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ABSTRACT

Thickness optimization can be considered as a case of sizing optimizatiolafer gtructures. It can

also be used as an intermediate step for topology problems, i.e. we can elimaagrtdhwhere the

thickness tends to be zero. This paper is concerned with the case obplesgstructures coupled with
the finite element method. The aim is to present a formulation of this problemea® atsecond-order
cone programming which is a standard form of mathematical programming. dMaatage is that,

on the one hand, all that the engineer has to do is to compute elemental dbtm #re other, large

discretized structures can be optimized accurately due to the efficience praposed formulation.

Different types of elements regarding the thickness field are considered

1 INTRODUCTION

Thickness optimization of a structure means the arrangement of a thickelesis forder to get some
optimal result which can be minimum weight, compliance or stress and straindrejagntities. A
review of developments on this topic is given in the book of Bendsge [1]. jamissue when thickness
optimization is coupled with the finite element method is that large nonlinear optimizatimems
have to be solved. In this paper we consider the minimum compliance method expdotiiem is
formulated as a case of second-order cone programming (SOCP) in a suayi&o truss optimization
[2]. The advantage of this formulation is that various solvers exist (lreth dnd commercial), hence
an engineer has only to compute the element related quantities and solveitige@odlem by using
an efficient solver. In addition to our recent work [3], elements with botitiouous and discontinuous
thickness fields are considered.
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2 FORMULATION AS AN SOCP PROBLEM

Consider a plane stress stress structure. The goal is, for a giveme®futo find a thickness field
h(zx,y) such that the compliance (i.e., the work of the applied loads) is a minimum. Takingdoooint
the principle of complementary energy and that this energy is half the comg)itlme minimization
problem for a continuum takes the form

min %fv ocTCloh dA

S.t. o c Seq
[ hdA=V @)
h(z,y) =0

where the first integral in the objective represents the complementargyeard the integral in the
constraints represents the total volume. ASas material compliance matrix anskq is the set of
the stresses which can carry the loads. Now if the structure is discretizel i displacement finite
elements the problem takes the form

NE

min 12/ ol'Clah dA;
D) )
=1/ Ae

st. Y / H'oh dA, =p @)

whereH is the strain displacement matrix apds the load vector. Assume now that we use in total
NG number of Gauss points. Then the integrals in (2) become summations as

NG

1 T ~—1

min 55 o; C  ohw;
i=1

NG
T
s.t. ZZ; Hi ow;h;, =p (3)
NG
=1
hi >0

wherew; is the weight associated with thi#ln Gauss point and the determinant of the Jacobian between
the global coordinates and the physical ones. If we set

a2
_laz| @

& =wihi, &i=ohw, C'=Q'Q and r 2%,
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and transform the stresses at itteGauss point to a new variabte = Qa; the problem takes the form

NG
min Zri
i=1
s.t. 27’1‘& > HZZH2 Vi € {1, e ,NG}
ri,& >0 \V/lE{l,,NG}
NG (5)

> H/Q Nzi=p

g
Z&' =V.
i—1

The first constraint together with the non-negativityofr; define a rotated quadratic cone and, there-
fore, the above problem is an SOCP case. Consequently, all we haeetdalconstruct the matrix
data of the above problem and solve it by an efficient SOCP algorithm. Natteafparding thickness,
several other different schemes (e.g. continuous thickness) coglshpleyed. However the technique
for the formulation as an SOCP problem would be the same.

3 NUMERICAL APPLICATION
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Figure 1: (a) Notation for the structure (b) Optimal layout based on the tpsmization problem [3]

We performed thickness optimization for the cantilever beam shown in Fig. @eder to illustrate
the procedure in section 2. The SOCP optimizer MOSEK [4] was used faailnéion of the numer-
ical optimization problems and GiD [5] was used as pre/post processortypes of elements were
considered. In the first case six-node triangular elements with six Gaurgs prere used but nothing
was assumed regarding the thickness field. The same type of elementsowsideced in the second
case, however, the thickness field was continuous and linearly interpolate different meshes were
applied. Each mesh consistedMdfx N quadrants and each subdivided into four triangles. Results and
statistics are given in Table 1. We see that due to the additional constrairgs|tiien of problems
with continuous thickness takes significantly longer. Moreover as exgphdmecompliance in this case
is greater (i.e. worse). The thickness variation in Fig. 2 compares fablyuwith the topology obtained
in a truss optimization problem [3] as shown in Fig 1b. We see that in gendakinéss optimization
can give boundaries similar to the truss analogue. We also observe tloaighilth continuous thickness
field leads to higher compliance, it produces a clearer structure. Finallintelgsting to note that the
truss optimization problem resulted in a compliancéiof= 13.335 i.e. almosti4% higher than the
lowest compliance of the thickness optimization problem.
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Table 1: Results and statistics for the numerical optimization problems. The coo®lia has been
multiplied by EV/PL?. Gp means Gauss points.

Thickness evaluated at Gp Linearly interpolated thickness
MESH NE It CPU(s) w It CPU(s) w
20 x 40 3200 31 8.7 11.630 47 124 12.031
40 x 80 12800 38 48.7 11.640 45 981 11.856

thickness thickness

A416.78
37047 0.385889
32416 077778
277 85 066667
231.54 0.55556
185.24 0.44444
138.93 0.33333
32618 | 0.22222
- 46.309 i RRERR
-3.7904e-08 - 3.7904e-08
(@) (b)
nodal thickness nodal thickness
37.401
33.245 0.88889
29.09 077778
24.934 0.GREET
20.778 0.55556
16.623 044444
12 467 0.33333
1 8.3113 ' 0.22222
L 41557 RERER
.7.0791e-03 -7.0791e-03
(© (d)

Figure 2: (a) Optimal thickness (thickness evaluated at Gauss pointsycéted optimal thickness
(thickness evaluated at Gauss points), (c) Optimal thickness (linearlpatééed), (d) Scaled optimal
thickness (linearly interpolated).
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