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ABSTRACT
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Doctor of Philosophy

by Simon A. Williamson

Increasingly, complex real-world problems (including distributed sensing, air-traffic control,

disaster response, network routing, space exploration and unmanned aerial vehicles) are being

tackled by teams of software agents, rather than the more traditional centralised systems. Whilst

this approach has many benefits in terms of creating robust solutions, it creates a new challenge

— how to flexibly coordinate the actions of the agent teams to solve the problem efficiently. In

more detail, coordination is here viewed as the problem of managing the interactions of these

autonomous entities so that they do not disrupt each other, can take proactive actions to help each

other, and take multiple actions at the same time when this is required to solve the problem.

In this context, communication underpins most solutions to the coordination problem. That is,

if the agents communicate their state and intentions to each other then they can coordinate their

actions. Unfortunately, however, in many real-world problems, communication is a scarce re-

source. Specifically, communication has limited bandwidth, is not always available and may

be expensive to utilise. In such circumstances, typical coordination mechanisms break down

because the agents can no longer accurately model the state of the other agents. Given this, in

this thesis, we consider how to coordinate when communication is a restricted resource. Specifi-

cally, we argue for a rational approach to communication. Since communication has a cost then,

similarly, we should be able to calculate a value of sending any given communication. Once we

have these costs and values, we can use standard decision theoretic models to choose whether

to send a communication, and in fact, generate a plan which utilises communications and other

actions efficiently.

In this research we explore ways to value communications in several contexts. Within the frame-

work of decentralised Partially Observable Markov Decision Process (POMDP) we develop a

simple information theoretic valuation function (based on Kullback–Leibler (KL) Divergence).

This techniques allows agents to coordinate in large problems such as RoboCupRescue, where

teams of ambulances must save as many civilians as possible after an earthquake. We found that,

in this task, valuing communications before deciding whether to send them results in a level of

performance which is higher than not communicating, and close to a model which utilises a

free communication medium to communicate all the time. Furthermore, this model is robust to

increasing communication restrictions, whereas simple communication policies are not.
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We then extend this framework to value communications based on a technique from the field

of Machine Learning, namely Reward Shaping, which allows the decentralised POMDP to be

transformed into individual agent POMDPs that can be solved more easily. This approach can

use a heuristic transformation to allow the approach to work in large problems like RobocupRes-

cue or the Multi–Agent Tiger problem, where it outperforms the current state of the art. Fur-

ther to this, this approach can also use an exact reward shaping function in order to generate

a bounded approximation of the intractable optimal decentralised solution in slightly smaller

problems.

Finally, we show how, if we restrict our attention to relatively static (i.e. the problem does

not change without an agent doing something) problems than those which the reward shaping

technique was designed for, we can generate an optimal solution to decentralised control based

on communication valuations. In more detail, we extend the class of Bayesian coordination

games to include explicit observation and communication actions. By so doing, the value of

observation and exchange can be derived using the concept of opportunity costs. This is a

natural way of measuring the relationship between communication and information gathering

on an agent’s utility, and removes the need to introduce arbitrary penalties for communicating

(which is what most existing approaches do). Furthermore, this approach allows us to show

that the optimal communication policy is a Nash equilibrium, and to exploit the fact that there

exist many efficient algorithms for finding such equilibria in a local fashion. Specifically, we

provide a complete analysis of this model for two–state problems, and illustrate how the analysis

can be carried out for larger domains making use of explicit information gathering strategies.

Finally, we develop a procedure for finding the optimal communication and search policy as a

function of the partial observability of the state and payoffs of the underlying game (which we

demonstrate in the canonical Multi–Agent Tiger problem).

In performing all of this work, we demonstrate how communication can be managed locally by

accurately placing a value on the cost and benefit of using a restricted communication resource.

This allows agents to coordinate efficiently in many interesting problem domains, where existing

approaches perform badly. We contribute to the field of rational communication by providing

several algorithms for utilising costly communication under different domain conditions. Our

reward shaping approaches are highly scalable in problems with large state spaces and come

with sound theoretical guarantees on the optimality of the solution they find.
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Chapter 1

Introduction

In this thesis we consider how to solve decentralised control problems where independent deci-

sion makers must coordinate to solve a joint problem in domains where they cannot communi-

cate with each other freely. In particular, we explore ways to coordinate teams efficiently when

communicating is a restricted resource. Specifically, we consider cases where communication

is costly, in terms of time or opportunity, and argue for rational communication — the ability

to dynamically evaluate the benefit of coordination (through communication) against the cost of

achieving it. For example, consider the case where a rescue robot must decide whether or not

to pull together a team of robots to search in a burning building to find civilians. Its chances of

succeeding are increased if it has assistance from the other robots, but it must leave the building

to ask for such help because the fire may have destroyed the building’s communication infras-

tructure. Given this, the coordinating robot must evaluate the probability that the other robots

already know the building needs searching, and so will arrive at the scene based on local infor-

mation, or whether they explicitly need to be told of this fact, in order to gauge the benefit of

communicating or not.

In particular, we cast this problem as one of multi–agent coordination. Here, agents are defined

as autonomous, goal-directed, reactive problem solvers capable of communicating and interact-

ing with one another (Wooldridge, 2002). Multi–Agent Systems (MAS) research is thus con-

cerned with managing the interactions of several such autonomous software agents (Wooldridge,

2002). These agents may represent different stakeholders in the environment, in which case

they may compete to maximise their individual utility. Alternatively, the agents may act co-

operatively and try to solve a problem as a team. The latter is the view of MAS taken in this

research. Now, this definition of a multi–agent system captures many problems in real-world

decentralised control and in this research we are particularly interested in developing local al-

gorithms for agents which allow them to efficiently solve such decentralised control problems

using local information and communication.

Against this background, in many real-world domains, teams of software agents must attempt

to solve some global problem together. Relevant examples include distributed sensing (Lesser

1



Chapter 1 Introduction 2

and Erman, 1980), network routing (Dutta et al., 2005), air-traffic control (Ljungberg and Lucas,

1992), disaster response (Hiroaki, 2000), space exploration (Estlin et al., 2005) and unmanned

vehicles (Karim and Heinze, 2005). In many of these cases, the agents have heterogeneous

capabilities and, in general, the problem cannot be solved by just one of them because it requires

some interaction of their disparate abilities. Given this, the coordination problem — how to

make a team of agents act together in a coherent goal-directed manner — is a central concern in

the field of MAS. Specifically, effective coordination requires agents to anticipate the needs of

teammates in terms of actions and information and manage the interdependencies between their

various activities. Relevant examples from Wooldridge (2002) include:

• You and I both want to leave the room, and so we independently walk towards the door,

which can only fit one of us. I graciously permit you to leave first.

• I intend to submit a grant proposal, but in order to do this, I need your signature.

• I obtain a soft copy of a paper from a Web page. I know that this report will be of interest

to you as well. Knowing this, I proactively photocopy the report, and give you a copy.

Such coordination can, in some cases, be managed by a central controller (see Gerkey and

Mataric (2001) or Khoshnevis and Bekey (1998) for example), but this would require a reliable

communication medium and represents a single point of failure for the entire system. Given

these shortcomings, an alternative approach, that will be adopted here, is based on decentralised

control, where the interactions between the agents are managed locally (Jennings, 2001). In

such systems, agents make independent decisions based on their histories of observations, com-

munications and utilities (this is in contrast to centralised systems that attempt to assess the

global state of the problem and assign an action to each agent). In general, a decentralised

system is more robust because single points of failure are avoided and agents can be removed

or added more easily (in particular, the computational complexity of naı̈ve action selection al-

gorithms will increase exponentially with the size of the team (Papadimitriou and Tsitsiklis,

1987)). However, decentralised control systems are more complex to design. This complexity is

introduced because the agents do not have a global view of the system (due to limited sensing,

computational and communication capabilities) unlike a central coordinator which can ascertain

the state of all agents and whether their tasks were completed successfully. To help alleviate this

partial perspective, the agents can communicate state information and intentions (Tambe, 1997;

Gmytrasiewicz and Durfee, 2000; Shen et al., 2003), but as we will show, this process must be

done efficiently if the system is to perform well.

To this end, our aim in this work is to produce agent teams that are capable of coordinating

in domains where the communication resource is limited or may vary in its availability and

cost during the course of the team’s activity. In particular, we believe that accounting for the

communication medium is important because, in most real world cases, it is never completely

reliable and many traditional coordination techniques break down in the face of communication

failures (see Chapter 2 for a more detailed review). Moreover, many problem domains have
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inherently limited communication resources and so it is important these are used effectively.

For example:

• In physical agents, communication may require drawing on a finite power source which

limits the number of times it can be utilised, a problem exacerbated if the agent is using

that same source for its other activities.

• In disaster recovery scenarios, the communication medium may become saturated by a

sudden increase in demand as many civilians make calls on the cellular network or emer-

gency workers use the same radio frequencies.

• In military applications, communication may be inherently dangerous because it reveals

the location of the agent to the enemy.

Finally, communication may simply be expensive because the agent cannot take any other action

whilst it is communicating (e.g. unmanned water vehicles can only communicate at the surface,

whilst their goal can only be completed underwater) or it may have had to take several actions

to make communication possible (e.g. the same unmanned water vehicles going to the surface).

Thus, under all of the above conditions, we believe coordination should account for the cost

of communicating and the explicit actions taken in the course of communicating. Specifically,

we believe an agent needs to be able to understand and compare the value, to both itself and

the team, of the information that it is considering sending. In order to do so, however, it

needs to have an estimate of the effect that the information will have on the team’s mission

and the likelihood that other team members will independently discover the same information.

By way of illustration, consider the following example from the disaster rescue domain seen in

RoboCupRescue (Hiroaki, 2000):

A team of search and rescue robots must search an urban area in the immediate

aftermath of an earthquake and rescue trapped civilians. They must work together

to search the area efficiently and must also cooperate to remove trapped civilians to

safety. These robots communicate using the local mobile phone network, but in an

earthquake many of the area’s inhabitants immediately call for help. This saturates

the network and introduces communication blackspots (where no communication is

possible). Rescue robots enter these blackspots and assess how many civilians need

rescuing. They must leave the blackspot to report this to the rest of the team but

this requires a substantial amount of time, during which the agent is not rescuing

civilians or performing more search.

We now give a second example from the Multi–Agent Tiger problem (Nair et al., 2003):

A team of agents have the choice to open one of two doors — a left door and a right

door. Behind one door is a large treasure and behind the other is a tiger. Agents
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want to obtain the maximum reward by both opening the door containing the trea-

sure. Further to this, if an agent opens the door containing the tiger then both agents

incur a large penalty — the penalty is reduced if both agents open the door with the

tiger. The agents do not know which door contains which outcome and so they can

request noisy observations of where the tiger is — they can independently hear that

the tiger is on the left or right. Now, agents choose to open either door or listen

independently, but they should agree on which action to take. Communication can

be used to tell each other about their beliefs of where the tiger is, however com-

munication itself has a cost and takes as much time as listening or opening a door.

Consequently, agents can choose to individually ascertain where the tiger is before

opening a door (but this could lead to mis-coordination with noisy observations) or

they can communicate to achieve a global view. Depending on the cost of observa-

tions verses communicating, different strategies are optimal, and agents should be

able to choose correctly when employing rational communication.

The Multi–Agent Tiger problem is the canonical form of the choice between acting with local

information or communicating to achieve a synchronised view of the world. This decision is

found in all problems and the Tiger problem is a useful abstraction for studying that choice. We

now give a third example from a military application (Baxter, 2006):

A team of unmanned air vehicles is carrying out a mission to clear a corridor

through hostile air defences to allow a pair of manned aircraft to attack a fixed

target. Once inside hostile airspace, communication is to be inhibited since trans-

mitting may alert the air defences to the vehicles’ presence. One vehicle detects a

previously unknown air defence system. It needs to be able to decide whether, and

how, to communicate this to the other members of its team. Thus, the vehicle may

transmit a warning on high power immediately, with a high probability of detection,

or it may divert from its planned route to get closer to another vehicle and transmit

a warning on low power, which is less likely to be detected. Finally, it may decide

not to transmit the information because it thinks the other aircraft already know

about the defence, or it decides that this information will not affect the success of

the mission.

Finally, we can see this problem in one of the coordination examples from Wooldridge (2002):

I obtain a soft copy of a paper from a Web page. I know that this report will be of

interest to you as well. Knowing this, I proactively photocopy the report, and give

you a copy. However, I would not need to make this communication if I knew that

you had already viewed that Web page.
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To make the decision between the different forms of communication, or not communicating at

all, the agent needs to be able to understand and compare the value, to both itself and the team,

of the information. In order to do so, it needs to have an estimate of the effect the information

will have on the team’s mission and the likelihood that other team members will independently

discover the same information. In other words, it needs to understand what effect all of the

options will have on both its own ability to complete its task and for the team’s task as a whole.

For example, in the UAV task, diverting to a safe location to communicate may prevent the

vehicle from completing its assigned task in the agreed time frame, but not communicating may

lead to another vehicle being detected and attacked by the air defences.

Following this, the other common elements of these examples are that the domains are inher-

ently partially observable. This means that the agents (together or individually) cannot observe

the full current state or the impact of taking an action. This feature is intimately linked with

the value of communication since agents’ will, generally, have different views of the problem.

Further to this, parts of the problem may change outside of the agents’ control indicating that

there is an element of dynamism to contend with. Finally, actions may not be successful or may

have unexpected consequences (which may only be partially observable). As a result, the envi-

ronment is inherently stochastic. Now, all of these features influence the coordination problem

and furthermore, the value of communication. Thus any solution should take them into account.

Indeed, although we address the problem within the specific realms of multi-agent systems,

the problem itself has a much broader interpretation. For example, within the realm of social

psychology the influence of communication is seen in the notion of mental models of other

actors (such as the recursive models seen in Goodie et al. (2009)). Here the issue of how the

semantics of communication changes the model of the other actor is a key question. Further to

this, there is the notion of whether communication limits the need to recursively model other

actors since it forms a commonly known information set. In such cases, if the impact of sending

a communication is properly understood then this would influence how much information about

about the other agent and its reasoning it is required to know.

Following this, communication between humans is also closely related to how communication

can be treated formally in the open multi-agent systems domain. Specifically, in the examples

given thus far, we have only considered closed systems where agents have common stakeholders

and share a common understanding of the problem (because they have been developed together

or according to an agreed standard such as FIPA-ACL1). However many multi-agent systems do

not share this property, and agents have very different architectures. In this case, the problem

of sending a communication must be expanded to include some understanding of how the other

agent will use the communicated information. In our solution we will leverage the fact that we

know what each agent will do with a communication, although we cannot do this in the general

case.
1http://www.fipa.org
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Further to this, examples of our problem can also be found in economic theory where commu-

nication expands the set of Bayes-Nash equilibria (but perhaps at a cost) (Krishna, 2007). This

property is also found in distributed constraint optimisation where there is a minimum amount of

messages required for an optimal solution (Petcu and Faltings, 2005). We can relate our problem

to this one by considering what solution could be achieved if the available communication was

less than this minimum amount. Similarly, in biologically inspired artificial intelligence such as

Bonabeau et al. (1999), communication is often implicitly utilised (e.g. with pheromones) but

there exists the question of how well such a system would operate if the amount of pheromone

was limited in some way.

However the area in which we can most fully expand this line of enquiry is in the area of

bounded rationality. In more detail, bounded rationality (Simon, 1955) is the concept that an

agent’s ability to make a decision is limited by its processing power, time or information. In this

sense, it is clear that the value of communication is closely related to the information constraint

of bounded rationality. Even more than this, as the amount of communication is allowed to

increase, agents must reason less about each other and consequently processing power or time

can be reduced. As a result, in any distributed system with limited communication between the

nodes, whether an optimal solution can be found is bounded by the limits on communication.

Understanding this very fundamental problem is vital to the development of general artificial

intelligence.

Put in more general terms, in all of these examples and areas, the agents can make their com-

munication decisions based on pre-determined rules, made before the team begins the task, or

they may need to be able to plan for each possible action and evaluate its short and long term

consequences. In either case, however, the agents need a way to compare what has to be done to

achieve communication and the benefit to itself and the team of doing so. Essentially then, the

question considered in this work is:

how to dynamically evaluate the benefit of coordination, through communication,

against the cost of achieving coordination.

1.1 Research Aims and Challenges

This work aims to show the benefit of a rational approach to communication and, further to this,

we also propose a way to deal with the challenge of a costly communication medium efficiently.

That is, a model is developed which assigns a value to possible communications, and this value

is balanced against the cost of communicating. In particular, this section discusses, in high level

terms, what such a model might look like and how it would help in the problems described

previously.

In more detail, rational communication is the process by which agents attempt to ascertain be-

forehand the value of sending a particular communication. If this value is an estimation of
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future improved utility by coordination then the cost of communication can be balanced with

the estimated added utility. In this case, the value can be derived from the information con-

tent of the communication, the likelihood of another agent already knowing its contents and

more domain specific features (e.g. a constant value for communicating about a civilian to save

in RoboCupRescue or the location of the tiger in the Multi–Agent Tiger problem). We can

then measure the information content of communications and calculate the expected decrease

in global uncertainty as a means of valuing communicating. Following this, information the-

ory is a standard model for measuring how much ‘knowledge’ is added by new observations

(Shannon, 1948), and so this can be used to measure how much ‘knowledge’ is transmitted in

a communication. This increase in team-wide knowledge can then be seen as the utility of the

communication.

Now, once a value is known for a communication, then it can be used in a decision problem.

This decision problem might simply be to select the action or communication with the greatest

expected utility, or a more complex model may be utilised which models the future outcome

of possible sequences of actions to find the long term optimal action. The interesting question

here is how to balance the somewhat abstract value of a communication action with the more

concrete rewards for solving a problem completely or partially with some level of efficiency.

Communicating may have a very real and situated cost (e.g. energy usage or time), but this

can, perhaps, be offset by estimating how much better the team will perform in the future as a

result of sending the communication. Thus, this decision problem should explicitly manage the

trade-offs of communicating — communication allows greater levels of coordination, but it may

be expensive and take time. Furthermore, in some domains, calculating this trade-off optimally

may be computationally intractable, and so the decision problem may be approximate. In this

case, it should be possible to understand the impact of using an approximation on a global level.

In other words, any solution should either give the optimal global solution (as if the team was

controlled centrally) or approximate this global solution in a principled way.

Against this background, if each team member is utilising a rational approach to communication

then, at the level of the team, communication is managed effectively and contributes positively to

the global utility. A team model that can manage the trade-offs between communicating and not

communicating (by comparing both the cost of using the communication medium and the benefit

of coordinating) can thus be used to operate in domains where the communication medium is

uncertain and expensive. In particular, such a model can recognise how much communication

will help coordination and from this evaluate the best time to communicate when compared with

the other rewards and penalties in the problem. Such a system should be able to recognise when

communication is cheap and in that case increase the level of coordination, but also find the

most useful communications when the medium is expensive.

With this in mind, it is important to consider the scale of the agent team we are interested in.

This is because different scales of agent teams typically require different coordination mecha-

nisms (Tambe et al., 2005). For example, teams with hundreds of agents are far too large for

explicit coordination and perform far better using simple rules and unsophisticated agents, for
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example in Swarm Intelligence (Bonabeau et al., 1999), flocking UAVs (Watson et al., 2003) or

in social learning systems (Noble and Franks, 2004). Conversely, teams with tens of agents per-

form much better if the coordination decisions are explicitly made by more sophisticated agents

(for example, Belief, Desire, Intention agents (Bratman et al., 1991) or robotic box-pushing

(Mataric et al., 1995)). Essentially, as the scale of the agent team increases, their sophistication

decreases towards rule based behaviour. It should be highlighted that problems which exhibit

some structure can allow for larger numbers of agents to coordinate in a sophisticated fashion.

However, we consider this to be a different problem to the one tackled in this thesis where we

are concerned with the general coordination problem with domain information.

The other factor influencing scalability is the size of the problem (not the number of agents). The

RoboCupRescue problem highlighted in the previous section has a large state space (number of

buildings etc). We are interested solving problems of this scale. With this in mind, in this

work we consider teams with up to ten agents — allowing us to employ sophisticated agent

coordination mechanisms and rational communication.

Against this background, there are three research challenges in creating a rational communi-

cation mechanism for coordinating agents in stochastic, partially observable, dynamic environ-

ments. Specifically, our coordination mechanism should:

• be able to accurately place a cost on the use of communication.

• be able to place a value (exactly or approximately) on the use of communication.

• allow communication to be used to control a decentralised system locally and efficiently

All of these issues will now be described in more detail.

Challenge 1: Communication Cost

As discussed earlier, agents often coordinate in domains where the communication medium

cannot be employed without cost. Now, this cost is often domain specific — consider UAVs

which cannot communicate in certain areas of the environment or network routing agents which

use the same bandwidth to route packets and to send coordination messages. As a consequence,

coordination mechanisms often use domain specific representations of this cost. In these cases,

often the real costs are difficult to assess and arbitrary penalties are used instead. By contrast, our

goal is to create a general rational communication coordination mechanism. To do so, we need

to specify a general framework that captures the cost of communicating which allows agents

to reason about whether or not to communicate. Specially, this mechanism should capture all

of the disparate communication costs described earlier and allow agents to reason about the

opportunity cost (i.e. the value of taking an alternative action compared to communicating)

when using a communication medium.
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In summary, the first research challenge is to specify a general problem solving and coordination

framework which captures the cost of communication across several domains in terms of the

opportunity cost whilst communicating — allowing agents to employ general algorithms when

solving problems with communication costs.

Challenge 2: Valuing Communication

Whilst being able to accurately and generally establish the cost for sending a message is im-

portant for using communication rationally, it is just as important to be able to derive the value

of sending that message. Now, the value of sending a particular message is that, in the future,

and as a result of communicating, the team of agents will be able to perform a task better. Con-

sequently, an agent should be able to establish, before sending a message, the likely benefit

of sending that message. This benefit should be expressed generally in terms of the other re-

wards and penalties in the system. Together with an accurate cost of communicating, the benefit

of communicating provides a rational communication mechanism. Unfortunately, however, in

some domains this may be an intractable calculation. This is because of the size of the problem

(the number of agents, the the number of possible communications etc). Consequently, it is also

desirable to be able to approximate the value of communication.

Thus, the second research challenge is to be able to specify a general mechanism for deriv-

ing the value of sending a message. As before, this will allow agents to use general decision

making algorithms over the costs and benefits of sending a message to give a general rational

communication framework.

Challenge 3: Decentralised Coordination

Once a rational communication mechanism is developed, it needs to be deployed in a decen-

tralised control setting. Ideally, agents employing the mechanism to make decisions in a decen-

tralised fashion using local information should arrive at a solution which has the same perfor-

mance as if the team was controlled centrally. This would correspond to an optimal decentralised

solution. Now, in some situations, the complexity of the problem may make this infeasible be-

cause of the computational power of the agents, resulting in a lower solution quality when em-

ploying our rational communication mechanism. However, when we know that it is not possible

to generate an optimal decentralised control solution, we should at least be able to place bounds

on the loss of solution quality.

Against this background, the third research challenge is to show that our rational communication

mechanism provides optimal solutions, or failing that, solutions in which the quality loss is

bounded.
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1.2 Research Contributions

In addressing the above-mentioned research challenges, we make a number of contributions to

the state-of-the-art in cooperative MAS for decentralised control. First of all we propose a new

framework based on models from sequential decision making that enables the formal expression

of communication costs in an agent team. In this way we address the first research challenge,

placing an accurate cost on communication. Now, this framework can be used for deriving the

true benefit of communicating, however, this derivation is often intractable. Because of this, as

per Challenge 2, we develop approaches for approximating the value of communication.

In more detail, we show how the amount of communication required to solve a team problem

can be learnt offline using a simple procedure in our decision making framework. Now, this

technique lacks the ability to estimate how close the generated solution is to the optimal one,

and furthermore, the offline learning phase is computationally expensive. Consequently, we

show how Reward Shaping, a technique from machine learning, can be leveraged to provide a

sound theoretical basis for deriving communication valuations and, furthermore, reducing the

computational complexity of the agent’s decision making process. Hence we tackle the second

research challenge where we require the value of communication to be generated.

Following this, we show how, using this technique, we can place a theoretical bound on the loss

of utility compared to the setting where we can optimally calculate the true value of communi-

cation using a centralised approach. In this spirit, we also show analytically how an appropriate

level of communication can be an optimal equilibrium strategy in the team problem expressed

as a Bayesian Game (which is a formalism from game theory). Further to this, we show that if

the problem is static (in contrast to the dynamic problems which the previous approaches were

designed for), then we can specify an optimal communication valuation mechanism, which al-

low agents to derive an equilibrium strategy before acting in the problem. In more detail, we

show how the value of communication can be expressed analytically in certain types of games

which allows agents to make local decisions in order to coordinate globally. This shows how

our valuations and costs can be used to control a decentralised system optimally as desired in

the third research challenge.

With this in mind, there are several axes we can classify our contributions against. Scale —

small (small state space) or large (large state space). Environment — static (only agents’ actions

cause the environment to change) or dynamic (some parts are outside of the agents’ control).

Solution — optimal (the best possible solution), bounded (has an error but this is defined) or

approximate (has an error which may be unbounded).

We summarise our contributions against these axes in the following way:

• Dynamic, small scale, approximate: offline learning.

• Dynamic, large scale, approximate: heuristic reward shaping.
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• Dynamic, small scale, bounded: exact reward shaping.

• Static, large scale, optimal: Bayesian game valuations.

In this way, we believe we provide a technique for valuing communications across the full

spectrum of problems relevant in Multi–Agent Systems. Other points in the space are known to

be intractable (dynamic, large scale, optimal) (Bernstein et al., 2000) or not of interest for real

problems (static, small scale). Thus we focus on the most interesting parts of the spectrum. We

now discuss these contributions in more detail.

1.2.1 Learning A Communication Valuation Offline

Two of the research challenges identified above were to provide a framework which can rep-

resent (in general terms) the cost and the value of communication. To this end, in Chapter 3

we specify such a framework. In particular, sequential decision making provides a standard

formalism for representing such problem characteristics, and this is indeed where we will base

our work. Specifically, we embed our work in the context of Decentralised Partially Observable

Markov Decision Processes (dec-POMDPs), as this provides a general formalisation for making

these kinds of decisions. Furthermore, within this context, there even exists several proposed

mechanisms for calculating the value of communication (see Chapter 2 for more details). How-

ever, it has been shown that the generation of exact values for communication is an intractable

problem for most practical situations because of the underlying complexity of reasoning about

all possible team observations and action histories (Bernstein et al., 2000). Consequently, we

argue for the need for an approximation to the true value of communication that is fast enough

to compute every time an agent considers communicating. Such approximations are especially

effective because the inherent uncertainty and dynamism of the target environments we consider

means that excessive attempts to achieve accuracy will only contain inherent inaccuracies in any

case.

Now, this work presents a novel model of rational communication, dec POMDP Valued com,

based on a principled formalisation for efficiently approximating the value of communications

in a decentralised sequential decision making context. This new approach allows the agents to

attach a value to the communication action, and so balance the possible value gained by the

team with the costs associated with using the communication infrastructure. Whilst the cur-

rent policy generation model for decentralised Partially Observable Markov Decision Processes

(Dec-POMDPs) can already perform such trade-offs implicitly, it is an intractable policy gener-

ation problem. We avoid this by introducing a novel principled valuation for communications

based on information theory (specifically, the impact of any communication is measured using

Kullback–Leibler (KL) Divergence). This is an efficient calculation that does not require rea-

soning over team beliefs. We choose information theory because it is a standard method for

measuring how much ‘knowledge’ is added by new observations, and so this can be used to

measure how much ‘knowledge’ is transmitted in a communication. This increase in team-wide
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knowledge is seen as the utility of the communication. This novel approach then allows for wider

applicability of decentralised POMDP models (for instance problems such as RoboCupRescue

or UAV tasking are too large for the current state of the art), whilst avoiding any domain specific

knowledge to generate valuations for communication actions.

With this established, the model we develop shows some interesting empirical results in a do-

main with a constrained communication medium, where it is compared with a model that does

not communicate, a model that communicates constantly at no cost and a model that considers

the value of a communication to be a linear function of the time since the last communication.

Our domain, in this case, is RoboCupRescue — a large multi–agent simulator. This is used as

an example and for our experiments because it is a hard problem requiring complex coordina-

tion utilising a communication medium in which we can specify the sorts of constraints we are

interested in. In particular, we show that our model can approximate the performance of the full

(free) communication model quite closely (within 5%), whilst utilising a costly communication

medium. Consequently, our model is capable of balancing the costs of communicating with the

benefits it brings in an efficient manner which greatly reduces the complexity of decentralised

POMDP problems.

To date, this work has produced the following publication:

S. A. Williamson, E. H. Gerding and N. R. Jennings (2008) A principled informa-

tion valuation for communications during multi–agent coordination Proc AAMAS

Workshop on Multi–Agent Sequential Decision Making in Uncertain Domains, Es-

toril, Portugal.

1.2.2 Heuristic and Exact Reward Shaping for Valuing Communication

While making some headway with some of the aims, the previous strand of work failed to

account for research challenge 3 — being able to coordinate efficiently (either optimally or with

a bounded error in dynamic environments) using our communication mechanism. In more detail,

we would like to know how close to optimal our approximations are. However, the previous

approach using offline learning lacked this feature and so, in Chapter 4, we propose a mechanism

to explicitly capture the relationship between the optimal and approximate approaches. To do

so, we transform a high complexity decentralised POMDP (in which agents reason about the

complete experiences of all the other agents) to a lower complexity POMDP (in which an agent

just reasons about itself), and in that transformation account for the coordination problem (so

that the problem contains an automatic method of coordinating). In other words, we transform

the full problem into several smaller ones whilst including new information (how to coordinate

and when to use communication). Now, this could be achieved using relatively standard pre-

defined decision rules that separate the problem and dictate what happens when coordination is

needed (as discussed in Section 2.5), but this model lacks a theoretical basis and so we cannot
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establish how close to optimal this approach really is. Furthermore, such rules require extensive

domain knowledge to implement (again see Chapter 2 for more details).

In contrast, a more principled technique is that of reward shaping (Ng et al., 1999), an ap-

proach originally from the field of reinforcement learning, that supplies artificial reward signals

to agents in order to speed convergence towards the optimal policy. Now, in our problem we are

not concerned with learning, but with acting in a coordinated fashion using only local informa-

tion. Thus, reward shaping can be recast as the process by which an agent’s expected utilities

for actions are modified (based on information other than that which is in the reward function

— we discuss using belief divergence to perform this task next) during execution in order to

elicit a more preferred behaviour. This important insight means that we can use reward shaping

to transform a decentralised POMDP into individual agent POMDPs and, furthermore, to deter-

mine when it becomes important to communicate. By so doing, we implicitly account for the

coordination problem. Moreover, reward shaping can be approximate in the sense that it biases

learning towards a good (but not necessarily optimal) policy in the original problem (Laud and

DeJong, 2002). Thus, in Chapter 5, we will use this idea to produce a heuristic reward shaping

function that scales well.

One downside of this approach, however, is that it introduces an error into the transformation.

Given this, we would like to find a means of bounding the error (in line with research chal-

lenge 3). To do so, in Chapter 6, we consider exact reward shaping in that the policy learned is

guaranteed to be the optimal one in the original problem (Wiewiora et al., 2003). Although this

approach scales less well (but still better than existing techniques), it allows us to find a theo-

retical bound on the solution error of the transformed problem given the observation dynamics

of the underlying problem. This is particularly useful since it allows us to ascertain beforehand

whether our technique is appropriate for a given problem, and what performance, in the worst

case, we will lose by applying this approximation. This is currently lacking from all existing

decentralised POMDP models that are based on valuing communication in order to coordinate.

Now, in-order to apply reward shaping (both heuristic and exact) to achieve coordination, we

need to supply the transformation process with information about the likelihood of coordination

given the team beliefs (i.e. how much in agreement the agent’s are about the state of the world).

Crucially, this information should be easy to maintain and estimate in a distributed fashion

because we would like a solution which can operate in restricted communication domains. To

do this, we choose to base reward shaping upon belief divergence (a measure of how similar the

beliefs of a distributed team are) 2. We could equally use full team models (such as Bayesian

Networks (Gmytrasiewicz and Durfee, 2000) or Particle Filters (Roth et al., 2005)) (but these are

large and difficult to maintain) or coordination statistics such as the likelihood of independently

knowing about a feature of the environment (such as STEAM (Tambe, 1997) or Zhang et al.

(2004)) (which are hard to compute), however, the advantages of belief divergence, are that it is

cheap to maintain and there are several existing techniques for establishing it in a decentralised

2This is not central to our method, and we could use other information in other cases if that would give better
results.
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way. This means we can efficiently approximate the value of communications in a decentralised

sequential decision making context. In particular, our approach allows the agents to attach a

principled value to the communication action, and so balance the possible value gained by the

team with the costs associated with using the communication infrastructure.

In undertaking this work we extend the state of the art in three main ways. First, by using

heuristic reward shaping, we allow decentralised POMDP models to be applied to larger prob-

lems (such as RoboCupRescue), than has hitherto been possible, whilst avoiding using signifi-

cant amounts of domain-specific knowledge to generate valuations for communication actions.

Second, with exact reward shaping, our approach generates more accurate online valuations of

communication than the previous state of the art, and by doing so, allows an expensive com-

munication medium to be used more efficiently. Third, both of the previous advances are made

in a principled fashion which allows us, in the case of exact reward shaping, to present the first

bound on making communication decisions using local information. Such a bound is important

in this context because it highlights the features of the environment that make the error grow

(in this case it is the accuracy of the observation function and individual agent’s planning hori-

zon). Furthermore, it is also useful for comparing different approximate approaches which is

particularly vital in this domain as optimal solutions are not really viable.

To date, this work has produced the following publications and submissions:

S. A. Williamson, E. H. Gerding and N. R. Jennings (2009) Reward shaping for

valuing communications during multi–agent coordination Proc. 8th Int. Conf on

Autonomous Agents and Multi–Agent Systems, Budapest, Hungary.

S. A. Williamson, E. H. Gerding and N. R. Jennings (Submitted) Rational Commu-

nication in Multi–Agent Coordination using Reward Shaping Journal of Artificial

Intelligence, Elsevier.

1.2.3 Communication as an Equilibrium Strategy

Further to the work in Chapter 6, we continue to address the question of whether communica-

tion valuations can be used to provide an optimal decentralised control paradigm using Bayesian

Games in Chapter 7. Specifically, Chapter 6 addresses research challenge 3 by proposing a

bounded transformation from the decentralised problem to individual local problems. This ap-

proach works well in dynamic environments, however, if the problem is static in nature then we

can do better and make an optimal coordination mechanism which exploits an analytical form

of the communication valuation. To this end, in this chapter we give a complementary approach

that solves the decentralised problem optimally by considering how the strategy space can be

reduced to allow for an easily computable analytic form of the true value of communicating. In

essence, in this strand of work we restrict the generality of the game played in order to arrive at
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an optimal valuation, in contrast to the more general previous work which can only arrive at a

bounded approximation, but can do so for a wider range of situations.

In more detail, we propose a game-theoretic model that explicitly optimises costs and benefits of

communication in a team information-gathering problem (specifically, the Multi–Door, Multi–

Agent Tiger problem). Using this model, we characterise, analytically, the value (and cost)

of communicating the expected information gathered given a specific search strategy — for

example a uniform search of domain features. This allows us to specify a general equilibrium

analysis of search and communication strategies which shows that given the properties of the

underlying game (the noise in the observations and the pay-offs) a communication profile is an

optimal equilibrium. Furthermore, this analysis holds for several different search strategies if

their expected behaviour can be expressed in our framework. This is an important contribution

in the context of deriving communication valuations since it shows the expected valuation on

communication can be used to control a decentralised system optimally using local information.

To date, this work has produced the following publications and submissions:

S. A. Williamson, A. C. Chapman and N. R. Jennings (Submitted) Information

gathering and exchange for coordination of multi–agent teams Proc. 9th Int. Conf

on Autonomous Agents and Multi–Agent Systems, Toronto, Canada.

1.3 Thesis Structure

The rest of this thesis is structured as follows:

• Chapter 2 analyses the most relevant previous research in using cooperative MAS to con-

trol decentralised systems. In this review, we focus in particular on sequential decision

making and communication valuations.

• Chapter 3 develops a sequential decision making framework which can capture the costs

and benefits of communication. In this chapter we also instantiate an offline learning

technique which can arrive at a level of communication for good performance and we

demonstrate how this is useful in a large coordination problem.

• Chapter 4 takes the sequential decision making framework from Chapter 3 and develops

a theoretical basis for valuing communication using reward shaping. Here we show how

this mechanism can separate the team problem into individual agent problems.

• Chapter 5 uses the framework in Chapter 4 to extend the state-of-the-art in large decen-

tralised control problems using a heuristic function within the context of reward shaping

to give an approximate, but highly scalable, solution.
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• Chapter 6 shows how this approximation can be bounded in terms of the solution error

compared to the intractable team sequential decision making problem at the sacrifice of

some scalability — which is still better than existing techniques.

• Chapter 7 shows how communication of the expected results of specific information-

gathering strategies can be an optimal equilibrium in a decentralised control problem —

showing (as we also did in Chapter 6) that reasoning about communication can be the

basis for a theoretically sound separation of a decentralised problem into a local problem

for each agent.

• Chapter 8 gives the conclusions and presents the future directions of this work.



Chapter 2

Related Work

This chapter introduces the relevant work in coordinating MAS in our kind of problem, and how

communication is used and valued in this task. Initially, we concentrate on coordination. In

particular, the first section details methods of coordination based on modelling the intentions of

other agents. Section 2.2 describes methods of coordination based on message passing with-

out maintaining team models. Both of these approaches rely on intensive models of the other

agents in order to compute solutions. We then move onto approaches which aim to avoid this

problem. Specifically, Section 2.3 describes game theory, a principled way for modelling agent

interactions. In Section 2.4 we describe Sequential Decision Theory for both single and multi-

ple agents, showing how this model closely relates to our problem. In Section 2.5, the problem

of how to value communication is considered. Then, in Section 2.6, we will describe the test

domains used throughout this work as benchmarks. Finally, a summary is given which details

what existing work will be used as the point of departure for this research, and how it will need

to be extended to meet the research challenges identified in Chapter 1.

2.1 Intentional Coordination

We first consider coordination based on modelling the ‘intentions’ of other agents — that is,

if an agent knows what a second agent will do next then it can select a complementary action

itself. Initially, we describe the Belief, Desire and Intention (BDI) agent theory as this forms the

basis for modelling intentions and then show how this has been extended to multiple agents and

coordination.

2.1.1 BDI Agents

The BDI model of practical reasoning (Bratman et al., 1991) was proposed as a theoretical

method for limiting (by removing reasoning about choices inconsistent with current intentions)

17
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an agent’s reasoning based on its intentions, in a bid to combat the bounded resources of an

agent. Specifically, BDI agents are composed of:

• Beliefs represent an agent’s view of the world, and what it believes to be true,

• Desires represent states of the world the agent wishes to bring about,

• Intentions are what the agent has committed to doing after some deliberation

Deliberation is limited to actions that achieve desires, and subsequent action planning to those

that achieve intentions. In particular, the process by which a BDI agent decides upon its next

action is summarised by the pseudo-code in Figure 2.1.

function action(p: P) : A
begin

B := brf(B,p)
D := options(B,I)
I := filter(B,D,I)
return execute(I)

end function action

FIGURE 2.1: BDI action selection taken from Weiss (1999)

B, D, and I represent the agent’s beliefs, desires and intentions respectively. The belief revision

function brf takes a precept and updates the agent’s set of beliefs. The options function maps

beliefs and intentions onto a set of desires, and filter represents the deliberation stage, updating

intentions from the current B, D, and I sets. The execute function creates a plan to carry out

the current intentions. Here coordination is achieved by the agents reasoning about interactions

with each other — closely modelling human interactions (Tambe et al., 2005). However, BDI

agents are less able to work in uncertain stochastic environments such as those considered in

this research, which, unfortunately, are difficult to approach using formal planning (Brooks,

1999) (because they are hard to model in logical propositions). For this reason, we will now

consider more explicit models of agent coordination which use the intentional ideas of BDI

when reasoning about other agents and not just themselves.

2.1.2 Teamwork Models

The intentional model of agency can be extended to explicitly consider the set of agents as a

team. Teamwork models such as GRATE* (Jennings, 1995) represent a way to structure global

information about the team and perform local reasoning about coordinated actions. At their

heart, teamwork models attempt to follow human reasoning about how to work in teams. Joint

Intentions (Cohen and Levesque, 1991) are one such attempt, where mental states called inten-

tions inform other agents about what that agent will do. The intentions here are different to those
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in BDI, where an intention is what the reasoning agent intends to do, but here an intention is a

notion of what the other agents will do. In this context, teamwork models encode rules about

how teams should coordinate to achieve goals and what they should do when goals are found to

be unobtainable. This model contrasts with general action selection, which does not attempt to

encode how the team should work together. As a result, general action selection needs to infer

how to work as a team, whilst this is made explicit in teamwork models. This potentially makes

teamwork models powerful joint problem solvers, and some examples will be given next.

A number of prominent models of teamwork have been introduced in recent years. In particular,

Durfee and Lesser (1991), Decker and Lesser (1992), and Lesser et al. (2002) describe the Gen-

eralized Partial Global Planning (GPGP/TÆMS) coordination framework and Tambe (1997)

and Zhang and Tambe (2000) develop the STEAM teamwork model.

In more detail, the GPGP coordination framework aims to schedule the activities of a small

group of agents in a team with a joint goal, and increase the overall utility accrued by the group.

In order to achieve their joint goals, a distributed algorithm is used which schedules the activities

of each agent (each of which has a partial view of the activities of the other agents). The sub-

tasks of each agent can be dependent on the activities of the other team members, and the

framework aims to increase the coherence of the agent activities. In this case, communication

is used to manage the partial models of the other agents that each one maintains. However,

whilst the algorithm does have the high-level aim of restricting unnecessary communication,

it does not explicitly consider the balance between coordination actions and domain-level task

achieving behaviour when a combination of both is required to both coordinate and solve the

problem. That is, communication is considered in isolation of problem solving, and this research

postulates that they need to be considered together to coordinate efficiently.

In contrast to GPGP which performs partial planning at each agent, STEAM implements a rule

set to manage Joint Intentions. STEAM agents can then exploit these rules to reason about coor-

dination and communication. By doing this, agents build a partial hierarchy of joint intentions,

and have actions to maintain coherence across the team. Teams using STEAM can be dynam-

ically reorganised as the environment changes (or is interpreted by individual team members),

allowing the agents to opportunistically complete goals for other team members or distribute

important information (such as the completion, failure or unattainability of a team goal). More-

over, this model also employs a decision-theoretic approach to communication which follows

research challenge 2 from Section 1.1. This balances the cost of communication with the cost of

mis-coordination. This aims to reduce the communication overhead (which is still large because

the agents must maintain models of how the team goals are progressing).

Now, in both of these models communication is used to aid coordination and there is no central

coordinator. However, in terms of considering the value of a particular communication, only

STEAM attempts this as per research challenge 2. This valuation is calculated based on the cost

of mis-coordination, and the probability of whether some domain feature is commonly known

across the team. In order to decide whether to communicate, the value of communication is
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balanced with the cost of communicating. Unfortunately, however, both the cost and value of

communicating is specified in terms of the semantics of the joint intentions used within STEAM,

making it difficult to generalise. In more detail, depending on the joint plan being executed, costs

are attached to mis-coordinating and probabilities of mutual knowledge are attached to specific

domain features — all these values are defined by the system designer. Also, communication

is assumed to be myopic and so the future impact of communication is not taken into account.

In this context, Becker et al. (2005) show that this myopia leads to inefficient coordination and,

hence, inefficient problem solving. A second problem with STEAM is the distributed planning

nature of the protocol which leads to a team that is very dependent on communication, and also

obscures the communication decision problem that is studied here. A more desirable system

would be able to perform reasonably well with zero communication, and communication should

only improve this level of performance, which, unfortunately, is not the case with STEAM.

In conclusion, teamwork models allow the agents to explicitly reason about the coordination

problem, which has potential uses for valuing communication, and consequently, tackling re-

search challenge 2, but they have a large communication overhead because they perform dis-

tributed planning. When communication is highly restricted, such as in the domains considered

in this work, then these mechanisms are not robust as the agents need to perform well in isolation

for much of the time, and as a result these models do not meet research challenge 3. Further-

more, the cost of communication is expressed as an arbitrary penalty and so this does not meet

research challenge 1. Thus, for the purposes of this work, these models will only be considered

as an approach for calculating the communication valuation from now on (see Section 2.5 for

more details). The next section introduces two different ways to coordinate based on messages

passing, without modelling the intentions of the other agents.

2.2 Message Passing Coordination

This section introduces two coordination mechanisms where message passing is the explicit

method of coordination — these messages are assumed to alter the state of the other agents

in the team. This in contrast to intentional coordination where communications take the form

of commitments whereas here messages are problem information and partial solutions. We

look at these models because communication is the explicit coordination mechanism making it

appropriate for our problem. Furthermore, understanding how a message alters other agents’ be-

haviour is key to rational communication and research challenge 2. Agents in both mechanisms

model the other agents in different ways. The first approach uses Distributed Constraint Satis-

faction Problems (DCSPs) to model agents as sets of constraints between the values the agents

can take, and uses messages to inform the other agents of the valuations they might use. The

second approach, Bayesian Networks, allows agents to model the information the other agents

know and uses messages to perturb this.
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2.2.1 Distributed Constraint Satisfaction Problems

DCSPs model the coordination problem as a constraint satisfaction problem (CSP), but where

constraints and variables are distributed amongst multiple agents (Yokoo et al., 1998). Here,

constraints are rules relating the value of one variable to another (perhaps held by a different

agent). A solution is an assignment of values to variables which satisfies all constraints. In

order to reach a solution, communication is used to distribute possible assignments. In this

context, coordination is needed in the generation and distribution of possible assignments, in

order to speed convergence towards a solution, and reach a solution at all for many problems.

More formally, a CSP consists of n variables x1,x2, . . . ,xn, whose values are taken from finite,

discrete domains D1,D2, . . . ,Dn, respectively, and a set of constraints pk(xk1, . . . ,xk j) on their

values. A constraint is a predicate that is defined on the Cartesian product Dk1×·· ·×Dk j. This

predicate is true iff the value assignment of these variables satisfies this constraint.

Given the interest in this area, there are several algorithms for solving these problems such

as Asynchronous Backtracking (Yokoo and Hirayama, 2000), Asynchronous Partial Overlay

(Mailler and Lesser, 2004), Dynamic Programming Optimisation (Petcu and Faltings, 2005),

and Adopt (Modi et al., 2005). These algorithms use a communication network between agents

to distribute partial instantiations and information about whether these instantiations are consis-

tent.

In more detail, a DCSP is an explicit crystallisation of the coordination problem with communi-

cation. Specifically, constraints represent interdependencies between the actions (instantiations)

the agents can take, and communication is used to manage these interdependencies. They are

most suited to studying global behaviour from repeated local interactions, in domains where not

all agents interact with each other (Tambe et al., 2005). This is because it is simple to assess

whether coordinated global behaviour is emerging from agents (simply count the number of un-

satisfied constraints) who can only interact with a few (not all) other agents. Unfortunately, it

is hard to model uncertain stochastic domains with this formalisation, because the constraints

represent interdependencies between agents — not agents and the world. As a result, the prob-

lem must be represented very abstractly (i.e. in terms of task allocations) and so cannot easily

capture properties of the domain which influence communication (research challenge 1 and 2).

Therefore, this model will not be considered in this work. Other coordination mechanisms (in-

troduced later) will match our problem more closely. At the same time, however, there are

several interesting questions related to communication in this domain, particularly concerning

the balance between distributing partial solutions and the cost of so doing. Whilst we do not

pursue this mechanism further, we foresee that techniques for valuing communications will be

equally applicable in DCSPs. We now consider an approach which uses messages in a similar

way, but does not represent the problem in such an abstract way — Bayesian Networks.
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2.2.2 Bayesian Networks

In general, Bayesian Networks model the coordination problem as the distribution of knowledge

in the problem; that is, the probability of agents knowing about features of the problem and

intentions of other agents are modelled in a Bayesian Network. Here, coordination is seen as the

problem of maintaining good models of the knowledge of the other team members and, from

this, predicting what they will do. This is then used to estimate the impact of communication on

the other agents’ knowledge and hence gives a value that can be used in a decision problem —

a technique for solving research challenge 2.

An example of this method is in the work of Gmytrasiewicz and Durfee (2000). Here, self-

interested agents are studied, but the ideas they develop carry over to teams of co-operating

agents if they have an identical utility function. In more detail, an agent models the knowledge

of other agents in a Bayesian Network. Consequently, the modelled agent is also modelling the

first agent, so there is inherent recursion in this approach. As a result, a Recursive Modelling

Method (RMM) is used and, in this case, the recursion is limited to two levels because otherwise

the model would quickly become intractable, and, moreover, the authors maintain that this is a

good approximation in any case. From this, the value of communication is calculated by an

agent as the expected gain by that agent if it modifies the knowledge of the other agent so that it

takes some expected action. This value is then used to decide what to communicate.

The idea of modelling knowledge for coordination can be taken forward to include planning for

the entire problem. To this end, Shen et al. (2001, 2003) develop a hybrid approach of Bayesian

Networks and Markov Decision Processes (MDPs are discussed in the next section). Here, a

Bayesian Network is used to represent the distribution of evidence between the agents. This

evidence is essentially the current state of the knowledge space. Based on this representation

a communication policy is derived, which distributes the agents’ individual knowledge in or-

der to solve some joint goal (this is done using a MDP). This technique follows Gmytrasiewicz

and Durfee and Tambe in that communication has some value based on how it transforms the

knowledge space of the agents in the team. Obvious problems with this approach, however, in-

clude how to dynamically construct the Bayesian Networks and how the communication policy

transforms the Bayesian Network for continued interactions.

From the above description, it is clear that Bayesian Networks are a useful model for represent-

ing knowledge in a team, and thus can be used to value the manipulation of knowledge in a team.

However, they say less about the general coordination problem with communication, since they

do not explicitly consider both actions and communications (making the link between research

challenge 1,2 and 3 difficult), and it will be seen that decentralised POMDPs fit the domain more

closely. Furthermore, Bayesian Networks are inherently myopic (hence the requirement of an

MDP to plan ahead) and it is clear that a valuation of communication should consider the future

impact in order to be accurate. Therefore, Bayesian Networks will only be considered as a valu-

ation for communicating from now on (see Section 2.5 for more details). We now consider agent

coordination from the perspective of game theory — a more formal theory of agent interaction.
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2.3 Game Theoretic Coordination

This section will describe some of the game theoretic paradigms used for coordination in agent

teams. Game theory is a well studied field covering many of the problem characteristics we

consider. It is especially concerned with deriving the optimal strategy given another agents

strategy — which is part of the rational communication problem and key to achieving research

challenge 3. Specifically we detail Bayesian games of incomplete information which aim to

specify strategic actions based on imperfect knowledge of the other agents and stochastic games

which capture many of the domain features we are interested in. Before this, however, it is useful

to present some basic game theoretic ideas including the concept of games as a representation

of agent interactions and solution concepts within these games.

2.3.1 Games and Strategies

There are many dimensions to games. Games can be presented in strategic (or normal form),

where agents decide upon a strategy once and for all, and all decisions are made simultaneously,

or in extensive form which explicitly models the timing of decisions and actions. Games can

be repeated in the future, allowing players to adapt their play or learn about their opponents.

In such cases, the game played in each round is referred to as the stage game, while the com-

plete sequence of games is typically called the repeated game. In cases where the stage game

varies (possibly probabilistically) in each round, the sequence of games is called a stochastic

game. Furthermore, games can be differentiated by their information structure. In games with

perfect information, players are completely informed about other player’s utilities or payoffs,

while under imperfect information they are not: games with imperfect information are known

as Bayesian games. In this thesis we focus on stochastic games since the problem can be in

many states and actions cause uncertain transitions between these states. Furthermore, these are

states of incomplete information because the agents do not know about the complete state of

the problem or other agents. For a good discussion of these distinctions and their importance in

game theory see Fudenberg and Tirole (1991).

In more detail, a non-cooperative game in strategic form is a tuple Γ = 〈N,(Si,ui)i∈N〉, compris-

ing:

• a set of players, N = {1, . . . ,n},

and for each i ∈ N:

– a set of strategies Si,

– a utility function ui : S→ R.
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We use the terms action and pure strategy interchangeably throughout the review. The set of

joint strategy profiles S is the Cartesian production of all Si:

S = ∏
i∈N

Si,

and a particular joint strategy profile s = {s1, . . . ,sn} ∈ S is referred to as an outcome of the

game. The complimentary set of si is denoted s−i, and when discussing a particular player’s

choice of strategy, the notation s = {si,s−i} will be used. A utility function specifies a player’s

preferences over outcomes by the condition that, if and only if the player prefers outcome s′ to

outcome s′′, then ui(s′)> ui(s′′).

Against this background, the Nash equilibrium is a widely applicable solution concept, and the

most important solution concept in game theory.

Nash Equilibrium
A strategy profile s∗ is a Nash equilibrium if each player’s strategy is a best response to the

other players’ equilibrium strategies:

ui(s∗i ,s
∗
−i)−ui(si,s∗−i)≥ 0 ∀ si, ∀ i. (2.1)

Intuitively, in a Nash equilibrium, no individual player has an incentive to deviate to a different

strategy.

The Nash equilibrium in definition 2.3.1 is a pure strategy Nash equilibrium, as in equilibrium

each player selects a strategy with a probability of one. However, the equilibrium concept can

be extended to include the case when a player’s best response is to randomise its selection of

strategies. It is assumed that each player has preferences defined by lotteries or a set of probabil-

ity distributions over strategy, Σ(Si)∈ Σ(S), called “von Neumann-Morgenstern preferences”. A

probability distribution over mixtures of pure strategies σi(Si)∈ Σ(Si) is called a mixed strategy,

and the support of a mixed strategy is the elements of Si to which σi assigns a positive probabil-

ity. The utility function of the mixed extension of the game is given by the expected value under

ui of all players’ joint, independent lottery σ ∈ Σ over S:

ui(σi,σ−i) = ∑
s∈S

(
∏
j∈N

σ j(s j)

)
ui(s). (2.2)

Following this, the concept of Nash equilibria can be extended to mixed strategies, Bi(σ−i). A

Nash equilibrium corresponding to a joint profile of mixed strategies is called a mixed strategy

Nash equilibrium, and is defined as:

ui(σ
∗
i ,σ
∗
−i)−ui(σi,σ

∗
−i)≥ 0 ∀ σi, ∀ i, (2.3)
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or equivalently:

∑
s∈S

(
∏
j∈N

σ
∗
j(s j)

)
ui(s)−∑

s∈S

(
n

∏
j 6=i∈N

σ
∗
j(s j)

)
σi(si)ui(s)≥ 0 ∀ σi, i. (2.4)

The set of mixed strategy Nash equilibria include any pure strategy Nash equilibria, furthermore,

Nash proved that any strategic game with a finite number of strategies has a mixed strategy Nash

equilibrium point (Nash, 1950). It can be seen that proscribing a method which achieves a Nash

Equilibrium would solve research challenge 3. Now these games are perfectly observable, which

is not appropriate in our setting. In the next sections we will consider games with a partially

observable nature.

2.3.2 Bayesian Games

In some situations, the agents in a system may not be able to observe the actions of other agents

in the system. As such, they may have to act without knowing the true state of the world. These

situations are known as games of imperfect information. In other situations, agents may not

know the characteristics of other agents in the system. This is known as incomplete information,

and usually refers to situations where players do not know the preferences (or utility functions)

of other players. Harsanyi (1967) introduced the idea that in such games “nature” moves first

to allocate “types” to players. In this way, incomplete information about a player’s preferences

is treated as imperfect information about nature’s move. Both situations are modelled by a

Bayesian game, which is an extension to the simple normal form introduced earlier.

Formally, a Bayesian game is a tuple Γ = 〈N,Ω,(Si,Θi,ζi, pi,ui)i∈N〉, comprising:

• a set of players N = {1, . . . ,n},

• a state space Ω,

and for each player i ∈ N :

– a set of strategies Si (S = S1× . . .×Sn),

– a set of possible types Θi,

– a signal function ζi : Ω→Θi,

– a prior belief, a probability measure pi : Ω→ [0,1], for which pi(ζ
−1
i (θi))> 0 holds

for all θi ∈Θi, and

– a utility function ui : S×Ω→ R.

In this model ω ∈ Ω is interpreted as a particular “state of nature” (i.e. a particular type profile

of all players). The signal function maps from states to types, such that ζi(ω) = θi is the type of

player i in state ω. Then the conditional probability pi(ω|θi) summarises what i believes about
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the state of nature (other players’ types) given its own type. There exists a solution concept, the

Bayes-Nash Equilibrium, where on average no individual player can deviate to a better strategy,

given their prior belief distribution over other players’ types or strategies.

Against this background, the use of communication in games of complete and incomplete infor-

mation to implement Nash and correlated equilibria has been studied extensively (see Gerardi

(2004) for a review). In particular, Krishna (2007) shows that communication can extend the set

of Bayes-Nash equilibria in 2 player games. However, the communication medium employed

in this line of work makes it inappropriate for our problem. Specifically, communication is of-

ten mediated (it involves a disinterested third party), goes in only one direction (from a more

informed sender to a less informed receiver) or involves cheap-talk (free communication before

the game is played). Crucially, communication is always assumed to be free in these models.

This makes these techniques lacking when it comes to dealing with research challenge 1 and 2.

Finally, these games are repeated with the same characteristics. They lack a representation of

how time or action changes the game being played. The next section will address this flaw.

2.3.3 Stochastic Games

In these games, the world can be in one of a set of states (in each state the game being played

is different — different strategies are available and or different utilities are available). The

strategies taken in one stage game change which stage game is played next. This captures

many of our problem characteristics. More formally, a stochastic game (Owen, 1982) is a tu-

ple (n,S,A1...n,T,R1...n), where n is the number of agents, S is a set of states, Ai is the set of

strategies available to agent i (and A is the joint action space A1× ·· ·×An), T is a transition

function S×A×S ∈ [0,1], and Ri is a reward function for the ith agent S×A ∈R. The solution

concept here is to determine a course of action for an agent in this environment. Specifically, we

want to learn a stationary, though possibly stochastic policy, ρ, that maps states to a probability

distribution over its actions. The goal is to find such a policy that maximises the agent’s dis-

counted future reward with discount factor γ. Now, this game is suitable for domains where the

agents can observe the state, but this is not always the case. So, there is an extension to environ-

ments where the results of strategies are not fully observable, namely the Partially Observable

Stochastic Game (POSG) (Oliehoek and Vlassis, 2006). We will see later that this formalisation

is analogous to decentralised POMDPs (see Section 2.4.2) and so we will not consider it here.

To date, most research in this area has focussed on Nash equilibria as a solution concept. How-

ever, Binmore (1990) and Kadane and Larkey (1982) have indicated this is only useful for

describing a system which has reached a stable state — and is less useful as a general control

paradigm needed for the sorts of domains we consider here. This is because there may be multi-

ple non-unique equilibria to choose between and these equilibria do not specify a strategy when

other agents may not be acting according to their own equilibrium strategies (incompleteness).

In fact, in our work we will use the concept of best response to the current state rather than the
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other agents’ strategy because, as we will see later, it is a standard solution concept in sequential

decision making — which suits our problem domains very well.

Against this background, we have introduced the game theoretic paradigms which most closely

resembles our problem (Stochastic and Bayesian games), but it is clear that Nash and Bayes—

Nash Equilibria are not appropriate as solution concepts in this domain. Specifically, the sorts of

problems we consider in this work are unlikely to ever reach a stable state because of the degree

of uncertainty involved and consequently the problem of incomplete strategies is particularly

difficult. Consequently, we will consider optimising the best response to a given state. Also,

they do not consider communication and its costs explicitly (thus ignoring research challenges 1

and 2), unlike the Decision Theoretic models of coordination we will introduce next. As a result,

we will address some of the flaws relating to communication and stability in later work (see

Chapter 7 where we have a static domain making Game Theory an attractive concept because of

research challenge 3) but focus most of our work in the more general and expressive sequential

decision making formalism.

2.4 Sequential Decision Theory

This section introduces a general model of sequential decision making for single agents and then

for the coordination of teams in the partially observable, stochastic domains we consider in this

research. First the basic, fully observable, single agent model will be described — the Markov

Decision Process. Then, following that, an extension to partially observable domains will be

given. Recall that partial observability is a feature of the domains considered in this research.

After this, the centralised multi–agent version is introduced and, finally, the decentralised multi–

agent formalisation is given. This final model matches our problem and requirements most

closely, and forms the main point of departure for our work. We will consider decentralised

models which explicitly model the team and those which do not, highlighting the advantages

and disadvantages of both approaches.

2.4.1 Single Agent Decision Making

A Markov Decision Process (MDP) is a formal model of control, defined by the tuple M =

〈S,A,P,R〉 where:

• S is the state space,

• A is the action space,

• P is the transition probability function. P(s ∈ S,a ∈ A,s′ ∈ S) ∈ [0,1] is the probability of

moving from state s to state s′ when the agent takes action a,
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• R is the reward function. R(s ∈ S,a ∈ A,s′ ∈ S) ∈ R returns a real-valued reward for

executing action a in state s, resulting in state s′.

The solution to an MDP is a policy π, a mapping from states to actions. The optimal policy

gives the largest cumulative reward over an infinite horizon ∑
∞
t=0 γtR(st), where t is the timestep

of the process and γ is the discount factor for future reward. It is the optimal policy that we aim

for in research challenge 3.

In more detail, this model is suitable for modelling a single agent inhabiting a fully observable

domain. However, the main features of our domain are partial observability and several interact-

ing agents. As a consequence, the model must be developed further. The extension of the MDP

to domains where the complete state of the problem cannot be observed reliably is the Partially

Observable Markov Decision Process (POMDP) (Kaelbling et al., 1998). This is defined by the

tuple POM = 〈S,A,Ω,O,P,R〉 where:

• S is the state space (as above),

• A is the action space (as above),

• Ω is the observation space,

• P is the transition probability function which now accounts for possible observations.

P(s ∈ S,a ∈ A,ω ∈ Ω,s′ ∈ S) ∈ [0,1] is the probability of moving from state s to state s′

when the agent takes action a and receives observation ω,

• O is the observation function. O(s ∈ S,a ∈ A,s′ ∈ S,ω ∈ Ω) ∈ [0,1] is the probability of

observing ω when in state s and taking action a resulting in state s′,

• R is the reward function which also now accounts for possible observations. R(s ∈ S,a ∈
A,ω∈Ω,s′ ∈ S)∈R returns a real-valued reward for executing action a in state s, resulting

in state s′ and receiving observation ω.

This formalisation is used in domains where the state cannot be observed directly, but the agents

receive observations, which is true of the domains considered in our work. In this case, a policy

is a mapping from belief states to actions. Here belief states are probability distributions over the

actual state and are updated using Bayesian reasoning about observations and prior knowledge.

In summary, this model moves closer to our requirements than the MDP, because it models the

uncertainty and partial observability in the environment, but it still does not explicitly consider

multiple agents. The next models presented will address this challenge.

2.4.2 Decentralised Decision Making

MDPs and POMDPs are only appropriate for single agent problems, or MAS problems where

the other agents are considered to be part of the environment. If the agent needs to explicitly
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consider the actions of the other agents (i.e. to coordinate) then a model is needed which con-

siders each possible combination of actions that the team could take (joint actions). Any such

model needs to be able to identify individually coordinated joint actions (i.e. to ensure actions

taken by one agent are not cancelled out by another’s action) and sequences of coordinated

joint actions (i.e. two agents co-operatively pushing a box towards a goal past an obstacle). In

this context, the first MAS extension to the MDP is the Multi–Agent Markov Decision Process

(MMDP) introduced by Boutilier (1999), which is a normal MDP but with joint actions and a

global state based on the state of each agent. Now, the MMDP consists of a set of agents, each

with their own action and observation spaces, defined by the tuple MM = 〈α,{Ai}i∈αS,P,R〉
where the symbols are as for the MDP except:

• α is a finite collection of n agents,

• each agent i ∈ α has at its disposal a finite set Ai of individual actions. An element

〈a1, . . . ,an〉 of the joint action space, A =×Ai, represents the concurrent execution of the

actions ai by each agent i.

• P is the transition probability function which is the same as for the MDP but is defined

over joint actions. P(s ∈ S,a ∈ A ,s′ ∈ S) ∈ [0,1] is the probability of moving from state s

to state s′ when the agents take action a,

• R is the reward function which is the same as for the MDP but is defined over joint actions.

R(s ∈ S,a ∈ A ,s′ ∈ S) ∈ R returns a real-valued reward for executing action a in state s,

resulting in state s′.

The MMDP is centralised because all agents know the global state (and hence can be reduced to

an MDP where the joint actions are represented as primitive actions). Typically, the extension

to the decentralised domain models the problem as several interacting MDPs and includes the

possibility of communication. In this case, communication is used to share information between

the MDPs and can represent something as simple as the local perception of the global state, or it

can be more complex and cover items like intentions and plans (see Section 2.1). We now deal

with such decentralised models.

In more detail, an alternative to the teamwork models of Section 2.1.2 is decentralised Par-

tially Observable Markov Decision Processes (Dec-POMDPs), which have been introduced by

a number of authors including Zilberstein and Goldman (2003), Xuan et al. (2001), Peshkin

et al. (2000), and Pynadath and Tambe (2002). These all describe decentralised versions of the

POMDP. In this context, a good representative example is the dec POMDP com model from

Zilberstein and Goldman, which is a decentralised POMDP with a separate alphabet describing

the possible communications. Many other models, such as Xuan et al. and Pynadath and Tambe,

choose to restrict the communication alphabet to be the same as the observation alphabet. Fi-

nally, Peshkin et al. is derived from a Partially Observable Stochastic Game (see Section 2.3.3)

but makes the payoff function for each agent identical and consequently can be combined with
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these models. Apart from these relatively minor differences, the models are largely equivalent.

In particular, the difference between centralised and decentralised MDPs is that the former is a

single MDP that can be solved by each agent or a central authority — since the state of each

agent is known to all others. In a decentralised version, however, each agent has its own MDP

to solve, with the other agents corresponding to a partially observable part of that MDP. We will

describe the dec POMDP com since it is the most general.

In more detail then, the dec POMDP com is defined by the tuple (for 2 agents) DECPOM =

〈n,S,A ,Σ,CΣ,P,R,Ω,O,T 〉 where:

• n is the number of agents.

• S is the global state space.

• A = ×Ai is the joint action space, with Ai the action space for agent i. An element a =

〈a1, . . . ,an〉 of the joint action space represents the concurrent execution of the actions ai

by each agent i.

• Σ is the alphabet of communications with σi ∈ Σ a message sent by agent i. σ is a joint

communication from set Σn. εσ is the null communication, i.e. sending an empty message.

• CΣ is the cost of communicating an atomic message. This cost is 0 for εσ.

• P is the transition probability function. That is, the probability:

P(s ∈ S,a ∈ A ,s′ ∈ S) ∈ [0,1] (2.5)

of moving from state s to state s′ when the agents take joint action a.

• R is the reward function. This returns a real-valued reward:

R(s ∈ S,a ∈ A ,σ ∈ Σ
n,s′ ∈ S) ∈ R (2.6)

for executing joint action a and sending joint communication σ in state s, resulting in state

s′.

• Ω = ×Ωi is the joint observation space, with Ωi the observation space for agent i. An

element ω = 〈ω1, . . . ,ωn〉 of the joint observation space, represents the concurrent obser-

vation ωi by each agent i.

• O is the observation function. It is the probability:

O(s ∈ S,a ∈ A ,s′ ∈ S,ω ∈Ω) ∈ [0,1] (2.7)

of joint observation ω when in state s and taking joint action a resulting in state s′.

• T ∈ N+ is the (possibly infinite) time horizon in which the agents take their actions.
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The solution to the decentralised model consists of two policies: one is the normal action policy

for the POMDP associating belief states with actions and the other policy associates belief states

with communication acts. Before we analyse this model further, it is clear that it represents a

good fit for many of our requirements. Specifically, it considers uncertain, stochastic, partially

observable domains and explicitly considers the other agents in the environment. Furthermore,

a solution to this model is appropriate for research challenge 3.

Now that both centralised and decentralised models have been introduced, it is interesting to

consider the link between them. To this end, Xuan and Lesser (2002) consider how to convert

a centralised MDP formalisation into a decentralised version with a communication strategy.

The motivation for this work comes from the fact that solving centralised MDPs has PSPACE

complexity (Papadimitriou and Tsitsiklis, 1987), whilst decentralised MDPs has NEXP-time

complexity (Bernstein et al., 2000). Because of this, it is sometimes desirable to generate plans

using centralised MDPs and then convert them to decentralised versions. An interesting aspect

of this work is that the conversion can be modified to balance global utility with communication

overhead. This transformation is, in spirit, similar to the one we propose using reward shaping.

However, specific communications are not evaluated individually (only a frequency of commu-

nicating is defined) and, furthermore, communication is not valued directly in any way as per

research challenge 2. This model represents a different approach to managing communication,

but it is hard to apply in large problems because even generating multi–agent MDP policies is

computationally challenging (Boutilier, 1999). As a result, this does not represent a sustainable

approach. Following this, the rest of the section will focus on decentralised models and their

uses.

It is interesting to note that Decentralised POMDPs do not explicitly model the beliefs of the

other agents — they have a flat belief space concerning only the physical state of the problem. A

different extension to the single agent POMDP model Interactive POMDPs (I-POMDPs) (Gmy-

trasiewicz and Doshi, 2004a,b, 2005) does consider the beliefs of the other agents within each

agent’s own belief space. This follows from the work of Gmytrasiewicz and Durfee with the

RMM (see Section 2.2) being replaced by a more general POMDP structure. Consequently,

similar problems and benefits are manifest. The benefits of this approach are clear — sophisti-

cated models of other agents allows a more refined analysis of their behaviour and better predic-

tions of their actions. Conversely, these beliefs can be nested to infinite levels and the necessary

increase in the belief space means that, in general, only approximate solutions are computable.

The increase in complexity can be seen in the formal definition IPOM = 〈ISi,A,Ti,Ωi,Oi,Ri〉
where ISi is the set of interactive states defined by ISi = S×N−1

j=1 M j for N agents, S physical

states and M j models of other agents. M j can be composed of subintentional models (history

independent or no-information) or intentional models (modelling beliefs and assuming rational-

ity). The intuition in our research is that good performance can be achieved without modelling

other agents — but by an efficient communication policy which follows research challenges 1

and 2. Furthermore, an assumption of I-POMDPs is model non-manipulability (MNM) which

says that agents do not have the ability to modify the models of other agents directly. The ability
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to communicate breaks this assumption. Consequently, we will only consider I-POMDPs as a

benchmark for comparison.

Considering Decentralised POMDPs further, they can be classified in several ways. The models

described above can exhibit Transition Independence and Reward Independence (Becker et al.,

2003). The use of communication influences whether a particular decentralised POMDP has

these properties. In more detail:

Transition Independence. A 2-agent DEC-MDP is said to be transition independent if there

exists a P1 and P2 such that

P(s′1|(s1,s2),(a1,a2),s′2) = P1(s′1|s1,a1)P(s′2|(s1,s2),(a1,a2),s′1) = P1(s′2|s2,a2) (2.8)

That is, the new local state of each agent depends only on its previous local state and the action

taken by that agent.

Reward Independence. A 2-agent DEC-MDP is said to be reward independent if there exists

an R1 and R2 such that

R((s1,s2),(a1,a2),(s′1,s
′
2)) = R1(a1,a1,s′1)+R2(s2,a2,s′2) (2.9)

That is, the overall reward is composed of the sum of the two local reward functions, each of

which depends only on the local state and action of one of the agents.

Against this background, it can be seen that if both of these properties hold, then the decen-

tralised POMDP can be trivially reduced to two separate POMDPs. Unfortunately our problem

domains do not exhibit either of these properties — rewards depend on the actions of the agents

in some non-additive way and communication represents an action of one agent which influences

the other agents in some explicit or non-explicit way (transition independence is equivalent to

MNM from I-POMDPs and communication breaks this property). Consequently, the focus of

this work is the general communication model and so we need the most general decentralised

POMDP formalisation to provide a setting in which rational communication is need. However,

we will see how reward shaping can be used to achieve this separation.

In more detail, Decentralised POMDP models allow an interesting study of rational or decision

theoretic communication. In particular, Becker et al. (2009) defines the Value of Communication

as the difference in expected reward if communication happens or not, in the decentralised MDP

case with transition and observation independence. These assumptions are relaxed in the decen-

tralised POMDP case in Carlin and Zilberstein (2009). Whilst these models tackle research

challenge 2, however, in both cases communication is assumed to be myopic and furthermore

these models do not consider a number of key issues. Specifically, the cost model for messages

is dependent on the message being sent, but not on the state of the agent (research challenge 1).

As a result, this does not consider the case that in some states (e.g. due to the geographical loca-

tion of the agent) communication is more expensive than in others. Moreover, whilst the model
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does consider unreliable communication in that the communication act may fail, it assumes that

the act will either succeed for all agents in the broadcast or for none of them. This is not a

realistic assumption in this research because we are considering domains where communication

availability is not consistent across the state of the problem (e.g. some agents may be out of

communication range). More subtly, communication has a cost, but the model does not account

for the benefits that communication may bring except implicitly in terms of group synchroni-

sation. In this work a different approach is taken which models the benefits of communicating

explicitly. In particular, valuing communications explicitly should allow the model to only com-

municate when it is the most beneficial thing to do (in terms of the future reward that can be

obtained after communicating) — the key requirement of this work in research challenges 2 and

3.

To sum up then, decentralised POMDPs are a well studied formal model for the coordination

problem, and there are many reasons to use them in this research. They allow the separation

of the communication and acting problem, although at this time there is no result indicating

whether the two policy solution is better than treating communications as primitive actions and

generating a single policy. The intuition is that the agents should always be able to act and com-

municate at the same time, but restricting this can lead to quicker policy computation, because

there is only one policy to find. Furthermore, Decentralised POMDPs and POSG (considered to

be equivalent) are well equipped to deal with stochastic, partially observable domains. They can

model both the problem and the team, making them very flexible. Finally, more complex plan-

ning can be achieved by casting the model into the future. This makes Decentralised POMDPs

and POSG the most appropriate formalisation to use in this research. As a result, Decentralised

POMDP models will form the point of departure for this research, and so it is important to inves-

tigate policy computation algorithms for these models since this is needed to provide a solution

to research challenge 3. This is because we need to compare the policies generated with and

without communication valuation, and their respective performance. This will be done in the

next section, where the solution classes will be defined with respect to the challenges defined

earlier.

2.4.3 Policy Generation

Having decided to adopt a decentralised POMDP solution, we must now consider the algorithms

which can solve such models and the influence of communication within these solutions. The

solution to the decentralised model consists of two policies: one is the normal action policy for

the POMDP associating belief states with actions and the other policy associates belief states

with communication acts. When a communication occurs, the messages are typically broadcast

to all agents and thus provide a means to synchronise the agent’s knowledge of the global state.

In more detail, a policy is typically represented as a set of α vectors (each representing the

expected reward for following a specific action). These vectors are defined across the belief
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space, and the agent simply selects the action corresponding to the α vector which is maximal

at the belief of that agent. This gives the optimal action at that point.

With this established, there are several ways to solve decentralised POMDPs and it is important

to consider what POMDP solution classes are appropriate for the sizes of problems considered

in this research. In particular, POMDP solvers can be divided into the following three classes;

each of which will be discussed in turn in the remainder of this section:

• Offline: computation before the problem starts is used to generate an optimal or approxi-

mate policy.

• Online: agents select actions during the problem, rather than following a pre-computed

policy.

• Hybrid: an approximate policy is generated offline, and online computation is used to

improve the accuracy.

Offline algorithms can be divided into optimal and approximate solutions. The former process

the model offline to generate an optimal plan for each agent to follow. There are optimal so-

lutions for finite and infinite horizon policies (Hansen, 1998). However, they require a fully

specified model and, for anything except the smallest problems, an intractable amount of time

and memory. Because of this intractability, several approximate methods have been proposed

(Poupart and Boutilier, 2003), which can solve slightly larger problems, but still not the sorts of

sizes seen in typical multi–agent domains. There are also error bounded approximate algorithms

such as Point-Based Value Iteration (Pineau et al., 2003) where the problem is solved for a num-

ber of belief points rather than the entire belief space and the error is bounded by the density

of the belief points considered. However, as a result, these problems are too large for exact or

approximate offline policy computation (Hauskrecht, 2000).

Instead of generating policies offline before acting on the problem, the agents can use online al-

gorithms to generate policies during the problem. Here, the agents generate single or multi-step

plans whilst acting on the problem. These solutions have the advantage of not requiring large

amounts of offline computation beforehand (although some algorithms, such as BI-POMDP

(Washington, 1997), use offline computation to improve the accuracy of the policies they gener-

ate), but, in general, they still require a fully specified model. An example of this is Paquet et al.

(2005), who details an algorithm for online search in a problem formulated as a POMDP —

Real Time Belief Space Search (RTBSS). Following this algorithm, at each time step the agent

searches a factored belief space of reachable states in order to find the action with the high-

est expected reward. In this algorithm, a heuristic function is required to give an estimate of

the utility of each belief state. This algorithm has shown good results in domains as large as

RoboCupRescue, which is too large for offline techniques, although an obvious difficulty is how

to generate the heuristic function used to prune the search space. This represents a closer fit to

our requirements since large problems can now be considered.
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There are also hybrid approaches that utilise online learning of the POMDP model. In general,

these methods learn something about the underlying model, such as an approximate solution,

and then use online algorithms to improve this approximate solution in real-time. This is a

useful approach since online approaches are often easier to compute but have a lower accuracy

— and this technique aims to achieve the benefits of both. In more detail, AEMS (Ross and

Chaib-draa, 2007) is an example of this which provides better results than Paquet et al, at the

expense of solving the underlying MDP offline. Unfortunately, the same limitations as in the

case of online algorithms are evident in this approach, but also with the same limitations as

offline algorithms. Consequently, they are of interest but not useful in our problem domain.

Up to this point, all of the above algorithms were originally designed for single agent models.

But, in order to apply these to the MAS case, the action selection mechanism needs to consider

the other agents in order to coordinate (i.e. locally optimal action selection for each single agent

may not lead to optimal team performance), and, as a result, the problem becomes much larger.

However, models that explicitly consider the MAS case can reduce the size of the problem by

exploiting interaction between the agents. In more detail, in problems with suitable structure,

agents can be optimised independently most of the time and only jointly at certain pre-defined

points. This reduces the computation needed but is only useful for problems exhibiting a suit-

able structure. This is seen in the solution detailed by Szer and Charpillet (2005) which finds

optimal policies for Decentralised POMDPs, but ignores communication and is only suitable for

problems where agents interact only at well defined points. Similarly, in the ACE-PJB-Comm al-

gorithm, Roth et al. (2005) consider communication by assuming it is free in the offline planning

stage, and then reason about it online. Following this algorithm, at each step, agents calculate

the joint action with and without sending its observation history. If the communication version

results in a better outcome, then the observation history is communicated. We will dicuss this

algorithm in more detail in Section 2.5.1.1, however for now this approaches research challenge

2 and we view this algorithm as representing the state-of-the-art in online valuations for com-

munications in decentralised POMDPs, and, as such, we will compare the performance of our

mechanism against it in later chapters. However, this model relies on maintaining joint beliefs,

which grow as no communication action is taken. As a consequence, the joint beliefs must be

approximated to make the algorithm tractable for small problems, so it is very difficult to extend

it to problems as large as RoboCupRescue. The online search method is also seen in POSGs.

Specifically, Emery-Montemerlo et al. (2004, 2005), approximate the whole problem as a series

of single step Bayesian games. This closely parallels the approaches taken in Paquet et al., but

the algorithm is explicitly multi–agent. Unfortunately, however, it can only be used myopically,

or it suffers from the same intractable complexity in the planning case, making it inappropriate

for our problem.

To sum up, the requirements for an action selection mechanism in decentralised POMDPs are

that it must be tractable for large problems and consider the MAS case explicitly. From this

review, it is clear that online algorithms are the only methods applicable for large problems,

however, in order to meet research challenge 3 we must understand the loss in utility that comes
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from using an online algorithm. Thus, in this research we will extend RTBSS from Paquet et al.

(2005) to the MAS case, since it has shown good results in large problems, with no offline

computation.

2.5 Rational Communication

This section considers the issue of how inter-agent communication can be valued as per research

challenge 2. Specifically, the question is how the sender can estimate the value to the team of a

particular communication. This is the core question of this research. Once that value is known,

then reasonably standard decision theoretic models can select the most appropriate action or

communication. There are two clear models for valuing communications in coordination —

mis-coordination and information. We also consider formal agent communication and there are

a number of other approaches that are less easy to classify, that is, they are not specified in terms

of the general coordination mechanisms described previously, but instead are part of more ad-

hoc coordination models. Nonetheless they still represent attempts at rational communication

and should be considered.

Consequently, we first cast the value of communication as the improvement in coordination

that occurs. This involves modelling the coordination problem explicitly, and perturbing it to

to see how it changes with communication. This makes it a good approach for tackling all the

research challenges from Section 1.1. After this a valuation based on the information content of

a message is considered. This uses information theory to measure communications — which,

as we will see, makes it difficult to reason about research challenge 3. We then consider formal

agent communication (which is a distinct problem to the one we are tackling, however it is worth

looking at why that is). Finally, some heuristic valuations of communication are analysed to see

if they offer any inspiration in terms of what makes communication valuable for the general

problem.

2.5.1 Valuing Coordination

This section considers how to reason about the coordination problem explicitly. If the problem

can be reasoned about, then a value for improving coordination though communication can be

derived. This is referred to as the value of communication.

In this context, Section 2.1 showed that teamwork models are capable of reasoning about the

coordination problem. With this in mind, an extension to STEAM in Zhang and Tambe (2000),

STEAM-L, uses an MDP to analyse the future impact of coordination activities. Essentially the

model attempts to ascertain the cost of attaining coherence when the agent is not making task-

achieving actions in the meantime. This is an important advance in the context of this review as

our ultimate aim is to build a model which can calculate the value of coordination in environ-

ments with restricted communication. Unfortunately, however, this approach is embedded in the
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STEAM model, and consequently has all of the drawbacks mentioned earlier. Other techniques

(discussed below) also attempt to model the team in order to value communication, but do not

perform any distributed planning, making the communication overhead associated with them

much less.

In more detail, Gmytrasiewicz and Durfee (2000) value communication by how it changes the

knowledge of the other agent. If the agent has an estimate of the knowledge of the other agents,

then a coordinated action can be selected. Thus the valuation is based on the difference in

coordination that is achieved. This method is also seen in Roth et al. (2005) and we will discuss

this algorithm in some detail next. However, the main difficulty with these approaches is that

each agent must maintain an explicit model of the team in order to analyse how coordination is

influenced. Although this is a powerful technique, for medium sized teams (tens of agents) this

is not practical because of the sheer size of this team model.

In conclusion, coordination modelling is clearly a powerful method for deriving the value of

communication, but it is also clear that it requires an extensive team model. Nevertheless, val-

uations based on the improvement in coordination are perhaps the closest to the “true” value

(although how to measure this is a hard question). However, there exist several problems — the

agents must model the coordination problem, which may be impractical for medium or large

teams, and this model must remain consistent with the actual state for the valuation to be accu-

rate. For these reasons, coordination modelling with heavy–duty models will not be pursued as

a valuation in this work to meet research challenge 2. However, first we will describe in detail

one algorithm for valuing coordination when deciding whether to communicate or not.

2.5.1.1 ACE-PJB-Comm

This section describes the ACE-PJB-Comm algorithm in some detail since it represents the

state-of-the-art in execution time communication decisions and is the main benchmark in our

work. This algorithm out performs all other current approaches to this problem such as decision

rules or heuristic valuations. The algorithm consists of two parts - a heuristic for executing a

centralised policy in a decentralised fashion that avoids mis-coordination and a decision rule for

whether or not to communicate. We will describe these parts next.

The input to the algorithm is a centralised policy defined over joint beliefs bt at time t. The

algorithm then models the distribution of possible joint beliefs that could have been observed by

the team as a tree with the set of leaves at depth t denoted by L t . Each L t
i is a tuple consisting of

〈bt , pt ,−→ω t〉 where −→ω t is the joint observation history that would lead to this leaf, bt is the joint

belief and pt is the probability of this joint observation history. If each agent avoids including

its local observations then this tree is computed identically by all the agents. Consequently, if

actions are selected according to this tree then the agents are guaranteed to be coordinated (al-

though not necessarily taking the optimal action). The leaves in this tree are expanded according

to the algorithm in Figure 2.2.
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GROWTREE(L t
i ,a)

L t+1← 0
bt ← b(L t

i )
FOR ALL ω ∈Ω DO

bt+1← 0
Pr(ω|a,bt)← ∑s′∈S O(s′,a,ω)∑s∈S T (s,a,s′)bt(s)
FOR ALL s′ ∈ S DO

bt+1(s′)← O(s′,a,ω)∑s∈S T (s,a,s′)bt(s)
Pr(ω j|a,bt)

END FOR
pt+1← p(L t

i )×Pr(ω|a,bt)
−→
ω t+1←−→ω (L t

i ) : 〈ω〉
L t+1← L t+1∪

[
bt+1, pt+1,−→ω t+1

]
END FOR
RETURN L t+1

FIGURE 2.2: Algorithm to grow the children of one leaf in a tree of possible beliefs (Roth
et al., 2005)

Now, an action is selected according to the following Q-POMDP heuristic using the tree gener-

ated previously:

Q−POMDP(L t) = argmaxa ∑
L t

i∈L t

p(L t
i )×Q(b(Li),a) (2.10)

where:

Q(bt ,a) = ∑
s∈S

R(s,a)bt(s)+ γ ∑
ω∈Ω

Pr(ω|a,bt)V π(bt+1) (2.11)

This approximates the decentralised POMDP using the centralised policy generated for the un-

derlying POMDP and maximising expected reward over possible joint beliefs. This heuristic is

conservative since it ignores local observations, and the communication substage is used to de-

cide whether communicating these observations would improve the action that can be selected.

In more detail, the ACE-PJB-Comm algorithm compares the expected reward for the action that

would be selected if it communicated its information to its teammates, aC, to the reward for the

action if it did not, aNC. If communication would result in a better expected reward then the

message is sent and the algorithm is run again with the new belief state. This is seen in Figure

2.3. It should be noted that receiving a communication causes the agent to run this algorithm,

and possibly communicate again — which may cause multiple instances of communication and

so agents must wait a period of time for the system to reach a stable state. Our mechanism will

aim to address this flaw (although we could simply assume broadcast synchronisation commu-

nication).



Chapter 2 Related Work 39

DEC-COMM(L t ,−→ω t
j)

aNC← Q−POMDP(L t)
L ′← prune leafs inconsistant with −→ω t

j from L t

aC← Q−POMDP(L ′)
IF aNC 6= aC THEN

communicate −→ω t
j) to the other agents

RETURN DEC−COMM(L ′,0)
ELSE

IF communication −→ω t
k) was received from k THEN

L t ← prune leafs inconsistant with −→ω t
k from L t

RETURN DEC−COMM(L t ,−→ω t
j)

ELSE
take action aNC

receive observation −→ω t+1
j−→

ω
t+1
j ←−→ω t

j : 〈−→ω t+1
j 〉

L t+1← 0
FOR ALL L t

i ∈ L t DO
L t+1← L t+1∪GROWT REE(L t

i ,aNC)
END FOR

END IF
END IF
RETURN

[
L t+1,−→ω t+1

j

]
FIGURE 2.3: One time step of the Dec-Comm algorithm for an agent j (Roth et al., 2005)

2.5.2 Valuing Information

Rather than valuing communication by how it alters the other agents’ knowledge, another ap-

proach is to value communication based on the amount of information it conveys. The latter

can be achieved using information theory. This has the advantage of valuing communication

on local calculations (as opposed to team models), but, on the other hand, information theoretic

methods only produce a heuristic estimate, unlike methods which value coordination explicitly,

and consequently, we cannot say if research challenge 3 is achieved. As a result, this method

represents an approximation, whose usefulness is heavily dependent on the information measure

employed. Still, it is interesting to pursue, with the aim of making it more general.

To this end, Rogers et al. (2005, 2006) and Padhy et al. (2006) develop economics-inspired

approaches to the problem of balancing acting and coordinating within the domain of sensor

networks, which calls for a value of communication. In this domain, nodes can transmit their

own observations to a central station or to each other in order to minimise communication cost

by hopping. Thus, nodes closer to the centre can relay the observations from nodes further

out. These nodes have limited battery life and communication is therefore a very expensive act.

With this in mind, communications are valued based on their information content. In Rogers

et al. (2006) the interesting aspect is that observations are valued in terms of how much the

observation reduces the uncertainty about some variable (using Fisher Information (Schervish,
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1995)). Essentially, the mechanism aims to distribute the most useful observations between the

agents in order to make the entire network more efficient. A similar approach is detailed in Dash

et al. (2005) which values the information based on the reduction of uncertainty using a Kalman

Filter. Following this, it is clear that this work evaluates how valuable a communication is before

sending it. Whilst the value here is in terms of maximising information gain for sensor networks,

it is not difficult to transfer that value to Decentralised POMDPs that must share observation

histories to remain synchronised — which represents a useful direction for this research and one

we will consider further in later chapters whilst tackling the research challenges.

To sum up, if the coordination problem can be cast as each team member having a similar im-

pression of the global state of the problem, then information theory is a simple and general way

to value how much a communication will impact this impression. Therefore, this model relies

on agents taking coordinated actions if they share the same knowledge. Specifically, commu-

nications with a large information value are more useful to the team than communications with

a low information value, and this measure can be calculated locally based on the agents’ own

knowledge. The difficulty in this approach, however, is that the information content of a par-

ticular communication is not necessarily the same to every member of the team (especially if

there has been a long time since the last synchronisation of team knowledge). In this case, the

information content of a communication must be assessed with respect to some level of team

knowledge. Also, the issue of how to normalise the information value with rewards from the

problem domain is a challenge and may require some form of calibration (thereby making any

solution less general). Despite this, as a first step, this research will utilise information theory to

value communication, since it is easy to integrate with decentralised POMDPs and requires no

explicit coordination framework, unlike methods based on valuing coordination.

2.5.3 Formal Agent Communication

Formal agent communication is concerned with specifying the impact and use of communication

in a very high-level way compared to what we have discussed up until this point. In more detail,

Speech act theory (Austin, 1962), much like rational communication, is concerned with treating

communication as an action which has the effect of influencing the activity of the other agent

by changing their mental state. This approach is similar to Gmytrasiewicz and Durfee (2000),

although it is expressed formally, rather than in a Bayesian fashion, which makes it less useful

for our aims (research challenge 3). Now, Speech act theory informed the development of formal

agent communication such as KQML (Finin et al., 1994). These languages specify the semantics

and syntax of communications between agents. Work such as Pitt and Mamdani (1999) attempt

to make these semantics verifiable so that agent communication systems can be engineered with

provable results. This allows open agent systems to interact such as in argumentation systems

(Artikis et al., 2007). Whilst this is a useful direction for open agent systems, it is distinct to the

problem we are considering which is valuing information exchange between relatively similar

agents. Consequently, we will not consider them further.
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2.5.4 Heuristic Valuations

This section describes a number of heuristic and domain specific communication valuations and

policies for agent teams. They do not provide a general solution, and are simply considered

for inspiration about what makes a communication valuable (research challenge 2). First, we

discuss approaches that attempt to identify who needs information in a team and generate a

policy based on that. After this, we consider approaches which attempt to parameterise the level

of communication and coordination in robotic and network routing domains — which is useful

in research challenge 3.

In the context of defining the information needs in a team, an interesting approach by Zhang et al.

(2004) attempts to define information “needers“ and “providers” in a team based on analysing

the plans the agents are about to execute. It then gives a communication strategy selection

algorithm, called DTPC (Decision-Theoretic Proactive Communication), which each agent uses,

based on its role, to select whether to communicate. The expected utility of these strategies

is calculated by estimating the information production of providers and the information rate

necessary for the needers. This is interesting in that it makes communication an online issue,

rather than integrating it with the offline planning stage. Unfortunately, there are problems

in that it requires repeated interactions to estimate the communication requirements, and does

not consider the need to distribute exceptional information. Other issues arise from analysing

the plans to determine team roles. Also, in many situations it may be that all agents are both

providers and needers, and this algorithm relies on information going one way for its efficiency.

Furthermore, the assumption is made that communication is always available and uniform in

cost. Because of this, it is difficult to see how the need to communicate can be integrated with

action taking. Also, in the theme of reasoning about the information needs of team members,

Yen et al. (2004) develop a similar logic based approach. However, in both of these approaches,

no explicit value or cost is placed on the communication acts (as desired in research challenges

1 and 2), but this represents another way to determine a value of communication — the needs of

the team members. Although this will not be used at this stage, it is something to consider for

the future.

Instead of attempting to define communication pathways, the level of communication can be

parameterised by a characteristic of the problem state (i.e. the distance between agents). For

example, Rosenfeld et al. (2006) use a neighbourhood parameter to decide on levels of com-

munication in a robotic foraging task. In their work, a robot has a local neighbourhood and as

more robots enter this area, the level of communication is increased from none, to locally direct,

to a centralised server. In more detail, the task of coordinating is transferred from the robot to

a central server as robots get closer together. Although this approach produced good results in

robotic foraging (a partially observable, stochastic problem), it is difficult to see how it can be

applied more generally, especially as the top level of communication amounts to a centralised

solution which is impractical in the domains considered in our work.
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Following the approach of parameterising a level of communication, in Dutta et al. (2006, 2007)

the problem of co-ordination and acting in a mesh network routing domain is considered. Here,

calls must be routed from one node in the network to another via some path of nodes in-between.

Typically, there is limited bandwidth between the nodes which can be used for routing calls and

for coordination messages. Following this, the problem here is that increasing the degree of

coordination (communication) reduces the available bandwidth for routing calls and hence the

efficiency of the network. To address this problem, a protocol is developed which models each

node as an agent and the agents themselves decide which neighbour to route a call through

based on their observed history of bandwidth availability through each neighbour. In addition to

routing calls, nodes (agents) are also responsible for propagating their available bandwidth in-

formation. The decision problem of when to communicate this information is based on whether

it has changed beyond a threshold from the last time it was communicated. This threshold is

set based on some offline network usage statistics and is found to give varying performance.

Clearly a better solution would adapt the threshold online based on how the network is being

used. As a consequence, this indicates another communication valuation — the change in state

since the last communication. Dutta et al. (2006, 2007) presented this in a very domain specific

way, but the idea could be generalised using information theory to measure the change in state,

as was discussed in the last section. We will attempt to generalise this idea in Chapter 4 to meet

the research challenges.

In the context of adaptive communication valuations, learning has also been applied to the prob-

lem of rational communication for co-ordination. An example is Ghavamzadeh and Mahade-

van (2004) where the COM cooperative HRL algorithm is developed. This algorithm is based

on Hierarchical Reinforcement Learning where the agents learn a task decomposition of the

problem modelled as a Semi-Markov Decision Process (SMDP). This is similar to the MDP

formalisation but actions are allowed to take different lengths of time. The technique is used

in the hope of making reinforcement learning tractable in real domains. In more detail, agents

learn to balance communication cost with the need to coordinate to maximise the team goal.

Learning has also been applied to the problem of who to communicate to. In particular, Ohko

et al. (1997) adjust the communication load adaptively by learning proper addressees for Task

Announcements messages on Contract Net Protocol (CNP) with Case-Based Reasoning (CBR)

with the aim of avoiding broadcasting. Whilst this is an example of learning applied to rational

communication it is not clear how it could be adapted to the problem domain considered here.

Following the previous section, Kinney and Tsatsoulis (1998) attempt to learn the information

needs of neighbouring nodes so that efficient and responsive information routing is achieved.

This is enacted using a feedback control system and a classification of types of information. The

types of information are associated with a usefulness to neighbouring nodes who communicate

back feedback indicating that usefulness. However, this is a very static and domain specific

learning regime, which is heard to generalise.

To sum up, this section has introduced another source of communication value — the informa-

tion needs of team members. However, the approaches described here are very domain specific
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and offer only static solutions. Furthermore, we have also introduced a model to control the

amount of communication — parameterising it based on some environmental characteristics.

Again, the approaches here are very specific, and do not consider the question of how to dynam-

ically adjust the thresholds they introduce. Learning has also been considered, this is a useful

technique if the question of how to value the communication is answered. Agents would be

able to send only high value communications if it is expensive to communicate, and balance this

with other rewards in the system. In this context, learning could be used to achieve this dynamic

behaviour, although it is clear that none of the work here does this. Unfortunately, the difficulty

with all these approaches is that their valuations are heavily integrated with the problem they

consider. As a consequence, this research will not consider them any further.

2.6 Test Domains

In this section we will describe the two test domains from the literature which we use to evalu-

ate the effectiveness of our techniques. The first is the Multi–Agent Tiger problem (Nair et al.,

2003) with an extension to restricted communication, which is a standard problem in sequential

decision making and allows us to test our algorithms against theoretical optimal results and the

current state-of-the-art. There are, of course, other smaller test domains with similar character-

istics, such as cooperative box pushing. However, we felt the Tiger domain offered the correct

mix of sequential planning and partial observability - for instance the box problem becomes a

standard planning problem once both agents have initially agreed on where the box is. We also

test our formalism in RoboCupRescue (Hiroaki, 2000) which represents a very large problem

that existing techniques cannot solve without extensive amounts of domain knowledge. We use

this domain to demonstrate the scalability of our approach. This is a good problem to show the

real world applicability of our approaches since it combines a large scale search problem and

tightly coupled tasking — making it unique in the literature.

2.6.1 The Multi–Agent Tiger Domain

This section describes the Multi–Agent Tiger problem — a well known coordination problem

which allows us to compare our method with the state of the art, and then demonstrate how our

coordination mechanism can be used to facilitate agent teams in this domain. The Multi–Agent

Tiger domain is a multi–agent extension to the classic Tiger problem, which we describe here

along with the modifications we have made to incorporate communication. We describe the

problem for two agents, since this is the case considered by previous work, but the problem can

be extended trivially to more agents.

In more detail, two agents must each open one of two doors. Behind one door is a treasure

and behind the other is a penalty in the form of a tiger. The agents do not know which door

contains the tiger. This gives two states: SL where the tiger is behind the left door, and SR when
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it is behind the right door. Each agent can open either door 〈OL〉 or 〈OR〉. If both agents open

the door containing the treasure then they receive a large reward. If one agent opens the door

with the tiger then they both receive a large penalty. If both agents open the tiger door then

they receive a smaller penalty. Consequently, the agents should coordinate on the location of

the tiger. In order to do this, the agents can request independent, noisy observations of where

the tiger is — a 〈LISTEN〉 action. An observation has a probability of being correct equal to

1−w where w is the noise in the observation function. Furthermore, they can communicate

to the other agent their belief about the location of the tiger — a 〈COM〉 action. The problem

is sequential in nature and each action (opening a door, listening for where the tiger is and

communicating) takes the same length of time. The problem is reset to a random state whenever

a door is opened (p(SL) = p(SR) = 0.5). The full details of this problem are in Nair et al. (2003)

with the modification that we have introduced a communication action that takes the same length

of time as other actions and costs the same amount as listening for the location of the tiger.

The aim of the problem is to maximise, over a potentially infinite horizon, the cumulative reward

for the agents as a team. That is, all agents should aim to open the door with the reward.

Consequently they should open the correct door as often as possible, whilst minimising the

amount of time spent listening or communicating. Following this, the Tiger problem is used

because it meets all of our requirements for a scenario (see Chapter 1):

• Coordination: Agents need to agree on which door to open to maximise reward.

• Communication: Communication can be used (or not) to make this agreement.

• Decentralised: Agents can only make local observations and communication is limited

— so a centralised controller cannot be employed.

• Partial Observability: The location of the tiger is unknown, however agents can make

noisy observations of this information.

• Stochastic domain: Interactions with the simulation world fail with some small prob-

ability. In more detail, communications may fail, incorrect doors could be opened for

example.

2.6.2 Rescuing Civilians

RoboCupRescue (Hiroaki, 2000), shown in Figure 2.4, represents a widely studied problem,

that has many existing tools for developing agents and is easily extended to our specific prob-

lem. Specifically, there is an existing simulator which requires very little modification for our

purposes. Further to this, it is a problem which requires a high degree of scalability — the prob-

lem can have many agents and each instance has many state variables. Consequently it is a good

benchmark for showing that approaches can deal with a very large state and observation space.

However, as we described in Section 2.4.3, there exist few algorithms which are scalable in this
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FIGURE 2.4: RoboCupRescue in 3D

respect and so our benchmarks in this problem take the form of rule based heuristics. This is still

a useful comparison, since general techniques should be developed for large approaches rather

than relying on domain dependent algorithms.

RoboCupRescue, in more detail in Figure 2.5, is a multi–agent simulator of the situation in an

urban area in the immediate aftermath of an earthquake. Here, heterogeneous intelligent agents

such as fire fighters, the police and ambulance crews conduct search and rescue activities in this

virtual disaster world. They search for civilian agents trapped in damaged and burning buildings.

Ambulance agents are responsible for freeing trapped and hurt civilians and moving them to a

refuge; Fire Brigades must fight the spread of the fire; and the Police must unblock roads.

In still more detail, the environment consists of buildings connected by roads. Nodes connect

different roads and buildings together, thus the map can be seen as a graph, as seen in Figure 2.5.

Agents have limited sensing capabilities, specifically, they can only tell the state of buildings that

are very close, with some amount of noise. They have knowledge of the layout of the map, but

do not initially know about which roads are blocked, where civilians are trapped and which

buildings are on fire. All agents can move along roads and into buildings, if those roads are

not blocked. Agents are hurt if they move into burning buildings and will die after some time

at a rate defined by the damage incurred. Communication is peer to peer (i.e. messages are

sent to and from any agents without going through a central controller) and has a cost which we
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• Red Circle : Fire Brigade

• White Circle: Ambulance

• Yellow Circle: Police

• Green Circle: Healthy Civilian (darker means less healthy, black is dead)

• Red, Orange, Yellow Rectangles: Burning buildings (red is burning a lot, orange is some
burning and yellow means burning a little)

• Grey Rectangles: Normal Buildings (no fires)

• Blue Rectangles: Extinguished fires

• Crosses: Road blocks

• White and Green Circle: Ambulance carrying a civilian

• Yellow areas: Blackout zones

FIGURE 2.5: RoboCupRescue



Chapter 2 Related Work 47

can define for our problem. Communication is prohibited in ‘blackout’ zones (cannot send or

receive) and the agent must move out of that area in order to make communication possible.

In this context, the full RoboCupRescue problem requires several components not relevant to

this research (such as an estimation of how fire spreads and very efficient path planners), and so

we will constrain the problem. To this end, we will only consider the ambulance agents’ task

— that is, we will remove fires and road blocks, and consequently remove the fire brigade and

police agents. We do this because the police task does not require teamwork to unblock roads,

and the fire brigade task requires a complex model of the spread of the fire to do well (thus

it is less about coordination). Following this, the simulator is used because it meets all of our

requirements for a scenario (see Section 1.1):

• Coordination: This scenario will concentrate on the Ambulance agents which need to

coordinate to rescue as many civilian agents as possible from damaged buildings and

deliver them to shelters. These civilian agents are only alive for a certain length of time

so the ambulances work under a time constraint. Specifically, trapped civilians can be

saved more quickly if ambulances work together on them. Furthermore, the disaster area

is large and an efficient search strategy is required. As a result, the ambulance agents need

to coordinate to free trapped civilians together (before the civilians die), and they need to

organise how they search the map to avoid repeated effort.

• Communication: There is a communication medium which utilises a single time step to

send a message, when the agent cannot do anything else — thus it is a restricted resource

because each agent can only send a single message per timestep and cannot do anything

else. In some areas communication is not possible because the communication medium is

saturated — this is defined probabilistically for each simulation.

• Decentralised: Agents can only make local observations and communication is limited

— so a centralised controller cannot be employed.

• Partial Observability: The initial distribution of civilians is not known in advance by the

ambulance agents and they continue to appear at random as emergency calls are made.

Ambulance agents can make observations of where there are civilians that need rescuing,

but only within a small radius of that ambulance.

• Stochastic domain: Interactions with the simulation world fail with some small proba-

bility. In more detail, messages may be lost, move actions may not result in the desired

location and load/unload actions are not guaranteed to succeed.

To sum up, RoboCupRescue represents a scenario which fulfils all of our requirements. Because

of this, we will use it in our evaluation, and specify our models in terms of RoboCupRescue as

an example.
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2.7 Summary

This review has analysed several coordination frameworks, and how they address the communi-

cation problem. Some, such as teamwork models, allow future coordination to be considered and

provide a way to tackle research challenge 2, but are necessarily more complex than approaches

which do not model the team. Others allow team knowledge to be specifically encoded and

reasoned about. As a result, the Decentralised POMDP and POSG formalisations were chosen

because of their general nature, and the ease with which a problem containing domain actions

and communications can be modelled. They also allow simple integration of many different

types of communication valuation. Consequently, the work presented next will modify these

formalisms so that they model the cost of communication generally (not a parallel activity) and

meet research challenge 1. Following this, information theory is one such valuation, which was

chosen because it does not place any demands on the coordination mechanism, making it a gen-

eral method of valuing communication. The only issue with following this approach is that we

need a way to make the link between information and coordination in order to solve research

challenges 2 and 3.

However, traditional approaches based on Decentralised POMDPs do not explicitly value the

communication acts that they allow; they rely on the value being inferred during policy com-

putation — which does not meet research challenge 2. Our work aims to value communication

directly so that it can be reasoned about explicitly and used to solve research challenge 3. If this

is done, then large amounts of policy computation are not required to derive an implicit value.

Also, if a general valuation can be defined, then it can be used in domains outside of completely

specified models, and form the basis of a dynamic rational communication model. The next

chapters will go some way towards achieving this model and showing its utility.



Chapter 3

Offline Learning of Communication
Valuations

This chapter describes a general model of decentralised coordination that is suitable for small

scale agent teams (up to ten agents) using rational communication based on offline learning.

Our model will attempt both research challenges 1 and 2 from Chapter 1 by specifying a general

framework for capturing the cost of communication, and using offline learning to find the value

of communication. This generic model is instantiated in the RoboCupRescue problem. To

this end, in Section 3.1 we describe the architecture of our model, dec POMDP Valued com,

for coordinating with restricted communication and detail a modified online action selection

algorithm (based on Paquet et al. (2005), see Section 3.1.2). Then, in Section 3.2 we cast the

RoboCupRescue problem (see Chapter 2 for more details) as a dec POMDP Valued com and

give a worked example of rational coordination using our mechanism in this scenario. Then we

empirically evaluate our approach in Section 3.3. Finally, Section 3.4 concludes.

3.1 A Model of Coordination with Communication Valuation

In this section we first introduce our model dec POMDP Valued Com — a model of decen-

tralised coordination which utilises an information theoretic communication valuation and of-

fline learning, and then proceed to describe our online policy generation algorithm which has

been designed to leverage the communication valuations our model calculates during the offline

learning phase.

3.1.1 The dec POMDP Valued Com Model

Previous work in decentralised POMDPs considers communication to be a separate problem

from other actions, which is always available in parallel (see Section 2.4.2 for more details).

49
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This therefore assumes that it is possible to communicate and take other actions at the same

time. However, we do not consider this to always be a realistic assumption because utilising the

communication medium may prevent an agent from taking other actions — this distinction is

core to tackling research challenge 1 from Chapter 1. Therefore, we make communication an

action like any other. This allows the model to plan actions that must be taken before communi-

cation is possible. Thus, for example, the model can evaluate the value to the team of a particular

communication, but the agent may be in a state where communication is not possible. Given

this, the agent can then estimate the cost of moving to a state which allows communication, and

decide whether it is worth performing this state change in order to send the communication.

Consequently, a solution to our model is a single policy which includes all communication and

domain actions.

Now, models such as I-POMDP (see Section 2.4.2) address the problem of valuing commu-

nications by considering the beliefs of other agents as part of the state space, and allowing

communication actions to perturb this part of the space. However, this results in a huge model

which cannot be solved by existing techniques for even small problems (see Chapter 2 for more

details). Hence, we would like to remove reasoning about the value of communications from the

coordination model and replace it with a principled approximation, as per research challenge 2.

In our work, we do this using a normalised (in terms of the concrete rewards available to the

team) information theoretic valuation over possible communications. In more detail, in ad-

dition to the reward function defined for the problem, we include a second reward function,

which is used exclusively for the communication actions. This measure gives the information

gain from a particular communication relative to the communicating agent’s current belief state.

Consequently, our model has two reward functions that are weighted appropriately so that the

communication reward function represents an approximation, using an information theoretic

measure, of the true value (impact on expected reward) of the communication. The benefit of

this approach is that policy generation is more scalable (because agents do not need to consider

the possible beliefs of the other agents) and is explicitly concerned with choosing the most valu-

able action (and not analysing the impact of communication). Furthermore, we can see that this

approach goes some way to solving research challenge 2 (valuing communication either exactly

or approximately). We will see later that this model does not allow for research challenge 3

to be easily solved since the error in approximation cannot be easily bounded, however work

in Chapter 4 will significantly change this model (but following its spirit) to allow for this and

furthermore, tackle larger scale problems.

Now, our model, the dec POMDP Valued Com, is an extension of the dec POMDP Com model

(see Section 2.4.2 for more details). As described above, we include a second reward sig-

nal for communication actions (and restrict the original to non-communication actions) and

make the original reward function use a weighted combination of these two reward signals. We

also include communication actions into the standard action selection policy problem. This

model allows the communication valuation problem to be separated from the policy computa-

tion problem, because the agent does not need to compare the value of policies with and without
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communication to get a valuation (resulting in complexity reduction benefits compared to the

dec POMDP Com). Finally, we restrict the communication alphabet to the observation alpha-

bet, in order to maintain the generality of the communication valuation. Specifically, we do this

to preclude high level communications such as plans or intentions, since we are more interested

in communication as information exchange. More formally, this is defined by the tuple (for 2

agents) DECPOMVALCOM = 〈n,S,A ,P,Ω,O,Σ,CΣ,Rp,Rc,R,T 〉 where the definitions are the

same as those for the dec POMDP com (see Section 2.4.2 for more details) except:

• Rp is the problem reward function. It returns a real-valued reward:

Rp(s ∈ S,a ∈ A ,s′ ∈ S) ∈ R (3.1)

when executing joint action a in state s, resulting in state s′. This is equivalent to R in

the original formalisation, except that the communication substage has been removed as

this represents an unrealistic assumption about the availability of communication. Fur-

thermore, it is convenient to generate a single policy, as agents can now plan a sequence

of actions to make communication available (and hence calculate a cost).

• Rc is the communication reward function. Rc(b(
−→
Lω),

−→
Hω) is the value of

−→
Hω in the current

belief state b(
−→
Lω).

−→
Lω is the local history of observations ω ∈ Ω and actions a ∈ A that

the agent has experienced itself and received in communications so far.
−→
Hω represents

the history of observations since the last communication point. b(
−→
Lω) is the current belief

state — a probability distribution over states which represents the agent’s estimation of the

current state. In more detail, b(
−→
Lω) is a probability for each state s and Pr(s|−→Lω) ∈ [0,1]

is the probability that the problem is in state s and is computed by:

Pr(s|−→Lω) =
Pr(s) ·∏i Pr(

−→
Lωi|s)

∑s′∈S Pr(s′) ·∏i Pr(
−→
Lωi|s′)

(3.2)

The communication valuation is made explicit compared to the dec POMDP Com in or-

der to allow us to specify generic metrics over possible communications and to reduce the

complexity of the basic decentralised POMDP.

• R is the reward signal supplied to the policy generation problem. Our empirical approach

will aim to find an approximation for the relative importance of communicating compared

with other actions. Thus we assign reward using the function:

R = αRp +(1−α)Rc (3.3)

This formalisation is used so that the approximation of the value of communicating can

be changed in a principled manner over different problems and communication costs (by

changing α).

The basic premise of our valuation is that, when an agent communicates, the beliefs of the

other agent are synchronised with the communicator. This is not bidirectional and so all an
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agent can assume is that the other agent knows what is in the communication. We then use

the information available at the synchronisation point as a reference and measure the value of

communicating after this point as the distance, in terms of the belief relative to this synchroni-

sation point. Thus, we communicate the history of observations since the last communication

and measure the importance of this communication in terms of that history. Essentially, at that

synchronisation point, the probability of taking an uncoordinated action is small (although not

zero since the synchronisation is not two-way). As the time since that point increases this prob-

ability will grow, but it is not time-dependent since the agent may learn nothing new in that time

— it is information dependent. Consequently, we can approximate this increase in probability

of mis-coordinating as an information theoretic measure. A similar idea is seen in the decision

theoretic communication of STEAM (see Section 2.1), but in that work the probability of mis-

coordination is defined for each state feature by the system designer — a very domain dependent

solution which we attempt to make more general. That work also included a pre-defined cost

of mis-coordination (to balance with other utilities available) which we attempt to generalise

using our reward functions R, Rp and Rc. It is clear that the main difficulty with this approach

is that we have created a reward function R that must be optimised offline (currently) for each

problem the model is instantiated in. We will change this model in later chapters so that this

offline learning phase is not required and furthermore, we can relate the approximation of the

communication valuation in research challenge 2 to the utility of the global solution and hence

solve research challenge 3.

Against this background, KL Divergence (Kullback and Leibler, 1951) is used to determine the

value of Rc. In more detail, given an agent’s belief state b(
−→
Lω), the difference in information

between communicating
−→
Hω and not communicating is given by:

Rc(
−→
Lω,
−→
Hω) = NDKL(b(

−→
Hω)‖b(−→Lω)) = N ∑

s∈S
Pr(s|−→Hω) · log

Pr(s|−→Hω)

Pr(s|−→Lω)
(3.4)

where N is a normalisation factor, b(
−→
Lω) is the agent’s current belief state, b(

−→
Hω) is the belief

state at the time of the last communication. Furthermore, Pr(s|−→Lω)∈ [0,1] is the probability that

the problem is in state s and is computed by:

Pr(s|−→Lω) =
Pr(s) ·∏i Pr(

−→
Lωi|s)

∑s′∈S Pr(s′) ·∏ j Pr(
−→
Lω j|s′)

(3.5)

KL Divergence is chosen because it evaluates all state variables in a single calculation, unlike

Fisher Information, the other main information theoretic candidate, which evaluates each vari-

able individually (recall discussion in Section 2.5.2). This is useful because we need to evaluate

the reduction in uncertainty given by a set of observations, normalised by the uncertainty in the

entire belief state. This is because knowing a single variable to a very high precision is not as

useful, in our task, as having a rougher estimate of many variables (since there are many im-

portant state variables and not just a few very valuable ones). Essentially, we need to consider

all variables at the same time. Furthermore, this calculation is closely related to the Bayesian
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updating of the POMDP model, making it computationally efficient. Finally, it can also be seen

that this is a general valuation function as it is only expressed in terms of observations in a

POMDP, thus making it straightforward to apply to a different problem domain.

3.1.2 Policy Generation

Now that we have specified a new model of decentralised coordination, we need to describe a

policy generation algorithm for that model which can leverage the communication valuations

rather than modelling other agents’ beliefs. As described in Chapter 2, Real Time Belief Space

Search (RTBSS), introduced by Paquet et al, represents a good starting point for the policy gener-

ation problem, as it has previously shown good performance in RoboCupRescue. The algorithm,

in its original form, coordinates agents using a complex reward function, which rewards the co-

ordinated actions. However, while this approach is valid for achieving coordination in their

particular scenario, it is still necessary to encode explicitly how the agents should coordinate

(e.g. giving more reward for having more than one agent attend a task or for having the agents

attend different tasks). Thus this approach is not very general. Consequently, we choose to aug-

ment their algorithm with the ability to consider joint actions — the actions taken by each team

member at each decision point. With this established, if each agent has similar knowledge then

they will each choose the same joint action and coordination is achieved. In more detail, each

agent must estimate the actions available to the other agent and consider rewards over these joint

actions. This can be achieved by considering the state of the other agents, and does not require

modelling their beliefs — which we aim to avoid. Rewards are still calculated in terms of the

local interpretation of the state, which allows the agents to make coordinated actions when they

have a good idea of the state of the other agent.

More formally, each agent performs a search in the belief state space b(
−→
Lω) ∈ B, using joint

actions and local observations to generate new belief states or histories. Essentially, nodes are

belief states, and branches are composed of joint actions and local observations. The search is

pursued to depth D (this again is dependent on the problem). In order to predict the likelihood

of each new observation, we define a new function P(ω|−→Lω,a) which is the probability of an

observation ω in a belief state b(
−→
Lω) given a joint action a. An action is given by:

π(
−→
Lω,D) = argmaxa∈A ∑

ω∈Ω

P(ω|−→Lω,a) ·δ(ρ(−→Lω,a,ω),D−1) (3.6)

where δ(
−→
Lω,d) is given by:

δ(
−→
Lω,d) =


0 , if d = 0

R(
−→
Lω)+ γmaxa ∑ω∈Ω

[P(ω|−→Lω,a) ·δ(ρ(−→Lω,a,ω),d−1)] , if d > 0

(3.7)
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1: Function Modified RTBSS(b(
−→
Lω), d, rAcc)

2: b(
−→
Lω): The belief state, d: The time, rAcc: Accumulated rewards.

3: Statics: D: Search time, bestValue: The best value found, action: The best
action.

4: IF d = 0 THEN if at the horizon of the search
5: f inalValue← rAcc+ γD×0 branch plus belief state
6: IF f inalValue > bestValue THEN if better than the best so far
7: bestValue← f inalValue set to the best so far
8: END IF
9: RETURN f inalValue return the value of this leaf
10: END IF
11: rAcc← rAcc+ γD−d×R(

−→
Lω) else add reward for Belief

state to accumulator
12: JointActionList← Sort(

−→
Lω,A) get next possible joint actions

13: max←−∞ set smallest value
14: FOR ALL a ∈ JointActionList DO for each possible joint action
15: expReward← 0 accumulated reward is 0
16: FOR ALL ω ∈Ω DO for all observations
17: b(

−→
Lω′)← ρ(

−→
Lω,a,ω) calculate next belief state

18: expReward← expReward + γD−d×P(ω|a,−→Lω) current reward + value of
subtree

19: ×Modi f ied RT BSS(
−→
Lω′,d−1,rAcc)

20: END FOR
21: IF (d = D∧ expReward > max) THEN if this is largest so far then
22: max← expReward
23: action← a best action is current action
24: END IF
25: END FOR
26: RETURN max return the value for this sub-

tree

FIGURE 3.1: Modified RTBSS



Chapter 3 Offline Learning of Communication Valuations 55

where R(
−→
Lω), P(ω|−→Lω,a) and ρ(

−→
Lω,a,ω) are computed according to the POMDP dynamics (see

Paquet et al. (2005) for more details). The algorithm which computes Equation 3.6 is presented

in Figure 3.1.

In this algorithm the agent searches in a depth first fashion (line 17) through the points in the

belief space that can be reached by possible joint actions (line 12) and local observations (line

16). It searches until a depth d (line 4), at which point it returns up the search tree the value of

being in that belief state (line 7), and this accumulated for that branch (line 11). In this way, an

agent can find the best action to take at the root of the tree — the action which leads to the best

belief state weighted by the likelihood of reaching that state.

In summary, we have taken an online POMDP policy generation algorithm which considers

other agents to be part of the environment and extended it to explicitly consider the agent team.

We have also modified it to utilise our decentralised POMDP coordination mechanism with

communication valuations in a way that does not significantly increase the complexity of the

decision problem (unlike existing decentralised POMDPs). This is because the only increase

in the search space over the single-agent model is in considering joint actions — we avoid

considering joint observations. This gives a solution to research challenge 2 but because the

online algorithm is approximate, we cannot (at this point) say whether we have solved research

challenge 3. Work in Chapter 6 will address this point. Now, we use the online policy generation

algorithm to power an offline learning phase for deriving the best value for α (see Section 3.3

for more details).

3.2 Coordination in RoboCupRescue

In this section we instantiate the modified RoboCupRescue problem domain, described in Chap-

ter 2, in our model. Initially, we use this instantiation to provide a step-by-step example of our

algorithm for rational communication. Then, in the next section we will use this instantiation

for an empirical evaluation of this technique.

3.2.1 RoboCupRescue as a dec POMDP Valued Com

This section instantiates the dec POMDP Valued Com model from the previous section in terms

of RoboCupRescue. As mentioned in Chapter 2, we only consider the ambulance problem in

this work. Thus, several elements need to be defined from the point of view of the ambulance

agents. Firstly, we model just two ambulance agents, a1 and a2, to keep the following example

clear. The state S describes whether buildings contain trapped civilians or not, and also the

position of the two ambulance agents, who can be in any buildings, or on any road or node

(but only one of them at any one time). The actions Ai available to the agents are complex

behaviours to move to unexplored buildings, rescue civilians, move civilians to refuges, and

finally, communicate their observation history since the last time they communicated (
−→
Hω).
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Component Representation Example
S Buildings can contain zero or more civil-

ians and each of the 2 ambulances can be
at any building, road or node. On typical
maps there are approximately 700 build-
ings, 600 roads and 1000 nodes. This
leads to a state space of approximately
2700 × (700 + 600 + 1000)2 which is too
large for offline computation

Any state is a complete enumeration of
all variables 〈a1 ⇒ b1,a2 ⇒ n8,b0 ⇒
0 . . .bi ⇒ 1,n0 ⇒ 0 . . .nm ⇒ 1,r0 ⇒
0 . . .r j ⇒ 1〉 where i is the number of
buildings b, m the number of nodes n
and j the number of roads r

Ai Each agent can move to an unexplored
building, it can also load and unload civil-
ians, and communicate

A move from Building bk to Node no

by agent a1 will change the value of the
variable a1⇒ no

Σi The alphabet of communications is the
history of observations from the last com-
munication

A communication can be null or any
set of observations 〈p(b j = civ) =
0.0, p(bk = civ) = 1.0, p(b j = a1) =
1.0〉,〈p(bk = a2) = 1.0, p(b j = a2) =
1.0〉,〈p(br = civ) = 1.0〉〉

CΣ This cost is 0 for the null communication,
and one timestep for all other communica-
tions

If the nearest non-blackout is n0 then
CΣ(a1 ⇒ n0) = 1 timestep. If the
nearest non-blackout is n1 and it takes
2 timesteps to move a1 ⇒ n1 then
CΣ(a1⇒ n0) = 3 timesteps.

P Defined by the simulator.
Rp

Rp = c× r+ e× r/2 (3.8)

where r is a normalised reward (100), c is
the number of civilians rescued, and e is
the number of observed buildings (to en-
courage exploration)

If c = 10 and e = 50 then the reward is
3500 (from equation 3.8) but if e = 40
then the reward is 3000, giving a higher
reward for exploring more

Rc Rc(
−→
Lω,
−→
Hω) = NDKL(b(

−→
Hω)‖b(−→Lω)) =

N ∑s∈S Pr(s|−→Hω) · log Pr(s|−→Hω)

Pr(s|−→Lω)

The belief state for a single building
b1 =

−→
Lω1⇒ [] and the communication

−→
Hω =

−→
Lω1⇒ 1, with N = 1000 results

in Rc = 300
R R = αRp +(1−α)Rc If Rp = 3000, Rc = 300 and α = 0.8

then R = 2460
Ωi In this case the ambulances can observe

the state of any building within some range
and the position of the other agent within
that range. This is corrupted with some
noise

Building b can be observed to con-
tain civilians p(b= civ) = 1.0 or empty
p(b = civ) = 0.0. Ambulance agent ai

is observed to be at some some Build-
ing b, Road r or Node n. Any observa-
tion is a set of these variables with val-
ues 〈p(b j = civ) = 0.0, p(bk = civ) =
1.0, p(b j = a1) = 1.0〉

O Defined by the simulator
T 5
Bi The belief state for agent i is a probabil-

ity distribution over the possible values of
each state variable

〈p(b j = civ) = 0.5, p(b j = nociv) =
0.5, p(a1 = bk) = 1.0〉

FIGURE 3.2: A dec POMDP Valued com of the RoboCupRescue ambulance task
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At each time step, agents select joint actions (an action assigned to each team member) and

implement their own part of that joint action. The cost of communication CΣ relates to the time

required to send the observation history. This time is dependent on the location of the agent and

the volume of ‘blackout’ in the city. The reward function Rp gives a reward for each civilian

rescued and building explored. Rc and R are defined as the general formula from Section 3.1.

The observation function Ωi = Ω supplies each agent with the state of buildings nearby (i.e.

whether these contain trapped civilians) and the location of the other agent if it close enough.

The communication alphabet Σ = Ωi = Ω, and consequently a message can be composed of any

symbol in the observation alphabet. Finally, our algorithm does not consider communication

noise (although this would be a possible extension). In this case a communication is either

received as it was sent (if not in a communication blackspot) or not at all. A summary of this

formalisation is given in Figure 3.2.

There are some alternatives to the model outlined above — specifically, the state space could

record the position of each civilian explicitly, but this would require knowing the number of

civilians to be rescued in advance, and it would grow with the number of civilians and buildings.

Another alternative is for agents to have static movement actions. In more detail, instead of

dynamic actions (i.e. moving to any neighbour), the agents could have north, south, east and

west movements but these are hard to interpret in terms of RobocupRescue, because it is not a

uniform domain. Furthermore the communication alphabet could be local interpretations of the

global state (e.g. an agent’s current belief state), but we believe instantiations of state variables

is a more general approach.

3.2.2 A Coordination Example

We will demonstrate this model with a simple coordination task. Two ambulances, a1 and a2,

must rescue a civilian from a building b1, on a map composed of two buildings with a road r1

connecting them. Agent a1 is in b1 and has previously observed the civilian (civ) in b1, a2 is in

b2 and does not observe any civilians. Figure 3.3 shows this scenario.

FIGURE 3.3: A simple rescue scenario



Chapter 3 Offline Learning of Communication Valuations 58

In the first example there are no communication restrictions, meaning the agents can send and

receive a communication at any point on the map. This problem is chosen to show how com-

munication may or may not be useful even when it is free. In the second example there is a

blackout on the building b1 and consequently agent a1 must move to building b2 if it wants to

send a communication to agent a2. This shows our mechanism using a costly communication

resource. Our example will show how a change in the cost of communicating changes the agents

behaviour.

3.2.2.1 Rational communication with no restrictions

We consider the action selection for agent a1, shown in Figure 3.4, and demonstrate its search

to a depth of one. The agent must choose between attempting to rescue the civilian and com-

municating its existence. It is assumed that once both agents know about the civilian they will

cooperate to save it. Other parameters are as described in Figure 3.2.

Considering the example in more detail, the agent must choose between four joint actions:

A = 〈〈rescue,rescue〉,〈rescue,explore〉,〈communicate,rescue〉,〈communicate,explore〉〉

The first action in each tuple represents the action taken by a1 and the second is taken by a2 con-

currently. We show the calculations for J1 = 〈rescue,rescue〉 and J2 = 〈communicate,explore〉,
as these are the most illuminative. After a1 implements its part of the joint action it will re-

ceive one or more observations according to the probabilities defined by Equation 2.7. In the

following, the probability of observation ω is denoted by p(ω). In this example, this observation

is always related to whether building b1 contains a trapped civilian (p(b1 = civ) = 1.0) or not

(p(b1 = civ) = 0.0). In our example, we do not need to utilise the full algorithm in Figure 3.1

because the problem is so small that future planning is not required. Instead we summarise the

expected reward over observations and joint actions with the following equation:

e(Ji) = γ
t
∑

ω∈Ω

p(ω)R(Ji,ω) (3.9)

where we restrict the summation to only those observations ω which satisfy p(ω) > 0 and t is

the time of the action. This is valid because we are using a myopic example. Consequently, we

must calculate R (by equation 3.3) for each joint action/observation pair. Calculating R requires

values for Rp (by Definition 3.1) and Rc (by equation 3.4), which we will describe in more detail

for J2 and the observation p(b1 = civ) = 1.0.

In this case, Rp uses the instantiation from Figure 3.2 which relates rewards to the number of

civilians rescued and buildings explored (see equation 3.8 in Figure 3.2). Initially, one building

has been explored and no civilians rescued, giving Rp = (100 ∗ 0+ 50 ∗ 1) = 50. Furthermore,

Rc = NDkl(c,cb) from equation 3.4, where b is the initial belief state for a1 which has no in-

formation about whether there are trapped civilians in each building — all states are equally
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FIGURE 3.4: An execution example
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likely. The communication c that we measure is the observation of a trapped civilian in b1

(p(b1 = civ) = 1.0) and in this example N = 1000. This communication is seen in Figure 3.5.

Thus the information gain (using KL Divergence) of that observation is 1000∗0.301 (which is

scaled as denoted by equation 3.4). Since R=αRp+(1−α)Rc (see equation 3.3), and α= 0.7 in

this example, this gives R = 0.7∗50+0.3∗301 = 125. Using equation 3.9, e(J2) = 1.0∗125 =

125 and e(J1) = 91 (see Figure 3.4 for the calculations for this joint action) which means that a1

chooses to communicate c. In both these cases, the discount factor is γ0 since the horizon is 1.

These calculations show that agent a1 expects to gain more reward (125) by communicating the

existence of the civilian than assuming the other agent knows about it and attempting to rescue

(91).

FIGURE 3.5: The value of communicating the existence of the civilian initially

If we consider our example further, the agent might choose to communicate the null observation

(the probability of a civilian in any building is equal to the probability of no civilian, so 〈p(b1 =

civ) = 0.5, p(b2 = civ) = 0.5〉). As per equation 3.4, this would have resulted in 0 for the same

b. In this case communication would not have been selected. Figure 3.6 demonstrates this.

FIGURE 3.6: The value of communicating the null observation

Furthermore, this example also shows that on the next timestep, the value of communicating

about the same civilian will have dropped and the agent will rescue instead. This is because
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b will have changed to include knowledge of p(b1 = civ) = 1.0 and Rc = 0. This is seen in

Figure 3.7. These two examples show the rationality of our valuation — communicating zero

FIGURE 3.7: The value of communicating the same observation twice

information has no value and communicating previously communicated information also has

zero value.

Finally, if the value of α was less than the value used here (0.7) then communication would not

be used in this scenario, but ultimately the agents would take longer to save the civilian. This

is because agent a1 would attempt to dig and fail, whilst a2 would have to explore to find the

civilian — and not dig for at least 2 timesteps. Similarly, if α was greater then the agent would

communicate too much and again the team would do less well. This extra communication would

occur because a2 would choose to communicate the existence of no civilian in b2 and the value

of communicating the same information would not drop as much. Consequently, this shows

the importance of setting the correct normalisation between the actual rewards for solving the

problem Rp and the virtual rewards for communicating Rc.

3.2.2.2 Rational communication with restrictions

In this example the communication medium is restricted meaning that agent a1 must move to

building b2 to communicate with agent a2. In our example this journey takes 1 timestep and so

there is a larger discount on that action compared to digging. This is shown in Figure 3.8.

In this case the benefit of communicating must be discounted by the time it takes to communicate

(hence communication has a cost which does not have to be artificially defined but is captured

automatically by the model). This is seen in the larger discount factor of the communication

action (because it takes a timestep longer than other actions). Consequently the expected reward

of communicating is now less than attempting to dig and so digging is chosen (91 > 87.5).

Intuitively, it can be seen that in this example communication has little benefit since both agents

will explore the map in the same length of time it takes to communicate.
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FIGURE 3.8: An execution example with communication restrictions
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3.3 Empirical Evaluation

In this section we evaluate our model in the RoboCupRescue domain described in Chapter 2.

Initially we specify the hypotheses we consider in this analysis. Following this, we describe the

experimental methodology we use in these tests, and in fact throughout the thesis. Finally, we

give the results of the experiments against these hypotheses.

3.3.1 Hypotheses

We propose a set of experiments that allow us to measure the influence of communication on the

coordination problem. With this in mind, we then turn to the problem of balancing actions and

communication restrictions in the problem to achieve coordination. In more detail, the following

hypotheses are to be tested in this preliminary set of experiments:

Hypothesis 3.1. Our information theoretic valuation mechanism for selective com-

munication results in better coordination than models which block all communica-

tion, and those which assume a static value of communicating.

Hypothesis 3.2. Our information theoretic valuation for selective communication is

more effective in domains with a costly communication medium than models which

assume a static value of communicating or only communicate when it is free.

The first hypothesis establishes the value of communication in multi–agent coordination; that is,

the difference in the utility obtained between models which communicate and those which do

not is the value of communication in the coordination task. This is key to solving both research

challenge 1 and 2 from Chapter 1. Secondly, it establishes that our communication valuation is

rational in this domain — that is, that for some value of α, communications lead to an improve-

ment in performance over not communicating, and consequently approaches research challenge

3 (although later chapters will do this better). Finally, it shows that a dynamic evaluation of

communication is better than assuming a static value to communicating.

The second hypothesis is designed to show the utility of our valuation mechanism in balancing

the use of an increasingly expensive communication medium. It will show that a dynamic val-

uation based on information theory is better than managing communication using simple rules

(i.e. communicate when free) or assuming a static value to communicating. Essentially, we

demonstrate that it is better to plan communication actions based on their content than relying

a rule-based approach commonly seen in the literature. This also tests our solution to research

challenge 1 — namely that we can capture different sorts of communication cost generally.
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3.3.2 Methodology

This section describes the experimental methodology employed in this set of experiments. Firstly,

we describe the algorithms we experiment with — including some simple benchmarks and

bounds. Next, we describe the control variables that we influence, and then we detail the de-

pendent variables which we measure from the simulations. Finally, we describe the general

methodology of the experiments, including how we achieve statistical significance.

3.3.2.1 Experimental Policies

In these experiments, we compare four communication policies — two of these (Zero and Full)
are designed to establish a lower and upper bound for the standard coordination problem, and

between these we analyse our mechanism (Valued) for valuing communications and a simple

benchmark solution (Selective). In more detail:

• Zero: the agents do not communicate with each other, and essentially solve the problem

in isolation. This is equivalent to having each agent solve an individual POMDP with all

other agents treated as part of the environment.

• Full: the agents send a communication to each other containing their last observations at

each time step (making communication effectively free). More formally, agent ai receives

observation ω at timestep t. At timestep t + 1, ai chooses an action and communicates

ω to all other agents, who receive it at timestep t + 2. This is equivalent to a centralised

solution, because the agents have full knowledge of the state of the other agents and so

they are all calculating the solution to the same centralised multi–agent POMDP.

• Selective: the agents can choose to communicate all observations since their last com-

munication action at each time step, but doing this has a cost. Specifically, this cost is

incurred because the agents cannot take any other actions whilst communicating. Here

communication is an option, and at the same time a simple static domain valuation is

used to estimate the reward that communication represents. This value increases with a

constant each time the agent does not communicate, and resets to 0 when communication

is employed. More formally, initially Rc = 0 and at each timestep t, Rct+1 = Rct + c/10

where c is the value of rescuing a civilian from Rp, and α = 0.5 giving equal weighting

to each reward function. If communication is used then Rct+1 = 0. This valuation function

requires some optimisation (we experimented with several increments) but it is not inter-

esting to present that here since the method is ad–hoc. It is worthwhile to consider that our

approach gives a finite space in which to optimise α, but assuming an incremental model

like this essentially gives an infinite optimisation space. With this established, agent ai

has a history of observations since the last time it communicated
−→
Hω. At timestep t, ai

receives observation ω and appends this to its history
−→
Hω⇒−→Hω : ω. At timestep t +1, ai
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chooses an action, including the option of communicating
−→
Hω. If communication is taken

then
−→
Hω⇒ 0 and Rc = 0.

• Valued: this is the dec POMDP Valued com model as introduced in this chapter. The

message passing semantics are the same as in Selective.

It is important to note that Selective and Valued can both choose to communicate whilst the

agent is in a blackout area — in this case, the agent will move to the nearest point where com-

munication is possible and then send the message. Similarly, Full will only communicate in

parallel when the agent is outside the blackout areas, and will take no action to make communi-

cation possible — a standard rule-based response to communication restrictions.

To summarise, communication is completely free in Full — hence it is used all the time; the

agents never communicate in Zero; Selective and Valued both use the model of communication

valuations but Selective uses a constant reward per timestep, whereas Valued uses an infor-

mation valuation over the agents’ knowledge and possible communications. Full represents an

upper bound on performance because the agents are solving a simpler centralised POMDP (and

intuitively agents should do better when they know everything the other agent does). Zero rep-

resents a lower bound since each treats the other agents as part of the environment in a single

agent POMDP (a notoriously inefficient approach for sophisticated coordination) and intuitively,

coordination cannot be achieved without some idea of what the other agent knows.

3.3.2.2 Control Variables

The major control variables that remain static during these experiments are:

1. The number of ambulance agents who must act together n. We set n = 2 in our experi-

ments in order to maintain tractable computation for the chosen test domain.

2. The number of goals to achieve in the problem G. Specifically, G is the number of civilians

to save in any experiment. It is dependent on the size of the map considered in that

experiment, and so for the size of the map described in Chapter 2, it would be about 30

(following the RoboCupRescue competition guidelines (Hiroaki, 2000)).

3. The time period of the simulation. A simulation time of 300 steps is standard in this test

domain (Hiroaki, 2000).

4. The reward function for the problem Rp, as defined in equation 3.8 with in Figure 3.2.

This is given by Rp = (b× r)+ (e× r/2) where r is a normalised reward (100), b is the

number civilians rescued and e is the number of observed buildings

5. The reward function for communication actions Rc. The communication reward function

Rc is the information content (which is measured using KL Divergence, see also Section

3.1) of the communication
−→
Hω. This is normalised to match the range of reward offered

by Rp.
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6. The cost of communication CΣ. This is a function of the state of the communicating agent;

that is, in some states (blackouts) communication is not possible and the agent must move

to make it available. Hence, the cost is dependent on the location of the agent. There is

no noise in the communication medium. The communication act itself requires a single

timestep.

The following control variables are varied during the experiments:

1. The relative weighting between the reward functions for problem solving and communi-

cation α. In both hypotheses, we attempt to show the utility of valuing communications

in policy computation. In more detail, this involves mixing two reward functions Rp and

Rc. It is interesting to consider how these should be mixed, to find where maximal perfor-

mance occurs. To this end, α controls the relative importance of solving the problem Rp,

against information dispersal Rc and will vary from 1 (only assign reward to solving the

problem) to 0 (only assign reward to dispersing information).

2. V , the percentage of the map where it is impossible to communicate — represents an

increasing time cost to communicating because communication is unavailable in more of

the map and so the agents must travel further to be able to communicate.

3.3.2.3 Dependent Variables

Dependent variables are determined by simulation runs. The interesting variable at each time

step of the simulation is the percentage of total civilians saved at that timestep. This represents

a measure of how well the agents solve the problem.

3.3.2.4 Initial Configuration and Statistical Significance

Each test run starts on the same map of Kobe (a real map of Kobe used in RoboCupRescue

competitions) with random placement and status of civilians. The ambulance agents always

start in the same place. Maps could be generated randomly, but we hold that this does not add

any validity to our method, since the map used represents a standard competition map which has

not been altered to favour our approach. Furthermore, generating random maps can add noise

to the process as ambulance agents can start off trapped in collapsed buildings and we have not

considered this scenario at this stage.

We run these simulations on standard desktop Linux system with a dual core 2.13GHz and 2GBit

memory. This will be the case for all simulations in this thesis. The RoboCupRescue simulator is

available from www.robocuprescue.org and Java source code for our basic algorithm is provided

in Appendix A.
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When considering Full, Zero and Selective, the dependent variable is graphed for each simu-

lation timestep. When considering Valued, however, we have an additional control variable α.

In order to visualise the results with respect to the values of α we give the mean summaries of

the experimental variable at the end of the simulation. This takes the form of the dependent

variable value after 300 time steps in each run. In general, 30 runs are performed for statistical

significance, which is computed using a standard t test for the 95% confidence interval. α is

explored between 0 and 1 with increments of 0.1, interpolating in-between.

3.3.3 Results

In this section we present the experimental results. Firstly, the hypotheses are presented again,

followed by the algorithms that will be evaluated and the variables that will be measured. Values

for control variables will be detailed. After this, results are presented and a discussion given.

3.3.3.1 Hypothesis 3.1: No communication restrictions

Our information theoretic valuation mechanism for selective communication results

in better coordination than models which block all communication, and those which

assume a static value of communicating.

Initially, we compare civilians saved by the end of the simulation in Full, Zero and Selective,

in order to investigate the upper and lower bounds on our coordination method. As Figure 3.9

shows, Full performs the best because the agents model each other at all times (they have a

centralised view of the problem). This means that the agents’ actions are always coordinated.

By way of contrast, the agents do not coordinate well in Zero because they do not model each

other accurately. Hence they duplicate the areas of the map they have searched and do not

dig co-operatively. In Selective, the agents do a little better because communication happens

periodically. Still, the agents do not communicate efficiently, since this algorithm assumes the

agents gather information at a constant rate — which is clearly not true because the agents may

not explore any new part of the map or encounter any new civilians.

Given these bounds on performance, we now investigate the utility of valuing communications

in our Valued model. In more detail, our model requires us to mix the rewards from acting

in the problem with rewards in communicating — denoted by Rp and Rc respectively. It is

interesting to consider how these should be mixed, to find where maximal performance occurs.

To this end, α controls the relative importance of solving the problem Rp, against information

dispersal Rc and will vary from 1 (only assign reward to solving the problem) to 0 (only assign

reward to dispersing information). It can be seen in Figure 3.10 that for a range of α values, the

performance of Valued with no restrictions on communication availability (Valued 0% Blackout)

approaches Full (the communication time requirements make this an unrealistic assumption).

When α = 0 the agents communicate all the time (leading to very low performance), and when
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FIGURE 3.9: Percentage of civilians rescued during the simulation averaged over 30 runs

α = 1, the agents never communicate, reducing it to Zero. It might seem that the lines should

meet, but the agents are solving different sized POMDPs in both models, so we can accept

some noise. When comparing Valued with Selective it is clear that both can be used to value

communications appropriately, but Valued is more efficient and leads to a higher team utility.

This is because Selective assumes a constant information gain with time which is not the case

in reality — Valued measures the information gain before deciding whether to communicate.

To conclude, the evidence presented here supports hypothesis 1. Specifically, for some α values

0.6 < α < 0.9, performance is better than not communicating or using a static valuation.

3.3.3.2 Hypothesis 3.2: Communication restrictions

We now turn to the second hypothesis:

Our information theoretic valuation for selective communication is more effective

in domains with a costly communication medium than models which assume a static

value of communicating or only communicate when it is free.
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FIGURE 3.10: Percentage of civilians rescued at the end of the simulation averaged over 30
runs

With the utility of our method established in the simple case, we now consider the impact of

communication restrictions. The communication restrictions we describe here more realistically

model the sorts of communication conditions found in real problems, and we are interested to

see if our mechanism is robust to these restrictions. Here we define ‘blackouts’ over some

areas of the RoboCupRescue maps, where it is impossible for the agents to communicate. If

an agent chooses to communicate within a blackout area, the agent first moves to the nearest

point where communication is available. This area is defined randomly as a number of points

on the map, and within a small radius of these points the blackout exists. We experiment with

a range of blackout volume (25%, 50%, 75% and 99%). We perform the same experiments as

with unrestricted communication and present the results in Figures 3.11.

For blackouts ranging from 0-75%, the change in response to the α parameter is not significant

because the nature of the communication restrictions means that there is not much change in the

cost in this range (if the maps we considered were bigger then this would be different). With a

blackout covering 99% of the map, performance is drastically impacted because of the increased

time involved in travelling to an area where communication is possible. Consequently, perfor-

mance never exceeds Zero because the agents spend too much time travelling to communication

points and too many communications are lost — so the value the communicating agent expects
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to see is never attained. This suggests that when communication is very expensive, it is better to

try to solve the problem in isolation. Figure 3.11 only compares Valued under communication

restrictions, and so it useful to see how the simple communication strategies respond to the same

restrictions.

Figure 3.12 shows the comparative performance of Valued versus Selective and Full as the

communication restrictions grow. In more detail, we present the difference in civilians saved for

Valued - Selective and Valued - Full. It can be seen that as the restrictions increase, Valued
starts to do much much better than Selective because the latter does not accurately value com-

munications and starts to do very poorly as communication becomes more expensive. Valued
initially does worse than Full, but then increases to do better before arriving at a similar perfor-

mance when the restrictions cover nearly all of the map. Remember that under zero restrictions,

Full represents the optimal policy but this is highly dependent on communicating all the time

— hence restrictions cause its performance to deteriorate much more quickly than Valued, and

eventually it does worse because it never chooses to make communication possible.

To conclude, the evidence supports hypothesis 2. Specifically, for some α = 0.7 value, perfor-

mance is always better than the static valuation — and does not deteriorate as quickly. Fur-

thermore, for high communication costs, our model is better than the Full policy (which is, in
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FIGURE 3.12: Difference in civilians rescued with communication restrictions

general, not possible to implement). Also, performance does not deteriorate as quickly.

3.4 Summary

This chapter introduced the dec POMDP Valued Com model — a model of coordination using

rational communication, and then detailed an action selection mechanism that can manipulate

this model. Following this, we showed how the ambulance agent task could be represented as a

dec POMDP Valued com — which demonstrated how the communication valuation is used to

communicate rationally. We also informally defined what it means to communicate rationally

(in our example) and demonstrated that our model has these properties. Additionally, we demon-

strated communication restrictions in our example and showed how our model can account for

them to generate efficient solutions. As a result we have proposed a method which success-

fully solves research challenge 1 — capturing the cost of communication. Furthermore, in the

solution to research challenge 2 that we have presented here we have partially solved research

challenge 3. Future chapters will achieve this more successfully by developing techniques that

give optimal solutions or bounded approximations.



Chapter 3 Offline Learning of Communication Valuations 72

In more detail, we analysed our model empirically and our show that valued communication

leads to better policy computation in decentralised POMDP models than basic rule-based mod-

els. They also show that information theoretic valuations can be used to balance the cost of

communicating, leading to performance which approaches a full communication model giving

a partial solution to research challenge 3. This represents a promising empirical validation of

the approach taken in this research. Specifically, these results indicate that communications can

be valued by the sender and this valuation used to evaluate whether to send them. Furthermore,

these experiments have shown that our model is capable of utilising a costly communication

medium, with much less impact on performance than the simple polices considered here.

Now, in this model, we need to learn α offline. This has two drawbacks. First, only small

scale problems can be tackled because the learning process involves running many simulations.

Second, we do not know how close to optimal is the learned solution (research challenge 3). Be-

cause of this, we wish to develop an alternative model in which exact communication valuations

can be defined without learning. This means larger problems can be solved and, furthermore, re-

search challenge 3 can be tackled more readily. Specifically, the next chapter presents a general

framework for valuing communications which can either solve much larger problems than the

technique presented here or which can give a bounded approximation for larger problems and

thus solves research challenge 3. Finally, we will also present a model that can give an optimal

solution to this research challenge albeit for a constrained class of problems. That model uses a

similar opportunity cost based approach to research challenge 1 as in this chapter.



Chapter 4

Reward Shaping for Valuing
Coordination

The previous chapter showed that it is possible to use a principled approach to rational com-

munication in order to coordinate a decentralised system. However, the technique used has two

main problems. First, it requires tuning a parameter via an offline learning phase. Second, the

solution generated lacks any information about how close it is to the optimal solution — the er-

ror may be unbounded. The first is a problem because it reduces the scalability of the approach

and tuning may not be possible in practice. The latter is a problem because the solution learnt

may be very poor relative to the optimal decentralised, and we would not know this is the case

— which is the goal of research challenge 3.

To this end, this chapter introduces the RS dec POMDP model, an extension of the decentralised

POMDP formalisms presented in Section 2.4.2, which utilises a novel reward shaping mecha-

nism to compute decentralised policies using only local observations. In order to tackle research

challenge 1, it follows the formalism from the last chapter to specify communication costs. In

particular, communication has an opportunity cost like any other action. Thus, we first describe

the intuition of reward shaping and detail how the model aligns with previous decentralised

POMDPs. Then, we describe how belief divergence is measured and a reward shaping function

might be derived for a given problem. In more detail, we will describe how approximate shaping

functions can be used for a scalable approach that solves research challenge 2 or how we can

trade-off some scalability for a technique with guaranteed error bounds in order to solve research

challenge 3. This chapter presents the basic formalism and then we describe the approximate

version further in Chapter 5, and a version of the algorithm for which we can formally bound

the performance in Chapter 6. We end this chapter by describing how a reward shaping function

is used with communication in the online policy generation algorithm from Section 3.1.2.

73
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4.1 Reward Shaping

We would like our agents to be able to calculate policies for decentralised POMDPs using only

local observations and communication histories. To this end, we describe a model of reward

shaping that uses the concept of belief divergence to estimate the need for communication in a

principled fashion, and hence, achieve research challenge 2. Now, the standard model of rational

communication models the exact beliefs of other agents and analyses how communication would

change their actions. However, as argued in Chapter 3, it is cheaper computationally to maintain

an estimate of how coordinated the beliefs of the agents are and then use this to decide when

to communicate. Unfortunately, the approach in Chapter 3 failed to identify the link between

coordinated beliefs and the expected rewards for a joint action. Thus we address this issue here.

In more detail, two agents’ beliefs are coordinated when they are identical. The greater the

distance between those beliefs, the less coordinated they are. The intuition here is that agents

that have a very small difference in their beliefs can calculate the impact of joint actions in-

dependently and arrive at the same answer. Since this same answer relates to the joint action

space, they will be coordinated if they follow their own part of the joint action. However, if

the difference in beliefs is greater, then some communication may be needed in order to resyn-

chronise their beliefs and allow them to make independent coordinated actions again. This was

missing in Chapter 3 where the information value was scaled in line uniformly with other re-

wards without taking into account what it was the agent was trying to achieve with and without

communication at the time of making a decision. By making this link we can avoid parameter

tuning. This new model is much more natural with the value of communication related to what

can be achieved after sending a message. Specifically, within this setting, reward shaping is the

process by which independent estimations of the expected reward of joint actions are modulated

by the agent’s perception of the belief divergence in the team. Low divergences mean the be-

liefs are coordinated and so all agents can independently calculate the same expected reward for

each joint action. Conversely, large divergences mean that agents cannot independently value

joint actions and in this case can only estimate the value of local actions and assume the other

agents act randomly (or according to some predetermined distribution). It should be noted that

we consider all parts of the belief space to be identical — although it would not be difficult to

allow for the fact that differences about some parts of the belief space are more important than

others.

Therefore, we first extend the dec POMDP com model by including communication actions

into the standard action selection policy problem as in Chapter 3 to achieve research challenge

1. Furthermore, in a similar spirit to how information gain was calculated in Chapter 3, each

agent now has to maintain parameters about the rest of the team — this is the estimation of

the belief of the rest of the team about the state of the problem. This is compared with an

agent’s own belief to give an estimation of belief divergence, which is then used to modulate the

reward function for all actions in order to approximate the value of communication (see Section

4.2). We should make it clear that this is not the same as modelling the other agents’ beliefs
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— we are maintaining a difference parameter about the team as a whole which is much cheaper

to calculate. Now, the main difference to the work in Chapter 3 is that we do not include

a separate reward function for communications which is then weighted. Instead we assume

communication itself has a zero positive value (but maybe a cost), but it changes the expected

reward of other actions taken after it according to the reward shaping process we describe next.

As a result, this extended model allows the communication valuation problem to be extracted

from the policy computation problem, resulting in complexity reduction benefits compared to

the dec POMDP com which requires that the full joint experiences of the team are analysed

to value communications. Finally, as before, we restrict the communication alphabet to the

observation alphabet.

Formally, RS dec POMDP is the tuple RSDPM = 〈n,S,A ,P,Ω,O,T,R,Rrs,Σ,CΣ,
−→
Lω,Bd ,π〉where

the definitions are the same as those for the dec POMDP com (see Section 2.4.2) except:

• R is the reward function for all actions (including communication where R(C) = CΣ). It

returns a real-valued reward:

R(s ∈ S,a ∈ A ,s′ ∈ S) ∈ R (4.1)

when executing joint action a in state s, resulting in state s′. This is equivalent to R

in the original formalisation, except that the communication substage has been removed

because, as we discuss in Chapters 1 and 3, it is more powerful to model communications

as normal actions which have the same opportunity costs.

• Rrs ∈R is the reward signal supplied to the policy generation problem. Here, we introduce

a principled shaping function over the original R which uses belief divergence to modulate

the reward based on the distance between the agent’s individual beliefs. This allows us to

transform the problem for all the benefits described earlier. This model is distinct to the

weighted reward function used in Chapter 3.

• Bd ∈ R+ represents the agent’s current estimation of the divergence in the beliefs of the

agents. This is used in the reward shaping function to supply information about the current

coordination of the agent team. Section 4.2 will explore this parameter further.

• π is a policy that relates joint actions (including communications) to belief states and

belief divergences, π : b(
−→
Lω)×Bd → A . This is the transformed problem.

Consequently, this model is distinct to the one proposed in Chapter 3 in that it adjusts the ex-

pected values of joint actions based on whether there is a given belief divergence in the team

(which communication influences) rather than assigning a weighted value to information gain.

This better because information gain is not uniformly important across the problem — it de-

pends on what the agents are trying to achieve. Now, we need to detail how an Rrs can be

constructed without considering the full joint observation space, and which approximates the

policy constructed over the original R when we do. This is discussed next.
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4.2 Expected Rewards using Belief Divergence

In this section we discuss how to measure belief divergence and how this is used in the general

reward shaping function. In particular, we would like a principled metric that indicates the

distance between two different belief states b(
−→
Lω) and b(

−→
Lω′) in a general fashion. Hence we

need to consider:

• how to measure a distance in belief states, and

• how to estimate the difference in beliefs for a team of distributed agents (since our agents

do not have full knowledge of the other agents’ belief states).

Considering the first problem, since we are measuring the distance between probability distri-

butions, it is appropriate to use information theory (as in Chapter 3). The actual measure is

dependent on the problem, so simple domains might use an absolute difference (Bd(
−→
Lω,
−→
Lω′) =

∑s∈S |Pr(s|−→Lω)−Pr(s|−→Lω′)|) in belief variables or relative entropy. In contrast, more complex

belief spaces might use an aggregate measure like the KL Divergence measured used in Chapter

3:

Bd(
−→
Lω,
−→
Lω
′) = DKL(

−→
Lω||−→Lω

′) = ∑
s∈S

Pr(s|−→Lω) · log
Pr(s|−→Lω)

Pr(s|−→Lω′)

This is similar to the method used in Chapter 3 to measure the information gain of sending

a message, the difference here is that we measure the difference between team and individual

belief distributions in order to decide whether communication is needed.

In the second problem of estimating the belief state of a partially observed agent, we can use a

simple estimation of information propagation. Specifically, we assume that the other agents will

not have independently received any of the observations the communicating agent is deliberating

over, and that its beliefs have remained static since the last communication action. This is

analogous to an agent assuming that it is the only entity that could have observed anything new

since the last communication. To this end, we establish a reference point,
−→
Jω∗, which is the

belief of the agent when it last synchronised its knowledge. We then compare the current belief

state
−→
Lω with this point. More formally, the approximate divergence ABd is:

ABd(
−→
Lω) = Bd(

−→
Lω,
−→
Jω
∗) (4.2)

This assumption could result, on the one hand, in an over-estimate of the divergence due to

assuming that the other agents will not have gained any of the new information that the deliber-

ating agent has received since the last communication point. On the other hand, this assumption

does not account for information the other agents have received which the communicating agent

has not — causing an under-estimate in the divergence. Consequently, it is initially hard to place

bounds on the approximation of the divergence using this assumption, but we believe it is still

a useful departure point due to its ease of implementation in a decentralised fashion. Never-

theless, in Chapter 6, under certain conditions, we will demonstrate how we can place bounds
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on the error by considering the relationship between the observation function and the expected

belief divergence. Furthermore, it may be possible to make the approximation more accurate us-

ing the observation function to obtain probabilities of features being commonly known, but, we

leave this extension for future work (see Section 8.2) and concentrate on the basic assumption.

With the belief divergence measure established, we now consider the reward shaping function

and where it fits into our model. As we introduced in the definition of RS dec POMDP, there is

a reward shaping function which replaces the original reward function. We specify this function

generally in terms of the expected rewards that are calculated for each action under reward

shaping. In general Bd is normalised so that 0 < Bd < 1, in which case the shaped expected

reward for a joint action is given by the following function (which is problem-dependent):

Rrs(a,Bd) = f (Bd ,E(a)u,E(a)r) (4.3)

Here E(a)u and E(a)r represent the expected reward under the original reward function for a

given action under certain conditions. In more detail, E(a)u is the reward when the agents are

completely coordinated and E(a)r is the reward when they are mis-coordinated. The function f

maps between these extremes using the parameter Bd . This is the function that is optimised by

the policy generation algorithm in the next section.

Against this background, we can see the above model is a very general definition which allows

considerable freedom in the specification of the reward shaping function for a given problem.

In Chapter 5 we build on this and derive a specific heuristic shaping function which is approxi-

mate but scales very well. Furthermore, although the heuristic shaping function does not always

perform optimally, in Chapter 6 we show how an error bounded shaping function can be de-

rived which sacrifices some of the scalability of the heuristic version but has firm theoretical

guarantees. However, in the rest of this section, we confine our discussion to the general speci-

fication and how it is used in policy generation (since it applies equally to both versions of the

algorithm).

4.3 Communication within Policy Generation

We modify the online POMDP solution algorithm from the previous chapter to include the re-

ward shaping algorithm. In more detail, agents are allowed to communicate their history of

observations from the last time they communicated (at this stage we only consider synchronisa-

tion communication) and the information in these observations represents the belief divergence.

As we stated earlier, we want to reduce the complexity of the problem by only considering local

observations — the reward shaping transformation allows us to do this in a principled way. The

expected reward for each action is calculated using Equation 4.3 and we assume we know f .

Note that, in this model, communication causes the divergence to be reset to zero. Using this

mechanism, we expect the agents to either employ actions with a relatively low penalty (where
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the average expected reward is high) for mis-coordination or to communicate when the diver-

gence is high, and to perform actions that have large rewards for coordinated behaviour when it

is low.

More formally, an action is given by:

π(
−→
Lω,D) = argmaxa∈A ∑

ω∈Ωi

P(ω|−→Lω,a) ·δ(ρ(−→Lω,a,ω),D−1) (4.4)

where δ(
−→
Lω,d) recursively calculates the payoff in the search tree and is defined by:

δ(
−→
Lω,d) =


0 , if d = 0

f (Bd ,E(a)u,E(a)r)+ γmaxa ∑ω∈Ωi

[P(ω|−→Lω,a) ·δ(ρ(−→Lω,a,ω),d−1)] , if d > 0

(4.5)

where γ is a discount factor and ρ(
−→
Lω,a,ω) gives a new belief state b(

−→
Lω′) when action a is

performed in b(
−→
Lω) and ω is received. This is defined using Equation 3.2 for each state s.

Incidentally, we must calculate a new belief divergence B′d after each action:

B′d =

0 , if ai = COM

Bd ∪ω , if ai 6= COM
(4.6)

where COM is a communication action (a message composed of elements of Σ). This is the only

place where communication actions are treated differently to other actions. This says that, if the

agent communicates, its belief divergence is reset, (since we assume broadcast communication)

else the observation that has been received must be integrated into the divergence estimate.

4.4 Summary

We have followed Chapter 3 in achieving research challenge 1 and, using this technique, we

will show that our approach can handle problems as large as RoboCupRescue, yet it does not

require extensive domain knowledge for solving decentralised POMDPs, nor do we need to

learn anything offline as per the solution in Chapter 3. We can achieve this because we only

use local observations, making the search tree significantly smaller (the branching factor is of

the order of the number of possible observations, rather than a combination of number of agents

and observations). Now, in tackling research challenge 2, reward shaping in this framework

can be approximate or exact. In the next chapter, we will discuss how an approximate reward

shaping function can be used in our two exemplar domains — the Multi-Agent Tiger problem

and RoboCupRescue. The approach presented here will be extended with the exact version of

reward shaping in Chapter 6 in order to tackle research challenge 3 and give an error bounded

version of this algorithm. In future work we will consider if this matches the theoretical value

of communications from Chapter 2 — see Section 8.2).



Chapter 5

Reward Shaping with Heuristic
Valuations

In this chapter we describe how to construct heuristic reward shaping functions for the formal-

ism described in the previous chapter which scale very well. In particular, we first describe the

general features of the heuristics — namely the limits of the shape function where behaviour

is coordinated or mis-coordinated. Then, for the Multi–Agent Tiger problem, we construct a

heuristic reward shaping function and present empirical results which show that heuristic re-

ward shaping for coordination leads to significant improvements over the current state of the art.

After this, for RoboCupRescue, again, we derive a heuristic shaping function and, finally, we

present further empirical results showing the benefit of our approach. In this way we demon-

strate a technique for addressing research challenge 2 (how to value communications) and show

empirically how it addresses research challenge 3 (efficient global coordination).

5.1 Shaping Bounds

As explained in the last chapter, a heuristic reward shaping function parameterises (based on

belief divergence) the expected reward between two extreme cases: the expected reward when

the agents are fully coordinated, E(a)u, and when the agents are completely mis-coordinated,

E(a)r. In this section we present the equations for these cases, which will subsequently be used

to specify the full reward shaping function Rrs.

In more detail, each agent calculates the expected value for each joint action over its local belief

state b(
−→
Lω) and divergence Bd . If each agent has the same beliefs (Bd = 0) then they will all

calculate the expected reward E(a)u of a joint action a = 〈ai,a−i〉, where ai is the action taken

by agent i and a−i are the actions taken by the other agents, as:

E(a)u = ∑
s∈S

∑
s′∈S

Pr(s|−→Lω) ·P(s,a,s′) ·R(s,a,s′) (5.1)

79
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If the divergence is maximum (normalised, Bd = 1), then the agents cannot assume they will

each generate the same value for the joint actions, and so they will mis-coordinate. In this case

we assume that each of the joint actions by the other agents is equally likely, and consequently,

an agent locally calculates the expected reward of a joint action assuming the other agents act

randomly:

E(a)r =
1
|A−i| ∑

a−i∈A−i

∑
s∈S

∑
s′∈S

[Pr(s|−→Lω) ·P(s,〈ai,a−i〉,s′) ·R(s,〈ai,a−i〉,s′)] (5.2)

where A−i is the joint action space of all agents except i. The next sections give concrete

examples of approximate reward shaping functions for our two exemplar domains.

5.2 The Multi–Agent Tiger Domain

This section demonstrates how our coordination mechanism from Chapter 4 can be used to

facilitate agent teams in the Multi–Agent Tiger problem — a well known coordination problem

described in Chapter 2 with theoretical and approximate solutions. After this, we describe our

empirical evaluation and present the results.

5.2.1 Modelling as a RS dec POMDP

Basic aspects of the decentralised POMDP components of this model are already defined for

this problem in Nair et al. (2003) and given in Chapter 2. Therefore we focus on the parts that

are specific to RS dec POMDP.

Belief Space: Since the tiger problem has only two states, SL or SR, the belief space can simply

be represented as the probability that the instantiation is in state SL. More formally, for agent i,

the belief space is defined as bi = Pr(SL|−→Lω), where bi ∈ [0,1].

Belief Divergence: In this simple belief space we can use the absolute difference as a diver-

gence measure (as described in Section 4.2). More formally, Bd(
−→
Lω,
−→
Lω′) = |Pr(SL|−→Lω)−

Pr(SL|−→Lω′)|. We do not worry about direction since our reward shaping function will be in-

sensitive to it.

Expected Rewards: Our heuristic shaping function uses belief divergence to select a shaped

reward between two extremes. These extremes are when the agents are perfectly coordinated

(belief divergence is zero) and when the agents are mis-coordinated (belief divergence is max-

imal). Consequently, we need to derive Eu and Er for the joint actions available to the agents.

These are defined using Equations 5.1 and 5.2.
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TABLE 5.1: Expected Reward bounds

Joint Action Eu Er

E(〈OL,OL〉) 30−80B −155bi−21
2

E(〈OR,OR〉) 80B−50 155bi−176
2

E(〈LISTEN,LISTEN〉) 0 −23
E(〈COM,COM〉) −5 −51

2
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FIGURE 5.1: Centralised policy which assumes all agents have consistent beliefs

Reward Shaping Function: Now, we can construct f (from Equation 4.3) by considering the

impact of the likelihood of coordination based on the divergence in beliefs for two or more

decision makers. This likelihood modulates between the uncoordinated expectation Er and co-

ordinated expectation Eu. We calculate this likelihood by considering the simple policy that

assumes all agents have the same beliefs. This is easy to calculate in general by reducing the de-

centralised POMDP to a centralised multi–agent POMDP (which has a lower complexity class).

For the Multi–Agent Tiger problem this policy can be represented by the alpha vectors for each

action to a horizon of one (see Section 2.4.2), as shown in Figure 5.1. It is important to note that

we only consider the dominating joint actions 〈OL,OL〉,〈OR,OR〉,〈LISTEN,LISTEN〉,〈COM,COM〉
since a centralised policy would not consider any other combination for this problem because

their expected value is less than the dominating actions for all belief states. This policy shows

that, if both agents have a belief bi ∈ [0,0.38], then the best action for both of them is to open

the left door. If both agents have a belief bi ∈ [0.62,1.0] then the best action for both is to open

the right door. Finally, for all other beliefs, the best action is to request an observation. Here,
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it is interesting to note that, since the agents always assume that the other agents have the same

beliefs, it is never the best action to communicate since this would be redundant and only has a

negative reward.

Using this policy we can derive a function of distance between two points in the belief space,

which returns the proportion of bi in which the two decision makers would select the same

vector. This gives us a probability for a given divergence that the two agents will successfully

coordinate. More formally, we introduce the probability of coordination, PC, for a belief diver-

gence Bd ,

PC(Bd) =
n

∑
i=1

max(di−di−1−Bd ,0) (5.3)

for a set of intersections in alpha vectors D = {d1,d2, ...,dn}. It is then simple to use our belief

divergence metric to calculate the distance between the intersections. Using an absolute belief

divergence measure, this looks like Figure 5.2.

Together these components make up the full Rrs function which uses an estimation of the belief

divergence to estimate the value of communication in the Tiger problem. The following equation

is now used for the expected value of each joint action:

Rrs(a,Bd) = f (Bd ,E(a)u,E(a)r) = E(a)r +PC(Bd) · (E(a)u−E(a)r) (5.4)

It is this equation that we maximise using the policy computation algorithm from Chapter 3.

This equation uses the probability of coordination, PC, based on belief divergence to weigh two

expected rewards — the fully coordinated reward for a joint action and the value of an action
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when other agents act randomly. Consequently, if belief divergence is low, policy computation

uses an expected reward that assumes coordination in the team, and if not, it assumes the agent

must act alone. The COM action is used to alleviate belief divergence during policy computation.

In the next sections we evaluate our model in the Multi–Agent Tiger domain. Initially we spec-

ify the hypotheses we consider in this analysis. Following this, we describe the experimental

methodology we use in these tests. Finally, we give the results of the experiments against these

hypotheses.

5.2.2 Hypotheses

We propose a set of experiments that allow us to measure the improvement over the state of the

art as a result of using our mechanism. In more detail, the following hypotheses are to be tested

in this set of experiments:

Hypothesis 5.1. Our reward shaping mechanism is a more effective strategy for

reducing the complexity of decentralised POMDPs than the current state of the art

as well as several standard benchmarks, including models which communicate all

the time or never.

Hypothesis 5.2. Our reward shaping mechanism uses costly communication more

efficiently than the current state of the art as well as several standard benchmarks,

including models which communicate all the time or never.

The first hypothesis establishes the benefit of our approach to the problem of coordinating using

a costly communication medium. It shows that research challenges 2 and 3 can be addressed

by separating the full decentralised problem into several local agent problems in a principled

manner that uses communication to manage the error in this transformation.

The second hypothesis is designed to show the utility of our valuation mechanism in balancing

the use of an increasingly expensive communication medium. In achieving research challenge

2, we demonstrate that it better to plan communication actions based on their content, rather

than relying on a rule-based approach commonly seen in the literature (as per Section 2.5.4).

5.2.3 Methodology

This section describes the methodology we employ in our experiments. Firstly, we describe

the algorithms we experiment with — including some simple benchmarks and bounds. Next,

we describe the control variables that we influence, and then we detail the dependent variables

which we measure from the simulations. Finally, we describe the general methodology of the

experiments, including how we achieve statistical significance.
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5.2.3.1 Experimental Policies

In these experiments, we compare four communication policies — two of these (Zero and Full)
are designed to establish a lower and upper bound for the standard coordination problem (in a

similar way to Chapter 3), and between these we analyse our mechanism (RS dec POMDP)

for valuing communications and the state of the art benchmark solution (ACE-PJB-Comm)

(see Chapter 2). In more detail:

• Zero: the agents do not communicate with each other, and essentially solve the problem

in isolation. This is equivalent to having each agent solve an individual POMDP with all

other agents treated as part of the environment.

• Full: the agents send a communication to each other containing their last observations at

each time step (making communication effectively free). More formally, agent ai receives

observation ω at timestep t. At timestep t + 1, ai chooses an action and communicates

ω to all other agents, who receive it at timestep t + 2. This is equivalent to a centralised

solution, because the agents have full knowledge of the state of the other agents and so

they are all calculating the solution to the same centralised multi–agent POMDP.

• ACE-PJB-Comm: the state of the art benchmark solution. Note that this model commu-

nicates in parallel like Full. As we describe in Chapter 2, this algorithm represents the

current best solution for finding communication valuations in an online fashion. Results in

Roth et al. (2005) show that it outperforms heuristic solutions (since no other approaches

exist for our specific problem).

• RS dec POMDP: this is the our model as introduced in the previous chapter using the

heuristic shaping function derived in the previous section.

In these models, the communication alphabets employed are identical to each other.

5.2.3.2 Control Variables

The major control variables that remain static during these experiments are:

1. The number of agents who must act together, n. we set n = 2 in order to compare with

other work in the chosen test domain.

2. The time period of the simulation. A simulation time of 6 steps is standard in this test

domain, and allows our results to be compared to other work in the Multi–Agent Tiger

domain. This is because, after 6 timesteps, many instances of the problem will have reset.

3. The cost of communication CΣ. In this case, the communication act itself requires a single

timestep.
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The following control variables are varied during the experiments:

1. The noise parameter of the observation function, w. We are interested in performance

as the problem becomes increasingly difficult to observe directly. To this end, we vary

w from exact observations (w = 0) to random observations (w = 0.5) with increments of

0.01.

5.2.3.3 Dependent Variables

The dependent variables are summarised at the end of each simulation run. The interesting

variables at end of each simulation are:

1. The average reward obtained per timestep. We do not use total reward because we want to

compare a model which treats communication as an action which takes time like an other

action with a model which allows communication to happen in parallel.

2. The percentage fraction of the amount of communication that the Full model sends during

a simulation run. This is interesting since it measures the actual volume of communication

used by the algorithms.

5.2.3.4 Initial Configuration and Statistical Significance

Each simulation lasts for 6 timesteps, with the tiger placed randomly at the beginning (and after

a door has been opened). The results show a mean of the dependent variables for each value of

the noise parameter w. In general, 20000 runs are performed for statistical significance, which is

computed using a standard t test for the 95% confidence interval (although we can reproduce the

results with less runs we aim to match the experimental conditions used in Roth et al. (2005)).

5.2.4 Results

In this section we present the experimental results. We recap the hypotheses and then give the

results for the experiment described previously.

5.2.4.1 Hypothesis 5.1: Multi–Agent Tiger performance

Our reward shaping mechanism is a more effective strategy for reducing the com-

plexity of decentralised POMDPs than the current state of the art as well as several

standard benchmarks, including models which communicate all the time or never.



Chapter 5 Reward Shaping with Heuristic Valuations 86

-20

-15

-10

-5

 0

 5

 10

 0  0.1  0.2  0.3  0.4  0.5

A
v
e

ra
g

e
 R

e
w

a
rd

/t
im

e
s
te

p

w

Average Reward/timestep

RS_dec_POMDP
Full

Zero
ACE-PJB-Comm

FIGURE 5.3: Performance of coordination models against noise, error bars are at 95% confi-
dence intervals.

To this end, Figure 5.3 shows that, on average, our model achieves 84% of the utility of the Full

model. This is compared to ACE-PJB-Comm which achieves only 53% of the Full utility. This

improvement is because there is an inherent weakness in trying to solve the problem without

communication and then adding in communication later. Specifically, it does not allow for ef-

ficient exploitation of communication since it does not consider that communication might be

useful yet costly. Furthermore, for w > 0.35 the performance of ACE-PJB-Comm drops sig-

nificantly below zero, whilst our approach does not. This is because our model identifies that

door opening may have potentially disastrous results when the agents might have the wrong

coordinated impression (i.e. they both agree the tiger is in the wrong position), even if commu-

nication aids in maintaining consistent beliefs. Also, our model always does better than the Zero

communication model and stays close to Full for all values of w. In Full the agents never mis-

coordinate, but when observations are noisy it is risky to open a door, hence the average reward

tends towards zero. Similarly, Zero mis-coordinates more and more as the noise increases, until

the agents estimate that opening a door is too risky based on the noisy observations and hence,

it tends back towards zero.

To conclude, the evidence presented here supports hypothesis 1. Specifically, our model outper-

forms the state-of-the-art. Consequently, heuristic reward shaping is an efficient technique for
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reducing the complexity of decentralised POMDPS.

5.2.4.2 Hypothesis 5.2: Multi–Agent Tiger communication

We now turn to the second hypothesis:

Our reward shaping mechanism uses costly communication more efficiently than the

current state of the art as well as several standard benchmarks, including models

which communicate all the time or never.
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FIGURE 5.4: Communication in coordination models against noise, error bars are at 95%
confidence intervals.

To address this hypothesis, Figure 5.4 compares the number of messages the team of agents send

during the simulation. We present the percentage of the messages sent by Full since this is con-

stant and naturally Zero always sends zero messages. As can be seen, for w < 0.35, our model

sends fewer messages than ACE-PJB-Comm — communicating up to 30% less and, on average,

20% less. This is important since in our model communication is a more costly medium (in that

communication takes a timestep). Specifically, the agents must be much more careful with their

use of the communication medium. ACE-PJB-Comm is not equipped to deal with communi-

cation that shares resources with other actions — making our algorithm more generally appli-

cable. Considering Figure 5.4 further, both models initially increase communication as noise
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increases, and then start to drop as the information communicated becomes less informative —

making communication redundant. Consequently, our mechanism does better than the state of

the art whilst communicating less, because it is able to explicitly reason about the benefit gained

from communication versus the cost. The ACE-PJB-Comm algorithm over-communicates to

achieve the same result because it pays no penalty to do so (except the somewhat artificial com-

munication reward penalty, which subtracts some utility for using communication when a more

general cost is in terms of lost opportunity whilst using the communication medium). Further-

more, these results demonstrate the utility of embedding rational communication within policy

generation — the policy explicitly accounts for the cost of communication in deciding whether

it is a useful action. In contrast, assuming communication is free during policy computation (as

per ACE-PJB-Comm) means that the policy does not consider the cost of communicating, and

consequently, exploits it inefficiently.

To conclude, the evidence presented here supports hypothesis 2. Specifically, our model sends

less communications. Consequently, our model uses communication more rationally.

5.3 The RoboCupRescue Domain

Here we describe our method in a large problem — RoboCupRescue which, unlike the Tiger

problem, requires an approximate solution for the optimal policy due to its size and so is included

to illustrate the scalability of our method. This problem has a different cost for communication,

and so it represents our approach to research challenge 1. Furthermore, it shows how our method

of solving research challenge 2 gives a partial solution to research challenge 3 in large problems.

After this we present an empirical analysis of its performance.

5.3.1 Modelling as a RS dec POMDP

Most of the elements of the RS dec POMDP model the same as the dec POMDP Valued Com

from Chapter 3 and so we refer the reader to Section 3.2 for more details. Here we will describe

the features unique to our new model.

Belief Space: We use a factored state space consisting of the probability that the state variable

is true or false. Considering all state variables together gives the full belief space.

Belief Divergence: This is measured using KL Divergence (as discussed in Section 4.2). We

use this aggregate measure because, unlike the Tiger problem, there are many belief variables

to consider (including one for each building and location of the ambulances). We can obtain

the increase in KL Divergence during the belief revision process after new observations very
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efficiently. More formally:

Bd(
−→
Lωi,
−→
Jω
∗) = DKL(

−→
Lωi||

−→
Jω
∗) (5.5)

Expected Rewards: Eu,r can be trivially calculated using Equations 5.1 and 5.2.

Reward Shaping Function: In the Tiger problem we were able to define an exact reward

shaping function (Equation 4.3), but this is not possible here since we need a probability of

coordination and that involves solving the centralised POMDP (which as stated previously has

PSPACE complexity). However we can estimate the function as a linear function of the belief

divergence measure giving:

PC(Bd) =
BdM−Bd

BdM
(5.6)

where BdM is the maximum KL Divergence in this belief space. We choose this function to

demonstrate how very little domain knowledge is needed to make the mechanism function at

a reasonable level. More complex relationships could be defined, but as we will see, this one

allows our mechanism to perform better than simple communication strategies such as always

communicating new information or never communicating at all.

Given this, Rrs is:

Rrs(a,Bd) = f (Bd ,E(a)u,E(a)r) = E(a)r +PC(Bd) · (E(a)u−E(a)r) (5.7)

The intuition here is that we assume there is a linear relationship between belief divergence and

the chance of coordinating. We believe this is valid because the belief space is large and small

differences should not cause a mis-coordination 1.

In the next sections we evaluate our model in the RoboCupRescue domain. Initially we spec-

ify the hypotheses we consider in this analysis. Following this, we describe the experimental

methodology we use in these tests. Finally, we give the results of the experiments against these

hypotheses.

5.3.2 Hypotheses

In Chapter 3 we showed that a rational communication method of coordinating works better

than standard approaches in a problem of this size. However, that approach involved a costly

offline learning phase and so, in Chapter 4, we specified a more principled method which did

not require this. We will specify a hypothesis to test that the heuristic approach presented in

this chapter can outperform the learning technique when α is set randomly. In more detail, the

following hypothesis is to be tested in this set of experiments:

1It is clear this is not the case in all domains. For example, if there is only one civilian to find then that is the only
feature of the belief space that we care about so differences elsewhere are unimportant.
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Hypothesis 5.3. Our reward shaping valuation mechanism for selective communica-

tion results in better performance than our previous model dec POMDP Valued Com

with a randomly set communication valuation α.

This hypothesis establishes that our method is, straight away, better than a model which requires

a learning stage to do well. Furthermore, we aim to show that it does better than standard

benchmarks — these are the only techniques available to us as a comparison model because of

the size of the problem.

5.3.3 Methodology

This section describes the experimental methodology we employ in this set of experiments.

Firstly, we describe the algorithms we experiment with — including some simple benchmarks

and bounds. Next, we describe the control variables that we influence, and then we detail the

dependent variables which we measure from the simulations. Finally, we describe the general

methodology of the experiments, including how we achieve statistical significance.

5.3.3.1 Experimental Policies

In these experiments, we compare four communication policies — two of these (Zero and Full)
are designed to establish a lower and upper bound for the standard coordination problem as in

Chapter 3, and between these we analyse our mechanism (RS dec POMDP) for valuing com-

munications and our previous benchmark solution from Chapter 3 (dec POMDP Valued Com).

In more detail:

• Zero: as in Section 5.2.3.1.

• Full: as in Section 5.2.3.1.

• dec POMDP Valued Com: this is the model from Chapter 3 with α set randomly.

• RS dec POMDP: this is the our model as introduced in the previous chapter using the

heuristic shaping function derived in the previous section.

Note that, unlike in the Multi–Agent Tiger problem, there is no optimal solution for this problem,

as the decentralised POMDP cannot be solved exactly by current techniques due to its extreme

size (Bernstein et al., 2000).

To summarise, communication is completely free in Full — hence it is used all the time; the

agents never communicate in Zero; dec POMDP Valued Com and RS dec POMDP both use

different communication valuation mechanisms. We benchmark against a randomly set α in
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these results in order to negate the impact of tuning in that algorithm — our new approach

requires no such tuning. Full represents an upper bound on performance because the agents are

solving a simpler centralised POMDP (and intuitively agents should do better when they know

everything the other agent does). Zero represents a lower bound since each treats the other

agents as part of the environment in a single agent POMDP (a notoriously inefficient approach

for sophisticated coordination) and intuitively, coordination cannot be achieved without some

idea of what the other agent knows.

5.3.3.2 Control Variables

The major control variables that remain static during these experiments are defined in Section

3.3.2.2 although our new approach could employ larger teams 2.

5.3.3.3 Dependent Variables

Dependent variables are determined by simulation runs. The interesting variables at each time

step of the simulation are:

1. The percentage of total civilians saved at that timestep. This represents a measure of how

well the agents solve the problem.

2. The number of communications sent at the end of the simulation.

5.3.3.4 Initial Configuration and Statistical Significance

This setup is the same as in Section 3.3.2.4.

5.3.4 Results

In this section we present the experimental results. We repeat the hypothesis and then give the

results and analysis.

5.3.4.1 Hypothesis 5.3: RoboCupRescue performance and communication

Our reward shaping valuation mechanism for selective communication results in

better performance than our previous model dec POMDP Valued Com with a ran-

domly set communication valuation α.
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TABLE 5.2: Results for the RoboCupRescue ambulance task, averaged over 30 runs with the
95% confidence interval in brackets.

Average Reward Comms
Full 41 (2) 300 (0)

dec POMDP Valued Com 25 (2) 108 (5)
RS dec POMDP 32 (3) 35 (10)

Zero 26 (5) 0 (0)

The results in Table 5.2 show that Full does the best because agents never duplicate search and

always assist each other in digging out civilians, yet pay no penalty (in terms of time) for com-

municating. Furthermore, our new model outperforms both Zero and dec POMDP Valued Com

in terms of average reward. This is because the latter communicates too much (108 messages

on average), which represents a third of the duration of the simulation. In contrast, our model

only communicates 35 times on average, which leaves substantially more time to rescue civil-

ians and, consequently, the approach does better. Finally, we also see that some communication

is useful (because agents avoid duplicating search and help each other in digging out civilians)

— which is why our model does better than Zero.

To conclude, the evidence presented here supports the hypothesis in this section. Specifically,

our new technique does well without a learning stage and better than simple benchmarks. Con-

sequently, our new method is inherently better at rationalising the use of communication than

the method presented in Chapter 3 and so should be viewed in preference to it in all cases.

5.4 Summary

These results show that reward shaping is a viable technique for reducing the complexity of pol-

icy computation and valuing communications in decentralised POMDPs. We have also demon-

strated how, whilst maintaining the solution to research challenge 1 (specifying the cost of

communication) from Chapter 3 we have improved the scalability of our solution to research

challenge 2 (the value of communication). Specifically, this new work has employed heuristic

reward shaping functions to separate a decentralised POMDP into individual agent POMDPs

that allow the agents to coordinate better than the state of the art.

However, so far we have not discussed whether optimising with respect to a reward shaping

function leads to an optimal policy in the original problem. In this context, it can be seen that

the reward shaping functions used so far are heuristic (in that they are guided by the underly-

ing problem) and do not allow for any guarantees about solution quality. Given this, the next

chapter will discuss how the general formalisation in Chapter 4 can accept exact reward shaping

2To illustrate, using our technique a plan in RoboCupRescue with a horizon of 5 timesteps, and with 6 agents,
takes about one minute to process on a standard desktop machine.
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functions to provide such guarantees. However this comes at the expense of some scalability.

Consequently, our powerful architecture can allow for both highly scalable heuristic solutions,

as well as solutions with theoretical guarantees on smaller problems which solves research chal-

lenge 3 (optimal solutions).



Chapter 6

Reward Shaping for a Bounded
Approximation

As seen in the previous chapter, reward shaping defined over belief divergence is an effective

technique for reducing the complexity of decentralised POMDPs and providing more accurate

online valuations of communications than is currently possible. However, as has been noted, it

is an approximate approach due to both the definition of the shaping function and the estimation

of the belief divergence. Given this, we would like to augment the model so that performance

guarantees can be derived given some knowledge of the problem (the reward and observation

function) and the computational power available to the agents (expressed as the planning hori-

zon). This enables our approach to tackle research challenge 3 (global performance) successfully

— which the models in Chapters 3 and 5 could not. To do so, however, we need to compute the

exact reward shaping function in order to remove a source of error. However, we will see later

that this computation is more demanding than using the heuristic techniques from the previ-

ous chapter, and consequently, we do sacrifice some scalability for these theoretical guarantees.

Nevertheless, it should be clear that in smaller problems a bounded approach is more appropri-

ate, but in larger domains a heuristic approach is necessary.

Against this background, in this chapter we present a general definition of the exact reward shap-

ing function. This means that optimising with respect to this function is guaranteed to generate

the same optimal policy as if the original decentralised POMDP were to be solved — the same

could not be said of the previous heuristics in Chapter 5. In particular, we demonstrate how

this function can always be specified if the reward function is known and there is an exact value

for the belief divergence in the team. We then show how the observation function can be used

to characterise the error in belief divergence using the reward shaping function. After this, we

take the belief divergence error and show how it creates an error in the reward shaping trans-

formation from the original decentralised POMDP to individual POMDPs. This is achieved by

first specifying what would be the error if an optimal policy for the reward shaped POMDP was

already provided and then, using this, what would be the error in our online policy generation

94
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algorithm from Chapters 3 and 4. Finally, we provide empirical results showing that this exact

method performs as well as the heuristic used in the previous section in the Multi–Agent Tiger

problem, and explore the factors influencing the error bound in that problem.

6.1 Exact Reward Shaping

We desire an exact reward shaping function, defined over a measure of belief divergence and lo-

cal beliefs, that would lead to the same policy as the original reward function defined over joint

beliefs. That is to say that an agent, at the same point in the problem, should choose the same

joint action using the reward shaped POMDP (parameterised by local beliefs and belief diver-

gence) as if it was choosing a joint action in the original decentralised POMDP (parameterised

by joint beliefs). One way to make sure that this is the case is to consider what would happen

if the agents maximise their actions with respect to expected rewards — the same action in a

given belief state should be selected in both the original problem and the new shaped problem

so that the same policy is generated. Moreover, the expected rewards in each case should be the

same (otherwise an error is introduced where the two models may select different actions in the

same state). By making this equivalence, we can specify the general form of the reward shaping

function.

If we consider the relationship between evaluating the expectation for an action based on local

beliefs (of each agent) and based on the joint (fused) belief then we can make this equivalence.

Specifically, the expected reward for an action a ∈ A with a local belief
−→
Lω, which is a vector of

observations ω ∈Ω, is:

E(a,
−→
Lω) = ∑

s∈S
∑
s′∈S

R(s,a,s′) ·P(s,a,s′) ·Pr(s|−→Lω) (6.1)

where S is the set of states, R(a,s,s′) is the reward for performing action a in state s and arriving

in state s′, P(s,a,s′) is the probability of moving from s to s′ given action a and Pr(s|−→Lω) is the

probability of being in state s given the belief state b(
−→
Lω):

Pr(s|−→Lω) =
Pr(s) ·∏i Pr(

−→
Lωi|s)

∑s′∈S Pr(s′) ·∏i Pr(
−→
Lωi|s′)

(6.2)

where Pr(s) is the prior belief of being in state s and Pr(
−→
Lωi|s) is the likelihood of receiving

observation
−→
Lωi. Now, a joint belief is the fused observations of all members of the agent team,

which, for two agents with local beliefs
−→
Lω1 and

−→
Lω2, we denote by the transpose concatenation

as follows:
−→
Jω =

[−→
Lω

1 :
−→
Lω

2
]T

(6.3)
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where agent 1 has local belief state b(
−→
Lω1) and agent 2 has local belief state b(

−→
Lω2). Conse-

quently, the expected reward for action a and joint belief state b(
−→
Jω) has the same form:

E(a,
−→
Jω) = ∑

s∈S
∑
s′∈S

R(s,a,s′) ·P(s,a,s′) ·Pr(s|−→Jω) (6.4)

When calculating the expected reward for an action a it is appropriate to use the joint belief state

b(
−→
Jω). However, in distributed teams, an agent i may not know the other agent’s local beliefs,

so if it was to calculate the expectation based only on its local belief state b(
−→
Lωi) then an error

would be introduced. This error is defined as the difference between the expectation for the joint

belief and the local belief states:

Err(a,
−→
Jω,
−→
Lω

i) = E(a,
−→
Jω)−E(a,

−→
Lω

i) (6.5)

= ∑
s∈S

∑
s′∈S

R(s,a,s′) ·P(s,a,s′) ·
[
Pr(s|−→Jω)−Pr(s|−→Lω

i)
]

Consequently, the error between the expectations is expressed as a function of the belief diver-

gence between the local belief and the joint belief states, and the state s:

Bd(s,
−→
Jω,
−→
Lω

i) = Pr(s|−→Jω)−Pr(s|−→Lω
i) (6.6)

We now have all the components to derive a general reward shaping function which will allow

us to later place theoretical guarantees on the quality of the solutions using it. Specifically, a

reward shaping function assumes that if the belief divergence is 0 then the local beliefs are the

same as the joint beliefs (because a communication has just happened), but as it increases the

expected reward should diverge from the value based on local beliefs towards the actual value

based on joint beliefs. We can use this definition of belief divergence to express this function

exactly and generally in the case when an agent knows the belief divergence:

Esh(a,
−→
Lω

i,
−→
Jω) = f (Bd ,E(a)u,E(a)r) (6.7)

= E(a,
−→
Lω

i)−|Err(a,
−→
Jω,
−→
Lω

i)|

= E(a,
−→
Lω

i)−|∑
s∈S

∑
s′∈S

R(s,a,s′) ·P(s,a,s′) ·Bd(s,
−→
Jω,
−→
Lω

i)|

This is the general form of the reward shaping function — which trivially reduces to the expected

reward for the joint belief states in the case when this is fully known, but generally that is not

the case. The next section will derive the properties of our approximation of belief divergence

(described in Chapter 4) in a distributed team. After this we will see how this approximation

leads to a bounded error on solution quality using our formalism.
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6.2 Belief Divergence Error

As we have seen in the previous section, if we know Bd(s,
−→
Jω,
−→
Lωi) exactly then we can compute

the exact reward shaping function. However, this requires that each agent in the team knows
−→
Jω

which is the same as knowing all other agents’ local beliefs. This is clearly impractical in do-

mains where communication is not free (such domains would make this reasoning unnecessary

since agents would not need to communicate).

Thus we analyse a specific mechanism for inferring belief divergence. In more detail, as per

Chapter 4, whenever communication occurs, we set the reference point b(
−→
Jω∗) to the synchro-

nised joint belief state. Then, we use the distance between an agent i’s current local belief state

b(
−→
Lωi) and b(

−→
Jω∗) to approximate the belief divergence. We could use any other mechanism

to approximate the belief divergence, such as referring to a predefined distribution over belief

divergence which is parameterised by the time since communication and the observations that

have been received, or even assuming a constant belief divergence (see Section 8.2). However,

this particular mechanism is used here because it is intuitive to analyse and furthermore it avoids

domain knowledge — making it easy to apply in other problems with little modification.

Note that, as discussed earlier, this approximation introduces two types of error:

• other agents may experience observations and take actions which that reasoning agent

does not, and

• the reasoning agent may experience observations and take actions which the other agents

do not.

We can analyse this error by examining the distance that the approximation moves from the

expected joint belief of the team in both cases. In more detail, this is calculated by considering

the dynamics of the problem to weight each possible history of actions and observations that

each team member experiences. This concept is used in optimal (but intractable) solutions to

the decentralised POMDP problem (see Section 2.4.2 for more details). Now, using the expected

joint belief we can arrive at an estimation of what the true belief divergence is at any given point.

It is accurate in the expected case, rather than at that particular point in time, which is fine for our

error analysis because we want the expected worst case error in the performance of the algorithm

since this will bound the maximum loss of utility from the optimal solution. Consequently,

the error generated by assuming the belief divergence according to our approximation can be

specified as the distance from our approximation to the expected belief divergence.

In this context, for the analysis, we assume that agents do not take actions and instead only

receive observations. To include actions as well, we could use a pre-computed policy to give

a distribution of actions that are taken in a given state (similar to the observation function).

However, the specification of such a policy is non-trivial and so, in most cases, would be sub-

optimal and, thus, introduces a new source of error. Because of this, we believe it is more
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instructive to limit the analysis to observations. Given this, a history
−→
Jω is defined as a sequence

of observations ω ∈ Ω. Furthermore, the set of all possible histories JΩT contains all possible

combinations of observations of length T .

We now calculate the expected error introduced by our approach. To do so, we use the under-

lying characteristics of the decentralised POMDP to derive the belief divergence in expectation

(by calculating the expected joint belief) and then use the distance from this as the error in our

approach. With this in mind, the expected joint belief, EJB, given the local belief state b(
−→
Lω)

and the current state s is:

EJB(
−→
Lω,s) = ∑

−→
Jω∈JΩT

Pr(
−→
Jω|−→Lω) ·Pr(s|−→Jω) (6.8)

where Pr(
−→
Jω|−→Lω) is the likelihood of the joint history given the local history and is defined as:

Pr(
−→
Jω|−→Lω) = ∑

s∈S
Pr(s|−→Lω) ·Pr(

−→
Jω|s) (6.9)

We then use the expected joint belief to specify the true belief divergence in expectation, EBd ,

which is given by:

EBd(
−→
Lω,s) = ∑

−→
Jω∈JΩT

[
Pr(
−→
Jω|−→Lω) ·Pr(s|−→Jω)

]
−Pr(s|−→Lω) (6.10)

Furthermore, the approximate belief divergence using our mechanism is given by:

ABd(
−→
Lω,
−→
Jω
∗,s) =

[
Pr(s|−→Jω

∗)−Pr(s|−→Lω)
]

(6.11)

We now have our definition of the approximate belief divergence and an expectation of the real

belief divergence — the distance between these two values is the error (in expectation) on our

approximate belief divergence. Thus, the error introduced in the approximation can be expressed

for a specific horizon k as:

Err(ABd ,EBd ,k) = ∑
s∈S

[
∑

−→
Jω∈JΩk

∣∣∣[Pr(
−→
Jω|−→Lω) ·Pr(s|−→Jω)

]
−Pr(s|−→Jω

∗)
∣∣∣] (6.12)

where we sum over all states to give an accurate measure for the entire belief space. Whilst

this is the absolute error for a specific horizon, we will see later that it is also useful to have a

definition of how the error grows with time and so the error as the horizon is extended from by

one timestep is:

δ
T
T+1 = ∑

s∈S

[
∑

−→
Jω∈JΩT

[
∑

−→
Jω1∈JΩ1

∣∣∣[Pr(
[−→
Jω :
−→
Jω

1]|[−→Lω :
−→
Jω

1
1
]
) ·Pr(s|

[−→
Jω :
−→
Jω

1])]− (6.13)

∑
−→
Jω∈JΩT

[
Pr(
−→
Jω|−→Lω) ·Pr(s|−→Jω)

]∣∣∣]]
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To summarise, this section has described the error in the estimation in belief divergence using

our assumption that the other agent’s beliefs do not progress after the communication point.

This is a vital step in bounding the solution error in using reward shaping with this belief diver-

gence assumption. Therefore the next section will describe how this causes a bounded error in

solving the reward shaped POMDP (and consequently the underlying decentralised POMDP).

We express this error first in terms of an optimal offline solution and then, using this, in terms

of an online solution method. We will see later how this expansion relates the error in solution

quality to the time since communication last occurred. This will allow us to bound the error not

only to the solution horizon of the decentralised POMDP, but also to the frequency with which

communication occurs. As a consequence, we can solve research challenge 3 (efficient global

coordination) by presenting an algorithm which gives a bounded approximation of the global

optimal solution.

6.3 Policy Generation Error using Reward Shaping

To understand the features of a problem which make a particular approximation appropriate or

not, we need to characterise the error bound in our algorithm. Thus, in this section we place

bounds on the loss of optimality if an agent team employs our reward shaping transformation

and method of estimating the belief divergence in the team. Initially, we assume that we are

provided with a solution to the belief divergence POMDP described by a set of α vectors over the

belief space (as per Section 2.4.2). In this context, the α vector which is maximal at a particular

belief point b is an action policy which should be followed — the action to take. Then, we can

construct a bound on the error in following this policy using the estimated belief divergence. The

derivation of this bound on reward proceeds in a similar fashion to Point-Based Value Iteration

in single-agent POMDPs (see Section 3.1.2 for more details) because those algorithms must also

contend with not knowing the exact belief point.

In more detail, the error in solution quality depends on the size of the error given by the belief

divergence estimate. Recall from the previous section that this is defined as the distance from the

expected belief divergence. As above, we define the error in the belief divergence as εBD(k) =

Err(ABd ,EBd ,k) for a specific horizon k. In the following section, it will be useful to think

about this error as a distance in the belief divergence space BD — the distance between the

estimate of the belief divergence, b, and the furthest point the actual belief divergence could be,

b′ (specified by Err(ABd ,EBd ,k)), so εBD(k) = ||b−b′||1. Now, in order to bound the error on

the reward, we need to think about how an incorrect estimation of the belief divergence would

lead to the wrong action being selected. With this in mind, εBD(k) = ||b− b′||1 represents the

region where we think the belief divergence lies. It is the possible actions that may be taken in

this region that we should concern ourselves with — especially if they lead to a worse outcome

than the correct action at the true belief divergence. By way of illustration consider the example

in Figure 6.1. In particular, imagine a different α vector is optimal at the extreme of the error

region (marked as b′ in the diagram). Here, α is the vector which is maximal at b, the true belief
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divergence (so in Figure 6.1 this means that for beliefs in the darker shaded region the action

corresponding to α should be selected), and α′ is maximal at b′ (in the lighter shaded region).

By choosing α rather than α′, the error is at most α′.b′−α.b′ (this is the distance between the

heights of the lines at the selection points), and also note that α′.b≤ α.b (we will use this fact in

the proof). This is demonstrated in Figure 6.1 where it can be seen that if the agent’s estimation

of the belief divergence was equal to the true value b then it should select the action described

by the policy vector α. Thus, due to the error in the belief divergence, in the worst case, it may

select the α′ vector maximal at b′ mistakenly. As a result, we can bound the error that may result

from this mistake.

FIGURE 6.1: The maximum error possible using reward shaping

More formally:

Theorem 6.1. The error introduced by an estimate of the belief divergence when using an optimal

policy is at most Rmax−Rmin
1−γ

· εBD(k)

Let Rmax be the maximum possible reward available for a joint action, Rmin be the minimum

possible reward and γ the discount factor in the problem. Then:

Proof.

err(k) ≤ α
′.b′−α.b′

= α
′.b′−α.b′+(α′.b−α

′.b)

≤ α
′.b′−α.b′+α.b−α

′.b

= (α′−α) · (b′−b)

≤ ||α′−α||∞ · ||b′−b||1
≤ ||α′−α||∞ · εBD(k)

≤ Rmax−Rmin

1− γ
· εBD(k)
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From the theorem, it can be seen that the worst possible error between selecting the wrong α

vector, and following it infinitely is (Rmax−Rmin)/(1− γ) (here we assume that the chosen α

vector causes the worst possible action to be taken at each belief point).

So far we have only considered the error caused by the belief divergence estimate. This as-

sumes, however, that the policy generation is computed optimally. Now, as we have discussed

in previous chapters, we would like to generate solutions to these models in an online fashion as

it is intractable to compute optimal solutions for large POMDPs (and decentralised ones) even

offline. As a consequence, this error bound is not yet complete because there is an additional

error introduced by the policy computation stage. Given this, we will describe how we can use

this result in an online policy generation algorithm such as we have already detailed.

To this end, we assume that agents construct the optimal α vector for their current belief point

b by using a k-lookahead search of possible joint actions and local observations (as per Chapter

4). At the fringes of this search tree, an approximate value function V a is used to value those

belief states. Consequently, in single-agent planning the error of this approach is bounded by

γk||V a−V ∗|| (Puterman, 1994). However, as the previous section shows, there is a further error

in V a. More formally:

Theorem 6.2. The error using an online policy is at most γk · Rmax−Rmin
1−γ

· εBD(k)

Proof.

err(k) ≤ γ
k||V a−V ∗||

≤ γ
k · Rmax−Rmin

1− γ
· εBD(k)

Consequently, the exact reward shaping function in Equation 6.7 has an error in estimating the

belief divergence captured by Equation 6.12. Now, this error is used in Theorem 6.1 to bound

the error whilst using Equation 6.7 for an existing policy. Finally, we show how this error is

bound by Theorem 6.2 in the case when an online policy computation algorithm is used.

To conclude, we have shown that there exists a general reward shaping function defined over be-

lief divergences which transforms a belief state decentralised POMDP into individual POMDPs

with a bounded error. Furthermore, this transformation leads to a natural definition of belief di-

vergence and using a simple and general technique for estimating distributed belief divergence

we can bound the solution error when using both an existing optimal policy and an online pol-

icy generation algorithm to solve the reward shaped POMDP. This represents a unique solution,

both in using reward shaping to aid coordination and communication valuations and in bounding

approximate techniques in decentralised POMDP solutions. As a result, in this chapter, we have
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proposed a method which builds upon the success of Chapter 3 in solving research challenge

1 (the cost of communication), along with the method of Chapter 4 and 5 in tackling research

challenge 2 (the value of communication), in order to solve research challenge 3 (global coordi-

nation) for a general class of problems.

With this established, in the next section we will analyse how this error bound changes with the

planning horizon k and other parameters in the Multi–Agent Tiger problem. This is a useful

activity because there is a trade-off in the error function — namely, the error on the fringe is dis-

counted by the planning horizon, but the maximum possible error in belief divergence increases.

Consequently, by inspecting this function for a given problem we can find the planning horizon

which minimises the error and, by doing so, gain an insight into the sorts of problems where our

approximation is useful.

6.4 Error Bound Analysis for the Multi–Agent Tiger Problem

Earlier in the chapter we defined a new reward shaping function for use in our formalism. Build-

ing on this, in this section, we evaluate how well this modified model does against our previous

heuristic algorithm from Chapter 5. To do so, we concentrate on the Multi–Agent Tiger problem

since it is small enough to compute the actual error bounds. Now, we are interested in an empir-

ical analysis of the performance in this setting since the theoretical bounds of the last section are

for the worst case and, in practice, the performance may be significantly better. Also, since the

other techniques do not have error bounds, we should compare under similar conditions (average

reward over a number of simulations).

In addition to comparing the average performance and communications of the two approaches,

we also consider what are the features of the domain which cause the error bound to change

and in fact be minimised. This analysis is useful because the problem is small enough that we

can fully analyse the relationship between a planning horizon of k and the observation function

which are the two parameters that affect the error bound (see Theorem 6.2).

6.4.1 Empirical Methodology

Most of our experimental methodology remains the same as in Section 5.2.3, and so here we

merely present the differences.

6.4.1.1 Hypotheses

We propose a set of experiments that allow us to measure the improvement over the state of the

art as a result of using our bounded mechanism. In more detail, the following hypotheses are to

be tested in this set of experiments:
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Hypothesis 6.1. Our bounded reward shaping mechanism performs as well as the

heuristic version.

Hypothesis 6.2. Our bounded reward shaping mechanism uses costly communica-

tion as efficiently as the heuristic version.

Our particular aim here is to show that the bounded version of the algorithm performs as well

as the heuristic version (which is already known to outperform the state-of-the-art and standard

benchmarks). It is important to remember that this bounded version of the algorithm is not as

scalable as the heuristic version and they are therefore appropriate for different domains. In this

way we improve upon our previous algorithm by offering the ability to bound the solution error.

6.4.1.2 Experimental Policies

Our experimental setup is the same as in Section 5.2.3, however, here we only to compare

our previous heuristic reward shaping function with our new bounded reward shaping function

(since the performance of the other benchmarks will remain unchanged).

• RS dec POMDP: this is the our heuristic model as introduced in the Chapter 4 using the

heuristic shaping function derived in the previous chapter.

• Bounded RS dec POMDP: this is the our bounded model as introduced in the Chapter

4 using the exact shaping function derived in Equation 6.7.

In our results we will present the same dependent variables, against the same control variables.

However, we will present the difference between the algorithms. Specifically, we present the

performance of RS Dec POMDP subtracted from that of Bounded RS dec POMDP

6.4.2 Results

In this section we will present the results of the simulations against the hypotheses.

6.4.2.1 Hypothesis 6.1: Bounded Multi–Agent Tiger performance

Our bounded reward shaping mechanism performs as well as the heuristic version.

We can see in Figure 6.2 that the results suggest that the bounded version of the algorithm out-

performs the previous heuristic version by an average of 9% across the observation noise w< 0.1

and 0.2 < w < 0.32. For 0.32 < w < 0.35 it performs slightly worse (14%) because the heuristic
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FIGURE 6.2: (Bounded—RS Dec POMDP) Performance of coordination models against
noise, error bars are at 95% confidence intervals.

is conservative with observations which contain noisy but useful information. The rest of the

time it performs the same (within the tolerance of the confidence intervals). The performance

improvement should be expected since the heuristic was designed to approximate the exact shap-

ing function we have defined in the last section — so they should have similar performance, but

the heuristic makes an error in some places because it sometimes overestimates the penalty for

mis-coordination, and so is more risk averse (however this does lead to a slight improvement in

some cases). It should be noted that the middle of the parameter space 0.2 < w < 0.4 is the hard-

est to coordinate in since communications do contain useful information but may be wrong. It

is here that an exact approach does the best and yields the most benefit verses the heuristic since

it can more accurately use the properties of the observation function to value receiving more ob-

servations against communicating to guarantee coordination. In contrast, the heuristic ignores

the state of the observation function. Finally, both algorithms improve towards the end as they

start to ignore observations and instead do nothing — although our new algorithm recognises

that observations are too noisy to use earlier and improves first. However, the important point

to note is that the new algorithm achieves this performance with a bounded error — something

which cannot be said for the last algorithm (and different heuristics would not perform as well).
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Consequently, the results suggest that we have confirmed the hypothesis that we do not lose

much performance by introducing a bounded version of the algorithm compared to the heuristic.

6.4.2.2 Hypothesis 6.2: Bounded Multi–Agent Tiger communication

Our bounded reward shaping mechanism uses costly communication as efficiently

as the heuristic version.

Here, an added effect is that communication is employed more efficiently, because it is valued

more accurately. This is seen in Figure 6.3 where we plot the difference between the algorithms.

Here, communication is generally lower in the bounded algorithm. This is the reason for the

performance improvement since less time is spent communicating and more on opening correct

doors. Our new method is particularly effective in the region 0.2 < w < 0.4 where communica-

tion is used to verify noisy but useful observations. Just before this point, our new method sends

more messages to try to extract value from very noisy observations. Finally, both algorithms

send less messages at the end because the observations are too noisy to be useful and indeed

communicate to each other.
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Consequently, we have demonstrated that an accurate shaping function can be defined which

performs better than using domain intuition to make the function. And thus we verify the hy-

pothesis.

Following these results, we would like to understand what is the dominating component of the

error bound in this problem (the error bound in Theorem 6.2 tells us it is either the planning

horizon k, the discount factor γ or the observation function). This information will allow us to

better tune the approximation for the best performance and also understand which problems it

would be inappropriate for — in this particular bound, the planning horizon is the only com-

ponent we can alter and so we will be able to get the best value for a given problem. And so,

in the next section, we will analyse how the error bound is influenced by the parameters of the

formalisation.

6.4.3 Dominating Component of the Error Bound

As can be seen from the definition of the error bound (Theorem 6.2), there are several parameters

that influence the size of the maximum error. Specifically, the planning horizon (k) discounts

the error at the fringe (so larger horizons should reduce the maximum error). However, a larger

planning horizon intuitively also causes the possible error in belief divergence to increase (as

seen in Equation 6.13, where each timestep causes the set of possible joint beliefs in the team

to increase). Thus, these two forces should cause a trade-off in the most desirable planning

horizon for a given problem. Furthermore, the error in the observation function (w) should also

influence the maximum possible error in the belief divergence. This is because an observation

which distributes similar observations to all agents regardless of state will result in a smaller

belief divergence error than one which gives very different observations to each agent.

In order to investigate this trade-off in the context of the Multi–Agent Tiger problem, we plot

the error bound for k = 1...11 (the computation becomes too difficult for horizons > 11), against

the same observation function used in previous experiments. It should be noted that, whereas

previous experiments reported the average reward per timestep, this bound is calculated based

on the infinite discounted reward. This is because of the (Rmax−Rmin)/(1−γ) term which is the

penalty for taking the worst possible action at each timestep into the future. In bounds of this

variety, we can only safely assume this worst case performance — since we cannot say at what

point the correct actions might be taken.

As Figure 6.4 shows, the error does indeed decrease as the planning horizon is increased, for all

observation noise w. Furthermore, for the horizons it is possible to compute, the influence of

the planning horizon on the belief divergence error is not as important as the discounted fringe

error. We can see this by the fact that, as k is increased, the maximum error decreases. However,

we can safely assume that this does not carry on indefinitely — eventually we would have to

see a trade-off between the planning horizon and the belief divergence error (it is just that we

do not reach this point with the computational resources available to us — as the horizon is
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increased, the number of belief states to consider increases exponentially with the number of

joint observations). This can be seen clearly if the discount factor is very close to one, in which

case extending the horizon will only cause the belief divergence error term to grow and not

discount the error at the fringe by much. Consequently, where computational resources allow,

it is generally better to plan for larger horizons (in reasonable static problems such as the Tiger

problem). Also, as would be expected, as the observation noise increases the maximum error

increases. This is a result of the belief divergence part of the term. When there is no noise, it

is not possible to have a belief divergence error, so all horizons tend to 0. Similarly, the worst

possible belief divergence error is possible with maximum noise. Finally, we can see that, as

a result of the α vector error term (Rmax−Rmin)/(1− γ), the bound is not very tight because it

assumes infinite worst case error.

This trade-off in maximum error can be seen more clearly in a slightly modified version of the

Multi–Agent Tiger problem that we construct to show the trade-off. Specifically, we assume

that observations become less reliable in the future — and that there is in fact a linear relation-

ship between time and accuracy. Consequently, in Figure 6.5 the error in the belief divergence
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increases linearly with the planning horizon:

εBD(k) =
k

10
(6.14)

Here it can be seen that the maximum error increases with the planning horizon initially, but

eventually the discount in the error starts to have an effect and the maximum error drops. This

simple example shows that the trade-off can work in both directions.
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FIGURE 6.5: Error bound trade-off for linearly increasing belief divergence error and γ = 0.9

In short, this analysis shows that, in terms of error on the belief divergence, the observation

function is the dominating factor. However, the discounted error on the planning horizon is

also important in online solutions. Furthermore, we can see that the bound is dominated by

the α vector error term — which is not very tight because it assumes worst case performance

infinitely. In general an agent may err, incurring something close to a worst case penalty, and

then correct itself and consequently the error will be less than the worst case bound. This is a

similar weak bound used in other POMDP algorithms, as we have discussed in Chapter 2, and so

we can only safely bound infinite horizon worst case performance. Given this, the Rmax−Rmin
1−γ

term

is necessary and appropriate. With this established, the results we have derived can be regarded

as generally applicable since a general feature of most domains is that if more time is spent

planning then some accuracy will be gained by considering future consequences (discounted
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rewards) yet some accuracy will also be lost because of events happening outside the control of

the agent (belief divergence error).

6.5 Summary

This chapter has defined an exact version of the reward shaping algorithm presented in Chapter

4. The empirical results have demonstrated that it performs as well as the heuristic version in

Chapter 5. Furthermore, we have presented an analysis of the error bound in the Multi–Agent

Tiger problem which shows that the planning horizon is more important in this problem (this is

to be expected in a problem which is essentially static).

Against this background, our bounded reward shaping algorithm successfully coordinates agent

teams by estimating the cost of communication (research challenge 1) and then finding the value

of communication (research challenge 2). Finally, it does this in a way which is error bounded

and so we achieve (for the first time in this thesis) research challenge 3.

Now, the next chapter will present a different model which achieves all three research challenges,

whilst arriving at the globally optimal solution. However, this is in a constrained problem class

compared to the methods in this and the previous chapters. Specifically, in a Bayesian Game

framework we specify how to model opportunity based costly communications (similar to how

we use them in previous chapters). Following this we develop analytical forms of the exact

value of communicating for this constrained class of games (see Section 8.2 for a discussion of

the impact on more general settings). These games are constrained compared to the work in this

chapter because we assume agents can only possibly send one communication and then take an

action, rather than the more flexible mechanism using decentralised POMDPs in which planning

over sequences of communications and other actions is possible.



Chapter 7

Optimal Communication Valuations in
Bayesian Games

In previous chapters we have attempted solve research challenge 3 (global decentralised coordi-

nation) in problems which are very general and dynamic such as RoboCupRescue. Now the cost

of this is that the solutions have been a bounded approximation of the decentralised optimal —

because the problems are very large and inherently dynamic. Against this background, some still

interesting problems are more static in nature. Essentially, this means that the agents control the

environment entirely (unlike RoboCupRescue) and so actions can be pre-computed more easily.

Specifically, a value of communication can be calculated in advance which allows for the cal-

culation of the optimal decentralised solution, and consequently, to solve research challenge 3

optimally. This is possible because the static feature can be exploited to significantly reduce the

amount of possible policies to consider. This technique is particularly useful in domains where

the dynamism can be understood and modelled for instance in communication networks where

we know the failure rate of nodes beforehand.

Consequently, in this chapter, we develop a method for valuing communication in a new class

of games — iterated Bayesian Coordination games with explicit observing and communicating

actions. In more detail, in a standard iterated Bayesian Coordination game, agents have to coor-

dinate on different actions in different (partially observable) states of the game to receive a high

payoff (see Section 2.3). In this case, coordination means that the payoff to both agents is iden-

tical. To enable coordination on the high payoff action, agents can request noisy observations

of the state of the game or communicate with the rest of the team. Further to this, the game is

iterated, meaning that it is reset and repeated after the agents make a decision of which action to

take.

These games capture a broad class of problems that includes the canonical Multi–Agent Tiger

problem from Chapter 2. Now, in our extension, observations are used to refine an agent’s view

of the world, and communication is used to coordinate each agent’s beliefs about the state of

the world before it commits to any action. However, as we have seen before, observing and

110
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communicating take time, and may have to be carried out at the expense of some other payoff–

earning action — these actions have opportunity costs. In our specific problem, then, agents

must gather information about the state of the world before deciding on an action to take, because

they know the state will only change if they take an action. This is the static feature that we can

exploit — agents need to evaluate the value of communicating or not beforehand. They could

coordinate by individually obtaining a very probable belief state or by using communication

to share each others’ beliefs about the world. However, depending on the relative costs of

communication and observing, each policy will be more appropriate in different cases.

In more detail, we address the questions of: (i) measuring the value of broadcast communication

in our new class of games — iterated Bayesian coordination games with explicit observing and

communicating actions (research challenge 2), (ii) finding the optimal communication policy in

such games, where a policy is composed of a combination of observing, communicating and

acting, and (iii) showing that the optimal policy is an equilibrium. This last point is impor-

tant because it means that an agent can find the optimal decentralised policy in a local fashion

(research challenge 3). Furthermore, we can leverage the fact that there exist many efficient

algorithms for finding such equilibriums in a distributed fashion (e.g. Sandholm et al. (2005) or

Papadimitriou and Roughgarden (2004)).

In order to answer these questions, we provide the first characterisation of the opportunity cost

of broadcast communication in such games. Second, based on these values, we develop a novel

game–theoretic model of the interaction of agents’ observing, communicating and acting poli-

cies. Third, we show that the optimal joint policy corresponds to the payoff–dominant Nash

equilibrium. Fourth, we develop a new procedure that each agent can use to find this policy

as a function of its payoff in the underlying Bayesian game and the noise in the observations

which it receives about the state of the game. Finally, we demonstrate our method on the Multi–

Agent Tiger problem and show that the value of communication increases as the relative cost of

mis-coordination increases and, furthermore, decreases as the noise in the observation function

decreases.

In what follows we first introduce Bayesian coordination games with explicit observing and

communicating actions. Then the next section analyses broadcast communication in these

games — including developing a procedure for finding the payoff–dominant Nash equilibria.

Following this, we apply this analysis to the Multi–Agent Tiger problem. Finally, the last sec-

tion concludes.

7.1 Communication in Bayesian Coordination Games

As mentioned before, our domain differs from the standard model of Bayesian games in two

important ways, both of which allow agents to coordinate by achieving a similar view of the

world. First, agents can explicitly choose to make observations of the world’s state, which

causes their beliefs to converge because they access the same observation function and be more
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L R O C
U a,a c,c δa,0 δa,0
D c,c b,b c,0 c,0
O 0,δa 0,c 0,0 0,0
C 0,δa 0,c 0,0 0,0

FIGURE 7.1: Extension of the Bayesian coordination game for s = l, explicitly incorporating
observation (O) and communication (C).

likely to take the high payoff action. Second, the agents can directly communicate (broadcast)

their beliefs over the state of the world to each other. Furthermore, in our model, both of these

actions take time. This is a key feature, and allows us to model more general problems in which

communication consumes resources like any other action. Now, because there are only a finite

number of time steps in the repeated game, the choice to observe or communicate must be made

at the expense of forgoing a payoff–earning action. That is, the value of observing the state

or communicating one’s beliefs must be traded–off against the value of taking a less informed

action.

Against this background, this section describes our extension of Bayesian coordination games

to include observation and communication actions. We develop a model that is appropriate for

an arbitrary number of agents, but we will often limit our discussion to two agents for ease of

exposition. Formally, our model consists of a Bayesian coordination game, with the addition

of explicit, time–consuming observing (O) and communicating (C) actions, repeated a finite

number of times. An agent’s utility function is the sum of its payoffs from each sub–game. In

the sub–games, the payoffs to O and C are zero, regardless of the actions of other players in the

game. In the two–player version of the game, if one agent plays O or C, we define the payoff

for the second agent that takes the payoff–dominant equilibrium policy (e.g. U or L in s = l)

as some fraction, 0 < δ < 1, of its equilibrium payoff. If the second agent takes a different

policy, it receives the payoff for mis-coordinating. For the two–agent two–state case, these stage

game payoffs are summarised in Figure 7.1 for s = l (corresponding to the payoff–dominant

equilibrium at {U,L}), where a > 0 > c, a≥ b and 0 < δ < 1. Note that when the column player

plays O or C, the payoff to the row player for playing the payoff–dominant equilibrium policy

U is δa, and when it plays D its payoff is c.

We now define the components of the particular extension of Bayesian games addressed here —

iterated Bayesian coordination games with explicit observing and communicating actions. To

begin with, we are particularly interested in agent coordination, and so we focus on the class of

coordination games (Mezzetti and Friedman, 2001). In these games, if the agents are able to

coordinate then they receive a high payoff, and any mis-coordination leads to a low payoff, such

as in Figure 7.2.

Specifically, in such games:

• Each agent has the same size policy space mi = m for all i;
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L R
U 4, 3 1, 1
D 1, 0 2, 2

FIGURE 7.2: An example coordination game.

q)
p(s = l) p(s = r)

l L R
U a1, a2 c1, d2
D d1, c2 b1, b2

r L R
U b1, b2 c1, d2
D d1, c2 a1, a2

FIGURE 7.3: A two–player, two state Bayesian coordination game, where a ≥ b > c Q d for
each player. When the state is l (left), the Nash equilibrium {U,L} is preferred over {D,R},

while when s = r (right), the opposite is the case.

• There is the existence of a strict Nash equilibrium for each policy The policies can be

ordered so that al = (l, . . . , l) is a strict Nash equilibrium for all l = 1, . . . ,m;

• There is a common ranking For all i, j ∈ N and all h, l = 1, ...,m, ui(ah)≥ ui(al) if and

only if u j(ah)≥ u j(al);

• There exists diagonal dominance u(a j)>> u(a) for all a ∈ A/{a1, . . . ,am}.

These constraints on utility functions imply that in a Bayesian coordination game, different

states only define different rankings of the Nash equilibria. For example, consider the two–

player, two–state Bayesian game in Figure 7.3. When the state, s, is l (left), the Nash equilibrium

{U,L} is preferred over {D,R}, while when s = r (right), the opposite is the case.

Next, we introduce the concept of time by considering the finite iterated version of the game.

This is a structured way of formally defining the opportunity costs of actions — each action must

take a timestep and it is not possible to conduct several actions in parallel. Now, in a finitely

repeated game, the appropriate payoff function is the undiscounted sum of agents’ payoffs.

However, we consider the infinitely repeated version and so we need to maximise the payoff

per timestep in one iteration of the game. As such, we can reduce the problem of finding an

equilibrium in the repeated game to finding one in the sub–game. We will use this notion when

performing an equilibrium analysis in this game.

Typically, the solution concept applied to Bayesian games is Bayes–Nash equilibrium. This

concept implicitly assumes that each agent receives one signal indicating its type (payoff func-

tion), and the agents know how the state of the world and the observations are generated. From

this information and the (commonly known) prior probability distribution over the states of the

world, an agent can compute its expected utility for each action. However, as we will see in

the next section, our model differs from the standard Bayesian game model because we treat

observations as explicit actions which the agent chooses to take, and furthermore, we include

communication between the agents (correlated (Bayesian) equilibria are often applied (Gerardi,

2004) in this situation). However, we are not trying to analyse the outcomes of a Bayesian game.
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Rather, we seek to analyse the stability (i.e. whether it is an optimal policy) of communication

policies, which are agreed upon before the Bayesian game is played. Given this, the payoff to a

communication policy is defined at the level of expected utilities for (correlated) joint policies.

7.2 Observation and Communication Policies

In this section we analyse the interaction of various agent communication and observation poli-

cies. Specifically, we use the values and opportunity costs derived from the underlying Bayesian

coordination game to construct an auxiliary game that represents the value of different commu-

nication protocols. To begin, we consider the two–state problem, and complete a full analysis

of the equilibrium for n agents. Specifically, we show that the maximum payoff symmetric

outcome of the game is an equilibrium (i.e. no agent has an incentive to deviate from this com-

munication protocol), and furthermore, it is the optimal communication protocol in the game.

We then consider the general d–state problem. This is more complicated than the two–state

problem because the agents have to (i) choose which state to sample and (ii) map from a more

complex belief space to an action. Nonetheless, we demonstrate that the same type of analysis

can be completed as for the two–state problem, and to illustrate this we give an example using a

uniform sampling distribution to search the space.

Before we begin the analysis, however, in order to tackle research challenge 3 optimally, we

show how we can considerably collapse the set of policies admitted. First, we define the ex-

pected reward for policies in terms of whether an agent’s most probable belief state is the true

state of the world or not. Now, assume that when an agent takes a payoff generating action (i.e.

not O or C) it takes the action with the highest expected reward given its beliefs. This allows us

to reason over all the payoff generating actions as one, abstract ‘act’ action, which we write as

A. For example, in the Multi–Agent Tiger problem, we express policies in terms of the act of

opening a door (A) and not a specific door (L or R).

Second, in general, an agent’s policy may be any combination of O and communication C ac-

tions followed by A, with the game resetting after this action. We only consider policies which

conclude with an A and do not contain multiple As (because the game resets), as all other poli-

cies can be constructed by combining these policies, and are, therefore, redundant. Furthermore,

we do not allow the agents to make any additional observations after communicating — they al-

ways act immediately after communicating — because (i) communicating more than once makes

earlier Cs redundant, and (ii) for a fixed policy length, communicating later always dominates

communicating earlier, because more information is transferred. Therefore, a single C imme-

diately before A dominates all other combinations containing one or more Cs. Thus, we can

restrict the agent’s policies to the following combinations of actions:

• Observe m times and then act, (e.g. A or OOA) or

• Observe m times, communicate and then act (e.g. OCA).
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In this case, observing m times means utilising a search policy of length m. An environment is

made up of several observable features and a policy may observe a certain feature, all features

in turn, or all features according to some distribution, or an information maximisation policy.

Against this background, the payoffs to agents for following combinations of these policies

can be described as a normal form auxiliary game (a higher level game describing a game).

Each outcome of this auxiliary game defines a combination of the agents’ A, O and C policies,

or a communication policy. The value of the payoff to an agent for an outcome in the auxiliary

game, π(a), is the average expected payoff per time step that the agent receives in the underlying

Bayesian coordination stage game. This means that each expected value E[ui(ai,a j)] derived in

the coming sections needs to be divided by the length of its corresponding policy. We denote

this value as πi(ai,a j), and it has the form:

πi(ai,a j) =
E[ui(ai,a j)]

min{|ai|, |a j|}
(7.1)

where |ai| is the length of agent i’s policy. Further to this, we will often drop the agent index on

the expected payoff because the payoffs to all agents are symmetric and identical. In the case

of two agents and two states, Figure 7.4 illustrates the generic payoff matrix to the row agent.

We will refer to elements of this table in our analysis of the two–state problem. Now, in Section

7.2.1 we analyse the two–state problem, and show, using the auxiliary game, that the payoff–

dominant symmetric outcome of the game is an equilibrium, and furthermore, it is the optimal

communication policy in the game. Then in Section 7.2.2 we consider the more general d–state

problem, in which we must reason about the choice over which state to sample alongside the

problems of deciding when to observe and communicate.

7.2.1 Analysis of the Two–State Problem

We begin in Section 7.2.1.1 with expressions for the probability that two agents coordinate on

the payoff dominant equilibrium or the other equilibrium, or mis-coordinate, given the level

of noise in their observation function. Then, using these values, in 7.2.1.2 we reason over the

expected payoff to an agent at each time step to construct the auxiliary game. Finally, in Section

7.2.1.3 using the auxiliary game, we show that the payoff–dominant symmetric outcome of the

game is an equilibrium, and furthermore, it is the optimal communication policy in the game.

7.2.1.1 Observation Probabilities

To recap, an agent can make a noisy observation of the state of the world, which is true with

probability 1−w (this function is known to the agents), and begins with a prior belief that places

equal probability on every state of the world occurring. In what follows, ŝi represents the most

likely state according to agent i’s belief state.
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The probability an agent has a belief state which indicates the true state of the world more than

any other state, given a history m of m observations, Pr(ŝ = s|m) is:

Pr(ŝi = s|m) =

{ (m−1)/2

∑
k=0

(
m
k

)
(1−w)m−k wk if m is odd,

m/2−1

∑
k=0

(
m
k

)
(1−w)m−k wk if m is even.

(7.2)

As can be seen, this follows a cumulative binomial distribution. This reflects all the ways that an

agent can receive more observation indicating the true state of the world than any other given m.

As such, the probability an agent has a belief that tends towards an incorrect state of the world

given m observations, Pr(â 6= a|m), is:

Pr(âi 6= a|m) =

{ (m−1)/2

∑
k=0

(
m
k

)
(1−w)k wm−k if m is odd

m/2−1

∑
k=0

(
m
k

)
(1−w)k wm−k if m is even

(7.3)

In a similar fashion to before, this reflects all the ways an agent can receive observations indi-

cating the incorrect state of the world given m. Finally, the probability an agent has a uniform

(or uninformative) belief, u, given m observations, Pr(ŝ = u|m), is:

Pr(ŝi = u|m) =

{ 0 if m is odd(
m

m/2

)
(1−w)m/2 wm/2 if m is even

(7.4)

This is a special case where an agent receives an equal number of observations for the true state

and the false state given m.

7.2.1.2 Expected Payoffs

The way in which we restrict the policy space divides the expressions for the expected value of

a policy into four cases.

1. The agents have identical policies that do not involve communication.

2. Agents have identical policies that do involve communication.

3. Agents’ policies may be the same length and only their penultimate action differs —

specifically, an agent either communicates or observes. In this case, the difference in the

number of observations is never more than two, because an agent always takes an A action

after communicating, at which point the episode is reset.
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4. The agents may have policies of different lengths. Here, the shortest policy will terminate

longer ones (since the game will repeat after an action is taken), so the shortest policy

determines the payoff to all agents.

The expected payoffs to agents in each of these cases is discussed next. In what follows, we

assume that agents have a common tie–breaking rule for choosing an A action when they have

a uniform posterior, under which they play a predefined A action. This rule selects the correct

action with probability equal to the prior; w.l.o.g. in all domains we assume a uniform prior, so

the rule selects the correct action with probability 0.5 in the two door case.1

Case 1: Now, we first consider identical policies which do involve communication. Using

payoffs from the underlying game in Figure 7.1 (a, b, and c), the expected payoff for each agent

is:

E[ui(OmA,OmA)] = a [Pr(ŝ = s|m)+ 1/2 Pr(ŝ = u|m)]2

+ b [Pr(ŝ 6= s|m)+ 1/2 Pr(ŝ = u|m)]2

+ 2c [Pr(ŝ = s|m)+ 1/2 Pr(ŝ = u|m)]

× [Pr(ŝ 6= s|m)+ 1/2 Pr(ŝ = u|m)] (7.5)

Case 2: We consider two agents, i and j, that do communicate. In this case, the expected

payoff for each agent is:

E[ui(OmCA,OmCA)] = a[Pr(ŝ = s|m) + 1/2 Pr(ŝ = u|m)]

+ b[Pr(ŝ 6= s|m) + 1/2 Pr(ŝ = u|m)] (7.6)

Note that, in contrast to Equation 7.5, the probability that they have different beliefs such that

they mis–coordinate (and receive a payoff of c) is 0, because they have synchronised their beliefs

by communicating.

Case 3: Consider different policies of the same length. As noted above, two policies of the

same length can differ only in their penultimate action (e.g. OOA and OCA). Consequently,

for any two differing policies of the same length, the only difference between them is that one

makes one more observation than the other. Now consider the case of two agents. Because of

the way policies are restricted, if agent i communicates, then agent j knows that it will act in the

next time step, and knows what i will do with certainty. Therefore, its best action is to coordinate

with i, ignoring it’s own observations, because c < a and c < b. The expected payoff for each

agent in this case, given that i has made mi observations, is:

E[ui(OmiA,Om jCA)] = a Pr(ŝ = s|mi)+b Pr(ŝ 6= s|mi) (7.7)

1Any tie-breaking rule could be used, it is only important that all agents know what it is and follow it.
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Furthermore, note that the symmetrically opposite outcome has the same expected payoff.

Case 4: For different length policies, we only need to define the expected payoffs to the agent

with the shortest length policy, as all other agents receive a payoff of zero (as shown in Fig-

ures 7.1 and 7.4). Consequently, the expected payoff to the agent that acts is simply a function

of its own beliefs:

E[ui(OmCA,OmCA)] = δa Pr(ŝi = s|mi)+ c Pr(ŝi 6= s)|m) (7.8)

7.2.1.3 Equilibrium Analysis

We now proceed with the equilibrium analysis. As we have noted earlier, for ease of exposition,

we omit the agent index since payoffs are identical to all agents. Note that expected payoffs

to identical policies are located on the diagonal of the payoff matrix in Figure 7.4. From these

expressions, we can derive several inequalities, which we use to show that the maximum–payoff

policy on the diagonal of Figure 7.4 is a Nash equilibrium. Now, before we formally define the

problem, note that for m > 1, the number of observations that the agents receive when both of

them communicate is at least as great as the number when they do not. Consequently, when they

communicate, the probability that their beliefs are accurate is at least as great as when they do

not. Furthermore, when each of the agents communicate, they never mis-coordinate (i.e. they

always act the same way). Therefore:

π(OmCA,OmCA)> π(OmOA,OmOA) ∀m≥ 1 (7.9)

As a consequence, if a policy that has the maximum payoff on the diagonal involves more than

one observation action, its penultimate action is always to communicate. This significantly

reduces the number of points on the diagonal of Figure 7.4 that need to be compared to find the

maximal element.

Therefore, the payoffs of interest on the diagonal are the maximum of π(A,A), π(OA,OA) and

the set of π(OmCA,OmCA) for m ≥ 1. To find the maximum between these payoffs, we will

solve the following integer program:

max{π(A,A),π(OA,OA),π(OmCA,OmCA)} ∀m≥ 1 (7.10)

Note that, because of the form of the probabilities involved, the value of the set of π(OmCA,OmCA)

solutions is a bounded concave function in m. This is clear because an initial increase in obser-

vations will lead to more reward, but after a point the policy length will reduce the value of

taking anymore observations. Therefore, a maximum of this set can be easily found using a

simple one–dimensional search algorithm. As such, the integer program is reduced to selecting

between π(A,A), π(OA,OA) and maxm{π(OmCA,OmCA)}.
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What interests us, however, is not only locating the maximum of the diagonal payoffs but to

show that this is a Nash equilibrium. Now, the auxiliary game is symmetric, so we can do

this by showing the payoff on the diagonal is greater than all other payoffs in that column.

Furthermore, since we show that the maximum is on the diagonal, the equilibrium is symmetric,

and so it holds for all numbers of agents. We now consider the three cases of the location of the

maximum independently.

Maximum at π(A,A): Note that every other value in the first column of Figure 7.4 is zero. Now,

if π(A,A) is the maximum diagonal element, it must be greater than zero. To see this, compare

π(A,A) to the value of the π(OmCA,OmCA) elements as m grows. In the limit, the probability

that the agents coordinate on the high payoff action is 1. However, as the number of time–steps

tends to infinity, the average value of π(OmCA,OmCA) is 0. This holds regardless of the payoffs

in the underlying game or the level of noise in the observations. Consequently, if π(A,A) is the

maximum diagonal element, it must be greater than zero, so is a Nash equilibrium.

Maximum at π(OA,OA): For π(OA,OA), the argument is indirect. Note that:

π(A,A) = 1/2(a+b)> π(A,OA) = 1/2(δa+ c) (7.11)

because a> δa and b> c. Then, if π(OA,OA)> π(A,A), it is also greater than π(A,OA). Finally,

if π(OA,OA) is the maximum diagonal element, then by the same reasoning as above, it must be

greater than 0 and therefore a Nash equilibrium.

Maximum at π(OmCA,OmCA): We now show that if an element of π(OmCA,OmCA) is the

maximum, denoted π(Om∗CA,Om∗CA), then it is a Nash equilibrium. This requires several

comparisons of payoffs. For example, in Figure 7.4, if π(OCA,OCA) is the maximal payoff on

the diagonal, to show that it is an equilibrium we need to show that it is greater than π(A,OCA),

π(OA,OCA), π(OOA,OCA) and zero. We do this indirectly, using the reasoning applied in the

first two cases, the fact that π(Om∗CA,Om∗CA) is the maximal element, and the following four

sets of inequalities.

First, compare π(A,A) to the payoffs in which one agent observes once and then acts, while

the other observes m times, communicates and then acts, π(OA,OmCA). These policies are of

different lengths, so we will directly compare them in terms of the observation probabilities.

Now, the payoff to each policy is: π(A,A) = 1/2(a+b) and π(OA,OCA) = 1/2((1−w)δa+wc).

Clearly, a > (1−w)δa and b > wc, so:

π(A,A)> π(OA,OCA) = π(OA,OOCA) = . . . (7.12)

Second, for an arbitrary value of m, compare π(OmCA,OmCA) to the payoffs to all the outcomes

in which one agent observes m times, communicates and then acts (OmCA), while the other

either observes m+ l times (l ≥ 1), communicates and then acts (Om+lCA) or observes m+ l+1

times and then acts (Om+lOA). All of these outcomes have the same expected payoff because
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they are determined by the shorter length policy, OmCA. In Figure 7.4, these are the payoffs

above the diagonal on the OmCA row.

π(OmCA,OmCA)> π(OmCA,Om+lOA) ∀m > 1, l ≥ 1 (7.13)

In the latter case, the agent that moves first is working from fewer observations than in the former

case, so the probability that its belief is accurate is less than in the former case. Additionally, the

payoffs for acting unilaterally (δa and c) are less than the payoffs when acting in a coordinated

fashion (a and b). Therefore, the expected payoff is less.

Third, compare π(OmCA,OmCA) to the payoffs to all the outcomes in which one agent observes

m+1 times and then acts (OmOA), while the other either observes m+ l times (l ≥ 1), commu-

nicates and then acts (Om+lCA) or observes m+ l +1 times and then acts (Om+lOA). As before,

these outcomes all have the same expected payoff, which is determined by the shorter length

policy, OmOA. In Figure 7.4, these are the payoffs above the diagonal on the OmOA row.

π(OmCA,OmCA)> π(OmCA,Om+lCA) ∀m > 1, l ≥ 1 (7.14)

Note that in the latter case, the agent that moves first is working from, at most, the same number

of observations as the former case, so the probability that its belief is accurate is at most equal

to the former case. Similar to the previous comparison, the payoffs for acting unilaterally (δa

and c) are less than the payoffs when acting in a coordinated fashion (a and b). Therefore, the

expected payoff is less.

Fourth, compare π(OmCA,OmCA) to the payoffs in which one agent communicates as the penul-

timate action and the other observes, π(OmOA,OmCA). In the latter case, only one agent is com-

municating, so although coordination is guaranteed, the agents are only working from half the

number of observations of the former case. Consequently, the probability that they have beliefs

that are accurate is less than if they both communicate, and the following holds:

π(OmCA,OmCA)> π(OmOA,OmCA) = π(OmCA,OmOA) ∀m > 1, (7.15)

where the equality holds by the same reasoning as above.

Given these four relations, we now show that the maximum diagonal element is a Nash equi-

librium when it is an element of π(OmCA,OmCA). To do this, we use the reasoning applied in the

first two cases and the inequalities above to move down the column containing π(Om∗CA,Om∗CA)

showing that it is greater than the values in each position.

Top row: Because π(Om∗CA,Om∗CA) is greater than π(A,A), by Equation 7.11 it is also greater

than π(A,OA). Furthermore, the value of π(A,OA) is equal to the payoff for all outcomes in

which the agent immediately acts, while the other either observes m times, communicates and

then acts or observes m+1 times and then acts (These are the payoffs above the diagonal on the



Chapter 7 Optimal Communication Valuations in Bayesian Games 122

top row in Figure 7.4). Therefore, π(Om∗CA,Om∗CA) is greater than any element in the top row

of Figure 7.4:

Second row: By Equation 7.12, any diagonal element that is greater than π(A,A) is also greater

than the above–diagonal elements of the second row of Figure 7.4.

Remaining rows above row Om∗CA: In this step we show that if π(Om∗CA,Om∗CA) is the

greatest diagonal element, then it is greater than all of the elements of its column between rows

two and row Om∗CA. For all m < m∗, π(OmCA,OmCA) is less than π(Om∗CA,Om∗CA). Then,

The implication of Equations 7.13, 7.14 and 7.15 is that π(Om∗CA,Om∗CA) is also greater than

any of the above–diagonal elements of the OmCA and OmOA rows, because these values are

always less than π(OmCA,OmCA).

One row below row Om∗CA: π(Om∗CA,Om∗CA) is greater than the value immediately below it

by Equation 7.15.

Remaining rows (all zeros): By the reasoning presented for π(A,A), π(OmCA,OmCA) is greater

then zero.

Therefore, if π(OmCA,OmCA) is the maximum diagonal element of Figure 7.4, it is a Nash

equilibrium. This completes our analysis of the stability of the optimal communication policy

for two agents. Furthermore, because the auxiliary game and the equilibrium are symmetric

and these inequalities hold for all n > 2, the equilibrium analysis also holds for more than two

agents.

7.2.2 Information Gathering in Larger Domains

We aim to develop a general model of communication valuations in coordination games and, as

we mentioned earlier, coordination in these sorts of games can be achieved by communication

or individually observing the state of the world. Now, as we have already highlighted, in some

of these problems it may be inefficient for each agent to individually observe all parts of the

problem (because many observation actions are required) and so a search policy is required

which accounts for what the other agents are also searching. Given this, in this section we will

show how the previous framework can be extended to include such problems and, thus, we can

derive the value of communicating the results of a search policy. We will see that the same

equilibrium analysis is possible because of the generality of our formalism.

Following this, the analysis so for has considered problems with two states. In that case, making

an observation of one state gives us the same amount of information about the second state.

However, in order to extend the analysis to problems with more states (and therefore more

equilibria in the underlying Bayesian coordination game), we must consider the problem of

choosing which state to sample (which partially observable feature of the problem), alongside

the problems of deciding when to observe and when to communicate.
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For example, consider a Multi–Agent Tiger problem comprising d > 2 doors and n agents, with

a treasure behind only one door and tigers behind the rest. In making an observation of the state

of the world, an agent has to choose which particular door to observe. To contrast with the pre-

vious problem, observing one door gives the agent much less information about the unobserved

doors, and consequently the whole state. Furthermore, the agents now need to use a search

policy to guide their choice of which door to observe. In this case a search policy is a policy

that selects which features to observe — it could be deterministic, probabilistic or interactive.

Moreover, the chosen search policy will have a very significant impact on the expected value

to a communication policy and the subsequent equilibrium analysis. For example, agents may

observe different doors, and then communicate, or they may choose to observe more doors and

ignore the information gathered by other agents. Depending on the costs and benefits of com-

munication (which themselves depend on the search policy in use), different communication

policies will be better suited.

In this context, the model we defined and analysed in Section 7.2.1 is very general in the sense

that the only thing that needs to be altered to complete the same analysis is the likelihood of

ascertaining the correct state given a search policy of length m (as was done for two states in

Equations 7.2, 7.3 and 7.4). Once this has been defined, the expected utility of a communication

policy for a particular search policy is used as an input to the equilibrium analysis.

By way of example, consider a uniform search policy, in which an agent selects a door with

equal likelihood m times. We can specify the probability that a uniform sample of size muni

generates a belief with greatest likelihood on state s j, as:

Pr(ŝi = s|muni)

= ∑
h∈H(muni)

(
m

m1,m2, . . . ,md

)(
1
d

)m

Pr(ŝi = s|m1,m2, . . . ,md), (7.16)

where m j is the number of observations of the payoff of equilibrium j and H(muni) is the set of

all samples of length muni. In this expression, we weight each possible sample by the likelihood

of it being selected using a uniform search policy, which gives a multinomial distribution over

the likelihood of being able to determine the state given m observations. If the search policy was

changed, this expression would need to be altered accordingly. This demonstrates the power

of our approach, by allowing us to separate the search policy from the equilibrium analysis.

Indeed, as long as we can specify the expected reward for a search policy in this format, then

our equilibrium analysis holds and, consequently, we can always derive the optimal stable policy

for each agent.

However, the specification of the probability of being able to determine the state given a sample,

Pr(ŝi = s|m1,m2, . . . ,md), is a non–trivial task, involving computing the mode of a multinomial

distribution. Thus, a derivation of these probabilities would distract from the main contribution
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of the chapter, which is the general model for integrating costly communication and observa-

tions and the subsequent stability analysis. Nevertheless, given these probabilities, an equiva-

lent equilibrium analysis to that presented in Section 7.2.1 follows directly, because the same

relationships exist between expected payoffs to combinations of communication policies. Es-

sentially, the stable policy is guaranteed to be on the diagonal of the game, and given any search

policy specified this way, the relationship of the diagonal policies to the off-diagonal ones is

always the same (as we have already shown).

7.3 The Multi–Agent Tiger Problem

Our analysis thus far has established the location of Nash equilibria for Bayesian coordination

games that incorporate observation policies and communicating as explicit actions. To ground

this, we now represent the Multi–Agent Tiger problem in this game (we consider both the two

and multi–door settings). Specifically, we show how the location of the Nash equilibria in this

game changes with the relative sizes of the payoffs and the level of noise in the observation

function. This gives us an insight into the value of broadcast communication in this problem.

Furthermore, it allows us to detail the conditions under which communication is a useful activity,

compared to achieving a more certain impression of the state and acting with less information.

7.3.1 The Two Door Setting

We examine the location of the payoff–dominant equilibrium policy as the payoff for coordinat-

ing on the location of the tiger, b, and the level of noise, w, vary. Specifically, we present results

for values of b = 〈−20,−5,2〉, fixing a = 25 and c =−25. The relative sizes of a and c are less

interesting in this problem, since it is varying b that produces a change in behaviour. Figure 7.5

shows the location of the Nash equilibria in these three instantiations of the two–agent two–door

problem.

As can be seen, for low levels of noise (w < 0.08) the optimal policy is {OA,OA}, regardless

of payoffs (note that all figures initially have the symbol × for m = 1). This is because a single

observation is true with high enough probability for it to act as a coordinating mechanism for

the agents, without the need to communicate or make any further observations. When there

is a high penalty for coordinating on the wrong door (b = −20), then, as noise increases, it is

beneficial to obtain more observations before communicating (note the symbol ◦ for increasing

m as noise increases). This trend is flatter for higher values of b because there is less incentive to

get the correct door as b increases. Furthermore, when there is a small penalty, or even benefit,

to coordinating on the wrong door (b = −5,2), then the problem is dominated by the need to

avoid mis-coordination, hence there is more communication compared to observations. Also,

in this case, it is not worth spending time finding the tiger, so the agents just make a single (or

no) observation, m = 1, and communicate straight away. In particular, when there is a positive
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FIGURE 7.5: Three examples of the optimal communication policy in the two–player tiger
problem. The symbol × indicates a policy with no communication, while ◦ indicates commu-

nication. For all, a = 10 and c =−25, with the value of b as specified.

reward for jointly opening the wrong door b = 2, a high level of noise (w > 0.25) erodes any

benefit of observing, and the agents can simply rely on the tie–breaking rule to coordinate.

7.3.2 The Multi–Door Setting

Moving onto the multi–door problem, we present results as above with a = 20, b = 5 and c =

−100. Specifically we consider the two door two agent case (labelled 2− 2 in Figure 7.6),
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the three door four agent case (labelled 3− 4 in Figure 7.6) and the four door two agent case

(labelled 4−2 in Figure 7.6) as representative examples.
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FIGURE 7.6: Optimal policy length m for The Multi–Agent Multi–Door problem for 2− 2,
3−4 and 4−2.

In Figure 7.6 we can see that the optimal policy length increases as noise increases (w increases).

The policies for 2−2 and 3−4 are similar — to always communicate, however 3−4 is even-

tually shorter than 2−2 and that is because the problems are roughly similar but there are more

agents to search in 3−4. Therefore communication is more valuable to reduce the policy length.

In 2−2, once w > 0.25, there is no sense in gathering more observations (as they become nois-

ier) so m = 80 holds. The same is true for 3−4 at w = 0.075 where m = 40. The 4−2 problem

has a very large policy length because it is a much larger problem (four doors to search) and

does not initially communicate until a phase change occurs at w = 0.3 where communication

quickly becomes more important in order to confirm noisy observations with each other. Con-

sequently, at this point, m drops from 170 to 80. Before this point it is important to gather more

observations. Hence the phase change.

Finally, in the majority of cases there is a value to communicating — primarily because it guar-

antees coordination. In this setting, the observation function has to be virtually error–free for

the agents to coordinate without communication — even in the cases where communication is

costly. Consequently, the value of this communication policy increases as the relative cost of
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mis-coordination increases, whilst decreasing as the noise in the observation function decreases.

This highlights a general relationship between communication and coordination — that it is not

needed if the agents can independently ascertain the global state of the problem, but it becomes

more important as this gets harder. Furthermore, this trend is more pronounced as the cost of

mis-coordination increases.

7.4 Summary

In this chapter we consider the cost and value of information gathering and exchange policies in

coordination problems. Specifically, we argued for the use of opportunity costs as a principled

and general formalisation of the impact of communication during multi–agent coordination.

This model avoids arbitrary costs and valuations for using a communication medium, and in-

stead, allows the benefits and penalties to be represented in terms of the increase or decrease in

team utility as a result of using communication (research challenge 2).

In more detail, we developed a novel variant of Bayesian coordination games that incorporates

search and communicating as explicit actions. Within this game, we derived expressions for the

value of different communicating, observing and acting policies — or communication policies

— using opportunity costs. We then showed that the optimal communication and search pol-

icy is the payoff-dominant Nash equilibrium. Finally, we provided a procedure for finding this

equilibrium as a function of the noise in the underlying Bayesian game. We demonstrated that

in the Multi–Agent Tiger problem, the value of communication increases with the relative cost

of mis-coordination and decreases with the noise in the observation function. Our solution to

research challenge 3 in this chapter is optimal (compared to a bounded approximation in the

previous chapter), however that is because we restrict the generality of the problem by consid-

ering only static domains. Specifically, with this approach we can pre-compute plans because

we know that the environment is completely controlled by only the agents. It is clear that in

more dynamic domains, such as RoboCupRescue, our reward shaping based solution is more

appropriate, since that can account for things happening outside the team’s control.



Chapter 8

Conclusions and Future Work

In this chapter, we first present our concluding remarks regarding the work developed in this

thesis. After this, we identify several avenues of future research.

8.1 Conclusions

In this thesis we argued that the coordination of multi–agent systems in the presence of an ex-

pensive or restricted communication medium is an important problem. Specifically, we posited

the need for a rational approach to communication. That is, agents need to explicitly evaluate

the utility of sending a specific communication, and if they do this, then they can balance the ex-

pected utility gain with the cost of communicating. In order to establish this, we identified three

research challenges which should be addressed in order to achieve such rational communication:

(i) how to specify, in a general framework, the cost of using the communication mechanism; (ii)

how to specify the value, in terms of future utility, of sending a particular message to the rest of

the team; and (iii) how to use this communication cost and valuation to control a decentralised

system in a manner which represents an optimal or bounded approximation of the optimal solu-

tion. Now, in achieving these research challenges, our work has advanced the state of the art in

the field of coordinating multi–agent systems in the presence of communication restrictions for

solving decentralised control problems. In the following we summarise each chapter in relation

to how it achieves these research challenges.

With this problem and proposed solution in mind, the decentralised POMDP formalisation was

chosen as the point of departure for this work. This is because of its general nature and the ease

with which a problem containing domain actions and communications can be modelled. This

model also allows the integration of communication valuations. Following this, information

theory, which is one such valuation technique, was chosen as a metric for making communica-

tion decisions because it does not place any demands on the coordination mechanism, making

it a general method of valuing communication. To date, traditional approaches based on de-

centralised POMDPs do not explicitly value the communication acts that they allow. Rather,

128
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they rely on the value being inferred during policy computation. In contrast, our work values

communication directly so that it can be reasoned about explicitly. By so doing, large amounts

of policy computation are not required to derive an implicit value. Also, by defining a general

valuation, it can be used in domains where the dynamics are not known perfectly, and it forms a

sound basis for a dynamic rational communication model.

Against this background, in Chapter 3, we introduced the dec POMDP Valued Com model —

a model of coordination using rational communication, and then detailed an action selection

mechanism that can manipulate this model. We learnt a weighted information measure as

a reward for communication in this method. Following this, we showed how the ambulance

agent task from RoboCupRescue could be represented as a dec POMDP Valued Com — which

demonstrated how the communication valuation is used to communicate rationally. Finally, we

analysed this model empirically and our results show that valued communication leads to bet-

ter policy computation in decentralised POMDP models than basic rule-based models. As a

result, we proposed a method which successfully solves research challenge 1 (the cost of com-

munication) — by capturing this cost using opportunity costs in a sequential decision making

framework. However, by valuing communications using a weighted information measure, we

cannot solve research challenge 3 (decentralised coordination) because there is no formal link

between how information influences coordination. Further to this, the learning process was slow

making it hard to apply this method to larger problems.

To solve this flaw, in Chapter 4 we presented a general model of coordination inspired by Reward

Shaping. Specifically, we defined how a traditional decentralised POMDP can be transformed

into individual local knowledge POMDPs defined over the belief divergence in the team. This

has the advantage of reasoning over only local knowledge, at the expense of ignoring the pos-

sible team experience. Within this transformation, belief divergence is used to shape individual

estimations of the expected reward for joint actions based on how coordinated the team currently

is. Furthermore, this framework allows communication to be cast as a function that explicitly

modifies belief divergence (by synchronising beliefs across the team). This provides a principled

way to both value communications and also reduce the computational complexity of the under-

lying team problem. Finally, the reward shaping function captures the value of communication

and so no learning is required, unlike the model in Chapter 3. As a consequence, communi-

cation can be employed in an efficient rational manner on larger problems than was hitherto

possible. Furthermore, we again used the opportunity cost based sequential decision making

to solve research challenge 1 (how to accurately cost communications) as in Chapter 3. This

framework was expanded to distinct problem domains in later chapters. Specifically, Chapter

5 used a heuristic approach to solve large problems, whilst Chapter 6 used an exact method to

solve research challenge 3 (decentralised coordination).

In Chapter 5, using the model from Chapter 4, we have shown that the relationship between

belief divergence and coordination for a given problem can be used in the form of problem

specific shaping functions. We then implemented this in terms of the Multi–Agent Tiger and

RoboCupRescue problems. Using heuristic shaping functions we extend the state of the art
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in online communication valuations by providing a technique that outperforms existing work

and also the technique from Chapter 3, whilst employing a more realistic costly communica-

tion medium (specifically that communication takes time like any other action). Also, because

Chapter 3 employed an offline learning mechanism which the technique in this chapter does not,

we can also solve larger scale problems. However, as we discussed earlier, using heuristic shap-

ing functions contains an unknown error on the value of communication and so does not allow

for a solution to research challenge 3 (optimal or bounded approximation coordination) since

the heuristic functions have only informal information about the link between communication

valuation and coordination. This link is made exact in the next chapter, at the cost of some

scalability.

In Chapter 6 we proposed an alternative reward shaping function, which allows for theoretical

bounds on the error in using the approach compared to an optimal decentralised POMDP. How-

ever, this bound comes at the expense of some degree of scalability because it is more difficult

to compute than the heuristics in Chapter 5. Nevertheless, having a bound is particularly use-

ful since it allows us to ascertain beforehand whether our technique is appropriate for a given

problem, and what performance, in the worst case, we will lose by applying this approximation.

Consequently, our approach has theoretical guarantees on the quality of its solutions. This is

something that is lacking from all previous decentralised POMDP and communication valua-

tion models. To ground this, an analysis of this error was presented for the Multi–Agent Tiger

problem where it was found that the dominating term in the error is the planning horizon rather

than how to estimate the belief divergence. Specifically, we found that longer horizons are more

desirable, even with the larger error this introduces to the belief divergence. This will, in gen-

eral, be true for other problems, although the point at which the belief divergence error becomes

dominating will change with the observation function for that problem. As a result, this method

allowed us to solve research challenge 3 in that we could find a bounded approximation of the

optimal decentralised solution.

Finally, in Chapter 7, we explored a different (albeit complementary) direction in solving re-

search challenge 2. Specifically, we develop a novel variant of Bayesian coordination games

that incorporates search and communicating as explicit actions. Within this game, we derived

expressions for the value of different communicating, observing and acting strategies — or com-

munication policies — using opportunity costs (as in Chapter 3 for solving research challenge

1 — the cost of communication). We then showed that the optimal communication and search

policy is the payoff-dominant Nash equilibrium. Finally, we provided a procedure for finding

this equilibrium as a function of the noise in the underlying Bayesian game. We demonstrated

that in the Multi–Agent Tiger problem, the value of communication increases with the rela-

tive cost of mis-coordination and decreases with the noise in the observation function. This

approach solves research challenge 2 analytically and optimally for a constrained class of prob-

lems (specifically, they are static problems allowing the strategy to be decided in advance), and

consequently, solves research challenge 3 — optimal decentralised coordination.
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To summarise, in the context of restricted communication, we have contributed a heuristic solu-

tion to large scale dynamic problems (Chapters 4 and 5), a bounded approximation of a solution

to slightly smaller dynamic problems (Chapters 4 and 6) and finally, an optimal solution to large

scale static problems (Chapter 7). Against this background, we can justifiably claim to have

achieved all of the research challenges in the interesting areas of the full problem space and

consequently satisfied our central thesis that coordination in the presence of restricted commu-

nication calls for a rational approach to communication. Despite these achievements, a number

of open issues remain. For instance, throughout this thesis we use the concept of broadcast

synchronisation communication which in effect makes bandwidth free (but not availability). We

have answered when to communicate but the most important follow–up would be to tackle the

question of what to communicate in order to alleviate this problem. If these two engineering

problems could be solved in a general fashion then we would have the first steps of under-

standing the impact of limited communication on bounded rationality in distributed artificial

intelligence.

In more detail, this thesis has highlighted the important issue that coordination is inherently

more difficult in the presence of restricted communication. This may seem like an obvious

point, but often this is overlooked in coordination mechanisms where communication is treated

as something that will be taken care of by a network protocol that will guarantee the receiving

of a message (by multiple broadcasts and acknowledgements). In many domains this is simply

not true and in fact highly counter-productive. This question is found most clearly in the more

general question of bounded rationality. Specifically, if an agent’s ability to compute a solution

is bound by its processing power, time or information, then a limited communication infrastruc-

ture has an impact on these bounds in a distributed artificial intelligence setting. Our solution

has shown how communication (with assumptions about the reasoning of the other agents) can

be used to reduce the processing requirements of the team if that communication is unlimited —

because there are no limits on information in the team. However, the more interesting question

is when communication is limited and as a result the bounded processing requirements become

larger in order to achieve the same solution. This is a fundamental problem in distributed deci-

sion making.

Moreover, as a result of the methods adopted in this work, the techniques that have been de-

veloped herein can be used in any problem where the agent must reason about the use of an

expensive communication medium. Specifically, the methods of valuing communication can be

extracted from their decentralised POMDP foundations and applied to other problem represen-

tations such as DCOPs or intentional teamwork models. It would be highly useful to develop

distributed artificial intelligence algorithms whose solution quality is parameterised on the lim-

its of the communication environment (in a manner similar to bounded rationality). Further to

this, since we have presented a formal method for separating a team problem into individual

problems, those researchers interested in studying fundamental questions about how much of a

given team problem can be solved in isolation will find much of interest in this work.
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8.2 Future Work

In the future, there are four main directions research could take from this thesis. Specifically,

one direction could be to find different ways of estimating the belief divergence in the team and

study the impact this has on the error bounded approach using reward shaping. A second direc-

tion would be to compare the theoretical value of communication defined in the literature with

the value generated in our reward shaping scheme. A third direction would be to use our reward

shaping method as the basis for an online error minimising algorithm (using communication) for

controlling decentralised systems. A final direction would be to extend the game–theoretic anal-

ysis of communication valuations to more expressive domains and see if the analytical solutions

remain tractable. We will now discuss each of these in more detail:

• Belief Divergence Estimation: In the future we intend to expand the analysis of this

technique to other methods of estimating the belief divergence in distributed teams. In

particular, our technique of using reward shaping to manage coordination and commu-

nication is very general, but its error is very dependent on the method of measuring and

estimating belief divergence. At the moment we use a relatively straight-forward tech-

nique defined over an absolute measure of belief divergence, but this can be viewed as

the first step toward a general model of using belief divergence to analyse communica-

tion in teams. Specifically, we could include prior knowledge of the environment, for a

more advanced estimation of the belief divergence or use learning for a dynamic model.

Furthermore, we could use other measures of belief divergence (our bounded solution use

absolute difference and the heuristic uses KL Divergence) such as those from informa-

tion theory (e.g. Entropy) since these will capture some of the information relationships

implicit in the reward and state functions. At the moment, computing the divergence in-

volves enumerating over all states — so some aggregate measure may be more efficient

to compute and consequently allow both heuristic and bounded reward shaping to applied

to still larger problems. However, we would need to estimate the error this introduces.

Consequently, any change in the method of measuring or estimating the belief divergence

would call for a new error bound analysis (if it is possible with the method used) and so

this requires careful consideration.

• Value of Communication: There has been other work on the exact value of communica-

tion in decentralised POMDPs (see Section 2.4.2 for more details), and given this, it would

be instructive to investigate if that valuation is preserved in our transformed model. In par-

ticular, this would shed light on the issue of whether, in general, decentralised POMDPs

can be separated for each agent and then use communication in a principled fashion to

maintain optimality. If we could establish this, then there would be scope for algorithms

that solve independent parts of the complete decentralised POMDP in isolation (with a

communication policy) and without loss of optimality in a truly decentralised fashion.
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• Communication Based Control: In this work we have presented a definition of the er-

ror which can be computed offline to analyse the algorithm. It would also be useful if

the agents could compute this error online and then use this as a parameterisation for the

volume of communication required in a given problem. By doing so, we could develop

a coordination algorithm which explicitly manages the error introduced by not commu-

nicating. Consequently, a desired level of coordination could be specified beforehand.

This would be a useful technique since such an algorithm could allow the system designer

to specify how much error is acceptable and then the model would decide how much of

an expensive communication medium to use to ensure this. This would be a hard task

for a system designer to do on her own as it would probably involve significant offline

simulations and parameter tuning.

• Game Theoretic Valuations: Our general game-theoretic characterisation of opportu-

nity cost based broadcast communication can easily be extended to consider other forms

of communication. Specifically, it would be interesting to consider the issue of who to

communicate with since some tasks may only require coordination between a subset of

agents. This would involve extending the strategy space to include a decision over which

agent to communicate with. Furthermore, it would be useful to consider what to com-

municate, since not all information is useful to coordination. Clearly, the content of a

message influences the value of communicating that message, and a game-theoretic anal-

ysis of complex communication would be a useful line of research.



Appendix A

RoboCupRescue Dec POMDP

/*

* Implements Sebastien Paquet ’s RTBSS algorithm \citep{onlinePOMDP}for online lookahead making

* extended to Dec-POMDPs with communication valuations using the rescuecore interface for RCR

*/

package decpomdpRCR;

import java.lang.Math;

import java.util.*;

import rescuecore.CannotFindLocationException;

import rescuecore.Memory;

import rescuecore.RescueConstants;

import rescuecore.RescueObject;

import rescuecore.commands.AKLoad;

import rescuecore.commands.AKMove;

import rescuecore.commands.AKRescue;

import rescuecore.commands.AKUnload;

import rescuecore.commands.AgentCommand;

import rescuecore.commands.Update;

import rescuecore.objects.Civilian;

import rescuecore.objects.MovingObject;

import rescuecore.objects.Road;

public class RTBSSDecPOMDPRCR {

public int D;

private double gamma;

private double bestValue = Double.NEGATIVE_INFINITY;

public JointAction best_action;

private RescueObject agent;

private POMDP_Ambulance_Agent pom;

public int bottom=0;

public int nodes = 0;

public int prunes=0;

public int notprunes=0;

double[] discount;

boolean beenbottom=false;

public boolean verbose=false;

public boolean verbose_heuristic = false;

public static int USED=0;

public static int NOTUSED=1;

134
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RescueObject[] target;

public boolean[] target_civ;

public InformationMetrics inf;

public double alpha; // alpha is weighting of rescue

public RTBSS(int depth , double g, RescueObject agent , POMDP_Ambulance_Agent pom,

double alpha){

D = depth;

gamma = g;

this.agent = agent;

this.pom = pom;

discount = new double[D+1];

target = new RescueObject[pom.belief.team.length];

target_civ = new boolean[pom.belief.team.length];

inf = new InformationMetrics(pom);

this.alpha = alpha;

int placeID[]=null;

RescueObject[] position = pom.belief.mostLiklyTeamPosition(pom.belief ,placeID);

}

/*

* Main search algorithm

*

* Inputs: b - the current belief state

* d - the current depth

* rAcc - accumulated rewards

*

* Statics: D - the maximal depth search

* bestValue - the best value found in the search

* best_action: - the best action

*

*/

public double rtbss_search(Belief_State b, int d, double rAcc ,

RescueObject[] was, Belief_State original){

double finalValue;

ArrayList <JointAction > actionList = new ArrayList <JointAction >();

double max;

double expReward;

Belief_State b_tick;

JointAction action;

ArrayList <POMDPObservation > obs;

boolean[] move;

int[] ids;

//bottom of search tree

if(d==0){

double utility = java.lang.Math.pow(gamma , D)*b.utility(was);

finalValue = rAcc + utility; //leaf estimation function

if (finalValue >= bestValue){

bestValue = finalValue;

bottom++;

return finalValue;

}

double reward = reward(b); //reward function from POMDP

rAcc = rAcc + java.lang.Math.pow(gamma , D-d)*reward;

actionList = sort(b,was); //possible actions at this belief
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max = 0.0;

ListIterator aciter = actionList.listIterator();

while (aciter.hasNext()) {

action = (JointAction)aciter.next();

move = action.getMoveBooleans();

expReward =0;

if(action.getMyAction(pom.myid).getType()== POMDPBehaviour.PICKUP){

expReward =expReward+ reward(b);

} else

if(action.getMyAction(pom.myid).getType()== POMDPBehaviour.DROPOFF){

expReward =expReward+ reward(b);

} else

if(action.getMyAction(pom.myid).getType()== POMDPBehaviour.COMMUNICATE){

//witha cost function

double comv = pom.scale*inf.calculateDistance(pom.PriorBelief ,b);

expReward = comv;

}

//recursive step

Belief_State b_tick_ac = transition_action(b, action);

ArrayList <ArrayList <POMDPObservation >> Obs = pom.god.state.getObservationsBelief

(agent ,b_tick_ac ,original);

ListIterator obsiter = Obs.listIterator();

double obmax = 0.0;

while (obsiter.hasNext()) {

obs = (ArrayList <POMDPObservation >)obsiter.next();

double pobs = probObs(Obs);

b_tick = transition_obs(b_tick_ac ,obs,agent);

ids = new int[b.team.length];

RescueObject[] mostlikely = b_tick.mostLiklyTeamPosition(ids);

double s = rtbss_search(b_tick , (d-1), rAcc , mostlikely ,original);

expReward = expReward + java.lang.Math.pow(gamma , (D-d))*pobs*s;

if(s>obmax){

obmax = s;

}

}

obmax=expReward;

if(expReward >= max){

if(D==d){

max = expReward;

best_action = action;

}

return max;

}

}
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