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Advances in silicon technology over the last decade have led to increased integration 

of analogue and digital functional blocks onto the same single chip. In such a mixed 

signal environment, the analogue circuits must use the same process technology as 

their digital neighbours. With reducing transistor sizes, the impact of process 

variations on analogue design has become prominent and can lead to circuit 

performance falling below specification and hence reducing the yield. 

 

This thesis explores the methodology and algorithms for an analogue integrated 

circuit automation tool that optimizes performance and yield. The trade-offs between 

performance and yield are analysed using a combination of an evolutionary algorithm 

and Monte Carlo simulation. Through the integration of yield parameter into the 

optimisation process, the trade off between the performance functions can be better 

treated that able to produce a higher yield. The results obtained from the performance 

and variation exploration are modelled behaviourally using a Verilog-A language. The 

model has been verified with transistor level simulation and a silicon prototype. 

 

For a large analogue system, the circuit is commonly broken down into its constituent 

sub-blocks, a process known as hierarchical design. The use of hierarchical-based 

design and optimisation simplifies the design task and accelerates the design flow by 

encouraging design reuse. 

 

A new approach for system level yield optimisation using a hierarchical-based design 

is proposed and developed. The approach combines Multi-Objective Bottom Up 

(MUBU) modelling technique to model the circuit performance and variation and Top 

Down Constraint Design (TDCD) technique for the complete system level design. 

The proposed method has been used to design a 7
th

 order low pass filter and a charge 

pump phase locked loop system. The results have been verified with transistor level 

simulations and suggest that an accurate system level performance and yield 

prediction can be achieved with the proposed methodology. 
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Chapter 1 

 

Introduction 

 

1.1 Integrated Circuits 

 

In 1965, Gordon Moore predicted that the number of transistors on a chip will double 

about every two years [1]. This statement also implies that the density of a single chip 

will increase due to the higher number of transistors integrated. Since then, the field 

of electronics had seen a huge development that has revolutionised many aspects of 

consumer electronics. Moving from a small number of transistors to multi million 

transistor circuits has provided the functionality that past generations could only 

dream of. Figure 1-1 shows the trend in transistor complexity for microprocessors that 

follow the Moore‘s law prediction.  

 

One of the main reason for this prediction continue to be valid is the continuous 

development in transistor size reduction. This trend allows the integration of several 

functional blocks that previously occupied one or more boards onto a single chip, a 

technique that is termed as System-On-Chip (SoC). Although most of the functional 

blocks in an integrated system are digital, analogue circuits are still needed to 

interface to the real world which drives to the integration of analogue and digital 

circuits in a single system known generally as mixed-signal. This integration is very 
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attractive due to the significant reduction that can be made to the device size and 

hence to the overall cost of the system.  

 

One of the most important applications of analogue circuits is to bridge the gap 

between the `real‘ world and the digital domain. The need to go from analogue to 

digital processing have made the use of analogue-to-digital and digital-to-analogue 

converters indispensable. Several other important analogue components include 

filters, amplifiers, integrators and reference circuits for biasing. All these components 

are found in various applications such as communication systems, signal processors 

and radio frequency (RF) circuits. It is thus clear that analogue circuit integration is 

important and necessary in a large range of applications especially when considering 

SoCs where the link between the analogue and the digital domain will be required in 

practically every circuit. 

 

With the rising level of integration, the complexity and the challenges of the 

integrated circuits increases. Such complexity has increased the requirement to use 

CAD tools for design automation that supports the design on several hierarchy of 

abstractions. The following section will discuss some of the challenges faced by the 

analogue circuits. This discussion will lead to the motivation behind the research that 

is to explore a methodology that can be used for automating and optimising the design 

flow of analogue circuits. 

 

Figure 1-1: Transistor Complexity‘s Trend – Moore‘s Law 
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1.2 Challenges in analogue design 

 

In a complex mixed-signal system, the analogue circuit may occupy a small area 

compared to the digital circuit but the design time of the analogue circuit is often 

much longer and can therefore cause a bottleneck in the overall system design [2]. 

The reasons for this are generally the circuit complexity and the lack of automation 

tools that can speed up the design process. Unlike digital circuits which can be rapidly 

synthesized by computer-aided-design tool, most of the analogue circuits are still 

essentially designed manually.  

 

Another challenge faced by the analogue circuit in a mixed-signal environment is 

often the requirement to use the same transistor process technology as the digital 

circuits. For digital circuits, process technology downscaling is desirable due to the 

capability to reduce power consumption, area and delay. However, this is not 

necessarily helpful for analogue circuits. For example, a reduction in supply voltage 

due to the small transistor size, limits the voltage swing of the signals in the circuit 

and this can increase the signal to noise ratio and total harmonic distortion of the 

circuit. This has proved to be a significant challenge to analogue circuit designers in 

term of optimising the design for better performances and meeting the specifications. 

  

Furthermore, as the transistor sizes are scaled down, the resulting variability increases 

and adversely effect yield. These variations in the process technology have a large 

influence to the quality and yield of a designed and manufactured circuit.  With 

further shrinking of process technology, the variation is getting worse for each 

technology node. For technologies larger than 180nm feature sizes, variations are 

mostly in a range of below 10%. However, shrinking technologies down to 90nm, 

65nm and below cause the variations to be more than 50% [3]. With a high correlation 

of circuit yield to profit,  yield maximisation has became a major issue in deep sub-

micron integrated circuit design and has been considered as an important factor in the 

design stages. 

  

This thesis addresses one of the important topics in analogue IC design, which is to 

optimise the performance and yield of deep submicron integrated circuit design. The 

method proposed in the thesis starts with performance and variation model 
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development using a Pareto front approach and is followed by a top-down system 

design methodology using a hierarchical flow, that provides the designer with the 

ability to optimise the design for better performance and higher yield at the system 

level. 

  

1.3 Project motivation and goal 

 

The difficulties in the design of analogue integrated circuit (IC) discussed earlier 

shows some of the challenges faced by the analogue designer. Increase of design 

complexity, impact of process variations and demand for design cycle time reduction 

increase the need to have a new improved methodology for analogue design 

automation tool. Recent advances in design automation have led to a gradual 

transition from ―hand-calculation‖ based design to a simulation-based sizing 

methodology [4]. A Simulation-based approach tests many circuit candidates during 

the sizing process and evaluates each candidate via detailed circuit simulations. For a 

large circuit, the searching space for optimization can be very large and this increases 

the simulation time significantly. One of the solutions to this problem is modelling the 

performance space of the circuits behaviourally such that the optimisation can be done 

without the need of repeating extensive circuit simulation, at a transistor level. 

 

In addition, the higher impact of process variation on the design yield has led to the 

integration of a yield parameter as one of the performance parameters in the design 

process. Although there is extensive research in this area, most do not model the 

performance variation together with their performance model and hence has no ability 

to predict the yield directly. Most of the current methods exist in yield optimised 

design are based on an approximation model and only focus at circuit level 

optimisation [5, 6, 7, 8]. The methodology presented in this thesis focuses on 

performance and variation modelling, and a top-down hierarchical design technique 

that is suitable for performance and yield optimisation for both at circuit level and 

system level design. The specific objectives of this project are discussed in the 

remainder of this chapter. 

 

 

 



Chapter 1 Introduction  5 

1.4 Project Scope 

 

1.4.1 Introduction 

 

The scope of this project is to develop the ideas for modelling circuit performance and 

their variation that can be used efficiently and accurately in the design of analogue 

integrated circuits. 

 

Specifically, the project involves several activities including:- 

 

 Parameter extraction that relates the circuit performances and their design 

parameters.  

 Yield characterizing that relates the performances and their variations through 

a minimum and maximum estimation from a Monte Carlo simulation. 

 Construction of behavioural model of a circuit example to model the 

performance and variation. 

 Hierarchical-based optimisation design flow for system level design, and 

 Methodology verification with practical examples. 

 

When considering a performance and variation model of an analogue circuit, one of 

the most important factors is the accuracy of the model. Often a trade-off is being 

made that trades the accuracy for speed of simulation. In this thesis, the accuracy of 

the model is given a high weighting and the technique chosen for the model 

development reflects this intention. Several examples have been chosen to 

demonstrate the model application that includes a complete design flow from design 

specifications through to silicon implementation. 

 

1.4.2 Structure of the Project 

 

The project was split into three main phases and can be illustrated as shown in figure 

1-2 :- 
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Phase 1: To establish the methods for modelling the performance and variations of a 

circuit design. This involves extensive review of analogue synthesis techniques and 

yield optimization methodologies. The transition of design automation and techniques 

from hand-calculation based to simulation-based was carefully studied in order to 

choose the suitable and accurate method for the synthesis technique. Comparison was 

made with other methods especially for yield optimisation technique including design 

centring methods and the use of commercial optimisation tools. 

  

Phase 2: To build the performance and variation model of an example circuit design. 

This model was built from optimal performance points of the objective space and their 

minimum and maximum variation estimation based on a 6
th

 standard deviation range. 

Both of the performance and variation model were developed behaviourally making it 

suitable for fast behavioural level simulation. A silicon prototype of a 2
nd

 order filter 

was developed to demonstrate the practicality of the model and to validate the 

proposed methodology. 

  

Phase 3: To develop a new hierarchical-based design technique that can be used for 

system level design. The performance and variation model developed in previous 

phase was used in the hierarchical design flow to design and optimise a system level 

block for performance and yield. A mixed-signal charge pump phase locked loop was 

used to demonstrate the full bottom up and top down design flow of the system for 

performance and yield optimisation. 
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1.4.3 Project Hypotheses 

 

As a basis for the research in this project, several specific hypotheses were made as 

follows:- 

 

 Existing yield optimised design methodologies have several inadequacies 

including the ability to predict and optimise the yield at system level design. 

 In deep sub-micron technology, where the design complexity and variability 

has become a significant challenge, the accuracy and the ability to translate the 

simulated results into a real design is very important. 

 Existing approaches for system level design using a hierarchical-based 

optimisation method do not consider the variations of the sub-block circuits 

leaving the yield optimisation for the system until the end of the design flow. 

 A new hierarchical-based optimisation is needed that can incorporate the 

performance and variation model of analogue circuits into a top down system 

level design flow. 

 The application of behavioural modelling languages such as Verilog-A allow 

the ability to model a system that include mixed-signal blocks and offers a 

huge potential saving in terms of simulation time.  

 

1.5 Thesis Structure 

 

This section explains briefly the main points of each chapter in the thesis. The first 

part of the thesis, chapters 1-3 contain the background theory and literature review 

which leads to chapter 4 & 5 describing the implementation of the performance and 

variation model for analogue circuits. The last part of the thesis investigates a 

demonstrator application using a proposed hierarchical-based optimisation for mixed-

signal system level design. This is covered in chapter 6 and 7. Chapter 8 concludes the 

project and recommends areas for the future work.  
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1.5.1 Chapter 1:  Introduction 

 

The introduction of the thesis describes the motivations and goals to the project. The 

challenges in analogue circuit design are briefly explained which define the research 

landscape for the project. 

 

1.5.2 Chapter 2: Review of Analogue circuit Design and Statistical Design 

Techniques 

 

This chapter reviews the techniques and developments in analogue circuit design 

automation which can be divided into three main categories : Knowledge-based, 

analytical-based and simulation-based design. The optimisation techniques are 

reviewed and compared to provide initial understanding that is suitable in this project. 

Statistical design techniques for analogue  circuit are reviewed and their limitations 

are defined in this chapter. 

  

1.5.3 Chapter 3: Review of Simulation & Modelling 

 

The aim of this chapter is to review and explain the modelling principles and 

techniques used for electronic circuits. Basic concepts of behavioural modelling are 

introduced here and the advantage given by the behavioural model in a system level 

design is described. 

 

1.5.4 Chapter 4: Yield Optimised Design 

 

This chapter demonstrates how to implement the performance and yield optimization 

model for analogue circuit design. The method of characterizing the performance and 

yield space is proposed. The concept of performance trade-offs and Pareto-front that 

will be used for the remainder of the thesis are introduced in this chapter. The 

algorithm for the optimization is discussed, with examples, and is compared with 

existing methodologies to demonstrate the effectiveness of the approach. 
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1.5.5 Chapter 5: Performance and Variation Modelling 

 

This chapter describes how the multi-objective optimisation discussed in the previous 

chapter is used to model the performance and variation of a circuit design. The 

concept of performance and variation modelling from the objective space and Pareto-

front are introduced in this chapter. A new approach for combining the performance 

and variation model using a lookup-table implementation in Verilog-A is proposed 

and the implementation with a behavioural table model function is explained. An 

example is used to illustrate the development of the performance and variation model 

and a practical example with a silicon prototype is shown for the practicality aspect of 

the methodology. 

 

1.5.6 Chapter 6: Hierarchical-based Design Optimisation  

 

This chapter describes how the performance and variation model can be used in a 

system level design using a hierarchical-based optimisation technique. A new 

modification is done to the hierarchical-based method to include both the multi-

objective bottomup modelling and top-down constrained design in the algorithm. A 

7th order elliptic filter for video applications is used to demonstrate the methodology. 

 

1.5.7 Chapter 7: Mixed Signal System Level Application 

 

In this chapter, A charge pump PLL is used as a mixed-signal system example with 

higher number of design parameters, objective functions and mixed domain 

simulations to demonstrate the effectiveness of the proposed methodology to optimise 

the performance and yield for significant circuit sizes.  

 

1.5.8 Chapter 8: Conclusion and Future Work. 

 

In this chapter, the results obtained are discussed. The accuracy of the model 

especially in a practical example is discussed. Conclusions are drawn from these 

discussions and a statement about the hypotheses is made. Finally the areas that could 

provide the basis of future work are highlighted.  



 

 

 

 

 
 

 

 

 

 

 

 

Chapter 2 

 

Review of Analogue Circuit Design and Optimisation 

 

2.1 Introduction 

 

Analogue circuit design can be divided into two main tasks: The selection of an 

appropriate circuit topology and circuit sizing. The design starts with a circuit 

specification that defines the performance functions and their upper and lower limits. 

Based on the specification, a topology will be selected. There is the possibility that 

several topologies existed, that implements the required functionality. Usually the 

topology selection is based on design heuristics. The knowledge or experience of the 

designer is often the main approach used to find the suitable topology that can meet 

the design requirements. The next step is to determine the size of the devices for the 

selected topology. This step is called circuit sizing and the parameters to be sized are 

called design parameters. The sizing process of design parameters will determine the 

performance of a circuit. This step is a complicated task due to the nonlinear 

relationship between the design parameters and circuit performance. 
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 Usually the sizes of the design parameters are approximated using simplified hand-

calculations. The formulas are based on simple approximations of the transistor 

characteristics that may differ from the real devices. The approximated circuit sizes 

will be used as the initial point for the performance evaluation using a circuit 

simulator such as HSPICE [9] or Spectre [10]. For the purpose of the simulation, a 

test bench is created where a set of suitable input signals are applied to the circuit in 

order to extract the performance functions. This will give the initial performance of 

the circuit and most certainly will not meet the specification. Thus, the device sizes 

must be adjusted through the optimisation process. Some simulators offer a simple 

form of optimisation to adjust the device parameters in order to fine-tune the 

performance functions. If no feasible solution is found during the optimisation and the 

specifications are not met, a different circuit topology must be selected and the sizing 

and optimisation processes will need to be repeated. This will eventually increase the 

design cycle time of the analogue circuits and becomes the bottleneck in the design 

process. According to [11], the design cycle time reduction can be managed only by 

the use of computer aided design. Therefore, over the years, the research community 

has been aggressively working towards the development of computer aided design 

tools for analogue circuits. A good survey of analogue synthesis techniques is 

available in [12] and will be reviewed later in this chapter. 

 



Chapter 2 Review of Analogue Circuit Design and Optimisation 13 

Performance Specification

Sizing and Biasing

L ? W?

Topology Selection

-Vss

-Vss

Vdd

Vin- Vin+

Vout

IDC

Lpair1

Lpair2Lpair3

Lpair4

Layout generation

 

 

Figure 2.1 Typical design flows for analogue IC design 

 

Figure 2.1 shows a typical design flow in analogue IC design. One of the most 

important aspects in the design flow are the time spent on designing the low-level 

cells. The time required to design an amplifier for example might be in the order of 

weeks [13] when all design steps are considered. Decreasing the time spent on the 

design process through automation techniques for instance will have a large impact on 

the time-to-market for the whole chip. This automation can be applied at different 

steps in the design flow, for example, topology selection or circuit sizing. This thesis 

will focus on circuit sizing automation techniques and the performance and variation 

models were targeted at the circuit sizing stages. The remainder of this chapter will 

review the existing approach for analogue circuit sizing. 
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2.2 Automatic Circuit Sizing 

 

The approach in automatic circuit sizing can be classified into two main categories, 

namely knowledge-based design and optimization-based design. Optimization-based 

design can be further divided into two approaches, equation-based optimization and 

simulation-based optimization. 

 

2.2.1 Knowledge-Based Design 

    

This is one of the earlier approaches in automated circuit sizing. The basic idea is to 

have a predefined design plan or design rules on how to size circuit components to 

meet the performance specifications. The design plan generally consists of a set of 

design equations for a particular circuit topology. In knowledge-based design, these 

equations are formulated so that with a given circuit performances, the size of the 

circuit can be determined. 

 

Once the design plan has been created, the execution time of this approach is short. 

However, the approach suffers from several disadvantages. First, a design plan must 

be created for each circuit to be designed. This is a difficult task and requires the 

knowledge of a skilled designer. It was reported in [14] that the average time to create 

such a plan was four times longer than manually designed circuit. 

 

In addition to that, the design plan is technology dependent. This means, when the 

process technology migrates to a new technology, a new design plan must be updated 

which again requires analogue experts intervention. 

 

Another limitation to the approach is the accuracy which is generally limited. In order 

to derive the design equations for the design plan, they are bound to be simple. This 

will result in large deviations in the performance metrics when modern process 

technologies are used. 

 

This section reviews some of the tools that were developed using this approach. 
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IDAC 

 

IDAC [15] is one of the first and well-known approaches for knowledge-based design 

techniques. It was developed in 1980 and support quite large design variety of circuits 

such as amplifiers, comparators and A/D converters. This tool relies upon a library of 

circuit design plans. Each design plan contains a set of design equations for particular 

topologies created by an experienced designer. 

 

From a set of design specifications, a design plan for a particular circuit topology is 

executed. From this execution, a set of design parameters will be known and a circuit 

simulator is used to verify the performance of the circuit. If it fails to meet the 

specifications, the parameters are adjusted and the design plan is executed again. 

 

IDAC contains a predefined library of circuit designs, so the design time is short for 

circuits already in the library. However, if the designer wants to make changes to the 

topology for example to improve the performance, a completely new set of design 

plans must be developed. 

 

While the execution time might be fast for a circuit already in the library, IDAC 

presents several disadvantages. As mentioned above, the design plan is created by 

expert designers thus it is highly dependent on the experts whenever a new design or 

topology needs to be developed. Second, it is not possible to solve equations for high 

accuracy device models, thus the method is limited to simple models. This yields 

relatively poor estimation of the circuit performance. 

 

OASYS 

 

OASYS [16] was developed in 1989 at Carnegie Mellon University. This method 

describes the design problem in a hierarchical style implementation where the circuit 

is partitioned into several sub-blocks. From the design specification, the tool selects a 

suitable topology. This topology is then divided into several sub-blocks that 

correspond to the performance specification. In this way, the problem is decomposed 

into separate design tasks. There is a possibility that there may be several sub-blocks 
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with the same functionality. The tool generates a range of possible options, or ―styles‖ 

and selects the one with the best performance. This is called style selection. 

 

A translation process in the methodology will map the performance specification to 

the sub-block. In a design, there might be several hierarchical levels and style 

selection steps and translations. At the bottom level (transistor level), simple device 

models are used to determine the device sizes based on a knowledge-based approach. 

Sometimes, there might be a discrepancy in the estimation of the performance of low 

level blocks. This is overcome by utilizing backtracking strategy to refine the design. 

This is an iterative process and may be seen as simple form of optimization. 

 

The method forms some sort of reusability since the sub-blocks can be used 

repeatedly in a large range of circuits. The disadvantages of this method are first, the 

use of simple device models to determine the device size which yields relatively poor 

estimation of the performance. Second, the task of creating design plan consume a lot 

of design time as reported in [16] where the creation of the first design plan required 

18 months to be completed. 

 

BLADES 

 

BLADES (Bell Laboratories Analogue Design Expert system) [17] relies on artificial 

intelligence to partition and size the circuits. As with OASYS, the strategy is to divide 

the circuit into several sub-blocks. For example, an operational amplifier might 

consist of a differential input stage, gain stage and output stage. The rules on how to 

divide the circuit into sub-blocks are written in ―if-then‖ statements. For the 

operational amplifier, the tool consists of about 250 different rules. 

 

The bottom level is the transistor level. The transistors are sized in a similar manner to 

the sub-block composition where a set of rules is used to size the transistor. Here, the 

decision about the size is decided based on the rules given in the combination of look-

up tables where the simulated results for each sub-block are stored. 
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As with other knowledge-based approaches, the disadvantage of this tool is the 

requirement to create the design rules for each adjustment and/or addition to the 

topology of the circuit. 

 

2.2.2 Optimization-Based Circuit Sizing 

 

Knowledge-based techniques rely on design plans created for specific topologies. In 

other words, it is a topology dependent approach. In order to increase the generality of 

circuit sizing and make it independent of circuit topology, optimization-based design 

was developed. In this approach, the decision to size the circuit is based on an 

optimization algorithm rather than design plan. Two important stages of this approach 

are optimization and evaluation as depicted in figure 2.2. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 : optimization-based design 

 

There are two types of optimization-based design. The first type is based on a circuit 

simulator such as SPICE which is used to evaluate the performance of the circuit. A 

circuit simulator is called at each iteration to determine the performance for a set of 

design parameters. This approach is called simulation-based optimization. 

 

Another type that is used is equation-based optimization. In this approach, a set of 

equations that relate the circuit performance and the design parameters is derived. 

These equations are used to evaluate and determine the performance for a set of 
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design parameters. This process is continued iteratively until the performance is 

optimized. 

 

2.2.2.1 Equation-based Optimization 

 

Equation-based optimization uses equations to evaluate the circuit performance as 

oppose to the use of circuit simulator for the simulation-based optimisation. The 

equations can be derived manually or using symbolic analyzers [18, 19, 20]. 

 

The advantage of equation-based optimization is in the execution time since the 

performance evaluation is performed by evaluating symbolic equations directly [21]. 

Thus, the equation-based approach offers significantly shorter execution times 

compared to simulation-based optimization. 

 

The accuracy of the performance predictions is extremely reliant on the design 

equations. Manually derived equations are usually simplified compared to equations 

derived by symbolic analyzers. Most of the equations are based on simple device 

models and are therefore not accurate enough to be used in modern process 

technologies. Sometimes, if high accuracy device models are used, the equations 

created are based on approximations in order to reduce the size of expressions for the 

performance metrics. Small expression sizes will increase the computational 

efficiency in the expense of accuracy. This is one of the disadvantages in this 

approach, in that there is clearly a trade-off between accuracy and speed. 

 

Furthermore, using symbolic analyzers to generate the equations automatically will 

increase the setup time for this approach. With designer instruction, a symbolic 

analyzer will generate the equation expression for each performance metric. Thus, 

introducing new types of performance metric into the symbolic analyzer can be time-

consuming. 

 

Another disadvantage of this approach is that the generality of the method is limited 

by the ability to derive the equations for the performance. A symbolic analyzer can be 

used to derive small-signal performance metrics but for other performance (for 

example one that uses time-domain analysis such as slew-rate), there is no method to 



Chapter 2 Review of Analogue Circuit Design and Optimisation 19 

automatically generate the equations. These type of equations need to be derived 

manually. For a different device model, new equations must be derived to include the 

additional parameters of the device model. On top of that, the equations are created by 

an experienced designer and stored in a library. Thus, the method is often only 

applicable to a predefined topology in the library.  

 

This section reviews some of the tools that have been developed using this approach. 

 

OPASYN 

 

OPASYN [22] was developed in 1990 at the University of California in Berkeley, 

USA, and uses simple analytical equations to synthesise and optimize a circuit. It 

features a design database that contains information on each step in the design flow, 

including heuristic selection of circuit topology, circuit sizing and optimization and 

circuit layout. 

 

From a set of performance specifications, a circuit topology is selected from the 

database. The selection is done using a decision tree where all available topologies are 

classified according to some key criteria and analytical models is used to size and 

optimize the circuit. The models consist of manually derived symbolic design 

equations, netlist descriptions of a particular topology, independent design parameters 

and upper and lower bounds for the design parameters. The optimization method used 

is a steepest descent algorithm and to avoid local-minima problem, the optimization is 

carried out on several starting points. 

 

The disadvantage of the tool is the accuracy of the models.  It was reported in [23] 

that the models have an error of over 200% when compared to SPICE simulations. 

Although fitting parameters are added to improve the model, the error is still in the 

order of 20%. 

 

Maulik 

 

Maulik [24] was developed at Carnegie Mellon University in Pittsburg, USA. This 

tool selects the topology and size the circuit simultaneously. Additional optimization 
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parameters are used to determine the topology such as the type of the input stage (for 

example cascade or not). The performance functions are computed from circuit 

equations and these are used to size the circuit. 

 

Maulik uses a relaxed DC formulation to solve for the correct DC operating point. In 

this approach, Maulik uses Kirchhoff‘s law for the DC operating point equation and 

this is made as a part of the cost function. With a relaxed DC formulation, Maulik 

avoids the need to re-evaluate the DC operating point at every iteration. 

 

One of the disadvantages of this tool is the requirement to derive the equations 

manually which leads to the simplified expression thus limiting the accuracy. 

  

GPCAD 

 

GPCAD [25] is a device sizing tool dedicated to the design of operational amplifiers. 

It uses geometrical programming (GP) to formulate the sizing task. This is done by 

writing the design equations (i.e. the cost function and inequality constraints) as 

posynomial equations. This results in a convex optimization from which a global 

optimum point can be found in a relatively short time. 

  

Even though the geometric programming formulation simplifies the optimization task 

and reduces the optimization time, this method suffers from an accuracy problem due 

to the limitation of using high accuracy models that cannot be formulated as 

posynomials easily [23]. Furthermore, this tool does not include automatic generation 

of the equations thus limiting the usage to only predefined circuit structures. 

 

2.2.2.2 Simulation-Based Optimization 

 

Simulation-based design uses a standard circuit simulator in the optimization loop to 

evaluate the circuit performance. In this way, the method can handle a large variety of 

analogue circuits. 

 

One of the advantages of this approach is that the predicted performance will have the 

same accuracy as the models used in the circuit simulator, i.e., the same accuracy as 



Chapter 2 Review of Analogue Circuit Design and Optimisation 21 

obtained by manual design. Even with the new process technologies, the level of 

accuracy can be maintained if the process model is used in the simulation. 

 

Another advantage of simulation-based design is short setup time. This is true as long 

as the circuit performance can be measured using the output of the circuit simulator. 

The only requirement is to create the test bench in the simulator environment. The test 

bench describes the simulation environment to measure each performance function for 

the optimisation.  

 

Furthermore, the generality of simulation-based design is high since the performance 

can be defined just by extending the test bench. Thus, new circuits can be included 

easily as long as the circuit simulator can be used to extract the performance metric. 

 

The only disadvantage of this approach is the execution time. In the simulation-based 

approach, a circuit simulator is called at each of the optimization run. Some of the 

performance functions such as slew rate which require time domain simulation may 

consume significant amounts of simulation time. However this factor can be mitigated 

with the continual advance of computer hardware. 

 

This section reviews some of the tools that have been developed using this approach. 

 

DELIGHT.SPICE 

 

DELIGHT.SPICE [26], was developed in 1980‘s at the University of California, 

Berkeley, USA. The tools combined an interative optimisation based design called 

DELIGHT with a standard circuit analysis program, SPICE. 

 

The tool also derives the sensitivity of the design parameter variations to the 

performance functions which enable design centring and yield optimization. The 

optimization algorithm in DELIGHT.SPICE uses a subset of worst performance and 

constraint functions to direct the searching process.  

 

The algorithm consists of 3 phases: phase I, the optimisation algorithm tries to 

decrease the hard constraint violation. Hard constraint is the constraint that must be 
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satisfied and do not take part in design trade-off. In phase II, the worst normalised 

values of the objective functions and soft constraint are improved while maintaining 

the hard constraint satisfaction. In phase III, the worst normalised value of objective 

functions is improved while both the hard constraint and soft constraint are  satisfied. 

 

However, the tool still requires several hours to perform the optimization and in 

addition to that, a good starting point is needed for the optimization process in order 

to avoid divergence problem in SPICE [27]. 

 

FRIDGE 

 

FRIDGE [28] is a simulation-based optimization approach that performs global 

searching techniques together with a gradient search for the optimization algorithm. 

The tool uses modified simulated annealing for the optimization. Instead of slowly 

cooling scheme of traditional simulated annealing method, this tool uses adaptive 

cooling where a series of fast cooling and reheating method are used.  

 

The optimization is divided into two stages. The first is to quantize the design 

parameters according to a grid and the performance of the design parameters that 

corresponding to one node of the grid is stored. This is used to avoid repeated 

simulation of the same node. Once the global optimization is completed, a gradient 

based optimization is used to search in the vicinity of the best grid point. 

 

ASTRX/OBLX 

 

ASTRX/OBLX [4] have been developed in 1996 at the Carnegie Mellon University. 

The tool relies on asymptotic waveform evaluation (AWE) [29], encapsulated device 

evaluators, simulated annealing and relaxed DC formulation to size and optimize the 

circuit.  

 

AWE [29] is used to reduce the long simulation times normally associated with circuit 

simulators in simulation-based design and low accuracy that is normally achieved in 

simple models used in equation-based design. AWE uses a reduced complexity model 

to predict the small signal circuit performance. This approach is efficient to analyse 
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linear circuits  is considerably faster than using a SPICE-like simulator. The rest of 

the performances (other than small signal) are computed from circuit equations. 

 

Simulated annealing is used to solve the optimization problem. The constrained 

optimization formulation given in equation 2.1 is solved in an unconstrained fashion. 

Here, x  is the independent variable – size of semiconductor devices or passive 

components value that need to be find, )(xf  is a set of objective functions that need 

to be optimized, )(xg  is a set of constraint functions that specify the specifications 

and iw  is the scalar weight to balance the competing objectives. 

    

 Minimize   )(xfw ii  ,  0)( xg  (2.1) 

 

The constrained optimization formulation is converted to an unconstrained 

optimization with the use of additional scalar weights for the constraint parameters. 

As a results, the goals become a minimization of scalar cost function )(xC , defined in 

equation 2.2. 

 

  )()()( xgwxfwxC jjii                     (2.2) 

  

To solve the DC operating point for each perturbation of design variables, a relaxed 

DC formulation was used in this tool. Kirchhoff‘s Law was used to solve the DC 

operating point and this is included in the constraint function of the optimization 

formulation similar to Maulik [24] method. 

 

One drawback of this tool is the inability of AWE approach to model nonlinear circuit 

behaviour. Furthermore, the approximation of the circuit transfer function with a low-

order model limits the accuracy of the method. 

  

ANACONDA and MAELSTROM 

 

Both of these simulation-based techniques were developed at the Carnegie Mellon 

University in 1999 for MAELSTROM [30] and 2000 for ANACONDA [31]. The 

difference between these two is in the optimization algorithm. MAELSTROM uses a 
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combined genetic and annealing algorithm whereas ANACONDA uses a stochastic 

pattern search. 

 

The tools rely on three key concepts:  simulator integration, global search techniques 

and a parallelism approach to reduce the overall computation time where the 

searching tasks and circuit evaluations were distributed across a network of cluster 

workstations. 

 

The optimization formulation was adopted from the OBLX strategy where a 

constrained optimization formulation that is solved in an unconstrained fashion was 

used. As with OBLX, this technique introduce scalar weight values to the 

optimization formulation and the goal becomes minimization of a scalar cost function. 

 

The optimization engine in MAELSTROM is based on a combination of simulated 

annealing and genetic algorithm. The simulated annealing engine is called Anneal++ 

that offers a range of annealing cooling schedules, move selection techniques and 

dynamic update of the cost function weights. The genetic algorithm is used for the 

purpose of parallel search. The combination of genetic algorithm and annealing in this 

method is known as the Parallel Recombinative Simulated Annealing (PRSA) as 

proposed by Goldberg [32].  

 

ANACONDA uses a combination of population search of circuits with pattern search 

in finding the circuit solution. The pattern search method proposed by Torczon [33] is 

a direct-search techniques that sample cost function in a deterministic locus around a 

given solution point and use this sample to construct a deterministic direction and 

distance to a probable better solution. The combination of population search and 

pattern search helps the optimization engine to explore a diverse set of samples of the 

objective (cost) surface. 
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2.4 Optimization Techniques 

 

One of the key components in an optimization-based approach is obviously the 

optimization block. The function of this block is to optimize the design by searching 

for the best solution points which are determined by the design parameters. In this 

context, the purpose of the optimizer is to find the design parameters that will produce 

the best performance value. The process between the optimizer and the performance 

evaluator is an iterative one where the performance for a particular design parameters 

will be evaluated and the design parameters will be changed from run to run in order 

to improve the performance. The process will be continued until the optimization 

objective or stopping criteria has been met.  

 

Generally, with the rapid development in optimisation algorithms, the algorithms can 

be divided into two main categories: population based and single initial solution 

based. The difference between the two is the type of initial solution. Population based 

approach starts with a set of solutions called a population while single initial solution 

starts with one initial solution. Recently, an optimisation approach that uses a 

heuristic process consisting of many optimisation runs starting from different initial 

points has been proposed [34]. In this way, the optimisation process becomes a group 

of individual optimisation runs. The rest of this section will review some of the 

optimisation techniques that have been used for the circuit optimisation. 

  

2.4.1 Direct search Optimisation 

 

This section will discuss several optimisation methods known generally as direct 

search algorithms. Box et al [35] identified three main types of direct search 

algorithms: tabulation, sequential and linear methods. 

 

2.4.1.1 Tabulation Method 

 

In this method, a user chooses number of points either using a random tabulation or a 

grid tabulation strategy. The objective function is evaluated at each point and the 

point with the lowest function value is returned as the optimum solution. 
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2.4.1.2 Sequential Method 

 

In this method, a geometrical figure of the same dimension as the decision space 

(design variables) are created and the performance function  is evaluated at each of 

the geometrical nodes (vertices) in order to find the minimum point. Decisions are 

taken on the basis of comparing function values corresponding to the vertices of the 

geometrical figure. Evolutionary operation [36] was the first sequential method 

developed. This is followed by an improved algorithms known as simplex method  

[37]. The geometrical figure used in the simplex method has n + 1  nodes where, n 

represents the number of design variables. Thus, the simplex is a triangle for n=2, 

tetrahedron for n = 3 and hypertriangle for n > 3.  Once the figure has been 

determined, the performance is evaluated at each of the nodes and a convergence test 

is applied. The convergence is said to be met if the standard deviation of the function 

values at all vertices are less than a user-defined level (to be determine by trial and 

error).  

 

2.4.1.3 Linear Method 

 

This method involves a set of searching sequences along lines in the decision space 

and can be divided into two main categories : univariate search (and its derivatives) 

and Powell‘s method [38]  (and its derivatives). In univariate search, the optimisation 

starts with  user specified initial values of the n design variables. Each of the design 

variables will be evaluated one at a time to determine the performance function and 

the design variable will be adjusted until the performance function is minimised. The 

optimisation is stopped when a user-defined maximum iteration count is exceeded or 

the performance function at any point falls below a user-defined acceptance level. 

Even though the univariate search is simple to implement, it has two major 

limitations. Firstly, the search is carried out sequentially and secondly, the search 

procedure is completely deterministic which would generally result in a premature 

convergence to some relatively poor local minima [39]. In addition to that, the 

convergence rate is relatively slow as the minimum point is approached. The slow 

convergence rate is enhanced by introducing a pattern move algorithm [40] that 

involves two procedures: the exploratory move and pattern move. In the exploratory 

move, a fixed user-defined increment is applied to the initial points. The performance 
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function is evaluated at this new points with the increment. If the performance is 

minimised, the incremented point will be the new base point. Following a successful 

exploratory move, a pattern move procedure is performed where both the previous  

base point and the new base point are connected and used as the new searching 

direction. Even though the pattern move algorithm improves the convergence rate, 

there are several other methods that have been developed to improve the efficiency of 

the algorithm. Bandler introduced `Razor Search‘ [41], in which a second increment 

size is added if the initial increment manage to minimise the performance function. 

This new increment size is related to the distance between the previous two base 

points. A second-order pattern move was proposed by Massara and Fidler [42] that 

involves the use of original pattern move followed by a searching along a quadratic 

curve fitted to the last three base points. Emery proposed the `spider search [43]‘ 

which performs the exploratory move in a randomly selected sets of orthogonal 

directions. 

  

2.4.2 Gradient-search Optimisation 

 

Gradient methods involve the use of first and/or higher derivatives of the objective 

function to determine a suitable search direction.  There are three main categories  in 

this method: steepest descent (the use of first order derivatives), Newton‘s method 

(second-order derivatives) and quasi-Newton methods. 

 

2.4.2.1 Steepest Descent Method 

 

The steepest descent method (SDM) [44] is a gradient search method where it uses the 

derivatives to find the downhill direction of the objective function. To find a local 

minimum to an objective function, from a starting point, a search is conducted for a 

minimum points towards the negative gradient of the function. This method was used 

in one of the earliest reported applications of optimisation to electronic circuit design  

for the design of lossy ladder filters [45]. The method of steepest descent is defined by 

the iterative algorithm based on equation 2.3. 

kkkk gxx 1                                      (2.3) 
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Where k  is the scalar for function minimization. In this equation, the starting point 

of the minimization is kx  and from this starting point, a search is conducted along the 

direction of the negative gradient kg  to find the minimum point on this line. The 

minimum point is denoted by 1kx  . 

 

The steepest descent method or gradient method has several disadvantages searching 

for optimal solutions. Firstly, the convergent speed of the method is slow due to the 

step size in the searching process in a single line search. Furthermore, the derivation 

of a system function is difficult and prone to approximation errors [46]. Also, the 

solution may not be the global optimum solution for the problem. The reason for this 

is that the method will only converge to a local minimum based on the starting point. 

Hence, for a poor initial starting point, the resulting solution may be far from the 

global minimum. 

 

2.4.2.2 Newton’s Method 

 

This is one of the most widely used optimisation method based on gradient calculation 

[47]. In this method, from an initial guess x
o
, a correction vector, Δx is determined to 

find the minimum point, x
min

 of a quadratic function. From a Taylor series expansion 

and differentiation, an expression for x
min 

as given in equation 2.4 is obtained where g 

is the first partial derivative and H is the  

 

)()( 1min ooo xgxHxx    (2.4) 

 

Hessian matrix of the second partial derivatives. From this expression, a new point 

x
r+1

 is derived and determined according to a user-defined line search strategy.  

 

The Quasi-Newton method is based on Newton‘s method but without the explicit 

evaluation of the Hessian matrix and its inversion, which may cause divergence. The 

quasi-Newton methods use an approximation to the Hessian inverse [48]. Thus the 

Hessian inverse, H
-1

 is replaced by H
r 

representing the approximation after r 

iterations.  
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2.4.3 Simulated Annealing 

 

The simulated annealing optimisation method was investigated by KirkPatrick et. al 

[49]  in 1983. It uses the mathematical analogy of heating and controlled cooling 

processes to solve for an optimal solution. The proposed method is based on a 

procedure to make the strongest possible glass. The procedure starts with heating the 

glass to a high temperature so that the glass is liquid (atom move freely). Then, the 

temperature of the glass is slowly lowered so that the atom can move and relax into a 

stable condition. The slow cooling process is known as annealing. 

 

The equation for the probability of a system to be at the energy level, 0E  is given by 

equation 2.5. 

 








 


)(

)/
exp)( 0

0
TZ

TkE
E B                                (2.5) 

 

Where Bk  is the Boltzmann constant, T the temperature and )(TZ  is a normalizing 

function. 

 

The standard simulated annealing (SA) procedure starts with generating an initial 

solution randomly. A new solution is generated by perturbation of the previous 

solution. The objective function value of the new solution is evaluated and compared 

with the previous solution. A move is made to the new solution if it has a better value 

than previous value or the probability function )(E is higher than a randomly 

generated number. Otherwise a new solution is generated and evaluated. Simulated 

annealing employ uphill moves to avoid local minima. Therefore, the method has a 

better capability to find a global optimum solution in a given problem. 

 

2.4.4 Genetic Algorithm 

 

The Genetic (or Evolutionary) Algorithm is one of the stochastic methods that is 

widely used in optimization. Stochastic methods incorporate probabilistic (random) 

elements in the algorithm. This approach is based on the mechanics of natural 
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selection and natural genetics where they combine the fittest individuals among the 

population in order to search for the best individual [32].  

 

The random nature of Genetic Algorithms may not find the absolute best solution, but 

it has a greater chance of finding a good solution, quickly, for difficult problems [50]. 

On top of that, Genetic Algorithms are a population based algorithm making it a 

suitable candidate to search for a several optimal solutions in one run.  

 

The algorithm consists of several stages including coding the problem (chromosome 

representation), generating initial population, evaluating fitness function, crossover 

and mutation. It starts with a randomly generated population which will be evaluated 

and scored according to the performance. From this population, the next generation 

will be bred using selection and recombination procedure to produce new offspring. 

As with genetic of living organisms, combination of two good individuals often will 

produce offspring that are better adapted to the environment, thus having a better 

fitness score. A small mutation probability is then added to the new offspring. This is 

the stage that mimics the mutation that happens in living organisms. In nature, 

mutation happens when the genetic of the organism is accidentally changed that will 

change the DNA of the individual. In this algorithm this situation is carried out by 

selecting few genes in the chromosomes and randomly changing them to a new gene 

but the mutation occurs depending on the probability that has been defined. As in 

biological systems, the mutation adds new variation to the population. Once the new 

generation has been generated, the whole process will be repeated until the final 

number of iterataions or stopping criteria is met. Figure 2.3 shows a flowchart of the 

algorithm. 
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Figure 2.3: Flowchart of Genetic Algorithm 

 

Prior to the optimisation, several parameters of the genetic algorithm need to be 

specified. The parameter analysis is beyond the scope of this research as the objective 

of the research is to demonstrate the methodology that can be used to optimize the 

performance and yield of a system level design and the GA is a tool used for the 

optimization. Therefore, the parameter settings for the genetic algorithm presented in 

the thesis were chosen based on the DeJong [108] recommendation. However, in 

certain circuit examples, some of the parameters such as the population size might be 

different from the recommended setting in order to reduce the optimisation time.  The 

GA control parameters used in this thesis are shown in table 2-1. Figure 2.4 shows an 

example of an output report from a multi objective optimisation showing all the 

control parameters used by the GA.  

 



Chapter 2 Review of Analogue Circuit Design and Optimisation 32 

 

GA Parameter Setting 

Population size 50 
No. of generation 100 
Crossover type Single point 
Crossover probability 0.6 
Mutation probability 0.01 

 

Table 2-1: GA parameter setting 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Example of genetic algorithm report 

 

The population size parameter is the initial random number of individuals created for 

the optimisation. A large population will consume higher optimisation time whereas a 

small population can lead to a premature convergence which will reduce the ability to 

find the best solution. Even though a population size of 50 was used in most of the 

examples shown in this thesis but for a complex circuit such as PLL in chapter 7, 

smaller population size is used in order to reduce the optimisation time. The number 

of generations represents the number of iterations needed before the optimisation is 

terminated. However, convergence criteria can be added to the algorithm that can be 

used to stop the optimisation early if the criteria are met. An example of using a 

stopping criteria is shown in chapter 4. Crossover is a process of creating ‗offspring‘ 

from two individuals by swapping part of their chromosomes (GA string). This 

process is intended to simulate the process of recombination that occurs to the 

choromosomes during sexual reproduction in biology system. One of the common 

forms of crossover used in this research is single point crossover where a single point 

of exchange called crossover point is set at a random location in the two individual 

genomes. One individual will contribute all the parameters from before that point and 

GA PARAMETERS 

------------------------------------------------------- 

Population Size ->50 

No. of generations ->100 

No. of Functions ->3 

No. of Constraints ->0 

No. of real-coded variables ->11 

Selection Strategy is Tournament Selection 

Variable bounds are rigid 

Cross-over Probability ->0.600000 

Mutation Probability for real-coded vectors -> 0.010000 

Results in a file 
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the other will contribute parameters from after that point to produce an offspring. 

However, the crossover does not always occur and this is based on a determined 

crossover probability. The probability of crossover occurring in this research is set at 

0.6 or 60%. When there is no crossover, the parents are copied directly to the new 

population.  Another GA control parameter is called mutation. This process is used in 

order to make sure the individuals are not all exactly the same by changing one 

parameter from the GA string. The rate of the mutation occurs is controlled by the 

mutation probability. All the examples in this thesis use 1% or 0.01 mutation 

probability. 

 

2.4.5 Multi Objective Optimization 

 

Circuit performance is a function of designable parameters. The design goal is to find 

a parameter set solution that meets all the performance functions and any imposed 

constraints. The optimization formulation for more than one objective function is 

called multi-objective optimization which can be generally stated as given in equation 

2.6. 

Minimise / Maximise Mmxfm ,....2,1),(         

Subject to ,0)( xg j  Jj ,...2,1                             (2.6 )          

        

Where )(xfm  is the set of M performance functions and )(xg j  is the set of J 

constraints. In a design that involves multiple conflicting objectives there is not 

usually a single optimum solution which simultaneously optimizes all objectives. The 

outcome from multi-objective optimization is therefore a set of optimal solutions. 

 

The outcome of the multi-objective optimisation is a set of solutions that define the 

objective space with the number of dimensions equal to the number of objectives. 

Figure 2.5 shows the relationship between the parameter space and objective space. 

Each point in the parameter space is a solution that corresponds to a point in the 

objective space. The black curve on the objective space is called the Pareto front and 

all solution points lying on this curve are called Pareto-optimal solutions. Point B in 

the solution space is an example of a non-Pareto optimal point since a more optimal 
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solution exists, point (A). Several algorithms [51] for Multi-Objective Optimisation 

have been proposed and will be discussed in the following sub-sections. 
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Figure 2.5: Relationship between parameter space and objective space 

 

2.4.5.1 Weighted-based Genetic Algorithm 

 

One of the simple algorithms used for multi-objective optimisation is Weighted-Based 

Genetic Algorithm (WBGA) [51, 52]. In WBGA, all the performance measures are 

combined into a single objective using a weighted summation method as shown in 

equation 2.7. Wm is the weighting for each of the performance functions, fm. 

 

  Mmxfw mm ,...2,1),(                   (2.7) 

 

In WBGA, the weight of the summation is determined by Genetic Algorithm. This is 

done to overcome the problem of finding suitable weight parameters that normally 

associated with classical weight summation method.  

 

 

2.4.5.2 Non-dominated Sorting Genetic Algorithm-II (NSGA-II) 

 

NSGA-II [51] is one of the widely used evolutionary algorithms for multi-objective 

optimisation. This algorithm is categorized as elitist-based as it allows the elite 

individuals to be carried over to the next generation in order to ensure that the 

population‘s best solution does not deteriorate. In this way, a good solution found 

early on in the run will never be lost unless a better solution is discovered. 
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The algorithm starts by creating an offspring population Qt from a parent population, 

Pt. These two populations are combined together to form Rt ( the combination of Pt 

and Qt )of size 2N (N is the size of each population). Then, a non-dominated sorting 

approach is used to classify the entire population Rt. This step checks for non-

dominated points among the individuals and sorts accordingly. The next step is to 

generate a new population with size N and fill this population with solutions of 

different non-dominated fronts from the previous sorting. The filling starts with the 

best non-dominated front, followed by second best and so on. Since the population 

size is N which is smaller than the size of Rt which is 2N, not all fronts can be 

accommodated in the new population. All fronts that cannot be accommodated in the 

new population are discarded. Sometimes, there exists a condition where the last front 

has more solutions (individuals) than the available space in the population. In this 

case, a crowding distance metric is used to choose which members of the last front are 

placed in the new population. Figure 2.6 illustrates the strategy employed by NSGA-

II. Once the new population is filled with all fronts, the selection, crossover and 

mutation operators will be applied to this population to create new offspring and the 

whole process is repeated again until the final number of generations has been 

reached. The step-by-step algorithm flow in NSGA-II is outlined in figure 2-7. 

 

Pt

Qt

Rt

F1

F2

F3

Pt+1

Rejected

Non-dominated 

sorting

 

Figure 2-6: NSGA-II Procedure 
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NSGA Algorithm

- Generate initial random population, size N.

- Create offspring population.

- Combine parent and offspring population to form Rt. (Rt=Pt U Qt)

- Perform non-dominated sorting and identify fronts, Fi (i=1,2...etc)

- Set new population, Pt+1 = 0, and fill Pt+1 with Fi ,(Pt+1 U Fi) as long as |Pt+1|+|Fi|<N.

- Perform crowding sort and place most widely spread solution in Pt+1

- Create offspring populaiton Qt+1 from Pt+1 and repeat until last number of generation.

 

Figure 2-7: NSGA-II algorithm 

 

Other than WBGA and NSGA-II algorithms, there are several other evolutionary 

algorithm for multi-objective optimisation such as NPGA (niched Pareto genetic 

algorithm) [53] and SPEA (strength Pareto evolutionary algorithm) [54]. NPGA is 

based on a non-domination concept as NSGA-II and uses binary tournament selection 

for the selection procedure. The motivation behind the procedure is coming from the 

genetic algorithm (GA) theoretical studies [55] that show the advantage of tournament 

selection in terms of better growth and convergence properties. SPEA was proposed 

by Zitzler and Thiele [54] and is one of the elitist-based algorithm similar with 

NSGA-II. The elitism is introduced by explicitly maintaining an external population. 

This population contains a fixed number of the non-dominated solutions that are 

found in the beginning of a simulation. At every generation, newly found non-

dominated solutions are compared with the existing external population and the 

resulting non-dominated solutions are preserved. 

 

2.5 Statistical fluctuations in integrated circuit 

 

During the fabrication process of integrated circuit, the components and their 

interconnections are fabricated simultaneously in a series of process steps. Statistical 

variations in these processing steps lead to variations in the component parameters 

and hence in circuit performances. If the performance of the integrated circuits is 

measured, the results will be found to have deviated from the nominal (designed) 

values. The extent of this deviation may be such that the performances of the circuit 

fail to meet the specifications. This will result the manufacturing yield to be less than 

100%. 
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The manufacturing of integrated circuits often suffers from statistical fluctuations 

(variations) in the fabrication process. The variations can be divided into two types: 

inter-die (die-to-die) and intra-die (within-die) variations. As described in chapter 1, 

these fluctuations are getting worse in deep submicron process technology. It was 

reported that the magnitude of intra-die channel length variations has been estimated 

to increase from 35% of total variation in 130nm, to 60% in 70nm process [56]. 

Statistical variations can cause a failure in the manufactured circuit. These failures can 

be either catastrophic or parametric. Catastrophic failures cause a change or 

unexpected functionality to the circuit while parametric failures cause the 

performance of a circuit to deviate from the targeted value. The ratio of circuits that 

meets the specifications to the total number of fabricated circuits is called the yield. A 

low product yield implies a financial loss to the IC manufacturer and due to the high 

correlation between high yield and high profits, the yield has been a big concern. The 

design approach to maximize the yield during the design stage is known as Design for 

Yield or Design for Manufacturability (DFY/DFM). 

 

2.6 Parametric Yield Maximisation 

 

Yield maximisation techniques attempt to find a suitable set of nominal design 

parameters such that most of the circuit that are manufactured will meet the 

specifications of the performance functions. The performance space of a design is 

defined as a series of performance of interest by n  as given in equation 2.8. 

 

1( ,... )n
        (2.8) 

 

Parameter space is defined by the set of design parameters that determine the 

performances, by the pn vector as given in equation 2.9. 

 

1( ,..., )
pnp p p     (2.9) 
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A manufactured circuit  will be considered acceptable if all of its performances fall 

within acceptable limits (meet the specifications) which can be represented by 

equation 2.10. 

 

,L U

k k k      1,...,k n        (2.10) 

 

Where, L

k  is the low limit and U

k  is the upper limit. Equation 2.10 defines a region 

of acceptability, A in the n  dimensional performance space. The specifications 

determine a region in the performance space where the circuit is acceptable. Figure 

2.8 illustrate the acceptability region for a 2 dimensional performance space. 
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Figure 2.8: Acceptability region in performance space 

 

The circuit parameters, p can be modelled as functions of their deterministic nominal 

values, 0p and a set of random variables that characterize process variations,  , as 

given in equation 2.11. 

 

0( , )p p p       (2.11) 

 

The circuit performances can be modelled as a functions of the nominal parameter 

values and the statistical variations shown in equation 2.12. 
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0( , )p       (2.12) 

 

The region of acceptability in the variations space, 0( )A p consists of all the possible 

combinations of variations that can occur in the manufacturing of a circuit which 

specific nominal parameter values do not result in acceptable performance. The region 

of acceptability can be defined by equation 2.13. 

 

 0 0( ) | ( ( , ) )L UA p p         (2.13) 

 

The yield of a design can be calculated in the design parameter space or circuit 

performance space. In performance space, yield is formulated as given in equation 

2.14.  

 

  ( )
A

Y prob A f d



         (2.14) 

 

Where ( )f   is the joint probability density function (jpdf) of the circuit 

performance . In the parameter space, yield is defined by equation 2.15. 

 

  0( , )

p

p p

A

Y prob p A f p p dp     (2.15) 

 

However, the calculation of yield is complicated by the fact that in either space, one 

of the two elements is not known explicitly: the statistical variations are known in the 

device parameter space but not in the circuit performance space, whereas the 

acceptability region is known in the performance space but not in the parameter space 

[57]. This makes yield prediction and maximization a difficult task and both spaces 

have to be considered. There are two important aspects related to yield prediction 

analysis and maximisation: variation analysis (the impact of variation towards circuit 

performance) and variation-aware design (the method to maximise the yield of a 

circuit design). In order to maximise the yield of a circuit design, the variation of the 

design parameters and the impact it has over the circuit performances must be 

analysed. 
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2.7 Variation Analysis 

 

According to [58], analysis on the impact of variation to the circuit performance can 

be grouped into two main categories: worst case and non-worst case. In the first 

category, the analysis is done towards finding the circuit with the worst response with 

respect to the nominal value. The second category can be further divided into 

sampling and non-sampling methods. Method of moments, is one of the non-sampling 

methods which is based on the transformation of parameter tolerances into response 

tolerances. The objective of the transformation is to predict the distributions of the 

performance metrics based on the parameter distributions. The second category of 

non-worst case analysis, the sampling methods, are performance exploration 

techniques which perform circuit analysis at sample points in parameter space. The 

sample points may be chosen in a systematic (deterministic) manner as in simplicial 

approximation methods [61] and non-linear programming method [63], or randomly 

(statistically) as in Monte Carlo method.  

 

2.7.1 Worst Case Analysis 

 

The basis of this analysis is to identify the extreme (worst) values of performance 

resulting from the variations in parameter value. Since the only interested indication is 

the worst performance values, this technique does not requires the knowledge of the 

probability density function (statistical distribution) of the parameter values or the 

performance values. The procedure involves analysis of the worst case corners of the 

circuit performance based on some worst case combinations of the device parameters 

(e.g. slow-slow, fast-fast). The main drawback of this approach is that of identifying 

which combinations of the device parameters result in worst case corners [59]. 

Another limitation of worst case analysis is large overestimations of the circuit 

performance which is not suitable to predict the true relationship between the device 

parameter and their performance. [60] have systematically tackled the problems of 

worst case analysis for integrated circuits. They suggest to use worst case analysis in 

the intermediate stages of a design and only carry out worst case analysis of generic 

cell types and extrapolate to that of a larger proportion of the integrated circuit. On 

top of that, [60] suggest to treat process parameters as the basic component 

parameters. That is, starting from worst-case process parameters, worst-case device 
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parameters are obtained using a process simulator. The worst case device parameters 

are then fed into a standard circuit simulator to obtain the corresponding performance 

values. With the process simulator, Nasif et al. [60] proved that the approach manages 

to avoid over-pessimistic results.  

 

2.7.2 Simplicial Approximation 

 

Simplicial approximation [61] is a method that approximates the boundary of the 

region of acceptability by deterministic sampling of the design parameters. In order to 

develop the boundary of the acceptability region, a sufficient points in the parameter 

space is determined. From initial design parameters, a circuit simulation is carried out 

to determine the satisfaction to the performance specifications. A search for the 

boundary is carried by varying one of the design parameters while maintaining all 

others fixed. At each step in the search, a circuit analysis is carried out to determine 

whether the circuit pass or not. The search is undertaken in all direction from the 

initial design parameters. The process can be repeated as many times as necessary to 

obtain the required approximation to the acceptability region (a region where all the 

parameters pass the specifications). Once the approximate region of acceptability has 

been obtained, a location of the tolerance region for the design parameters is 

determined. The tolerance region is obtained from the probability density function of 

the design parameters. With the tolerance region, it is easy to determine for each 

sample points, whether it lies within or without the approximation of the region of 

acceptability. The yield is estimated by dividing the number of sample points that lie 

in the acceptability region over the number of samples points generated. The main 

drawback of simplicial approximation is that it requires the acceptability region to be 

convex and simply connected. Unfortunately it is not possible to ascertain whether the 

acceptability region and  performance specifications is convex or not. In addition to 

that, the computational cost of this approach is less only for a circuit with small 

parameter space (small circuit). With a bigger circuit (more parameters), the 

computational cost become high. This phenomena is termed as `curse of 

dimensionality 
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2.7.3  Monte Carlo Method 

 

In the Monte Carlo approach for variation analysis, the sample points in parameter 

space are generated in a random manner to simulate the actual manufacturing process. 

The method directly mimics the process of random component value selection 

(including the correlations) by generating component values according to the known 

component probability density functions. The distribution of sample points in the 

parameter space can be either uniform or Gaussion (normal) function. The N circuit 

samples generated are then simulated using circuit simulator and their performance 

checked against the specification. Thus, a Monte Carlo analysis is akin to 

measurement made on N actual manufactured circuits. The yield for the circuit can be 

calculated as the fraction of samples that pass the specification, Np over total number 

of samples, N. If N is sufficiently large, the yield provides a reasonable estimate of 

the yield that will be obtained from actual manufacturing process. As a rule of thumb, 

the number of samples is not fixed at the beginning. Instead, one or more 

performance-spread measures will be monitored and when no changes occur during 

the repeated simulations, the process can be terminated. One of the significant 

attributes of the Monte Carlo method is the accuracy of approach that is independent 

of the number of parameters. It is this property that allows Monte Carlo analysis to be 

employed for medium and large-size circuits.  

 

2.8 Variation-aware Design 

 

Variation-aware design deals with a design method to reduce the impact of process 

variations on the circuit performance. Generally, the approach for tolerance design 

can be divided into two phases [47]. First, the optimisation method (described in 

section 2.4) is used to find the nominal values of the parameters that will give the 

nominal optimum response. This phase is called the nominal-design phase. Several 

approaches have been developed for the nominal design that use analytical methods or 

simulation-based methods as described in chapter 2 in this thesis. In [62], the 

parameter distance that considers both the performance distance from the 

specifications and its sensitivity with respect to the design and operational parameters 

is used as the objective to find the optimum nominal design for the circuit. After the 

nominal design parameters has been solved, the tolerance of the parameters are 
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determined from the response tolerance. Variation-aware design tries to minimise the 

impact of the parameter tolerances to the responses or performances. The method can 

be seen as an approach to maximise the yield of a circuit design which can be divided 

into two main categories : indirect and direct. The key difference between these two is 

the way the yield is considered in the design stage. The direct method considers yield 

as one of the objective function whereas indirect method does not.  

 

2.8.1 Direct Method 

 

Direct methods maximize the yield directly by employing yield as the objective 

function. Traditionally, this maximization is done at the end of the design process. In 

integrated circuits, yield can be expressed as multi-dimensional integral which can be 

evaluated numerically by Monte Carlo based methods. Monte Carlo simulation is the 

most straightforward statistical approach to predict the yield. In a Monte Carlo 

approach, the sample points in parameter space are generated in a pseudo-random 

manner to simulate the actual manufacturing process. For each sample, a SPICE 

simulation is performed and the resulting performance data sets are combined to 

derive the statistical distribution of the circuit performance as explained previously. 

 

Monte Carlo analysis for a circuit design requires at least a circuit topology, device 

models and variations and mismatch model of the device parameters in the form of 

probability density functions (PDF). The process and mismatch model normally is 

given by the device vendor through their design kits. The set of values for the various 

device parameters are selected via a pseudo-random process from the known PDF. A 

circuit simulation is used to predict the performance of the circuit made up from the 

randomly selected set of parameter values. The procedure of random parameter 

selection and circuit simulation is repeated a number of times, and the parameter 

values and the corresponding predicted performance are recorded. The yield of the 

circuit would be found by comparing the predicted performance with the 

specifications, and establishing what fraction of the circuits satisfied the 

specifications. 

 

One of the main advantages of Monte Carlo method is its dimensional independence 

characteristic [64]. What this means is that, the sample size required by random 



Chapter 2 Review of Analogue Circuit Design and Optimisation 44 

 

sampling is independent of the dimensionality(independence to the number of design 

parameters). For a comparison, the number of circuit simulations required for 

simplicial approximations is roughly exponential to the number of design parameters. 

This means in simplicial approximation, the number of circuits simulations is 

extremely large for a large circuit. This is not the case for Monte Carlo method. 

 

In addition to that, the Monte Carlo method is very useful in hierarchical design for 

the purpose of exploring sub blocks performance variations. In a system level view, a 

design may be partitioned in to several sub blocks which can be realized by separate 

circuits. Generally, no specific performance requirements would have been placed on 

theses sub blocks, so the question of yield is not directly relevant to the sub blocks. 

One would have to estimate the performance spreads associated with the various sub 

blocks, perhaps with an initial allocating of allowed spreads among the properties of 

sub blocks and explore the trade-offs among them. In this case, Monte Carlo would be 

useful for its ability to provide estimates of the various performance distributions. 

 

The disadvantage of the Monte Carlo method is the requirement to perform circuit 

simulations at every Monte Carlo point that would result to a very high computational 

cost. Several methods have been developed to reduce the computational cost. One of 

them is by using response surface method proposed by [65]. This two step method 

starts with parameter space sampling (as with the Monte Carlo method) with 

controlled simulations according to some design-of-experiments (DOE) scheme. For 

each performance characteristics, a response surface is then constructed by fitting a 

simple function of the device parameter to the simulated performance data. By initial 

screening, unimportant device parameters can be eliminated. In the second step, the 

evaluation of these simple response surface models analytically replaces full circuit 

simulation during the yield calculation. The limitation of this approach is the accuracy 

that is highly depend on  the response surface models. 

 

2.8.2 Indirect Method 

 

The indirect method does not define yield as the objective function, hence the 

maximization towards yield is done indirectly by other alternative objective functions. 
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One example of indirect method for variation-aware design is design centering [66]. 

Several design centering algorithms based on statistical [67, 68] and deterministic 

methods [69, 70] have been proposed. This method attempts to place the nominal 

design in the centre of the acceptability region. Figure 2.9 shows how yield 

maximization is achieved by  moving the parameter tolerance region towards the 

centre of the acceptability region. In this figure, P1 and P2 are the parameters, RT is the 

region of tolerance of the parameters and RA is the acceptability region of the design. 

By adjusting the nominal values of the parameters so that the region of tolerance can 

be moved towards the centre of the region of acceptability, the yield can be increased.  

 

P2

P1
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Old RT
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Figure 2.9: Design centring to maximize yield 

 

Another design centering approach that indirectly optimizes the yield was proposed 

by [63]. Instead of geometric approximation, this approach explicitly approximates 

the acceptability region boundaries by the performance specifications. The author 

approximates the circuit performances based on quadratic function determined by an 

interpolation method. A nonlinear programming approach was used to optimize the 

performance function of a circuit with a minimum yield constraint. 

 

2.9 Integrated Yield Optimization in Circuit Synthesis 

 

Most of the earlier approaches in analogue circuit design consider yield as a separate 

step in the optimization process.  In general, the synthesis starts with nominal-circuit 



Chapter 2 Review of Analogue Circuit Design and Optimisation 46 

 

design to meet the requirements and in the next step, the yield was evaluated and 

optimized by changing the nominal values. It is a great challenge to incorporate yield 

optimization as an integrated part of the circuit synthesis due to the large 

computational effort needed for such optimization. There have been several attempts 

with regards to the integration of yield in the optimization formulation. Some of these 

attempts will be discussed in this section. 

 

2.9.1 ASTRX/OBLX Extension 

 

The first attempt in this direction was proposed by Mukherjee [5]. In this approach, 

the author combines the statistical parametric variations, operating point variation and 

analogue circuit synthesis to form a system that can synthesize manufacturable 

analogue circuits. Mukherjee extended the synthesis strategy of ASTRX/OBLX to 

include operating range and parametric manufacturing variations to the methodology. 

The Non Linear constrained optimization Problem (NLP) formulation in 

ASTRX/OBLX is extended to a Non-Linear infinite programming (NLIP) 

formulation. The mathematical programming approach used is called infinite 

programming because of the infinite number of objective functions due to the 

inclusion of variation range in the objective functions. This approach employs worst 

case corners as the method to optimize the circuit design for performance and yield. 

 

2.9.2 Simultaneous Yield and Robustness Optimization 

 

In order to reduce the computational overhead of yield optimization, Debyser [6] 

proposed a technique that based on symbolic equations [71] and constraint satisfaction 

approach [72] to derive sizing plan and yield estimation plan for the optimization. 

Both plan (sizing and yield estimation) are simultaneously evaluated in the inner loop 

of a global optimization routine. The result of the optimization is a circuit design point 

that fulfills all the specifications and at the same time has pushed away the 

performances from specification boundaries under the influence of the yield.  

 

The sizing plan of the analogue circuit is derived from a declarative analytical model. 

This model can be obtained through symbolic methods on the circuit‘s graph 

topology. For the yield estimation plan, a reduced set of independent technology 
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parameters is derived from a statistical transistor model. Then, a nominal design point 

and the variance of all performance parameters with respect to the reduced set of 

technology parameters are calculated. Using the perforamance variances, a yield 

representation based on two capability indices, Cp and Cpk is developed. Both of the 

indices strongly depend on the variance of the performances. Both of the sizing plan 

and yield estimation plan are used in the inner loop of the optimization routine to 

search for the best solution for performances and yield. 

 

2.10 Summary 

 

Due to the increasing demand for the design cycle time reduction for analogue circuit 

design, it has attracted huge interest among research community towards analogue 

circuit design automation. This chapter reviews some of the research works that have 

been devoted to the development of automation tools for analogue circuit. The 

automation tool development can be divided into 3 techniques namely, Knowledge-

based, analytical-based and simulation-based. All of the techniques have advantages 

and disadvantages and quite often, the decision is made based on the trade-off 

between speed and accuracy. One of the important blocks in optimisation-based 

approach is the optimisation technique. Some of the optimisation techniques including 

multi-objective optimisation were discussed in the second part of the chapter. Another 

important subject in analogue circuit design is the impact of process variations to the 

circuit performances. The last part of the chapter reviews some of the techniques that 

have been used to consider the process variation in the design stage and optimise the 

circuit yield. All the discussions in this chapter provide the fundamental 

understanding in the motivation behind the technique used for the work presented in 

this thesis. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

Chapter 3 

 

Review of Circuit Simulation and Modelling 

 

3.1 Introduction 

 

One of the important components for the simulation-based optimisation design 

technique reviewed in previous chapter is the circuit simulator. This chapter discusses 

the fundamentals behind circuit simulation including type of analyses involved and 

device modelling related to the simulator.  

  

Computer-aided simulation is a powerful aid during the design or analysis of VLSI 

circuits and is considered as an essential step in the design of modern integrated 

circuits. In circuit simulation, a simulator is used to solve non-linear ordinary 

differential equations that describe the behaviour of the system. The mathematical 

equations that describe the component behaviour is called a model. The simulator 

interprets  the list of individual models and construct a matrix of equations for the 

complete system to be solved. The most widely known and used circuit simulation 

program is SPICE (simulation program with integrated circuit emphasis) [73].  
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3.2 Analogue Circuit Simulation 

 

Circuit simulation is a method whereby electric circuits are modelled using 

mathematical equations representing individual elements that to be solved to 

determine the function of the circuit. This section reviews the key concept involved 

for analogue circuit simulation. 

 

3.2.1 Circuit Neltlist 

 

In circuit simulation, a system is described as a list of individual models, called a 

netlist. The netlist provides a description of the topography of a circuit and is simply a 

list of elements that make up the circuit. The individual model represents all the 

elements in the circuit diagram. Circuit nodes are formed whenever two or more 

elements meet. Figure 3.1 and 3.2 show a circuit diagram for a differential pair 

topology and the netlist of the circuit respectively. 
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Figure 3.1 Circuit diagram for differential pair 
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Figure 3.2 Netlist for differential pair 

 

In SPICE, the circuits are represented by a system of ordinary differential equations. 

These equations are solved using several different numerical techniques. The 

equations are constructed using Kirchhoff‘s voltage and current laws (KVL and 

KCL). KCL is used to solve the current flowing into each node. One equation is 

written for each node in the circuit except for ground node. Normally, the ground 

node in circuit netlist is numbered as zero. KVL  is used to represent the voltage 

source or inductors elements as a function of the branch voltage in a circuit design. A 

loop equation based on KVL is written around each voltage source or inductor. 

Therefore, the total number of equations to be solved in circuit simulation is the 

number of nodes plus the number of voltage sources. 

 

3.2.2 Types of Analysis 

 

In circuit analysis, there are three types of analysis that are commonly used: DC, AC 

and transient analysis. DC analysis is used to examine the steady-state operation of a 

circuit. It tells about the voltages and currents if the inputs were held constant for an 

infinite time. AC analysis is used to examine circuit performance in the frequency 

domain and transient analysis is performed in the time domain and it is 

computationally intensive compared to the other two analyses.  
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3.2.2.1 DC Analysis 

 

DC analysis calculates the steady-state response of a circuit (with all inductors shorted 

and capacitors opened). There are several analyses that can be done in this type 

including operating point analysis (.OP), DC solutions over the range of input 

condition (.DC) and small signal DC transfer function (.TF). Operating point analysis 

is used to determine the DC bias point (Q-point) of the circuit. .DC statement is used 

to sweep the specified voltage source over specified range while determining the DC 

bias point. 

 

To calculate the DC solution,  Kirchoff‘s equations need to be solved. However, due 

to the non-linear characteristics of the circuit elements, a non-linear solution 

technique such as Newton‘s method [47] is used. The basic Newton‘s method formula 

is given in equation 3.1 where F(X) = 0 is the equation to be solved, where both F and 

X are vectors of dimension N. (F is the system equations from modified nodal 

analysis, and X is the vector of voltages and current that are solving for). X
i
 is the 

initial value of X and X
i+1

 is the value of X a the next iteration. The term J is a NxN 

square matrix of partial derivatives of F, called the Jacobian [74]. 

 

)(.11 iii XFJXX      …………………….(3.1) 

 

The equation is used iteratively until the vector x converges to the correct solution. 

Most of the works in calculating the solution is involved in calculating J and its 

inverse J
-1

. Simulator programs such as SPICE may require 50 or more iterations to 

achieve convergence. This is normally depends to the initial value. For a poor initial 

value, the convergence is not obtained until the last few iterations. 

 

3.2.2.2 AC Analysis 

 

AC analysis is used to calculate the frequency response of linearized behaviour of a 

system. The analysis is useful for calculating frequency domain function such as  

gain, 3db frequency, phase response and others. In this analysis, all signals are 

represented as a DC component, Vdc plus a small sinusoidal component, Vac. The 
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steps in AC analysis start with calculation of DC operating point of the circuit. A 

linerized circuit is constructed at this Q-point. This is done by replacing all the 

nonlinear elements with their linearized equations and all inductors and capacitors are 

replaced by complex impedances. Nodal analysis is then used to reduce the circuit to a 

matrix form and can be solved using Gaussian Elimination to calculate the node 

voltages. 

 

3.2.2.3 Transient Analysis 

 

Transient analysis is one of the powerful circuit analyses and justifies the benefit of 

circuit simulator due to the difficulity to analytically calculate the transient response 

of a circuit [75]. This analysis can be used to analyse many circuit characteristics in 

the time-domain such as distortion, switching speed, slew rate and others. It is also the 

most CPU intensive and takes longer simulation time compared to AC or DC analysis. 

 

In a transient analysis, time is discretized into intervals called time steps. Typically, 

the time steps are of unequal length, with the smallest steps being taken during 

intervals where the circuit voltages and currents are changing more rapidly. The first 

step performed by SPICE in transient analysis is to compute the initial DC or bias 

point condition with the assumption of voltage across capacitors is zero, current 

through inductors is zero and the value for dependent sources is zero. Once the initial 

bias point has been calculated, iterative numerical techniques are used to obtain a 

solution. One example of a numerical method employ by SPICE is the Trapezoidal 

Method. Trapezoidal method uses one past time information to calculate the next time 

point solution. For example, using trapezoidal method, the current, I in capacitor in 

the next time step is given by 3.2. 
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Where h is the time step given by kk tth  1 . All modern circuit simulators feature 

automatic time step control so that the time step is allowed to be variable during 

simulation. This feature selects small time steps during intervals where changes are 
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occurring rapidly and large time steps in intervals where there is little change. This 

will improve the efficiency of the simulation with regards to the computing power 

requirement. 

 

3.3 Modelling Theory 

 

3.3.1 Definition of a Model 

 

In circuit simulation, a model represents physical elements of a system that are to be 

studied or simulated. For example, an amplifier may contain several elements and 

during circuit simulation, these elements are represented by their own model such as 

transistor model, resistor model and capacitor model. The model consists of a set of 

equations and parameters that characterize the exact behaviour of the physical element 

between the connection points. Figure 3.3 shows how a resistor can be modelled in a 

circuit simulation. This model represents the resistor behaviour in term of voltage and 

current between the connection points. 

 

 

n1 n1

 

V(n1,n2) = I(n1,n2) x R 

 

Figure 3.3: Resistor Model 

 

The SPICE circuit simulator has a number of built-in elements such as resistors, 

capacitors, inductors, voltage and current sources, MOSFETs, BJTs and others. For an 

active element like a MOSFETs, the model contains a number of parameters that 

represents the transistors. This model with the set of parameters is used in a circuit 

simulator to simulate how a particular circuit will behave. The accuracy of the model 

depends on how closely the model matches the actual behaviour of the transistor.  

 

 



Chapter 3 Review of Circuit Simulation and Modelling 54 

 

3.3.2 Device Modelling 

 

Active elements in a circuit, such as a transistor, contain a set of parameters that 

characterise the behavioural of the element. This set of parameters is called device 

model. A number of MOSFET device models have been provided over time with the 

simulator program, SPICE. This section concentrates on the standard MOS models 

provided by UC Berkeley‘s SPICE program because these models have become the 

standard models used by most circuit simulator programs. 

 

3.3.2.1 MOS Levels 1, 2 and 3 

 

These are the earliest MOS device models that come with SPICE program. Level 1 is 

a first order model and is rarely used. Level 2 and 3 are the extensions of level 1 

model and have been used extensively [75]. Level 2 and 3 contain small number of 

parameters and suitable for circuit simulation down to 1µm channel length. There are 

a lot of limitations in these models for analogue application due to the lack of certain 

parameters such as Gds (derivative of drain current with respect the drain voltage) and 

mobility degradation. Newer models have to be developed to increase the number of 

parameters that can accurately describe the component behaviour.  

 

3.3.2.2 Berkeley Short-Channel Igfet Model (BSIM) 

 

To overcome the shortcomings of level 2 and 3, the BSIM models were developed. 

The main difference between BSIM models and level 2 and 3 is the approach in 

incorporating the geometry dependence [75]. In level 2 and 3 models, the geometry 

dependence is built in directly into the model equations while in BSIM models, each 

parameter is written in terms of combination three terms given by equation 3.3 
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Where 0Par  is the zero order term, LPar  is for the length dependence of the 

parameter, WPar  is for width dependence and effL  and effW  are the effective channel 
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length and width respectively. On top of that, the number of parameters for BSIM 

models is larger than level 2 and 3. 

 

The original goal for BSIM model is to fit better than level 2 and 3 for submicron 

channel length technology. However, the shortcomings of the early BSIM model are 

the inability to fit over a large number of geometry variations and there is still no Gds 

parameter in the model that is needed for analogue application. BSIM2 model was an 

extension of BSIM model that was developed to address the limitations. BSIM2 

model includes parameters to model the Gds in transistor and with several other 

modifications, BSIM2 model fit better compared to BSIM model. However, BSIM2 

model comes with more than twice as many parameters as BSIM. Even with all the 

extension, it still does not address the problem of fitting large geometry variations 

faced by previous model. Due to the shortcomings of BSIM2 model, Berkeley 

introduced the BSIM3 model. However, BSIM3 is not an extension of the BSIM2 

model, but it is entirely new model and in some sense is more related to level 2 and 3 

models. BSIM3 revert back the geometry dependence into incorporating directly into 

the model equations as level 2 and 3 models. It is still an evolving model where it can 

be modified to fit better and improve the accuracy. One of the  models in BSIM3 

variants is BSIM3v3 and this is the type of model used in the design examples shown 

in this thesis. 

  

3.3.3 Hardware Description Language (HDL) modelling 

 

One of the advantages of HDL modelling is the capability to represents the system at 

various levels and is often considered as a multi-domain language. As discussed 

earlier, SPICE models ares used to represent a system in a circuit level which is the 

lowest level in the circuit design. HDL language such as Verilog-A were designed to 

be compatible as an extension of SPICE to represent the system at multiple 

abstraction level including circuit level [76]. 

 

Mathematical equations can be entered directly into Verilog-A language as well as 

SPICE-like circuit elements. Equations can be used to construct new models for 

electrical devices. Behavioural models and structural models can be constructed to 

model complex circuits such as op-amps, Voltage Control Oscillators, Phase Lock 
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Loops, etc. The behavioural simulation can be done in a small fraction time compared 

to circuit level simulation. With  special interface elements, it is possible to connect 

an analogue block to a digital simulator, making mixed-mode simulation possible. 

The analogue behavioural capability allows the designer to span the abstraction levels, 

allowing direct access to the underlying technology while maintaining the capability 

of system-level modelling and simulation. As such, the analogue and mixed-signal 

system can be described and simulated at a high-level of abstraction early in the 

design cycle to facilitate full chip- architectural trade-offs. 

 

In general, a system consists of interconnected components or blocks that output a 

response based on given stimulus or input. Verilog-A allows the system of analogue 

and mixed-signal to be described in terms of circuit components and modules. A 

structural description in Verilog-A is a description where another modules are 

instantiates or called within its definition. 
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Figure 3.4: Typical hierarchy level in analogue circuit design 

 

Structural description allows the designer to pass the parametric specifications and 

connections throughout the levels of hierarchy in the design. Figure 3.4 shows a 
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typical hierarchy level in analogue circuit design. This figure shows the hierarchy 

design for analogue to digital converter (ADC) that consists of several levels of 

hierarchy moving from functional blocks to individual transistors. In hardware 

description language, the structural description of ADC can be made by instantiating 

all other modules underneath it.  

 

In a module, analog and mixed-signal circuits can be described in a behavioural 

description. The descriptions in a module are the mathematical equations that mapped 

the input signal to the output. For example, equation 3.4 shows a behavioural 

description of output voltage that is described as the multiplication of the input 

voltage and gain parameter. Once the behavioiural model has been completely 

described, SPICE simulator such as Cadence Spectre and HSpice can be used to 

simulate the behavioural system n a similar way as circuit simulation.  
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3.4 Summary 

 

The circuit simulator plays an important role in simulation-based design and it is one 

of the major factors that contribute to the high computational cost of the technique. 

The accuracy of the simulator highly depends on the model that being used during the 

simulation. An accurate device model will provide accurate simulation but with the 

expense of design speed. The computational cost is worsening for a large analogue 

system. Therefore, hierarchical-based design and behavioural modelling have been 

used to overcome this limitation. Both of the hierarchical-based design and 

behavioural modelling will be used for various design examples in the thesis. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 4 

 

 

Yield Optimised Design 

 

4.1 Introduction 

 

One of the big challenges faced by analogue circuit designers in a deep sub-micron 

design is the process variations which cause the designed circuit to deviate from its 

nominal performance and thereby result in a low yield. The impact of the process 

variations to the analogue circuit has been discussed in chapter 2. Due to the close 

relationship between higher yield and higher profit, this problem has became a major 

concern in circuit design and led to early consideration in the design process , a 

technique termed as Design For Yield (DFY) [77].  

 

The research focus for analogue integrated circuit automation often requires a trade-

offs to be made between speed and accuracy. The simulation-based optimisation 

approach offers a great accuracy at the expense of design time while an analytical 



Chapter 4 Yield Optimised Design  59 

 

approach is fast but suffers from accuracy limitations. The same can be said for yield 

optimised design where an approximation based approach is fast but lacking accuracy, 

compared to a Monte Carlo simulation based approach which produces high accuracy 

results at the cost of computational time. 

 

The complexity and variability associated with modern deep sub-micron transistor 

technology, has motivated this research to choose a high accuracy approach. A higher 

accuracy method produces a product that meets the specifications and at the same 

time promises a higher yield. This has also motivated the simulation-based 

optimisation approach that to overcome the failure of other approaches to translate the 

designed circuit into practical use [31]. Therefore the works presented in the 

remaining of this thesis are primarily based on simulation-based optimisation and 

Monte Carlo simulation methods. 

 

This chapter will address the integration of yield performance parameters to the 

simulation-based optimisation methodology for analogue circuit design. The chapter 

starts with a modification made to the simulation-based optimisation algorithm to 

include Monte Carlo simulation as part of the design flow. This approach is compared 

to other yield optimisation approach in order to demonstrate the advantage given by 

the proposed method. In order to reduce the simulation time, the method is improved 

by introducing a multi-objective optimisation approach in the design flow. The 

improved yield optimisation methodology is then compared with NeoCircuit [10], a 

commercial circuit optimiser and will demonstrate the advantage of the MOO 

approach. The concept of yield optimised-design through Multi-Objective 

Optimisation and Monte Carlo simulation introduced in this chapter provides the key 

components to the works presented in this thesis. 

  

4.2 Integrated yield optimised model 

 

In yield optimised design strategy, yield is integrated as one of the performance 

functions. This strategy is modelled as illustrated in figure 4-1.  
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Figure 4-1: Integrated yield optimised model 

 

The model shown in figure 4-1 is based on the simulation-based optimization 

approach with a small modifications in the performance evaluation block. As 

discussed in chapter 2, the performance evaluation block is a SPICE simulation that 

will simulate all the performance functions including the yield of a design. The yield 

is estimated using Monte Carlo simulation incorporating all the process variations and 

mismatch model of a particular technology. All the performance functions and yield 

results from the simulations are added together using a weight-summation method in 

order to find the total cost function. This is similar to the conversion of constrained 

optimisation formulation to unconstrained fashion employs by various simulation-

based techiwques. The total cost function will be used by the optimizer block as the 

score indicator for the individuals (set of design parameters). The optimizer block will 

iteratively generate design parameters using Genetic Algorithm to optimize/improve 

the total cost function until convergence criteria is met. The convergence criteria is 

met when in a single generation, the mean of the total cost function closely match 

(within 0.5% different) with the value of the best total cost function as explained in 

chapter 2. At the end of the optimization, a circuit solution is found that gives the best 

trade-offs among the performance function and at the same time able to achieve 

higher yield. 
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4.3 Design Example for Yield Optimised Model 

 

This section demonstrates the model introduced previously with a simulation of 

circuit example. The proposed method was applied to a Symmetrical-OTA circuit 

topology. The OTA was chosen as the case study because it is a fundamental block 

that is widely used in numerous analogue circuit design applications. 

 

4.3.1 OTA design and objective functions 

 

The chosen circuit topology is shown in figure 4-2. It consists of differential input, 

current mirror and single ended output stage. Transistor pair M1, M2 is a current 

mirror that provide the current source for differential input pair M4,M5. Drain current 

of M4 is mirrored to drain of M9 by current mirror pair M7,M9 and drain current of 

M5 is mirrored to drain of M6 by current mirror pair M10,M8 and M3,M6. Since a 

matching transistor size is very important in differential pair and current mirror, all 

the transistors are grouped as pairs. This is to ensure the size of the transistor 

generated by the optimizer is same for both of the transistor in the pair. 
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Figure 4-2: Symmetrical OTA topology 
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In this example, there are 4 transistor pairs that need to be sized make up a total of 8 

designable parameters. Transistors M1 and M2 in this example are fixed since this is 

simply a mirror for the current source. There are 8 performance functions to be 

optimized including the overall yield. Table 4-1 shows the performance functions and 

their specifications. 

 

Performance function: Specification: 

Open Loop Gain > 50db 

Phase Margin > 60 deg 

GBW >15 MHz 

Voltage Offset < 15mV 

Slew Rate > 15 V/µs 

Power Minimized 

Area Minimized 

Yield Maximized 

 

Table 4-1: Performance functions and specifications 

 

The designable parameters are constrained to a reasonable range so that the total area 

of the design will not exceed 2mm
2
 in size. This defines the decision space of the 

optimisation. The range of the designable parameters is shown in table 4-2. 
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Design Parameter: Range: 

W1   (M5,M4) 10um - 60um 

L1    (M5,M4) 0.12m - 4m 

W2    (M7,M9) 10um - 60um 

L2    (M7,M9) 0.12m - 4m 

W3   (M10,M8) 10um - 60um 

L3    (M10,M8) 0.12m - 4m 

W4    (M3,M6) 10um - 60um 

L4   (M3,M6) 0.12m - 4m 

Wg1-Wg8   (weight) 0.1 – 1.0  

 

Table 4-2 Design Parameters 

 

As mentioned earlier in this chapter, the total cost function is calculated using weight-

summation method. The weight valules for the summation are determined by the 

optimizer block. Therefore in this algorithm, the optimizer (Genetic Algorithm) will 

not only generate the designable parameters but also the weight for the performance 

function. In table 4.2, Wg1-Wg8 are all the weights for the performance functions. Each 

individual generated by the GA will consist of a set of designable parameters for the 

circuit and weight values for the performance function as defined by the GA string. 

Figure 4-3 shows the construction of the GA string for this example. 

 

W1 L1 W2 L2 W3 L3 W4 L4 Wg1 Wg2

 

 

Figure 4-3: GA String 

 

Once the GA string for the optimization has been constructed, the optimization will 

start with a random set of designable parameters. The design parameters generated by 

GA will be used to replace the parameters in SPICE netlist for the performance 

simulation. For the yield estimation, a Monte Carlo simulation with 200 samples is 

used for all of the performance functions. Based on the specification, the yield of the 

individual performances is calculated. The yield for the individual performance is 

Wg1...Wg8 
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compared to determine the overall yield of the design. All the results from the 

evaluation of 8 performance functions are multiplied with their respective weights and 

are summed together to determine the overall cost function. The objective of the 

optimisaton is to maximise the total cost function. For minimisation type 

performance, for example voltage offset, the performance is multiplied with -1 in 

order to convert it into maximisation formulation. From one generation to another, 

GA will try to maximise the cost function which in turn will maximise/minimise all 

the performance functions accordingly. The optimisaton process is repeated until the 

convergence criteria is met. Once the criteria is met, the optimization is stopped and 

the result is a design that gives the best performance trade-offs and higher yield.  

 

The convergence criteria is met when the mean(average) of the cost function in a 

generation closely match the maximum cost function of the generation. Maximum 

cost function is the best individual with the highest fitness score in the generation. The 

average fitness score in the generation is calculated and compared with the best 

individual. Once the mean fitness score closely match to the max fitness score, the 

optimization is said to converge. Figure 4-4 shows the convergence of the 

optimization that is achieved after 30 generations. 
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Figure 4-4: Convergence Criteria 
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4.3.2 Comparison With Design Centering Approach 

 

One of the benefits of integrating yield as one of the performance functions is the 

ability to optimize the yield with respect to the trade-offs of the performance 

functions. In this way, the optimization of the performance functions is balanced 

between each other in order to avoid excessive performance in some of the objective 

functions that can limit the overall yield. To show the advantage of the approach, a 

comparison is made with design centring method. As described in chapter 2, design 

centering is an indirect method for yield optimization that attempt to place the 

nominal design at the centre of the acceptability region. In such attempts, all the 

performance functions will be pushed as far as possible from the boundary 

(specification) to maximized the yield. Table 4-3 shows the comparison result.  

 

    Yield-Optimised Design Centring 
    Approach Approach 

Performance 
Spec Result 

Indiv. 
Result 

Indiv. 

Function Yield Yield 

Gain > 50dB 50.7 dB 100% 50.9 dB 100% 

Volt. Offset < 15mV 7.5 mV 89% 10.77 mV 72% 

GBW > 15 MHz 
16.67 
MHz 

96% 
17.08 
MHz 

100% 

Phase Margin > 60 deg 68 deg 94% 69.8 deg 100% 

Slew Rate > 15 V/us 16.1 V/us 17.7 V/us 

Power Minimised 256.2 uW 255.7 uW 

Area Minimised 209.3um² 195.3um² 

CPU Time  2h 40m 1h 05m 

 

Table 4-3: Simulation result and comparison 
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As can be seen from table 4-3, with yield as a performance function, the optimization 

is targeted towards the trade-offs among the competing objectives similar to  multi-

objective optimisation approach. In the design centring approach, there are 3 

performances (gain, GBW and phase margin) that achieve 100% yield. However with 

such performances, the improvement/optimisation for voltage offset is limited and 

becomes very low and might affect the  overall yield. This observation leads to the 

consideration of multi-objective optimisation technique in the yield-optimised 

approach and become the key component in the methodology presented in this thesis.  

 

4-4 Improved yield optimised algorithm 

 

The method proposed in the previous section shows the improvement that can be 

achieved compared to traditional yield optimization approach. However, the limitation 

of this approach is high CPU runtime. This is due to the Monte Carlo simulation that 

need to be run for each design sample during the optimization. In this section, this 

issue is taken into consideration to reduce the design time. There are two important 

modifications in the approach: first, instead of searching for single optimum solution, 

a set of optimum solutions that is called pareto-points are explored. This is done by 

running multi-objective optimization using WBGA to obtain the Pareto-front. The 

concept of Pareto has been explained in chapter 2. Second, Monte Carlo simulation 

will only need to be applied on a set of solutions in the feasible region that is defined 

by the performance specification. This reduces the number of Monte Carlo simulation 

significantly and thus reduces the overall design time. Figure 4-5 shows the design 

flow for the improved algorithm. 

 



Chapter 4 Yield Optimised Design  67 

 

Determine objective function and 

designable parameter space

Run multi-objective optimisation 

using evolutionary algorithm 

Plot Pareto front from 

optimisation results 

Determine feasible region and 

solution points from specification 

Run Monte Carlo analysis

 on each solution point 

Select best solution as 

point with highest yield

F
o

u
n

d
ry

 v
a

ri
a

ti
o

n
 &

 

m
is

m
a

tc
h

 m
o

d
e

ls

Circuit topology Process models

Generate netlist

 

Figure 4-5: Yield targeted algorithm 

 

In multi-objective optimization, where multiple conflicting objectives are important, 

there generally will not be a single optimum solution that optimizes all the objectives. 

The optimization will result to a number of optimal and non-optimal solutions. It is 

necessary at this point to determine the Pareto front which consists of the most 

optimal, non-dominated solutions in the objective space. The solution points on the 

Pareto-front is the optimal solution that gives the best trade-offs among the competing 

objectives. 

 

Once the Pareto-front has been obtained, the specifications can be added to the plot. 

This will result to a small region defined by the specifications that is called feasible 

region. This region contains all the solutions that meet the specifications. However, 

due to the statistical variations, the solutions on this region may still fall below 

specification when fabricated. In order to find the solution that will give high overall 

yield, Monte Carlo simulation is done on all the solution points on the Pareto-front in 

this region. Compared with previous example, this approach requires far fewer Monte 
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Carlo simulations due to the small number of solutions in the feasible region, 

mitigating the computational overhead. Once the Monte Carlo simulation for all 

solution points completed, the solution that gives the highest yield is then selected as 

the best solution for the design. 

 

4.5 Design Example for Improved Yield Optimised Algorithm 

 

This section demonstrates the newly proposed algorithm with the same example 

shown in figure 4-2. For illustrative purpose, performance objective is reduced to two 

functions, Open loop gain and Phase Margin. The number of designable parameters 

and GA string construction is same as previous example. The specifications for this 

example are shown in table 4-4.  

 

Objective function: Specification: 

Open loop gain >50dB 

Phase margin >74deg 

Area minimized 

Power minimized 

 

Table 4-4: Design specifications 

 

4.5.1 Pareto front and feasible region 

 

Multi-Objective optimisation (WBGA) was applied to the design example and from 

this, the objective space of the optimisation has been plotted. Figure 4-6 shows the 

plot of the objective space for open loop gain and phase margin and its Pareto-front. 

All the solutions lie on this front are the optimal solutions that best describe the trade-

offs of the objectives. To find the feasible region of the design, specifications line for 

both of the performance functions are inserted in the plot. 
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Figure 4-6: Objective space and  Pareto-front 

 

The in-specification area shown in figure 4-6 narrows down the solution space into 

small feasible region. This region is shown in detail in figure 4-7. It can be seen from 

this figure, that there are only 10 optimal solution points on the Pareto-front of the 

region as labelled by the number. These are the points that will be used in the next 

step of the algorithm to determine the best solution that gives high yield. 
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Figure 4-7: Detail view of feasible region 
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4.5.2 Monte Carlo simulation 

 

All the optimal solutions within the feasible region undergo a Monte Carlo simulation 

using foundry process variations and mismatch model. Some examples of the 

parameters used during the simulation are shown in Figure 4.8.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: Process variation parameters  

 

The variation in these parameters such as threshold voltage (VT) and sheet resistance 

come from the variation in the fabrication process such as oxide thickness and 

diffusion depths. For example, the threshold voltage can vary due to the changes in 

oxide thickness, polysilicon impurity levels and surface charge. All the process-

*---------------------------------------------- 

*                   nmoshs 

*---------------------------------------------- 

.param nmoshs_vth0 = '0.13+0.5*0.015*nsigma_nmoshs_vth0' 

.param nmoshs_dmu = '0.0+0.5*5e-2*nsigma_nmoshs_dmu' 

.param nmoshs_drdsw = '0.0+0.5*5e-2*nsigma_nmoshs_drdsw' 

.param nmoshs_dcjb = '0.0+0.5*10e-2*nsigma_nmoshs_dcjb' 

.param nmoshs_dcjgate = '0.0+0.5*20e-2*nsigma_nmoshs_dcjgate' 

.param nmoshs_dcjsw = '0.0+0.5*20e-2*nsigma_nmoshs_dcjsw' 

.param nmoshs_djsdbr = '0.0+0.5*1*nsigma_nmoshs_djsdbr' 

.param nmoshs_djsdgr = '0.0+0.5*1*nsigma_nmoshs_djsdgr' 

.param nmoshs_djsdsr = '0.0+0.5*1*nsigma_nmoshs_djsdsr' 

.param nmoshs_djsgbr = '0.0+0.5*1*nsigma_nmoshs_djsgbr' 

.param nmoshs_djsggr = '0.0+0.5*1*nsigma_nmoshs_djsggr' 

.param nmoshs_djsgsr = '0.0+0.5*1*nsigma_nmoshs_djsgsr' 

.param nmoshs_rstir = '4000+0.5*1200*nsigma_nmoshs_rstir' 

.param nmoshs_rstil = '0+0.5*0*nsigma_nmoshs_rstil' 

 

*---------------------------------------------- 

*                   pmoshs 

*---------------------------------------------- 

.param pmoshs_vth0 = '-0.19056+0.5*0.015*nsigma_pmoshs_vth0' 

.param pmoshs_dmu = '0.0+0.5*5e-2*nsigma_pmoshs_dmu' 

.param pmoshs_drdsw = '0.0+0.5*5e-2*nsigma_pmoshs_drdsw' 

.param pmoshs_dcjb = '0.0+0.5*10e-2*nsigma_pmoshs_dcjb' 

.param pmoshs_dcjgate = '0.0+0.5*20e-2*nsigma_pmoshs_dcjgate' 

.param pmoshs_dcjsw = '0.0+0.5*20e-2*nsigma_pmoshs_dcjsw' 

.param pmoshs_djsdbr = '0.0+0.5*1*nsigma_pmoshs_djsdbr' 

.param pmoshs_djsdgr = '0.0+0.5*1*nsigma_pmoshs_djsdgr' 

.param pmoshs_djsdsr = '0.0+0.5*1*nsigma_pmoshs_djsdsr' 

.param pmoshs_djsgbr = '0.0+0.5*1*nsigma_pmoshs_djsgbr' 

.param pmoshs_djsggr = '0.0+0.5*1*nsigma_pmoshs_djsggr' 

.param pmoshs_djsgsr = '0.0+0.5*1*nsigma_pmoshs_djsgsr' 

.param pmoshs_prwb = '-0.18544+0.5*0.133*nsigma_pmoshs_prwb' 

.param pmoshs_rstir = '2200+0.5*660*nsigma_pmoshs_rstir' 

.param pmoshs_rstil = '0+0.5*0*nsigma_pmoshs_rstil' 
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specific information including the parameters, statistical variations and the transistor 

model are provided by the foundry in a process design kit which is part of the model 

file in the Cadence Spectre environment. During the Monte Carlo simulation, the 

process parameters are randomly changed according to the statistical variation to 

imitate the actual fabrication process. As explained earlier in this chapter, the Monte 

Carlo simulation consumes higher CPU time, but in this example, due to the small 

number of solution points (10 points), the simulation time is reduced significantly. 

The Monte Carlo simulations for all the optimal solution points were done with 500 

samples and the yield percentage is calculated. Table 4-5 shows the 10 optimal 

solutions in the feasible region and their yield percentage. 

 

Design Point: Gain (dB): Phase Margin (deg): Yield (%): 

1 50.17 75.8 98 

2 50.35 75.5 100 

3 50.45 75.3 99 

4 50.54 75.2 98 

5 50.57 75.1 97 

6 50.72 74.9 94 

7 50.81 74.6 91 

8 50.86 74.5 88 

9 51.04 74.2 58 

10 51.06 74.1 55 

 

Table 4-5: Design point yield percentage 

 

From the table, the yield spread from 55% to 100% highlights the benefit of the 

proposed technique. For without knowledge of the yield for these optimum solutions, 

a designer may unwittingly choose a poor design point. From this result, design point 

number 2 is the best design that will produce highest yield with the process variations 

and mismatch during the fabrication process. By concentrating only on the feasible 

region for the yield estimation, the computational overhead is reduced and the entire 

design cycle for this example took only 48 minutes on a 1.2GHz Ultra Sparc 3 

workstation.  
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4.5.3 Comparison with NeoCircuit
tm

 Tool 

 

To demonstrate the advantage of Pareto based optimization over conventional 

simulation-based approaches, a comparison has been made using the same example 

with NeoCircuit, a commercial optimization tool that optimizes circuit performance 

and yield. The tool is based on a global optimization approach that combines 

evolutionary and simulated annealing algorithms. The approach starts with 

performance optimization to meet a given specification and is followed by yield 

maximization to push the design far from the specification boundaries. Since there is 

no Pareto type exploration in the algorithm, a penalty scheme is used to reduce 

instances of excessive performance that may occur during yield maximization in order 

to maximize overall yield. This involves several iterations during the yield 

maximization. For example, during the first iteration, a performance function  f1 

might be overdesigned and cause the optimization on performance f2 to be limited 

hence resulted to a low yield. In order to increase the yield, the performance f2 must 

be improved which means the performance of f1 must be reduced. Several stages of 

iteration are required in order to maximize the overall design yield.  

 

Pareto-based optimization uses a different approach where all the design 

performances are represented as a trade-off to make it easier to select a more balanced 

solution and maximize the yield. Table 4-6 summarizes the comparison between 

NeoCircuit tool and the proposed design methodology with the Monte Carlo 

histogram shown in Figure 4-9. It can be clearly seen that the Pareto-based yield 

optimization method performs significantly faster and produces better results than the 

NeoCircuit optimization. In this comparison, the Pareto-front technique completed the 

optimization in 48 minutes and produced a 98% overall yield whilst NeoCircuit took 

1hr 29 minutes and produced a 96.5% overall yield. The comparison with NeoCircuit 

is useful as a ―benchmark‖ to establish that the proposed method is at least as good as 

and at least as fast as NeoCircuit. However, the real benefit will become apparent later 

on when the Pareto-based optimisation is used to model the performance and variation 

of an analogue circuit and when the hierarchical-based optimisation is undertaken for 

system level design. Hierachical-based optimisation will be explained in the next 

chapter. 
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 Parameters: Pareto-based optimization: NeoCircuit 

Gain 50.58 dB 50.14 dB 

Gain Yield 99% 96.5% 

PM 75.14 deg 75.24 deg 

PM Yield 98% 98% 

Overall Yield 98% 96.5% 

CPU Time 48 minutes 1hr 29 minutes 

 

Table 4-6: Yield optimised design comparison 
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Figure 4-9: Monte Carlo histogram for gain and phase margin. a) NeoCircuit. b) 

Proposed methodology 



Chapter 4 Yield Optimised Design  74 

 

4.6 Summary 

 

In this chapter, a yield optimised design methodology has been introduced. In the 

proposed design model, yield integration to the optimization loop has been 

investigated as a method of exploring the trade-offs between the performance 

objectives. An example has been shown to demonstrate the benefit of yield-optimised 

approach compared to design centring method with 17% improvement in overall 

yield. However, this improvement comes with one drawback, CPU runtime. Due to 

the Monte Carlo simulation for all of the solutions in the objective space, the total 

design time becomes very high. Therefore an improvement is proposed to overcome 

this problem using Multi Objective Optimisation and feasible region Monte Carlo 

simulation. 

 

In the new improved algorithm, a concept of Pareto-front and feasible region were 

introduced. Pareto-front is the outcome of a multi-objective optimization that tells the 

best optimal solution‘s trade-offs between the objective functions. Once the Pareto-

front has been determined, a feasible region is defined based on the performance 

specifications. With such feasible region, the number of Monte Carlo simulation 

needed to find the yield is reduced hence, reduced overall design time. An example 

has been shown to demonstrate the new yield targeted algorithm that manage to 

reduce the design time significantly and a comparison with NeoCircuit optimiser tools 

shows the advantage of the proposed approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 5 

 

Performance and Variation Modelling 

 

5.1 Introduction 

 

The first part of this thesis has introduced the concept of simulation-based design 

technique for analogue design automation. This approach has been used as the basis 

for the yield optimization algorithm proposed in chapter 4. That chapter has 

demonstrated the capability of multi-objective optimisation combined with Monte 

Carlo simulation to optimise for performance and yield. Other than high accuracy 

result associated with simulation-based technique, this approach creates a wholly new 

opportunity for circuit modelling. This is due to the high number of simulated samples 

that can be obtained from the optimization process. With such number of design 

samples, a performance model that relates the design parameters with the performance 

functions can be created. The idea of performance and variation modelling from 

multi-objective optimisation result will be presented in this chapter. 
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The use of simplified macromodels for analogue circuits to accelerate and enhance 

design exploration has a long history in mixed-signal design [78, 79]. The earliest 

techniques for macromodel construction relied on design expertise to create a 

simplified circuit model, and analytical equations needed to map the performance of 

the full circuit into parameters for the macromodel. More recent techniques combine 

the design expertise of the model structure with curve fitting method to fit 

macromodel parameters from samples of the full circuit‘s performance obtained from 

simulation. [80] Proposed a neural network-based methodology for creating models 

for estimating the performance parameters of CMOS operational amplifier topologies. 

This model is used together with genetic algorithm-based circuit synthesis system that 

demonstrates the efficiency of the performance models in operational amplifier 

design. 

 

The introduction of standardized behavioural description languages offers designers 

the ability to mix device-level models, behavioural model and digital blocks all in the 

same simulation environment. Behavioural models capture the overall functionality of 

the circuit in terms of equations or simple circuit elements that are faster to simulate 

compared to the complete transistor level. Some of the concepts in circuit modelling 

and behavioural modelling have been described in chapter 3. 

 

In this chapter, a behavioural modelling method is used together with the simulation-

based technique to create a performance and variation model for analogue integrated 

circuit. The behavioural model is very helpful in a large system design where the CPU 

runtime often become one of the drawbacks in simulation-based approach. The idea is 

to use the Pareto-front from a multi objective optimization to capture the performance 

and variation behaviour of a circuit. Behavioural description language is then being 

used to implement this model that can be used for system level circuit design. 

 

5.2 Pareto-front modelling 

 

Pareto-front from a multi-objective optimisation represents the best trade-offs 

between the performance functions across the whole design space. Pareto-front 

modelling has been used previously for analogue circuit design [81], but most of the 

models do not include  variation behaviour, hence are not suitable to predict the yield 
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of the design. In this chapter, Pareto-front modelling that is capable to model the 

performance and the variation is proposed making it a suitable solution for a robust 

design technique for analogue circuit design. Figure 5.1 shows a complete design flow 

for the proposed methodology. 
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Figure 5.1: Performance and variation‘s model development flow 

 

5.2.1 Pareto-front modelling – performance 

 

The performance model of a circuit design is a model that relates the performance of a 

circuit with its design parameters. In multi objective optimization, the parameter space 

is explored to find a solution for a circuit problem. The solution space (objective 

space) shows all the possible solutions that corresponding to the parameter space. The 

optimal performance trade-offs are represented by a Pareto-front. To model the 

performances, the solutions on the Pareto-front (optimum solutions) are taken and the 

design parameters corresponding to these solutions are recorded. All this information 

is stored in a text file and represents the performance model of the circuit. The model 
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can be used to design the circuit for any design requirements that related to the 

modelled objective space. 

 

5.2.2 Pareto-front modelling – variation 

 

The Pareto-front gives optimum solutions for a circuit design. However, the solution 

points do not tell how the design will behave under process variations. Even though 

the points on the Pareto-front are the best optimal solutions, but with process 

variations, these performances may still fail the specifications. Therefore if a design is 

chosen from this Pareto-front for particular specifications, it may still result in a low 

yield. Variation modelling on the Pareto-front solutions can be used to observe the 

behaviour of the performances under process variations. As a result, a solution taken 

from both of the performance and variation model will meet the specifications and at 

the same time can provide information regarding the yield that can be expected from 

the design. 

 

In order to model the variations, a Monte Carlo simulation using process variation and 

mismatch model is applied to all of the solution points on the Pareto-front. A standard 

deviation from the Monte Carlo result is calculated and a 6-sigma range (±6σ) is 

estimated. The minimum and maximum values of the 6-sigma range are taken as the 

variation for the performance. The variations for all the Pareto performances are 

stored in a text file and represent the variation model of the circuit. 

 

5.2.3 Interpolation from a lookup table 

 

All of the data stored in the text file (performance and variation data) can be 

implemented as a lookup table using a behavioural description language. Verilog-A 

supports a function called table_model() function that represent a set of data points 

from a lookup table. This function allows the module to approximate the behaviour of 

the system by interpolating between the sampled data points. The syntax for this 

function is given in equation 5-1. 

 

 $table_model(input variables, ―table file‖,control string);  5-1 
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Where the input variables are the independent variables of the model, table file is a 

text file that contains the sample points of the model and the control string determines 

the interpolation and extrapolation method. The control string must be provided for 

each independent variables used in the function. There are three types of interpolation 

setting (1,2 or 3) and extrapolation setting (C,L or E) that can be defined using the 

control string indicating the chosen interpolation and extrapolation method. However, 

in the presented work, no extrapolation is used in order to avoid approximation of the 

data beyond the sampled data points that may affect the accuracy of the result. An 

example of the table model function including the data file is shown in section 5.3.2. 

With this function, the model for performance and variation can be developed 

behaviourally and can be used as a part of behavioural description for a larger system 

design. The table model approach has been used previously for modelling electrical 

characteristics of microelectronic devices in [82].  

 

Interpolation is a method to connect discrete data points in a plausible ways to get a 

reasonable estimate data point [83]. Interpolation takes into account all the data points 

on the curve. The accuracy of the table model is influenced by several factors 

including the type of interpolation and the number of samples in the table.  

 

Table model function of Verilog-A uses spline interpolation to interpolate new data 

points. Spline interpolation uses low degree polynomials that are fast and less error 

compared to polynomial interpolation. The principle behind spline interpolation is to 

divide the interpolation interval into small subintervals. Each of these subintervals is 

interpolated by using up to a third-degree polynomial. With a low degree polynomial, 

the problem of Runge's phenomenon can be avoided. Runge‘s phenomenon is a 

problem that occurs when using high degree polynomial for interpolation where the 

error between the interpolating polynomial and the function grow without bound. Due 

to this phenomenon, at the interpolating points, the error between the points and the 

actual function points is small, but at the gap between the interpolating points, the 

error is big. Verilog-A support three type of interpolation: linear spline, quadratic 

spline and cubic spline interpolation. 
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5.2.3.1 Linear Spline 

 

Linear spline interpolation is the simplest form of interpolation which deals with a 

spline that consists of first-degree polynomials. This is equivalent to linear 

interpolation. Linear spline interpolation is quick and easy but provides low precision 

results. The higher the distance between the data points, the higher the error of the 

interpolation. Here, the number of data points is very important to maintain the 

accuracy of the interpolation. Linear spline interpolation can be defined as 
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Generally, linear spline interpolation interpolates data from two consecutive data 

points. Between the data points, the slope changes abruptly and not smooth. This 

limitation which affects the accuracy of the interpolation can be improved by using 

quadratic spline or cubic spline interpolation. 

 

5.2.3.2 Quadratic Spline 

 

In a quadratic spline, a quadratic polynomial approximates the data between two 

consecutive points. for a given data points ),,(),,)...(,(),,( 111100 nnnn yxyxyxyx  the 

quadratic splines are given by 
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From the above equations, there are 3n coefficients for splines: a, b and c. To solve 

for these coefficients, 3n equations are needed. From two consecutive data points, 2n 

equations can be derived. In order to get one more equation, an assumption must be 

made. The first spline can be assumed linear. Therefore the coefficient for 1a can be 

made 0. Even with quadratic spline, the curve is not smooth enough. For this reason a  
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third degree polynomials for each of the subinterval data points are often used to 

interpolate the data points. 

 

5.2.3.3 Cubic Spline 

 

In a cubic spline, the piece-wise interpolation curve is constructed by using third 

degree polynomials for each of the subinterval points. Cubic spline polynomial can be 

defined as 

 

iiiiiiii dxxcxxbxxaxS  )()()()( 23     for   1,  ii xxx           5-4 

 

Since there are n intervals for ni ,...1,0 and 4 coefficients, 4n parameters are required 

to define the spline. One of the requirement of this spline is that the cubic polynomial 

to match the values of the table at both end of the intervals. This gives two conditions 

for each of the intervals: ii yxS )(  and 11)(   iii yxS .These result in a continuous 

piece-wise function.  

 

To make the interpolation as smooth as possible, the first and second derivatives must 

also be continues:- 
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Table model function of Verilog-A allows the module to approximate the behaviour 

of a system by interpolating between user-supplied data points. The set of data points 

is stored in a text file and will be called by verilog-A module during simulation. Other 

than interpolation, this function can also be used to extrapolate a new data point. 

However, extrapolation can be inaccurate and is avoided in the presented work. The 

interpolation type can be selected by inserting the interpolation degree in the table 

model function statement as shown in Table 5.1  

 

 



Chapter 5 Performance and Variation Modelling 82 

 

Interpolation Char. Description 

1 Linear Spline (degree 1) 

2 Quadratic Spline (degree 2) 

3 Cubic Spline (degree 3) 

 

Table 5.1: Interpolation degree for table_model function 

5.3 Modelling Example  

 

The OTA is a fundamental building block, often employed in analogue circuit 

applications such as filters. This section presents a complete design example for 

performance and variation modelling using two different topologies for an operational 

transconductance amplifier (OTA) circuit: symmetrical OTA and Miller-OTA. The 

symmetrical OTA topology shown in figure 5-2 was used in the chapter 4 for the 

integrated yield optimisation example. Figure 5-3 shows the topology of the Miller-

OTA. All the simulations were performed using the industry standard Cadence 

Spectre simulator with foundry level BSim3v3 transistor models from a standard 

0.12um CMOS process technology. 
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Figure 5.2: Symmetrical OTA topology 
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Figure 5-3: Miller-OTA topology 

 

All transistor lengths and widths for the circuits are the designable parameters and two 

objective functions were chosen for this example: open loop gain and phase margin. 

The designable parameters are constrained within a reasonable range. All transistor 

lengths were specified to be between 0.12um and 4um and transistor widths were 

specified to be between 10um and 60um. These ranges were chosen so that the design 

area will not exceed the targeted transistor active area of 2mm
2
. For the purpose of 

performance evaluation, a test-bench netlist must be created for each of the objective 

functions. A multi objective optimization using genetic algorithm was carried out to 

maximize both of the objective functions.  

 

5.3.1 Performance and Variation Model 

 

The result of the multi objective optimization is a plot of objective space as shown in 

figure 5.4 and 5.5 for symmetrical and Miller-OTA respectively. The thick grey line 

on both of the plots are the Pareto-front of the objective space that represents the best 

optimal solutions for the design.  
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Figure 5.4: Symmetrical-OTA Pareto plot 

 

 

 

Figure 5-5: Miller-OTA Pareto plot 
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Once the Pareto-front of the design is determined, all the solutions on these curves are 

taken together with their corresponding design parameters. These information are 

stored in a text file which define the performance model for each topology. 

 

The next step is to create the variation model for the Pareto-points. Every optimal 

solution on the Pareto-front undergoes a Monte Carlo simulation using process 

variation and mismatch models. 200 samples were chosen for the MC simulation and 

from these a standard deviation is calculated for each of the performances. The 

standard deviation values are multiplied by 6 for its 6th-standard deviation minimum 

and maximum variation. All the variations data for each of the Pareto-points are 

stored in another text file and represents the variation model for the circuit. 

 

5.3.2 Table Model function implementation 

 

The performance and variation behavior for the symmetrical OTA is modelled as a 

lookup table using a Verilog-A table model function. There will be two different table 

models that represent the performance behavior and the variation behavior for each of 

the performance point on the Pareto front. Table 5.2 shows some selection points of 

the Pareto front obtained from the multi-objective optimization. 

  

Design: Gain (dB):  ∆Gain (%): PM (deg): ∆PM (%): 

21 49.78 0.52 76.3 1.50 

22 49.90 0.52 76.1 1.51 

24 49.98 0.51 76.0 1.51 

25 50.17 0.51 75.8 1.52 

26 50.35 0.50 75.5 1.56 

27 50.45 0.49 75.3 1.57 

32 51.06 0.44 74.1 1.69 

35 51.14 0.51 74.0 1.71 

37 51.24 0.42 73.8 1.69 

38 51.62 0.42 73.2 1.68 

 

Table 5.2: Performance and Variation table 
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Figure 5-6 shows the table model data file for the OTA performance obtained from 

the Pareto front. For a given performance value (in this example, gain) the other 

feasible performance value can be interpolated by the table model function. The table 

model function for the performance model can be written as shown in equation 5-6. 

 

pm = $table_model(gain, ―pareto.tbl‖, ―3E‖);    5-6 

 

 

This statement will interpolate the phase margin performance from the given gain 

value. ―pareto.tbl‖ is the file name and ―3E‖ represents the interpolation and 

extrapolation type where cubic interpolation (‗3‘) and no extrapolation (‗E‘) are used. 

With the table model function, the feasibility of the performance can be maintained 

where the interpolation will only consider the values within the sampled domain. The 

variation table model can be used to determine the variation for each of the 

performances as shown by the data file in figure 5-7. The table model function for 

each of the performance variation can be written as shown in equation 5-7 and 5-8. 

 

gain_var = $table_model (gain, ―gain_var.tbl‖, ―3E‖);  5-7 

 

pm_var = $table_model (pm, ―pm_var.tbl‖, ―3E‖);   5-8 

 

 

Based on the variation table (figure 5-7), the variation for a particular performance 

value can be interpolated. This interpolation will tell the minimum and maximum 

limit of the performance and can be used to determine how good the performance 

compared with the specification boundary and hence can be used to look for another 

solution that can maximize the yield. The resulting Verilog-A listing for the 

behavioral model is shown in figure 5-8. 
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Figure 5-6: Table model file for OTA performance model 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-7: Table model file for a)gain and b)phase margin variation model 

 

 

 

 

 

 

 

 

 

Figure 5-8: Verilog-A model for OTA performance and variation lookup table 

# pareto.tbl 

# table model example for  

# symmetrical-OTA Pareto 

front 

# Gain PM 

49.78 76.3 

49.90 76.1 

49.98 76.0 

50.17 75.8 

50.35 75.5 

50.45 75.3 

51.06 74.1 

51.14 74.0 

51.24 73.8 

51.62 73.2 

# gain_var.tbl 

# table model example for  

#  gain variation of the Pareto front 

# Gain Variation(%) 

49.78 0.52 

49.90 0.52 

49.98 0.51 

50.17 0.51 

50.35 0.50 

50.45 0.49 

51.06 0.44 

51.14 0.51 

51.24 0.42 

51.62 0.42 

# pm_var.tbl 

# table model example for  

# PM variation of the Pareto front 

# PM Variation(%) 

76.3 1.50 

76.1 1.51 

76.0 1.51 

75.8 1.52 

75.5 1.56 

75.3 1.57 

74.1 1.69 

74.0 1.71 

73.8 1.69 

73.2 1.68 

analogue begin 

 

    pm = $table_model(gain, ―pareto.tbl‖, ―3E‖); 

    gain_var = $table_model (gain, ―gain_var.tbl‖, ―3E‖); 

    pm_var = $table_model (pm, ―pm_var.tbl‖, ―3E‖); 

    gain_new = ((gain_var)/100)*gain) + gain; 

    pm_new = $table_model(gain_new, ―pareto.tbl‖, ―3E‖); 

    $display (―Propose new gain value : %e‖ , gain_new); 

    gain_in_v = pow(10, gain_new/20); 

    V(out) <+ V(inp) * (-gain_in_v) – I(out) * ro; 

 

end 
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5.3.3 Interpolation example 

 

The performance and variation model can be used to find a circuit solution for a given 

performance specification. This avoids the need to re-run the simulation-based 

optimization and will significantly reduce the design cycle time. To find a solution, 

the variation model will be used to interpolate a new performance value from a given 

specification. From the new performance value, a set of design parameters will be 

interpolated using the performance model. Table 5.3 shows an example for the 

interpolation where the required performance is a gain greater than 50dB and a phase 

margin of greater than 74 degrees. 

 

The variation for gain and phase margin performance is obtained by interpolation 

from the table model function. In this case, the relevant look-up table points are those 

shown in Table 5.2 where it can be seen that the gain of 50dB is between design point 

24 and 25. The variation interpolation given between these points is 0.51%. Using this 

variation value, it can be said that the actual gain may vary from 49.75dB to 50.26dB 

and therefore, in order to achieve maximum yield, the specified gain of the design 

must be at least 50.26dB. If we choose a design point with a 50.26 dB gain value, and 

with 0.51% variation, the gain will vary between 50.01dB to 50.51dB. This will 

ensure that the required 50dB gain will be achieved within the process extremes. The 

value of 50.26 dB therefore becomes the new targeted performance value and this 

value will be used to interpolate the feasible phase margin performance from the 

lookup table. From the lookup table (table 5.2), the phase margin value that will be 

interpolated based on 50.26dB gain is between 75.5 and 75.8 degrees. This value met 

the specification for the phase margin. The variation model of the phase margin is 

used to determine the variation of this new phase margin value. The interpolated 

variation is 1.53% which will make the phase margin to vary between 74.36 to 76.64 

degrees. This variation is still within the given specification. With the new 

performance values for gain and phase margin, the design parameters that will give 

the required performances can be determined from the Pareto front. 
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Performance: Required Performance: Variation: New Performance: 

Gain > 50dB 0.51%  50.26dB 

Phase Margin > 74 deg 1.53%  75.60 deg 

 

Table 5.3: Interpolation example 

 

5.3.4 Model Verification 

 

To verify the performance and yield interpolated by the behavioural model, a 

comparison has been made with transistor level simulation using the design 

parameters obtained from the table model function. This comparison is shown in table 

5.4. The percentage error in passband gain and phase margin was calculated between 

the OTA transistor simulation and interpolated values from the Verilog-A model. The 

error is the different between the transistor model and the behavioural model 

performance. Figure 5.9 shows the open loop gain for the Verilog-A model and 

transistor model. It can be seen from these comparisons that the Verilog-A function 

matches closely with the transistor level simulation. A Monte Carlo simulation using 

500 samples was carried out and verified overall a yield of 100% for the OTA design. 

 

Figure 5.9 shows a divergence in the comparison above 40MHz which is attributed to 

parasitic poles in the transistor circuit. Although these higher order effects are not 

modeled in this example, they could be incorporated if required. For example, figure 

5.10 shows another example of the open loop gain comparison for Miller-OTA that 

includes the higher order effects that comes from parasitics poles in the circuit. A 

detail behavioural modelling of the OTA with all the parasitic poles will be discussed 

in chapter 6.  

 

Performance Functions Transistor Model Verilog-A Model % error 

Gain 50.73 50.26 0.93% 

Phase Margin 76.06 75.60 0.60% 

 

Table 5.4: Performance comparison 



Chapter 5 Performance and Variation Modelling 90 

 

G
a

in
 (

d
B

)

Frequency (Hz)

Transistor Level 

Simulation

Behavioural

 

Figure 5-9: Behavioural and transistor level simulation comparison 
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Figure 5-10: Open loop gain comparison for Miller-OTA 
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5.3.5 Topology Comparison 

 

The interpolation example shown previously demonstrates how the table model 

function can be used to search a design solution for a particular circuit topology. 

However, the model will not find a solution if the new targeted performance is not 

feasible within the chosen topology. In this case, a search across a different topology 

could yield the solution. Figure 5-11 shows two Pareto-fronts for the symmetrical 

OTA and the Miller OTA. The Pareto-fornt can be used to search for a feasible 

solution. For example, assume the gain specification is >54dB and Phase Margin is 

>70 degrees. Looking at figure 5-11, these requirements are not feasible for 

symmetrical OTA but feasible for Miller OTA as shown by the shaded area. 

Therefore, in this case the performance and variation model of Miller OTA must be 

used to interpolate the variations and to find the design solutions for the requirements. 

This come in handy if a library of Pareto-front and the performance and variation 

model can be developed for a various type of circuit topology. 
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Figure 5-11: Pareto comparison between topology 

 

5.3.6 Summary of Examples 

 

Table 5-5 summarizes the model development activity. A total of 10,000 simulations 

were run in the initial MOO step for the performance model for both of the OTA 
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topologies and Monte Carlo analysis was performed on 1022 Pareto Optimal points of 

symmetrical OTA and 987 points of Miller-OTA for the variation model. The whole 

model development stage took 4 hours to complete for the  symmetrical OTA and 3 

hours 40 minutes for the Miller-OTA on a 1.2GHz Ultra Sparc 3 computer system. 

 

The effort involved in developing the performance and variation model can be 

compared with the transistor level optimization strategy such as that used in 

NeoCircuit optimization. Refer back to NeoCircuit optimization  example for 

symmetrical OTA shown in chapter 4, which requires 1hr 29 minutes to optimize the 

OTA, the cost involved for the symmetrical OTA model development (in terms of 

CPU time) therefore will be paid off after 3 repeated uses.  

 

Parameters: Symmet-OTA: Miller-OTA: 

No. Generations 100 100 

Evaluation Samples 10,000 10,000 

Pareto Points 1022 987 

CPU Time (1.2GHz  Sparc 3) 4 hours  3h 40m 

 

Table 5-5: Summary of examples 

 

5.4 Application Example 

 

5.4.1 System level design 

 

The combined performance and variation model developed in previous example was 

used to design a 2
nd

 order low pass filter. The filter topology is shown in figure 5-12 

and was designed to the anti-aliasing specifications shown in figure 5-13. The 

specifications for the open loop gain and phase margin for the OTA are 60dB and 60 

degrees respectively. Based on the OTA specifications, a feasible topology is selected.  
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Figure 5-12: 2
nd

 order lowpass filter topology 
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Figure 5-13: Filter specification 

 

As explained in previous example, the Pareto plot can be used to compare topologies 

in order to choose which is feasible. In this case the Miller-OTA topology satisfies the 

specifications and was selected for the filter design. The performance and variation 

model of this OTA was used to select the OTA solution that met the specifications 

taking into account their variations. Table 5-6 shows some selection samples of the 

Miller-OTA design points with their performance and variation values. 
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Design: Gain (dB): ΔGain (%) PM(deg) ΔPM(%) 

45 59.98 0.52 68.0 1.50 

46 60.17 0.62 66.8 1.51 

47 60.35 0.61 66.1 1.51 

48 60.45 0.61 65.3 1.52 

49 61.06 0.60 65.0 1.51 

50 61.24 0.59 64.2 1.52 

51 62.48 0.61 60.9 1.53 

52 62.71 0.61 59.1 1.53 

 

Table 5-6: Miller-OTA performance and variation values 

 

From the table, 3 design points (48 ~ 50) meet the OTA specifications when variation 

is considered. Design point 47 fail the gain performance due to the variation and 

design point 51 fail the phase margin performance due to the variation. The chosen 

design points (that meet the OTA specifications) are then used in another multi-

objective optimization for the filter in order to find an optimum solution for capacitor 

values C1, C2 and C3. Table 5-7 shows the result of this optimization. Monte Carlo 

analysis was performed on all the design solutions to find the solution with the highest 

yield.  

 

Design Points: Performance: 

OTA C1 C2 C3 Attn fp fs Yield 

OTA1  575.5 2.412 759.2 57.85 1.21 8.56 54 

OTA1 612.1 2.171 695.6 53.21 1.59 9.11 100 

OTA2 564.0 2.160 817.8 54.65 1.55 8.17 100 

OTA2 542.5 2.540 951.2 55.21 1.42 7.69 95 

OTA2 480.1 2.493 854.7 59.21 1.18 8.62 27 

OTA3 521.2 2.566 766.2 50.12 1.65 9.76 67 

 

Table 5-7: 2
nd

 order low pass filter optimisation results 
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For verification, a circuit level simulation of the sized low pass filter is used. A Monte 

Carlo simulation with 500 samples confirmed a yield of 100%. 

 

5.4.2 Silicon Prototype 

 

A silicon prototype for the 2nd order low pass filter designed previously based on the 

proposed methodology was developed and fabricated. Figure 5-14 shows a layout 

view of the designed chip. A test board for the chip measurement was designed as 

shown in figure 5-15. The chip performance has been measured and compared with 

simulation data.  

 

 

Figure 5-14: Layout view of silicon prototype 
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Figure 5-15: Test board snapshot  

 

Figure 5-16 shows the filter response of all prototype samples overlaid with the 

simulation plot, showing that all the prototypes closely match within ±3% with the 

simulation data. These results confirm the accuracy and effectiveness of the technique 

in practice. 
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Figure 5-16: Chip measurement result 
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5.5 Summary 

 

This chapter has presented a new approach that combines performance and variation 

objectives in a behavioral model for analogue circuits. Multi-objective optimization 

based on an evolutionary algorithm is used to explore tradeoffs between performance 

and yield, leading to a set of Pareto optimal solutions for the design. Monte Carlo 

variation analysis is performed on all the Pareto optimal solutions, and a table is 

constructed for both the performance and variation analysis. A behavioral model 

developed in Verilog-A is used together with this table to determine the parameters 

required to achieve the highest yield within a given specification. The model 

developed can be used in a hierarchical system design and demonstrates significant 

benefits especially in terms of design cycle time. After the initial time investment to 

create the model, there are significant improvements in overall simulation time and 

efficiency compared to conventional simulation based approaches. These benefits are 

enjoyed without a corresponding drop in accuracy. Two benchmark OTA topologies 

and a standard filter design have been presented to demonstrate the proposed 

algorithm and the behavior has been verified through transistor level simulations and 

measured silicon results.



 

 

 

 

 

 

 

 

 

Chapter 6 

 

 

Hierarchical-based Design Optimisation 

 

6.1 Introduction 

 

A simulation-based design approach usually requires a high CPU computational effort 

as has been demonstrated in the examples from chapter 4 and 5. This is due to the fact 

that the performance of the circuit must be evaluated for a large number of different 

circuit variables, a process known as design space exploration. The bigger the circuit, 

the bigger the design space that must be explored. Running the entire performance 

evaluation at transistor level is computationally intensive. Therefore most of the tools 

developed using this approach are limited to rather small building blocks [84, 85]. 

Due to the increasing complexity of electronic systems and high demand of design 

cycle time reduction, the research focus for large analogue mixed-signal system has 

shifted towards a hierarchically based design technique. Hierarchical design employs 

divide and conquer approach involving breaking down a large system into its smaller 

constituent building blocks that can be designed and optimized individually. 

There are many methodologies available for designing a large system depending on 

how the performance and design space are organized and traversed [86].  The design 

space of a complete system can be handled as a whole where all design variables in 

the system are considered at once (known as `flat‘ design) or it can be organized 

hierarchically into sub-systems and traversed according to the hierarchical flow. There 
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are many methods available for hierarchical design which will be discussed in the 

remainder of this chapter. 

 

The discussion starts with a brief overview of standard hierarchical design methods. 

After outlining the basic structure of hierarchical design flow, a new methodology that 

combines the Pareto modelling and top-down design of a system is proposed. As a 

design application, a 7
th

 order elliptic low pass filter is used to demonstrate the 

proposed methodology. This example will demonstrate a complete design flow from 

bottom-up performance and variation modelling for the sub-block circuit and top 

down design for the whole system.  

 

6.2 Hierarchical-based design 

 

Generally, a hierarchical design methodology consists of a top-down design and 

bottom-up verification process as depicted in figure 6-1 [87],[59]. The whole process 

is based on two important design aspects: circuit decomposition and specification 

propagation. Circuit decomposition involves breaking down the system level 

architecture into smaller, less complex, subsystems. When the subsystems are still too 

complex to design, a second decomposition is performed. This decomposition will 

continue until all subblocks are manageable for design. The lowest hierarchical level 

is the transistor level where the block can be simulated by a Spice-like simulator to 

extract its performance. Specification propagation involves translation of system level 

specifications into lower level specifications. This is a very important aspect of 

hierarchical design in order to avoid the failure to find optimum design due to non-

feasible solutions that may occur if the lower level blocks can not meet the system 

level specifications. On top of that, the specification propagation step helps to 

determine the system level yield. The yield is defined based on the system level 

specifications but it is determined by the circuit level variations. Therefore, in order to 

predict and optimise the yield for the system level design, the variation of the lower 

level must be propagated to the top level.  
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Figure 6-1: Hierarchy design methodology 

 

6.3 Hierarchical-based Design Methodology 

 

Several hierarchical-based methodologies exist that can be used to overcome the 

design complexity of a large mixed-mode system. This section discuss some of these 

methodologies.  

 

6.3.1 Bottom-Up Methodology 

 

In this method, the design starts with the system specifications. Based on the 

designer‘s knowledge, the system is broken down into sub systems until reaching the 

lowest level of transistor blocks. Next, all the blocks are designed in a bottom-up 

fashion. To cope with the feasibility problem, the lower-level blocks tend to be 

overdesigned. Once the design reaches the top level, the design performances are 

checked and compared with the specifications. If the system fail to meet the 

specifications, a complete bottom-up redesign may need to be done all over again 

which consumes precious design time. 
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6.3.2 Top-down Constraint-Driven Methodology (TDCD) 

 

TDCD methods traverse the design hierarchy, starting from a set of system level 

specifications. Starting from the system level specifications, an architecture is chosen, 

and designed (optimised) at the architecture level using an optimiser. In [88, 87, 89], a 

set of equations were used to describe the feasible performance and the optimisation 

at the architecture level was done towards the objective to maximise the flexibility. 

The design space at this level is the objective space for the next lower-level block. In 

this way, each sub-block will have their own specifications to be met. This is how the 

system level specifications are propagated or transferred to the lower level. The next 

lower level is then optimized in the similar way and the hierarchy is traversed down 

until transistor level. During the transformation, if the sub-blocks are not feasible or 

specifications cannot be met, the hierarchy is climbed-up again and a new architecture 

is selected. Once all the hierarchy levels have been designed and the transistor level 

block has been sized accordingly, a full bottom-up verification will be performed with 

accurate transistor level simulation. In [90], the TDCD method was used as a part of 

the simulation-based synthesis tool for analogue cell sizing called AMIGO. Here, the 

subblock level performance parameters were used as the design variables for the 

system level optimisation. Thus the performance of the lower level is specified while 

optimising the system level block. Later, the lower level block can be optimised 

separately to determine the transistor level parameters.  

 

6.3.3 Feasibility Modelling Bottom-up (FMBU) + TDCD 

 

The TDCD approach discussed previously suffers from feasibility problems and the 

need to climb-up the hierarchy level several times if it fails to find feasible sub-

blocks. Due to this limitation, researchers have focused on developing the feasibility 

model of a performance space in a bottom-up fashion and then followed by a TDCD 

flow. The radial basis function [91], support vector machine [92] and spec-wise 

linearised models [93] have been used to model the feasibility and the performance 

space of the sub-block level. With this model, it can be repeatedly used without the 

need to re-run the optimisation and over time, libraries of feasibility models can be 

built. The main disadvantage of this methodology is considerable simulation effort is 
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expended to model the whole feasibility region which includes all the design points, 

including optimum and non-optimum design points. 

 

6.3.4 Multi Objective Bottom-up Methodology (MUBU) 

 

MUBU approach consists of two important ideas :  

 only consider performance‘s trade offs rather than the whole objective 

space and  

 to use designed circuits rather than models.  

The development in analogue CAD leads to the concept of multi objective 

optimisation and Pareto-points which has been explained earlier in this thesis. In 

MUBU method, the circuit/cell level Pareto points are directly exploited for system 

level design. The design space of next level up is the selection of design space for 

each of the sub-blocks and the hierarchy traversal proceeds in an upward flow as 

illustrated in figure 6-2. This idea has been used in chapter 5 of this thesis for the 

example of 2
nd

 order low pass filter design.  

 

Objective 

space

gm

PM

2

3

4

L1 W1 WnLn...Dsg

2 L1d2 W1d2 ... Lnd2 Wnd2

OTA Pareto

PMgm

gm2 PM2

Design Space Objective Space

3 L1d1 W1d1 ... Lnd1 Wnd1 gm3 PM3

4 L1d1 W1d1 ... Lnd1 Wnd1 gm4 PM4

Circuit Level

Objective 

space

Attn

2

3

fc

Objective 

space

Attn

1

2

fc

OTA2

Objective 

space

Attn

1

2

3

fc

OTA3
OTA4

Cap ResOTA

1 C1... R1...

Filter Pareto

Attn

...

fc

...

Design Space Objective Space

Top Level

B
o

tt
o

m
-U

p
 D

e
s
ig

n

 

Figure 6-2: Multi Objective Bottom Up hierarchical methodology 
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In contrast with TDCD, any design selected on any level in MUBU method is already 

fully sized. Once the designer selects a solution at the system level that meets the 

specifications, the design variables of the complete system have been specified. In this 

approach, there is no need for specification propagation since all the optimum 

performance trade-offs are being used at the system level and at system level, the one 

that meet the specifications is chosen as the design solution. The Pareto optimal set 

generated can be reused and can compensate the cost involve during the optimisation 

process. Compared with the FMBU+TDCD method, which is applied to the whole 

performance space, MUBU only consider the performance trade-offs  and only 

captures the good circuit candidates for the sub-block circuits. 

 

6.4 Multi Objective Bottom Up (MUBU) + TDCD Architecture 

 

In the MUBU approach, the design space for the next level up is the selection of a 

design for each of the sub-blocks. However, in most cases, once the system level 

specifications have been specified, it does not specify the requirements for the lower 

level blocks. Therefore in the MUBU approach, to optimise at the system level, the 

algorithm needs to jump among discrete points of the Pareto in order to find the 

solution that meet the system level requirements. If all the solutions from the sub-

blocks level do not meet the system level specifications, the sub-blocks topology is 

not feasible for the design and a new Pareto-points for a different topology need to be 

created. Then, the system level optimisation need to be repeated again to find the 

solutions. 

 

Most of the hierarchical-based methodologies discussed so far do not consider 

performance variation in the design flow hence they are unable to predict and 

optimise the system level yield. In order to optimise the yield at system level, it is 

necessary to take into account the variation of the sub-blocks level and there must be a 

way to exploit this information during the bottom-up flow. This chapter proposes a 

new hierarchical-based design methodology that model the variation of the sub-blocks 

performances that can be used for system level yield prediction. The methodology is 

illustrated in figure 6-3. 
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Figure 6-3: MUBU + TDCD Architecture 

 

In this proposed approach, the multi objective bottom up design flow is used to 

develop a performance and variation model of a sub-block circuits. Pareto points from 

a multi objective optimisation will be extracted for the performances and Monte Carlo 

simulation is applied on the Pareto-points for the variation modelling. Standard 

deviation of the Monte Carlo result is calculated and a 6-sigma minimum and 

maximum range is estimated. Both the performance and variation are modelled in a 

lookup table using behavioural language which later can be used for system level 

design and optimisation. Once the model has been developed, a TDCD method is 

applied for the system level design. At the system level, behavioural modelling is used 

for the optimisation and the system is optimised towards the system specifications. 

With the inclusion of variation model from the sub-block level, the performance space 

of the system level will include their performance variations. As a result, a solution 

that meets the specification for nominal performances and its tolerances can be 

selected which in turn will maximise the overall yield. The design parameters of the 

system level will be the target specifications for the next lower-level sub-blocks. The 

lower-level performance and variation model will be used to select the design 
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parameters that meet the lower-level specifications. This top-down design process 

flow will continue until the hierarchy reaches the transistor level. At the transistor 

level, the whole system design has been sized to meet the system level specifications 

and at the same time produce higher yield. 

  

6.5 Design Example: 7
th

 order elliptic low pass filter 

 

To demonstrate the proposed methodology, a system level of 7
th

 order elliptic low 

pass filter is used as a design example. This section presents a complete design flow 

starting from behavioural performance and variation model development for single 

stage operational transconductance amplifier (OTA) to top down design strategy for 

the whole filter system. 

 

6.5.1 Circuit Decomposition 

 

In a hierarchical-based design the flow starts with breaking down the system level 

design into sub-blocks which is known as circuit decomposition. Therefore from a 

system level description, the architecture/topology of the system and each of the 

hierarchy level have to be determined until it reaches to the lowest transistor level. 

Figure 6-4 shows the break down of the 7
th

 order elliptic low pass filter system. 
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Figure 6-4: Circuit Decomposition 
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6.5.2 MUBU modelling – Design Initialisation 

  

Multi objective bottom up methodology is used to develop the performance and 

variation model for the sub-block circuit. In this case, the model that will be 

developed is for the single stage OTA as shown in figure 6-5. 

 

 

Vin+ Vin-

Vout

Ibias

M1 M2

M3 M4

 

Figure 6-5: Single stage OTA topology 

 

The first step in the model development is to determine the designable parameters for 

the topology. In this example, these are the transistor lengths and widths which make 

up a total of 4 designable parameters. In order to avoid mismatch in the design 

process for input pair and current mirror pair, the transistors are grouped as pair so 

that transistor M1 and M2 will have the same length and width and so does current 

mirror pair (M3 & M4). Three objective functions have been chosen for this example: 

transconductance (gm), output resistance (ro) and phase margin (pm).  For this 

example, only three objective functions are chosen which is necessary and sufficient 

for the system level design in order to reduce the number of simulations needed for 

the multi objective optimisation. However, the performance objective is not limited to 

any number and it can be as many as required if a generic OTA model is to be 

developed and can be used in wide number of applications. Once the objectives have 

been defined, a spice netlist including the testbench for each of the performance 
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objective is created. In this example, only one testbench is required as all the 

performance objectives can be simulated using single testbench with ac analysis. 

 

6.5.3 MUBU modelling – Optimisation  

 

Once the designable parameters have been determined, a GA string can be constructed 

as shown in figure 6-6. As explained earlier in this thesis, the multi objective 

optimisation has constrained some parameters including the decision space range. The 

algorithm chosen for the multi objective optimisation is Non-dominated Sorting 

Genetic Algorithm - II (NSGA-II) [51]. A brief overview of the NSGA-II algorithm 

has been presented in chapter 2 and the code for the algorithm is shown in Appendix 

B. The NSGA algorithm will generate the designable parameters according to the GA 

string and the range constraints. These parameters are used in the spice netlist for the 

performance evaluations. A total of 50 generations each with a population size of 400 

were used in this case, giving 20,000 total samples for the optimisation. 

 

WPair2 LPair2WPair1 LPair1

 

Figure 6-6: GA string for the design example 

 

The testbench netlist is used to evaluate the performance for each design parameter set 

(defined by GA) and the result of the simulations determines the fitness score of the 

individuals. A non-dominated sorting and crowding distance sorting are applied to the 

solution for each generation in order to find the final diverse set of Pareto-fronts. The 

result of the optimisation is a full set of designable parameters confined by the 

parameters range and their corresponding performance functions. 

 

6.5.4 MUBU Modelling – Performance and Variation Model 

 

The outcome of the previous multi objective optimisation for the OTA is a set of 

optimal solution called Pareto-front. The Pareto points are the best performance trade-

offs among the competing objectives for the circuit. All the solutions on the Pareto 

front are taken as the optimal performances and will be defined as the performance 

model for the OTA. The variation model for the Pareto points is developed with a 
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Monte Carlo simulation using process variation and mismatch models given by the 

foundry. 200 samples were chosen for the Monte Carlo simulation and from these the 

standard deviation of the sample is calculated. The standard deviation is multiplied by 

6 for the 6-sigma minimum and maximum range. The minimum and maximum data 

represent the variation model. This together with the performance data is stored in a 

data file. As explained in chapter 5, a lookup table is used to model the performance 

and variation of the circuit. The look-up table is defined using Verilog-A behavioural 

language with $table_model() function as given in figure 6-7. Table 6-1 shows a 

selection of the lookup table sample points that include the performance functions and 

their variations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-7: Verilog-A table model function 

 

 

 

 

 

 

 

 

 

analogue begin 

 gm_delta = $table_model (gain, "gm_delta.tbl", "3E"); 

 ro_delta = $table_model (ro, "pm_delta.tbl", "3E"); 

 pm_delta = $table_model (pm, "pm_delta.tbl", "3E"); 

 gm_prop = ((gm_delta/100)*gm)+gm; 

 ro_prop = ((ro_delta/100)*ro)+ro; 

 pm_prop = ((pm_delta/100)*pm)+pm; 

 p1 = $table_model (gm_prop,ro_prop,pm_prop, "p1_data.tbl","3E,3E,3E"); 

 p2 = $table_model (gm_prop,ro_prop,pm_prop, "p2_data.tbl","3E,3E,3E"); 

 p3 = $table_model (gm_prop,ro_prop,pm_prop, "p3_data.tbl","3E,3E,3E"); 

 p4 = $table_model (gm_prop,ro_prop,pm_prop, "p4_data.tbl","3E,3E,3E");        

 fptr=$fopen("params.dat");  

 $fwrite(fptr, "\n Generated Design Parameters\n "); 

 $fwrite(fptr, "%e %e %e %e", p1,p2,p3,p4); 

 $fclose(fptr); 

 $display ("params: = %e %e %e %e", p1, p2, p3, p4);   

End 
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Design: gm :  ∆gm: ro : ∆ro: pm: ∆pm : 

2 109µ 0.75% 382k 0.75% 87.9 1.74% 

3 109µ 0.75% 384k 0.75% 87.8 1.73% 

19 110µ 0.74% 371k 0.74% 88.0 1.73% 

34 111µ 0.75% 497k 0.74% 85.3 1.71% 

35 111µ 0.73% 375k 0.75% 87.9 1.73% 

61 112µ 0.73% 458k 0.74% 86.1 1.71% 

209 120µ 0.70% 486k 0.74% 82.7 1.70% 

211 120µ 0.70% 743k 0.72% 74.9 1.69% 

 

Table 6-1 Performance and Variation Samples 

6.5.5 TDCD flow – Behavioural Description 

 

Once the multi objective bottom up model development has completed, a top-down 

constraint design (TDCD) can be started. This design flow starts with system level 

optimisation and transformation of the system level specifications to bottom level 

blocks. In order to run system level optimisation, a behavioural model is used to 

describe the system. This approach offers fast simulation and optimisation hence the 

optimum solutions for the system can be quickly determined. Therefore, a complete 

behavioural model has to be developed for the system level taking into account all the 

sub-block circuits. The behavioural performance and variation model developed 

during the MUBU stages can be combined together with the system level behavioural 

to find the solution. 

  

In this example, a behavioural model for an OTA is developed based on ac small 

signal analysis. The OTA topology used in this example is not symmetrical hence 

both side of the differential pair (LHS & RHS) must be taken into consideration for 

the analysis. The differential input signal applied to the input is given by equation 6-1 

and the input signal is given by equation 6-3. 

 

)( inminpid vvv      6-1 

           vin2         6-2 

2/idvvin        6-3 
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Where vid is the differential input signal, vinp is the positive input and vinm is the 

negative input. Each side of the differential pair will be analysed individually to 

derive the dc gain of the circuit. Figure 6-8 shows the small signal model for left hand 

side (LHS) and right hand side (RHS) of the OTA.  
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Figure 6-8: OTA small signal model 

In the above model, the voltage at node m is given by equation 6-4 :- 


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Since 
3

1

gm
 is very small, equation 6-4 can be reduced to :- 




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Which can be re-written as :- 











23

1 id

m

v
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v      6-6 

At the RHS, the voltage at the output of the OTA is given by equation 6-7. 

   2442 //
2
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Apply equation 6-6 into 6-7 for vm :- 
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Since gm1 = gm2 = gm3 = gm4 = gm , equation 6-8 can be re-written as :- 

 54 //. rorovgmv idout      6-9 

Therefore, the gain for the OTA, Av is :- 

 24 // rorogm
v

v
A

id

out

v      6-10 

The above analysis represents the dc gain for the OTA at low frequency. To 

accurately analyse the behaviour of the OTA for high frequency operation, all 

parasitic capacitances have to be considered. Figure 6-9 and 6-10 show the OTA 

schematic with parasitic capacitance and its small signal model respectively. Cn in the 

small signal model is the total capacitance at the input node, n and Co is the total 

capacitance at the output node, o. 

 

3143 dbdbgsgsn cCCCC      6-11 

Ldbgddbo cCCCC  442     6-12 
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Figure 6-9: OTA schematic with parasitic capacitance 
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Cn = Cgs3 + Cgs4 + Cdb1 + Cdb3
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Figure 6-10: OTA High frequency small signal model 

 

At LHS, voltage at node m can be written as :- 


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Reactance obtained from 1/gm3 parallel with Cn can be expressed as :- 

n

s
sCgm

X
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
3

1
    6-14 

 

Therefore, vm can be written as :- 

n
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m
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From 6-7, the output current for that equation can be expressed as :- 
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Replace vm from 6-15 into 6-16, :- 
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Looking at the RHS of the small signal model, the current flow to output resistance 

parallel with output capacitance (ro4//ro2//Co). 

 ooutout Croroiv //// 24     6-18 

Equation 6-18 can be written as :- 

o
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     6-19 

Where ro is the output resistance, a parallel combination or ro4 and ro2. 

Substitute 6-17 into 6-19, :- 
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The gain for the OTA can be expressed as :- 





































3

3

1

2
1

1

1
)(

gm
sC

gm

sC

rosC
gmro

v

v
A

n

n

oid

out

v  6-21 

Looking at equation 6-21, the first part is the dc gain of the OTA which is represented 

by (gm * ro). The second part represents the pole frequency, fp1 which is shown in 

equation 6-22. fp1 is the output pole which is dominant especially when a large load 

capacitance is present. 

roC
f

o

p
2

1
1       6-22 

The last part of equation 6-21 represent the second pole frequency and a zero 

frequency as shown in equation 6-23 and 6-24. 
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Once the small signal analysis has been done for both of the low frequency and high 

frequency effect, the behavioural model can be developed to include all the 

parameters from the small signal model. The behavioural description using Verilog-A 

behavioural language for the OTA is given in figure 6-11. 

 

 

Module ota(inp, inm, out) 

    …. 

    parameter real gm = 60e-6; 

    parameter real ro = 1e+6; 

    electrical inp, inm, out, vm; 

    real vin; 

analog begin 

    // high frequency model 

    vin = V(inp,inm);  

    I(vm) <+ -gm*(vin/2);  // gm transistor M1 

    I(vm) <+ cin*ddt(V(vm)); // cin is the total input stage capacitance  

    I(vm) <+ cgd1*ddt(vin/2);   // miller effect of cgd1 

   … 

    I(out) <+ -gm3*V(vm); 

    I(out) <+ -gm*(vin/2); 

    ….. 

    V(out) <+ I(out)*ro; 

    ….. 

end 

endmodule 

 

Figure 6-11: Verilog-A code for OTA 

 

To verify the accuracy of the behavioural model, a comparison is made between the 

behavioural model and transistor model for their frequency response. Figure 6-12 

shows the response plot for behavioural model and transistor level simulation. As can 

be seen from the figure, the behavioural model matches the transistor level response 

with about 20% different. The different can be reduced by improving the behavioural 

model to include higher number of equations to model some other circuit parameters 

so that the response will match closely to the transistor level. However, this might 

affect the simulation time. Therefore, a trade off has to be made between accuracy and 

design speed. 
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Figure 6-12: Comparison between behavioural model and transistor model 

 

6.5.6 TDCD flow – System level optimisation 

 

The behavioural OTA developed in previous section is instantiated in the filter system 

level description. The topology for the 7
th

 order elliptic low pass filter is shown in 

figure 6-13. The designable parameters for the filter are OTA transconductance (gm) 

and all capacitor values (C1 ~ C10). The filter is optimised towards typical video filter 

specifications [94] as shown in figure 6-14 which defines the objective space of the 

optimisation. 
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Figure 6-13: 7
th

 order low pass elliptic filter 
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Figure 6-14: Filter specifications 

 



Chapter 6 Hierarchical-based Design Optimisation 117 

 

A testbench was created to simulate the filter response. One testbench is sufficient to 

simulate all the performance functions required for the filter. Once the spice netlist 

has been created, a multi objective optimisation using NSGA-II algorithm is 

performed on the filter design to locate optimum solution points. A total of 200 

individuals and 50 generations were used for the optimisation process. Some samples 

of the optimisation result are shown in table 6-2. This table shows all the design 

solutions that meet the filter specifications. In the next step, the design parameters of 

these solutions (i.e. gm) will be taken as the specification for the lower sub-block 

(OTA). This particular step in the design flow propagates the system level 

specifications to lower level sub-block. Once the lower level specification has been 

determined, the performance and variation model of the sub-block  is used to search 

for the feasible and optimal solutions. 

 

Based on the performance and variation model of the OTA (table 6-1), the only 

feasible solutions for the filter are design points 15 and 70 (refer to table 6-2). The 

other design points in the table require a higher transconductance value which is not 

feasible for the OTA topology. 

 

Design: gm (µs) :  Attn (dB): Fp(MHz): Fs(MHz): 

11 122.3 40.3 6.1 8.3 

22 131.6 47.4 5.4 7.5 

15 108.9 45.9 5.3 7.3 

70 113.8 55.1 5.7 8.9 

61 130.4 61.7 5.7 8.9 

 

Table 6-2: Pareto-front samples for filter optimisation 

  

From table 6-2, looking at design point 15 and 70, the specifications for the OTA are 

108.9u and 113.8u. The variation model of the OTA is used to interpolate the 

transconductance variation for these two values. For this example, the interpolated 

variation values for both of the transconductances are 0.75% and 0.73% respectively. 

These variations will be used to determine the minimum and maximum values for 



Chapter 6 Hierarchical-based Design Optimisation 118 

 

each of the transconductances. The  minimum and maximum transconductance will be 

used in behavioural filter simulation to determine the filter performance with the 

effect of the variations. From the simulation, performances are compared with the 

specifications and the one that passes all the specifications will be chosen as the 

design solution. In this example, design point 15 and its variations pass all the filter 

specifications hence is chosen for the OTA design. The design parameters of the OTA 

will be interpolated from the transconductance value. The result of this hierarchical 

optimisation is a complete filter design that has been optimised to meet high level 

specifications taking process variations into consideration. To verify the predicted 

yield given by the proposed approach, a final Monte Carlo simulation with 100 

samples was run on the transistor level filter design. This simulation confirmed a yield 

of 100% as shown in figure 6-15. 

 

 

Figure 6-15: Monte Carlo plot of filter response 

 

 

6.7 Summary 

 

A new design flow for hierarchical-based circuit sizing is presented. The strategy 

combines a multi objective bottom up (MUBU) modelling to model individual sub-

blocks and top down constrained design (TDCD) to break down the system level into 

sub-blocks and propagate the specifications. The new hierarchical-based design 
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demonstrated how the performance and variation model developed in the MUBU 

stage can be exploited to predict the system level performance and its variations. This 

prediction is very useful to estimate and optimise the system yield. An example of 7
th

 

order low pass filter demonstrates the ability of the method to design and optimise the 

system for performances and yield.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

Chapter 7 

 

 

Mixed-signal System Level Application 

 

7.1 Introduction 

 

Chapter 6 has demonstrated the proposed methodology on a small system design. The 

example in that chapter shows the applicability of the method to find solution for 

small circuits with small design objectives. This chapter on the other hand will 

demonstrate the capability of the methodology to deisgn and optimise a bigger and 

complex mixed-signal system. A charge pump PLL that consists of a combination of 

analogue and digital block that requires higher number of SPICE analysis is used as 

the application example. 

 

The PLLs is a typical analogue mixed signal system which plays an important role in 

many applications ranging from frequency generators to clock recovery in 

communication systems. Due to its mixed-signal nature, the design of PLLs becomes 

a crucial part of the time-to-market for many products. Simulating a PLL at transistor 

level takes a long time because of the large number of devices in the circuit. Also, the 
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phase noise specification for the PLL requires transient noise simulation with a very 

well controlled time step and often takes considerable time to simulate. Due to this 

limitation, behavioural modelling was commonly used to model the individual blocks 

in PLL [95]. On top of that, hierarchical sizing methodology has been proposed to 

accelerate the design process of a PLLs [96, 97, 98].  

 

A charge pump PLL consist of five building blocks: phase frequency detector (PFD), 

charge pump (CP), loop filter (LF), voltage controlled oscillator (VCO) and divider 

(D) as shown in figure 7-1. One of the application of PLLs is frequency synthesis. In a 

frequency synthesizer, the output frequency can be set to multiples of the reference 

input frequency (Fref) by changing the divider ratio (N). The output frequency can be 

written as :- 

 

Fout = N x Fref      7-1 

 

The phase frequency detector (PFD) detects the phase and frequency difference 

between reference signal and the feedback signal from the divider. The charge pump 

(CP) transforms the phase difference of the PFD into output current. This current is 

delivered to the loop filter (LF) and the output of this filter is a control voltage (Vc) 

that control the VCO. The oscillation frequency of the VCO is determined by the 

control voltage. Once the feedback frequency match to the reference frequency, the 

control voltage become constant and the vco will oscillate at a constant frequency. 

This is the operation of PLL that is locked to a particular desired frequency. 

PFD
Charge

Pump
VCO

Divider

Fref

Ffb
Fout

 

Figure 7-1: PLL system block diagram 
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In this chapter, the methods proposed in the previous chapter for performance and 

variation modelling and hierarchical-based opitmisation are used to efficiently design 

a complete PLL system. The process is divided into two stages: preparation stage for 

the performance and variation model development and design stage for the complete 

PLL system. The design and optimisation for the example will only consider the 

analogue blocks of the system namely the charge pump, loop filter and voltage-

controlled oscillator (VCO), while the digital blocks are held as fixed.. The models 

that to be developed during the preparation stage are charge pump and VCO. The next 

section will briefly discuss the architecture of the PLL system. 

  

7.2 PLL system 

 

7.2.1 Phase Frequency Detector 

 

The phase detector is a circuit whose the output is linearly proportional to the phase 

differece of its two inputs. Ideally, the relationship between output voltage (Vout) and 

phase difference (Δφ) is linear as depicted in figure 7-2. The slope of the line is the 

gain of the phase detector, KPD and is expressed in V/rad. 

Phase 

Detector

V1(t)

V2(t)

Vout(t)

ΔΦ

Vout

 

Figure 7-2: phase detector concept 

 

A simple example of phase detector is the exclusive OR (XOR) gate as shown in 

figure 7-3. The plot shows how the width of the output pulses varies with the 

difference of the inputs. 
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V2(t)

Vout(t)

V1(t)

V2(t)

Vout(t)

 

Figure 7-3: Phase detector plots 

 

One of the main limitations of the phase detector is in its acquisition range [99]. The 

transition from the unlocked to the locked condition is nonlinear due to the inequality 

in the frequencies and the locking range is very limited. It is often necessary to have a 

wide acquisition range because the VCO oscillation frequency may vary considerably 

with process and temperature variation. Due to this limitation, a frequency 

comparison circuit is added to the phase detector so that the module can detect both 

the phase and frequency differences. This block is called phase/frequency detector 

(PFD) and a simple form of PFD circuit is illustrated in figure 7-4. 
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Figure 7-4: PFD schematic 
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7.2.2 Charge Pump and Loop Filter 

 

A charge pump consists of two switched current sources: source and sink currents. 

Current charge is steered into or out of the loop filter in a PLL according to two 

logical inputs from PFD. Figure 7-5 illustrates a charge pump driven by PFD and 

driving a capacitor. If the PFD inputs (QA and QB) are the same (no difference in 

phase and frequency of signals A and B), switch S1 and S2 are off and Vout remains 

constant. If QA is high and QB is low, then I1 will be steered to capacitor Cp (current is 

steered into the loop filter) and if QB is high and QA is low, I2 will discharge the 

capacitor (current is steered out of the loop filter). The plot in figure 7-5 shows the 

rising up of Vout when signal A leads signal B. 
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Figure 7-5: PFD/CP illustration and its signal plots 

 

In figure 7-5, a capacitor, Cp is used in place of the filter. The loop filter for a PLL can 

be made from a simple RC filter. Figure 7-6 shows a 2
nd

 order RC filter that is 

commonly used in a PLL system. The filter is composed of a resistor R1 in series with 

a capacitor C1. the charge pump current sources and the capacitor form an integrator 

and the resistor introduces a zero point of the system. However, this configuration will 

introduce a ripple of IpumpR1 on the output voltage, Vout and this ripple modulates the 

I1 

I2 

S1 

S2 
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VCO output frequency and may cause excessive jitter. In order to suppress this ripple 

or voltage spike, a small capacitor C2 is added in parallel with R1 and C1. In practical 

design, C2 is usually chosen to be about C1/10. A small C2 improves the phase margin 

of the PLL system. 

 

Ipump Vcont

R1

C2

C1

 

 

Figure 7-6: Loop filter 

 

7.2.3 Voltage Controlled Oscillators 

 

Oscillators play an important role in phase locked loop system. In general, a simple 

oscillator produces a periodic output, usually in the form of voltage. In PLLs, the 

oscillator is required to be tuneable i.e., the frequency oscillation is a function of a 

control input, usually a voltage hence the name voltage-controlled oscillators (VCO). 

An ideal voltage-controlled oscillator is a circuit that generates a periodic signal 

whose the frequency is a linear function of its control voltage, as illustrated in figure 

7-7. This linear relationship is expressed in equation 7-2. 

 

).( minmin VVKff inVCOout     7-2 

 

Where fout is the output frequency, fmin is the minimal frequency, Vin is the output 

voltage from loop filter and Vmin is the minimum input voltage. KVCO denotes the gain 

of the circuit which can be defined as in equation 7-3. 
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Figure 7-7: VCO as a linear function of control voltage 

 

7.3 PLL System Performances 

 

A PLL system is usually designed to meet several requirements for a particular 

application. For example, a frequency synthesizer may require a PLL to have a better 

locking time, low phase noise, low power consumption, better stability and operate at 

a wide tuning frequency range. Some of the performances commonly associated with 

PLLs will be discussed in the remainder of this section. The discussion will be divided 

into two sections : first section will discuss  a group of PLL performances that can be 

represented by the PLL transfer function such as loop bandwidth, locking time and 

phase margin and the second sectin will discuss about PLL phase noise parameters, 

extracting individual noise and behavioural noise modelling. 
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7.3.1 PLL transfer function 

 

When the PLL is said to be in-lock, it can be represented in s-domain block diagram 

as shown in figure 7-8. KPD is the gain of phase/frequency detector which is given by 

equation 7-4, KVCO is the gain of the VCO and F(s) is the transfer function of the loop 

filter. The open-loop transfer function of this model is represented by equation 7-5. 

 

2
CP

PD

I
K       7-4 
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Divider
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Figure 7-8: A linear PLL model 
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The system has a zero at : 
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Based on equation 7-5, the close loop transfer function can be written as : 
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Where n is the natural frequency and  is the damping factor. From this equation, 

the natural frequency and damping factor can be expressed by equation 7-8 and 7-9. 

 

12 NC

KI VCOCP

n


     7-8 

2

1RCn
      7-9 

The loop bandwidth can be expressed by equation 7-10. 

 

 422 44221   nBW   7-10 

 

From equation 7-10, it can be seen that the loop bandwidth is determined by KVCO 

from the VCO block, ICP from the charge pump block, C1 and R from the loop filter 

block. The locking time for a PLL system, according to [100] is given by equation 7-

11. 

n

LockT


2
   7-11 

 

The bode plot for the open loop transfer function given in equation 7-5 is illustrated in 

figure 7-9. The unity gain bandwidth is the value of the frequency when the 

magnitude of the open loop gain is 1 and can be expressed by equation 7-12. The bode 

plot has a pole given by equation 7-13. 

 



Chapter 7 Mixed-signal System Level Application 129 

 

PM
-180

o

0
o

Open-loop

Gain

(dB)

ωωz ωugb

ωp

 

Figure 7-9: Bode plot of a 3
rd

 order PLL 
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The phase margin (PM) of the system which is used to determine the stability can be 

calculated using equation 7-14. 
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Until this point, this section has discussed several PLL performances such as loop 

bandwidth, damping factor, natural frequency, phase margin and locking time. In the 

top PLL system, these performances are evaluated analytically using all the equations 

discussed earlier in order to determine the PLL performances. Another important 

performance function of the PLL system is phase noise or jitter (in time domain) and 

this will be discussed next. 
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7.3.2 PLL phase noise 

 

Every building block of the PLL will contribute to the total output noise, which is 

characterized in terms of phase noise in the phase domain or jitter in the time domain 

[101]. Figure 7-10 shows a PLL system with all the noise contributions from each 

block. The noise sources Nref, NPFD/CP, NLF, NVCO and NDiv are placed respectively at 

the corresponding nodes. 

PFD/CP LF VCO

Divider

/N

+Φin

Φout++

+

+

nref

npfd/cp nLf nvco

ndiv

 

Figure 7-10: Noise analysis model for PLL system  

 

In the PLL system, each block can be considered to have an individual effect to the 

output noise and from all the individual noise sources, a superposition can be applied 

to compute the total PLL output noise [102]. Each noise source can be derived as a 

laplace transfer function that represents how the PLL output noise is shaped by them. 

The noise transfer function originating from the reference oscillator, divider and 

PFD/CP block will have a low pass response. Therefore the PLL output phase noise 

will be strongly effected by the phase noise of these blocks at low offset frequencies. 

The noise transfer function between output and VCO input tends to be a high pass 

response and therefore the phase noise of the PLL output due to the VCO phase noise 

will be affected at the high offset frequencies. For the loop filter, the injected noise 

has a band pass response and will shape the PLL noise accordingly.  The closed-loop 

phase noise of the PLL (LPLL(f)) can be computed by performing a superposition over 

each of the contributing noise sources with the assumption that no correlation exists 

between them. 

  

 

 



Chapter 7 Mixed-signal System Level Application 131 

 

7.3.3 Extracting individual phase noise contribution 

 

In order to calculate the PLL output noise, the phase noise contribution from each of 

the individual block must be analysed and extracted. This can be done through a spice 

phase noise analysis for each of the block separately. For the scope of this thesis, only 

noise contribution from VCO block and PFD/CP+filter block will be considered and 

this is discussed next. 

 

7.3.3.1 VCO Noise 

 

In most applications, the PLL phase noise is dominated by VCO phase noise [103]. 

This is because oscillators tend to amplify noise found near their oscillation frequency 

and any of its harmonics. To extract the phase noise parameter of a VCO, a phase 

noise analysis is done using a RF simulator such as SpectreRF [10] or HspiceRF [9]. 

The phase noise, L is measured for a range of frequencies offset from the centre 

frequency [104, 105]. A graph for the phase noise value versus the offset frequencies 

is as illustrated in figure 7-11. If flicker noise is present, there will be a range of low 

frequencies for which the power noise drops at a rate of 30dB per decade. Above this, 

the rate of drop will be 20dB per decade which is characterized as white noise region. 

All these information from this plot (flicker and white noise) is extracted and will be 

used in behavioural description of VCO to represent the phase noise slope.  
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Figure 7-11: VCO phase noise vs offset frequencies 

 

7.3.3.2 PFD/CP and loop filter noise 

 

Other than VCO noise, the noise combination of the phase frequency detector, the 

charge pump and the loop filter also contribute to the PLL noise. The combination 

noise can be extracted by simulating the PFD, charge pump and loop filter under open 

loop conditions that approximate the PLL in a locked steady-state. The schematic for 

this analysis is shown in figure 7-12. In this schematic, the phase frequency detector is 

driven with an in-phase clock to represent a locked-state of PLL. 

 

The output noise from the simulation can be extracted and represents another noise 

contribution  in the PLL closed-loop system analysis. Figure 7-13 shows an 

illustration of the noise simulation result for PFD/CP and loop filter combination. 
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Figure 7-12: A schematic for PFD/CP and loop filter noise simulation 
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Figure 7-13: Illustration of PFD/CP and loop filter noise plot 

 

 

7.3.4 Behavioural Modelling of Noise Sources 

 

Once all the noise contributions from individual blocks have been calculated, their 

values can be represented using a behavioural model. Verilog-A provides a 

flicker_noise function for modelling transitor model flicker noise, which has a power 

spectral density proportional to 1/f
α
 with α typically close to 1. However, Verilog-A 

does not limit the value of α, making the function well suited to model the oscillator 
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phase noise with α=2 for 20dB roll off noise and α close to 3 for 30dB roll off noise. 

[106].  

 

Typically the VCO phase noise contributions LVCO(f) can be modelled with a 

frequency dependent phase noise expression given in equation 7-15. 

EF
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f
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K
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22
)(   7-15 

Where EF ≈ 1 is the flicker noise exponential used within the transistor models, KF 

represent modulated flicker noise contributions and KW represent modulated white 

noise contributions. The PFD/CP LPFD/CP(f) noise response can be modelled with a 

frequency dependent phase noise expression given in equation 7-16. 

 

WEF

F
CPPFD K

f

K
fL )(/   7-16 

Where KF represent flicker noise contribution and KW represent white noise 

contribution.  

 

With all the noise contribution transfer functions obtained above, a behavioural model 

can be developed based on the expressions given in equation 7-15 and 7-16. One of 

the advantages of Verilog-A is its ability to model both signal and noise 

characteristics within the same module. In this way, the noise is modelled by adding 

noise voltages to the voltage variables. Figure 7-14 shows a Verilog-A module for 

modelling the phase domain VCO with noise. The phase signal model of a VCO is an 

ideal integrator that converts frequency to phase based on the VCO gain providing a 

transfer function as given in equation 7-17. A Verilog-A laplace transform operator, 

laplace_nd is used to represent the transfer function. Added to the output voltage of 

the VCO are two flicker noise function, flicker_noise( ), that add f
-3

 to represent the 

30dB roll off and f
-2

 to represent 20dB roll off noise distibutions. 

 

s

K
sH VCO

VCO )(    7-17 

 

Figure 7-15 shows the Verilog-A code for implementing the PFD/CP behavioural 

model. The output of the block is modelled by a simple constant gain coefficient, Kd, 
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that operates on the input different , Vin1-Vin2. As with the VCO model, the noise 

voltages of flicker noise and white noise are added to the output of the PFD/CP 

module.  

 

// VCO behavioural model incorporating noise transfer function 

   Module vco() 

 ... 

V(out) <+ laplace_nd(V (in), {fmax-fmin/1},{0,1})   

     + flicker_noise(lffl, 3, "VCO_flicker") 

   + flicker_noise(lfwh, 2, "VCO_white"); 

 

end 

endmodule 

 

Figure 7-14: VCO behavioural model 

 

// PFD/CP behavioural model incorporating noise transfer function 

 Module pfdcp 

 … 

   V(out) <+ kd*(V(in1) - V(in2)) 

   + flicker_noise(lfpfl, 1, "pfd_flicker") 

   + white_noise(lfpwh, "pfd_white"); 

 

end 

endmodule 

 

Figure 7-15: PFD/CP behavioural model 

 

In figure 7-14 and 7-15, Lffl, Lfwh, Lfpfl and Lfpwh are the VCO flicker noise, VCO 

white noise, PFD/CP flicker noise and PFD/CP white noise contribution respectively. 

With all the models for individual blocks developed, a top-level closed-loop PLL 

noise analysis can be performed. The PLL phase noise plot from the top-level 

simulation is shaped by the combination of the individual noise sources. 
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7.4 Design Example 

 

A charge pump PLL system was designed using ST 0.12µm process technology and a 

supply voltage of 1.2V. The Multi Objective Bottom Up (MUBU) + Top Down 

Constraint Driven (TDCD) hierarchical design methodology discussed in chapter 6 

was used to design the complete PLL system. The specifications for the PLL are given 

in table 7-1 and the system level block diagram is as illustrated in figure 7-1. The PLL 

was designed to generate frequency range of 500MHz to 1.2GHz from a 50 MHz 

reference oscillator. Therefore the divider ratio can be selected between 10 to 24 for 

the output frequency range. Only the analogue blocks of the charge pump (CP), VCO 

and the loop filter (LF) are considered in the design process while the digital blocks 

(PFD and Divider) are assumed to be ideal and held as fixed. As explained in chapter 

6, the design methodology starts with multi-objective bottom up modelling to model 

the performance and variation of the sub-blocks using the methodology proposed in 

chapter 5. The work can be divided into 2 stages : preparation stage for the model 

development and design stage for the whole PLL system. In the preparation stage, 2 

sub-block models were developed using the MUBU technique. Both of these models 

were used later for the PLL design using the TDCD method. 

 

Performances Specifications 

Output Frequency Range 500MHz to 1.2GHz 

Locking time < 1us 

Current consumption < 5mA 

Phase noise (@ 1 MHz offset) < -100 dBc/Hz 

Phase Margin > 45 degress 

 

Table 7-1: PLL system level specifications 
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7.4.1 Charge Pump (CP) performance and variation model 
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Figure 7-16: Charge pump preparation stage 

 

The charge pump is a circuit that is used to steer the current into or out of loop filter 

based on the up and down signal from phase frequency detector. The schematic for an 

externally-biased charge pump is given in figure 7-17. The downup, , up and down  

are coming from PFD circuit. When the up signal is active, the current flows into the 

loop filter and causes the output voltage to rise up which in turn forces a higher 

oscillation frequency from VCO. On the other hand, when the down signal is active, 

the current flow out of the loop filter and causes the output voltage drops down and 

force a lower oscillation frequency. A dummy switch is added in this design in order 

to reduce the charge spike during switching. 
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Figure 7-17: Charge pump (CP) schematic diagram 

 

For the charge pump, two performance functions are being evaluated: charge pump 

current and output noise voltage. Multi objective optimisation was performed to the 

design using NSGA-II algorithm [51] in order to search for optimum performance 

trade-offs. A total of 30 generations with a population size of 50 were used giving a 

total of 1,500 samples. The outcome of this optimisation is a set of Pareto-points that 

represent the trade-off between competing performance objectives. All the points on 

this Pareto-front are stored in a lookup table which represent the performance model 

for the charge pump. 

 

The next step is to develop a variation model based on the performance Pareto-points. 

All the points on the Pareto front undergo a Monte Carlo simulation using ST 0.12µm 

process variation and mismatch model. A 30 samples Monte Carlo simulation was 

performed on each of the Pareto points. The outcome of this Monte Carlo simulation 

is a set of performance variations deviated from its nominal value. For example, 

figure 7-18 shows the nominal, minimum and maximum plots for charge pump  noise 

voltage for one of the Monte Carlo simulations. In order to estimate the minimum and 

maximum region for the performance functions, the standard deviation of the samples 

is calculated and this value is multiplied by 6 in order to get the 6 standard deviation 
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range from the mean value. Figure 7-19 shows the Pareto plot of the performances 

(from MOO) and their variation obtained from Monte Carlo simulation. From the 

plot, the Pareto front clearly shows the trade off between current consumption and 

output noise voltage which indicates that a larger current will result in a smaller noise 

voltage. In addition to that, the minimum and maximum Pareto show how the nominal 

points will deviate due to the process variation and circuit mismatch. 
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Figure 7-18: Nominal, minimum and maximum plot for charge pump noise 
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Figure 7-19: Charge Pump Pareto Front with Variations 

 

The minimum and maximum performances obtained from MC analysis are stored in 

another look up table. At this stage a complete performance and variation lookup table 

has been developed for the PFD/CP and can be used in Verilog-A table model 

function for the behavioural modelling of the charge pump circuit. A part of the 

behavioural model incorporating the table model function nominal, minimum and 

maximum performances are shown in figure 7-20,7-21 and 7-22 respectively. 

 

In the nominal performance behavioural model (figure 7-20), the table model function 

of the Pareto-front is used to interpolate the output noise, lfpwh, from a chosen bias 

current, Icp. The minimum and maximum behavioural models (figure 7-21 and 7-22) 

are used to interpolate and determine the performance variations (lfpwhmin and 

lfpwhmax) of the nominal performances.  
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 Module pfdcp_nom 

analog begin 

 … 

   //lookup table for pfd_cp noise 

   lfpwh = $table_model(Icp, "pfd_data.tbl","3E"); 

 

     V(out) <+ kd*(V(in1) - V(in2)) 

   + flicker_noise(lfpfl, 1, "pfd_flicker") 

   + white_noise(lfpwh, "pfd_white"); 

 

end 

endmodule 

 

Figure 7-20: PFD/CP table model function for nominal performances 

 

 Module pfdcp_min 

 … 

 … 

   //lookup table for pfd_cp noise 

   lfpwh = $table_model(Icp, "pfd_data.tbl","3E"); 

  

   //lookup table for pfd variation 

   lfpwhmin = $table_model(lfpwh, "pfdmin_data.tbl", "3E"); 

 

   V(out) <+ kd*(V(in1) - V(in2)) 

   + flicker_noise(lfpfl, 1, "pfd_flicker") 

   + white_noise(lfpwhmin, "pfd_white"); 

 

   $fclose(file_ptr1); 

 

end 

endmodule 

 

Figure 7-21: PFD/CP table model function for minimum performances 
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 analog begin 

   … 

   //lookup table for pfd_cp noise 

   lfpwh = $table_model(Icp, "pfd_data.tbl","1E"); 

  

   //lookup table for pfd variation for maximum 

   lfpwhmax = $table_model(lfpwh, "pfdmax_data.tbl", "3L"); 

 

   V(out) <+ kd*(V(in1) - V(in2)) 

   + flicker_noise(lfpfl, 1, "pfd_flicker") 

   + white_noise(lfpwhmax, "pfd_white"); 

 

    $fclose(file_ptr1); 

 

end 

endmodule 

 

Figure 7-22: PFD/CP table model function for maximum performances 

 

7.4.2 Voltage-controlled Oscillator (VCO) performance and variation model 

 

PFD
Charge

Pump
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Divider
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Ffb
Fout

 

Figure 7-23: VCO preparation stage 

 

The VCO is one of the important blocks in PLL system and a major contributor to 

PLL phase noise [81]. The chosen VCO topology is a 5 stage ring oscillator as shown 

in figure 7-24. In this kind of VCO, the input voltage controls the current through the 

delay cells which determines the delay time of each stage hence controlling the output 

oscillation frequency. An ideal VCO generates a periodic signal whose frequency is a 

linear function of the controlling voltage as explained earlier in this chapter. 
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Figure 7-24: 5-stage ring VCO schematic 

  

The first step in multi objective optimisation for the VCO is to determine the 

designable parameters for the circuit. In this example, these include the transistor 

lengths and widths making a total of 7 designable parameters. The parameters are 

shown in table 7-2 and illustrated by dotted line in figure 7-24. The performance 

functions for which the Pareto front must be generated are VCO phase noise, current 

consumption, VCO gain, minimum frequency and maximum frequency.  A testbench 

netlist was created to evaluate these performance functions. 
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Block Design Parameters Range 

Control 

Length of M17 & M1 0.12µm – 1µm 

Width of M17 

10µm – 100µm 
Width of M1 

Delay Cell 

Width of all PMOS 

Width of all NMOS 

Length of all PMOS 
0.12µm – 1µm 

Length of all NMOS 

 

Table 7-2 Design Parameters 

 

The designable parameters must be constrained within a reasonable range (based on 

the targeted active area of the circuit) which defines the design space of the 

optimisation. In this example, all transistor lengths and widths were specified to be 

between 0.12µm-1µm and 10µm-100µm respectively as can be seen in table 7-2. A 

GA string is constructed based on the designable parameters as shown in figure 7-25 

and will be used by the NSGA-II algorithm to generate the parameters for the spice 

simulation. A total of 30 generations each with a population size of 100 were used in 

this example, giving a total of 3,000 samples for the optimisation. 

 

Lpnctrl WpctrlLpdelay Lndelay Wnctrl Wpdelay Wpdelay

 

Figure 7-25: VCO GA string 

 

The testbench netlist is used to evaluate each of the performance functions for every 

design parameter set generated by GA and the result of the simulations determines the 

fitness score of the individual sets. A non-dominated sorting and crowding distance 

method of NSGA-II (as explained in chapter 3) was applied to the solutions to 

determine the final set of Pareto-fronts. 

 

From the MOO, a set of optimal solutions known as Pareto-fronts for the VCO was 

obtained. Table 7-3 shows some samples from the Pareto-points and table 7-4 shows 

the design parameters for those samples. All the points on the Pareto-front are the best 

Wndelay 
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trade-off for the design for all of the competing objectives. All the points on the 

Pareto-fronts and their corresponding design parameters represent the performance 

model for the VCO and are stored in a data file. 

 

Design: 
Performance functions 

Min. Freq Max. Freq VCO gain VCO jitter VCO current 

1 80.3 MHz 568 MHz 487 MHz 9.46 ps 3.09 mA 

2 130 MHz 760 MHz 630 MHz 8.66 ps 3.10 mA 

3 147 MHz 906 MHz 758 MHz 7.33 ps 3.71 mA 

4 183 MHz 843 MHz 659 MHz 0.83 ps 2.12 mA 

5 204 MHz 657 MHz 453 MHz 0.36 ps 1.79 mA 

6 217 MHz 2.04 GHz 1.83 GHz 0.71 ps 4.99 mA 

7 222 MHz 808 MHz 586 MHz 0.37 ps 3.41 mA 

8 238 MHz 1.41 GHz 1.17 GHz 0.33 ps 7.64 mA 

9 284 MHz 1.20 GHz 917 MHz 0.43 ps 4.67 mA 

10 312 MHz 2.67 GHz 2.36 GHz 0.34 ps 6.53 mA 

 

Table 7-3: Pareto-point samples for VCO 

 

Design: 

Design Parameters 

Lpnctrl Lpdelay Lndelay Wpctrl Wpdelay Wnctrl Wndelay 

1 0.56 µm 0.38 µm 0.16 µm 88.78 µm 12.28 µm 10.09 µm 70.95 µm 

2 0.58 µm 0.34 µm 0.22 µm 73.32 µm 13.60 µm 10.08 µm 45.77 µm 

3 0.58 µm 0.27 µm 0.23 µm 89.48 µm 18.43 µm 10.09 µm 49.63 µm 

4 0.60 µm 0.46 µm 0.20 µm 19.84 µm 23.58 µm 10.14 µm 10.83 µm 

5 0.61 µm 0.43 µm 0.40 µm 12.79 µm 23.97 µm 22.08 µm 11.61 µm 

6 0.53 µm 0.17 µm 0.19 µm 81.27 µm 51.14 µm 11.17 µm 11.36 µm 

7 0.78 µm 0.17 µm 0.74 µm 17.35 µm  31.71 µm 87.48 µm 33.18 µm 

8 0.90 µm 0.15 µm 0.40 µm 95.87 µm 49.08 µm 22.61 µm 66.15 µm 

9 0.41 µm 0.41 µm 0.14 µm 38.82 µm 24.22 µm 27.16 µm 15.29 µm 

10 0.90 µm 0.15 µm 0.17 µm 95.87 µm 51.86 µm 12.55 µm 30.75 µm 

 

Table 7-4: Design Parameters for Pareto-point samples 
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To develop the variation model of the Pareto-front, as with PFD/CP, a Monte Carlo 

simulation was performed to each of the optimal points using  foundry variation and 

mismatch models. 30 samples were chosen for the MC simulation and from these the 

variation for each performance is calculated. The minimum and maximum range is 

calculated from the standard deviation and multiplied by 6 for 6-sigma deviation 

estimation from the mean. Figure 7-26 shows the minimum and maximum plots for 

VCO phase noise from one of the Monte Carlo samples.  

 

One important aspect that can be seen from the experiment is the sensitivity of the 

performance functions towards process variations. Figure 7-26 shows a small 

performance deviation when compared to PFD/CP deviation of figure 7-18. This 

shows that, between these two circuits PFD/CP noise is more sensitive towards 

process variations compared to VCO phase noise. Performance sensitivity towards 

process variation is one of the reasons why it is important to use Pareto-based 

optimisation method for yield optimisation as explained in chapter 4. The minimum 

and maximum range of each of the performance functions define the variation model 

for the VCO and are stored in a data file.  

Maximum VCO Noise

Minimum VCO Noise

 

Figure 7-26-: Minimum and maximum plot for VCO phase noise 
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Both of the data files for performance (nominal) and their variation (minimum and 

maximum) represent the lookup table for Verilog-A table model function. Table 7-5 

shows a selection of sample points from the VCO lookup table. A part of the Verilog-

A listing for the VCO table model function for nominal, minimum and maximum 

performances are shown in figure 7-27 to 7-29. In the listings, Ko is the gain of the 

VCO and lffl is the VCO phase noise interpolated using the table_model() function 

from a chosen Ko and VCO current (Ivco). The phase noise of the VCO (lffl) is added 

to the VCO output using the flicker_noise() function. Similarly, the minimum and 

maximum performances are determined and interpolated from the variation lookup 

table. 

 

Design: Kvco (Mhz/V):  ∆Kvco: Jvco (ps): ∆Jvco: Ivco (mA) : ∆Ivco 

20 997 0.50% 0.13 22% 8.62 2.9% 

21 373 0.45% 0.11 22% 3.58 2.7% 

22 1090 0.32% 0.29 25% 2.79 2.6% 

23 1620 0.30% 0.19 23% 8.46 2.9% 

24 2280 0.28% 0.36 26% 4.98 2.7% 

27 1850 0.29% 0.21 23% 6.74 2.8% 

28 1450 0.29% 0.12 22% 6.16 2.8% 

29 1600 0.35% 0.30 25% 2.68 2.6% 

 

Table 7-5: Samples Points from VCO lookup table 

 

 analog begin 

ko = (fmax-fmin)/(vmax-vmin); 

lffl = $table_model(ko,Ivco, "vco_data.tbl", "3L,3L");   

   V(out) <+ laplace_nd(V (in), {fmax-fmin/1},{0,1})  

     + flicker_noise(lffl, 3, "VCO_flicker") 

   + flicker_noise(lfwh, 2, "VCO_white"); 

end 

endmodule 

Figure 7-27: VCO table model function for nominal performance 
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 analog begin 

 … 

 … 

//minimum variation for Ivco 

   Ivco_min = $table_model(Ivco, "Ivcomin_data.tbl", "3L"); 

   $fwrite(file_ptr1, "%e", Ivco_min); 

 

// minimum variation for fmin and fmax 

   min_fmin = $table_model(fmin, "fmin_mindata.tbl", "3L"); 

   $fwrite(file_ptr2, "%e", min_fmin); 

   min_fmax = $table_model(fmax, "fmax_mindata.tbl", "3L"); 

   $fwrite(file_ptr3, "%e", min_fmax); 

 

   // minimum variation for ko 

   ko_min = (min_fmax-min_fmin)/(vmax-vmin); 

   $fwrite(file_ptr4, "%e", ko_min); 

   ko = (fmax-fmin)/(vmax-vmin); 

   lffl = $table_model(ko,Ivco, "vco_data.tbl", "3L,3L");   

 

   // minimum variation for lffl noise 

   lffl_min = $table_model(lffl, "lfflmin_data.tbl", "3L"); 

   V(out) <+ laplace_nd(V (in), {(fmax-fmin)/1},{0,1}) 

     + flicker_noise(lffl_min, 3, "VCO_flicker") 

   + flicker_noise(lfwh, 2, "VCO_white"); 

 … 

end 

endmodule 

 

Figure 7-28: VCO table model function for minimum performance 
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analog begin 

… 

… 

// maximum variation for Ivco 

Ivco_max = $table_model(Ivco, "Ivcomax_data.tbl", "3L"); 

$fwrite(file_ptr1, "%e", Ivco_max); 

   

// maximum variation for fmin and fmax 

max_fmin = $table_model(fmin, "fmin_maxdata.tbl", "3L"); 

   $fwrite(file_ptr2, "%e", max_fmin); 

   max_fmax = $table_model(fmax, "fmax_maxdata.tbl", "3L"); 

   $fwrite(file_ptr3, "%e", max_fmax); 

 

   // maximum variation for ko 

   ko_max = (max_fmax-max_fmin)/(vmax-vmin); 

   $fwrite(file_ptr4, "%e", ko_max); 

   ko = (fmax-fmin)/(vmax-vmin); 

   lffl = $table_model(ko,Ivco, "vco_data.tbl", "3L,3L");   

 

   // maximum variation for lffl noise 

   lffl_max = $table_model(lffl, "lfflmax_data.tbl", "3L"); 

      V(out) <+ laplace_nd(V (in), {(fmax-fmin)/1},{0,1})  

     + flicker_noise(lffl_max, 3, "VCO_flicker") 

   + flicker_noise(lfwh, 2, "VCO_white"); 

 … 

 … 

end 

endmodule 

 

Figure 7-29: VCO table model function for maximum performance 
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7.4.3 PLL System Level Design 

 

Once the multi objective bottom up (MUBU) modelling process for performance and 

variation has been completed, the top down design strategy (TDCD) can be started. At 

the system level, a behavioural description of the complete system instantiating all 

sub-blocks component must be developed. All the individual blocks in the system 

including the PFD, CP, and VCO were behaviourally modelled using Verilog-A 

language. 

  

The top level PLL system is developed for nominal, minimum and maximum 

performances. Each of the models correspond to the sub-blocks behavioural model for 

nominal and their variations performances. Figure 7-30 shows the PLL top level 

behavioural model for the nominal performance. The minimum and maximum 

behavioural model are similar except the sub-block instantiation is taken from their 

minimum and maximum model. 

 

With the system level behavioural model completed, a top-level multi objective 

optimisation for PLL can be executed. The PLL performance functions are output 

frequency range, locking time, current consumption, phase margin and total phase 

noise as shown earlier in table 7-1. The designable parameters for the PLL 

optimisation are given in table 7-6. As with previous optimisation, the design 

parameters are constrained within a reasonable range based on the PLL specifications 

that define the decision space for the optimisation. A spice testbench netlist for the 

top-level PLL simulation was created and a multi objective optimisation using NSGA-

II algorithm was performed on the PLL system in order to locate the optimum 

solutions that meet the specifications. The simulation results of the top level 

behavioural model for all performances are used to determine the quality of the 

solutions against the optimisation requirement. The locking time and phase margin 

were evaluated analytically during the optimisation. The total PLL phase noise is 

calculated by superposition of all of the contributing noise sources as explained in 

section 7.3.2. Figure 7-31 shows an example of the simulation result for PLL phase 

noise which is shaped by all the noises from PFD/CP and VCO.  
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 module PLL_top(ref_in, pll_out); 

inout ref_in, pll_out; 

electrical ref_in, pll_out; 

 

parameter real Icp = 10e-6 from(0:1.0); 

parameter real lfpfl = 0.0 from [0:1.0); 

 

   parameter real C_1 = 1.0e-12 from (0:1.0e-3); 

   parameter real R_2 = 10.0e3 from (0:1M); 

   parameter real C_2 = 3.0e-12 from (0:1.0e-3); 

 

   parameter real fmin = 300e6 from (100e6:80e7); //hertz 

   parameter real fmax = 500e6 from (200e6:40e8); //hertz 

   parameter real Ivco = 13.2e-3 from (1e-3:30e-3);  

   parameter real lfwh = 0.0 from [0:1.0); 

 

   parameter real ratio = 1 from (0:inf); 

 

pfd # (.Icp(Icp), .lfpfl(lfpfl)) 

pfd1(ref_in, divout, filin); 

loopfilter # (.C_1(C_1), .R_2(R_2), .C_2(C_2)) 

loopfilter1(filin, vcoin); 

vco # (.fmin(fmin), .fmax(fmax), .Ivco(Ivco), .lfwh(lfwh)) 

vco1(vcoin, pll_out); 

div # (.ratio(ratio)) 

divider1(pll_out, divout); 

 

endmodule 

 

Figure 7-30: PLL top level behavioural model 
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Design Parameters 

 

Parameter Ranges 

 

Min. Frequency 

 

100MHz – 500MHz 

 

Max. Frequency 

 

1.2GHz – 2 GHz 

 

Charge pump current 

 

10uA – 100uA 

 

VCO current 

 

1mA – 20mA 

 

Resistor, R 

 

1k – 20k 

 

Capacitor, C2 

 

10p – 20p 

 

Capacitor, C1 

 

C2/10 

 

Table 7-6: PLL system designable parameters 
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Figure 7-31: Noise simulation result of PLL with all the contributing sources 

 

From the discussion on the PLL performances earlier in this chapter, it can be seen 

that there are several performance trade-offs occurred in the PLL design. For 
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example, the locking time performance of a PLL system is inversely proportional to 

its loop bandwidth [107] [100]. This means that, in order for the PLL to lock quickly, 

the PLL bandwidth must be large. Based on equation 7-8, 7-9 and 7-10, loop 

bandwidth is directly related to natural frequency and can be determined by VCO gain 

(KVCO), charge pump current (ICP), C1 and R. Therefore, the locking time can be 

reduced by increasing Kvco, ICP C1 and R. However, increasing KVCO will also 

increase VCO noise hence will increase the total noise of the PLL. Increasing ICP will 

increase the current consumption hence will influence the total PLL power 

consumption. Due to this complex trade-off, it is very useful to run multi-objective 

optimisation and select the best optimal solution from several solution points. In 

addition to that, with the variation model included in the optimisation, a solution that 

meets the performance specifications including their variations can be selected.  

 

Table 7-7 shows some samples of the PLL optimal solutions obtained from the multi-

objective optimisation including the system minimum and maximum variation. 

Looking at table 7-7, without looking at the minimum and maximum performances 

that obtained from the variation model, design no.6 ,7,8,9 and 10 are all solutions that 

meet the PLL specifications. However, with the variation considered, some of these 

solutions fail below the specifications. There is only one solution that passes the 

specifications with variation consideration, that is solution no.9. Therefore, with the 

help of the variation model developed during MUBU stage, a solution that meets the 

specifications and at the same time sustain the process variation can be determined. 

This in turn, will improve overall yield of the PLL system. Figure 7-32 shows the 

phase noise performances for 3 design points (design point 9, 4 and 10) with the 

specification boundaries. As can be seen from the figure, design point no. 4 doesn‘t 

meet the phase noise specification for the nominal, minimum and maximum 

performances and design point no. 10 fails the specification at its maximum variation. 

Only design point no. 9 meet the specification for nominal and its variations. 

Therefore, choosing design point no. 9 will meet the specification even when 

considering the variability. 
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Figure 7-32: Phase noise plots for design point no. 4, 9 and 10 
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Design 

Points 

Nominal Minimum Maximum 

Noise Itot PM Lt fmin fmax Noise Itot PM Lt fmin fmax Noise Itot PM Lt fmin fmax 

1 -68.2 5mA 37.5 deg 330n 470M 2.75G -87.4 4.5mA 34.2 deg 313n 465.7M 2.45G -60.1 5.1mA 39.9 deg 353n 475M 3G 

2 -108 5.1mA 28 deg 147n 470M 2.75G -114 4.6mA 25.8 deg 140n 465.7M 2.45G -94 5.2mA 31.3 deg 158n 475M 3G 

3 -84.3 5mA 48.8 deg 233n 470M 2.75G -96.6 4.5mA 44 deg 211n 465.7M 2.45G -72.5 5.1mA 51 deg 256n 475M 3G 

4 -83.4 7.7mA 47.2 deg 400n 238M 1.4G -95.5 7.6mA 43 deg 354n 233M 1.1G -71.5 7.7mA 51.3 deg 440n 241M 1.7G 

5 -103 7.7mA 56 deg 281n 238M 1.4G -108 7.6mA 55 deg 251n 233M 1.1G -86.2 7.8mA 56.4 deg 311n 241M 1.7G 

6 -110 4.1mA 60 deg 235n 407M 1.53G 

-

114.6 4.05mA 49.9 deg 197n 402M 1.3G -97 5mA 56.3 deg 272n 410M 1.8G 

7 -118 4.1mA 50 deg 181n 407M 1.53G -121 4.1mA 39.7 deg 153n 402M 1.3G -105 5mA 56 deg 210n 410M 1.8G 

8 -116 2.9mA 50.1 deg 185n 437M 1.52G -120 2.81mA 40 deg 155n 432M 1.3G -103 3mA 56 deg 215n 440M 1.83G 

9 -119 2.9mA 55.6 deg 491n 437M 1.52G -123 2.81mA 48.5 deg 424n 432M 1.3G -106 3mA 55 deg 510n 440M 1.83G 

10 -108 2.8mA 54 deg 213n 437M 1.52G -113 2.7mA 45 deg 179n 432M 1.3G -94 2.95mA 56.3 deg 250n 440M 1.83G 

 

  : Fail below specifications 

  : All pass the specifications 

 

Table 7-7: PLL system level optimum samples 



 

Once the best design solution has been selected, the design parameters of this solution 

will be taken as the specifications for the PLL sub-blocks (i.e. VCO, CP and LF) in 

order to determine the circuit level design parameters (i.e. transistor size). Table 

model function of the lower level sub-blocks can be used to determine the circuit 

sizes. Table 7-8 shows the design parameters for the individual blocks of the PLL 

system interpolated from the lookup table. Through this complete top down constraint 

design methodology, the whole PLL circuit has been sized that will give the optimal 

performances and produces better overall yield. 

 

PLL Block Design Parameters 

Chage pump 

Transistor length :  0.12µm 

Transistor Width : 0.35 µm 

Bias current : 100uA 

VCO 

Lpntrl : 0.47µm 

Wpctrl : 10.00 µm 

Wnctrl : 10.45 µm 

Lpdelay : 0.34 µm 

Wpdelay : 26.02 µm 

Lndelay : 0.15 µm 

Wndelay : 18.15 µm 

Loop filter 

R1 : 5 kΩ 

C1 : 1.5pF 

C2 : 15pF 

 

Table 7-8: PLL design parameters for individual blocks 

 

There is a possibility that during the top level design, the optimisation process could 

not find the solution that meets all the specifications. For example, let assume that the 

phase noise specification for the PLL example is less than -110 dBc/Hz. In this case, 

all the solutions in table 7-7 fail the phase noise specification at least at one of its 

variation. If such condition happens, the designer has to decide the solution based on 

the design priority. Perhaps a weighting parameter can be added to the performances 
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based on the priority and the solution that meets the designer priority can be chosen 

for the design solution. 

 

A transistor level simulation based on the design parameters from table 7-8 has been 

carried out for the PLL output frequency range and locking time. Figure 7-33 shows 

the output frequency range for the PLL system based on the 50 MHz reference 

frequency. The top plot in figure 7-33 is the reference frequency followed by the 

output frequency showing 500 MHz signal when the divider ratio is 10 and the last 

plot shows the output frequency at 1.2GHz when the divider ratio is 24. Figure 7-34 

shows locking time plots when the PLL operate at minimum output frequency of 500 

MHZ and at maximum output frequency of 1.2GHz. Table 7-9 summarises all the rest 

of the PLL performances including their minimum and maximum range.  

 

Figure 7-33: PLL output frequency range 
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Figure 7-34: PLL locking time for minimum and maximum output frequency 

 

Performance 

Function 
Specification 

Nominal 

Result 

Minimum 

Result 

Maximum 

Result 

 

Frequency 

Range 

 

500MHz - 

1.2GHz 

 

437MHz – 

1.52GHz 

 

432MHz – 

1.30GHz 

 

440MHz – 

1.83GHz 

 

Total Current 

 

≤ 5mA 

 

2.9mA 

 

2.81mA 

 

2.9mA 

 

Locking Time 

 

< 1us 

 

502 ns 

 

424 ns 

 

510 ns 

 

Phase Margin 

 

≥ 45 deg 

 

55.6 deg 

 

48.5 deg 

 

55.7 deg 

 

PLL noise 

 

< -100dBc/Hz 

 

-119 dBc/Hz 

 

-123 dBc/Hz 

 

-106 dBc/Hz 

 

Table 7-9: PLL performance results 

7.4.4 Design Summary 

 

One of the important aspects of a design methodology for a large system is the 

computational cost. The decision about design methodology is sometimes a trade off 

that has to be made between speed and accuracy. As mentioned earlier in this thesis, 

simulation based design consumes higher simulation time compared to an analytical-
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based design but produces better accuracy. With recent development in computer 

technology, the computational overhead is not such a critical factor anymore. 

 

In the PLL system design, the use of behavioural language together with hierarchical 

optimisation methodologies accelerates the design process. The CPU computational 

cost employed in the hierarchical-based design is much lower when compared to the 

`flat‘ transistor level design and optimisation of a benchmark PLL circuit which 

requires up to ―several weeks or months‖ [97]. For the proposed method, the higher 

design time only occurs during the preparation stage where huge number of 

simulations is needed for the circuit level performance and variation modelling. Table 

7-10 summarises the cpu time involved for the complete PLL system design. All the 

design simulations and optimisations were performed on Ultra Sparc 1.2GHz 

workstation. 

 

 

Design Tasks 

 

CPU Time 

 

Charge Pump MOO 

 

9 hrs 

 

Charge Pump Monte Carlo 

 

16 hrs 

 

Overall charge pump preparation time 

 

25 hrs 

 

Voltage Controlled Oscillator MOO 

 

17 hrs 

 

Voltage Controlled Oscillator MC 

 

25 hrs 

 

Overall VCO preparation time 

 

42 hrs 

 

PLL top level MOO 

 

30 minutes 

 

Overall CPU time 

 

42 hrs 30 minutes 

 

Table 7-10: PLL system design summary 

 

From table 7-10, it can be seen that, the high CPU time occurred during the 

preparation stage for the charge pump and VCO modelling.. The variation modelling 

from the Pareto points can only be started after the multi-objective optimisation for 

the particular circuit has been completed. Therefore the overall CPU time for the 
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circuit optimisation is the combination of both multi-objective optimisation and 

Monte Carlo simulation. For example, the overall CPU time for charge pump 

performance and variation model development is 25 hrs. However, the performance 

and variation model development for all the individual blocks can be done in parallel, 

so the CPU cost is determined by the highest contribution which in this example 

comes from the VCO. The reason for the high simulation time during the MOO is the 

noise evaluation of the individual blocks that requires a transient noise simulation of 

the circuit with a small and very well controlled time step. The noise simulation for 

both of the blocks is the main contributor for the overall simulation time.  

 

Once the preparation stage has been completed, the CPU time required for the PLL 

design stage through a hierarchical-based optimisation is very fast. From table 7-10, 

the design time for the PLL system is only 30 minutes. The circuit model developed 

during the preparation stage can be re-used for other PLL design requirements 

suggesting a huge time saving can be achieved for the design process. 

  

7.5 Summary 

 

This chapter has demonstrated a complete PLL system level design optimised for 

performance and yield through a hierarchical-based optimisation methodology. The 

idea of behavioural performance and variation modelling introduced in chapter 5 and 

hierarchical optimisation design flow introduced in chapter 6 were used to design the 

complex performance trade-offs of a PLL system. The PLL system is optimised to 

meet the performances functions of locking time, phase margin, current consumption, 

phase noise and output frequency range. The design methodology that integrates both 

the performance and variation aware analysis, demonstrates its ability to optimise the 

system level design not only for optimum performances but also for higher yield 

output. This work shows an example of how the yield can be predicted and optimised   

from system level point of view.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 8 

 

Conclusions and Future Work 

 

8.1 Conclusion 

 

A significant portion of the work presented in this thesis has been devoted to the 

characterization of performance and variation models that can be used for circuit 

design and optimisation. With reviews of the previous works in this area, simulation-

based optimization approach together with Monte Carlo simulation for the variation 

analysis have been chosen for the circuit design technique. This is due to the accuracy 

of the proposed methodology that has been given a higher priority for the research 

work. 

  

The trade-offs among the competing performance objectives were explored using 

Multi-Objective Optimization (MOO) technique which is based on the Evolutionary 

Algorithm (EA). This optimization provides a set of solutions on the Pareto front that 

can be extracted that define a group of solutions to model the performance and 
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variation of a particular circuit. The accuracy of the solution is maintained within the 

transistor level by incorporating a spice simulator for performance evaluations and 

Monte Carlo simulation for the variation analysis. In the beginning, the multi-

objective optimization used in the algorithm is based on Genetic Algorithm called 

Weight-Based GA (WBGA). WBGA uses weight vectors that are generated by GA in 

order to avoid the problem of selecting weight parameters manually. However, with 

the limitations reported for WBGA in finding solution for non-convex front, a better 

algorithm called NSGA-II has been used. NSGA-II utilises crowding distance method 

and several non-dominated sorting procedures to produce a better spreading of Pareto-

points which is suitable for more complex circuits. The idea of yield optimisation 

using multi-objective optimisation approach has been compared with other methods 

such as design centering and NeoCircuit tool and the results show the benefits gained 

by the multi-objective optimisation approach. 

 

Simulation-based synthesis creates a good opportunity for modelling. This is due to 

the huge number of simulation runs that produce a number of data points. The 

presented research work has successfully built circuit model based on simulation-

based optimisation. From the optimal Pareto front which contains a set of trade-off 

solutions, a lookup table has been constructed that relates all the design parameters to 

their respective performance functions. For the variation model, a Monte Carlo 

simulation was performed on the Pareto points and the 6-sigma range was determined 

for the minimum and maximum points estimation. The variations for each of the 

Pareto-point solutions are stored in another lookup table. These lookup tables were 

modelled using table model function of Verilog-A behavioural language. The 

interpolation method of this function has been used with circuit examples to 

demonstrate the advantage of the developed model. The results obtained from the 

circuit simulations show the ability of the model to synthesize a circuit and is 

comparable with transistor level simulation. A silicon prototype has been produced 

and the measurement results of the prototype that agree with the simulation data show 

the ability of the methodology to translate the design into actual product. 

 

In a large system level circuit, the design normally is broken down into smaller sub-

block circuits that can be designed and optimised individually. This approach creates 

several levels of hierarchy. The behavioural performance and variation model is very 
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useful in hierarchical-based system level design. A new hierarchical-based 

optimisation has been proposed that uses a combination of multi-objective bottom up 

for performance and variation for sub-block circuits and top-down design for the 

complete system. The full design flow of the hierarchical-based optimisation has been 

demonstrated with a 7
th

 order elliptic low pass filter for video application. The results 

of the optimisation proved that the model can be used to predict and maximised the 

performances and yield at system level design. In order to demonstrate the application 

of the proposed methodologies on bigger and complex example, a charge pump PLL 

has been used as the target application. The higher number of design parameters, 

complex trade-offs of performance functions and multi domain of circuit analysis 

including time domain and noise simulation has proved the applicability of the 

methodologies for a variety of circuit design. The PLL has been designed to meet all 

the specifications even when process variations are considered. The outcome is a fully 

sized PLL circuit optimised for performances and yield. 

 

8.2 Accuracy, generality and limitations of the method 

 

 

The accuracy of the technique has been given a high priority in the presented work. 

Therefore the approach chosen for the design optimization reflect to this objective. 

This can be seen in the technique used for the performance optimisation where a 

simulation-based design and Monte Carlo analysis have been chosen despite the 

higher computational effort associated with these two techniques. 

 

All these techniques provide better accuracy during the characterisation stage at the 

circuit level. However at the system level, when a behavioral model is used to 

simplify the simulation process, accuracy might be limited depending on how close 

the behavioral model matches the transistor level performance. For example, in 

chapter 5, the performance of the OTA behavioral model for the filter simulation vary 

at about 20% from the transistor level simulation. This will affect the accuracy of the 

system level performances when the model is used at the top level. Therefore, a 

careful trade-off has to be made during the modelling stage between the accuracy and 

the complexity of the model. For example, higher number of equations can be added 

to the behavioral model to improve the accuracy at the expense of the complexity. 
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The generality of the presented work is highly dependent on the number of 

performance functions used for the model development. Most of the examples for the 

OTA performance and variation model development were restricted to two 

performance functions (Open loop gain and phase margin). In this case, the generality 

of the model is only limited to the application that related to those performances. The 

generality of the model can be improved by adding higher number of performance 

functions. However, the higher the number of performance functions, the higher the 

number of testbenches and Spice simulations needed that will increase the model 

development time. This is another trade-off that has to be made at the design stage. 

 

This thesis has presented some ideas that can be used for performance and yield 

optimization at various hierarchy levels including at the system level design. 

However, there are still some limitations in the proposed methodology especially 

when a trade-off has to be made at the design stages. One of the limitations is the 

accuracy of the method which is highly dependent on the modeling complexity and 

design cycle time as explained earlier. Computational effort is also another limitation 

where for a complex multi-domain mixed-signal system, the CPU time for the model 

development increase significantly. For example, in chapter 7, the complex PLL 

example has shown a higher preparation time which led to the consideration to reduce 

some of the optimization parameters such as GA population size, number of GA 

generation and Monte Carlo simulation samples. This will limit the accuracy of the 

result that can be achieved by the proposed approach. Therefore, in the future work 

section (section 8.5), some recommendations have been proposed to mitigate the 

limitations. 

 

 

 8.3 Project Objectives Achieved 

 

The original hypothesis are reviewed in this section and an assessment of the progress 

made given for each hypothesis. 

 

 Hypothesis 1:  Existing yield optimised design methodologies have several 

inadequacies including in yield modelling and the ability to predict and 

optimise the yield for system level design. 
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The first part of this thesis has shown the benefit of considering the process variation 

parameters in analogue circuit design. A yield optimised design has been shown and a 

comparison has been made with other techniques such as design centering and a 

technique using NeoCircuit optimisation tool. The results show the advantage of the 

multi-objective optimisation technique for yield maximisation and the ability for the 

method to be used for performance and variation modelling for system level design. 

 

 Hypothesis 2: In deep sub-micron technology, where the design complexity 

and variability has became a great challenge, the accuracy and the ability to 

translate the simulated results into actual product are very important. 

 

The accurate simulation based optimisation method using multi-objective 

optimisation and Monte Carlo analysis on the Pareto-points have been used to develop 

the circuit performance and variation model. The model has been used to design a 

silicon prototype of 2
nd

 order low pass filter. The measurement results of the 

prototype and the yield  of the prototype samples that agree with the simulation data 

show the accuracy and efficiency of the method. 

 

 Hypothesis 3: Existing approaches for system level design using a 

hierarchical-based optimisation method do not consider the variations of the 

sub-block circuits leaving the yield optimisation for the system at the end of 

the design flow. 

 Hypothesis 4: A new hierarchical-based optimisation is needed that can 

incorporate the performance and variation model of analogue circuit in top 

down system level design flow. 

 

Hypothesis 3 and 4 are closely related and therefore combined. A new hierarchical-

based optimisation method that combines multi-objective bottom-up modelling for the 

sub-block performance and variation parameters and top-down design flow for the 

complete system design has been developed. With the help of the variation model, the 

design methodology is capable to optimise the system level design for higher product 

yield. A 7
th

 order elliptic low pass filter for video application has been designed to 
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demonstrate the methodologies. The performance and yield has been verified with 

transistor level simulation. 

 

 Hypothesis 5: The application of behavioural modelling technology such as 

Verilog-A allows the integration of various type of systems including mixed-

signal  and offers huge saving in terms of simulation time.  

 

A complex mixed-signal charge pump PLL system design has been carried out using 

the proposed methodologies. The behavioural performance and variation model for 

individual blocks (analogue) in the system has been developed from a multi-objective 

optimisation result. The top level behavioural simulation instantiating all the sub-

blocks is used for the PLL system level optimisation and from this the  final design 

that is optimised for performance and yield is obtained. 

 

Overall, all of the original hypotheses have been addressed. 

 

8.4 Contribution 

 

8.4.1 Specific Contribution 

 

The specific contributions made by this work include: 

 

 Implementation of performance and yield optimisation technique for analogue 

circuit design using Pareto-based optimisation. 

 Development of a combination circuit performance and variation model for 

analogue circuit design and has been presented at `Design, Automation & Test 

in Europe (DATE) 2008‘ conference. 

 Development of yield optimisation methodology targeted at system level 

design using a hierarchical-based optimisation and behavioural performance 

and variation model. 

 System level yield optimisation for Phase Locked Loop (PLL). 
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8.4.2 Publications 

 

As a direct result of this work, 2 journal papers have beenn published or accepted for 

publications with a further 1 journal paper submitted for review. 6 papers have also 

been presented at conferences. The complete list of publications is provided in the 

`Publication‘ section of this thesis. 

 

8.5 Future Work 

 

8.5.1 Topological Automation 

 

The methodology proposed in this thesis focuses on circuit sizing stage in analogue 

synthesis. With the challenges and demand for higher performance circuits, one of the 

further research area that can be undertaken is to explore automated topology 

generation for analogue circuit and integrate this technique with the proposed circuit 

sizing automation to optimise the circuit. In addition to that, the performance and 

variation modelling technique can be applied to wide variety of analogue circuit 

topology to create a cell library. With such activity, the performance limitation of a 

particular topology can be overcome and a better tolerance design solution can be 

determined. 

  

8.5.2 Hybrid Analytical and Simulation-based Approach 

 

One of the limitations of the simulation-based approach and Monte Carlo simulation 

is huge computer simulation time. The CPU time consumption of the simulation-

based optimisation is directly related to the searching space of the optimisation. The 

bigger the searching space, the higher the number of simulations required. A useful 

further work can be undertaken in this area to investigate the ideas to reduce the 

searching space. A hybrid analytical approach to the simulation-based technique 

would be a good target. With the analytical approach, circuit equations can be used to 

add additional constraints to the design parameter so that the decision space is 

confined to a small area that will give a good result. 
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8.5.3 Parallel Optimisation 

 

All the examples presented in this thesis were run on a single workstation. As the 

computing power of PCs increase and the cost of a PC reduced, a parallel optimisation 

of the circuit modelling can be explored. Simulation-based optimisation has to visit 

several number of SPICE simulations depending on the number of objective function. 

On top of that the Monte Carlo simulation need to be done on each of the Pareto-

solutions. With the parallel optimisation capability of evolutionary algorithm, the 

optimisation and Monte Carlo simulations can be distributed to a cluster of 

workstations and multi-core PCs. For example, 100 Monte Carlo simulations can be 

reduced to 10 times if the work is distributed to 10 workstations. This will 

significantly reduce the overall design cycle time for the model development.  
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Appendix A : Spice model Listings 

    

 

M1 N005 N003 0 0 MODN L=2E-6 W=15E-6 AD=12.75E-12 AS=12.75E-12  

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0  

M2 N003 N003 0 0 MODN L=2E-6 W=15E-6 AD=12.75E-12 AS=12.75E-12  

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0  

M3 N002 N002 0 0 MODN L=leff4 W=weff4 AD=12.75E-12 AS=12.75E-12  

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0  

M4 N006 Vin+ N005 N005 MODN L=leff1 W=weff1 AD=12.75E-12 AS=12.75E-12  

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0  

M5 N004 Vin- N005 N005 MODN L=leff1 W=weff1 AD=12.75E-12 AS=12.75E-12  

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0  

M6 Vout N002 0 0 MODN L=leff4 W=weff4 AD=12.75E-12 AS=12.75E-12  

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0  

M7 N001 N006 N006 N001 MODP L=leff2 W=weff2 AD=12.75E-12 AS=12.75E-12  

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0  

M8 N001 N004 N004 N001 MODP L=leff3 W=weff3 AD=12.75E-12 AS=12.75E-12  

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0  

M9 N001 N006 Vout N001 MODP L=leff2 W=weff2 AD=12.75E-12 AS=12.75E-12  

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0  

M10 N001 N004 N002 N001 MODP L=leff3 W=weff3 AD=12.75E-12 AS=12.75E-

12  

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0  

 

I1 N001 N003 10u 

V1 N001 0 3.3V 

C2 Vout 0 1p 

V2 Vin+ 0 1.6V AC 1mV 

R1 Vout Vin- 1000000k 

C1 Vin- 0 10u 

    

.param leff1=1.20u 

.param leff2=1.92u 

.param leff3=0.73u 

.param leff4=1.61u  

 

.param weff1=15u 

.param weff2=15u 

.param weff3=15u 

.param weff4=15u 

 

.LIB 'L:\MyFolder\MyPhd\Simulation\spice\hspice\amsc35.lib' NOM    

    

.ac dec 10 1k 100000E+06 

.tran 1ns 1us 

.measure tran tot_power avg power from=1ns to=1us 

.measure ac gain find vdb(vout, vin+) at=1k 

.measure ac flat2 find vdb(vout,vin+) at=5G 

.measure ac fc when vdb(vout, vin+)=`gain-3.0' 

.measure ac unifreq when vdb(vout, vin+)=0 

.measure ac phase find vp(vout, vin+) when vdb(vout,vin+)=0 

.measure attn PARAM=`gain-flat2' 

.OPTIONS PROBE POST MEASOUT 

.END   

 

Listing A.1: Spice symmetrical-OTA netlist (AC analysis) 
 

 



Appendix A Spice Model Listings  182 

 

 

M1 N006 N004 N002 N002 MODN L=2u W=15E-6 AD=12.75E-12 AS=12.75E-12  

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0  

M2 N004 N004 N002 N002 MODN L=2u W=15E-6 AD=12.75E-12 AS=12.75E-12  

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0  

M3 N003 N003 N002 N002 MODN L=leff4 W=weff4 AD=12.75E-12 AS=12.75E-12  

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0  

M4 N007 Vin+ N006 N006 MODN L=leff1 W=weff1 AD=12.75E-12 AS=12.75E-12  

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0  

M5 N005 0 N006 N006 MODN L=leff1 W=weff1 AD=12.75E-12 AS=12.75E-12  

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0  

M6 Vout N003 N002 N002 MODN L=leff4 W=weff4 AD=12.75E-12 AS=12.75E-12  

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0  

M7 N001 N007 N007 N001 MODP L=leff2 W=weff2 AD=12.75E-12 AS=12.75E-12  

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0  

M8 N001 N005 N005 N001 MODP L=leff3 W=weff3 AD=12.75E-12 AS=12.75E-12  

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0  

M9 N001 N007 Vout N001 MODP L=leff2 W=weff2 AD=12.75E-12 AS=12.75E-12  

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0  

M10 N001 N005 N003 N001 MODP L=leff3 W=weff3 AD=12.75E-12 AS=12.75E-

12  

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0  

 

I1 N001 N004 10u 

V1 N001 0 3.3V 

C2 Vout 0 1p 

V2 Vin+ 0 0V 

V3 0 N002 3.3V 

    

.param leff1=2u 

.param leff2=2u 

.param leff3=2u 

.param leff4=2u 

  

.param weff1=15u 

.param weff2=15u 

.param weff3=15u 

.param weff4=15u 

 

.LIB 'L:\MyFolder\MyPhd\Simulation\spice\hspice\amsc35.lib' NOM    

    

.dc v2 -3v 3v 20mv 

.probe v(vout) 

.measure dc vos find v(vin+) when v(vout)=0V 

.OPTIONS PROBE POST MEASOUT 

.END   

 

 

Listing A.2: Spice symmetrical-OTA netlist (voltage offset) 
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M1 N006 N004 N002 N002 MODN L=2u W=15E-6 AD=12.75E-12 AS=12.75E-12  

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0  

M2 N004 N004 N002 N002 MODN L=2u W=15E-6 AD=12.75E-12 AS=12.75E-12  

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0  

M3 N003 N003 N002 N002 MODN L=leff4 W=weff4 AD=12.75E-12 AS=12.75E-12  

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0  

M4 N007 Vin+ N006 N006 MODN L=leff1 W=weff1 AD=12.75E-12 AS=12.75E-12  

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0  

M5 N005 Vout N006 N006 MODN L=leff1 W=weff1 AD=12.75E-12 AS=12.75E-12  

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0  

M6 Vout N003 N002 N002 MODN L=leff4 W=weff4 AD=12.75E-12 AS=12.75E-12  

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0  

M7 N001 N007 N007 N001 MODP L=leff2 W=weff2 AD=12.75E-12 AS=12.75E-12  

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0  

M8 N001 N005 N005 N001 MODP L=leff3 W=weff3 AD=12.75E-12 AS=12.75E-12  

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0  

M9 N001 N007 Vout N001 MODP L=leff2 W=weff2 AD=12.75E-12 AS=12.75E-12  

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0  

M10 N001 N005 N003 N001 MODP L=leff3 W=weff3 AD=12.75E-12 AS=12.75E-

12  

+PD=16.7E-6 PS=16.7E-6 NRD=33.3333E-3 NRS=33.3333E-3 M=1.0  

I1 N001 N004 10u 

V1 N001 0 3.3V 

C2 Vout 0 1p 

V2 Vin+ 0 PWL(0 0 200n 0 201n 3.3 500n 3.3) 

V3 0 N002 3.3V 

    

.param leff1=0.35u 

.param leff2=1.99u 

.param leff3=1.99u 

.param leff4=2.00u 

    

.param weff1=15u 

.param weff2=15u 

.param weff3=15u 

.param weff4=15u 

 

.LIB 'L:\MyFolder\MyPhd\Simulation\spice\hspice\amsc35.lib' NOM    

 

.tran 1ns 1us 

.print v(vout) 

.probe v(vout) 

.probe v(vin+) 

.measure tran trise trig v(vout) val=0V rise=1 targ v(vout) val=2.8V 

+rise=1 

.OPTIONS PROBE POST MEASOUT 

.END   

 

 

Listing A.3: Spice symmetrical-OTA netlist (Slew Rate) 

 

.subckt milota_g1 inm inp out vdd vss 

c1 net39 out  0.5e-12 

i0 net6 vss  dc=Idc 

xm8 net6 net6 vdd vdd   ephsgp_bs3ju w=weff3 l=leff3 nfing=1 

ncrsd=1.0  

+number=1.0 srcefirst=1 ngcon=1 mismatch=1 po2act=-1.00000000e+00 

nbti=0.0 
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xm6 net27 net6 vdd vdd   ephsgp_bs3ju w=weff3 l=leff3 nfing=1 

ncrsd=1.0  

+number=1.0 srcefirst=1 ngcon=1 mismatch=1 po2act=-1.00000000e+00 

nbti=0.0 

xm5 out net6 vdd vdd   ephsgp_bs3ju w=weff5 l=leff5 nfing=1 ncrsd=1.0  

+number=1.0 srcefirst=1 ngcon=1 mismatch=1 po2act=-1.00000000e+00 

nbti=0.0 

xm2 net39 inp net27 net27   ephsgp_bs3ju w=weff1 l=leff1 nfing=1 

ncrsd=1.0  

+number=1.0 srcefirst=1 ngcon=1 mismatch=1 po2act=-1.00000000e+00 

nbti=0.0 

xm1 net35 inm net27 net27   ephsgp_bs3ju w=weff1 l=leff1 nfing=1 

ncrsd=1.0  

+number=1.0 srcefirst=1 ngcon=1 mismatch=1 po2act=-1.00000000e+00 

nbti=0.0 

xm4 out net39 vss vss   enhsgp_bs3ju w=weff4 l=leff4 nfing=1 

ncrsd=1.0  

+number=1.0 srcefirst=1 ngcon=1 mismatch=1 po2act=-1.00000000e+00 

xm3 net35 net35 vss vss   enhsgp_bs3ju w=weff2 l=leff2 nfing=1 

ncrsd=1.0  

+number=1.0 srcefirst=1 ngcon=1 mismatch=1 po2act=-1.00000000e+00 

xm0 net39 net35 vss vss   enhsgp_bs3ju w=weff2 l=leff2 nfing=1 

ncrsd=1.0  

+number=1.0 srcefirst=1 ngcon=1 mismatch=1 po2act=-1.00000000e+00 

    

.param Idc=15.3u 

.param leff1=0.8u 

.param leff2=1.0u 

.param leff3=0.13u 

.param leff4=0.5u 

.param leff5=0.96u 

.param weff1=21.5u 

.param weff2=46.8u 

.param weff3=13.3u 

.param weff4=25u 

.param weff5=13.3u 

     

.ends milota_g1 

    

xi5 inm inp out net028 net026 milota_g1 

c0 out 0  1e-12 

c1 inm 0  10e-6 

r0 inm out  1e9 

v4 inp 0  800e-3 ac 1e-3 

v2 net026 0  0.0 

v1 net028 0  1.2 

 

.AC DEC        10.0000       1000.00      1000000E+06 

.measure ac gain find vdb(out, inp) at=1k 

.measure ac phase1 find vp(out, inp) when vdb(out, inp)=0 

.probe vdb(out, inp) 

.OPTIONS PROBE POST MEASOUT 

.LIB 'L:\MyFolder\MyPhd\Simulation\spice\hspice\st12.lib' NOM    

.END 

 

 

Listing A.4: Spice Miller-OTA netlist 
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.subckt milota_g1 inm inp out vdd vss 

c1 net39 out  0.5e-12 

i0 net6 vss  dc=Idc 

xm8 net6 net6 vdd vdd   ephsgp_bs3ju w=weff3 l=leff3 nfing=1 

ncrsd=1.0  

+number=1.0 srcefirst=1 ngcon=1 mismatch=1 po2act=-1.00000000e+00 

nbti=0.0 

xm6 net27 net6 vdd vdd   ephsgp_bs3ju w=weff3 l=leff3 nfing=1 

ncrsd=1.0  

+number=1.0 srcefirst=1 ngcon=1 mismatch=1 po2act=-1.00000000e+00 

nbti=0.0 

xm5 out net6 vdd vdd   ephsgp_bs3ju w=weff5 l=leff5 nfing=1 ncrsd=1.0  

+number=1.0 srcefirst=1 ngcon=1 mismatch=1 po2act=-1.00000000e+00 

nbti=0.0 

xm2 net39 inp net27 net27   ephsgp_bs3ju w=weff1 l=leff1 nfing=1 

ncrsd=1.0  

+number=1.0 srcefirst=1 ngcon=1 mismatch=1 po2act=-1.00000000e+00 

nbti=0.0 

xm1 net35 inm net27 net27   ephsgp_bs3ju w=weff1 l=leff1 nfing=1 

ncrsd=1.0  

+number=1.0 srcefirst=1 ngcon=1 mismatch=1 po2act=-1.00000000e+00 

nbti=0.0 

xm4 out net39 vss vss   enhsgp_bs3ju w=weff4 l=leff4 nfing=1 

ncrsd=1.0  

+number=1.0 srcefirst=1 ngcon=1 mismatch=1 po2act=-1.00000000e+00 

xm3 net35 net35 vss vss   enhsgp_bs3ju w=weff2 l=leff2 nfing=1 

ncrsd=1.0  

+number=1.0 srcefirst=1 ngcon=1 mismatch=1 po2act=-1.00000000e+00 

xm0 net39 net35 vss vss   enhsgp_bs3ju w=weff2 l=leff2 nfing=1 

ncrsd=1.0  

+number=1.0 srcefirst=1 ngcon=1 mismatch=1 po2act=-1.00000000e+00 

    

.param Idc=18.3u 

.param leff1=0.9u 

.param leff2=0.9u 

.param leff3=1.0u 

.param leff4=0.30u 

.param leff5=0.68u 

.param weff1=15.0u 

.param weff2=10.0u 

.param weff3=10.7u 

.param weff4=28u 

.param weff5=40.0u 

 

.ends milota_g1  

 

.param capeff1=2p 

.param capeff2=0.34p 

.param capeff3=1p 

 

c2 out 0  capeff3 

c1 out in  capeff2 

c0 net20 0  capeff1 

v2 net7 0  1.2 

v1 net21 0  1.2 

v0 in 0  600e-3 ac 1e-3 

xi2 out net20 out net7 0 milota_g1 

xi0 out in net20 net21 0 milota_g1 

    

.ac dec 10 1k 1000000E+06 

.measure ac gain find vdb(out, in) at=1k 
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.measure ac fc when vdb(out, in)=`gain-3.0' 

.measure ac gainpeak max vdb(out, in) 

.measure ac pbripp PARAM=`gainpeak-gain' 

.measure ac minpoint min vdb(out, in) 

.measure ac freqmin when vdb(out, in)=`minpoint' 

.measure ac point1 when vdb(out, in)=`minpoint+2' 

.measure ac peak2 max vdb(out, in) FROM=`point1' TO=500Meg 

.measure ac attn PARAM=`gain-peak2' 

.measure ac fs when vdb(out, in)=`peak2' fall=1 

.measure ac steep PARAM=`fs-fc' 

.measure ac fs1 when vdb(out, in) = `-40' 

.measure ac fs2 when vdb(out, in) = `-60' 

.LIB 'L:\MyFolder\MyPhd\Simulation\spice\hspice\st12.lib' NOM    

.END 

 

Listing A.5: Spice 2
nd

 order low pass filter netlist 
 

 

.hdl 'otasimple.va' 

V11 net047 0 ac=10e-3 

C10 net0110 0 c=cap10 

C6 net0117 net083 c=cap6 

C5 net0117 0 c=cap5 

C4 net0121 0 c=cap4 

C8 net0118 0 c=cap8 

C9 net0116 0 c=cap9 

C2 net083 net047 c=cap2 

C3 net083 0 c=cap3 

C1 net085 0 c=cap10 

C7 net0116 net0117 c=cap7 

X7 net0110 net0116 net0110 ota ce=-126f gm=gm_ota gm3=117.3u  

+cout=-150f ro=106.2k cgd1=-15f cgd2=-15f 

X6 net0116 net0118 net0116 ota ce=-126f gm=gm_ota gm3=117.3u  

+cout=-150f ro=106.2k cgd1=-15f cgd2=-15f 

X5 net0118 net0117 net0116 ota ce=-126f gm=gm_ota gm3=117.3u  

+cout=-150f ro=106.2k cgd1=-15f cgd2=-15f 

X2 net083 net085 net083 ota ce=-126f gm=gm_ota gm3=117.3u  

+cout=-150f ro=106.2k cgd1=-15f cgd2=-15f 

X1 net085 net047 net083 ota ce=-126f gm=gm_ota gm3=117.3u  

+cout=-150f ro=106.2k cgd1=-15f cgd2=-15f 

X4 net0117 net0121 net0117 ota ce=-126f gm=gm_ota gm3=117.3u  

+cout=-150f ro=106.2k cgd1=-15f cgd2=-15f 

X3 net0121 net083 net0117 ota ce=-126f gm=gm_ota gm3=117.3u  

+cout=-150f ro=106.2k cgd1=-15f cgd2=-15f 

 

.param gm_ota=113.8u 

.param cap1=2.00p 

.param cap2=1.36p 

.param cap3=8.27p 

.param cap4=1.31p 

.param cap5=5.07p 

.param cap6=2.00p 

.param cap7=2.78p 

.param cap8=1.76p 

.param cap9=6.81p 

.param cap10=1.88p 

 

.ac dec 10 1k 1000000E+06 

.measure ac gain find vdb(net0110, net047) at=1k 

.measure ac fp when vdb(net0110, net047)=`gain-3.0' 

.measure ac minpoint min vdb(net0110, net047) FROM=`gain-3' to=30Meg 



Appendix A Spice Model Listings  187 

 

.measure ac freqmin when vdb(net0110, net047)=`minpoint' 

.measure ac peak2 max vdb(net0110, net047) FROM=`freqmin' TO=5000Meg 

.measure ac attn PARAM=`peak2' 

.measure ac fs when vdb(net0110, net047)=`peak2' fall=1 

.probe vdb(net0110, net047) 

.end 

 

Listing A.6: Spice 7
th

 order low pass filter Netlist 

 
.subckt ota_g1 inm inp out 

i0 net20 VSS!  dc=10e-6 

xm3 net23 net23 VDD! VDD!  ephsgp_bs3ju w=weff2 l=leff2 nfing=1 

ncrsd=1.0  

+number=1.0 srcefirst=1 ngcon=1 mismatch=1 po2act=-1.00000000e+00 

nbti=0.0  

+lpe=0 

xm2 out net23 VDD! VDD! ephsgp_bs3ju w=weff2 l=leff2 nfing=1 

ncrsd=1.0  

+number=1.0 srcefirst=1 ngcon=1 mismatch=1 po2act=-1.00000000e+00 

nbti=0.0  

+lpe=0 

xm1 out inm net20 VSS!   enhsgp_bs3ju w=weff0 l=leff0 nfing=1 

ncrsd=1.0  

+number=1.0 srcefirst=1 ngcon=1 mismatch=1 po2act=-1.00000000e+00 

lpe=0 

xm0 net23 inp net20 VSS!   enhsgp_bs3ju w=weff0 l=leff0 nfing=1 

ncrsd=1.0  

+number=1.0 srcefirst=1 ngcon=1 mismatch=1 po2act=-1.00000000e+00 

lpe=0 

 

.param leff0=1u 

.param leff2=1u 

.param weff0=10u 

.param weff2=10u 

     

.ends ota_g1 

 
XI15 VINM VINP VOUT ota_g1 

C0 VOUT 0  1E-12  

V4 VINP 0  600E-3 AC 1E-3  

V5 VINM 0  600E-3  

V3 0 VSS!  0.0  

V0 VDD! 0  1.2  

 

.AC DEC        10.0000       1000.00      1000E+06 

.measure ac gain find vdb(VOUT, VINP) at=1k 

.measure ac phase find vp(VOUT, VINP) when vdb(VOUT, VINP)=0 

.probe vdb(vout, vin+) 

.OPTIONS PROBE POST MEASOUT 

 

.LIB 'L:\MyFolder\MyPhd\Simulation\spice\hspice\st12.lib' NOM    

.END 

 

Listing A.7: Spice single stage OTA Netlist 

 

 

 



Appendix A Spice Model Listings  188 

 

.param vctrl=0.4 

C0 vcoout 0 1a  

vctrl net2 0 DC vctrl 

V1 vss 0 0 

V0 vdd 0 1.2 

X1 net2 vdd vcoout vss vco 

 

.subckt vco vctrl vdd vout vss 

XM21 vout net12 net28 vss ENHSGP_BS3JU w=wndelay l=lndelay nfing=1  

+ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0 

XM20 net12 net16 net32 vss ENHSGP_BS3JU w=wndelay l=lndelay nfing=1  

+ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0 

XM19 net16 net20 net36 vss ENHSGP_BS3JU w=wndelay l=lndelay nfing=1  

+ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0 

XM18 net20 net24 net40 vss ENHSGP_BS3JU w=wndelay l=lndelay nfing=1  

+ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0 

XM17 net24 vout net44 vss ENHSGP_BS3JU w=wndelay l=lndelay nfing=1  

+ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0 

XM16 net28 vctrl vss vss ENHSGP_BS3JU w=wndelay l=lndelay nfing=1 

+ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0 

XM15 net32 vctrl vss vss ENHSGP_BS3JU w=wndelay l=lndelay nfing=1  

+ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0 

XM14 net36 vctrl vss vss ENHSGP_BS3JU w=wndelay l=lndelay nfing=1  

+ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0 

XM13 net40 vctrl vss vss ENHSGP_BS3JU w=wndelay l=lndelay nfing=1  

+ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0 

XM7 net48 vctrl vss vss ENHSGP_BS3JU w=wnctrl l=lpnctrl nfing=1  

+ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0 

XM1 net44 vctrl vss vss ENHSGP_BS3JU w=wndelay l=lndelay nfing=1  

+ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0 

XM12 vout net12 net54 vdd EPHSGP_BS3JU w=wpdelay l=lpdelay nfing=1  

+ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 nbti=0  

+lpe=0 

XM11 net12 net16 net58 vdd EPHSGP_BS3JU w=wpdelay l=lpdelay nfing=1  

+ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 nbti=0  

+lpe=0 

XM10 net16 net20 net62 vdd EPHSGP_BS3JU w=wpdelay l=lpdelay nfing=1  

+ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 nbti=0  

+lpe=0 

XM9 net20 net24 net66 vdd EPHSGP_BS3JU w=wpdelay l=lpdelay nfing=1  

+ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 nbti=0  

+lpe=0 

XM8 net24 vout net70 vdd EPHSGP_BS3JU w=wpdelay l=lpdelay nfing=1  

+ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 nbti=0  

+lpe=0 

XM6 net54 net48 vdd vdd EPHSGP_BS3JU w=wpdelay l=lpdelay nfing=1  

+ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 nbti=0  

+lpe=0 

XM5 net58 net48 vdd vdd EPHSGP_BS3JU w=wpdelay l=lpdelay nfing=1  

+ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 nbti=0  

+lpe=0 

XM4 net62 net48 vdd vdd EPHSGP_BS3JU w=wpdelay l=lpdelay nfing=1  

+ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 nbti=0  

+lpe=0 

XM3 net66 net48 vdd vdd EPHSGP_BS3JU w=wpdelay l=lpdelay nfing=1  

+ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 nbti=0  

+lpe=0 

XM2 net70 net48 vdd vdd EPHSGP_BS3JU w=wpdelay l=lpdelay nfing=1  

+ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 nbti=0  

+lpe=0 

XM22 net48 net48 vdd vdd EPHSGP_BS3JU w=wpctrl l=lpnctrl nfing=1  
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+ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 nbti=0  

+lpe=0 

 

.param lpnctrl=1u   

.param lpdelay=1u 

.param lndelay=1u 

 

.param wpctrl=171u 

.param wpdelay=1u 

.param wnctrl=57u 

.param wndelay=1u 

 

.ends vco 

 

.OPTIONS PROBE POST 

.options HBTRANINIT=100n 

.options HBTRANPTS=20 

.options HBCONTINUE=0 

.options phnoise_lorentz=0 

 

.sweepblock vtune_sweep  

+ 0.4 1.2 0.2 

 

.IC v(vcoout)=1V  

.HBOSC tones=1200Meg nharms=12 

+ probenode= vcoout,vss 0.6 

+ sweep vctrl sweepblock=vtune_sweep  

 

*------------------------------------------------ 

* for plotting HB transient wavform of v(vcoout) 

* The output file is ~.hr0 

*------------------------------------------------ 

.probe hbtran v(vcoout) 

 

*-------------------------------------------------------------------- 

* for plotting HB oscillation spectrum of v(vcoout) and i(v0) for the 

current 

* convert to time domain yield a transient waveform similar as hbtran 

* The output file is ~.hb0 

*-------------------------------------------------------------------- 

.probe HBOSC v(vcoout) 

.probe hbosc i(v0) [0] 

 

*---------------------------------------------------------- 

* for ploting harmonics frequency. the output file is ~.hb0  

* with voltage control sweep, VCO gain can be determined 

*---------------------------------------------------------- 

.probe HB hertz[1] 

 

*---------------------- 

* Phase Noise Analysis 

*---------------------- 

.phasenoise V(vcoout,vss) dec 10 1k 1e7 

 

*----------------------------------------- 

* for plotting phase noise again frequency 

* output file is ~.pn0 

*---------------------------------------- 

.probe phasenoise phnoise 

 

*---------------------------------------------- 
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* for plotting jitter from phase noise analysis 

* output file is ~.jt0 

*---------------------------------------- 

.probe phasenoise phnoise jitter 

 

*-------------------------------------------------------- 

* for measuring RMS period jitter from phase noise result 

*-------------------------------------------------------- 

* period jitter measurement use the full offset frequency 

* sweep range given in the phase noise analysis. The  

* from and to parameters are ignored. 

*-------------------------------------------------------- 

.MEASURE PHASENOISE rjper PERJITTER phnoise from 1k to 10Meg 

*.measure phasenoise rjper2 perjitter phnoise when v(vctrl)=0.2 

 

*---------------------------------------------- 

* To measure VCO Gain, Kvco  

* Vmax-Vmin = 1.2V - 0.2V = 1.0V 

*---------------------------------------------- 

.measure hb freqmin min PAR(HERTZ[1]);1_Mag 

.measure hb freqmax max PAR(HERTZ[1]);1_Mag 

.measure hb deltafreq PARAM=`freqmax-freqmin' 

.measure hb kvco PARAM=`deltafreq/1.0'   

 

.measure phasenoise pn_freqmin find phnoise at 1k 

 

*-------------------------------------------------- 

* To measure total maximum current and maximum power 

* at DC frequency. Measured at power supply 

*--------------------------------------------------- 

.measure hbosc totcurr max i(v0) [0] 

.measure hbosc totpwr max p(v0) [0] 

 

*--------------------------------------------- 

* ST0.12um Models file for simulator hspiceS 

*--------------------------------------------- 

.lib '/home/sawal/phd/modelfile/st12/common_poly.lib' PRO_TT 

.lib '/home/sawal/phd/modelfile/st12/common_active.lib' PRO_TT 

.lib '/home/sawal/phd/modelfile/st12/common_go1.lib' PRO_TT 

.lib '/home/sawal/phd/modelfile/st12/common_go2.lib' PRO_TT 

.lib '/home/sawal/phd/modelfile/st12/mos_bsim3_HS.lib' moshs_TT 

.lib '/home/sawal/phd/modelfile/st12/mos_bsim3_LL.lib' mosll_TT 

.lib '/home/sawal/phd/modelfile/st12/mos_bsim3_3V3.lib' mos3v3_TT 

 

.END 

 

 

Listing A.8: Spice VCO netlist 

 
 

.OPTIONS PROBE POST MEASOUT 

 

R0 out net018 2K 

C1 net018 0 10p 

C0 out 0 1p 

V2 net14 0 1.2  

V1 net7 0 pulse 1.2 0.0 0ns 1fs 1fs 1n 2n 

V0 net5 0 pulse 1.2 0.0 0ns 1fs 1fs 1n 2n 

XI1 net19 net18 out net21 net20 net14 0 cp_1 

XI0 net19 net18 net7 net5 net21 net20 pfd 
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.subckt cp_1 dw dwb out up upb vdd vss 

    I2 vdd net045 dc=100u 

    XM7 net049 net045 vss vss ENHSGP_BS3JU w=0.15e-6 l=0.13e-6 

nfing=1 ncrsd=1  

    +number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0 

    XM10 net045 net045 vss vss ENHSGP_BS3JU w=0.15e-6 l=0.13e-6 

nfing=1 ncrsd=1  

    +number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0 

    XM8 net20 net045 vss vss ENHSGP_BS3JU w=0.15e-6 l=0.13e-6 nfing=1 

ncrsd=1  

    +number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0 

    XM5 out dw net20 vss ENHSGP_BS3JU w=0.15e-6 l=0.13e-6 nfing=1 

ncrsd=1  

    +number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0 

    XM4 out dwb out vss ENHSGP_BS3JU w=0.15e-6 l=0.13e-6 nfing=1 

ncrsd=1  

    +number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0 

    XM3 vdd dwb net20 vss ENHSGP_BS3JU w=0.15e-6 l=0.13e-6 nfing=1  

    +ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0 

    XM6 net33 net049 vdd vdd EPHSGP_BS3JU w=0.15e-6 l=0.13e-6 nfing=1 

ncrsd=1  

    +number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 nbti=0 lpe=0 

    XM9 net049 net049 vdd vdd EPHSGP_BS3JU w=0.15e-6 l=0.13e-6 

nfing=1 ncrsd=1  

    +number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 nbti=0 lpe=0   

    XM2 out up out vdd EPHSGP_BS3JU w=0.15e-6 l=0.13e-6 nfing=1 

ncrsd=1  

    +number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 nbti=0 lpe=0 

    XM1 out upb net33 vdd EPHSGP_BS3JU w=0.15e-6 l=0.13e-6 nfing=1 

ncrsd=1  

    +number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 nbti=0 lpe=0 

    XM0 vss up net33 vdd EPHSGP_BS3JU w=0.15e-6 l=0.13e-6 nfing=1 

ncrsd=1  

    +number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 nbti=0 lpe=0 

.ends cp_1 

 

.subckt inv_gate in out 

    V0 net12 0 1.2  

    XM1 out in 0 0 ENHSGP_BS3JU w=0.15e-6 l=0.13e-6 nfing=1 ncrsd=1  

    +number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0 

    XM0 out in net12 net12 EPHSGP_BS3JU w=0.15e-6 l=0.13e-6 nfing=1  

    +ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 nbti=0  

    +lpe=0 

.ends inv_gate 

 

.subckt and_gate A B out 

    V0 net4 0 1.2 

    XM5 out net28 0 0 ENHSGP_BS3JU w=0.15e-6 l=0.13e-6 nfing=1 

ncrsd=1  

    +number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0 

    XM4 net9 B 0 0 ENHSGP_BS3JU w=0.15e-6 l=0.13e-6 nfing=1 ncrsd=1 

    +number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0 

    XM3 net28 A net9 0 ENHSGP_BS3JU w=0.15e-6 l=0.13e-6 nfing=1 

ncrsd=1  

    +number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0 

    XM2 out net28 net4 net4 EPHSGP_BS3JU w=0.15e-6 l=0.13e-6 nfing=1  

    +ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 nbti=0  

    +lpe=0 

    XM1 net28 A net4 net4 EPHSGP_BS3JU w=0.15e-6 l=0.13e-6 nfing=1  

    +ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 nbti=0  
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    +lpe=0 

    XM0 net28 B net4 net4 EPHSGP_BS3JU w=0.15e-6 l=0.13e-6 nfing=1  

    +ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 nbti=0  

    +lpe=0 

.ends and_gate 

 

.subckt dff_1 D Q Res clk 

    XM7 Q net16 0 0 ENHSGP_BS3JU w=0.15e-6 l=0.13e-6 nfing=1 ncrsd=1  

    +number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0 

    XM6 net12 net20 0 0 ENHSGP_BS3JU w=0.15e-6 l=0.13e-6 nfing=1 

ncrsd=1  

    +number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0 

    XM5 net16 clk net12 0 ENHSGP_BS3JU w=0.15e-6 l=0.13e-6 nfing=1  

    +ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0 

    XM4 net20 Res 0 0 ENHSGP_BS3JU w=0.15e-6 l=0.13e-6 nfing=1 

ncrsd=1  

    +number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 lpe=0 

    XM3 Q net16 D D EPHSGP_BS3JU w=0.15e-6 l=0.13e-6 nfing=1 ncrsd=1  

    +number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 nbti=0 lpe=0 

    XM2 net16 net20 D D) EPHSGP_BS3JU w=0.15e-6 l=0.13e-6 nfing=1 

ncrsd=1  

    +number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 nbti=0 lpe=0 

    XM1 net20 Res net30 D EPHSGP_BS3JU w=0.15e-6 l=0.13e-6 nfing=1  

    +ncrsd=1 number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 nbti=0  

    +lpe=0 

    XM0 net30 clk D D EPHSGP_BS3JU w=0.15e-6 l=0.13e-6 nfing=1 

ncrsd=1  

    +number=1 srcefirst=1 ngcon=1 mismatch=1 po2act=-1 nbti=0 lpe=0 

.ends dff_1 

 

.subckt pfd dw dwb fback fref up upb 

    XI8 net7 net044 inv_gate 

    XI9 net044 up inv_gate 

    XI10 net7 upb inv_gate 

    XI11 net3 dwb inv_gate 

    XI12 net3 net036 inv_gate 

    XI13 net036 dw inv_gate 

    V0 vdd 0 1.2 

    XI3 net7 net3 net8 and_gate 

    XI1 vdd net3 net8 fback dff_1 

    XI0 vdd net7 net8 fref dff_1 

.ends pfd 

 

.SN tone=500MEG nharms=10 trinit=100n 

.SNNOISE V(out) V1 

+DEC 20 1k 100MEG 

+ [0,1] 

 

.PRINT ACPHASENOISE PHNOISE JITTER 

.PROBE ACPHASENOISE PHNOISE JITTER 

.PROBE SN V(out) 

.PROBE SNNOISE onoise 

 

.lib '/home/sawal/phd/modelfile/st12/common_poly.lib' PRO_TT 

.lib '/home/sawal/phd/modelfile/st12/common_active.lib' PRO_TT 

.lib '/home/sawal/phd/modelfile/st12/common_go1.lib' PRO_TT 

.lib '/home/sawal/phd/modelfile/st12/common_go2.lib' PRO_TT 

.lib '/home/sawal/phd/modelfile/st12/mos_bsim3_HS.lib' moshs_TT 

.lib '/home/sawal/phd/modelfile/st12/mos_bsim3_LL.lib' mosll_TT 
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.lib '/home/sawal/phd/modelfile/st12/mos_bsim3_3V3.lib' mos3v3_TT 

 

 

.END 

 

Listing A.9: Spice PFD/CP Netlist 

 

.option post 

.hdl 'lf.va' 

.hdl 'vco.va' 

.hdl 'pfd.va' 

.hdl 'divider.va' 

.hdl 'pll_top.va' 

 

V1 ref 0 pulse 1.2 0.0 0ns 1fs 1fs 900p 1.8n AC=1mV 

 

xa1 ref pll_out pll_top 

+ Icp=pfd_current 

+ lfpfl=0.0 

+ C_1=cap1 

+ R_2=res 

+ C_2=cap2 

+ fmin=min_freq 

+ fmax=max_freq 

+ Ivco=vco_current 

+ lfwh=0.0 

+ ratio=divide_by 

 

.PARAM pfd_current=100e-6 

.PARAM min_freq=437e6 

.PARAM max_freq=1.52e9 

.PARAM vco_current=2.79e-3 

.PARAM divide_by=1 

.PARAM res=5k 

.PARAM cap2=10p 

.PARAM cap1=cap2/10 

 

.ac dec 20 1k 100Meg 

.probe ac vdb(pll_out, ref) 

.noise v(pll_out) v1 

.print ac vdb(pll_out) onoise onoise(dB) 

.probe ac vdb(pll_out) onoise onoise(dB) 

.measure ac MSjitter integral `2.0*onoise*onoise' 

+ from=1k to=100Meg 

 

.measure vco_gain param = '(max_freq-min_freq)/(1.2-0.2)' 

.measure RMSjitter param='sqrt(MSjitter)' 

.measure wn 

+param='((pfd_current*vco_gain)/(2*3.14*divide_by*cap2))^(1/2)' 

.measure wz param = '1/(res*cap2)' 

.measure cap_series param = '(cap1*cap2)/(cap1+cap2)' 

.measure wp param = '1/(res*cap_series)' 

.measure damp_factor param='(Wn*res*cap2)/2' 

.measure loop_bwidth 

+param='Wn*((1+2*damp_factor^2+((2+4*damp_factor^2+4*damp_factor^4)^1

/2))^1/2)' 

.measure lock_time param = '(2*3.14)/Wn' 

.measure gain_pfd param = 'pfd_current/(2*3.14)' 

.measure wugb param = '(gain_pfd*vco_gain*res)/divide_by' 
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.measure test1 param = 'wugb/wz' 

.measure test2 param = 'wugb/wp' 

.measure atan1 param = 'atan(test1)' 

.measure atan2 param = 'atan(test2)' 

.measure phase_margin param = 'atan(wugb/wz)-atan(wugb/wp)' 

.measure PM_degrees param = 'phase_margin*(180/3.14)' 

.measure tot_current param = 'pfd_current + vco_current' 

 

.end 

 

Listing A.10: Spice PLL Netlist 
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/* This is a Multi-Objective GA program. 

*********************************************************************

* 

*  This program is the implementation of the NSGA-2 proposed by      

* 

*                                                                    

* 

*  Prof. Kalyanmoy Deb and his students .                            

* 

*                                                                    

* 

*  copyright Kalyanmoy Deb 

*********************************************************************

* 

 

18.08.2003: The keepaliven.h file is modified to have normalized 

            crowding distance calculation. The previous version of  

            the code did not have this feature. This way, maintaining 

            a good distribution of solutions in problems having quite 

            a different range of objective functions were difficult. 

            Hopefully, with this modification, such difficulties will 

            not appear. --  K. Deb 

18.08.2003: Also the dfit.h file is deleted. It was not needed any 

way. 

 

The user have to give the input manualy or through a data file. 

 

The user needs to enter objective functions in func-con.h 

The code can also take care of the constraints. Enter the constraints 

in the space provided in the func-con.h file. 

Constraints must be of the following type: 

g(x) >= 0.0 

Also normalize all constraints (see the example problem in func-

con.h) 

 

 

Compilation procedure:  gcc nsga2.c -lm 

Run ./a.out with or without an input file 

 

Input data files: Three files are included, but at one time one is 

needed 

depending on the type of variables used: 

inp-r (template file input-real)  : All variables are real-coded 

inp-b (template file input-binary): All variables are binary-coded 

inp-rb(template file input-rl+bin): Some variables are real and some 

are binary   

*/ 

 

#include <stdio.h> 

#include <stdlib.h> 

#include <math.h> 

#include <fstream.h> 

 

#define square(x) ((x)*(x)) 
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#define maxpop   500  /*Max population */ 

#define maxchrom 200  /*Max chromosome length*/ 

#define maxvar    20  /*Max no. of variables*/ 

#define maxfun    10  /*Max no. of functions */ 

#define maxcons   20  /*Max no. of Constraints*/ 

 

 

int gener,       /*No of generations*/ 

  nvar,nchrom,   /*No of variables*/ 

  ncons,         /*No of Constraints*/ 

  vlen[maxvar],  /*Array to store no of bits for each variable*/ 

  nmut,          /* No of Mutations */ 

  ncross,        /*No of crossovers*/ 

  ans; 

float seed,      /*Random Seed*/ 

  pcross,        /*Cross-over Probability*/ 

  pmut_b, pmut_r,/*Mutation Probability*/ 

  lim_b[maxvar][2], lim_r[maxvar][2];/*Limits of variable in array*/ 

float di,        /*Distribution Index for the Cross-over*/ 

  dim,           /*Distribution Index for the Mutation*/ 

  delta_fit,     /* variables required forfitness for fitness sharing 

*/ 

  min_fit, 

  front_ratio; 

int optype,      /*Cross-over type*/ 

  nfunc,         /*No of functions*/ 

  sharespace;    /*Sharing space (either parameter or fitness)*/ 

 

double coef[maxvar]; /*Variable used for decoding*/ 

 

static int popsize,  /*Population Size*/ 

  chrom;             /*Chromosome size*/ 

 

typedef struct       /*individual properties*/ 

{ 

 

  int genes[maxchrom], /*bianry chromosome*/ 

    rank,              /*Rank of the individual*/ 

    flag;              /*Flag for ranking*/ 

  float xreal[maxvar], /*list of real variables*/ 

    xbin[maxvar];      /*list of decoded value of the chromosome */ 

  float fitness[maxfun],/*Fitness values */ 

    constr[maxcons],     /*Constraints values*/ 

    cub_len,             /*crowding distance of the individual*/ 

    error;              /* overall constraint violation for the 

individual*/ 

}individual;        /*Structure defining individual*/ 

 

 

typedef struct 

{ 

  int maxrank;            /*Maximum rank present in the population*/ 

  float rankrat[maxpop];  /*Rank Ratio*/ 

  int rankno[maxpop];     /*Individual at different ranks*/ 

  individual ind[maxpop], /*Different Individuals*/ 

    *ind_ptr;  

}population ;             /*Popuation Structure*/ 

 

#include "random.h"       /*Random Number Generator*/ 

 

#include "input.h"        /*File Takes Input from user*/ 
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#include "realinit.h"     /*Random Initialization of the populaiton*/ 

#include "init.h"         /*Random Initialization of the population*/ 

#include "decode.h"       /*File decoding the binary dtrings*/ 

#include "ranking.h"      /*File Creating the Pareto Fronts*/ 

#include "rancon.h"       /*File Creating the Pareto Fronts when 

            Constraints are specified*/ 

#include "func-con.h"     /*File Having the Function*/ 

#include "select.h"       /*File for Tournament Selection*/ 

#include "crossover.h"    /*Binary Cross-over*/ 

#include "uniformxr.h"    /*Uniform Cross-over*/ 

#include "realcross2.h"   /*Real Cross-over*/ 

#include "mut.h"          /*Binary Mutation*/ 

#include "realmut1.h"     /*Real Mutation*/ 

#include "keepaliven.h"   /*File For Elitism and Sharing Scheme*/ 

#include "report.h"       /*Printing the report*/ 

 

population oldpop, 

  newpop, 

  matepop, 

  *old_pop_ptr, 

  *new_pop_ptr, 

  *mate_pop_ptr; 

/*Defining the population Structures*/ 

 

main() 

{ 

  /*Some Local variables to this Problem (Counters And some other 

pointers*/ 

 

  int i,j,l,f,maxrank1; 

  float *ptr,tot; 

  FILE  

    *rep_ptr, 

    *gen_ptr, 

    *rep2_ptr, 

    *end_ptr, 

    *g_var, 

    *lastit; 

 //*param_ptr,    // parameter file 

  /*File Pointers*/ 

 

  //param_ptr = fopen("param.txt", "w");   // parameter file 

  rep_ptr = fopen("output.out","w"); 

  gen_ptr =fopen("all_fitness.out","w"); 

  rep2_ptr = fopen("ranks.out","w"); 

  end_ptr = fopen("final_fitness.out","w"); 

  g_var = fopen("final_var.out","w"); 

  lastit = fopen("plot.out","w"); 

  /*Opening the files*/ 

 

  old_pop_ptr = &(oldpop); 

 

  nmut = 0; 

  ncross = 0; 

 

  /*Get the input from the file input.h*/ 

  input(rep_ptr); 

 

  fprintf(rep_ptr,"Results in a file\n"); 
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  fprintf(end_ptr,"# Last generation population (Feasible and non-

dominated)\n"); 

  fprintf(end_ptr,"# Fitness_vector (first %d)  Constraint_violation 

(next %d)  Overall_penalty\n",nfunc,ncons); 

  fprintf(g_var,"#Feasible Variable_vectors for non-dominated 

solutions at last generation\n"); 

  fprintf(g_var,"# Real (first %d)  Binary (next %d)\n",nvar,nchrom); 

  fprintf(lastit,"# Feasible and Non-dominated Objective Vector\n"); 

 

  /*Initialize the random no generator*/ 

  warmup_random(seed); 

 

   /*Binary Initializaton*/ 

  if (nchrom > 0) 

    init(old_pop_ptr);   

  if (nvar > 0) 

    realinit(old_pop_ptr); 

   

  old_pop_ptr = &(oldpop); 

 

  // decode binary strings 

  decode(old_pop_ptr);  

 

  old_pop_ptr = &(oldpop); 

  new_pop_ptr = &(newpop); 

   

  for(j = 0;j < popsize;j++) 

    { 

      /*Initializing the Rank array having different individuals 

 at a particular  rank to zero*/ 

       old_pop_ptr->rankno[j] = 0; 

       new_pop_ptr->rankno[j] = 0; 

    } 

   

  old_pop_ptr = &(oldpop); 

   

  func(old_pop_ptr);  

  /*Function Calculaiton*/ 

   

  fprintf(rep_ptr,"--------------------------------------------------

--\n"); 

  fprintf(rep_ptr,"Statistics at Generation 0 ->\n"); 

  fprintf(rep_ptr,"--------------------------------------------------

\n"); 

   

  

/********************************************************************

/ 

  /*----------------------GENERATION STARTS HERE---------------------

-*/ 

  for (i = 0;i < gener;i++) 

    { 

      printf("Generation = %d\n",i+1); 

      old_pop_ptr = &(oldpop); 

      mate_pop_ptr = &(matepop); 

      fprintf(rep_ptr,"Population at generation no. -->%d\n",i+1); 

      fprintf(gen_ptr,"#Generation No. -->%d\n",i+1); 

fprintf(gen_ptr,"#Variable_vector  Fitness_vector 

Constraint_violation Overall_penalty\n"); 

       

      /*--------SELECT----------------*/ 
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      nselect(old_pop_ptr ,mate_pop_ptr ); 

       

      new_pop_ptr = &(newpop); 

      mate_pop_ptr = &(matepop); 

       

      /*CROSSOVER----------------------------*/       

      if (nchrom > 0)  

 { 

    

   if(optype == 1) 

     { 

       crossover(new_pop_ptr ,mate_pop_ptr ); 

       /*Binary Cross-over*/ 

     } 

    

   if(optype == 2) 

     { 

       unicross(new_pop_ptr ,mate_pop_ptr ); 

       /*Binary Uniform Cross-over*/ 

     } 

 } 

      if (nvar > 0)  

 realcross(new_pop_ptr ,mate_pop_ptr ); 

      /*Real Cross-over*/ 

       

       

      /*------MUTATION-------------------*/ 

      new_pop_ptr = &(newpop); 

       

      if (nchrom > 0) 

 mutate(new_pop_ptr ); 

      /*Binary Mutation */ 

       

      if (nvar > 0) 

 real_mutate(new_pop_ptr ); 

      /*Real Mutation*/ 

       

      new_pop_ptr = &(newpop); 

       

      /*-------DECODING----------*/ 

      if(nchrom > 0) 

 decode(new_pop_ptr ); 

      /*Decoding for binary strings*/ 

       

      /*----------FUNCTION EVALUATION-----------*/ 

      new_pop_ptr = &(newpop); 

      func(new_pop_ptr ); 

       

      /*-------------------SELECTION KEEPING FRONTS ALIVE----------*/ 

      old_pop_ptr = &(oldpop); 

      new_pop_ptr = &(newpop); 

      mate_pop_ptr = &(matepop); 

       

      /*Elitism And Sharing Implemented*/ 

      keepalive(old_pop_ptr ,new_pop_ptr ,mate_pop_ptr,i+1);       

       

      mate_pop_ptr = &(matepop); 

      if(nchrom > 0) 

 decode(mate_pop_ptr ); 

       

      mate_pop_ptr = &(matepop); 
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      /*------------------REPORT PRINTING--------------------------*/   

      report(i ,old_pop_ptr ,mate_pop_ptr ,rep_ptr ,gen_ptr, lastit 

); 

       

      

/*==================================================================*

/ 

       

      /*----------------Rank Ratio Calculation---------------------*/ 

      new_pop_ptr = &(matepop); 

      old_pop_ptr = &(oldpop); 

       

      /*Finding the greater maxrank among the two populations*/ 

       

      if(old_pop_ptr->maxrank > new_pop_ptr->maxrank) 

 maxrank1 = old_pop_ptr->maxrank; 

      else  

 maxrank1 = new_pop_ptr->maxrank; 

 

      fprintf(rep2_ptr,"--------RANK AT GENERATION %d-------\n",i+1); 

      fprintf(rep2_ptr,"Rank old ranks   new ranks     rankratio\n"); 

 

      for(j = 0;j < maxrank1 ; j++) 

 {  

   /*Sum of the no of individuals at any rank in old population  

     and the new populaion*/ 

    

   tot = (old_pop_ptr->rankno[j])+ (new_pop_ptr->rankno[j]); 

    

   /*Finding the rank ratio for new population at this rank*/ 

    

   new_pop_ptr->rankrat[j] = (new_pop_ptr->rankno[j])/tot; 

    

   /*Printing this rank ratio to a file called ranks.dat*/ 

    

   fprintf(rep2_ptr," %d\t  %d\t\t %d\t %f\n",j+1,old_pop_ptr-

>rankno[j],new_pop_ptr->rankno[j],new_pop_ptr->rankrat[j]); 

    

 } 

       

      fprintf(rep2_ptr,"-----------------Rank Ratio-------------\n"); 

      

/*==================================================================*

/ 

       

      /*=======Copying the new population to old population======*/ 

       

      old_pop_ptr = &(oldpop); 

      new_pop_ptr = &(matepop); 

 

      for(j = 0;j < popsize;j++) 

 { 

   old_pop_ptr->ind_ptr = &(old_pop_ptr->ind[j]); 

   new_pop_ptr->ind_ptr = &(new_pop_ptr->ind[j]); 

   if(nchrom > 0) 

     { 

       /*For Binary GA copying of the chromosome*/ 

        

       for(l = 0;l < chrom;l++) 

  old_pop_ptr->ind_ptr->genes[l]=new_pop_ptr->ind_ptr-

>genes[l]; 
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       for(l = 0;l < nchrom;l++) 

  old_pop_ptr->ind_ptr->xbin[l] = new_pop_ptr->ind_ptr-

>xbin[l]; 

     } 

   if(nvar > 0) 

     { 

       /*For Real Coded GA copying of the chromosomes*/ 

       for(l = 0;l < nvar;l++) 

  old_pop_ptr->ind_ptr->xreal[l] = new_pop_ptr->ind_ptr-

>xreal[l]; 

     } 

    

   /*Copying the fitness vector */    

   for(l = 0 ; l < nfunc ;l++) 

     old_pop_ptr->ind_ptr->fitness[l] = new_pop_ptr->ind_ptr-

>fitness[l]; 

    

   /*Copying the dummy fitness*/ 

   old_pop_ptr->ind_ptr->cub_len = new_pop_ptr->ind_ptr-

>cub_len; 

    

   /*Copying the rank of the individuals*/ 

   old_pop_ptr->ind_ptr->rank = new_pop_ptr->ind_ptr->rank; 

    

   /*Copying the error and constraints of the individual*/ 

    

   old_pop_ptr->ind_ptr->error = new_pop_ptr->ind_ptr->error; 

   for(l = 0;l < ncons;l++) 

     { 

       old_pop_ptr->ind_ptr->constr[l] = new_pop_ptr->ind_ptr-

>constr[l]; 

     } 

    

   /*Copying the flag of the individuals*/ 

   old_pop_ptr->ind_ptr->flag = new_pop_ptr->ind_ptr->flag; 

 }   // end of j 

       

      maxrank1 = new_pop_ptr->maxrank ; 

    

      /*Copying the array having the record of the individual  

 at different ranks */ 

      for(l = 0;l < popsize;l++) 

 { 

   old_pop_ptr->rankno[l] = new_pop_ptr->rankno[l]; 

 } 

       

      /*Copying the maxrank */ 

      old_pop_ptr->maxrank = new_pop_ptr->maxrank; 

       

      /*Printing the fitness record for last generation in a file 

last*/ 

      if(i == gener-1) 

        {  // for the last generation  

   old_pop_ptr = &(matepop); 

   for(f = 0;f < popsize ; f++) // for printing 

     { 

       old_pop_ptr->ind_ptr = &(old_pop_ptr->ind[f]); 
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       if ((old_pop_ptr->ind_ptr->error <= 0.0) && (old_pop_ptr-

>ind_ptr->rank == 1))  // for all feasible solutions and non-

dominated solutions 

  { 

    for(l = 0;l < nfunc;l++) 

      fprintf(end_ptr,"%f\t",old_pop_ptr->ind_ptr-

>fitness[l]); 

    for(l = 0;l < ncons;l++) 

      { 

        fprintf(end_ptr,"%f\t",old_pop_ptr->ind_ptr-

>constr[l]); 

      } 

    if (ncons > 0) 

      fprintf(end_ptr,"%f\t",old_pop_ptr->ind_ptr->error); 

    fprintf(end_ptr,"\n"); 

     

    if (nvar > 0) 

      { 

        for(l = 0;l < nvar ;l++) 

   { 

     fprintf(g_var,"%f\t",old_pop_ptr->ind_ptr-

>xreal[l]); 

   } 

        fprintf(g_var,"  "); 

      } 

     

    if(nchrom > 0) 

      { 

        for(l = 0;l < nchrom;l++) 

   { 

     fprintf(g_var,"%f\t",old_pop_ptr->ind_ptr-

>xbin[l]); 

   } 

      } 

    fprintf(g_var,"\n"); 

  }  // feasibility check 

     } // end of f (printing) 

    

 } // for the last generation 

    }  // end of i  

 

  /*                   Generation Loop Ends                                

*/ 

  

/*******************************************************************/ 

   

  fprintf(rep_ptr,"NO. OF CROSSOVER = %d\n",ncross); 

  fprintf(rep_ptr,"NO. OF MUTATION = %d\n",nmut); 

  fprintf(rep_ptr,"--------------------------------------------------

----------\n"); 

  fprintf(rep_ptr,"---------------------------------Thanks-----------

----------\n"); 

  fprintf(rep_ptr,"--------------------------------------------------

-----------\n"); 

  printf("NOW YOU CAN LOOK IN THE FILE OUTPUT2.DAT\n"); 

   

  /*Closing the files*/ 

  fclose(rep_ptr); 

  fclose(gen_ptr); 

  fclose(rep2_ptr); 

  fclose(end_ptr); 
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  fclose(g_var); 

  fclose(lastit); 

} 

 

Listing B.1: Non-dominated Sorting Genetic Algorithm-II (NSGA-II) listing 

 

/*This is the program used to evaluate the value of the function & 

errors 

*******************************************************************/ 

#include <iostream.h> 

#include <stdio.h> 

#include <fstream.h> 

#include <cstdlib> 

#include <ctime> 

 

/*#define ofstream STD_OFSTREAM*/ 

 

void func(population *pop_ptr); 

void func(population *pop_ptr) 

 

{ 

/*File ptr to the file to store the value of the g for last iteration 

    g is the parameter required for a particular problem 

    Every problem is not required*/ 

  

  float *realx_ptr, /*Pointer to the array of x values*/ 

    *binx_ptr,      /* Pointer to the binary variables */ 

    *fitn_ptr,      /*Pointer to the array of fitness function*/ 

    x[2*maxvar],     /* problem variables */ 

    f[maxfun],     /*array of fitness values*/ 

    *err_ptr,      /*Pointer to the error */ 

    cstr[maxcons]; 

 

  float *ptr; 

  FILE  

    *param_ptr,    // parameter file 

 *res1_ptr,  // result1 file 

 *res2_ptr,  // result2 file 

 *res3_ptr; 

  /*File Pointers*/ 

  

  int i,j,k;  

  float error, cc; 

  float sum = 0; 

  float res1, res2, res3; 

  //ofstream paramfile; 

 

  pop_ptr->ind_ptr= &(pop_ptr->ind[0]); 

 

  /*Initializing the max rank to zero*/ 

  pop_ptr->maxrank = 0; 

  for(i = 0;i < popsize;i++) 

    { 

      pop_ptr->ind_ptr = &(pop_ptr->ind[i]); 

      realx_ptr = &(pop_ptr->ind_ptr->xreal[0]); 

      binx_ptr = &(pop_ptr->ind_ptr->xbin[0]); 

      //printf ("variables : %d \n", realx_ptr); 

 

      for(j = 0; j < nvar; j++) 
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 { // Real-coded variables  

   x[j] = *realx_ptr++; 

   //sum = sum + x[j]; 

   //printf ("variables : %f\n" , x[j]); 

    

 } 

 

      for(j = 0; j < nchrom; j++) 

 { // Binary-codced variables 

   x[nvar+j] = *binx_ptr++; 

 } 

       

      fitn_ptr = &(pop_ptr->ind_ptr->fitness[0]); 

      err_ptr = &(pop_ptr->ind_ptr->error); 

 

 

 

      /*   DO NOT CHANGE ANYTHING ABOVE   */ 

      /*----------------------CODE YOUR OBJECTIVE FUNCTIONS HERE---*/ 

      /*All functions must be of minimization type, negate 

maximization functions */ 

      /*==Start Coding Your Function From This Point=======*/ 

      // First fitness function 

   param_ptr = fopen("param.txt", "w");   // parameter file 

 

   fprintf(param_ptr,"%f\n%f\n%f\n%f\n",x[0],x[1],x[2],x[3]); 

   fclose(param_ptr); 

   system("perl L:\\MyFolder\\MyPhd\\MOO_NSGA\\ota_pareto.pl"); 

    

   res1_ptr = fopen("result_gm.txt", "r"); //result func 1 file 

   res2_ptr = fopen("result_ro.txt", "r"); // result func 2 file 

   res3_ptr = fopen("result_pm.txt", "r"); // result func 3 file 

   fscanf(res1_ptr, "%f", &res1); 

   fscanf(res2_ptr, "%f", &res2);  

   fscanf(res3_ptr, "%f", &res3);  

  

   

   f[0] = res1; 

   f[1] = res2; 

   f[2] = res3; 

 

      /*=========End Your Coding Upto This Point===============*/ 

 

      

/******************************************************************/ 

/*              Put The Constraints Here                          */ 

      

/******************************************************************/ 

      // g(x) >= 0 type (normalize g(x) as in the cstr[1] below) 

      /*===========Start Coding Here=============*/ 

       

      cstr[0] = x[0]*x[0]+x[1]*x[1]-1.0-

0.1*cos(16.0*atan(x[0]/x[1])); 

      cstr[1] = (-square(x[0]-0.5) - square(x[1]-0.5) + 0.5)/0.5; 

       

      /*===========Constraints Are Coded Upto Here=============*/ 

      /*   DO NOT CHANGE ANYTHING BELOW  */ 

 

 

 

      for(k = 0 ; k < nfunc ;k++) 
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 { 

   *fitn_ptr++  = f[k]; 

 } 

       

      for (k = 0;k < ncons; k++) 

 { 

   pop_ptr->ind_ptr->constr[k] = cstr[k]; 

 } 

      error = 0.0; 

      for (k = 0;k < ncons;k++) 

 { 

   cc = cstr[k]; 

   if(cc < 0.0) 

     error = error - cc; 

 } 

      *err_ptr = error; 

    } 

   

  /*---------------------------* RANKING *------------------------*/ 

   

  if(ncons == 0) 

    ranking(pop_ptr); 

  else 

    rankcon(pop_ptr); 

 

  return; 

} 

 

Listing B.2: NSGA-II function evaluation listing 
 

 



 

 

Appendix C: Verilog-A Model Listings 
 

 
`include "constants.vams" 

`include "disciplines.vams" 

 

module ota(out, inp, inm); 

 

 inout inp, inm; 

 output out; 

  

 electrical inp, inm, out; 

  

 parameter real gm = 136u; 

 parameter real gm3 = 50u; 

 parameter real ro = 106.2k; 

 parameter real ce = 126f; 

 parameter real cgd1 = 15f; 

 parameter real cout = 150f; 

 parameter real cgd2 = 15f; 

  

 real vin; 

 electrical vm; 

 

 analog begin 

  

   

  vin = V(inp,inm); 

  I(vm) <+ -gm*(vin/2); 

  I(vm) <+ V(vm)/(1/gm3); 

  I(vm) <+ ce*ddt(V(vm)); 

  I(vm) <+ cgd1*ddt(vin/2); 

   

  I(out) <+ -gm3*V(vm); 

  I(out) <+ -gm*vin/2; 

  I(out) <+ cout*ddt(V(out)); 

  I(out) <+ cgd2*ddt(vin/2); 

  I(out) <+ V(out)/ro; 

   

   

   

 end 

 

endmodule 

 

Listing C.1: Verilog-A Single Stage OTA listing 
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`include "constants.vams" 

`include "disciplines.vams" 

 

module vco(in, out); 

 

  inout in, out; 

  electrical in, out; 

 

 

  parameter real fmin = 300e6 from (100e6:80e7); //hertz 

  parameter real fmax = 500e6 from (200e6:40e8); //hertz 

  parameter real Ivco = 13.2e-3 from (1e-3:30e-3);  

  parameter real lfwh = 0.0 from [0:1.0); 

 

  real ko; 

  real lffl; 

  real vmax; 

  real vmin; 

 

  analog begin 

 

  vmax=1.2; 

  vmin=0.2; 

 

  ko = (fmax-fmin)/(vmax-vmin); 

 

  lffl = $table_model(ko,Ivco, "vco_data.tbl", "3L,3L");   

 

   

V(out) <+ laplace_nd(V (in), {fmax-fmin/1},{0,1})   

  + flicker_noise(lffl, 3, "VCO_flicker") 

   + flicker_noise(lfwh, 2, "VCO_white"); 

 

end 

endmodule 

 

Listing C.1: Verilog-A VCO listing 

 
 

// VCO variation module for minimum 

 

`include "constants.vams" 

`include "disciplines.vams" 

 

module vco_min(in, out); 

 

  inout in, out; 

  electrical in, out; 

 

 

  parameter real fmin = 300e6 from (100e6:80e7); //hertz 

  parameter real fmax = 500e6 from (200e6:40e8); //hertz 

  parameter real Ivco = 13.2e-3 from (1e-3:30e-3);  

  parameter real lfwh = 0.0 from [0:1.0); 

 

  real ko; 

  real ko_min; 

  real Ivco_min; 

  real lffl; 

  real vmax; 

  real vmin; 
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  real min_fmin, min_fmax; 

  real lffl_min; 

 

  integer file_ptr1,file_ptr2,file_ptr3,file_ptr4; 

 

  analog begin 

 

  vmax=1.2; 

  vmin=0.2; 

 

 

   @(initial_step) begin 

  file_ptr1 = $fopen("ivcomin.txt"); 

  file_ptr2 = $fopen("minfmin.txt"); 

  file_ptr3 = $fopen("minfmax.txt"); 

  file_ptr4 = $fopen("komin.txt"); 

  end 

 

  //minimum variation for Ivco 

  Ivco_min = $table_model(Ivco, "Ivcomin_data.tbl", "3L"); 

  $fwrite(file_ptr1, "%e", Ivco_min); 

 

  // minimum variation for fmin and fmax 

  min_fmin = $table_model(fmin, "fmin_mindata.tbl", "3L"); 

  $fwrite(file_ptr2, "%e", min_fmin); 

  min_fmax = $table_model(fmax, "fmax_mindata.tbl", "3L"); 

  $fwrite(file_ptr3, "%e", min_fmax); 

 

  // minimum variation for ko 

  ko_min = (min_fmax-min_fmin)/(vmax-vmin); 

  $fwrite(file_ptr4, "%e", ko_min); 

 

  ko = (fmax-fmin)/(vmax-vmin); 

 

  lffl = $table_model(ko,Ivco, "vco_data.tbl", "3L,3L");   

 

  // minimum variation for lffl noise 

  lffl_min = $table_model(lffl, "lfflmin_data.tbl", "3L"); 

 

   

  V(out) <+ laplace_nd(V (in), {(fmax-fmin)/1},{0,1})   

     + flicker_noise(lffl_min, 3, „VCO_flicker“) 

   + flicker_noise(lfwh, 2, “VCO_white”); 

 

  $fclose(file_ptr1); 

  $fclose(file_ptr2); 

  $fclose(file_ptr3); 

  $fclose(file_ptr4); 

 

end 

endmodule 

 

 

Listing C.2: Verilog-A VCO minimum variation listing 
 

 

 

 

// VCO variation module for maximum 

 

`include "constants.vams" 
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`include "disciplines.vams" 

 

module vco_max(in, out); 

 

  inout in, out; 

  electrical in, out; 

 

 

  parameter real fmin = 300e6 from (100e6:80e7); //hertz 

  parameter real fmax = 500e6 from (200e6:40e8); //hertz 

  parameter real Ivco = 13.2e-3 from (1e-3:30e-3);  

  parameter real lfwh = 0.0 from [0:1.0); 

 

  real ko; 

  real ko_max; 

  real Ivco_max; 

  real lffl; 

  real vmax; 

  real vmin; 

  real max_fmin, max_fmax; 

  real lffl_max; 

 

 

  integer file_ptr1,file_ptr2,file_ptr3,file_ptr4; 

  

 

  analog begin 

 

  vmax=1.2; 

  vmin=0.2; 

 

 

  @(initial_step) begin 

  file_ptr1 = $fopen("ivco.txt"); 

  file_ptr2 = $fopen("maxfmin.txt"); 

  file_ptr3 = $fopen("maxfmax.txt"); 

  file_ptr4 = $fopen("komax.txt"); 

  end 

  // maximum variation for Ivco 

  Ivco_max = $table_model(Ivco, "Ivcomax_data.tbl", "3L"); 

  $fwrite(file_ptr1, "%e", Ivco_max); 

 

   

  // maximum variation for fmin and fmax 

  max_fmin = $table_model(fmin, "fmin_maxdata.tbl", "3L"); 

  $fwrite(file_ptr2, "%e", max_fmin); 

  max_fmax = $table_model(fmax, "fmax_maxdata.tbl", "3L"); 

  $fwrite(file_ptr3, "%e", max_fmax); 

 

  // maximum variation for ko 

  ko_max = (max_fmax-max_fmin)/(vmax-vmin); 

  $fwrite(file_ptr4, "%e", ko_max); 

 

  ko = (fmax-fmin)/(vmax-vmin); 

 

  lffl = $table_model(ko,Ivco, "vco_data.tbl", "3L,3L");   

 

  // maximum variation for lffl noise 

  lffl_max = $table_model(lffl, "lfflmax_data.tbl", "3L"); 
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  V(out) <+ laplace_nd(V (in), {(fmax-fmin)/1},{0,1})   

     + flicker_noise(lffl_max, 3, "VCO_flicker") 

   + flicker_noise(lfwh, 2, "VCO_white"); 

 

  $fclose(file_ptr1); 

  $fclose(file_ptr2); 

  $fclose(file_ptr3); 

  $fclose(file_ptr4); 

 

end 

endmodule 

 

Listing C.3: Verilog-A VCO maximum variation listing 
 

 

 

`include "constants.vams" 

`include "disciplines.vams" 

 

 

module pfd(in1, in2, out); 

  inout in1, in2, out; 

  electrical in1, in2, out; 

 

  parameter real Icp = 12e-6 from(0:1.0); 

  parameter real lfpfl = 0.0 from [0:1.0); 

 

  real kd; 

  real lfpwh; 

 

analog begin 

 

  kd = Icp/(2*3.14); 

 

  //lookup table for pfd_cp noise 

  lfpwh = $table_model(Icp, "pfd_data.tbl","1E"); 

 

  //$display("lfpwh_value =  %e",lfpwh); 

 

  V(out) <+ kd*(V(in1) - V(in2)) 

   + flicker_noise(lfpfl, 1, "pfd_flicker") 

   + white_noise(lfpwh, "pfd_white"); 

 

end 

endmodule 

 

Listing C.4: Verilog-A PFD/CP listing 

 

 

`include "constants.vams" 

`include "disciplines.vams" 

 

 

module pfd_min(in1, in2, out); 

  inout in1, in2, out; 

  electrical in1, in2, out; 

 

  parameter real Icp = 12e-6 from(0:1.0); 

  parameter real lfpfl = 0.0 from [0:1.0); 
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  real kd; 

  real lfpwh; 

  real lfpwhmin; 

 

  integer file_ptr1; 

 

analog begin 

 

  @(initial_step) begin 

  file_ptr1 = $fopen("icp.txt"); 

  end 

 

  $fwrite(file_ptr1, "%e", Icp); 

 

  kd = Icp/(2*3.14); 

 

  //lookup table for pfd_cp noise 

  lfpwh = $table_model(Icp, "pfd_data.tbl","1E"); 

  

  //lookup table for pfd variation 

  lfpwhmin = $table_model(lfpwh, "pfdmin_data.tbl", "3L"); 

 

  V(out) <+ kd*(V(in1) - V(in2)) 

   + flicker_noise(lfpfl, 1, "pfd_flicker") 

   + white_noise(lfpwhmin, "pfd_white"); 

 

  $fclose(file_ptr1); 

 

end 

endmodule 

 

Listing C.5: Verilog-A PFD/CP minimum variation listing 

 

`include "constants.vams" 

`include "disciplines.vams" 

 

 

module pfd_max(in1, in2, out); 

  inout in1, in2, out; 

  electrical in1, in2, out; 

 

  parameter real Icp = 12e-6 from(0:1.0); 

  parameter real lfpfl = 0.0 from [0:1.0); 

 

  real kd; 

  real lfpwh; 

  real lfpwhmax; 

 

  integer file_ptr1; 

 

analog begin 

 

  @(initial_step) begin 

  file_ptr1 = $fopen("icp.txt"); 

  end 

 

  $fwrite(file_ptr1, "%e", Icp); 

 

  kd = Icp/(2*3.14); 
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  //lookup table for pfd_cp noise 

  lfpwh = $table_model(Icp, "pfd_data.tbl","1E"); 

  

  //lookup table for pfd variation for maximum 

  lfpwhmax = $table_model(lfpwh, "pfdmax_data.tbl", "3L"); 

 

  V(out) <+ kd*(V(in1) - V(in2)) 

   + flicker_noise(lfpfl, 1, "pfd_flicker") 

   + white_noise(lfpwhmax, "pfd_white"); 

 

   $fclose(file_ptr1); 

 

end 

endmodule 

 

 

Listing C.6: Verilog-A PFD/CP maximum variation listing 

 

`include "constants.vams" 

`include "disciplines.vams" 

 

module PLL_top(ref_in, pll_out); 

 

inout ref_in, pll_out; 

electrical ref_in, pll_out; 

 

  parameter real Icp = 10e-6 from(0:1.0); 

  parameter real lfpfl = 0.0 from [0:1.0); 

 

  parameter real C_1 = 1.0e-12 from (0:1.0e-3); 

  parameter real R_2 = 10.0e3 from (0:1M); 

  parameter real C_2 = 3.0e-12 from (0:1.0e-3); 

 

  parameter real fmin = 300e6 from (100e6:80e7); //hertz 

  parameter real fmax = 500e6 from (200e6:40e8); //hertz 

  parameter real Ivco = 13.2e-3 from (1e-3:30e-3);  

  parameter real lfwh = 0.0 from [0:1.0); 

 

  parameter real ratio = 1 from (0:inf); 

 

 

pfd # (.Icp(Icp), .lfpfl(lfpfl)) 

pfd1(ref_in, divout, filin); 

loopfilter # (.C_1(C_1), .R_2(R_2), .C_2(C_2)) 

loopfilter1(filin, vcoin); 

vco # (.fmin(fmin), .fmax(fmax), .Ivco(Ivco), .lfwh(lfwh)) 

vco1(vcoin, pll_out); 

div # (.ratio(ratio)) 

divider1(pll_out, divout); 

 

endmodule 

 

Listing C.7: Verilog-A PLL top level listing 

 


