measure vco_gain param = '(max_freq-min_freq)/(1.2-0.2)'

.measure RMSjitter param='sqrt(MSjitter)'

.measure wn

+param='((pfd_current*vco_gain)/(2*3.14*divide_by*cap2))^(1/2)'

.measure wz param = '1/(res*cap2)'

.measure cap_series param = '(cap1*cap2)/(cap1+cap2)'

.measure wp param = '1/(res*cap_series)'

.measure damp_factor param='(Wn*res*cap2)/2'

.measure loop_bwidth

+param='Wn*((1+2*damp_factor^2+((2+4*damp_factor^2+4*damp_factor^4)^1

/2))^1/2)'

.measure lock_time param = '(2*3.14)/Wn'

.measure gain_pfd param = 'pfd_current/(2*3.14)'

.measure wugb param = '(gain_pfd*vco_gain*res)/divide_by'

Appendix A Spice Model Listings 194

.measure test1 param = 'wugb/wz'

.measure test2 param = 'wugb/wp'

.measure atan1 param = 'atan(test1)'

.measure atan2 param = 'atan(test2)'

.measure phase_margin param = 'atan(wugb/wz)-atan(wugb/wp)'

.measure PM_degrees param = 'phase_margin*(180/3.14)'

.measure tot_current param = 'pfd_current + vco_current'

.end

Listing A.10: Spice PLL Netlist

Appendix B: Algorithm model Listings

/* This is a Multi-Objective GA program.

*

* This program is the implementation of the NSGA-2 proposed by

*

*

*

* Prof. Kalyanmoy Deb and his students .

*

*

*

* copyright Kalyanmoy Deb

*

18.08.2003: The keepaliven.h file is modified to have normalized

 crowding distance calculation. The previous version of

 the code did not have this feature. This way, maintaining

 a good distribution of solutions in problems having quite

 a different range of objective functions were difficult.

 Hopefully, with this modification, such difficulties will

 not appear. -- K. Deb

18.08.2003: Also the dfit.h file is deleted. It was not needed any

way.

The user have to give the input manualy or through a data file.

The user needs to enter objective functions in func-con.h

The code can also take care of the constraints. Enter the constraints

in the space provided in the func-con.h file.

Constraints must be of the following type:

g(x) >= 0.0

Also normalize all constraints (see the example problem in func-

con.h)

Compilation procedure: gcc nsga2.c -lm

Run ./a.out with or without an input file

Input data files: Three files are included, but at one time one is

needed

depending on the type of variables used:

inp-r (template file input-real) : All variables are real-coded

inp-b (template file input-binary): All variables are binary-coded

inp-rb(template file input-rl+bin): Some variables are real and some

are binary

*/

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <fstream.h>

#define square(x) ((x)*(x))

Appendix B – Algorithm model Listings 196

#define maxpop 500 /*Max population */

#define maxchrom 200 /*Max chromosome length*/

#define maxvar 20 /*Max no. of variables*/

#define maxfun 10 /*Max no. of functions */

#define maxcons 20 /*Max no. of Constraints*/

int gener, /*No of generations*/

 nvar,nchrom, /*No of variables*/

 ncons, /*No of Constraints*/

 vlen[maxvar], /*Array to store no of bits for each variable*/

 nmut, /* No of Mutations */

 ncross, /*No of crossovers*/

 ans;

float seed, /*Random Seed*/

 pcross, /*Cross-over Probability*/

 pmut_b, pmut_r,/*Mutation Probability*/

 lim_b[maxvar][2], lim_r[maxvar][2];/*Limits of variable in array*/

float di, /*Distribution Index for the Cross-over*/

 dim, /*Distribution Index for the Mutation*/

 delta_fit, /* variables required forfitness for fitness sharing

*/

 min_fit,

 front_ratio;

int optype, /*Cross-over type*/

 nfunc, /*No of functions*/

 sharespace; /*Sharing space (either parameter or fitness)*/

double coef[maxvar]; /*Variable used for decoding*/

static int popsize, /*Population Size*/

 chrom; /*Chromosome size*/

typedef struct /*individual properties*/

{

 int genes[maxchrom], /*bianry chromosome*/

 rank, /*Rank of the individual*/

 flag; /*Flag for ranking*/

 float xreal[maxvar], /*list of real variables*/

 xbin[maxvar]; /*list of decoded value of the chromosome */

 float fitness[maxfun],/*Fitness values */

 constr[maxcons], /*Constraints values*/

 cub_len, /*crowding distance of the individual*/

 error; /* overall constraint violation for the

individual*/

}individual; /*Structure defining individual*/

typedef struct

{

 int maxrank; /*Maximum rank present in the population*/

 float rankrat[maxpop]; /*Rank Ratio*/

 int rankno[maxpop]; /*Individual at different ranks*/

 individual ind[maxpop], /*Different Individuals*/

 *ind_ptr;

}population ; /*Popuation Structure*/

#include "random.h" /*Random Number Generator*/

#include "input.h" /*File Takes Input from user*/

Appendix B – Algorithm model Listings 197

#include "realinit.h" /*Random Initialization of the populaiton*/

#include "init.h" /*Random Initialization of the population*/

#include "decode.h" /*File decoding the binary dtrings*/

#include "ranking.h" /*File Creating the Pareto Fronts*/

#include "rancon.h" /*File Creating the Pareto Fronts when

 Constraints are specified*/

#include "func-con.h" /*File Having the Function*/

#include "select.h" /*File for Tournament Selection*/

#include "crossover.h" /*Binary Cross-over*/

#include "uniformxr.h" /*Uniform Cross-over*/

#include "realcross2.h" /*Real Cross-over*/

#include "mut.h" /*Binary Mutation*/

#include "realmut1.h" /*Real Mutation*/

#include "keepaliven.h" /*File For Elitism and Sharing Scheme*/

#include "report.h" /*Printing the report*/

population oldpop,

 newpop,

 matepop,

 *old_pop_ptr,

 *new_pop_ptr,

 *mate_pop_ptr;

/*Defining the population Structures*/

main()

{

 /*Some Local variables to this Problem (Counters And some other

pointers*/

 int i,j,l,f,maxrank1;

 float *ptr,tot;

 FILE

 *rep_ptr,

 *gen_ptr,

 *rep2_ptr,

 *end_ptr,

 *g_var,

 *lastit;

 //*param_ptr, // parameter file

 /*File Pointers*/

 //param_ptr = fopen("param.txt", "w"); // parameter file

 rep_ptr = fopen("output.out","w");

 gen_ptr =fopen("all_fitness.out","w");

 rep2_ptr = fopen("ranks.out","w");

 end_ptr = fopen("final_fitness.out","w");

 g_var = fopen("final_var.out","w");

 lastit = fopen("plot.out","w");

 /*Opening the files*/

 old_pop_ptr = &(oldpop);

 nmut = 0;

 ncross = 0;

 /*Get the input from the file input.h*/

 input(rep_ptr);

 fprintf(rep_ptr,"Results in a file\n");

Appendix B – Algorithm model Listings 198

 fprintf(end_ptr,"# Last generation population (Feasible and non-

dominated)\n");

 fprintf(end_ptr,"# Fitness_vector (first %d) Constraint_violation

(next %d) Overall_penalty\n",nfunc,ncons);

 fprintf(g_var,"#Feasible Variable_vectors for non-dominated

solutions at last generation\n");

 fprintf(g_var,"# Real (first %d) Binary (next %d)\n",nvar,nchrom);

 fprintf(lastit,"# Feasible and Non-dominated Objective Vector\n");

 /*Initialize the random no generator*/

 warmup_random(seed);

 /*Binary Initializaton*/

 if (nchrom > 0)

 init(old_pop_ptr);

 if (nvar > 0)

 realinit(old_pop_ptr);

 old_pop_ptr = &(oldpop);

 // decode binary strings

 decode(old_pop_ptr);

 old_pop_ptr = &(oldpop);

 new_pop_ptr = &(newpop);

 for(j = 0;j < popsize;j++)

 {

 /*Initializing the Rank array having different individuals

 at a particular rank to zero*/

 old_pop_ptr->rankno[j] = 0;

 new_pop_ptr->rankno[j] = 0;

 }

 old_pop_ptr = &(oldpop);

 func(old_pop_ptr);

 /*Function Calculaiton*/

 fprintf(rep_ptr,"--

--\n");

 fprintf(rep_ptr,"Statistics at Generation 0 ->\n");

 fprintf(rep_ptr,"--

\n");

/**

/

 /*----------------------GENERATION STARTS HERE---------------------

-*/

 for (i = 0;i < gener;i++)

 {

 printf("Generation = %d\n",i+1);

 old_pop_ptr = &(oldpop);

 mate_pop_ptr = &(matepop);

 fprintf(rep_ptr,"Population at generation no. -->%d\n",i+1);

 fprintf(gen_ptr,"#Generation No. -->%d\n",i+1);

fprintf(gen_ptr,"#Variable_vector Fitness_vector

Constraint_violation Overall_penalty\n");

 /*--------SELECT----------------*/

Appendix B – Algorithm model Listings 199

 nselect(old_pop_ptr ,mate_pop_ptr);

 new_pop_ptr = &(newpop);

 mate_pop_ptr = &(matepop);

 /*CROSSOVER----------------------------*/

 if (nchrom > 0)

 {

 if(optype == 1)

 {

 crossover(new_pop_ptr ,mate_pop_ptr);

 /*Binary Cross-over*/

 }

 if(optype == 2)

 {

 unicross(new_pop_ptr ,mate_pop_ptr);

 /*Binary Uniform Cross-over*/

 }

 }

 if (nvar > 0)

 realcross(new_pop_ptr ,mate_pop_ptr);

 /*Real Cross-over*/

 /*------MUTATION-------------------*/

 new_pop_ptr = &(newpop);

 if (nchrom > 0)

 mutate(new_pop_ptr);

 /*Binary Mutation */

 if (nvar > 0)

 real_mutate(new_pop_ptr);

 /*Real Mutation*/

 new_pop_ptr = &(newpop);

 /*-------DECODING----------*/

 if(nchrom > 0)

 decode(new_pop_ptr);

 /*Decoding for binary strings*/

 /*----------FUNCTION EVALUATION-----------*/

 new_pop_ptr = &(newpop);

 func(new_pop_ptr);

 /*-------------------SELECTION KEEPING FRONTS ALIVE----------*/

 old_pop_ptr = &(oldpop);

 new_pop_ptr = &(newpop);

 mate_pop_ptr = &(matepop);

 /*Elitism And Sharing Implemented*/

 keepalive(old_pop_ptr ,new_pop_ptr ,mate_pop_ptr,i+1);

 mate_pop_ptr = &(matepop);

 if(nchrom > 0)

 decode(mate_pop_ptr);

 mate_pop_ptr = &(matepop);

Appendix B – Algorithm model Listings 200

 /*------------------REPORT PRINTING--------------------------*/

 report(i ,old_pop_ptr ,mate_pop_ptr ,rep_ptr ,gen_ptr, lastit

);

/*==*

/

 /*----------------Rank Ratio Calculation---------------------*/

 new_pop_ptr = &(matepop);

 old_pop_ptr = &(oldpop);

 /*Finding the greater maxrank among the two populations*/

 if(old_pop_ptr->maxrank > new_pop_ptr->maxrank)

 maxrank1 = old_pop_ptr->maxrank;

 else

 maxrank1 = new_pop_ptr->maxrank;

 fprintf(rep2_ptr,"--------RANK AT GENERATION %d-------\n",i+1);

 fprintf(rep2_ptr,"Rank old ranks new ranks rankratio\n");

 for(j = 0;j < maxrank1 ; j++)

 {

 /*Sum of the no of individuals at any rank in old population

 and the new populaion*/

 tot = (old_pop_ptr->rankno[j])+ (new_pop_ptr->rankno[j]);

 /*Finding the rank ratio for new population at this rank*/

 new_pop_ptr->rankrat[j] = (new_pop_ptr->rankno[j])/tot;

 /*Printing this rank ratio to a file called ranks.dat*/

 fprintf(rep2_ptr," %d\t %d\t\t %d\t %f\n",j+1,old_pop_ptr-

>rankno[j],new_pop_ptr->rankno[j],new_pop_ptr->rankrat[j]);

 }

 fprintf(rep2_ptr,"-----------------Rank Ratio-------------\n");

/*==*

/

 /*=======Copying the new population to old population======*/

 old_pop_ptr = &(oldpop);

 new_pop_ptr = &(matepop);

 for(j = 0;j < popsize;j++)

 {

 old_pop_ptr->ind_ptr = &(old_pop_ptr->ind[j]);

 new_pop_ptr->ind_ptr = &(new_pop_ptr->ind[j]);

 if(nchrom > 0)

 {

 /*For Binary GA copying of the chromosome*/

 for(l = 0;l < chrom;l++)

 old_pop_ptr->ind_ptr->genes[l]=new_pop_ptr->ind_ptr-

>genes[l];

Appendix B – Algorithm model Listings 201

 for(l = 0;l < nchrom;l++)

 old_pop_ptr->ind_ptr->xbin[l] = new_pop_ptr->ind_ptr-

>xbin[l];

 }

 if(nvar > 0)

 {

 /*For Real Coded GA copying of the chromosomes*/

 for(l = 0;l < nvar;l++)

 old_pop_ptr->ind_ptr->xreal[l] = new_pop_ptr->ind_ptr-

>xreal[l];

 }

 /*Copying the fitness vector */

 for(l = 0 ; l < nfunc ;l++)

 old_pop_ptr->ind_ptr->fitness[l] = new_pop_ptr->ind_ptr-

>fitness[l];

 /*Copying the dummy fitness*/

 old_pop_ptr->ind_ptr->cub_len = new_pop_ptr->ind_ptr-

>cub_len;

 /*Copying the rank of the individuals*/

 old_pop_ptr->ind_ptr->rank = new_pop_ptr->ind_ptr->rank;

 /*Copying the error and constraints of the individual*/

 old_pop_ptr->ind_ptr->error = new_pop_ptr->ind_ptr->error;

 for(l = 0;l < ncons;l++)

 {

 old_pop_ptr->ind_ptr->constr[l] = new_pop_ptr->ind_ptr-

>constr[l];

 }

 /*Copying the flag of the individuals*/

 old_pop_ptr->ind_ptr->flag = new_pop_ptr->ind_ptr->flag;

 } // end of j

 maxrank1 = new_pop_ptr->maxrank ;

 /*Copying the array having the record of the individual

 at different ranks */

 for(l = 0;l < popsize;l++)

 {

 old_pop_ptr->rankno[l] = new_pop_ptr->rankno[l];

 }

 /*Copying the maxrank */

 old_pop_ptr->maxrank = new_pop_ptr->maxrank;

 /*Printing the fitness record for last generation in a file

last*/

 if(i == gener-1)

 { // for the last generation

 old_pop_ptr = &(matepop);

 for(f = 0;f < popsize ; f++) // for printing

 {

 old_pop_ptr->ind_ptr = &(old_pop_ptr->ind[f]);

Appendix B – Algorithm model Listings 202

 if ((old_pop_ptr->ind_ptr->error <= 0.0) && (old_pop_ptr-

>ind_ptr->rank == 1)) // for all feasible solutions and non-

dominated solutions

 {

 for(l = 0;l < nfunc;l++)

 fprintf(end_ptr,"%f\t",old_pop_ptr->ind_ptr-

>fitness[l]);

 for(l = 0;l < ncons;l++)

 {

 fprintf(end_ptr,"%f\t",old_pop_ptr->ind_ptr-

>constr[l]);

 }

 if (ncons > 0)

 fprintf(end_ptr,"%f\t",old_pop_ptr->ind_ptr->error);

 fprintf(end_ptr,"\n");

 if (nvar > 0)

 {

 for(l = 0;l < nvar ;l++)

 {

 fprintf(g_var,"%f\t",old_pop_ptr->ind_ptr-

>xreal[l]);

 }

 fprintf(g_var," ");

 }

 if(nchrom > 0)

 {

 for(l = 0;l < nchrom;l++)

 {

 fprintf(g_var,"%f\t",old_pop_ptr->ind_ptr-

>xbin[l]);

 }

 }

 fprintf(g_var,"\n");

 } // feasibility check

 } // end of f (printing)

 } // for the last generation

 } // end of i

 /* Generation Loop Ends

*/

/***/

 fprintf(rep_ptr,"NO. OF CROSSOVER = %d\n",ncross);

 fprintf(rep_ptr,"NO. OF MUTATION = %d\n",nmut);

 fprintf(rep_ptr,"--

----------\n");

 fprintf(rep_ptr,"---------------------------------Thanks-----------

----------\n");

 fprintf(rep_ptr,"--

-----------\n");

 printf("NOW YOU CAN LOOK IN THE FILE OUTPUT2.DAT\n");

 /*Closing the files*/

 fclose(rep_ptr);

 fclose(gen_ptr);

 fclose(rep2_ptr);

 fclose(end_ptr);

Appendix B – Algorithm model Listings 203

 fclose(g_var);

 fclose(lastit);

}

Listing B.1: Non-dominated Sorting Genetic Algorithm-II (NSGA-II) listing

/*This is the program used to evaluate the value of the function &

errors

***/

#include <iostream.h>

#include <stdio.h>

#include <fstream.h>

#include <cstdlib>

#include <ctime>

/*#define ofstream STD_OFSTREAM*/

void func(population *pop_ptr);

void func(population *pop_ptr)

{

/*File ptr to the file to store the value of the g for last iteration

 g is the parameter required for a particular problem

 Every problem is not required*/

 float *realx_ptr, /*Pointer to the array of x values*/

 binx_ptr, / Pointer to the binary variables */

 *fitn_ptr, /*Pointer to the array of fitness function*/

 x[2*maxvar], /* problem variables */

 f[maxfun], /*array of fitness values*/

 *err_ptr, /*Pointer to the error */

 cstr[maxcons];

 float *ptr;

 FILE

 *param_ptr, // parameter file

 *res1_ptr, // result1 file

 *res2_ptr, // result2 file

 *res3_ptr;

 /*File Pointers*/

 int i,j,k;

 float error, cc;

 float sum = 0;

 float res1, res2, res3;

 //ofstream paramfile;

 pop_ptr->ind_ptr= &(pop_ptr->ind[0]);

 /*Initializing the max rank to zero*/

 pop_ptr->maxrank = 0;

 for(i = 0;i < popsize;i++)

 {

 pop_ptr->ind_ptr = &(pop_ptr->ind[i]);

 realx_ptr = &(pop_ptr->ind_ptr->xreal[0]);

 binx_ptr = &(pop_ptr->ind_ptr->xbin[0]);

 //printf ("variables : %d \n", realx_ptr);

 for(j = 0; j < nvar; j++)

Appendix B – Algorithm model Listings 204

 { // Real-coded variables

 x[j] = *realx_ptr++;

 //sum = sum + x[j];

 //printf ("variables : %f\n" , x[j]);

 }

 for(j = 0; j < nchrom; j++)

 { // Binary-codced variables

 x[nvar+j] = *binx_ptr++;

 }

 fitn_ptr = &(pop_ptr->ind_ptr->fitness[0]);

 err_ptr = &(pop_ptr->ind_ptr->error);

 /* DO NOT CHANGE ANYTHING ABOVE */

 /*----------------------CODE YOUR OBJECTIVE FUNCTIONS HERE---*/

 /*All functions must be of minimization type, negate

maximization functions */

 /*==Start Coding Your Function From This Point=======*/

 // First fitness function

 param_ptr = fopen("param.txt", "w"); // parameter file

 fprintf(param_ptr,"%f\n%f\n%f\n%f\n",x[0],x[1],x[2],x[3]);

 fclose(param_ptr);

 system("perl L:\\MyFolder\\MyPhd\\MOO_NSGA\\ota_pareto.pl");

 res1_ptr = fopen("result_gm.txt", "r"); //result func 1 file

 res2_ptr = fopen("result_ro.txt", "r"); // result func 2 file

 res3_ptr = fopen("result_pm.txt", "r"); // result func 3 file

 fscanf(res1_ptr, "%f", &res1);

 fscanf(res2_ptr, "%f", &res2);

 fscanf(res3_ptr, "%f", &res3);

 f[0] = res1;

 f[1] = res2;

 f[2] = res3;

 /*=========End Your Coding Upto This Point===============*/

/**/

/* Put The Constraints Here */

/**/

 // g(x) >= 0 type (normalize g(x) as in the cstr[1] below)

 /*===========Start Coding Here=============*/

 cstr[0] = x[0]*x[0]+x[1]*x[1]-1.0-

0.1*cos(16.0*atan(x[0]/x[1]));

 cstr[1] = (-square(x[0]-0.5) - square(x[1]-0.5) + 0.5)/0.5;

 /*===========Constraints Are Coded Upto Here=============*/

 /* DO NOT CHANGE ANYTHING BELOW */

 for(k = 0 ; k < nfunc ;k++)

Appendix B – Algorithm model Listings 205

 {

 *fitn_ptr++ = f[k];

 }

 for (k = 0;k < ncons; k++)

 {

 pop_ptr->ind_ptr->constr[k] = cstr[k];

 }

 error = 0.0;

 for (k = 0;k < ncons;k++)

 {

 cc = cstr[k];

 if(cc < 0.0)

 error = error - cc;

 }

 *err_ptr = error;

 }

 /*---------------------------* RANKING *------------------------*/

 if(ncons == 0)

 ranking(pop_ptr);

 else

 rankcon(pop_ptr);

 return;

}

Listing B.2: NSGA-II function evaluation listing

Appendix C: Verilog-A Model Listings

`include "constants.vams"

`include "disciplines.vams"

module ota(out, inp, inm);

 inout inp, inm;

 output out;

 electrical inp, inm, out;

 parameter real gm = 136u;

 parameter real gm3 = 50u;

 parameter real ro = 106.2k;

 parameter real ce = 126f;

 parameter real cgd1 = 15f;

 parameter real cout = 150f;

 parameter real cgd2 = 15f;

 real vin;

 electrical vm;

 analog begin

 vin = V(inp,inm);

 I(vm) <+ -gm*(vin/2);

 I(vm) <+ V(vm)/(1/gm3);

 I(vm) <+ ce*ddt(V(vm));

 I(vm) <+ cgd1*ddt(vin/2);

 I(out) <+ -gm3*V(vm);

 I(out) <+ -gm*vin/2;

 I(out) <+ cout*ddt(V(out));

 I(out) <+ cgd2*ddt(vin/2);

 I(out) <+ V(out)/ro;

 end

endmodule

Listing C.1: Verilog-A Single Stage OTA listing

Appendix C – Verilog-A model Listings 207

`include "constants.vams"

`include "disciplines.vams"

module vco(in, out);

 inout in, out;

 electrical in, out;

 parameter real fmin = 300e6 from (100e6:80e7); //hertz

 parameter real fmax = 500e6 from (200e6:40e8); //hertz

 parameter real Ivco = 13.2e-3 from (1e-3:30e-3);

 parameter real lfwh = 0.0 from [0:1.0);

 real ko;

 real lffl;

 real vmax;

 real vmin;

 analog begin

 vmax=1.2;

 vmin=0.2;

 ko = (fmax-fmin)/(vmax-vmin);

 lffl = $table_model(ko,Ivco, "vco_data.tbl", "3L,3L");

V(out) <+ laplace_nd(V (in), {fmax-fmin/1},{0,1})

 + flicker_noise(lffl, 3, "VCO_flicker")

 + flicker_noise(lfwh, 2, "VCO_white");

end

endmodule

Listing C.1: Verilog-A VCO listing

// VCO variation module for minimum

`include "constants.vams"

`include "disciplines.vams"

module vco_min(in, out);

 inout in, out;

 electrical in, out;

 parameter real fmin = 300e6 from (100e6:80e7); //hertz

 parameter real fmax = 500e6 from (200e6:40e8); //hertz

 parameter real Ivco = 13.2e-3 from (1e-3:30e-3);

 parameter real lfwh = 0.0 from [0:1.0);

 real ko;

 real ko_min;

 real Ivco_min;

 real lffl;

 real vmax;

 real vmin;

Appendix C – Verilog-A model Listings 208

 real min_fmin, min_fmax;

 real lffl_min;

 integer file_ptr1,file_ptr2,file_ptr3,file_ptr4;

 analog begin

 vmax=1.2;

 vmin=0.2;

 @(initial_step) begin

 file_ptr1 = $fopen("ivcomin.txt");

 file_ptr2 = $fopen("minfmin.txt");

 file_ptr3 = $fopen("minfmax.txt");

 file_ptr4 = $fopen("komin.txt");

 end

 //minimum variation for Ivco

 Ivco_min = $table_model(Ivco, "Ivcomin_data.tbl", "3L");

 $fwrite(file_ptr1, "%e", Ivco_min);

 // minimum variation for fmin and fmax

 min_fmin = $table_model(fmin, "fmin_mindata.tbl", "3L");

 $fwrite(file_ptr2, "%e", min_fmin);

 min_fmax = $table_model(fmax, "fmax_mindata.tbl", "3L");

 $fwrite(file_ptr3, "%e", min_fmax);

 // minimum variation for ko

 ko_min = (min_fmax-min_fmin)/(vmax-vmin);

 $fwrite(file_ptr4, "%e", ko_min);

 ko = (fmax-fmin)/(vmax-vmin);

 lffl = $table_model(ko,Ivco, "vco_data.tbl", "3L,3L");

 // minimum variation for lffl noise

 lffl_min = $table_model(lffl, "lfflmin_data.tbl", "3L");

 V(out) <+ laplace_nd(V (in), {(fmax-fmin)/1},{0,1})

 + flicker_noise(lffl_min, 3, „VCO_flicker“)

 + flicker_noise(lfwh, 2, “VCO_white”);

 $fclose(file_ptr1);

 $fclose(file_ptr2);

 $fclose(file_ptr3);

 $fclose(file_ptr4);

end

endmodule

Listing C.2: Verilog-A VCO minimum variation listing

// VCO variation module for maximum

`include "constants.vams"

Appendix C – Verilog-A model Listings 209

`include "disciplines.vams"

module vco_max(in, out);

 inout in, out;

 electrical in, out;

 parameter real fmin = 300e6 from (100e6:80e7); //hertz

 parameter real fmax = 500e6 from (200e6:40e8); //hertz

 parameter real Ivco = 13.2e-3 from (1e-3:30e-3);

 parameter real lfwh = 0.0 from [0:1.0);

 real ko;

 real ko_max;

 real Ivco_max;

 real lffl;

 real vmax;

 real vmin;

 real max_fmin, max_fmax;

 real lffl_max;

 integer file_ptr1,file_ptr2,file_ptr3,file_ptr4;

 analog begin

 vmax=1.2;

 vmin=0.2;

 @(initial_step) begin

 file_ptr1 = $fopen("ivco.txt");

 file_ptr2 = $fopen("maxfmin.txt");

 file_ptr3 = $fopen("maxfmax.txt");

 file_ptr4 = $fopen("komax.txt");

 end

 // maximum variation for Ivco

 Ivco_max = $table_model(Ivco, "Ivcomax_data.tbl", "3L");

 $fwrite(file_ptr1, "%e", Ivco_max);

 // maximum variation for fmin and fmax

 max_fmin = $table_model(fmin, "fmin_maxdata.tbl", "3L");

 $fwrite(file_ptr2, "%e", max_fmin);

 max_fmax = $table_model(fmax, "fmax_maxdata.tbl", "3L");

 $fwrite(file_ptr3, "%e", max_fmax);

 // maximum variation for ko

 ko_max = (max_fmax-max_fmin)/(vmax-vmin);

 $fwrite(file_ptr4, "%e", ko_max);

 ko = (fmax-fmin)/(vmax-vmin);

 lffl = $table_model(ko,Ivco, "vco_data.tbl", "3L,3L");

 // maximum variation for lffl noise

 lffl_max = $table_model(lffl, "lfflmax_data.tbl", "3L");

Appendix C – Verilog-A model Listings 210

 V(out) <+ laplace_nd(V (in), {(fmax-fmin)/1},{0,1})

 + flicker_noise(lffl_max, 3, "VCO_flicker")

 + flicker_noise(lfwh, 2, "VCO_white");

 $fclose(file_ptr1);

 $fclose(file_ptr2);

 $fclose(file_ptr3);

 $fclose(file_ptr4);

end

endmodule

Listing C.3: Verilog-A VCO maximum variation listing

`include "constants.vams"

`include "disciplines.vams"

module pfd(in1, in2, out);

 inout in1, in2, out;

 electrical in1, in2, out;

 parameter real Icp = 12e-6 from(0:1.0);

 parameter real lfpfl = 0.0 from [0:1.0);

 real kd;

 real lfpwh;

analog begin

 kd = Icp/(2*3.14);

 //lookup table for pfd_cp noise

 lfpwh = $table_model(Icp, "pfd_data.tbl","1E");

 //$display("lfpwh_value = %e",lfpwh);

 V(out) <+ kd*(V(in1) - V(in2))

 + flicker_noise(lfpfl, 1, "pfd_flicker")

 + white_noise(lfpwh, "pfd_white");

end

endmodule

Listing C.4: Verilog-A PFD/CP listing

`include "constants.vams"

`include "disciplines.vams"

module pfd_min(in1, in2, out);

 inout in1, in2, out;

 electrical in1, in2, out;

 parameter real Icp = 12e-6 from(0:1.0);

 parameter real lfpfl = 0.0 from [0:1.0);

Appendix C – Verilog-A model Listings 211

 real kd;

 real lfpwh;

 real lfpwhmin;

 integer file_ptr1;

analog begin

 @(initial_step) begin

 file_ptr1 = $fopen("icp.txt");

 end

 $fwrite(file_ptr1, "%e", Icp);

 kd = Icp/(2*3.14);

 //lookup table for pfd_cp noise

 lfpwh = $table_model(Icp, "pfd_data.tbl","1E");

 //lookup table for pfd variation

 lfpwhmin = $table_model(lfpwh, "pfdmin_data.tbl", "3L");

 V(out) <+ kd*(V(in1) - V(in2))

 + flicker_noise(lfpfl, 1, "pfd_flicker")

 + white_noise(lfpwhmin, "pfd_white");

 $fclose(file_ptr1);

end

endmodule

Listing C.5: Verilog-A PFD/CP minimum variation listing

`include "constants.vams"

`include "disciplines.vams"

module pfd_max(in1, in2, out);

 inout in1, in2, out;

 electrical in1, in2, out;

 parameter real Icp = 12e-6 from(0:1.0);

 parameter real lfpfl = 0.0 from [0:1.0);

 real kd;

 real lfpwh;

 real lfpwhmax;

 integer file_ptr1;

analog begin

 @(initial_step) begin

 file_ptr1 = $fopen("icp.txt");

 end

 $fwrite(file_ptr1, "%e", Icp);

 kd = Icp/(2*3.14);

Appendix C – Verilog-A model Listings 212

 //lookup table for pfd_cp noise

 lfpwh = $table_model(Icp, "pfd_data.tbl","1E");

 //lookup table for pfd variation for maximum

 lfpwhmax = $table_model(lfpwh, "pfdmax_data.tbl", "3L");

 V(out) <+ kd*(V(in1) - V(in2))

 + flicker_noise(lfpfl, 1, "pfd_flicker")

 + white_noise(lfpwhmax, "pfd_white");

 $fclose(file_ptr1);

end

endmodule

Listing C.6: Verilog-A PFD/CP maximum variation listing

`include "constants.vams"

`include "disciplines.vams"

module PLL_top(ref_in, pll_out);

inout ref_in, pll_out;

electrical ref_in, pll_out;

 parameter real Icp = 10e-6 from(0:1.0);

 parameter real lfpfl = 0.0 from [0:1.0);

 parameter real C_1 = 1.0e-12 from (0:1.0e-3);

 parameter real R_2 = 10.0e3 from (0:1M);

 parameter real C_2 = 3.0e-12 from (0:1.0e-3);

 parameter real fmin = 300e6 from (100e6:80e7); //hertz

 parameter real fmax = 500e6 from (200e6:40e8); //hertz

 parameter real Ivco = 13.2e-3 from (1e-3:30e-3);

 parameter real lfwh = 0.0 from [0:1.0);

 parameter real ratio = 1 from (0:inf);

pfd # (.Icp(Icp), .lfpfl(lfpfl))

pfd1(ref_in, divout, filin);

loopfilter # (.C_1(C_1), .R_2(R_2), .C_2(C_2))

loopfilter1(filin, vcoin);

vco # (.fmin(fmin), .fmax(fmax), .Ivco(Ivco), .lfwh(lfwh))

vco1(vcoin, pll_out);

div # (.ratio(ratio))

divider1(pll_out, divout);

endmodule

Listing C.7: Verilog-A PLL top level listing

