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Abstract

Successful start-up firms make a valuable contribution to economic growth and development.
Models that provide insight into the management of start-up firms are therefore important. We
consider the problem of managing inventory and production capacity in a start-up manufacturing
firm and argue that for such firms the objective of maximising the probability of the firm
surviving is more appropriate than the more common objective of maximising profit. Using
Markov decision process models, we characterise and compare the form of optimal policies under
the two objectives. This analysis shows the importance of coordination in the management of
inventory and production capacity. The analysis also reveals that a start-up firm seeking to
maximise its chance of survival will often choose to keep production capacity significantly below
the profit maximising level for a considerable time. This insight helps us to explain the seemingly
cautious policies adopted by a real start-up manufacturing firm.

Keywords: start-up firms; inventory; production ramp-up; stochastic modelling; dynamic
programming

1 Introduction

Start-up firms make an important contribution to the success of a country’s economy by creating
jobs and increasing competition and innovation. However such firms face a high risk of failure
during the start-up phase. Hence there is a strong need for models that provide insight into
the problems facing start-up firms and help to identify strategies that ensure the long-term
survival of such firms. Two decisions that have a significant effect on the chance of long-term
survival of a start-up manufacturing firm are the choice of initial production capacity and the
subsequent production ramp-up (i.e. the increase of production capacity from its initial level).
This paper investigates the characteristics of optimal policies for start-up manufacturing firms by
modelling their production capacity decisions and inventory strategy during the start-up phase.
Our model is based on the problem faced by a real start-up manufacturing firm and we explain
how the model has provided important insights about this problem. The paper also examines
how optimal strategies for start-up manufacturing firms differ from those for well-established
firms.

Management science models of manufacturing problems almost always include the objective
of optimising the cost or profit to the firm [Silver et al., 1998]. Archibald et al. [2002] suggest that
such models are not suitable for start-up firms whose available capital is generally limited. They
suggest that start-up firms should focus on maximising the probability of survival rather than
optimising cost or profit. In this paper we develop a model of a start-up manufacturing firm that
extends their model to include capacity planning decisions as well as inventory strategy. In the
model a firm is said to have failed if, in any period, it has insufficient capital, including possible
overdrafts and loans, available to meet its overhead costs. The overhead costs will typically
include the recurrent cost of finance, employee wages, equipment lease charges and rent for
premises. Due to the limited available capital, the optimal survival policy for a start-up firm
may invest less capital in production capacity and inventory and so keep more capital in reserve
to cover overhead costs in cases of low demand. In our model of a well-established manufacturing



firm there is no constraint on available capital and so this will not be a consideration. We might
therefore expect the optimal strategy for a start-up firm to be more cautious than that for a
well-established firm.

There is little research on joint production and financial decisions for start-up manufacturing
firms. Our previous work [Archibald et al., 2002, Possani et al., 2003, Thomas et al., 2003] uses
a similar approach to that of this paper, but concentrates on inventory strategy assuming fixed
production capacity for the entire lifetime of the firm. Betts and Johnston [2001] also focus on
the inventory strategy of a manufacturing firm with limited capital. They compare the optimal
strategy for their model with those of traditional modelling approaches to inventory management
in a deterministic setting. Buzacott and Zhang [1998] use a linear programming model of
a manufacturing firm to investigate inventory and borrowing strategies that maximise profit
subject to a borrowing constraint. Unlike the problem analysed in this paper, the production
capacity is fixed and the future demand for the manufactured product is assumed to be known.
Cantamessa and Valentini [2000] use mixed-integer linear programming to find the optimal
initial production capacity and inventory strategy for a manufacturing firm. Their model differs
significantly from ours because it does not allow the firm any control over increases in production
capacity. Their model also seeks to maximise profit, assumes future demand is known and
assumes infinite borrowing. Terwiesch and Bohn [2001] develop a dynamic programming model
of production ramp-up in which the firm can choose to lower production capacity in the short-
term in order to free up time for training and so increase future production capacity. Unlike our
model, the objective is to maximise profit and there is no capital constraint or uncertainty.

In section 2 we develop Markov decision process models of start-up and well-established
manufacturing firms who must make decisions about capital investment in inventory and
production capacity in the face of uncertain demand. In section 3 we derive properties of
the optimal strategy for a start-up manufacturing firm with the objective of maximising its
survival probability. In section 4 we characterise the optimal strategy for a well-established
manufacturing firm under the objective of maximising profit. In section 5 we compare the forms
of these optimal strategies. In section 6 we describe the application of the model to a situation
facing a real start-up manufacturing firm. Finally in section 7 we present our conclusions.

2 Models of manufacturing firms

Consider a firm selling, at price S, one type of product that it manufactures to order from
a component (or group of components) it purchases at cost C. The lead time for ordering
components is L, periods. The demand for the product each period is an independent identically
distributed random variable. The maximum possible production capacity, and hence the
maximum demand that can be satisfied in a period, is M. For 0 < d < M, let p(d) denote the
probability that there is a demand for d items in a period and let p(M) denote the probability
that there is a demand for at least M items in a period. The production capacity is determined
by equipment, number of staff and staff training. Any change to the production capacity (up
or down) incurs a one-off charge of R per unit of production capacity and takes effect after L,
periods. Each period the firm has to meet a fixed overhead cost H plus a variable overhead
cost of r per unit of production capacity. The one-off charge R covers, for example, the costs of
acquiring or disposing of equipment and reorganising the workforce, while the recurrent cost r
models changes in the cost of finance, labour etc. We will consider Ly = L, = 0and Ly = L, = 1.

It is assumed that for an established firm, there is no practical constraint on the amount of
capital available and that the objective is to maximise the long-run average profit per period.
As the firm manufactures the product to order, an inventory of manufactured products will
never be carried over from one period into the next. This situation may arise if, for example,
storage of the product is impractical or the exact specification of the product is determined by
the customer. Although there is no direct inventory cost in the model, it is assumed that the



cost of capital is included in the overhead cost. In an earlier paper [Possani et al., 2003], the
authors show that introducing a direct inventory cost to a simpler model does not alter the
results, only the analysis. Hence the state of the firm at the start of a period is completely
described by the number of components in stock and the production capacity. Each period the
firm must decide the order quantity, k, and the new production capacity, j'. Standard results
for average reward Markov decision processes [Puterman, 1994] can be applied as follows. Let
g be the maximum average reward per period and let v(7, j) be the bias term of starting with i
i+ kif Lg=0

iitL,—1

components in stock and j units of production capacity. Define a(i, k) = {

- _
c(4,j) = ‘; i}f 1{; T:_ 10. The optimality equation of the dynamic programming model of the firm

under the above assumptions is as follows.

M
g+ v(i,j) = max {Zpu) (min(a(i, k), (G, /), d)S — kC ~ |j ~ 7R
’ d=0

(1)
— H = c(j,§')r + (i + k — min(a(i, k), (j, 1), d), 1)) }

The model has finite state and action spaces (0 <@ < 2M, 0 < k,j,j" < M). Let kq(i,j) and
k,(i,j) be the optimal order quantity and new production capacity respectively.

It is assumed that a start-up firm has a limited amount of capital available and has the
objective of maximising its chance of long run survival. The state of the firm at the start of
a period is described by the number of components in stock, the production capacity and the
amount of available capital. Each period the firm must decide the order quantity, k£, and the
new production capacity, j'. Let ¢(n, 4, j, ) be the maximum probability that the firm survives
for n periods given it currently has ¢ components in stock, j units of production capacity and
2 units of available capital. Assuming that all revenues and costs can be expressed as multiples
of a common unit, the problem can be formulated as a finite horizon Markov decision process
with a countable state space and finite action space [Puterman, 1994]. For n > 0 and x > 0, the
optimality equation of the dynamic programming model of the firm under the above assumptions
is as follows.

)

M
Q(n7i7j7 l') = ma/x {Zp(d)q<n - 172 + k— min<a(i7 ]{?),C(j,jl),d),j/,
R @
T+ min(a(i7k)7c(j7j/)>d)s —kC — |.7 _j/‘R o C(j,j/)?”)}

We assume that the firm survives an interval of n periods if and only if the amount of available
capital is non-negative at the start and end of every period in the interval. This is reflected
in the boundary conditions ¢(0,4,7,2) = 1 if x > 0 and ¢(n,7,j,2) = 0 if z < 0. We are
particularly interested in the nh_)rgo q(n,1,7,x) which can be interpreted as the probability that
the firm survives in the long-run given that it currently has ¢ components in stock, j units of
production capacity and x units of available capital.

3 Properties of the survival model for a start-up firm

In this section we establish some important properties of the optimal survival strategy and
the maximum survival probability for a start-up manufacturing firm under the assumptions of
model (2) above. We first show that the survival probability ¢(n, 4, j, z) is monotonic in n, i and
x but, due to the cost of removing or keeping additional capacity, not j.



Lemma 1
(i) g(n+ 1,i,j,a:) —q(n,i,j,z) <0, ie. g(n,i,7,x) is non-increasing in n.
) q(n,i,j, ) is non-decreasing in 1.

(iii) (n i, 7, ) is non-decreasing in x.
) a(

q(n,i,j,x) is non-monotonic in j.

Proof

It is easy to see that properties (i), (ii) and (iii) hold for n = 0. Assume these properties hold
for n and use max;{a;} — max;{b;} < max;{a; — b;} to show that:
z) <

M
{2p<d> <q(n 1,1+ k= min(a(i, k), (G.5). ).
k. d=0
€ +min(a(ivk)vc(jaj,)ad)s —kC — |j _]/|R —H - C(j,j/)T’) - q(n,z +k—

min(a(i. k). (i, ). ), 5",z + min(a(i, k), e(j. /), d)S — kC —|j - |k — H  c(j j')r)) }
< 0 by inductive hypothesis for (i).

(1) q(n+ Z,i,j,ﬂf) - q(n+ 17i7]7

a(i,k)
(i) g(n -+ 1,1,4,0) — gl + Li + 1,j2) < m {zp ((n,z'+k—min<c<j,j'>,d>,j',
0
H —

x—l—mln(c(],]'),d)S— kC — |j _.7 |R C(]v]) ) - q(n72+ 1+k —min(c(j,j’),d),

M

d=a(i+1,k)

min(a(i,k),c(j,j’)),j’,x +m1n(a(z,k),c(j,j’))5 —kC — ‘J _]/|R —H - C(j,j/)T) -
g(n.i+1+k = min(a(i +1,k),¢(j, 7)), 5, @ + min(a(i + 1,k), c(j, '))S — kC

j—J|R—H = c(j,j')r)

< 0 by inductive hypothesis for (ii) and (iii).

(iii) Q(n+1>i7j7 )_q(n+1717]7x+y {Zp < (nai+k_min(a(ivk)ac(jaj,)vd)a

7 + min(a(i, k), (G, '), d)S — kC |J —JIR= H = (i) — a{ni+ k-
min(a(i,k),c(j,j’),d),j’,x+ Yy +min(a(i7k)7c(j7j/)7d)s —kC — |.7 _j,‘R - H -

c(j,j’)r)) } < 0 by inductive hypothesis for (iii).

(iv) The fact that g(n,i,j, ) is non-monotonic in j is verified by the following examples.
Assume that H > S > r, R,r > 0 and p(0),p(1) > 0.

From state (1,1,0, H+4r—.5), it is impossible to survive if the demand in the next period is
Oor 1. Hence ¢(1,1,0, H+r—S) < 1—p(0) —p(1). However the decisions k = 0 and j' = 1
ensure survival from state (1,1,1, H+r—.S) provided the demand in the next period is not
0. Hence ¢(1,1,1, H4+r—S) > 1—p(0). Therefore ¢(1,1,1, H+r—S) > ¢(1,1,0, H+r—>5).
The decisions & = 0 and j/ = 0 ensure survival from state (1,0,0, H) regardless of the
demand in the next period. Hence ¢(1,0,0, H) = 1. However from state (1,0,1, H), it is
impossible to survive if the demand in the next period is 0. Hence ¢(1,0,1, H) < 1—p(0).

Therefore ¢(1,0,1, H) < ¢(1,0,0, H).
o



We are now in a position to describe some of the properties of the long-run survival
probability of a start-up manufacturing firm.

Corollary 1
(i) q(i,j,2) = T}Lrgo q(n, 1,7, x) exists.
(ii) q(i,7, ) is non-decreasing in i.

(iii) q(i,7, ) is non-decreasing in x.

Proof

(i) Since q(n,1,j,x) is a probability, 0 < ¢(n,,j,z) < 1. Lemma 1 (i) shows that ¢(n,1,j, z)
is non-increasing in n. The result follows from the fact that bounded monotonic sequences
converge.

(ii) & (iii) These follow immediately by taking limits in parts (ii) and (iii) of Lemma 1.
o

We now describe conditions that are sufficient to ensure that the long-run survival probability
of the firm is greater than zero. We also construct policies that provide the firm with a chance
of long-run survival. We show that for any production capacity j satisfying the property that
the expected revenue from sales each period (assuming unlimited inventory) is greater than
the overhead costs each period, the policy of ordering up to 2j items and keeping production
capacity at j units gives the firm a positive chance of survival.

Theorem 1
M
Assume that 37 such that (S —C) Z p(d) min(d, 7) > H + jr, since otherwise the firm can never
d=0
be profitable in the long run. For all inventory levels ¢ and production capacities j, ¢(i,j,z) > 0
for some finite .

Proof

Consider the policy of ordering up to 27 items each period and keeping the capacity fixed at j.
In the first period, the order cost is at most 2jC and the overhead cost is at most H + Mr.
These costs arise if the initial inventory level is zero, the initial production capacity is M and
L, = 1. Changing the production capacity to j initially will cost at most max(j, M —j)R. Hence
27C + max(7, M — j)R is sufficient capital to initiate the policy and a further H + Mr units of
capital are enough to ensure survival in the first period. After the first period, orders are only
placed to replace items that have been sold and so can be financed from sales revenue. Also the
overhead cost is fixed and equal to H + jr. Now the argument of Archibald et al. [2002] can be
used to show that if the initial capital is at least 27C' + max(j, M — j)R+ H + Mr, q(i,j,z) > 0
for all 7 and j.
o
Next we examine circumstances in which a start-up firm would prefer to have available capital
rather than a greater investment in inventory or production capacity. When the lead times
for orders and changes to production capacity are both zero, these results are straightforward
because available capital can be exchanged immediately for inventory or production capacity.
However when the lead times are non-zero and inventory or production capacity is scarce, the
firm must consider the possibility of lost sales.



Lemma 2

(i)

If L, =L, =0, q(i,j,x +C) > q(i + 1,5, z).

(i) If Ly =L, =0, q(i, 4,2+ R) > q(4,j + 1, z).

(iii) ¥ Ly =L, =1and i > j, q(i,j,2 + C) > q(i + 1, j,x).

(iv) f Ly=L,=1andi<j, q(i,j,z +S5) > q(i + 1,7, ).

(v) f Ly=L,=1and i <j, q(i,j,c+R—r) >q(i,j+1,2).
(i) f Ly=L,=1andi>j, q(i,j,c+S+R—r) >q(i,j+1,z).
Proof

(i)

(iii)

Suppose the optimal decisions in state (i + 1,j,z) are to order k items and to set the
production capacity to j’ units. Consider the decisions to order k + 1 items and to set the
production capacity to j’ units in state (i, 7,2 + C). Since these are feasible decisions in
this state,

M
a(i, g, +C) = Y p(d)g(i+k+1 = min(i +k +1,5,d), 7,
d=0

p4minGi+k+1,5,d)S = (k+1-1)C = |j = j/|R~ H - j'r) = q(i +1,j,2).

Suppose the optimal decisions in state (i,j 4+ 1,x) are to order k items and to set the
production capacity to j” units. Since these are feasible decisions in state (i, 7,z + R),

M
g, jw + R) > > p(d)q(i + k — min(i + &, j',d), 7,
d=0
4 min(i+k,j',d)S — kC + (1= |j = f)R— H = j'r) > q(i,j + 1,7)

where the second inequality follows from Corollary 1 (iii) and the fact that |j — j/| <
L+ 7 +1—3'

Suppose the optimal decisions in state (i + 1,j,z) are to order k items and to set the
production capacity to 5’ units. Consider the decisions to order k + 1 items and to set the
production capacity to j' units in state (i,j,x + C). Since these are feasible decisions in
this state,

M
a6,z +C) 2 Y pld)g(i+ k+ 1 — min(j,d). 7,

p
d=0
z 4+ min(j,d)S — (k+1-1)C —|j —j/\R—H—jT’) =q(i+1,j,2).

First prove by induction that g(n,i,j,z +S) > q(n,i+ 1,7,x) and then the result follows
by taking the limit as n — oco. It is easy to see that ¢(0,4,j,2 +S) > ¢(0,i + 1, j, x).
Assume the result holds for n — 1. Suppose the optimal decisions in state (n,i + 1, j, z)
are to order k items and to set the production capacity to 7’ units. Since these are feasible
decisions in state (n,i,j,z + 9),



a(ni, gy +9) > > p(da(n = Li+k—d,j,z+(d+1)S —kC —|j - j'|R— H - jr)
d=0

M
+—X:M@dn—LkJ&w+@+US—kC—U—jﬂ%—H—jﬂ
d=i+1

> Zp(d)q(n—1,i+k:+1—d,j’,:z:+dS—kC—\j—j’|R—H—jr>
d=0

M
d=i+1

where the second inequality follows from the inductive hypothesis.

(v) Suppose the optimal decisions in state (i,j + 1,x) are to order k items and to set the
production capacity to j' units. Since these are feasible decisions in state (i,j,x + R — ),

M
ﬂ@$w+R—m>z}:m@¢r+k—mmaﬂxf
d=0
-+ min(i,d)S — kC+ (1= |j = )R — H = (j + 1)r) > q(i,j +1,2)

where the second inequality follows from Corollary 1 (iii) and the fact that |j — j/| <
1+1]j+1-7.

(vi) Suppose the optimal decisions in state (i,j + 1,z) are to order k items and to set the
production capacity to j’ units. Since these are feasible decisions in state (i, j, x+S+R—r),

q(Z,j,I+S+R—T)

J
> p(d)g(i+k—d,j w4+ (d+1)S = kC + (1~ |j = jNR~H — (j+1)r)
d=0

M
+ > p(d)q(z‘+k—j,j’,:c+(j+1)5—k0+<1—Ij—j’l)R—H—(j+1)r)
d=j+1

J
2Zp(d)q(i+k—d,j’,x+d$—k0—]j—i—l—j’\R—H—(j—i—l)r)
d=0

M
+ Y pdg(itk=G+1),5 e+ G+ DS —kC—|j+1-F|R—H—(j+1)r)
d=j+1

= Q(Z’vj + 17'7;)

where the second inequality follows from Corollary 1 parts (ii) and (iii), and the fact that
= <1+li+1=7 .

Lemma 3 provides insight about the structure of an optimal survival policy when the lead
times for orders and changes to production capacity are both zero. We show that there exists
an optimal survival policy that never places an order that would raise the inventory level above
the production capacity for the period. This policy also has the property that in every period
in which the production capacity is raised, the inventory level plus the order quantity for the
period is at least as great as the new production capacity. Further if it is optimal to raise the
production capacity to a level higher than the current inventory level, then it is optimal to order
up to the new production capacity. When the lead times for orders and changes to production



capacity are non-zero, less can be said about the structure of the optimal survival policy due
to the uncertain demand during the lead time. Lemma 4 establishes properties of the optimal
survival policy for the case in which the lead times are both one period. These results are
considerably weaker than in the case of zero lead times.

Lemma 3

If Ly = L, = 0 then in state (i,j,z) there exist optimal ordering and production capacity
decisions k, 7’ satisfying:

(i) either k=0ori+k <j’;
(ii) either j/ < jori+k > j'.

Proof

For state (i,7,x), let k be the smallest optimal order quantity and j' be the smallest optimal
production capacity for order quantity k.

(i) Suppose that k > 0 and i + k > j'. Let 6 = min(k,i + k — j'). The decision to order &
fewer items in state (i, j, z) is feasible but not optimal, so

q(i, j,x Zp (i+/€—(5—min(d,j'),j’
x—i—mm(d,j )S—(k—é)C—\j—j’]R—H—j’r)
M

> 3" p(d)g(i+ k — min(d, ), 7,

x +min(d,j)S —kC —|j —j'|R— H —j’r) by Lemma 2 (i)
=q(i, j,x)
This is a contradiction, so either k =0 or ¢ + k < 5.
(ii) Suppose that j' > j and i + k < j'. Let 6 = min(j' — j, 7' — i — k). The decision to set the

production capacity to j° — § units (with order quantity k) in state (7,7, x) is feasible but
not optimal, so

q(i, 7, Zp (i—i—k—min(d,i—i—k‘),j’—(5,:B+min(d,@'+k)5’
_kc_(]’_é—j)R—H—(j’—é)r) since j' —d >i+kand jy—6>j
> f:p(d)q(i +k —min(d, i + k), j’
7+ min(d,i + k)S — kC — (j' = j)R — H — (' = 6)r) by Lemma 2 (ii)
> %p(d}q(i + k —min(d,i + k), j’
d=0

z + min(d,i + k)S — kC — (' —j)R— H — j’r) by Lemma 1 (iii)
= Q(%J? Z’)

This is a contradiction, so either j' < j or i+ k > j'.



Lemma 4

If Ly = L, = 1 then in state (i,7,x) there exist optimal ordering and production capacity
decisions k, j’ satisfying:

(i) either k =0 or i + k < min(i, j) + j';

(ii) either j/ <jori+k>j'.

Proof

For state (i,7,z), let k be the smallest optimal order quantity and j’ be the smallest optimal
production capacity for order quantity k.

(i) Suppose that k£ > 0 and ¢ 4+ k > min(é, j) + 5. Let 6 = min(k,7 + k —min(s, j) — j'). The
decision to order ¢ fewer items in state (i, 7, ) is feasible but not optimal, so

q(i,j,x >Zp (i+k757min(i,d,j),j'
x—l—mln(z,d,])S— (k=8)C ~|j - j'|R—H— jr)
M

Z Zp(d)q(l+ k _mln(lvdv.])a.jlvx+m1n(7'7d7.7)s —kC — ’.7 _j,‘R_ H —jT)
=0

by Lemma 2 (iii) since i + k — min(i, d, j) > i + k — min(4, j) > 7'
= Q(i7j7x)

This is a contradiction, so either k =0 or i + k < min(s, j) + j'.

(ii) Suppose that j' > j and i + k < j'. Let 6 = min(j’ — j, 5/ — i — k). The decision to set the
production capacity to j° — ¢ units (with order quantity k) in state (i, j, ) is feasible but
not optimal, so

q(i g, x Zp (z+k min(i,d, j),j — 6,x + min(i,d, j)S
—k‘C—(] —5—j)R—H—jr) since 7' — § > j
M

b_y Lemma 2 (v) since i + k — min(i,d,j) <i+k < j
> q(1,j,x) by Lemma 1 (iii)

This is a contradiction, so either j' < jor i+ k > j'.
o

Theorem 2 demonstrates that a start-up manufacturing firm cannot afford to be too
conservative with its ordering and production capacity decisions. We show that when the firm
has no components in stock and zero production capacity, there is a minimum level to which the
firm must raise the inventory and production capacity in order to have any chance of long-run
survival.

Theorem 2

Define d to be the largest integer less than H/(S — C —r). If the optimal decisions in state
(0,0,z) order k < d items or set the production capacity to j' < d units, then ¢(0,0,Z) = 0
VI < .



Proof

Note that S — C —r > 0, since otherwise the firm can never be profitable in the long run. Let
e = H—(S—C —r)d. Suppose there are no optimal decisions for state (0,0, ) that order more
than d items and set the production capacity to more than d units.

Case 1: Ly=L,=0

For some order quantity k& and production capacity j’ satisfying min(k, j') < d:

M
q(0,0,2) = > p(d)q(k —min(k,j',d), j’, x +min(k, 7, d)S — kC — H = j'R - j'r)

M

< Y p(d)g(0,0, 3+ min(k, j',d)($ — C) — H — j'r) by Lemma 2 (i) & (ii)
d=0

< (0,0, +min(k, j')(S — C ~r) — H) by Lemma 1 (iii)

< q(OO:E+dS C—r)— )byLemmal(iii)
= ¢(0,0,z —¢)

Assume the optimal decisions in state (0,0,z — ¢) are to order k > d items and set the
production capacity to j' > d units.

M
q(0,0,2) > Zp(d)q(k: — min(k, i/, d), 7', « + min(k, j',d)S — kC — H — j'R — j’r)

M
> 3 p(d)g(k - min(k, 5, d), j', 2 — € + min(k, ', d)S — kC — H - j'R — j'r)
= Q(07 07 xr — 6)

This contradicts ¢(0,0,z) < ¢(0,0,z — €), so the optimal decisions in state (0,0, — €) must
either order k < d or set the production capacity to j' < d units.

Repeating this argument shows that ¢(0,0,z—¢€) < ¢(0,0,2—2¢) < ... <
y < 0. Hence ¢(0,0,2) = 0 and Lemma 2 (iii) implies that q(O 0,2) = 0 V:E
Case 2: Ly=L, =1

For some order quantity k and production capacity j’ satisfying min(k, j/) < d:

q(O 0,z —y) where
<z

q(0,0, )

(k j’x—kC—H—j/R)

< q(mln (k,5"),4, 2 —min(k, jYC — H — j R) by Lemma 2 (iii)
< q(O J's @+ min(k j)(S—C)—H—j’R) by Lemma 2 (iv)
< q(O 0,z + min(k, j)(S — O) —H—j/r)) by Lemma 2 (v)

< q(OO:E—I—mlnk])(S—C—r)—H) by Lemma 1 (iii)

< ¢(0,0,2+d(S—C~r)~ H) by Lemma 1 (i)

= ¢(0,0,z —¢)

Assume the optimal decisions in state (0,0, — €) are to order k > d items and set the
production capacity to j’ > d units.

q(0,0, ) >q(k‘,j',x—k‘C—H—j’R> 2q<k,j’,x—e—kC—H—j’R) :q<k,j',x—e)
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This contradicts ¢(0,0,z) < ¢(0,0,z — €), so the optimal decisions in state (0,0,z — €) must
either order k < d or set the production capacity to j' < d units.

Repeating this argument shows that ¢(0,0,z—¢€) < ¢(0,0,2—2¢) < ... <
y < 0. Hence ¢(0,0,z) = 0 and Lemma 2 (iii) implies that ¢(0,0,z) = 0 Vz

q(0,0, z —y) where
<.
o

Corollary 2

To have any chance of survival a firm with zero inventory and production capacity requires
initial capital of at least:

(i) max(0,H—(d+1)(S—C—r—R),H—-M(S~C—-r—R))if Ly=L, =0
(i) H+(d+1)(C+R)ifL,=L,=1

Proof

Theorem 2 shows that the ordering and production decisions in state (0,0,2) must both be
greater than d for the firm to have any chance of survival. Therefore the largest profit that can
be made in the first period when following a policy with a non-zero chance of survival is:

(i) maxj_pp{k(S—C—r—R)—H}if Lg=L, =0

(i) —H—-(d+1)(C+R)ifL,=L,=1
Hence result.

4 Optimal strategy for a well-established firm

As discussed in section 2, we assume that the objective of an established manufacturing firm is
to maximise the long-run average profit per period. In Theorem 3 we show that this is achieved
by striking a balance between the marginal increases in the overhead costs per period and the
expected profit from sales per period as the production capacity increases.

Theorem 3

Define j* = min {d*| Z (S—C)p(d) < r}. The optimal average reward, the optimal bias terms

d>d*
and an optimal policy are given by the following.

M
9=1(8—C)Y p(d)min(j*,d) — H — j*r
d=0
iC —|j — j*|Rif Ly = L, = 0
o) =4 . Y M
’ zC—|j—]*|R—|—(]*—j)r—l—(S—C)Zp(d)rmn(z,],d)1qu:LT:1

. . . d:0
k’r(%]) :]*
b (i max(0,j* —i)if Ly =L, =0
1(57) = 3 jpax <O,min(j*,j* - i)) if Ly =L, =1

Proof

It is easy to verify by substitution that the given values for g and v(i,j) satisfy the optimality
equations for the stated policies. Now apply policy improvement [Puterman, 1994] to verify that
the policies are optimal for the two cases.

11



M
= iC — H+mgx{—|j —J|R— i =7 |R—jr+ (S — C)ml?x{z:p(d)min(i +k,j’,d)}}
J d=0

M

For i+ k < j/, Zp(d) min(i + k, j/, d) increases with k while, for i + k > j/, it is independent
d=0

of k. Hence k = min(0, ' — 7) is an optimal order quantity. Suppose j' = j* 4+ § where § > 0.

M
iC—H—[j—j"=6|R—06R— (j*+08)r+(S—C)>_ p(d)min(j* + 6,d)
d=0

M
< iC—H-—|j—j"—6R—6R—j*r+(S—0C))_ p(d) min(j*,d)
d=0
since » (S — C)p(d) < r for d* > j*
d>d*

M
< iC—H —|j =" R —j"r + (8 = C) Y_ p(d) min(j*, d) since [j — j* — 8| > |j — j*| = 4

d=0
Hence j' < j*. Suppose now j' = j* — 6 where § > 0.
M
iC—H—j—j"+6R—06R—(j*—8)r+(S—C)>_ p(d)min(j* — ,d)
d=0
M
< iC—H-—|j—j+38lR-6R—j*r+(S—C))_ p(d)min(j*,d)
d=0

since Z (S —C)p(d) > rfor d* < j*
d>d*

M
< iC—H—|j—j|R—j*r +(S = C) Y p(d) min(j*,d) since |j — j* + 8] > |j — j*| 6
d=0
Hence j/ > j* and therefore j/ must equal j*. The maximising actions, j/ = j* and k =
max (0, 7* — i), correspond to the stated policy and therefore this policy is optimal.
Case 2: Ly=L, =1

M
7] d:0

M
+ (G =r+(S-0) Zp(s) min (z + k — min(i, j,d), j', 5)) }
s=0

M
— C—H+ ("~ j)r+ (S — €)Y pld) min(i, j,d) +m§tX{ = FIR— | — R =
d=0 J

M M
. . . .. ./
+(S-0) max {dz%p(d) z%)p(s) min (z + k — min(i, j,d), j ,s) }}
= s=
Any k > 0 satisfying ¢ + k — min(4, j,d) > j' for all d maximises this expression with respect to
the order decision. This simplifies to k > 0 when¢ > j+ 5, k> j+j —iwhen j+j >i>j
and k > j when i < j. Hence k = max(0, min(j’, 5" 4+ j — 4)) is an optimal order quantity. As
i+ max(0, min(j’, 7'+ j —i)) — min(s, j,d) > j’, the optimisation with respect to j’ is exactly as

for case 1. Hence the maximising actions correspond to the stated policy. o
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5 Comparison of optimal strategies for start-up and well-
established firms

Theorem 4

Assume that L, = L, = 0 and ¢(7, j, z) is continuous and differentiable with respect to x in
the interval [X — H — M(C' + R+ r),00). The production capacity that maximises the survival
probability in state (0,0,X) is no greater than the production capacity that maximises the
expected profit.

Proof

Lemma 3 shows that there exist optimal ordering and production capacity decisions k, j' in
state (0,0, X) satisfying k = j'. Let Q7(d) be the survival probability when decisions k = j' = j
are taken in state (0,0, X) and demand d occurs. It is easy to see from the optimality equation
that Q7 (d) = q(j — min(j,d), j, X + min(j,d)S — H — j(C + R + 7“)). Ifd<j

Q(d) — Q" (d) :q(j—d,j,X—i—dS—H—j(C—l—R+r))
—q(j+1-dj+1,X+dS—H—(j+1)(C+R+7))
>q(j—d,j, X +dS—H—-j(C+R+r))
—g(j—d.j, X +dS—H—j(C+R+r)—r)) by Lemma 2 (i) & (ii
=1q,(j — d,7,&4)
for some {g € [ X +dS—H —j(C+R+r)—r,X+dS —H — j(C + R+r)] where ¢, represents

the derivative of ¢ with respect to x. This result holds because ¢ is continuous and differentiable
with respect to x in this interval. If d > j

Q(d) ~ Q7 (d) = (0.5, X +jS — H—j(C + R+ 7))
—q(O,j+1,X+(j+1)S—H—(j+1)(C+R+r))
2q<0,j,X+jS—H—j(C+R+r))
—q(O,j,X—l—jS—H—j(C—i—R—i—r)+S—C’—T) by Lemma 2 (ii)
= (r+C - 9)q;(0,7,&+1)

for some {41 € [ X +jS—H—-j(C+R+7r),X+jS—H—-jlC+R+r)+5—-C—r].
By Corollary 1 (iii), ¢(i, 7, z) is non-decreasing in z, so ¢, (i, j, #) > 0 in the intervals in which
the &; values lie. Hence the difference in the expected survival probabilities

M M
> p(@)(Q7(d) = Q7 (d)) = min {d,(0,5,&+1)) (r—(S—C) > p<d>) >0
d=0

T0<i<j+1
St d=j+1

if 7 > j* from Theorem 3. Therefore increasing the production capacity beyond the level which
maximises the expected profit does not increase the survival probability in state (0,0, X).
o
The results of numerical experiments have shown that with the exception of an interval
corresponding to low levels of capital, the maximum survival probability is continuous and
differentiable with respect to the capital available. Hence Theorem 4 suggests that for sufficiently
large levels of capital, the production capacity that maximises the survival probability is never
greater than the profit maximising production capacity.
The following example is used to demonstrate that a similar result seems to hold when the
lead times for ordering and production capacity decisions are one period. In the example, the
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Figure 1: Weekly demand distribution

maximum possible production capacity M = 12, the fixed overhead cost H = 5, the variable
overhead cost » = 1 per unit of production capacity, changes to production capacity cost R = 2
per unit, the unit cost of components C' = 3 and the unit price of the product S = 8. The
demand distribution is shown in figure 1 and is discussed further in section 6.

Figure 2 shows the maximum survival probability as a function of the capital available
when the inventory level and production capacity are 0. When the capital available is less
than 15 the firm has no chance of survival regardless of the decisions taken. For this example
H + (d 4 1)(C 4+ R) = 15, so this illustrates that the bound in Corollary 2 can be tight. The
maximum survival probability increases rapidly as the capital available increases from 15 to 35.
After this interval the increase in the maximum survival probability is more gradual. When the
capital available is greater than 68, the chance of the firm failing is less than 1 in 10,000.

These characteristics are typical of the numerical examples that we have examined. It is
interesting that there appears to be a threshold value for the capital available beyond which
the chance of survival is very good and below which the chance of survival is slim. During the
interval of rapid increase in maximum survival probability, the optimal ordering and production
capacity decisions often vary greatly and, for some cost configurations, even exceed the profit
maximising levels. Generally the survival probability is highly sensitive to the decisions taken
in these states and adopting a profit maximising strategy would be very likely to result in the
failure of the firm.

Figure 3 shows the optimal survival policy as a function of the capital available when the
inventory level and production capacity are 0. Lemma 4 shows that for all states (0,0, z) there
exists an optimal survival policy which sets the order quantity and the production capacity to
the same level. In figure 3 the solid line represents the maximum optimal level and the dotted
line represents the minimum optimal level. When the capital available is between 15 and 182
the two lines coincide, indicating a unique optimal survival policy.

For this example there is always an optimal survival policy which sets the production capacity
to a level below the optimal profit maximising production capacity, which from Theorem 3 equals
12. In other cases we have found this to be true for sufficiently large capital. This suggests that
a result similar to Theorem 4 might hold for lead times of one period.
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Figure 2: Maximum survival probability against capital available when inventory level and
production capacity are both zero
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Figure 3: Optimal survival policy against capital available when inventory level and production
capacity are both zero
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Whenever the firm has a chance of survival (i.e. the capital available is at least 15), there
exist optimal ordering and production capacity decisions greater than d+ 1= 2. The fact that
there are instances where the unique optimal survival policy sets the order quantity and the
production capacity equal to 2 illustrates that the bounds in Theorem 2 can be tight.

As the capital available increases, the optimal survival policy can be seen to pass through 5
distinct phases.

1. The capital available is insufficient to give the firm any chance of survival regardless of the
decisions taken (0 <z < 14).

2. The optimal survival policy is unique and sensitive to changes in the capital available
(15 <z <92).

3. The optimal survival policy is unique and stable at a level that is considerably lower than
the profit maximising production capacity (93 < z < 182).

4. The next period’s decisions are becoming less important to the chance of survival and the
optimal survival policy is no longer unique (183 < x < 237).

5. The next period’s decisions have no significant effect on the chance of survival and the
firm should be seeking to maximise expected profit (z > 238).

This behaviour is typical of the numerical examples we have examined.

Figure 4 shows the maximum survival probability as a function of the production capacity
when the capital available is 30 and the inventory level is 0. This demonstrates that, as shown in
Lemma 1 (iv) for the finite horizon model, the maximum survival probability is not monotonic
in the production capacity.

0.8 A

0.6

0.4 A

Maximum survival probability

0.3 A

0.2 4

0.1

0 1 2 3 4 5 6 7 8 9 10 11 12
Production capacity

Figure 4: Maximum survival probability against production capacity when capital available is
30 and inventory level is zero
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6 Application of model to a real start-up firm

Part of the motivation for developing and analysing the model in this paper was the case of a
start-up manufacturing firm whose management believed that capacity expansion was too risky
even though the firm often struggled to keep up with demand. Our aim was to investigate
whether this attitude could be explained by the objective of maximising the chance of survival.
The product manufactured by the case firm basically consists of a component housed in a
cabinet. Due to the variety of possible sizes and finishes, the firm do not keep an inventory of
products. The cabinet is made from materials that are generally readily available locally and so
are not routinely kept in inventory. The component has to be imported and, while the delivery
time is short compared to the manufacturing time, shipments are restricted to one per week.
Hence a model of this firm would have the time period as a week and the lead times for ordering
and production capacity decisions as zero (L; = L, = 0). The maximum possible production
capacity M = 12. The demand distribution, shown in figure 1, is bimodal with peaks at 0 and
10 items. This models a lumpy pattern of demand in which periods tend either to be quite good
or quite poor. The fixed overhead cost H = 4 and the variable overhead cost r = 3 per unit of
production capacity. Adjusting the production capacity costs R = 5 per unit. The firm buys
the component at unit cost C' = 9 and sells the product at unit cost S = 15. (It is assumed that
the cost of materials other than the component can be ignored.)

From Theorem 3 the profit maximising strategy is to have a production capacity of 10 and
to order-up-to 10 items. Figure 5 shows the optimal survival production capacity as a function
of the capital available when the production capacity and order quantity are both 3. In this case
the minimum optimal order quantity is always 0 while the maximum optimal order quantity
is always 3 less than the maximum optimal production capacity. When the available capital is
below 498, the unique optimal survival policy is to do nothing. In fact when the production
capacity is 3 and the inventory level does not exceed 3, the unique optimal survival policy for
levels of capital between 20 and 497 is to leave the production capacity unchanged and to order-
up-to 3 items. For capital above 497, this policy is still optimal but no longer unique. For capital
below 20 the chance of survival is relatively low and the optimal survival policy may raise the
production capacity and inventory level as high as 7. However these higher levels would only
be temporary because, if the firm survives and therefore its capital recovers, the production
capacity would be reduced again (see figure 6).

When the production capacity and inventory level are both 3, the expected profit per week
is 1.76. Hence the width of the interval over which the policy described above is the unique
optimal survival policy is equivalent to the expected profit from a period of more than 5 years.
Hence the model demonstrates that if the objective is to maximise the chance of survival, the
firm should operate with a production capacity well below the profit maximising production
capacity for a considerable period of time. This is a possible explanation for the seemingly
overly cautious policy used by the case firm.

Figure 6 shows the optimal survival production capacity as a function of the current
production capacity when the capital available is 70 and the inventory level is 7. This shows
that the result above is not simply due to the initial conditions and the relatively high cost of
adjusting the production capacity. Even when the production capacity and inventory level are
initially relatively high, the optimal survival policy chooses to reduce the production capacity
to a seemingly conservative level. This is further illustrated in figure 7 which shows the optimal
survival production capacity as a function of the capital available when the production capacity
and the inventory level are both 10. We see that even when the production capacity and the
inventory level are at the profit maximising level initially, the unique optimal survival policy is
to reduce the production capacity to 4 when the capital available is between 102 and 430.
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Figure 5: Optimal survival production capacity against capital available when production

capacity and inventory level are both 3

12 ~
Maximum level
11 4 Minimum level -
10
9 -

Optimal production capacity
(2]
1

5 6 7 8 9 10 11 12
Production capacity

Figure 6: Optimal survival production capacity against current production capacity when capital
available is 70 and inventory level is 7 (Note that the maximum and minimum optimal levels
coincide at each point indicating unique optimal decisions)
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Figure 7: Optimal survival production capacity against capital available when production
capacity and inventory level are both 10

7 Conclusions

We have presented a dynamic combined inventory and production model which determines what
production capacity level a manufacturing firm should invest in and how many components it
should order, in the situation where the demand for the product is varying. This is solved
both under the maximising expected profit criterion and under the criterion of maximising
the probability of the firm surviving in the long term, neither of which problem has been solved
before. Whereas the former is an appropriate criterion for well established firms, we have argued
that the latter is more appropriate for start-up firms, where the decisions are very dependent
on the amount of capital available.

We have proved there are sensible interactions between the production and inventory
decisions in the survival optimisation case, such as never ordering components so as to raise
the inventory level above the production capacity, and if the production capacity is raised then
we must raise the inventory level to this new production capacity. However it is not the case
that the inventory and production levels are always set equal to one another.

We also investigate the relationship between the profit maximising strategy and the survival
maximising decisions. We describe how as the capital increases, the survival optimising strategy
goes though five phases. If the capital is below the level defined in Corollary 2, there is no chance
of survival. Immediately above this level, the production and inventory decisions jump to levels
which are dominated by short time survival considerations and so may not be monotonic in
the capital available. With more capital, the policy becomes stable but at a level considerably
below the profit maximising level. At some point there is sufficient capital available so that the
next decision is not vital and so the optimal survival policy is not unique and eventually in the
fifth phase, the next inventory and production level decisions have no discernible effect on the
survival probability. At this point the firm should change to the profit maximising criterion.

Thus the paper does seem to explain why in the case study the firm believed it was better to
operate for some time with a production level which was significantly below the profit maximising
one. They were subjectively recognising that their survival was their most important objective,

19



and were in the third phase of the optimal survival policy outlined above.

The model described could be reinterpreted as a marketing-production problem where one
is interested in the mix of spending on advertising and on component inventory levels. One can
think of production capacity as a limitation on the potential demand that can be turned into
sales. So if one goes from production level j to production level j’ one is paying a cost R|j — j'|
to increase the potential level of sales and an amount rj’ to sustain the sales at that potential
maximum level. One could think of advertising as doing the same sort of thing.

There is a potential demand available but in order to realise a maximum of j sales one has
to sustain an advertising spend of rj. If one wants to increase the potential maximum sales
level one has to develop further advertising at a cost of R|j — j| as well as then keeping the
advertising spend at rj’. One might quibble about the extra cost R being involved if one wants
to lower the advertising spend, but one could envisage penalty clauses in the contracts with the
advertising media which would require payment if the advertising is cancelled. This is a simple
model of the way advertising interacts with total sales, but it does allow one to investigate the
impact that marketing may have on the survival potential of start-up firms.

We believe that this paper does contribute to an understanding of the operations management
for start-up firms, by looking at the coordination needed between production and inventory
decisions, and it does suggest ways of investigating what is the best strategic mix of investment
in production capacity, component availability and marketing spend.
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