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ABSTRACT

Thickness optimization can be considered as a case of sizing optimization for plane structures. It can
also be used as an intermediate step for topology problems, i.e. we can eliminate the parts where the
thickness tends to be zero. This paper is concerned with the case of planestress structures coupled with
the finite element method. The aim is to present a formulation of this problem as a case of second-order
cone programming which is a standard form of mathematical programming. The advantage is that,
on the one hand, all that the engineer has to do is to compute elemental data, and on the other, large
discretized structures can be optimized accurately due to the efficiency of the proposed formulation.
Different types of elements regarding the thickness field are considered.

1 INTRODUCTION

Thickness optimization of a structure means the arrangement of a thickness field in order to get some
optimal result which can be minimum weight, compliance or stress and strain related quantities. A
review of developments on this topic is given in the book of Bendsøe [1]. A major issue when thickness
optimization is coupled with the finite element method is that large nonlinear optimization problems
have to be solved. In this paper we consider the minimum compliance method and the problem is
formulated as a case of second-order cone programming (SOCP) in a similarway to truss optimization
[2]. The advantage of this formulation is that various solvers exist (both free and commercial), hence
an engineer has only to compute the element related quantities and solve the arising problem by using
an efficient solver. In addition to our recent work [3], elements with both continuous and discontinuous
thickness fields are considered.
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2 FORMULATION AS AN SOCP PROBLEM

Consider a plane stress stress structure. The goal is, for a given volume V , to find a thickness field
h(x, y) such that the compliance (i.e., the work of the applied loads) is a minimum. Taking intoaccount
the principle of complementary energy and that this energy is half the compliance, the minimization
problem for a continuum takes the form

min 1

2

∫
V

σ
TC−1

σh dA
s.t. σ ∈ Seq∫

A
h dA = V

h(x, y) ≥ 0

(1)

where the first integral in the objective represents the complementary energy and the integral in the
constraints represents the total volume. AlsoC is material compliance matrix andSeq is the set of
the stresses which can carry the loads. Now if the structure is discretized into NE displacement finite
elements the problem takes the form

min 1

2

NE∑
i=1

∫
Ae

σ
TC−1

σh dAi

s.t.
NE∑
i=1

∫
Ae

HT
σh dAi = p

NE∑
i=1

∫
Ae

h dAi = V

h(x, y) ≥ 0

(2)

whereH is the strain displacement matrix andp is the load vector. Assume now that we use in total
NG number of Gauss points. Then the integrals in (2) become summations as

min 1

2

NG∑
i=1

σ
T
i C−1

σihiwi

s.t.
NG∑
i=1

HT
i σiwihi = p

NG∑
i=1

hiwi = V

hi ≥ 0

(3)

wherewi is the weight associated with theith Gauss point and the determinant of the Jacobian between
the global coordinates and the physical ones. If we set

ξi = wihi, σ̄i = σihiwi, C−1 = QTQ and ri =
‖Qσ̄‖2

2ξi

(4)
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and transform the stresses at theith Gauss point to a new variablezi = Qσ̄i the problem takes the form

min

NG∑
i=1

ri

s.t. 2riξi ≥ ‖zi‖
2 ∀i ∈ {1, . . . , NG}

ri, ξi ≥ 0 ∀i ∈ {1, . . . , NG}
NG∑
i=1

(HT
i Q−1)zi = p

NG∑
i=1

ξi = V .

(5)

The first constraint together with the non-negativity ofξi, ri define a rotated quadratic cone and, there-
fore, the above problem is an SOCP case. Consequently, all we have to do is to construct the matrix
data of the above problem and solve it by an efficient SOCP algorithm. Note that regarding thickness,
several other different schemes (e.g. continuous thickness) could beemployed. However the technique
for the formulation as an SOCP problem would be the same.

3 NUMERICAL APPLICATION

Figure 1: (a) Notation for the structure (b) Optimal layout based on the truss optimization problem [3]

We performed thickness optimization for the cantilever beam shown in Fig. 1a inorder to illustrate
the procedure in section 2. The SOCP optimizer MOSEK [4] was used for thesolution of the numer-
ical optimization problems and GiD [5] was used as pre/post processor. Two types of elements were
considered. In the first case six-node triangular elements with six Gauss points were used but nothing
was assumed regarding the thickness field. The same type of elements were considered in the second
case, however, the thickness field was continuous and linearly interpolated. Two different meshes were
applied. Each mesh consisted ofM ×N quadrants and each subdivided into four triangles. Results and
statistics are given in Table 1. We see that due to the additional constraints thesolution of problems
with continuous thickness takes significantly longer. Moreover as expected the compliance in this case
is greater (i.e. worse). The thickness variation in Fig. 2 compares favourably with the topology obtained
in a truss optimization problem [3] as shown in Fig 1b. We see that in general, thickness optimization
can give boundaries similar to the truss analogue. We also observe that although a continuous thickness
field leads to higher compliance, it produces a clearer structure. Finally it isinteresting to note that the
truss optimization problem resulted in a compliance ofW = 13.335 i.e. almost14% higher than the
lowest compliance of the thickness optimization problem.
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Table 1: Results and statistics for the numerical optimization problems. The complianceW has been
multiplied byEV/PL2. Gp means Gauss points.

Thickness evaluated at Gp Linearly interpolated thickness
MESH NE It CPU(s) W It CPU(s) W

20 × 40 3200 31 8.7 11.630 47 124 12.031
40 × 80 12800 38 48.7 11.640 45 981 11.856

Figure 2: (a) Optimal thickness (thickness evaluated at Gauss points), (b) Scaled optimal thickness
(thickness evaluated at Gauss points), (c) Optimal thickness (linearly interpolated), (d) Scaled optimal
thickness (linearly interpolated).
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