The University of Southampton
University of Southampton Institutional Repository

Structure, Dynamics and Optical Properties of Fluorescent Proteins: Perspectives for Marker Development

Structure, Dynamics and Optical Properties of Fluorescent Proteins: Perspectives for Marker Development
Structure, Dynamics and Optical Properties of Fluorescent Proteins: Perspectives for Marker Development
Fluorescent proteins of the GFP family (see picture) are key tools for life sciences research. Recent structure-dynamics-function studies have yielded new insights that aid in the rational development of advanced fluorescent marker proteins. These new markers should further extend the range of possible applications.
GFP-like proteins, originally cloned from marine animals, are genetically encoded fluorescence markers that have become indispensable tools for the life sciences. The search for GFP-like proteins with novel and improved properties is still ongoing, however, driven by the persistent need for advanced and specialized fluorescence labels for cellular imaging. Overall, the structures of these proteins are similar, but considerable variations have been found in the covalent structures and stereochemistry of the fluorophore, which govern essential optical properties such as the absorption/emission wavelengths. Moreover, as the fluorophore-enclosing cavity forms its solvation shell, it can also have a significant effect on the absorption/emission wavelengths and the brightness of the fluorophore. Most exciting are recent developments of photoactivatable fluorescence markers which change their color and/or intensity upon irradiation with light of specific wavelengths. A detailed understanding of the structure and dynamics of GFP-like proteins greatly aids in the rational engineering of advanced fluorescence marker proteins. Herein, we review our present knowledge of the structural diversity of GFP-like proteins and discuss how structure and dynamics govern their optical properties, with an emphasis on red fluorescent proteins.
1439-4235
1369-1379
Nienhaus, G. Ulrich
64eb2ac6-4fa9-416c-a066-f096d79307cb
Wiedenmann, Jörg
ad445af2-680f-4927-90b3-589ac9d538f7
Nienhaus, G. Ulrich
64eb2ac6-4fa9-416c-a066-f096d79307cb
Wiedenmann, Jörg
ad445af2-680f-4927-90b3-589ac9d538f7

Nienhaus, G. Ulrich and Wiedenmann, Jörg (2009) Structure, Dynamics and Optical Properties of Fluorescent Proteins: Perspectives for Marker Development. ChemPhysChem, 10 (9-10), 1369-1379. (doi:10.1002/cphc.200800839).

Record type: Article

Abstract

Fluorescent proteins of the GFP family (see picture) are key tools for life sciences research. Recent structure-dynamics-function studies have yielded new insights that aid in the rational development of advanced fluorescent marker proteins. These new markers should further extend the range of possible applications.
GFP-like proteins, originally cloned from marine animals, are genetically encoded fluorescence markers that have become indispensable tools for the life sciences. The search for GFP-like proteins with novel and improved properties is still ongoing, however, driven by the persistent need for advanced and specialized fluorescence labels for cellular imaging. Overall, the structures of these proteins are similar, but considerable variations have been found in the covalent structures and stereochemistry of the fluorophore, which govern essential optical properties such as the absorption/emission wavelengths. Moreover, as the fluorophore-enclosing cavity forms its solvation shell, it can also have a significant effect on the absorption/emission wavelengths and the brightness of the fluorophore. Most exciting are recent developments of photoactivatable fluorescence markers which change their color and/or intensity upon irradiation with light of specific wavelengths. A detailed understanding of the structure and dynamics of GFP-like proteins greatly aids in the rational engineering of advanced fluorescence marker proteins. Herein, we review our present knowledge of the structural diversity of GFP-like proteins and discuss how structure and dynamics govern their optical properties, with an emphasis on red fluorescent proteins.

This record has no associated files available for download.

More information

Published date: July 2009

Identifiers

Local EPrints ID: 71848
URI: http://eprints.soton.ac.uk/id/eprint/71848
ISSN: 1439-4235
PURE UUID: 3f058092-69cf-4b61-a234-3537243f1923
ORCID for Jörg Wiedenmann: ORCID iD orcid.org/0000-0003-2128-2943

Catalogue record

Date deposited: 05 Jan 2010
Last modified: 14 Mar 2024 02:52

Export record

Altmetrics

Contributors

Author: G. Ulrich Nienhaus

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×