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ABSTRACT

While the concept of switching between multiple controllers to achieve a control objec-
tive is not new, the available analysis to date imposes various structural and analytical
assumptions on the controlled plant. The analysis presented in this thesis, which is
concerned with an Estimation-based Multiple Model Switched Adaptive Control (EMM-
SAC) algorithm originating from Fisher-Jeffes (2003); Vinnicombe (2004), is shown not
to have such limitations. As the name suggests, the key difference between EMMSAC
and common multiple model type switching schemes is that the switching decision is
based on the outcome of an optimal estimation process. The use of such optimal esti-
mators is the key that allows for a simplified, axiomatic approach to analysis. Also, since
estimators may be implemented by standard optimisation techniques, their construction

is feasible for a broad class of systems.

The presented analysis is the first of its kind to provide comprehensive robustness and
performance guarantees for a multiple model control algorithm, in terms of [,,, 1 < p < 00
bounds on the closed loop gain, and is applicable to the class of minimal MIMO LTI
plants. A key feature of this bound is that it permits the on-line alteration of the
plant model set (dynamic EMMSAC) in contrast to the usual assumption that the plant
model set is constant (static EMMSAC). It is shown that a static EMMSAC algorithm
is conservative whereas a dynamic EMMSAC algorithm, based on the technique of dy-
namically expanding the plant model set, can be universal. It is also shown that the
established gain bounds are invariant to a refinement of the plant model set, e.g. as a
successive increasing fidelity sampling of a continuum of plants. Dynamic refinement of

the plant model set is considered with the view to increase expected performance.

Furthermore, the established bounds — which are also a measure of performance — have
the property that they are explicit in the free variables of the algorithm. It is shown
that this property of the bound forms the basis for a principled, performance-orientated
approach to design. Explicit, performance-orientated design examples are given and the
trade off between dynamic and static constructions of plant model sets are investigated

with respect to prior information on the acting disturbances and the uncertainty.






Contents

Acknowledgements

Nomenclature

1 Introduction

1
2
3

S
6

Insufficiency of LTI control theory . . . . . . ... .. ... ... .....
Adaptive control . . . . . . ...
Continuous adaptive control . . . . . . . . .. ... ... ... .. ...,
3.1 Nominal stability . . . . . . . .. ... oL
3.2 Instabilities due to lack of robustness . . . . . . . . ... ... ...
3.3 Robust adaptive control . . . . . . . ... ... L.
3.4 Robust stability theory . . . .. .. ... ... ... . 0.
Multiple Model Adaptive Control . . . . . . . . .. .. ... ... .....
4.1 Gain scheduled control . . . . . . ... ... ..
4.2 Multiple Model Switched Adaptive Control (MMSAC) . . . . . ..
4.3 [Robust] Multiple Model Adaptive Control ([R]IMMAC) . ... ..
4.4 Observer based MMSAC . . . . . . . ... ... .. ... ......
4.5 Estimation-based Multiple Model Switched Adaptive Control . . .
Contributions of this thesis . . . . . ... .. ... ... ... .......
Chapter Organisation . . . . . . ... ... . ... ... ... .......

2 Preliminaries

1

Sy U = W N

Norms and signals . . . . . . . . . ... L
Operators and the frequency domain . . . . . . . . .. .. ... ... ...
Closed loop system, well-posedness and stability . . . ... ........
Uncertainty and Robustness . . . . . .. .. .. ... ... 0.
Finite horizon analysis . . . . . . . . . .. . ... ... . ..
Projections and disturbance estimation . . . . . . ... ... ... ... ..

3 Disturbance estimation

1

The disturbance estimation principle . . . . . . . ... .. ... ... ...
1.1 Estimator A: The infinite horizon estimator . . . . . . . . . .. ..
1.2 Estimator B: The finite horizon estimator . . . . . . . . .. .. ..
Estimator structure . . . . . .. ... ... Lo
2.1 Estimator A: The infinite horizon estimator . . . . . . . . . .. ..
2.2 Estimator B: The finite horizon estimator . . . . . .. ... .. ..
The estimator axioms . . . . . . . . . . . ..
3.1 Continuity of x for Estimator A . . . .. . ... ... ... ....

5

12

13

45
45
47
49
93
99
60



CONTENTS

4 The Kalman filter as a disturbance estimator . . . . ... ... ... ...
5 Disturbance estimation by optimisation methods . . . . . .. .. .. ...

Estimation-based Multiple Model Switched Adaptive Control

1 Finite horizon behaviour of the atomic closed loop . . . . .. .. .. ...
2 The switching algorithm . . . . . .. ... ... ... ... ... ......
3 The plant-generating operator G . . . . . . . . . . . ... ... ......
4 EMMSAC in practice . . . . . . ...

Stability and gain bound analysis of the nominal closed loop system

1 Preliminaries . . . . . . . . ...
1.1 Uncertainty sets and covers . . . . . . .. .. ... ... ...
1.2 Switching times . . . . . . . . . ...
2 Gain bounds for atomic closed loop systems . . . . . ... ... ... ...
3 Bounds on disturbance estimates . . . . . .. ... o000 oL
4 Gain bounds for non-final switching intervals . . . . ... ... ... ...
9 Main result . . . . . . . ..
Design
1 Uncertainty, information and complexity . . . . . . . ... ... ... ...
1.1 Complexity and metric entropy . . . . . . .. ... ...,
2 Scaling . . . . . . L

3 Refinement scaling . . . . . . .. ... o

3.1 Example . . . . . ..o
4 Sampling of the uncertainty set . . . . . . . . ... ... ... .......

4.1 Sampling of a constant uncertainty set U . . . . . ... ... ...
5 Expansion scaling and the cause of conservativeness . . ... ... .. ..
6 Tackling conservativeness . . . . .. .. .. ... L oo
7 Dynamic versus static EMMSAC . . ... .. ... ... ... .......
8 Example . . . . .. o

8.1 Static EMMSAC . . . . . . . . ... .

8.2 Dynamic EMMSAC - refinement of G . . . . ... ... ......

8.3 Dynamic EMMSAC - expansionof G . . . . ... ... ... ....
Conclusion

1 Directions for future research . . . . . . . . . ... ... ...

Appendix
1 Half-step identities . . . . . . . . .. ..o
2 Kalman filtering and least squares . . . . . . ... .. ... ... .....

105
105

145
146
147
148
150
152
153
154
157
161
166
168
168
170
171

175
176



List of Figures

1.1
1.2
1.3

14

1.5
1.6

1.7

1.8

1.9

1.10
1.11
1.12
1.13
1.14
1.15
1.16
1.17

2.1
2.2
2.3
24
2.5

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4

5.1
5.2

Closed loop system [P,C| . . . . ... ... .. 2
Stability margin bpc vs. uncertainty amaz - - - - o oo o000 5
Closed loop performance for conservative and universal controllers under

increasing uncertainty . . . . . . ... L. Lo oo 6
Classical adaptive controller in the presence of a minor perturbation and

a constant output disturbance (I =a) . .. ... ... ... ... ..... 11
Root locus of the open loop transfer function P . . . . . .. ... ... .. 12
Gain scheduling algorithm with equilibrium points a; and corresponding

controller designs Cre(py - - -« v o o oo 18
Multiple model switched system with switching logic S and controller C' . 20
Switching signal ¢ . . . . . . . . ... 20
Free running plant models . . . . . . . .. ..o 0oL 21
Observer bank . . . . . . .. o 21
Tuning versus switching . . . . . . . .. ... ..o oL 22
Observer bank . . . . . . .. . L 27
Closed loop system considered in Morse (1996, 1997) . . . . . . .. .. .. 28
System identification from the observation (ug, o)’ . . . .. . .. . ... 33
Projection onto the graph 7, M,, of P,, p€ P at time ke N . . ... .. 33
Covering U by neighbourhoods of size ¢ around peP; . . . . ... .. .. 41
Refinement and expansion scaling by P, . . . . . . . ... 43
Closed loop [P,C| . . . . . .. . 50
Mass spring damper arrangement with force F' and massm . . . . . . .. 53
Additive and multiplicative uncertainty model . . . . . . . ... ... ... 55
Coprime perturbation model . . . . . .. .. ... ... ... .. ... .. 57
Unit ball around (0,1) in Lo « « « .« o o o v v oo it 61
Disturbances and consistency with the observation . . .. .. .. .. ... 63
Structure of d;;‘ k] . o 68
Structure of df k] o 69
A common filtering problem: reconstruct ¢ fromy . . .. .. ... .. .. 78
Magnified switching strategy S . . . . . . . . ..o 96
Magnified switching controller C' . . . . . . . ... ... ... ... ... 99
EMMSAC indetail . . . . . . . . .. . ... 100
Local search via interpolation . . . . . . . . . ... .. ... ... ..... 102
Uncertainty set U(k), cover (H(k),v(k)) and sampling G(k) . . . . . . .. 107
Neighbourhoods By (p1,v(p1)), By(pa,v(pa)) - - - - o o o oo oo 110

7



LIST OF FIGURES

5.3 Closed loop [P, , Ck(g(k,))] With magnified switching controller C' . . . . .
5.4 Closed loop [P, Ck ()] with magnified switching controller C' . . . . . . .
5.5 Bounding d.[z| in terms of wy = (ug,y0)' for z = q(x) = DM (X, G)(z)
5.6 Bounding intervals of wy = (us,y2)', corresponding to ongoing switching
times, in terms of wo = (ug, yo) | . . . . .
5.7 Bounding wo = (ug,y2) ' in terms of wo = (ug, o)’ . . . . . . . ... ...

6.1 Increasing the number of elements in P, ,,, by scaling . . . . .. ... ...
6.2 Covering P, ,,, by neighbourhoods: The plants labelled x are modelled as
perturbations of the central plant P, . . . . . ... ... ... ... ...,
6.3 Covering U by neighbourhoods of size bpc around pe G . . . . . .. ..
6.4 Attempt to cover U by neighbourhoods bp ., where bpc scales with |G| .
6.5 Gain comparison for EMMSAC under parametric uncertainty of level [ . .
6.6 Gain bound comparison of static and dynamic EMMSAC . ... ... ..
6.7 Robotic arm handling uncertain loads . . . . . .. .. .. ... ... ...
6.8 Sensible choices for G; G3 in respect to the probability distribution g(m) .
6.9 On-line refinement of GG in respect to the size of residuals . . . . ... ..
6.10 Strategy for designing the level set P; with respect to ¢(m) . . . ... ..
6.11 Strategy for designing a time varying G, minding ¢1(m) and ga(m) . . . .

. 127



List of Tables

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

6.1

A switched system with corresponding switching times . . . . . . . . .. 110
Details for Proposition 5.5 . . . . . . . .. .. ... .. ... ... 113
Details for Proposition 5.7 . . . . . . . .. ... ... ... 118
Details for Proposition 5.8 . . . . . . . .. .. ... oo 121
Details for Proposition 5.9 . . . . . . . .. .. ... ... ... ..., 123
Details for Proposition 5.10 . . . . . . .. . .. ... ... ... 126
Details for the definition of standard EMMSAC in Definition 5.12 . . . . . 132
Details for Proposition 5.13 . . . . . . .. .. ... ... ... ... ... . 133
Details for Theorem 5.14 . . . . . . . . . . . . . 140
Signals for the true plant P = P, uptotimek=3............. 159






Declaration of authorship

I, DOMINIC BUCHSTALLER declare that the thesis entitled Robust Stability and
Performance for Multiple Model Switched Adaptive Control and the work presented in
the thesis are both my own, and have been generated by me as the result of my own

original research. I confirm that:
e this work was done wholly or mainly while in candidature for a research degree at
this University;

e where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated;

e where I have consulted the published work of others, this is always clearly at-
tributed;

e where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work;
e [ have acknowledged all main sources of help;

e where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself;

e parts of this work have been published as: Buchstaller and French (2007, 2008,
2009).

Thursday 28" January, 2010



Acknowledgements

I would like to thank a few special people I had the honour to meet in my life, and who
made this thesis (and much more) possible. Firstly, I would like to thank my father
Manfred, who introduced me to the world of technology the right way — by letting me
explore it; each screw, resistor and dissected household appliance at a time. I would like
to thank my mother Uta, for being an inexhaustible source of support for everything I
do. Sorry for all the minor mishaps and near catastrophes along the way. I would like
to thank Franz Dreher, my science teacher, who understood to teach what science is all
about — curiosity and imagination. The recurring courage to abandon the electronics
lab to a couple of 17-year-olds with soldering irons will never be forgotten. I am also
indebted to Florian Friesdorf and Christoph Hackl, great thinkers and friends, who made
my time in Munich special. Night-long debates over Martini are dearly missed. However,
most importantly, I would like to thank my adviser Mark French, an inspiring individual
with a great mind, who always seems to ask the right questions. Mark recognised my
potential, believed in me and provided the best supervision I could hope for. Thank
you for all of that. I am looking forward to many pictures still to be drawn. Finally,
I would like to thank my partner Bess and my sister Isabelle, indispensable sources of
sanity and support, who fill my life with joy. Richard Bradley and Ivan Markovsky are
dearly thanked for proof-reading parts of this thesis. I still have to get hold of that
yacht I promised you Rich. Also many thanks to the control group at ECS Southamp-
ton for providing a friendly and inspiring research environment. Thanks to Banafshe

Arbabzavar and Gabriele Gherbaz for being good friends.

12



Nomenclature

g °
=
=
2

SIS I R
> =

5

)(p) (k)

=
s

v(k)(p))

Sx T xFF sz
N

h
Ea

3

map(A, B)

Bound on the growth of wy for the atomic closed loop [Py, C(p)]

Neighbourhood of plants around P,, p € U

of size < r (as measured by x)

Measure of distance between plants in U

Parametrised set of all controllers

dy[k] = E(w2)(p)(k), disturbance estimate to P, at time k
Directed gap, gap metric

Delay operator

Transition delay function

Disturbance estimator (operator)

E(w2)(p)(k) = dp[k], disturbance estimate to P, at time k
Final switching times up to time k

Final switching times to plants in the neighbourhood
B(p,v(k)(p)) around P, up to time k

Plant-generating operator specifying the plant model set
Plant-generating operator defining with v a cover for U
Norm weighting function

Switching time (physical or virtual)

Last switching time up to time k

Controller design procedure

Attenuation function

Horizon length of the estimator

Physical switching time

Set of physical switching times up to time &

Dimension of the input signal space

Relation between elements in A and B,

e.g. a function if this relation is unique.

Estimator constant governed by the horizon length A
Defines the size/radius of the sub-covers in the cover (H,v)
Minimisation operator

Graph of P,

Graph of P, defined on the interval [a, b]

13



14 NOMENCLATURE
/\/}La’b} (w2) Set of disturbances consistent with wy and P,
over the interval [a, b]
N Norm operator - takes the norm of disturbance signals
0 Dimension of the output signal space
O Ongoing switching times up to time k

O (p,v(k)(p))

“ R g

Ongoing switching times to plants in the neighbourhood
B(p,v(k)(p)) around P, up to time k

Parametrisation corresponding to the true plant P, = P
P,, = P, true, physical plant

Parametrised set of all plants

A plant model set

Powerset of P

Union of plant sets G possibly maps to

Union of plant sets H possibly maps to

Union of plant sets U possibly maps to

Projection onto the subspace x

Map from the disturbances wq to the controller signals ws
Map from the disturbances wq to the plant signals w;
Extraction operator; extracts signals of length j € N
Switching signal

‘Free’, undelayed switching signal

Set of switching times (physical and virtual) up to time k
Switching times to plants in the neighbourhood
B(p,v(k)(p)) around P, up to time k

Union of sub-covers of (H,v)

Restriction of the signal v to the interval [k — o, k]

0 = max,, , cpv max{o(p),o(c)}

Required interval length to uniquely determine the initial condition of C,
Required interval length to uniquely determine the initial condition of P,
Switching operator

Undelayed, ‘free’ switching operator

Truncation of the signal v at time k € N

Either R,R* or Z,N

Input disturbance corresponding to plant model P,

Input disturbance corresponding to the true plant P,
Plant input corresponding to plant model P,

Controller output

Plant-generating operator specifying the uncertainty
Space of Ly, l,, 1 < p < oo norm bounded input signals
Disturbance weight, defined by the estimator

Space of Ly, l,, 1 < p < oo norm bounded signals



NOMENCLATURE 15

Ve

wWo
wq
w2
W
We
X
X (wn) (p) (k)
Yo
Yo

it
Y2

Space of Ly, l,, 1 < p < oo norm bounded signals on finite intervals

Disturbance signals wg = (uy, yo)T

Plant signals w; = (uq,y1) "

Controller signals, observation wg = (ug, yg)T
Uxy

Ue X Ve

Residual generator (operator), factorises to X = NE

X (w2)(p)(k) = rplk] = ||dp[k]||, residual to P, at time k
) or for 1<r<oo

$= 1 for r=00

Output disturbance corresponding to a plant model P,

Output disturbance corresponding to the true plant P,

Plant output corresponding to a plant model P,

Controller input

Space of Ly, l,, 1 <p < oo norm bounded output signals






To my parents

17






Chapter 1

Introduction

When Harold Stephen Black invented the feedback amplifier in 1927 (see Black (1934))
he revolutionised the telecommunications industry and created a prime example which
highlights the key aspects of control theory. The problem at the time was that variations
in supply voltage and amplifier gain resulted in large variations of the transmission
characteristics of the then used feed-forward amplifiers. In contrast, by feeding back the
output, he created a device which preserved its transmission characteristic even in the

presence of disturbances in the supply voltage and uncertainty of the open-loop gain.

Explicit technological applications of feedback can be found in antiquity. For exam-
ple feedback control ensured stability of the outrigger canoe prior to 1500 BC (see
Abramovitch (2005)) despite the odds of wind, waves and inconsistent load; making
safer and further sea travel possible. It also allowed the construction of the water clocks
of the ancient Greeks and Arabs around 200 BC (see Mayr (1970)) where the water flow-
ing from a vessel was taken as a measure of time and a feed-back control system ensured

the constance of the water level /pressure inside the vessel to improve the accuracy.

Notwithstanding these significant ancient applications, it was the feedback amplifier of
Black which provided much of the stimulus for the development of classical feedback
control theory, which in turn formed the foundation of robust control theory (H etc.)
in the 1980’s. Note that the roots of modern control theory itself, rather than the
uncertainty /robustness aspects, can be traced to the works of Maxwell and Routh on
the stability of governors (see Maxwell (1868); Routh (1877)).

Abstractly we can describe a feed-back control system as the interconnection between
a physical process or plant P : u; — y; and controller C' : ys — u9 as in Figure 1.1,
where (u1,y1)" represents the plant signals, (ug,y2)" the controller signals, (ug,yo)"
the external disturbances acting on the system, and P and C are operators typically

modelled by differential or difference equations.
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Y1

Uz

C ) e

FIGURE 1.1: Closed loop system [P, C|

We denote P a plant ‘model’ since the equations describing P are a simplified represen-
tation of the true physical plant denoted by P;. These equations are usually obtained
by analytical or empirical techniques. P therefore only represents an approximation of

the physical system P;.

The required accuracy of the model P, and hence the mismatch between the plant model
P and the physical system P, is strongly influenced by the nature of the dynamics of P,
and the requirements of the control objective. To see this observe that the development
of a controller for an air conditioning system within a building does not require a very
accurate model P of the physical properties of the room P;; a coarse model is sufficient
to construct a corresponding controller C' that keeps the temperature variation within
reasonable bounds. However, when positioning the head of a hard disk drive accurately
within milliseconds, an accurate model P of the drive’s arm P; is indispensable to
construct a sufficiently good controller C. The knowledge of P therefore determines the

achievable performance of the controller C'.

To quantify the mismatch of the physical system and the model, or the uncertainty
in the physical system, we typically invoke a suitable so-called uncertainty model. In
this thesis this is described by introducing an appropriate measure of distance §(P, P;)
between plants P and P;. The uncertainty around a nominal model P is then described
by the set of plants P; lying within some specified distance € > 0 of P, e.g.

Ac={P; : (P, P1) < €¢}. Throughout this thesis, we take the distance J to be the gap

metric.

The second major factor influencing stability and performance of dynamical systems are
external disturbances acting on the system. A stable system has to remain so even in
the presence of disturbances (disturbance rejection). For example an airplane guided
by an auto pilot shows good disturbance rejection since it maintains its course and
altitude even in the presence of disturbances, e.g. wind or air pockets. In contrast,
an example of unwanted disturbance amplification is the Tacoma Narrows suspension
bridge, where disturbances in the form of strong winds caused resonant oscillations of

increasing magnitude in the bridge structure and ultimately led to its destruction.



Chapter 1 Introduction 3

Observe that in Lo or lo the norm of a signal relates to its energy content:
S 1/2
|zl = </ \x(t)\2dt> , in continuous time (Lg)
0

0 1/2
lzll2 = (Z |:1:Z|2> , in discrete time (I2).
i=0

A good test for stability would then be to check whether a system fed with signals of finite
energy responds with signals of finite energy; or in other words, that the amplification
or gain from ||(ug, o) " ||2 to ||(uz,y2) ||z is finite (we will later see that this also implies
that the gain from ||(ug,y0) " [|2 to ||(u1,y1) " ||2 is finite).

U u
A system is therefore said to be gain stable if the operator Ilp, /¢ : ( 0> — ( 2) is
Yo Y2

bounded, i.e. if

:
u2,Y2) |2
= Mpyycle = sup Alzite) i

< 00
(uo.0) 720 1(10,%0) T |2

The quantity v thus denotes the gain from the external disturbances to the internal
signals and hence if a closed-loop system is gain stable, then ~ is a sensible measure of

nominal performance.

Under a technical assumption of well-posedness (see Chapter 2) we can now inter-relate

disturbances, uncertainty, stability, robustness and performance in the following way:

Theorem 1.1. Let P, P,,C be linear and time invariant. If the closed loop [P,C] is

gain stable and
1

S(P.P) < —— =
B < ol

bpc

then the closed loop [Py, C] is also gain stable.

Proof The proof can be found in Georgiou and Smith (1990) which is based on Zames
and El-Sakkary (1980). O

Therefore, if a controller C' is able to stabilise a plant P it will also stabilise all plants
in the neighbourhood §(P, P) < bpc where bpc is the inverse of the maximum gain
from the external disturbances to the internal signals and is denoted the robust stability
margin. Hence bp ¢ is both a measure of nominal performance and robust stability. This
relationship will be of major importance to us since by analysis of the nominal plant
model P in closed loop with controller C' we can then show by the above theorem that
if the closed loop [P, C] is gain stable and the mismatch between the plant model P and
the physical plant P; is smaller then the robust stability margin bpc, then the closed
loop [P1, C] will also be gain stable.
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It can be shown that the given robust stability framework also extends to the non-linear
domain and to general signal spaces (see Georgiou and Smith (1997)). However in a
general non-linear setting the worst case signal amplification from (ug,yo) ' to (ug,y2)"
can vary with magnitude of the signal (ug,yo) . Hence Georgiou and Smith (1997) also

establish robust stability results where the gain is measured by a so-called gain function:

7(r) = sup{[|(u2, y2) "Il < l|(uo, 50) "Il < 7}, 7 > 0.

The gain function y(r) measures the maximum size of the internal signals, given a
disturbance of size smaller then r > 0. This gives us a comprehensive set of tools to

analyse the robustness properties of (non-linear) closed-loop systems.

The remainder of the introduction has the purpose of motivating the class of algorithms
considered in this thesis. We will first show that a single, fixed, linear time invariant
(LTI) controller C'is generally insufficient to control a plant P if the uncertainty in P is
large (i.e. if 0(P, Pp) is large, where P represents the plant model and P; the physical
system). This arises when P lies in some known, but potentially large set A, for example
if A describes a parametrically uncertain system with a large parameter variation. One
solution to such a problem is to make the controller adaptive. We will discuss various
(classical) adaptive algorithms and their limitations in terms of robust stability. Such
robust stability considerations will then motivate the class of Multiple Model Switched
Adaptive Control (MMSAC) algorithms and Estimation-based MMSAC (EMMSAC)
algorithms - the latter will be the focus of this thesis.

1 Insufficiency of LTI control theory

Although LTI control theory gives good design methodologies for LTI control problems
where the uncertainties in the system are small, there are many applications where it
cannot give sufficient performance and robustness guarantees or even fails to give them

at all. Here we detail two such scenarios:

Conservativeness: Consider a plant P given by the transfer function

1
s—a

Piup—y iy = ug.

Let a > 0 be a fixed but uncertain parameter, for example an unknown mass, and

consider a proportional controller

OingUQZUQ:—lyQ,l>0



Chapter 1 Introduction 5

to be in a closed loop interconnection with P as in Figure 1.1. The resulting closed-loop

transfer function from yg to uq is given by

w_ C  ls—a)
v 1—-CP s+ (l—a)

where u1,yo are the Laplace transforms of the corresponding time domain signals. All
poles must reside in the left complex half plane in order to ensure bounded input -
bounded output (BIBO) stability of S. This requires us to choose the controller gain [
larger than a. Consequently for a large uncertainty in a, i.e. if all that is known is that
|a] < Gmar Where apq, is large, we will have to choose a large [, i.e. | > amqaq, t0 ensure
stability of S.

We can now establish a lower bound for the closed loop gain (with Theorem 2.3) in the

following way:

Tl

Mpycle = b= sup  N02:22) e

T T 2 = [|Slloc = sup |S(jw)]
(uo,yo)T;ﬁO H(u07y0)—|—”2 yo;ﬁO HyOHQ - weR

where
S(w)[?2 = jwl —la*> W%+ 1%a?
TN = ot (-—a " Pr—-a?

A simple calculation shows that |S(jw)|? reaches its maximum at w = oo, where

. N 2 2
Jim [S(jw)[" =17 > apg-
This shows that the maximum gain from the external disturbances to the plant signals
scales with [ > a,,42; and therefore its inverse, the robust stability margin bp ¢, shrinks

to zero as amq,; becomes large — as depicted in Figure 1.2.

A

bpc

Gmazx

FIGURE 1.2: Stability margin bp ¢ vs. uncertainty amqx

Controllers with this property are regarded as conservative:

Definition 1.2. A controller C is said to be conservative if the closed loop performance

degrades with an increasingly large uncertainty in P = P,,. (See Figure 1.3.)
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Definition 1.3. A controller C is said to be universal if it maintains a constant level

of performance invariant to the uncertainty in P = P, . (See Figure 1.3.)

One way of showing that a controller is non-conservative is therefore to show that it
is universal. It can be shown that all LTI controllers and also non-linear memoryless
controllers are conservative (see French (2008)) with respect to bp . In this thesis we
will present necessarily non-linear and dynamic control designs that are universal.

A

performance

universal

conservative

uncertainty

F1cUre 1.3: Closed loop performance for conservative and universal controllers under
increasing uncertainty

Simultaneous stabilisation: In practise we often need to consider two distinct plant
models P; and P, and ask the question whether a given controller C' can ensure closed-
loop stability for both of them, i.e. ensure that [P, C] and [P, C] are stable. This arises
if we seek to control systems with different dynamics with the same controller or the
control of systems that can abruptly change their dynamic behaviour over time. For
example in fault tolerant control we are interested if a controller, designed to control a

nominal system Pp, also controls a faulty system P, with a different dynamic behaviour.

It is well known that the problem of simultaneous stabilisation is related to the problem
of strong stabilisation. A plant P is said to be strongly stabilisable if a controller C' can
be found such that the closed loop [P, C] is stable and C is itself stable.

In the case where plants and controllers are LTI, Youla et al. (1974) and Saeks and
Murray (1982) showed that two plants, given by the real-rational transfer functions P;

and P, are simultaneously stabilisable if and only if

 NaMy — N M,
 No Xy + MYy

is strongly stabilisable where My, My, N1, Ny are coprime factors of P, and P». Further-
more we have from Saeks and Murray (1982) and Vidyasagar (1985) that P is strongly
stabilisable if and only if it has an even number of real poles between every pair of real

zeros in Re s > 0.
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We now consider an explicit example: Consider the two real rational plants

We now claim that no LTT controller can simultaneously stabilise P; and Ps.

We express P, and P» in a coprime factor form:

P1=%, sz%,
where M;, N;, X;,Y;, i € {1,2} are given by
M, = N = X =1, v =1
s+1 s+1
My = _Fll’ NQZS%, Xo=1, Vo= —1

and satisfy the required Bezout identities

Hence P; and P, are simultaneous stabilisable if and only if

B NoM; — N1M> o 28(8 + 1) 2s

 No Xy + MYy (s+1)2(s—1) (s+1)(s—1)

is strongly stabilisable.

Since P has zeros at s = 0 and s = oo and only one intermediate pole (s = 1), P is
not strongly stabilisable and therefore P; and P, are not simultaneous stabilisable by a
linear controller. The non-linear control designs considered in this thesis are designed

to handle such scenarios.

2 Adaptive control

We have shown in the previous section that LTI controllers have difficulties in some
situations. In particular they do not pose a solution to the simultaneous stabilisation

problem and they are conservative.

These limitations motivate the field of adaptive control. The basic idea behind adap-
tive control is that a learning component in the controller gathers information from
the on-line observation of closed loop signals of an uncertain physical system P in or-
der to learn about the uncertainty. This information is then utilised to generate con-
trol signals promising better performance then a fixed, non-learning controller. Whilst

adaptive control has a long history, and whilst such controllers have the potential to be
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non-conservative and handle non-simultaneously stabilisable plants there is currently a

relatively poor understanding of their robustness properties.

The substantive body of research on ‘robust adaptive control’ confines uncertainty mod-
els to additive or multiplicative classes (see Ioannou and Sun (1996) for a comprehensive
review of these approaches). However more recent work French (2008) and French et al.
(2006) has established robust stability margins for classical schemes in the context of

gap metric uncertainty models — this thesis builds on the approaches therein.

We start with the discussion of continuously tuned adaptive controllers and then turn
to multiple model type algorithms where the concept of switching is introduced along

the way.

3 Continuous adaptive control

3.1 Nominal stability

Assume that no disturbances are acting on the system for now, i.e. (uo,yO)T = 0.

Consider the plant
1

s—a

Piup—y ty = u1

equally defined by the corresponding differential equation

P:gp=ay +ur, y1(—t) =0, Vt eR (1.1)

where a is an uncertain parameter. A typical non-switched adaptive control implemen-

tation is given by the equations

(1
C:yzr—uy: a=y3 (1.2)

The time-varying parameter & is thought of the estimate of the parameter a, since
in the case where a = @ we have by equations (1.1),(1.2) and with (ug, )’ = 0 =
(u1,y1) " + (ug,y2) " from Figure 1.1 that

Yo = ayz +uz = ayz — ay2 — Y2 = —Y2

which is asymptotically stable. However for the case where a # @ we have to consider

the mismatch 0 = a — a.

Consider the Lyapunov function

1 1
Vi, 0) = 543 + 50° (13)
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By equations (1.1)~(1.3) and since § = —a = —y3, we obtain:
V(,0) = y212+00 = ya(aya+u) —0y3 = yo(aya —aya—yo) —0ys = 0y3 —y3 —0y3 = —yj.

Since V is negative semidefinite, by La-Salle’s theorem, we have y, — 0 for t — oo. It
is then straightforward to verify that the signals a,u1,y1,uo,y2 are all bounded. Also
observe these properties hold for any value of a. A controller with this property is

denoted a universal controller and it is therefore non-conservative.

Designs of this type share the deficiencies of LTI controllers in simultaneously stabilis-

ing 1,—1. In fact it has been shown in French (2004) that no smooth controller can

simultaneously stabilise %, —%.

A continuously tuned controller that can cope with such plants is the Nussbaum universal
controller (Nussbaum (1983)) in equation (1.4)

Uy = Y20 cos G
C:yzr—ug: a=y3 (1.4)

which stabilises any plant P € A where A = Si_—la : a € R}. This is accomplished by
introducing the oscillatory function cosa. Hence if yo # 0, @ > 0 then a is increasing
and ug will oscillate in sign. Therefore the controller will ‘try out’ negative and positive
signs. Now, as the generated control output us manages to stabilise the plant, i.e. ys
becomes small, then @ becomes small and a settles to a constant value. This means that
the oscillation will slow down and the sign of cos @ will remain constant over increasingly
long intervals, essentially giving the individual controllers an increasing amount of time
to stabilise (and destabilise) the system. The algorithm will then eventually settle on
the correct sign since the oscillation stops if yo = 0. This result was later generalised to
systems with arbitrary relative degree in continuous time by Mudgett and Morse (1985)

and discrete-time by Lee and Narendra (1986).

3.2 Instabilities due to lack of robustness

One major problem of the above approaches is that the effects of (input and output)
disturbances and unmodeled dynamics on stability and robustness were neglected due to
the initial belief that analogously to the LTI case the control system would tolerate them
if sufficiently small. Unfortunately this belief was proven wrong by Rohrs et al. (1985)
which showed that virtually all continuously tuning implementations at that time could
in fact become unstable in the presence of seemingly harmless unmodeled dynamics and

arbitrarily small disturbances.
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For example assume the nominal plant

is perturbed multiplicatively by

o 229
~ s2+430s + 229

to give
2 229

s+ 152 +30s 4229
As before, let the adaptive controller C' be given by

P = P®=

ug = —y2(1 + a)

Q
Q> Qe
—
=
IS
o

and assume it to be in closed-loop configuration [P, C] with the perturbed plant P;
where the input and output disturbances are constant and given by ug = 0, yo = 3.

This setup is commonly known as Rohrs counter example.

Observe that the open-loop transfer function P is stable and the perturbation ® has a
unity DC gain and two well damped complex poles distinct from P at —15Rad/s. Such
a perturbation would in the LTI case not be considered as a problematic unmodeled

dynamic.

However, as the simulation in Figure 1.4 shows, the given adaptive control algorithm

becomes unstable.

This is due to the following mechanism of instability: 1. a diverges as time increases
(this is known as parameter drift) and 2. the closed loop becomes unstable for high

closed-loop gains.

To see 1. assume that @ remains bounded, i.e. a(t) < A < oo, V¢t > 0. Since = Y5 we
have that

t
alt) = /0 ydt = [lyalog 2,

This implies that ys € Lo as ||y2||r, < VA. From yy = y1 + y2 we therefore have that
(yo — y1) is in Lo. However, since yg = 3 ¢ Lo it follows that y; ¢ Lo.

Now observe that since Pj is stable (u; € Ly = Pyu; = y;1 € Lo) it follows that if
y1 ¢ Lo then uy ¢ Lo. However, since u1 = —ugs = —ya(l + a), A < oo and yg € Lo, it
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F1GURE 1.4: Classical adaptive controller in the presence of a minor perturbation and
a constant output disturbance (I = @)

follows that:

o0
lurl?, = /0 / Y31+ 6)%ds

< / 32(1 + a?)dt

0
< 2(1+A2)/ yadt
0
< o0

Hence u; € Lo, which is a contradiction and therefore a — oc.

To see 2. consider the root-locus plot of P; in Figure 3.2 which displays the loci of the
closed-loop poles in the complex plane in respect to the feed-back gain a > 0. Since
the open-loop equation P; has no zeros and three poles, its closed-loop poles diverge
to infinity separated by a 120 degree angle for increasing feed-back gains. Since we
have shown above that a (and therefore the feed-back gain) grows over all bounds, i.e.

a(t) — oo as t — 0o, the closed-loop will eventually become unstable.

This insight now allows an intuitive interpretation of the plot in Figure 1.4. Up to

time ¢ = 900 the closed-loop remains stable since a is still within reasonable bounds.
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FIGURE 1.5: Root locus of the open loop transfer function P

However, shortly after ¢ = 900, the growing feed-back gain & > 0 forces the roots of
the closed-loop to cross over to the complex right half plane and the closed-loop system

becomes unstable, which leads to a rapid growth in size of the involved signals.

See also French et al. (2006), where a similar mechanism of instability is rigorously

proved for a multiplicative all pass perturbation ®(s) = %—;2, M >> 1. Related results
showing parameter drift for nominal plants can be found e.g. in Georgiou and Smith

(1997, 2001).

3.3 Robust adaptive control

Note that in the previous example the maximum gain from the external disturbances to
the internal signals is in this (non-linear) case not a simple gain of a transfer function but
depends on the (non-linear) worst case behaviour of the system. For the Rohrs counter

example we can simply observe, at least in an L, setting, that this gain is indeed infinite
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since we managed to produce with finite disturbances wg = 0,yo = 3 an unbounded ys.

Hence the closed loop system is not gain stable.

At the time (in the 1980s) the control community was increasingly aware of a systematic
problem and that neglecting robustness was no longer viable. However, there was no
analytical framework available — like the one of Georgiou and Smith (1997) — to study

the robustness properties of the algorithms in a systematic kind of way.

What followed was the investigation into so-called robust adaptive control algorithms
where robustness referred more to avoiding the phenomena of parameter drift than devel-
oping a principled robustness theory. Since the unbounded increase of @ was identified as
the problematic part that ultimately caused the overall instability, typical robust adap-
tive control approaches are aimed at keeping a within reasonable bounds. In particular,
modifications to the algorithm were proposed such as the inclusion of dead-zone, o mod-
ifications, or projection operators to ensure robustness in the presence of disturbances
and unmodeled dynamics. Assumptions that the reference signal is sufficiently rich to
ensure parameter convergence or the injection of artificial probing signals had a similar
purpose. A summary of robust adaptive control ideas and corresponding robustness
proofs for plants can be found in standard text books on the topic, e.g. Ioannou and
Sun (1996), Narendra and Annaswamy (1989) and Sastry and Bodson (1989). These
approaches apply to plants perturbed by multiplicative and additive uncertainty only.
For a recent example of this style of analysis see Ikhouane and Krstic (1998), where the
authors are able to show for a continuously tuned adaptive controller that all closed loop
signals are bounded and the tracking error is proportional to the size of the disturbance;

however only allow multiplicative uncertainties and output disturbances.

We will now discuss some of these modifications, however note that since most robust
adaptive controllers provide for zero output disturbances (yp = 0) an infinite robustness
margin for the parametric uncertainty, a measurement of performance in terms of such
margins is not meaningful. We therefore consider alternative, non-singular, measures of
performance that are related to bpc. For example in French (2002) the performance is
evaluated by an integral costs functional that penalises the state and the control effort,
where in Sanei and French (2006) the costs functional is a sum of L., measures of the

state trajectory, the control signal and its derivative.

Dead zones: The idea behind dead zones is to monitor the measurable signals and to
disable the parameter update law for a if they enter the dead-zone region {2, where a poor
signal to noise ratio could destabilise the system. The region €2 naturally depends on an
a priori knowledge of the size of the disturbances and introduces some conservativeness

to the design.
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The modified controller from equation (1.2) then reads

uz = —y2(1 + a)

i y% if (U2,yz)T ¢ Q,
_{ 0 if (u2,y2)T e
a(0)=0

o

Cdead :

Projections: The aim of the projection modification is to directly bound the size of

the tuning parameter a and is given by

uz = —y2(1 + a)
y2 if @< Gmag,
0 if a> amas
a(0) =0

-

Cproj :

where we observe that a priori knowledge of an upper bound a4, of a is required to

construct Cpyo;.

See Sanei and French (2006) for a direct performance comparison between the dead
zone and the projection modification, where the authors show that if the bound on the
uncertainty is sufficiently conservative then a dead-zone modified controller outperforms
its projection modified counterpart. The converse holds when the a priori information

on the disturbance level is sufficiently conservative.

Sigma modification: A further possibility to prevent a from drifting to infinity is to
add an additional term to the parameter update law and penalise large values of a. With

o being a small, positive constant we would then have a controller

ug = —y2(l1 +a)
C,: a=y3—oa

If however the true parameter a is large then a is large hence via the parameter update
equation a will be forced away from its equilibrium point d.q. The introduction of an
offset, i.e. & =1y3 — 0(Geq — @), would solve this problem however implies a priori knowl-
edge about a., which, if it exists, would question the use of an adaptive controller in

the first place. Also uncertainties in the knowledge of ., would lead to conservativeness.

These and other modifications to standard adaptive algorithms all follow the same basic
principle: to suppress the parameter drift of a; where unfortunately a certain amount
of conservativeness is introduced along the way. Although initial robustness results for
additive and multiplicative uncertainty in terms of Lyapunov stability theory do exist,
there remains the lack of a coherent theory capturing the robustness properties of the

algorithms in the presence of general disturbances and fully unstructured uncertainty.
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Due to this lack of theory and the often unpredictable behaviour of the algorithm,
the community’s interest in adaptive control cooled down noticeably over the years.
Additionally, reports of failed practical tests with sometimes devastating results — like
the flight of the X-15 (see Staff of the Flight Research Center (1971)), which disintegrated
in mid-air due to controller induced high-gain instability — left a permanent mark on
the adaptive approach in general. Note that the investigation of continuously tuned
adaptive controllers continues up until today and various successful applications have
been reported, e.g. see Guan and Pan (2008) for the control of an uncertain electro-
hydraulic actuator or Hung et al. (2008) for the control of robot manipulators with non-
linearly parametrised uncertainties, to cite only two recent ones. However the discussed

difficulties remain.

3.4 Robust stability theory

When 27 experts were asked in survey about “[...] major open problems in control
theory” (Blondel et al. (1995)), one of them gave a particularly revealing answer for the

area of adaptive control:

“There is not as yet an adequate robust adaptive control theory; this may
be due to the fact that there is a complete mismatch between the current

mathematical formulations of robust and adaptive control.” (P. E. Caines)

More recently, attempts were made to overcome this problem and re-investigate the
robustness properties of adaptive control algorithms from the perspective of robust con-
trol theory. French (2008) analyses the robustness properties of a continuously tuned
adaptive controller in the framework of Georgiou and Smith (1997) for the case of fully
unstructured uncertainties (in the gap metric) and the disturbance model as depicted
in Figure 1.1. The author then shows that there exists a class of non-conservative, con-
tinuously tuned adaptive controllers that robustly stabilise finite-dimensional, minimum
phase plants P perturbed to P; where the gap distance between P and Pj, the initial

condition and the disturbances (ug,yo) " are sufficiently small.

Although the given robustness guarantees only allow local disturbances and the estab-
lished gain function bounds grow rapidly with the bound on the size of the disturbances,

these results are important from the perspective of this thesis as:

1. They are the first of their kind that establish comprehensive robustness results
in terms of fully unstructured uncertainties in the gap metric for an adaptive

algorithm; this inspired the type of robustness analysis conducted in this thesis.

2. They provide insight and motivation for the non-conservative extensions of the

algorithm considered in this thesis (in Chapter 6).
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3. They demonstrate that it is possible to achieve a robust stability margin, even
when the closed loop gain is infinite, and that this scenario is typical in adaptive

control.

4. The author establishes gain (function) bounds and robustness margins which are
compatible with the disturbance model in Figure 2.1. Therefore the two very
different approaches of classical adaptive control and the multiple model switching
method considered in this thesis become comparable in terms of their robustness

and performance properties.

French et al. (2006) then extend on work from French (2008), considering more standard
robust adaptive control designs, and revisit a specific example from Georgiou and Smith
(1997) (Example 9), where a plant P = ﬁ is perturbed by the all pass factor %;i, M >
0 (i.e. in series connection). The robustness result shows that the closed loop system

is stable if the gap distance between the perturbed and nominal plant as well as the Lo
disturbances are sufficiently small. Various mechanism of instability are then illustrated.
In particular they show Lo instability of the closed loop system for large initial conditions
or large Lo disturbances. Finally they show that L, disturbances imply that the internal

signals do not remain in L., hence the system is considered L., unstable.

4 Multiple Model Adaptive Control

Multiple model type algorithms represent an alternative to the continuously tuned al-
gorithms discussed in the previous section. The name refers to the fact that control
is performed on the basis of having a number of (plant) hypotheses, represented in a

so-called plant model set, rather than working directly with a parametrised model.

Every multiple model algorithm incorporates three basic building blocks:

1. Plant model set:

For example for the plant
1

§—Pp
with uncertain parameter 1 < p < 10. We might choose the plant model set to be

1 1 1
s—1" s—2’ T s—10]°

To represent such sets efficiently we let P denote a parametrisation set, e.g. co-

P, =

efficients of transfer function or state space matrices (A, B,C, D), corresponding
to a model. In the case of our example we would write P; = {1,2,--- ,10} C P

where the models are given by P,, p € P;.
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2. Controller set:
The controller set is related to the plant model set via a controller design procedure
K : P — C where C is the parametrised set of all controllers. We usually require
that each ‘atomic’ plant-controller pair is closed loop stable, i.e. [P,,C K(p)] is gain
stable.

3. Performance function:
The performance function returns a performance signal d,, and has the purpose
to assess how valid each plant model p € P is, where by convention, a smaller

performance signal indicates higher validity.

Typically these building blocks are then interconnected in the following way. The per-
formance signal d,, is evaluated for a (finite) subset P; C P denoted the plant model set.
Then the controller for which the corresponding plant model p € P; has the smallest
performance signal is switched into closed loop (or multiple controllers are implemented
in parallel and the outputs are weighted according to their corresponding performance
signals). Assuming that the true plant P, is included in the plant model set, i.e. p, € P;
and the performance signal is minimal for the plant model corresponding to p, (or mini-
mal for a plant model close to p,), the implemented controller might indeed stabilise the
true plant P,,. Such a design framework can also be utilised in the time-varying setting,

subject to performance signals being evaluated over suitable short moving horizons.

4.1 Gain scheduled control

We will now briefly consider gain scheduled control (see Murray-Smith and Johansen
(1997) for an overview) which fits into the multiple model framework in the time-varying
setting; although note that the remainder of the thesis will handle the time invariant case,
under significant less observation information e.g. no measurement of the ‘scheduling

variables’.

In the process or aviation industry one often has to deal with dynamical systems depend-
ing non-linearly on some key process variables (the so-called scheduling variables). For
example the aerodynamic properties of an airplane such as lift, drag etc. are non-linear
functions of altitude, speed and other variables which can be directly measured. The
dynamical changes are so significant over the whole flight envelope that there is no hope

in adequately controlling the system by a single LTI controller.

Typically a non-linear plant P(a) : u +— y is therefore linearised over a finite set of
equilibrium points a;, 1 < j < ¢, ¢ € N of representative operating conditions corre-
sponding to a plant model set P; = {p1,p2, -+ ,pi}, ¢ € N. Via the controller design
procedure K, to every plant model F,, p € P; a corresponding controller C, is con-

structed such that the controller pairs [P,, Cx ()], p € P; fulfils certain performance



18 Chapter 1 Introduction

criteria. The scheduling variables are then measured and the atomic controller outputs

are interpolated (linearly) between linearisation points, e.g. see Rugh (1991).

A naive implementation of such an approach is depicted in Figure 1.6, where a is the
measured scheduling variable and a,, p € P; are the equilibrium points of the plants

P(a). The performance function to each P, is then given by
dp ::|a'_'aPL peP;

and

x = argmind,, z = argmind,,
pEP; pEP;\x

are the two ‘closest’” models where the weights w,, p € P; are chosen such that u is a

linear interpolation of the atomic controller outputs

U= Z wpty, up =Cgp)y, pEP;

pEP;
with
d
wy =1 —w,, wzzﬁ, ap <a<a, w,=0, peP;\{z 2}
z xX
Op,
= \
P(a) 1 ,
fla J
ap
pl Y &
= 1
L.
a
ap;
= ‘

FIGURE 1.6: Gain scheduling algorithm with equilibrium points a; and corresponding
controller designs Cg ;)

Interpolation or blending between models has the purpose of reducing design and im-
plementation complexity, i.e. to reduce the number of linearisations and the number
of controllers. It also has the benefit that it effectively smoothens the overall control

signal enabling bumpless transfer. However to ensure that that resulting blended signal
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is ‘sensible’ for control it must be assumed that the dynamical model and controller set
satisfies continuity properties in the model parameter space. A ‘hard’ switch can be

implemented e.g. by letting
wy, =1, wp,=0, peP;\{z}

Although this is less common in a gain scheduling context it has more in common with

what follows.

In the gain scheduling context, stability is usually shown under the assumption that
the rate of change of the involved system variables is slow. Abrupt changes in the
process variables, for example by some fault in the sensor or excessive sensor noise,
could lead to a fast switching / blending sequence and potentially destabilise the system.
For this purpose it is sensible to restrict how fast the algorithm is allowed to blend
or switch between controllers. This is enforced by a dynamical requirement that the
gain scheduling variables have a slow variation. In the adaptive controllers that follow,
switching delays or dwell times are explicitly introduced to prevent instabilities. For

example see Liberzon (2003) for mechanisms of switching induced instability.

A particular and potentially restrictive assumption in gain scheduling is that the direct
measurement of the scheduling variables is possible. For the given examples of sensor
failure or excessive sensor noise this assumption might be impossible to satisfy. Also in
many situations the required scheduling variables can not be measured directly in the
first place and further complexity has to be introduced to estimate them. The following
approaches utilise performance functions which do not depend on the measurement
of scheduling variables but determine the validity of every plant model by comparing
its dynamical behaviour to the observable input and output signals of the true plant
(u2,y2) . However note that they have a different scope to gain scheduled control since
they are usually designed to control a fixed uncertain LTI plant rather than a plant with

a time-varying parametric non-linearity.

4.2 Multiple Model Switched Adaptive Control (MMSAC)

A typical switched multiple model algorithms — as depicted in Figure 1.7 — is composed
of two basic parts:

1. The subsystem determining the best plant candidate — switching logic S

2. The subsystem implementing the feedback controller — switching controller C
As Figure 1.7 suggests, the signal interconnecting the two subsystems S and C' is to be

denoted the switching signal ¢. To be able to deal with possible time dependent building

blocks in the algorithm it is sensible to introduce a time base to the involved signals.
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FIGURE 1.7: Multiple model switched system with switching logic S and controller C'

In particular we later implement a switching delay to prevent overly fast switching and

possible instability and need to quantify how long such a delay should last.

Here g then naturally becomes a piecewise constant function of time — it is discon-
tinuous at switching times, where the switching logic chooses a new controller to be
switched into closed loop, and constant everywhere else. Given some set of controllers
C = {c1,¢c2,--- ,¢}, © € N, the switching signal ¢ : R — C and switching times
{t1,t2,- -+ ,ty, -}, v € N, a possible trajectory of ¢ is depicted in Figure 1.8.

q(t) 1
C;
S
Co P
a —
t1 to ty t

FIGURE 1.8: Switching signal ¢

Before the potential benefits of MMSAC systems are discussed, a simple example for
a switching logic S is given. Let all plant models run in parallel to the true plant
and assume that the size of each model’s output error (when compared to the true
plant’s output) represents the performance signal, i.e. let the plant model set P; =
{p1,p2,--- ,pi}, i € Nand d, = |ep|, p € P; in Figure 1.9 where the true plant is given
by P,,. This rudimentary scheme is completely deterministic and follows the underlying
idea that if a model and the true plant are close to each other, their dynamical response
should be similar and therefore the output error small. However this implementation

proves to be problematic since arbitrarily small differences in the initial conditions lead



Chapter 1 Introduction 21

uo Yo

U _ytowm y1 _ ¥t Yo

+
F%i N

FIGURE 1.9: Free running plant models

to growing output errors even if the model and true plant are identical, which is only
eliminated if the plant and model are both stable. One remedy to this problem is to

utilise observers (Figure 1.10) instead of free running plants since they are known to

uo Yo
U _3tow y1 _ 3t Yo
I Py,
+
Y2 0 y1171 >\ epl
p1 _\
U2
Y2 Di &
0 Y1
i —U)
U2

FIGURE 1.10: Observer bank

ensure error convergence even if plant and model are unstable (assuming zero distur-
bances). The ‘free’ switching signal ¢s is then determined from e,, p € P; for example
via
qr(t) = argmln/ lep(T)|2dT.
pEP;

The signal ¢ is denoted free since no delay is involved in its construction. We will later
(in Chapter 4) introduce a switching delay (operator) D : g5 — ¢ that delays the signal
qr to g to prevent instability effects due to overly fast switching.

Before we introduce an important algorithm adopting the idea, i.e. to utilise observers for
performance evaluation, we want to emphasise that even at this basic level of discussion
of MMSAC systems it can be seen that they have the potential to have a number of
desirable properties, i.e. there is no conceptual reason why they should not have these

properties.
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e Design freedom to choose the atomic controllers:
In principle, MMSAC allows the use of controllers built from entirely standard
(off the shelf) design procedures unlike many other adaptive algorithms where the
control design is constrained by the specifics of the algorithm itself. The only
restriction is that for every plant in the plant (model) set P,, p € P the corre-
sponding controller Ck;), constructed by the design procedure K, is stabilising,
ie. [Pp,CK(p)] is gain stable. This also allows the easy assimilation of already

existing control designs into the given structure.

e Allows for non-convex parameter sets:
In continuously tuned adaptive algorithms difficulties arise if the process model is
parametrised over non-convex sets, as during the tuning of the parameter the al-
gorithm can enter regions of undesired parametrisation. The MMSAC algorithms
naturally does not have this problem since it can ‘jump’ to the controller corre-

sponding to the best-performing plant straight away.

For example consider the chemical reactor in Figure 1.11 where the overall system
dynamic of the reactor is assumed to be governed by two chemicals a and b. Let the
parametrisation of the actual reactor be fixed and unknown however assume it to
lie withing the pictured parameter surface, symbolising all feasible combinations.

Applying a continuous adaptive control algorithm to this non-convex problem, the

b A
[ ] Possible combinations of a and b

& Plant models

tuning trajectory

a
FIGURE 1.11: Tuning versus switching

tuning trajectory might actually exit the parameter surface and therefore control
the reactor based on false, potentially dangerous assumptions about a and b. On
the other hand if we utilise MMSAC the algorithm has the freedom to ‘jump’ the
concavity and avoid this problem. (for a further discussion see Hespanha et al.
(2003)).

e Copes with the simultaneous stabilisation problem:

This is another implication of the switching nature of the MMSAC algorithm and
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simply follows from the fact the algorithm can switch to any controller in the
controller set. If we consider the simultaneous stabilisation example in Section 1

L we could choose the corresponding

concerning two plants P, = % and P, = —<,

controllers to be Cg(,,) = 1 and Ck,,) = —1, where we note that the atomic closed
loops [Py, Ck (py)] and [Pp,, Ck (p,)] are stable. In the ideal case the algorithm will
then switch to (or remain long enough with) the correct controller, so that the

system is stable.

e Allows for Multiple Input Multiple Output Systems:
In the multiple model framework the inclusion of MIMO systems virtually comes
for free since there are inherently no restrictions on the dimension of the involved
signals. The only (trivial) requirement is that the signal dimensions of the true
plant, plant models, corresponding controllers and the switching logic are compat-
ible.

Although no conceptual limitations prevent MMSAC to be applied to MIMO prob-
lems, very little MIMO analysis is available in the literature to date, however see

Mosca et al. (2001) for an exception.

e Modularised approach:
Observe that the problems of performance evaluation and generation of the switch-
ing signal ¢, performed by the switching logic .S and the feedback implementation
given by the controller C'— as depicted in Figure 1.7 — are only interlinked via ¢
and otherwise completely separated. This allows a simplified implementation and
analysis of the algorithm since changes in C' do not necessarily require changes in
S and vice versa; hence they can be designed and analysed separately. In practise
this is of great importance since it will reduce the overall complexity of the design

process.

For an enthusiastic promotion of multiple model switched adaptive control see Hespanha
et al. (2003).

The structural freedom in MMSAC stands out, especially if compared to other adaptive
algorithms such as the continuously tuned adaptive controllers introduced in Section 3.
Their controller design is completely dictated by the structure of the algorithm itself.
Also, they can experience bursting effects for some unfortunate value of the tuned param-
eter (see Anderson (2005)) hence potentially have difficulties if the plant is parametrised
over non-convex parameter sets. The Nussbaum controller is the only continuously tuned
algorithm theoretically capable of dealing with the simultaneous stabilisation problem
however there is little hope to ever apply it in practice. Furthermore the analysis of
classical adaptive algorithms is usually limited to the SISO case and the generalisation

to MIMO is extremely cumbersome.

However note that for MMSAC it is common in the literature to impose assumptions on

the plant, controller and algorithm to simplify the analysis. Standard such assumptions
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are that the controllers have a particular design, the plant is SISO, possibly stable, S
and C' are somehow interwoven, etc. Hence some of the native features are sacrificed
for the simplicity of the analysis. The literature to date therefore only reflects a subset
of possible MMSAC designs. We will shortly discuss multiple model type algorithms in

detail in order to illustrate this.

In contrast we will show that the class of algorithms and the corresponding analysis
developed in this thesis will fully achieve the potential by incorporating all the above
features. Additionally we will show that the schemes are amenable to a strong robustness
analysis, i.e. we will establish explicit gain (function) bounds on the gain from the
external disturbances (ug, o) to the internal signals (ug,y2)" hence we can give (by
Georgiou and Smith (1997)) explicit robustness guarantees. We will also show that

variations on the schemes leads to non-conservativeness.

Before a discussion of historic multiple model schemes is entered, note that although
time-varying systems are not the focus of this thesis there is no inherent assumption in
MMSAC that the true plant needs to be fixed, i.e. MMSAC is potentially applicable
to similar system classes as the gain scheduled controllers introduced above. The only
constraint that we need to satisfy on an algorithmic level is that for every frozen time
instance of the plant P, (t), t € R there exists a controller in C such that the atomic
closed loop [P, (t), Ck ()] is gain stable for some p € P;. Furthermore the performance
of each plant model would have to be evaluated over a shorter horizon to include some
kind of ‘forgetting’ into the algorithm since otherwise the algorithm will slow due to
the accumulated history in the performance signals. There does not exist a workable
theory on how to apply MMSAC to time-varying problems to date, however for later

generalisations the absence of structural obstacles will be necessary.

4.3 [Robust] Multiple Model Adaptive Control ([R]MMAC)

Two historic predecessors to the MMSAC concept were the Multiple Model Adaptive
Estimation (MMAE) and Multiple Model Adaptive Control (MMAC) algorithms due to
Lainiotis (1971, 1976a,b), Saridis and Dao (1972) and Deshpande et al. (1973). We will
now briefly discuss these historic multiple model schemes and note that they are not
switched in a strict sense. The global control signal is constructed by ‘blending’ together
various atomic control signals, as with the common practise in gain scheduled control.
However the structural similarity of these algorithm in comparison to MMSAC justifies

their discussion at this point.

MMAE and MMAC algorithms are set in the stochastic domain and seek to control a
fixed LTI plant incorporating some uncertainty. The idea of MMAE is to utilise a bank
of Kalman filters for state estimation of an unknown plant. The global state estimate

is then calculated by summing over the weighed local state estimates of the Kalman
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filters where the weights are determined by a so-called “Posterior Probability Evaluator
(PPE)” from the Kalman filter residuals (details are omitted). The (state) controller is
realised by certainty equivalence with the global state estimate. MMAC is a (control)
extension to MMAE where local control signals are calculated from each Kalman filter
state estimate and a corresponding L@ controller. Similarly to the construction of the
global state in MMAE, the global control signal is constructed by utilising the weights
from the MMAE’s PPE to generate a weighted sum of the local control signals. This
essentially follows the same principle as the discussed gain scheduling algorithm where
the performance function is now a stochastic estimation process and the performance
signal indicates the probability related to each model. There are a variety of examples
where MMAC has been applied successfully: in medical applications He et al. (1986)
and Martin et al. (1987); aerospace applications Athans et al. (1975) and Maybeck and
Stevens (1990a) and controlling flexible structures Maybeck and Stevens (1990b) and
Fitch and Maybeck (1994) (to pick only a few). Maybeck also produced as series of text
books in which he discusses the topic extensively Maybeck (1979, 1982a,b).

Recently, in Fekri et al. (2004), a similar scheme denoted Robust Multiple Model Adap-
tive Control (RMMAC) was introduced however with the difference that the local control
designs are by ‘state of the art’ mixed p synthesis techniques leading to output feed-
back controllers (instead of state controllers as in MMAC). The global control signal is
constructed as a weighted sum of all local controller outputs, where the weights are gen-
erated by a PPE as in MMAE. This allows for MIMO plants. See Fekri et al. (2006) for
a nice overview of MMAE, MMAC and RMMAC algorithms where the authors evaluate

the performance of their algorithm through many simulations.

Although some of these stochastic algorithms work well in practice, no analytical ro-
bustness/performance results have been reported to date; where by robustness we mean
that the system remains stable in the presence of input and output disturbances as well
as unmodeled dynamics. This prevents a principled performance-orientated design of
the algorithm, especially the design of the plant model set. Fekri et al. (2006) try to
circumvent this problem and utilise the ‘atomic’ robustness margins of [F,, Cx ()] as a
measure of performance instead, which leads to a rudimentary performance-orientated
design procedure for the plant model set. This is discussed in more detail later in the

next section.

We now turn to two completely deterministic MMSAC schemes which are broadly ap-
plicable and open to a simplified analysis with the aim of developing hard robustness
results: one where the performance function is implemented with observers and one

where it is implemented utilising so-called disturbance estimators.
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4.4 Observer based MMSAC

(State) observers are intriguing candidates for implementing the performance function
in a deterministic setting. They are part of the basic vocabulary of control and have an
intuitive interpretation: that an observer attempts to estimate the state of the observed
system and that the observed state converges to the true state assuming zero distur-
bances. This is invariant to the stability of the corresponding plant. Furthermore, per-
formance evaluation via observers provides an interesting link to the stochastic MMAE,
MMAC and RMMAC approaches discussed above, since the Kalman filter allows both

deterministic and stochastic observer interpretations.

Assume P in Figure 1.1 to be represented by the following state space equations:

T = AIL’+B'LL1
y1 = Cx+ Duy

and assume (A, C) to be observable and the disturbances to be zero, i.e. (ug,yo) = 0.

We then have with (ug,y0)" = (u1,91)" + (u2,y2) " that (uy,31)" = —(u2,y2) hence

T = Aﬂj‘—BUQ
yo = —Cxz+ Dus.

A typical (Luenberger type) observer for P is then given by

r = Aa§+L(y2—g2)—Bu2
g = —C&+ Dus.

The purpose of the second term in the observer state equation, L(y — ¥), is to force
output error convergence between the observer and the true output, where the choice
of the matrix L is of major importance. To see this let the state error e be given by

e = I — x. We then have

¢ = &—&=Ai+ L(ys — §2) — Bug — Az + Buy
= A& —z)+ L(—Cx + Dug + CZ — Duy)
= Ae— LCe
= (A-LC)e

hence if we choose L such that A — LC has eigenvalues with strictly negative parts then
the observer state asymptotically converges to the state of the true system, i.e. &(t) —
x(t) as t — oo. This nice property motivates the choice d, = e, as the performance
function, where p = (A, B,C, D). For a plant model set P; = {p1,p2, - ,pi}, i € N

a observer bank with corresponding output errors is depicted in Figure 1.12 which we
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FIGURE 1.12: Observer bank

utilise to construct S. Typically the switching signal is then computed from e,, p € P;
by integrating the output error hence to account for the history of the error signal in

the switching decision, e.g.

qr(t —argmln/ lep(T)|2dr.
pEP;

One obvious implication of utilising observers is that the class of systems we seek to
control must allow the construction of observers in the first place. Although this is well
understood in the linear domain with the notion of observability, things become less
clear in the non-linear case, e.g. see Hespanha et al. (2002). There exist various non-
linear observer designs such as high gain observers, sliding-mode observers or non-linear
extended state observers, however their design and application is far from being trivial.
Also fundamental questions related to error convergence or robustness often remain
unanswered. This implies that the very fact that the algorithm relies on observers will

complicate if not preclude a later generalisation to a wide class of non-linear systems.

Various authors have conducted analytical studies of observer based MMSAC algorithms
in order to show their stability and robustness. The most prominent one is due to Morse
(1996), where the author shows the asymptotic convergence of the output to a constant

reference signal r of an observer based MMSAC algorithm controlling a fixed LTI SISO

plant P = gl’;" in the presence of a constant disturbance d with n =0, é; =4, =0

(Figure 1.13 B) where gf;* is proper, (3,, is monic and v}, is a polynomial of degree less
then 3,,. Later in Morse (1997) dp.,0,. are allowed to be non-zero. The plant model

set is always required to be compact.

Morse addresses the problem of implementing a large number of observers in parallel
from the start. In particular he shows that observers can be written in a state shared
fashion, i.e. some estimator state x g is common to all observers which is generated by the

‘multi estimator’ ¥ in Figure 1.13 (A), hence only the output equation y, = Cpzr must
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FIGURE 1.13: Closed loop system considered in Morse (1996, 1997)

be evaluated for all p € P. Therefore X is a state shared implementation of Figure 1.12.
This reduces the computational complexity from evaluating 7 observer state and output
equations to the complexity of evaluating one observer state equation and 7 output
equations which is significant for a later implementation. However, computational trade-

offs are expected, especially for large plant model sets.

The building block Yy returns an exponentially weighted matrix W which is constructed
from y and xg (details are omitted). Xp then determines from W and C), the observer
which performs best and lets ¢ point to the corresponding plant model (after some
suitable delay, or dwell time). In short, ¢ points to the plant model which corresponding
observer shows the smallest output error (measured in some weighted Lo norm), where

q is suitably delayed.

In Morse (1997) the algorithm from Morse (1996) is then shown to be stable in the
presence of additive and multiplicative perturbations (5;* and (5;2 of suitable size where
d,n are non-zero bounded, piecewise-continuous disturbance inputs (Figure 1.13 (B)).
In Morse (2004) the setup of Morse (1996) is revisited and explicit bounds on the gain
from the disturbance d to the tracking error er are given, however with d entering the
system before the plant P (without a corresponding disturbance weight), and where the

output disturbance n is assumed to be zero.

Although these results are significant (especially since they are the first of their kind)
they are unfortunately not able to preserve all of the potential features promised by the
MMSAC concept as stated in Section 4.2:

e LTI SISO:
All results are given for LTI SISO plants. A discussion on how suitable the given

analysis is for a later generalisation to MIMO and non-linear systems is mostly
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absent. It is noted that the problem of controller construction for a continuum of
plant models becomes more complicated in the MIMO and non-linear case. Initial

work has been performed by Mosca et al. (2001).

We note that Morse’s analysis relies heavily on transfer function and linear state
space equation notation that inherently ties it to the linear domain and makes a
later generalisation at least cumbersome. Stability analysis aside, we have men-
tioned before that even the construction of observers can be problematic in the
non-linear case, e.g. see Chang et al. (2001) where a great deal of attention goes

to the construction and stability proof of the utilised non-linear state observer.

e No complete unstructured uncertainty model:
In order to obtain a comprehensive robustness result it is essential to not only
deal with additive and multiplicative uncertainty but also with uncertainties of an
inverse multiplicative type. A common way to address the complete unstructured
uncertainty problem in the linear domain is to employ a coprime perturbation
model, discussed in Section 4, page 53, where it is required that we allow for
two possible disturbance inputs placed symmetrically on both sides of the plant
as in Figure 1.1. The disturbance model in Figure 1.1 is also utilised in the
robustness theory of Georgiou and Smith (1990, 1997) hence if we are able to
establish a finite bound on the gain from the disturbances to the internal signals
we automatically have a powerful robustness analysis at hand, i.e. for non-linear

systems see Georgiou and Smith (1997), Theorem 1.

In contrast, the model in Figure 1.13 from Morse (1996, 1997) injects the distur-
bance d,n after the plant. To move d to the left beyond % is impossible if the
true plant does not have a ‘natural’ pole at zero and we were forced to artificially
augment the plant input with an integrator in order to meet the given plant con-
straints since then the noise input d would act on the controller. These structural
issues essentially prevent a straight forward generalisation of the results to allow
for general unstructured uncertainties and a direct application of known robustness

results.

e Pole at zero:
Morse assumes that the true system possesses a pole at zero. This assumption is
rather restrictive since it only holds for a small class of physical systems, e.g. a
mass, spring, damper arrangement only has a pole at zero if the spring constant is
zero (there is no spring). In order to apply Morse’s theory we would therefore have
to artificially augment systems with an integrator, which has other undesirable

effects, as discussed above.

e Results only in a (weighted) Lo setting:
It is desirable to have gain stability results not only in Lo but also in other relevant
signal spaces, for example L, is interesting in practice since it deals with possible

offsets naturally present in any physical signal.
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A different type of analysis deals with the improvement of performance in MMSAC sys-
tems while preserving stability. Narendra and Balakrishnan (1993) considers a number
of parametrised adaptive controllers and utilises a switching scheme to select one of
them for closed loop operation. In Narendra et al. (1995) and Narendra and Balakr-
ishnan (1997) the authors extend Narendra and Balakrishnan (1993) and also consider
fixed controllers and re-initialised adaptive controllers alongside the (free-running) adap-
tive controllers from Narendra and Balakrishnan (1993). They also perform extensive
numerical simulation evaluating the performance of different combinations of the men-
tioned controller choices. No gain bounds or robustness margins are given where the
authors merely note: “Since all the models used in the procedure [...] are either fixed
or adaptive, one would expect the overall system to be robust under perturbations, if
each model-controller pair is individually robust. This indeed turns out to be the case.”
Such robustness results would therefore at best inherit the limitations of the robustness

theory for classical adaptive controllers and no explicit details were given.

For the present analysis of MMSAC algorithms we therefore conclude the following:

e Limitations by analysis:
For all discussed algorithms there remains a vast gap between theory and practice,
e.g. the wide gap between the class of systems MMSAC algorithms can be used for
(see the list at the beginning of Section 4.2) or can be implemented for in practice
and the class of systems that the analysis applies to. Also the assumption that the
plant set is compact postulates a priori knowledge of a bound on the uncertainty,
which makes the algorithm conservative (Chapter 6 shows how such limitations
may be removed for the algorithm under consideration in this thesis). This is very
unfortunate since non-conservativeness is thought to be one of the key benefits of

adaptive control.

Reducing complexity by limiting scope is the natural thing to do when approaching
complex problems however the adoption of many structural assumptions into the
analysis seems to have inhibited the generalisation effort over the last decade, i.e.

the system classes considered by the authors remain virtually unaltered to date.

e Limited robustness results:
We have argued that although the theory of Morse (1996, 1997, 2004) is suitable
for showing stability in the presence of additive and multiplicative uncertainty, it
fails to fully incorporate unstructured uncertainty since this is disallowed by the
structure of the utilised disturbance model. The claim of robustness in Narendra
and Balakrishnan (1997) can be considered problematic since it relies on traditional
robust adaptive control results. For all other approaches robustness results do not

exist at all.

Since any control algorithm is subjected to input and output disturbances as well

as unmodeled dynamics in practice, the corresponding robustness theory must
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include these. Furthermore explicit measures of the algorithm’s performance, e.g.
in the form of gain bounds, are very important since they are essential to conduct

performance-orientated design (see below).

e No theoretically grounded design methodology:
Since in MMSAC the controller design procedure K is usually given, design relates
almost exclusively to the question on how to choose an appropriate plant model

set P; controlling an uncertain plant P. For example if

1
5—p

P, =

where 1 < p < 10 is an uncertain parameter, how should the finite plant set P; be

chosen?

Recall that in MMSAC there exists the basic requirement that every atomic plant
model controller pair [Pp,C’K(p)], p € P; is gain stable. Furthermore we must
ensure that the plant models are distributed such that over the whole uncertainty
set of P there always exists a controller Ck ), p € P; such that [Pp,C’K(p)] is
gain stable for all 1 < p < 10. Otherwise we could find a value of p such that all
controllers are destabilising. For example we might choose P; = {1,5,10} where
the plant models are given by P,, p € P;, however, we then have to ensure that
all the intermediate parametrisations a € [1,10]\ {1, 5,10} can be stabilised by at

least one of the corresponding controllers Cg (), p € P;.

This basic relationship between placement of plant models and atomic stability
is exploited in Anderson et al. (2000). It is shown that to an uncertain plant P,
incorporating a bounded real uncertainty, and the corresponding compact uncer-
tainty set P, a finite plant model set P; C P can be constructed such that there

always exists a corresponding controller that stabilises P, i.e.
dneN, P, CP, [Pi|<n, st.Vp. € P Ip € P; st [Pp,,Ckp is gain stable.

The argument can be constructed by noting that for each atomic plant-controller
pair [P, C’K(p)], which is required to be (gain) stable, by standard linear robust

stability theory, there exists a robustness margin of radius bp,, around each

Cr(»)
P,, p € P. The union of these neighbourhoods with radii corresponding to the
robustness margins then results in a cover. By compactness, this cover of P there-
fore has a finite sub-cover which determines the finite plant model set P;. This

leads to the desired result.

In Fekri et al. (2006) the authors are explicitly interested in a performance-
orientated design guideline for the plant model set P; and the corresponding con-
troller set. They utilise the performance of atomic plant-controller pairs [P,, C K(p)]

for that purpose. For a scalar uncertainty p the number and distribution of the



32 Chapter 1 Introduction

plant models is then determined by an iterative process. Starting from the up-
per bound of the uncertain parameter p,, p < p, the performance of the first
controller design C; (where the controller is constructed for each new uncertainty
interval by mixed p synthesis techniques) is evaluated for the atomic closed loop
[P,,C K(p)] over the uncertainty interval oy < p < p, for decreasing a;. Since the
performance of the (fixed) controller under increasing uncertainty will naturally
decrease (it is conservative) it will eventually cross some pre-defined lower perfor-
mance bound A. This event defines a; and the first controller C),. The procedure
is then repeated for ay < p < a1 with ao decreasing until the lower bound of the
uncertainty p;, p; < p it reached. This implicitly defines P;. Since the atomic
performance of matching plant and controller pairs [P, CK(p)] is also a measure
of atomic robustness this essentially relates the number of plant models to the
atomic robust stability margins as in Anderson et al. (2000); however it also gives

a design guideline for P;.

Note that for non-parametric uncertainties the design problem becomes more com-

plex since we also have to consider the geometric distribution of the plant models.

We conclude that the relationship between the number of plant models and atomic
robustness margins is in the one dimensional case, at least conceptually, well estab-
lished however design on this level, although it produces answers, remains heuristic
since we do not know how a particular construction of P; will effect the global per-
formance of the algorithm. It is obvious that we are missing a key constraint in

the form of a global measure of performance in order to sensibly optimise P;.

This motivates Chapter 6 where we will give performance-orientated design guide-
lines for the EMMSAC algorithm.

We will now focus on the class of switching algorithms where the performance function

is implemented by some optimal estimator.

4.5 Estimation-based Multiple Model Switched Adaptive Control

The idea of EMMSAC, i.e. to utilise optimal disturbance estimation for performance
evaluation, is due to Fisher-Jeffes (2003) and Vinnicombe (2004). It forms the basis for
what follows. To emphasise the optimality aspect of EMMSAC we will introduce the

algorithm from a system identification point of view.

Let P be the class of systems under consideration. Consider Figure 1.14 where the signal

(uz, yz)T
for simplicity we have assumed that all signals are bounded. Let M, denote the graph

is an observed measurement of a dynamical system, i.e. from Figure 1.1, where

of Py, p € P, that is the set of all allowable (or compatible) bounded input-output

combinations (u},y})" of P,.
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FIGURE 1.14: System identification from the observation (ug,y2)"

Now consider an optimal system identification algorithm that determines the plant

Py, qr € P such that the error (ug’,yd!)T between the observed signals (ug,y2) "

and the signals (ugf , yff )T in the graph of Py, is minimal at time k € N:
qr(k) = argmin min || Fi(ug,y2) "+ Fi(ul,of) |
! peP ((uﬂf,ywe%w e
. . T
= argmin min | T (ub, yb) | (1.5)
pEP <(“11)7y11))T€ngp 0770

where Z,v represents the truncation of a signal v a time k£ € N. The inner minimisation
can also be thought of as a (metric) projection onto the graph 7, M, of P, — as
depicted in Figure 1.15 — hence it represents the distance between the plant model and

the observation . (ug,y2) " .

FIGURE 1.15: Projection onto the graph M, of P,, p € P at time k € N

A possible multiple model control strategy employing this identification scheme would
put a controller designed to stabilise the ‘identified’ plant g¢(k) into closed loop. A

concrete design procedure would then be as follows.

e For all ), p € P construct a corresponding controller C'(,) such that the atomic

closed loop [P, Ck(p] is stable.

e Lor all P,, p € P use the above procedure to construct the smallest ‘disturbance
estimate’ J (ul, yd )T that is consistent with the observation .7 (ug,y2)" and the

plant P, (inner minimisation) up to time k € N.
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e Let gf(k) € P, k € N point to the plant model which corresponding disturbance

estimate is minimal for all p € P.

e Switch the controller Ck/, () corresponding to the plant P, £ (k) into closed loop
at time k € N.

System identification on its own is a large and very active area of research and an in depth
analysis of existing algorithms would go beyond the scope of this thesis (Ljung (1999)
gives a good overview). We regard identification algorithms not minimising ||(uf, y5) " ||
as in equation (1.5) as non-optimal. Various solutions to the non-optimal identification
problem (see Ljung (1999) and the references therein) and optimal identification problem
(e.g. see Markovsky et al. (2005) for a recent approach via structured least-squares) are
known, however the inclusion of disturbances into the analysis usually poses a major
complication. Also concrete algorithms may face the problem of local minima if P is

non-convex and are usually limited to off-line application.

A straightforward way to simplify the identification problem is to consider only a dis-
crete, finite plant model set P; C P since this would reduce the outer minimisation
problem in equation (1.5) to the simple comparison of finitely many scalars. The dis-

crete identification problem would then read

. . T
qf(k) = argmin min | %% (uo,v0) ' || | - (1.6)
P er ((a‘f,yﬁ’ﬂe%m

Observe that discrete identification can be an approximate of the identification over the

whole of P as in equation (1.5), i.e. if P represents a continuum.

In Chapter 3 we will show that in Lo, ls the size of the disturbance estimate can be
determined from the residuals of a Kalman filtering process which allows a direct on-line
implementation of the disturbance estimator and underlines the close relationship to
MMAE and MMAC (in this special case). Furthermore, since the analysis presented in
this thesis requires disturbance estimates to be optimal only over some finite interval
[k —o,k], o,k € N (also see French and Trenn (2005)), and since the inner minimisation
problem is usually convex, e.g. in the linear case, there exist simple (matrix optimisation)
techniques of bounded computational complexity to compute finite horizon disturbance

estimates in a general /., 1 <r < co norm setting (see Chapter 3).

The switching function in equation (1.6) forms the heart of the EMMSAC algorithm

considered in this thesis.

As noted, the idea to utilise optimal disturbance estimation for performance evaluation
is due to Fisher-Jeffes (2003) and Vinnicombe (2004). It was the key that allowed
for a simplified, axiomatic analysis in French and Trenn (2005), it opened the door to

further generalisations in Buchstaller and French (2007, 2008) and also made this thesis



Chapter 1 Introduction 35

possible. Also the clever treatment of disturbances in the analysis and the fundamental
properties of estimators deduced in French and Trenn (2005) live on in the present result
and guide the developments to date. Last but not least the knowledge that finite bounds
on the gain from the external disturbances to the internal signals promises robustness

(Georgiou and Smith (1997)) defines the overall setting and objective of the analysis.

In Vinnicombe (2004) the author was able to establish initial bounds on the gain from the
external disturbances to the internal signals for a plant model set consisting of only two
plant models 1, —1 (the simultaneous stabilisation problem). Fisher-Jeffes (2003) was
able to show that such gain bounds can be established by either a version of Lyapunov
stability theory adapted to account for switching or linear matrix inequalities (LMIs) for
any two plant models. Furthermore he shows that the problem of determining optimal
disturbance estimates is equivalent to the problem of calculating the scaled residuals of a
Kalman filter. Unfortunately the path to a more general result is rather unclear since the
reasoning is specifically tied to the analysis of two plant models. A novel way of treating
disturbances in French and Trenn (2005), i.e. to utilised input and output disturbances
as a central part of the argument instead of considering them an unwanted nuisance,
then opened up the algorithm to a simplified and axiomatic analysis. This change of
perspective allowed the authors to first state four general assumption on the disturbance
estimator and then to establish /., 1 < r < oo gain bounds for the class of dead-beat
stabilisable plants! based on these abstract assumptions, thus divorcing the problem of
(optimal) disturbance estimation and the robust stability analysis of the algorithm. The
authors also introduce a finite horizon disturbance estimator which is only optimal over
a finite interval however it is shown to meet the (estimator) assumptions and is therefore

applicable.

Finally we emphasise the key differences and similarities between traditional observer
based MMSAC control algorithms in the sense of Morse et. al., and the introduced
EMMSAC control algorithm. Observe that:

e The disturbance estimate in EMMSAC replaces the observer error in MMSAC as

the performance signal.

e Observers, similarly to estimators, give some notion of distance from the observed
signal (uz,yg)T to the plant it has been constructed for, however this distance is

in general not minimal (optimal) in the given sense.

e In /5 the Kalman filter may be utilised for optimal disturbances estimation. Ob-
serve that the Kalman filter estimator is also an observer or has observer structure.
Hence in the special case where Kalman filters are utilised for performance evalu-
ation, EMMSAC and MMSAC algorithms coincide in the performance function.

'The class of dead-beat stabilisable plant is the class of plants where to every member P there exists
a dead-beat controller C' such that for the closed loop [P,C] and zero disturbances the output yo is
forced to zero in one time step.
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To conclude the introduction we set the contributions of our work into perspective

against previous results.

5 Contributions of this thesis

We start by discussing what we consider the most important contribution of this thesis:

the axiomatic treatment of the problem in the theory. All results are the fruits of this

abstraction effort.

Axiomatic treatment in theory

e Robustness:

By Georgiou and Smith (1997) finite bounds on the gain from the disturbances
(ug,10) " to the internal signals (ug,y2)! translate into explicit robustness guar-
antees. This fact motivates the overall setting of the analysis: to show for an
algorithm that such bounds exist. In Chapter 5 this is done explicitly for the
EMMSAC algorithm. This way of showing robustness is rather different to the
one for example in Morse (1996, 1997), where the author proves error convergence
for the algorithm in the presence of additive and multiplicative uncertainty and

output disturbances.

The gain bound approach to robustness has the advantage that it essentially cleans
the analysis of any uncertainty related objects, in fact robustness can be completely
neglected at first, one merely has to show that such a gain bounds exists and

robustness follows.

Estimators:

In Chapter 3 we establish abstract assumptions on the disturbance estimator on
which the subsequent analysis will rest. This axiomatic treatment of the relevant
estimator properties initiated by French and Trenn (2005) has the advantage that
unlike other multiple model adaptive algorithms to date — which are tied to
one specific performance evaluating element, i.e. the so-called multi estimator in
MMSAC (Morse (1996, 1997)) or Kalman filters in MMAC or RMMAC — we are
free to choose any estimator that fulfils the assumptions. In particular we will show
that optimal (finite and infinite horizon) disturbance estimation algorithms fulfil
these assumptions. The optimal infinite horizon estimators in an Iy setting are
closely related to the Kalman filter however different horizons length and signals

spaces give rise to a variety of different estimators.

Atomic plant-controllers pairs:
Similar to the estimator assumption we will not explicitly give a controller design
or even assume a certain representation of the plant models and corresponding con-

trollers, i.e. state space matrices or transfer functions, but only require the atomic
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loop interconnection [Pp,C’K(p)], p € P to satisfy two rather simplistic (linear)
signal growth assumptions (see Chapter 4) on which the subsequent analysis will
rest. We call these two assumptions the controller assumptions. This approach
is fundamentally different to other theoretical treatments of this problem in the
literature, i.e. in MMAC controllers are required to be state controllers, in MM-
SAC (Morse (1996, 1997)) we are free to chose the controllers however the notation
is based on linear transfer matrix function notation. Also in Fisher-Jeffes (2003)
the analysis is tied to state space notation where the controller design is fixed
(Hoo). This axiomatic treatment leads to the greater generality of the algorithm

as discussed next.

We began the discussion of multiple model switched adaptive algorithms in Section 4.2
by compiling a list of desirable features that an algorithm could possess. During the
course of this thesis we will show that in fact all these features are preserved by the
analysis. We will now discuss these and additional features of the algorithms, where we
note that they almost exclusively follow directly from the axiomatic treatment of key

elements as described above.

Generality of the algorithm

e Broad system class, full controller design freedom:
In MMSAC (Morse (1996, 1997)) it is assumed that the true plant has a pole at zero
and we noted that this poses problems in generalising the underlying disturbance
model. Unfortunately, since a great deal of the analysis rests on this assumption,
it is not straightforward to remove it. In French and Trenn (2005) the system class
is limited to dead-beat stabilisable systems where the controllers are dead-beat.
For classical adaptive controllers it is often imposed that the plants are minimum
phase and the relative degree as well as the sign of the high frequency gain is

known, i.e. see Narendra and Annaswamy (1989).
We do not require any such assumptions for EMMSAC.

We will only require that the controller design procedure K : P — C is such that
any atomic closed loop pair [P, C K(p)], p € P satisfies the controller assumptions;
this can be achieved by any control design methodology. It will be shown in
Chapter 4 that for linear systems this assumption simply relates to atomic closed
loop pairs that are (gain) stable. However this assumption is also satisfied by non-
linear atomic closed loop pairs which show linear growth. Although non-linear
systems are not the focus of this thesis we note that this fact brings a fully non-

linear treatment of the problem within reach.

e MIMO:
The majority of adaptive algorithms in the literature are assumed to be operating

on SISO plants. For classical adaptive controllers this arises from the structure
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of the problem since for general MIMO systems it becomes rather difficult to
construct an appropriate parameter update law. As mentioned before, multiple
model type algorithms do not have these structural problems and MIMO integrates
almost naturally into the scheme. The restriction to SISO for example in Morse
(1996, 1997, 2004) and Narendra and Annaswamy (1989) therefore originates from
simplicity of the analysis (however see Mosca et al. (2001) where a MIMO MMSAC

design is considered).

Since many control applications are indeed MIMO problems, the creation of an
algorithm and corresponding robustness result that allows for MIMO is consid-
ered an important issue in MMSAC. For example Fekri et al. (2006) acknowledge
this fact and specifically design their Robust Multiple Model Adaptive Control
(RMMAC) algorithm such that it can be applied to the MIMO case.

In the case of EMMSAC, the axiomatic nature of the approach allows MIMO
almost by accident. Recall that from a plant model and controller point of view
it is required that the atomic closed loop pairs [Pp,CK(p)], p € P satisfy the
controller assumptions. It turns out that it is irrelevant if they are MIMO or SISO
since the assumption only deals with the size of signals. For the construction
of the estimator, the optimisation problem simply becomes higher dimensioned,
which is computationally more expensive but otherwise unproblematic (see the

point ‘Optimisation based performance evaluation’ below).

Non conservative:

One key problem that sparked the investigation of adaptive control algorithms was
the conservativeness of linear controllers; indeed basic continuously tuned adap-
tive controllers have the virtue of being universal. In order to ensure the stability
of the algorithms in the presence of disturbances and unmodeled dynamics, vari-
ous modifications (dead zones, projections, o-modification, etc.) were considered
which lead to the introduction of some conservativeness to the design. However
see French (2008) where the author was able to establish that the underlying un-
modified universal controllers are robust to unmodeled dynamics in the presence of
sufficiently small disturbances. In MMSAC (Morse (1996, 1997)) the algorithm is
limited to compact plant model sets, which translates into the condition that there
must be a known bound on the uncertainty of the plant, in turn leading to con-
servativeness. In French and Trenn (2005) performance degrades for increasingly

large uncertainties.

The basic EMMSAC designs presented in this thesis are also conservative, however
we will present a variant of the EMMSAC algorithm in Chapter 6 that maintains

its performance invariant to the size of the uncertainty — it is universal.

Continuous plant sets:
Unlike French and Trenn (2005), where the established bound on the gain from the

disturbances to the internal signals scales with the number of elements in the plant



Chapter 1 Introduction 39

set P; (hence the robustness guarantee is lost for large sets P;), we will show in
Chapter 5 that the present gain bound is invariant to the number of plant models
in P;. Instead it depends on the ‘complexity’ of P; (see Chapter 6). Note that the
analysis in MMSAC (Morse (1996, 1997)) is also invariant to the number of plant
models within a plant model set P;. However see Hespanha et al. (2001) where
for the same algorithm the established bound on the size of the state as well as
the robustness margin scale with the number of elements in the plant model set.
The authors then propose a modification to the switching logic to circumvent this

issue.

e Optimisation based performance evaluation:
Usually multiple model type algorithms are based on specific implementations of
the performance evaluator, i.e. the multi estimator in MMSAC (Morse (1996,
1997)), or Kalman filters in MMAC and RMMAC. The present analysis rests on
abstract estimator assumptions that can be satisfied by infinite and finite opti-
mal disturbance estimators (see Chapter 3). Since in particular the finite horizon
disturbance estimation problem is a standard convex optimisation problem with
many possible solutions, i.e. in l» via the pseudo inverse or in [y, via linear pro-
gramming, the analysis is applicable to a variety of algorithms. Furthermore the
Kalman filter provides a finite dimensional realisation of the infinite horizon Iy

optimal estimator.

Even in the non-linear domain, under appropriate convexity assumptions, the finite

horizon optimisation problem remains computationally tractable.

e Any /., 1 <r < oo norm:
Since the entire analysis is based on the gain relationships between signals, or parts
of signals, it can be conducted in any [/, 1 < r < oo norm. In contrast, algorithms
that are based on Kalman filter state estimates such as MMAC or RMMAC only
apply in the Lo, ls setting. The stability proofs for MMSAC (Morse (1996, 1997))

are also limited to Lo.

e Fully modularised:
The reason why modularisation is very important is twofold. Firstly it simplifies
the analysis since every sub-component can be analysed separately. For example we
would like to argue about plant model set design, controller design, and construc-
tion of efficient estimators individually, since each component is complex enough
in its own right. Secondly it allows the actual implementation to be modularised.
This means that the individual sub-components can be constructed separately,
where changes in one component does not require changes in a second component.
For example in Fisher-Jeffes (2003) this is not the case and parts of the estimator
are utilised to construct the controller, hence a later modification to either the con-
troller or the estimator would imply a complete re-analysis and re-implementation

of both of them. This also significantly hinders later generalisations.
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On the other hand for example, if a design uses common states in the estimator

(e.g. a Kalman filter) and the controller then an implementation can exploit this.

e Fully unstructured uncertainty model:
In contrast to MMSAC Morse (1996, 1997) and classical adaptive, continuously
tuned schemes, where only additive and multiplicative uncertainties are permitted
by the corresponding stability and robustness analysis, we allow the plant to be
perturbed by a fully unstructured uncertainty in the gap metric which is very im-
portant for a later implementation. This is a direct consequence of the robustness

analysis in the style of Georgiou and Smith (1997).

e No (stochastic) assumptions on the disturbances:
In many publications in control the analysis is simplified by imposing assumptions
on the disturbances which are acting on the system. Standard assumptions are
that the disturbances are produced by a stationary Gaussian processes, that they
are white, sufficiently rich, Lipschitz differentiable, zero, etc. We will only require
that they are bounded in an I, 1 < r < oo norm. This is a further benefit of

conducting a robustness analysis in the style of Georgiou and Smith (1997).

e Non-convex and simultaneous stabilisation control problems:
That EMMSAC is applicable to such problems follows from its multiple model

nature.

Finally we want to emphasise the importance of the following contribution: a theoreti-
cally grounded design methodology. From an implementation perspective, any body of
theory can only be of value if it eventually, directly or indirectly, finds its way into a
practical application. Design guidelines that lead to a solution to a given (control) prob-
lem, under utilisation of the available design freedom in the algorithm with respect to

performance and uncertainty description, are an essential tool that allows this transition.
Design grounded in theory

As discussed in Section 4.4, attempts have been made in Anderson et al. (2000) and Fekri
et al. (2006) to establish initial design guidelines for the plant model sets of multiple
model algorithms. In both cases, plant model sets are constructed on the basis of atomic
robust stability margins rather than any global measure of performance; hence from a
global performance point of view these constructions are heuristics. The authors draw

attention to this and explicitly ask the following questions:
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1. How to divide the initial large parameter uncertainty set into N smaller subsets?
2. How to determine the ‘size’ or ‘boundary’ of each parameter subsets?

3. How large should N be? Presumably the ‘larger’ the N, the ‘better’ the perfor-

mance of the adaptive system should be.

Additionally we may ask:

4. How to prevent a conservative design?

U
. \
\ ) .
: . . . P

F1GURE 1.16: Covering U by neighbourhoods of size € around p € P;

In this thesis the problem of ‘dividing up’ the uncertainty into neighbourhoods will
present itself in the following way. Let the set U C P denote the uncertainty in the
true plant P = P,_, i.e. p, € U. For the sake of the argument, take U to be a compact
continuum in a finite dimensional parameter space. The techniques in this thesis now
construct an infinite dimensional (unrealisable) multiple model adaptive controller based
on a continuum of plant models P; = U (and a continuum of corresponding estimators).
This controller stabilises any p, € U and provides a robustness margin of size €, which

depends on U.

However, since the amount of available computational resource is usually finite, we
want P; to be finite and need to discretise the controller. Since e defines a global
robust stability margin around each p, € P; C U, we can arrange P; such that the
neighbourhoods of robustness ‘cover’ U in order to ensure stability for all p, € U —
as depicted in Figure 1.16. The theory then ensures that the corresponding multiple
model adaptive controller, based on a single atomic controller and estimator for each

neighbourhood, also stabilises any p, € U. Such a controller is typically realisable.
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The selection of P; and the determination of € thus address the first two questions of
Anderson et al. (2000) and Fekri et al. (2006). It remains to determine how the number

of plant models influences the performance, and how to prevent a conservative design.

To investigate these question we will utilise two fundamental scaling geometries. Let
the parameter bound I > 0, [ € R and the parameter discretisation step m > 0, m € R
define the set

Prm = {(i,1,1) cR3|i==4am, a €N, |i <1},

where P, ,,, parametrises the plant model P,, p € P, ,, given by

Plape) : Tp(k +1) = axy(k) + bul (k), yi (k) = cxp(k), z,(—k) =0, Vk € N.

Consider Figure 1.17. We now ask the following scaling questions and note that scaling
is performed off-line — we are interested how the algorithm behaves for different scaling

scenarios and use fixed plant model sets for the argument.

How does the algorithm perform in the case of

e Refinement scaling:
The number of (unique) plant models is increasingly large however the plant model

set is bounded, i.e. fix I < oo where m > 0. This leads to a dense plant model set.

e Expansion scaling:
The number of plant models is increasingly large however the distance between
them is kept constant, i.e. fix m > 0 where [ > 0. This leads to a large, sparse

plant model set.

These scaling scenarios are motivated by the two possibilities that: either the uncertainty
U is bounded and we might want to have a large number of plant models that are close
in the hope to increase the performance (on the other hand the increased number of
candidate plants might degrade e.g. the transient performance), or U is overly large and
we will have to introduce a large number of distinct plant models in order to provide a

stabilising controller (this may lead to conservatism).

Since we will establish a global measure of performance and robustness € = bpc = A= Lin

Chapter 5 that we can optimise for and which reflects the geometric trade-offs in choosing
all key variables, we will be able to give explicit answers to these scaling questions. A
technique that plays an important role in this respect is that operations on the plant
model set may be performed on-line, which we denote dynamic EMMSAC. Analogously,
an EMMSAC algorithm based on a constant plant model set is said to be static. ; The
results established in Chapter 6 show the following:
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FIGURE 1.17: Refinement and expansion scaling by P; .,

e Above a certain critical refinement level an EMMSAC design becomes stabilising
and a common bound 4 for the true gain ~ is given for all higher levels of refine-
ment, i.e. performance does not diverge under refinement scaling. This opens the
door to on-line refinement schemes that start off with a plant model set refined
beyond the critical stabilising refinement level, and then introduces plant models
corresponding to regions where the algorithm is expecting the true plant, based

on the observation of closed loop signals.

e The actual closed loop gain ~ for static EMMSAC is conservative in the expansion
geometry, i.e. v — oo as | — oo. To address this issue we introduce a dynamic
EMMSAC scheme that follows the strategy to expand the plant model set on-line
until the performance is satisfactory. This technique allows the construction of a
constant gain (function) bound that is invariant to the level of uncertainty. Hence

the algorithm is universal.

This addresses the third and fourth question, and gives the insight required to provide

a systematic approach to design addressing the first to questions.

6 Chapter Organisation

In Chapter 2 we will introduce necessary notation and give a brief introduction to
signals and systems, uncertainty descriptions and (modern) robust stability analysis.
This chapter is not intended to give an exhaustive study of such topics but only to

supply the necessary machinery for the arguments that follow.

Chapter 3 formally introduces disturbance estimation. Two exemplar constructions of
disturbance estimators are presented, followed by the introduction of five axiomatic
requirements on the estimator. All that follows from there on will rest on these esti-
mator assumptions, not on particular estimator realisations. All exemplar estimators
are shown to meet the estimator assumptions. The equivalence between infinite horizon
optimal estimation in /s and the Kalman filter is established. Continuity properties of

the estimators are discussed.
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Chapter 4 describes the actual EMMSAC algorithm with all involved sub-components.
It starts by establishing two controller assumptions which are then shown to be met by
all minimal MIMO LTI plants and controllers. All that follows from there on will rest
on these controller assumption, not on particular controller constructions. The plant-
generating operator G is introduced and its role in dynamic EMMSAC is discussed with

the help of examples.

Chapter 5 is technical and establishes the main result: a bound 4 on the gain from
the external disturbances wg to the internal signals wy. The Chapter introduces the
device of covers of the uncertainty set in order to express the gain bound in terms of the
complexity of the candidate plant set (described by the size of the cover set) and hence
achieves gain bounds which are independent of the size of the candidate plant set. The
global gain bound is established for both algorithms based on continuums of plants and

for sampled (and realisable) versions.

Chapter 6 relates the cover constructions of Chapter 5 to the concept of metric entropy
and then asks two fundamental scaling questions: the behaviour of the gain bound if
there is a refinement in parameter space, or an expansion. With the established gain
bound in Chapter 5, which is invariant to the number of elements in the plant model set,
the next main result is established, which, under some continuity assumptions, shows
that the global gain bound is invariant to refinement scaling. Expansion scaling is in-
vestigated and it is shown for a fundamental example that the actual closed loop gain
scales badly in this case. A dynamic EMMSAC extension is introduced that establishes
a gain (function) bound which is invariant to expansion scaling. It is then investigated
when dynamic EMMSAC constructions promise tighter gain bounds than static EMM-
SAC constructions and vice versa. The chapter is concluded with an example where it
is shown qualitatively how to conduct performance-orientated design both for the static
and dynamic version of EMMSAC.

In Chapter 7 conclusions are drawn and future directions of research are indicated.
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Preliminaries

In this chapter, we will establish the notation used in the remainder of the thesis and
review the underlying mathematical and system-theoretic framework. We will first in-
troduce the notion of a signal and an operator (which acts on a signal). Then we will
discuss various important properties of closed loop systems comprising of an interconnec-
tion between two operators, such as well-posedness, stability and robustness and their

relation to uncertainty modelling in the gap metric.

1 Norms and signals

In order to study physical systems analytically, physical variables — such as speed,
current or pressure — have to be expressed in a systematic kind of way. These variables

can be considered maps from time to value which we call a signal.

A signal can now be defined in discrete time, e.g. when a temperature is measured /sam-
pled every T' € R seconds, or in continuous time when measured continuously without

interruption. This naturally leads to the signal space
S := map(T,R")

where h € N and T can be the set of real numbers R, the set of positive real numbers

R™, the set of integers Z or the set of natural numbers N.

Sometimes we may record values only over a finite window of time. The corresponding

signal is then only defined on a subset [a,b], a < b, a,b € T of T where
[a,b] ={z €T |a<z<b}

In this case we write Slj,y = map(|a, b], R") hence S lia,p) s the set of maps that are
defined only on the interval [a,b], a,b € T.

45
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Let T € {N,Z} and

r = (xaaxa-i-la o 7'1:6) S S‘[a,b]a a S b
Yy = (y07yc+17 Tt Jyd) € S‘[c,d]7 c S d
z = (267264-17"' 7Zf) €S|[e,f]7 eéf

The concatenation of signals is then defined as

cat(z,y) = (Ta,Tat1l,  * Th Yes Yerls - Yd)

cat(z,y,z) = cat(cat(z,y),z) € S|ign-

For notational simplicity we often write (x,y, z) for cat(z,y, z).

We also consider signals that are defined over the whole horizon, however we are only
interested in their initial portion. For that purpose introduce the truncation operator
T+ S Uper 8‘[0717] — S, t € T defined by:

v(T) if 0<7<t teT

0 otherwise

(Fw)(r) = {

This operator returns a signal that equals v € S Uper S5 up to time ¢ € T and is zero

everywhere else.

An important property of a signal is its ‘size’ where we will have to define a suitable
measure to make explicit what we mean by size. For that purpose we equip the signal

space with a norm || - || : S Ug<p S|ja5 — RT U {o0}.
Definition 2.1. |- || : SUu<p S|jqp) — RT U {00} is said to be a norm if for allv,w € S
and v,w € Sljgy, a < b:
e v=0<%|v]| =0 : positivity,
e ||av|| = |al||v], @ € R : homogenity,
o |lv+wl| <]+ |lw| : triangle inequality.
Important examples of norms are L, and [, 1 < r < o0, since they are able to express

many physically relevant properties of a signal, e.g. the energy or its largest value. They
are defined as follows: for a € S where T = N, Z define

1/r
lall- = <Z|a(i)lr> , L<r<oo

1€T

sup |a(i)]
i€T

lalloo
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and where T = R, R define

1/r
lall, = (/ |a<t>|rdt) l<r<oo
T

lallse = esssupa(z)].
teT
If a € Uy<pS |[a,b}, then the sums and suprema are only taken over the relevant interval

[a, b]. Note that we will often write ||-|| for ||-||, if the statement holds for any 1 < r < co.

Although our overall goal is to control a system such that all signals are bounded (in
norm), we cannot assume signals to be bounded a priori and have to account for the
possibly that signals are indeed unbounded (in norm). To be able to refer to such
bounded and unbounded signals, define the two corresponding signal spaces V and V,:
For V C S let

Vi={a€eS |a(-t)=0, Vt € T; |la]| < o0}

and note that V is a normed vector space including only norm bounded signals. In this
thesis the signal spaces under consideration will usually be V = L, for T =R and V =,
for T = Z.

Since V does not contain signals v € S such that ||v]| = oo, ie. ||v]| =00 = v &V, we
extend the signal space V by signals that are allowed to grow unboundedly in norm over
an infinite horizon, i.e. || Zv|| — oo for t — co. However, we require that for any finite
t < 00, || Zv| is bounded. Consequently, define the extended space V., ¥V C V., C S by

Ve = {veS8S |VteT: JweV}.

In for example French (2008) and French et al. (2006), a further signal space called the
ambient space V, is introduced to account for the possibility of a finite escape time, i.e.
Jt < oo such that || Zv|| = co. However, in this thesis we will restrict our attention
to systems where this cannot occur, e.g. switched linear systems, and therefore all
signals can be measured by a finite norm over a finite interval. Observe that then in the

particular cases where V = L, [, 1 <r < oo:
Ve=3S, 1<r <.

If v € V then v is said to be bounded, and if v € V. \ V then v is said to be unbounded.

2 Operators and the frequency domain

We now introduce the notion of operators which act on signals. Define for m € N, the

dimension of the input space, and o € N, the dimension of the output space, the input
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and output signal spaces

U::Vx---xvzvm, y;:VX...XV:VO_

m o

Define U,, V. accordingly.

In general, an operator is an object that maps some input signal u € U, to an output
signal y € ),. For example H : U, — ), might represent the input/output relationship
corresponding to a plant y; = Hui. An important property is the signal amplification

or gain attached to an operator.
A reasonable definition of such a gain is given by the induced operator norm

| ZH Zul|
|H]| == sup T Tal
ueVe, teT, |Zulz0 | Z2ull

which measures the maximum achievable input-output amplification of the input/output
operator H, where the size of the input and output is measured in the corresponding

signal norm.

An important property of an operator is causality:

Definition 2.2. An operator H is said to be causal if:

T HIv=ZHv, VteT, veS.

Causality ensures that the output of the operator H up to time ¢ € T cannot depend
on the values of the input after ¢ € T. Note that all physical systems are causal; a non-
causal operator cannot be physically implemented since the computation of the current

output relies on future input values.

The notation up to this point has purely been developed in the time domain. Since
in the literature LTI systems are usually analysed in the frequency domain and the
corresponding transfer function notation is expected to be more familiar to the reader,

we will continue to present examples in this language when appropriate.

In continuous time (T = R) a signal v € S in the time domain is related to a signal ¢ in

the frequency domain via the Laplace transform

o(s) = /000 e Sty (t)dt

and in discrete time (T = Z) a signal v € S in the time domain is related to a signal ©

in the frequency domain via the Z-transform
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Time domain and frequency domain LTT operators are then related via the transforms

of their impulse and frequency responses.

We now quote an important result relating time and frequency domain. Observe that
the Lo and ls norms measure the energy of a signal. Since we are concerned with the
stability analysis of dynamical systems one could argue that a good stability requirement
is that if a system is fed with an input signal of bounded energy, it responds with an
output signal of bounded energy. Hence we would require that input and output have a

finite || - ||2 norm.

Denote the transfer function matrix H the frequency domain representation of some

linear operator H. Then:

Theorem 2.3. Let H be a linear time invariant operator. If H : Ly — Lo then:

. o~ Hu
EGR) s = sup o(A(w) = [Hla= sup 1242, (2.1)
0<w<oo wels, uz0 ||ul|2
and if H : lo — Iy then:
~ ~ H
|E@D)w = sup o((s) = [Hla= sup 122 (2.2)
s€C:|s|=1 u€la, u#0 HUHQ

where 5(H) denotes the mazimum singular value' of H and D = {s € C | |s| < 1}.
Definition 2.4. We let Ho, denote the space of all functions that are analytic and
bounded:

e in the open right-half plane C* in continuous time, with norm (2.1).

e outside the unit disk s € C,|s| > 1 in discrete time, with norm (2.2).

To distinguish between the continuous and discrete cases we write Hoo = H(jR) and

Hoo(OD) for the two respective cases.

3 Closed loop system, well-posedness and stability

Given a plant
P:U — Ve (2.3)

satisfying
P0)=0 (2.4)

!The maximum singular value (H) of H is given by 5(H) = 1/ A(H*H) where X returns the largest

eigenvalue and H* is the conjugate transpose of H. The conjugate transpose X* of a matrix X = [Zab] €
CP*4 is defined as [Tpe] where Ty, = 1 — qi if Tpe = 7 + qi.
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and a controller
C:Ye—U (2.5)

satisfying
C0)=0 (2.6)

the closed loop system [P, C] under consideration in Figure 2.1 is defined via the following

set of system equations:

y1 = Pu (2.7)
Uy = U+ us (2.8)
Yo = Y1tY2 (2.9)
and
Uy = Oyg. (2.10)
Ug + ~ W N P n
U2 C ’ Y2 u‘+ Yo

FIGURE 2.1: Closed loop [P, C|

For notational convenience we often write W = U x Y and W, = U, X Y, where wg =

('LLO, yO)T
wy = (u1,y1)" € W, represents the plant’s input and output and ws = (ug,y2) € W,

€ W represents the input and output disturbances acting on the plant P,

represents the observed signal or observation.

Our main concern in control theory is to study the stability, robustness and performance
of such closed loop systems [P, C'|. However, this is only feasible if the closed loop system
satisfies essential properties that allow its analysis. In particular we require it to be well-

posed:
Definition 2.5. A closed loop system [P,C] given by equations (2.7)—(2.10) is said to

be well-posed if for all wy € W there exists a unique solution (w1, wz) € We X We.

We now verify this property for linear switched systems, which we are mainly concerned
with in this thesis.
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Definition 2.6. Let m,o,n > 1. Let wyg € map(T,R™), (wy,w2) € map(T,R°). A
system wgy — (w1, ws) is said to be a linear switched system if there exists a decomposition
T = Ujenlti, tiv1), ti < tiy1, to = 0 such that: for all i € N, there exists v € R", A; €
R™ " B, € R™™ C; € R°*™ D; € R°*™ such that the equations

:L‘(t + 1) = AZZL‘(t) + Biwo(t), l‘(tz) = V(wo,wl,wg)(ti) (2.11)
(wl,wg)(t) = sz(t) + Diwo(t) (2.12)

have a unique solution x(t), t € [t;,tit1) where V. : W X We X W, — R™ is bounded and

causal.

Lemma 2.7. Linear switched systems are well-posed.

Proof By induction on 7 € N, we assume w1, wo are uniquely defined up to time ¢;. Since
V is bounded and causal, z(¢;) € R™ is defined and for all ¢ € [t;,t;41], ¢ € N equations
(2.11),(2.12) describe a LTT system with some initial condition, which is known to be
well-posed. Hence for bounded input signals wy € W there exists a unique solution
(w1, w3) € We X W, up to time ;1. The base step @ = 0 holds trivially here, hence the

linear switched system is well-posed as required. O

However, note that for non-linear systems well-posedness is not implicit and we have
to take further measures to ensure it. Well-posedness is important since the potential
non-existence of solutions, which arises e.g. if a system has a finite escape time, would
require a rather different analysis over small windows of time where the system is ensured
to have a solution. Furthermore, the non-uniqueness of solutions would be problematic

since then the analysis would have to account for all (possibly infinitely many) of them.

Given a closed loop system [P, C] which is structured as in Figure 2.1, a good measure of
stability and performance is the amplification or the gain from the external disturbances

wp to the internal signals wy, ws.

The following notation and results follow from Georgiou and Smith (1990, 1997). Let
Hpo : W = We xWe : wo— (w1, ws)

denote the closed loop operator mapping the external disturbances wg € W to the unique
internal closed loop signals wy,ws € W,. Observe that the closed-loop operator Hp ¢
can be decomposed into the operator Ilp,/c (which is the map from the disturbances
wp € W to the plant signals w; € W,) and the operator Il //p (which is the map from
the disturbances wy € W to the controller signals wy € W,), i.e.

Up/jjc @ W —=We: wo— wi,
Heyp @ W= We: wo— we
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where

Hpe = (Ucy/p1lp//0)-
We now define the notion of gain stability via the gain of IIp//c in the following way:

Definition 2.8. Let the closed loop system [P,C|, defined by equations (2.7)—(2.10), be
well-posed. [P, C| is said to be gain stable if there exists a M > 0 such that:

woEW, wo#0 ”'wo”

Note that since for all wg € W we have:
Upscwo + ey pwo = wi + w2 = wo,

it follows that
Upyc+Ueyp = 1.

Hence gain stability of IIp,/c also ensures gain stability for IIo//p and Hpc. We will
therefore refer to Ilp/,c, Ilg//p and Hp ¢ as the closed loop operator.

Sometimes this measure of stability is too strong, i.e. in a general (non-linear) setting

the signal amplification from (ug,o)' to (ua,y2)" might not be a linear gain. For that

purpose we define the gain function v : Rt — R™ by

7(r) = sup{|[lLp;/cwol « [Jwoll <},

and hence measure the maximum size of the internal signal [Jwa|| = |[TIp//cwo|, given a

disturbance wy of size ||wg|| < r € R.

Definition 2.9. Let the closed loop system [P, C|, defined by equations (2.7)—(2.10), be
well-posed. [P, C| is said to be gain function stable if for all r > 0 there exist M, > 0
such that:

y(r) < M, < 0.

This definition is rather useful since especially universal adaptive control schemes do
not appear to be gain stable — however, they can be gain function stable. For example,
French (2008) has shown that continuously tuned adaptive systems are gain function
stable. We will later show that the universal variants of the algorithms considered in

this thesis will also show gain function stability.

Nominal stability, however, is not enough to ensure that a control algorithm works well
in practice. We must show that it remains stable even if there is a certain amount
of uncertainty in the plant, e.g. unmodeled dynamics. Stability in the presence of
disturbances and uncertainty leads to the notion of robustness which we will discuss

next.
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4 Uncertainty and Robustness

The analysis of systems is preferentially performed on simplified nominal models (derived
either empirically or analytically) rather than on complete mathematical descriptions of

the underlying physical system. This is due to the following facts:

1. Complete knowledge of a physical system is unrealistic:
In particular it is impossible to model the high frequency dynamics of physical

systems accurately. To see this consider the classical mass-spring-damper arrange-

F

Y

FIGURE 2.2: Mass spring damper arrangement with force F' and mass m

ment depicted in Figure 2.2, where an oscillating force F is acting. At low frequen-
cies the behaviour of the system is dominated by the ideal equations of motion we
all got to know in high school physics since sub-components of the arrangement
with higher natural frequencies have little influence. However, at higher frequen-
cies, for example close to the natural frequency of the material of the spring wire,
the dynamic behaviour will be dominated by the complex dynamical behaviour of
the spring wire itself. This makes the high frequency part incredibly difficult to
model. Taking this example even further, it would in theory require a modeling
effort on a sub-atomic level and beyond to obtain a completely accurate model of
the system. In practice this high frequency part can fortunately be neglected for

appropriately designed control systems.

2. Less detail promises simplicity:
Even if detailed knowledge of a physical system is available, usually only a small
subset of this information is required to design an appropriate controller. Hence
in practice we intentionally neglect (dynamical) components that are irrelevant to

the control objective in order to simplify analysis and design.

After obtaining an appropriate nominal model P for the physical plant P, we then, by
the above discussion, perform the stability analysis on P, i.e. we show that for some
controller the closed loop [P, C] is stable. However, we then need to show that C also
stabilises the true plant P, since this is the physical system we will have to control in
practice. For that purpose we introduce so-called uncertainty models that quantify the
mismatch between the physical plant F, and the model P. The overall goal of a later
robustness analysis is then to quantify how much uncertainty or mismatch the closed
loop system [P, C|] can tolerate without becoming unstable or the performance degrading

too far.
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We differentiate between structured and unstructured uncertainty models. For example

consider the plant given by the real rational transfer function

1

P, =
P sta

where apin < a < Gmge 1S an uncertain parameter. We can therefore say that P, lies

1
{ :ammgagamax}’
st+a

in the uncertainty set

which is structured since the possible uncertainty is dictated by the structure of SJFLG

Although the simplicity of structured uncertainty models has virtue, they are inherently
unable to express (dynamical) uncertainty outside of the defining structure. This is
unfortunate since by the above argument we should always account for a certain amount

of unstructured dynamics.

Consider the following example inspired by Doyle et al. (1990). Let

1
P — —TS
p1 € S — 1

where 0 < 7 < 0.01 is an uncertain time delay. A silo filled by a short conveyor belt could
have such a transfer function where the input is the flow into the silo and the output
is the volume of material inside the silo. Since the properties of finite dimensional LTI
systems are very well understood and the corresponding theory is much simpler than
the infinite dimensional counterpart, we would usually like to simplify the plant P, to
a finite dimensional P and work with P instead. One possibility is to simplify P, to

—TS

P = ST11 and hence neglect the small time delay e~7%. To describe the mismatch between

P,, and its approximation P we now employ a multiplicative uncertainty model in the

following way:

Let A,, be a stable transfer function. The multiplicative uncertainty set is then given
by
{1+ AP : ||Anl <7}

If we rearrange P, = (1 4+ A,,)P to

|

we can see that this uncertainty set describes a disk with centre 1, radius r in the

P
% — 1H = [|An] <7

complex plane. For the concrete example of P, = e 7* ﬁ and P = ﬁ we therefore
have P
' o 1H e -1 <

P
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Since e~ 7® describes the unit circle in the complex plane we have that for sufficiently
large 7, Py, € {(1 4+ Ap)P: ||An| <7}

Now consider the transfer function

1001

B“:(y—n@+1mm‘

The filling process of a silo could have such a transfer function where the input is the

flow into the silo and the output is the volume of material inside the silo; however the

contents are setting over time which reduces the volume. As before we would like to
1

simplify P, to P = = and neglect the dynamics due to the setting process. We now

describe the mismatch between P, and P with an additive uncertainty model:

Let A, be a stable transfer function. The additive uncertainty set is then given by

{P+ Ay ||Ag]] <1}

Since we can write P, as

o 1001 C(s+1000)—(s—=1) 1 1
P (s—1)(s+1000)  (s—1)(s+1000) s—1 s+ 1000’

we can see that for sufficiently large 7, P,, € {P + Ay, : [|Aq]l <7}

+;/'\ P +
+ +
A, Ag

F1GURrE 2.3: Additive and multiplicative uncertainty model

The combined additive and multiplicative uncertainty model is now depicted in Figure

2.3 where the corresponding uncertainty set is given by
{1+An)P+AL: ||Anl <71, ||Ad]] <72}, 71,72 > 0.

The full model of the silo incorporating both the delay and the drying dynamics is given

by
1001

(s — 1)(s + 1000)"

Py =e"
We conclude that for sufficiently large ri, 79 > 0:

P e {1+An)P+As: ||Anll <71, |Adl] <72}, 71,72 > 0.
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As discussed in the introduction, classical robust adaptive control (Ioannou and Sun
(1996)) as well as multiple model adaptive control in the sense of Morse et. all. is
confined to this class of additive and multiplicative uncertainties. However, there are
a number of important uncertainty scenarios which this uncertainty model is unable to
represent such as neglected high frequency dynamics, low frequency parameter errors
and especially neglected right half poles. They give rise to uncertainty models such
as inverse additive, inverse multiplicative and others. See Doyle et al. (1982) for a
comprehensive discussion of uncertainty scenarios and appropriate uncertainty models.
One can then construct a linear robustness theory around such uncertainty models and
impose constraints on the different As to ensure robust stability and performance of the
closed loop system, e.g. see Doyle et al. (1990) and the references therein. Albeit being
a viable strategy, employing a number of such uncertainty models and dealing with them

in the analysis turns out to be rather cumbersome.

Zames and El-Sakkary (1980) introduced a more generic measure of uncertainty, the
gap metric, which essentially fuses all the above uncertainty scenarios and represents
the global uncertainty by a single scalar. We will now show how the linear gap metric

is constructed.

Let X™* be the conjugate transpose to a matrix X. Let R denote the space of all real
rational? transfer matrix functions where we write RHoo = R N Hoo. Let P € R. A
normalised right coprime factorisation (NRCF), (N, M) for P satisfies:

P=NM"!
and
M*M + N*N =1 (Bezout identity)

where
M* M,N* N € RHso.

With (M;, N;) being a NRCF for P,,, i € {1,2}, hence P, = %, i € {1,2}, the linear

directed gap distance

§:RxR—RT
is given by
. AN AN Ny + AN
5(p1,p2) = i € RHoo, Py, = ~ 220 L
(P1,2) (AN,A}\I})ERHOO { AM ||, <AM) P2 M+ AM}

(2.13)

Note that in general

- —

d(p1,p2) # 0(p2,p1),

2We say that a transfer function is real rational if it can be written as a ratio of polynomials in s € C
with real coefficients.
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hence § is not a metric. We therefore let

- -

d(p1,p2) = max{o(p1, p2),d(p2,p1)}

then 0(p1,p2) = d(p2, p1) and J is a metric (see El-Sakkary (1985)). The linear gap metric
measures the size of the smallest coprime perturbation that is required to perturb P,
to Py, — as depicted in Figure 2.4. It can be argued (see Vinnicombe (2000)) that this
measure incorporates all the features captured by the standard unstructured uncertainty

models (additive/multiplicative/inverse multiplicative, etc.).

A further advantage of the gap metric is that “perturbations which are small in the gap
are precisely those which give small closed-loop errors” (see the introduction of Georgiou

and Smith (1997)). Hence the gap metric allows the comparison of stable and unstable

plants where for example (5(&, s%re) is small if € is small. In contrast, additive and

multiplicative uncertainty models do not allow such a comparison since in that case A,,

or A, would have to be unstable.

AM AN

Mt Ny = — MNM' —

F1GURE 2.4: Coprime perturbation model

It is important to note that by Georgiou (1988) the Ly directed linear gap in continuous

() (%)

By Cantoni and Glover (1998) the Iy directed linear gap in discrete time can also be

(%)~ (%)

Hence the calculation of the gap reduces to a standard H., optimisation problem and

time is equivalently given by:

-

o(p1, = inf
(p1,p2) ocitfm)

[e.e]

expressed as:

-

S(p1,p2) =  inf
(pl p2) QE?’llg(c’?D)

[e.e]

is therefore computationally tractable.

These key observations now allows, with the definition of ||Ilp,,c| or the (gain) effect

of disturbances on the internal signals, the construction of a major robustness result.

Let V be Lg or Iy and

1 )
= if ||II
bpc = e, /cll2 if || P/./CH >0
0 otherwise
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denote the robust stability margin of [P, C] and note that for ||TIp, /|| — oo, bpc — 0.

Theorem 2.10. Let P,,, P,,,C € R and assume the closed loop [Pp,,C], i = {1,2} to
be well-posed. Let the closed loop [Py, ,C] be gain stable. If

= 1
é(p1,p2) < =—— =bp, ©
Mg, /el "
then the closed loop system [Pp,,C] is gain stable. O

Proof The proof can be found in Georgiou and Smith (1990) which is based on Zames
and El-Sakkary (1980). O

The above result is the basis for the analysis performed in this thesis. In particular it
shows that robustness can be established purely by considering the nominal system: one
has to show that ||IIp, /|| is finite and robustness follows. Theorem 2.10 is only valid in
the linear domain and since we are dealing with switched linear systems in this thesis,
which are inherently non-linear, this result does not apply directly. We would also like

to perform analysis in other signal spaces than Lo, 5.

However, Theorem 2.10 can be generalised via the following construction:

Definition 2.11. The graph M, of P,,p € P is defined by:

/\/lp:{vEW ‘ El(ufl”,yf)TeWs,t, Pyl =y, }CW.

+
v = (u’f,y{’)

A signal w € W is said to be in the graph of P, if w € M,.

Note that the graph M, is the collection of bounded pairs (ufl, yf )T € W compatible
with the plant P,, p € P.

Define the possibly empty set of maps between the graphs of P,, and P,,,p1,p2 € P
Op1po :={P : M, = M,, | ® is causal, bijective, and ®(0) = 0}.

Now define the non-linear directed gap by

|75 (2= | Mmp, Ti|

5(p1,pa) = Infee0,, 4, SUPzeM,,\0, k>0 ( 7] ) if Op, po # 0

o0 if OP17P2 =0
As before, we symmetrise this relation to give the non-linear gap metric
0:PxP—]0,00]

with

d(p1,p2) = max{o(p1, p2),0(p2,p1)}
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Note that for 6(p1,p2) < 1, p1,p2 € P this definition can be shown to equal the definition

in equation (2.13) for linear systems in Lo, ls, e.g. see the Appendix of Georgiou and
Smith (1997).

Theorem 2.12. Let U = )Y =1,, 1 < r < oo. Let P,,Py, € mapUe,Ve), C €
map(Ve,Ue) and assume the closed loop [P,;,C], i = {1,2} to be well-posed. Let the
closed loop [P,,,C] be gain stable. If

- 1

6(p1,p2) < —=— =bp, c
Ip, /el !

then the closed loop system [Pp,,C] is gain stable and

—

14 6(p1,p2)
I, ol < g, /ol )
/! I g, el5 (i pe)

Proof The proof can be found in Georgiou and Smith (1997). O

5 Finite horizon analysis

Since we are concerned with a switched system we will have to deal with signals that are
defined only on a finite intervals of time between switches. This motivates the following

finite horizon treatment of signals and operators.

The restriction operator Z,; : & — R™?+1) has the purpose to extract only a finite

window of length ¢ > 0 of a signal, i.e. for o,t € T define
'@U,tv = (U(t - 0-)7 e 7U(t))7 vE map(T7Rh)'

Hence Z, v returns a signal that equals v € S over some finite interval of length o and

is undefined everywhere else.

Although we intend to present the analysis in this thesis in an ‘operators act on signals’
kind of way, and we will do so wherever possible, in some cases this is impractical and

we adopt the following alternative notation: For 0 < a <b, a,b € T let

[a,b] = {x€T|a<z<b}
[a,b) = {x€T|a<z<b}

noting that [a,a] := {a}.
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Let the size of the given intervals | - | be defined by

[[a,0]] = b—a+1
[[a,0)] = b—a.

For a signal v € S we then define the restriction of v over the interval I = [c, d] by

vlr = (v(c), -+ ,v(d))
where ¢ < d, ¢,d € T, and similarly for I = [c,d).

Note that for v € S, a < b we have vl = Zp_apv hence [[v| 4[| = [Zo—apv|. Also

[vlj0,6 ]| = | Zvl], however v|gy # Fpv because the domains differ.

6 Projections and disturbance estimation

The problem of disturbance estimation, i.e. to find the smallest disturbances that are
compatible with a plant P,, p € P and the observation ws, can be understood as a

(metric) projection onto a particular (linear) vector space (also see Figure 1.15).

Definition 2.13. Let ) # Y C X be finite dimensional normed vector spaces.
Iy : X — Y s said to be a projection if for all x € X

yze{neY ||[n—z|] <|m-—=z|, VmeY}.

Definition 2.14. A subset X of a normed vector space Y is said to be open if for all
x € X there exists € > 0 such that B(xz,€) C X where B(z,e) ={y €Y | ||z —y|| < €}
defines an open neighbourhood of radius € around x. A set X is said to be closed if the

complement X¢ =Y \ X is open.

Definition 2.15. A vector space X is said to be convexr if x1,z0 € X implies that
(1 —t)xy +tee C X forall0 <t <1.

Lemma 2.16. Suppose ) #Y C X, Y is closed and convexr and X is a linear subspace

of l., 1 <r < oo. Then there exists a unique projection lly : X — Y.

Proof A sufficient condition for uniqueness is that the norm is strictly convex (see Boyd
and Vandenberghe (2004), Chapter 8.1). The L,,[,, 1 < r < co norm can be shown to
have this property. O

Note that if IIy : X — Y is unique we can write

[Iyz = argmin ||n — z||.
ney
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FIGURE 2.5: Unit ball around (0,1) in L

As the restrictions in Lemma 2.16 suggest, such best approximations are not necessarily

unique. For example if
Y ={(},0) | A € R} ¢ R? X =R?

with the Lo, norm, then the point (0,1) is a distance of 1 away from all the points
{(N\,0) | —1 < X < 1} since the unit ball around (0, 1) forms a square — as depicted in

Figure 2.5. A similar argument holds for L; where the unit ball is a tilted square.
However, we can guarantee the existence of projections in any L,,[., 1 <7 < oo norm.
Lemma 2.17. Suppose ) #Y C X, Y is closed and convexr and X is a linear subspace
of Ly,l., 1 <r < oo. Then there exists a projection Iy : X — Y.

Proof See for example Boyd and Vandenberghe (2004), Chapter 8.1.1 as required. O

The disturbance estimation algorithms considered in this thesis will utilise the distance
||z — Iy z|| rather than ITy itself, hence the existence without uniqueness is sufficient for

our purposes.






Chapter 3

Disturbance estimation

In this Chapter we introduce the disturbance estimator as motivated in the introduction.
After discussing the basic estimator structure and some key examples of so-called finite
and infinite horizon estimators, we will state five abstract estimator assumptions on
which the subsequent analysis will rest. In addition to generality, the strong advantage
of this axiomatic approach is that we separate the problem of realising (efficient) distur-
bance estimation from the problem of robust stability analysis of the closed loop system.
Our study of disturbance estimation algorithms will not be exhaustive, however the fi-
nite and infinite horizon estimator will be shown to satisfy the estimator assumptions.
We will also illustrate how these algorithms can be implemented in practice, including

the relation to the Kalman filter.

1 The disturbance estimation principle

The purpose of the disturbance estimator is at each time step to assign a positive scalar

to each candidate plant, termed the residual, which has the interpretation of being a

measure of the size of the disturbance signals wg = (ug,yé’)T required to ‘explain’ the

)T

observation ws = (u2,y2)' in a manner consistent with the candidate plant P, — as

depicted in Figure 3.1.

uo Yo
U2 _ /L-’- U y1 _ /L-'_ Y2
U » P=0, " >
p D
| U Yo |
+ P +
i\ > D " >

FicURE 3.1: Disturbances and consistency with the observation

63
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Let P be a set, parametrising a collection of plant operators
Py:lUe — Vet =y, peP. (3.1)

For example, in the case of linear systems, we let P = Prrr where

Prrr =

A,B) i trollabl
(A,B,C, D) c Un>1Rn><n X Rnxm % ROXH X Roxm ( ? ) ?S controllable
- (A,C) is observable

(3.2)
and
Pp U — Ve, D= (Ap, Bp, Cp, Dp) € Prrr (3.3)
is defined by
ap(k + 1) = Apay(k) + Bpuy (k) (3.4)
Y1 (k) = Cpap(k) + Dpui (k) (3.5)
zp(—k) =0, ke N. (3.6)

Note that since x,(—k) = 0 for all k¥ € N it follows that v} (—k) = P,(u})(—k) = 0 for
all £ € N.

The residual operator is then of the form
X : W, — map(N,map(P,R")) : wg — [k — (p — mp[k])] (3.7)

where rp[k] is said to be the residual of a plant P,, p € P at time k € N,

In Section 2 we will impose considerable structure on the operator X, in particular
that it factorises in the form X = NFE, where the assumptions on N, E ensure that X
can be given the interpretation above. Note that the implementation of the EMMSAC
algorithm requires a realisation of the operator X = NE and it is only the analysis that
requires the factorisation into the operators N, £. We now introduce two key classes
of disturbance estimators. Both classes are based on measuring the sizes of minimal

consistent disturbances for which we introduce the following notation:

Consider disturbances (ul),yf)" that are consistent with a plant model P, and the ob-

servation (ug,y2) " )T such that, given the plant

)T = (uz,y2) "

over the interval [a,b], a <b, a,b € Z (also see Figure 3.1). Typically, the observations

; we are interested in disturbances (ug, yg

model P,, p € P and given an observation signal (u2, y2) ", we have (ub, yb
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(u2,y2)" are generated from a ‘true’ plant P,, (where the true plant P, is not neces-
sarily equal to the plant model P,) with ‘observed’ signal (ug,yg)T and non-observed

‘true’ disturbances (ug, o).

We therefore require that the equations

yi = By (3.8)
uf = uf +u (3.9)
Yo = Ui +ue (3.10)

are satisfied over the interval [a, b]:

Definition 3.1. Let a < b, a,b € Z. The set of weakly consistent disturbance signals
J\/’p[a’b} (w2) to a plant Py, p € P and the observation wy = (ug,ys2)" is defined by:

(B, yh) T € W, s.t.

Ny (ws) = Qv €Wliap) | Bo—apPp (uh —u2) = Bp-ap (W) —v2), ¢ € Wliap)-
v = (RBy—apUts Bo—ap¥p)

)T

Hence /\/'p[a’b} (w2) denotes the set of all disturbances (u |44, ¥0l[,p)) compatible with

observation (u2\[a7b],y2\[a7b])T and equations (3.8)—(3.10) for pe P .

For the remainder of this chapter we assume /\/}La’b} (w9) is closed and convex for all
a<beT, wy€ W,, noting that if P, is linear, then this holds.

The following classes of optimal disturbance estimators are from French and Trenn
(2005).

1.1 Estimator A: The infinite horizon estimator

Let k € N and wy € W,. To a plant model P,, p € P, let the residual operator X4 be
given by:

Xa(wz)(k)(p) = rit[k] = inf{r >0 | r = [|voll, vo € N*¥ (ws)}, (3.11)

where /\/'p[o’k] (w2) is the set of all disturbance signals consistent with the observation ws

as well as the plant P, over the interval [0, &].

Observe that a direct implementation of X4 is not feasible since the computational
complexity of the optimisation problem grows with & € N. However, in the [o setting
the residuals 7“;)4 [k], p € P can be determined from the residuals in a Kalman filter bank
(see Fisher-Jeffes (2003) and Section 4). This makes the computation of rﬁ[k] feasible
as the Kalman filter algorithm is recursive — the computational complexity is invariant

to k € N and only depends on the order of the corresponding plant model p € P.
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1.2 Estimator B: The finite horizon estimator

Let k, A € N and let wo € W,. To a plant model F,, p € P let the residual operator Xp
be given by:
Xp(w2)(K)(p) = r (k] = ||rflk = 1,3, K] (3.12)

where

ip[k] = inf{r > 0 | r = [|vo||,vo € N (wy)} (3.13)

and NZE’“‘*”“} (w2) is the set of all disturbance signals consistent with the observation ws
and the plant P, over the interval [k — A k] .

Note that the formulation of Xp is recursive by construction, therefore the computa-
tional complexity does not depend on k£ € N but only on the complexity of the involved
optimisation, i.e. the computation of iy,[k] for all k € N, which is of bounded complexity.
The norm in (3.12) and (3.13) can be taken to be [, 1 < r < oo, giving rise to differ-
ent optimisations. In Section 5 we will show that such standard (matrix) optimisation
problems can be solved by many possible implementations, i.e. in the linear case via

computing a suitable pseudo inverse in [y or via linear programming in [, .

2 Estimator structure

We have indicated that there will be a requirement that the residual operator X factorises
to X = NE. This factorisation is necessary since we will argue about the estimator’s
internal properties, such as consistency and structure of disturbance estimates, that

cannot be inferred from the residual only.

For k € N, p € P define the estimation operator
E : W, — map(N, map(P, map(N,R"))) (3.14)

by
wy — [k (p— dplk])] (3.15)

where d,[k] represents the time series of the disturbance estimates at time k£ € N corre-

sponding to a plant p € P denoted by
dy[k] : N — map(N,R")

and

where h € NU {oo} depends on the plant.
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Note that this estimate will not be recursive in general, i.e.
Fidll] # TidylK], 1> .

Since we are interested in the size of the disturbance estimates, we define the norm
operator
N : map(N, map(P, map(N,R"))) — map(N, map(P,RT)) (3.16)

by
(k= (p = dp[k])] = [k (p = ||dp[K]| = 7p[k])] (3.17)

where we recall that X is needed for the algorithm and the factorisation N F is only for

analytical purposes.

We will now revisit estimator A and B and investigate their internal structure by giving

an explicit formulation of the estimation operator F.

2.1 Estimator A: The infinite horizon estimator

To a plant model P,, p € P, k € N let estimator A with h = oo in equation (3.14) be
given by:

Ea(wa)(k)(p) = dy[k] € map(N,R") (3.18)
dik] = 5 argmin |jwo (3.19)

wo ENIEO‘H (w2)

if there exists a unique minimum, or any dﬁ [k] satisfying
dy' k] € {wo € NPM(wa)| [Jwoll = inf{r >0 | r = [|voll, voljo.x) € MM (wa)}  (3.20)

if the minimum is not unique, where we recall from Definition 3.1 that NZEO”"’} (w2) is the
set of all disturbance signals consistent with the observation w9 as well as the plant P,

over the interval [0, k].

Observe that d;‘ [k] is structured as in Figure 3.2, i.e. at every time instance ¢, 0 < i < k

the disturbance estimate d,[k](i) consists of a single element (ub(i),y5(i))".

To see that X4 does indeed factorise to N and E4 consider the following lemma:

Lemma 3.2. Let X4 be defined as in equation (3.11), E4 be defined as in equations
(3.18)—(3.20) and N be defined as in equations (3.16),(3.17). Then X4 = NE4.

Proof Observe that for all wy € W,,

NEA(w3)(k)(p) = lldp k][ = rp[k] = Xa(w2)(K)(p), Vk €N, Vp e P.
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FIGURE 3.2: Structure of d:}[k]

Hence X4 = NE,4 as required. d

2.2 Estimator B: The finite horizon estimator

The second example is motivated by the fact that the EMMSAC algorithm only requires
disturbance estimates that are consistent over suitable finite intervals of length j €
N, 0 < j < A, where A € N is fixed. This allows for the construction of a finite horizon

estimator as follows.

Let k,A\,i € N, 0 < ¢ < k. To a plant model P,, p € P let estimator B with h =
(m+o0)(A+1) in equation (3.14) be given by:

Ep(wy)(k)(p) = dJ[k] € map(N,R") (3.21)
df[k](i) = argmin  |Jwo]|, (3.22)

wQGNyiA‘i] (w2)
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if there exists a unique minimum, or any df [k](i) satisfying
dBIR](i) € NI (ws) | lwoll = imf{r > 0 | v = oo, vo € MM ()} (3.23)

if the minimum is not unique, where N'p[i_)"i] (ws) is the set of all disturbance signals

consistent with the observation wy and the plant P, over the interval [i — X, 1].

Observe that dB[k](i) = dB[i](i) for 0 < i < k and that dJ [k] is structured as in Figure
3.3, i.e. at every time instance i, 0 <4 < k the disturbance estimate dp[k](i) consists of

a ‘slice’ of disturbance estimates with length .

dy [F) (k) -~
d[K](k = 1) e
d;} (k] dBlk) (i) —————— - N |
i1
Bk {1 N e U
| AR o k=1 k
O I N\ 7 FE .

FIGURE 3.3: Structure of dJ[k]

To see that Xp does indeed factorise to N and Ep consider the following lemma:

Lemma 3.3. Let Xp be defined as in equations (3.12),(3.13), Ep be defined as in
equations (3.21)—(3.23) and N be defined as in equations (3.16),(3.17). Then Xp =
NEpg.

Proof Note that

la, o]l = |[llal, b1l

a,bel,, 1<r<oo.

T?
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Since df [k](i) = df [i](7) for 0 < i < k, we have for all wy € Wy that:

NEg(w)(k)(p) = | dp[K]|

= [ldp[K)(0), dp[K](1), -, dp[k — 1] (K), dp [K](K)

= |ldp[k = 1](0), dp[k = 1](1),- -+, dp[k = 1](k = 1), dp[K] (K|
[l [k = 1]1[, lldp K] (R)I]]

where

dy[K] (k) € {wo € N M (wo)| [|lwol| = inf{r > 0 | r = oo, vo € NjF M (wn)}.

Since
ip[k] = lldp[K] ()|l = inf{r = 0 | 7 = [|oo]l, vo € NG M (wn)},
we arrive with rp[k] = ||dp[k]| at
NEp(ws)(k)(p) = rplk] = ||rplk = 1] iy k]| = X (w2) () ().
Hence Xp = NEp as required. O

3 The estimator axioms

Instead of working with estimator A or B directly, we now state 5 abstract estima-
tor assumptions that any estimator is required to satisfy and on which the subsequent
analysis will rest. The purpose of such an axiomatic treatment, as discussed in the intro-
duction, is to separate the problem of conducting (robustness) analysis from the problem
of (efficient) disturbance estimation; any particular construction or implementation of

an estimator is allowed as long as it satisfies the following estimator assumptions.

Assumption 3.4. Let A € R be given.

1. (Causality): E is causal.

2. (Minimality): There exists a p > 0 such that for all k > 0, for p € P and for all
(wo, w1, w2) € W x We x W, satisfying equations (2.7)~(2.9) for P = P,

NE(ws)(k)(p) = [ E(w2) (k) (p)]| = ldp[K][| < pl|- Tewoll-
3. (Weak consistency): Let 0 < j < \. For all p € P there exist maps

®; : map(N,R") — R™UHD) x RoUFD),
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such that for all (wg, w1, we) € W x W, x W, satisfying equations (2.7)—(2.9) for
P =P, and for all k € N,

@B (w2) (k) (p) = B;dylk] € NFH) ()
and
@ E(w2)(k)(p)|| = [|@sdp[k]l| < (|2 kdp[K]|| = |2} E(w2) (k) (D)]-

4. (Monotonicity): For all p € P, for all k,l € N with 0 < k < [ and for all
(wo, w1, wa2) € W x We x W satisfying equations (2.7)—(2.9) for P = P,, there
holds

|1 E(w2) (k) (P) || = lldp[K]l| < [|Trdp[l]]| = | ZeE(w2) (1) (p)]]-

5. (Continuity): There exists a ¢ : Z — R, ||c|| < oo and a function x : P x P —
R* U {oo}, x(p,p) =0, Vp € P, such that for all py,p2 € P and wy € W,, there
holds

|[|®; E(wa) (k) (p1)[| — [|®5E(w2) (k) (p2) || = |[|@dyp, [K]]| — [|®dyp, [K]]l]
< X1, p2) | Thwe|, 0<j <A, keN

where ®; is as in Assumption 3 and

) c(k — )wsy(7 if i<k
(T pw) () = (k — )wa(i)
0 else
Although these assumptions may appear rather technical, they have very intuitive in-

terpretations:

1. A later implementation requires causality so we impose it from the start. Note

that N is always causal and therefore it suffices to assume that E is causal.

2. We denote an optimal infinite horizon disturbance estimator to a plant P,, an
estimator which returns the smallest disturbances consistent with the observation
wy and P, over the interval [0, k|, £ € N. However, to require optimality over the
interval [0, k], k € N per se is too strong in a sense that no other estimator than

the infinite horizon estimator will satisfy it.

Instead, we impose a milder assumption: we require that the disturbance estimate
|| Ep(w2)(k)(p)||, corresponding to an estimator constructed to a plant model P,
which equals the true plant P, is smaller (up to a constant x > 0) than the true
disturbances || Zwol|| at time k& € N. Note that the true disturbances are always

consistent with P and the observation wy since ws is constructed from them.
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3. The purpose of the map ®; : map(N,R?) — R™U+D x RU+D) s to extract the

relevant parts from the disturbance estimate to allow a test for weak consistency.

. This assumption is also inspired by the properties of the optimal infinite horizon

estimator. We require that a disturbance estimate dp[k] is minimal at time k € N
in a sense that no future disturbance estimate d,[l], [ > k truncated at k given by

Tdypll], can be smaller.

. The last assumption implies that if two plants are close to each other, their dis-

turbance estimates are also ‘close’, i.e. their difference is small in norm. x can be
thought of as a measure of distance between two plants, and in fact it will turn

out later that for the estimators considered here, x is related to the gap metric.

The weight ¢ describes the effect of we on the disturbance estimates. Since we
require ||c|| < oo this effect is required to be bounded. For example in [, 1 <r <
oo we can say that the effect of wy needs to diminish over time since [|c||, < oo
implies that ¢ is summable, hence ¢ needs to converge to zero. Therefore T ws
returns a weighted signal ws such that earlier wy(i), ¢ € N have smaller weights.

For [, we merely require that the weights c(i), ¢ € N are finite.

We will now show that these assumptions are met by the given estimator constructions.

Lemma 3.5. Estimator A fulfils assumptions 3.4(1-5).

Proof Let 1 <r < oo. Let A = 0.

1. Causality: The disturbance estimate at time k € N does not depend on future

information ws|(; ) and is therefore causal.

. Minimality: Observe that for any (wg, w1, ws2) € W x W, x W, satisfying equations

(2.7)-(2.9) for P = P, and for k € N we have Fwg € %/\/}Lo’k] (w9). Hence
1Ea(ws) (k) (p)|| = inf{r = 0| 7 = [lvoll,v0 € MM (w2)} < || Frwol| < ol

and hence p = 1.

3. Weak consistency: Let 0 < j < A\, p € P, wa € W.. Let ®; be defined by

Qv =X px, x €S, and therefore | ®;E4(w2)(k)(0)|| = |2 xEa(ws)(k)(p)|. We

then have

;B a(w2)(k)(p) = Bk Ealws) (k) (p) € By pNJM (wz) € NI (wy).

. Monotonicity: Let p € P, let k < I, k,l € N and suppose (wp, w1, wz) € W X

We x W, satisfy equations (2.7)—(2.9) for P = P,. Observe that 7, E(w2)(l)(p) €
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FNOH (0,). Since
1Ea(w2) (k) (p)]| = inf{r = 0| r = ||voll, vo € N3 (wn)}
it follows that [|[E4(w2)(k)(p)|| < || ZxEa(w2)(1)(p)|| as required.
5. Continuity: Let p1,p2 € P, k € N, wy € W5. Then

[1125ds, (k]| — 15y, [KIII] < |19y, (K] — @, (k]| < x(p1,p2) | Tl

J"p2

where

0 if p1 =po
x(p1,p2) = .
oo if not

for some T with ||c|| < oc. O

Lemma 3.6. Let 1 <r < oo and A € N. Estimator B fulfils Assumptions 3.4(1-5).

Proof Let £ € N.

1. Causality: Ep is invariant to w2|(k’oo).

2. Minimality: Observe that for any (wp, w1, ws) € W x W, x W, satisfying equations
(2.7)~(2.9) for P = P, and for k € N we have %) ;wg € J\/'p[l_)"l] (we), 0 <i < k.
Hence

|47 K@) = inf{r > 0 | r = [[uoll, vo € NF(w2)}
< ||Zxiwoll, 0 <i <k, keN.

This leads to

15 (w2)(K) ()| = |l [K)(0), dj [K](1), .., dg [k](K)|
< [ Zrowo, Zagwo, -, B gwol|
wo(—)\), ’wo(l—)\), Ty ’wo(k?—)\)
wo(l - )\), w0(2 — )\), LN wo(k? +1-— )\)
w0(0)7 w0(1)7 B ’wo(k)
= A+ 1Y o
= pflwoll
where the first inequality follows from the fact that ||||a]|, ||b]||| = ||(a,b)|| holds in

Iy, 1 <r <oo.
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3. Weak consistency: Let 0 < j < A, p € P. Let ®; be defined by <I>jd5[k] =

,%’j,xdf[k](k). Since
R dBk|(k) C #; 1, dP [k
75 P Js p

there holds
195 Ep(wa) (k) (p)|| = | 257dy KI(R)|| < (1213 (k]| = |25 1 B (w2) (k) (p)]-

Also

0;dB (k) = %2 \dP [k](k) € NJF7IH (w,).

. Monotonicity: Let p € P, let k <1, k,l € N and suppose (wg, w1, ws) € W x W, X

W, satisfy equations (2.7)—(2.9) for P = P,. Since Z,d5[l] = d5[k] it follows that

1B, (wa) (k) D) = | Tk B (w2) (1) (p)]

. Continuity: Note that in the finite horizon case a similar construction for x as in

the infinite horizon case is sufficient to satisfy Assumption 3.4(5). However, we
will later seek to establish an additional continuity property of y, hence give an

alternative construction.

Let 1 <j <\ keN,peP. From Assumption 3 let ®; be defined by

©;d5 (k] = B \d5 [k (k).
Define I . Walk—xr = Walk—rx by

MM 2,5 wwo = dB[K] (k).

We therefore have
(I)jde[k}] = %L)\H[pk_)"k}%)\’kwg.

For p1,p2 € P let

kE=X\.k [W
B |12, ATE | — (122, 3T
Xk(p1,p2) = sup
2EWel[k—x,k]> lz[|£0 Hx”

hence
1@;d5 (k]| = 1@l (K]l < [|2aTE M2y ws | — (|2 A1 MM 225 s |
< x(p1,p2) |2 kw2l
.. li=Mi]  1rli=Agl o
It is important to observe that for p € {pi,p2}, IIp = II; for all 7,5 >
o, i,7 € N since ./\/}EZ_A’Z} (we) = /\/'p[]_/\’]](wg) for all i, > o, i,j € N. However for
0 <7 < o the constraint set ./\/}EZ_)"Z} (w2) includes the additional constraint that
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the initial condition of P, is zero. Hence we can let
= ma .
x(p1,p2) nax Xk (P1,P2)

Also note that it follows trivially that x(p,p) =0, p € P.

Finally, let

] 1 for 0<i<A
c(i) =
0 else

and
clk —dwe(i) if i<k

0 else

(Trws)(i) = {

We then have

[ el = wa(k),walk = 1), wa(l = A
= [le(0)w2(k), c(Dwz(k = 1),- -, c(Mwa(k = A
= [ Trwel
hence
1@y, [kl = |1 @sdpy [KIIl] < x(p1, p2) [ Trw|
as required. O

In Chapter 6, it will be important to require that x : P x P — Rt U {co} is continuous

on certain subsets.

Conjecture 3.7. Let 1 < r < oo. Suppose Q C Prrr is compact. For p1,ps € Q, let

E—M\k k—\k
X(p1,p2) = max sup 280 e /P |

k20 seWenns llall£0 Il

Then x|q is continuous.

Continuity of x|q is expected to follow from the well-posedness of the underlying opti-
misation problem. However at present, this remains an open question.

Note that for r = 2, an alternative choice for y is given by

X(p17p2)21£38(”1_[1[0k1 oA
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since
@) K| = [|@5dp (K| < (|9;d)) (k] — @) [K]]|
= || R \JIEM 2, jws — By \TLETMR 25w, |
= ||\ (M T A 25 s |
< [l Ak — T M)y s |
< HH[k MR T A 22 s
< X(p1,p2)[|Zn gw2]|-

X is closely related to the gap metric. To see this note that since wf = Hgo’m}wg is the

unique minimizer in N'p[o’oo] (wg), we have with ﬂl[,o’oo] =1- H][DO’OO} that

ﬂ[pO,oo}w2 = wy — H[pO,oo}w2 = ’Lf)f € ./le

and ﬂ;,o’oo} has the interpretation of a (unique) projection onto the graph M, of the

plant p € P.

Now recall from Georgiou and Smith (1990) that for linear plants and V = Lo, l3:
3(p1,p2) = 5 — T = |11, 0o — 11, ).

Hence x is a version of the gap metric where only signals over finite intervals [k — A, k]

are considered.

The use of a finite horizon in estimator B is penalised with a
p=MN+DY">1 1<r<oo

in contrast to estimator A, where y = 1. However, the computational complexity of

estimator B is invariant to k£ and only depends on the horizon length A € N.

3.1 Continuity of y for Estimator A

We now give an alternative formulation of x in estimator A and show that y does not

allow a sensible interpretation as a distance since it may be unbounded.

Define
M%) pws = i [k] = Ea(ws)(p) (k).

Let
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hence T Y pwsy = Ry, rwo. Similarly to the construction for estimator B, with pi,ps € P

let
0,k] 5 0,k] <>
|11, 1100 T | — |12 40" T

Xk(p17p2) = sup
TEWel o, [12]1£0 [E4|
Since
(I)jd;l [k‘] ,@] de [k‘] ,@] kH[O k]%k kW2
we have that
@52t [K]]| = ldi (K| = [112; xRy gows | — |12k TISM g s ||

= ||]%J,kﬂg)l’k]Ykaw2H — H%MHLOQ”“]Y,CTkaH‘

IN

Xk (p1, p2) | Trw2 ||

For r = 00, we can now let ¢ = 1 since then ||c||loo = 1 < 00 and (Tyv2) (i) = (Trv2)(i) =
v(i), v € W, 0 <1i <k where

0,k
1105 | = 11201055 |
Xk(p1,p2) = sup )
2EWeljo 5, [0 [l]]

Hence we arrive with x(p1, p2) = supg>o xx(p1,p2) at
@50, (Kl = 1@, [K]Il| < x(p1,p2) | sl

which we expect to have a similar continuity property as in the finite horizon case.

However for 1 < r < oo, since ||c||, < 0, 1 < r < oo implies that ¢(k) — 0 as k — oo,

we have that c(k)~! — oo as k — oo. However y(p1,p2) is given by

1261057 T | = 11924105 T
Xk(p1,p2) = Sup
TEWe o, 1210 [E4|
< max{|| %, @10 T |, (|2 52 TT0H Ty}

and the given upper bound scales with k. Hence x; may indeed be unbounded.

To develop alternative formulations of Assumption 3.4(5) such that a continuity property

can be satisfied by estimator A, remains an open question.

We will now introduce the Kalman filter and show its relevance for disturbance estima-

tion.
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4 The Kalman filter as a disturbance estimator

The question that historically motivated the Kalman filter was as follows. Considering

Uo Yo
o L j
s O p A2 JenrER—O

FIGURE 3.4: A common filtering problem: reconstruct g from y

Figure 3.4, assume that the plant P is driven by a signal us, for example a force, that
is corrupted by an unknown input disturbance signal ug. Furthermore assume that
the plant output y; is corrupted by an unknown disturbance signal yg, resulting in the
signal y». The objective is now to reconstruct or predict the undisturbed output signal
y1 or an estimate g1 of it from w9 and us — hence to ‘filter’ away the effects of yg
and ug. Applications of major historic importance are the tracking of ballistic missiles
or airplanes with radar. In both cases, the basic dynamical properties of the tracked
objects, as well as the input (e.g. thrust), are known. However the (position) data from
radar or other positioning systems is often noisy due to reflections, weather conditions

etc.

An early approach to such a filtering problem was given by Wiener (1949) where his
Wiener filter is constructed such that the expected value of the squared output error e =
Y2 — 91 is minimised. Due to the computational complexity of the filter implementation
that grows with time, the Wiener filter was of limited use to on-line applications such

as tracking.

A decade later Kalman (1960) (in discrete time) and Kalman and Bucy (1961) (in
continuous time) gave an efficient, recursive solution to the problem, overcoming these

limitations, which is known as the famous Kalman (Bucy) filter algorithm.

Define

Prrr =

A,B) s controllabl
{(A,B,C)eun>1R”X”xR"meROX" (4,B) s controllable } (3.24)

A,C) is observable

—~

Let P, ,» be defined by

Ppar iUe — Ve ul — oy, p=(A,,B,,Cp) € Prrr
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where

zp(k +1) = Apzp(k) + Bpuzf(k)
yf(k:) = Cprp(k)
z,(0) = 2b, ke N.

This definition is similar to the one in equations (3.4)—(3.6), however with a possible

non-zero initial condition ajg.

The discrete-time Kalman filter equations, corresponding to Pp,rg and written in the

notational style of Willems (2004, 2006) for comparability, are as follows. Let:

o (w,0)" = (ug,yf)"

o (Uay)T = (Uz,yz)T

L4 (F, G7B7H) = (Ap7Bp7 _Bp7cp)

and T >0, ¥ : Nw— R"™™ & :[0,7] — R"™ be given by

ik +1/2) = 2(k) + S(k)HT[HS(K)H " + 1) Yy(k) — Hi (k)] (3.25)
S(k+1/2) = %(k) — S(k)H '[HE(K)H T + I)7PH(K) (3.26)
@(k+ 1) = Fi(k +1/2) + Bu(k) (3.27)
S(k+1)=F2(k+1/2)FT +GGT (3.28)
yi(k) = Hz(k) (3:29)

where the initial conditions are specified by ¥(0),#(0). The idea is that & is an estimate

of z,, and g (as in Figure 3.4) is given by equation (3.29).

Traditionally the Kalman filter is analysed in a stochastic setting where, analogously
to the Wiener filter, it can be shown to minimise the expected value of the squared
estimation error (e.g. see Kalman (1960); Maybeck (1979); Stengel (1986); Welch and
Bishop (2001)) — in fact the Kalman filter is known to asymptotically reduce to the
Wiener filter. However, the Kalman filter also allows an interpretation as a deterministic
least-squares filter (see Mortenson (1968); Hijab (1980); Fleming (1997); McEneaney
(1998)). In particular Swerling (1971), Sontag (1998) and Willems (2004) analyse the
continuous-time Kalman filter in the deterministic domain and are able to show explicitly
that the Kalman filtering problem is equivalent to the deterministic least-squares filtering
problem. Fisher-Jeffes (2003) utilised dynamic programming to deterministically show

the connection between the Kalman filter and the least-squares filter in discrete time.
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The intention of the following argument is to establish an alternative, simple and com-
plete proof showing the equivalence of discrete-time Kalman filtering and least-squares

filtering in the deterministic setting.

Define

2l (w,)

(b, yh, af) T € Ue x Ve x R™ s.t.
— { p e RMTHD o Ro(T+1)  gn ‘%b—%bpp,zg (uh = ug) = By—ap(yh — y2), ¢,
.
0= (B, Bl 23)

which is the set of initial conditions xg and disturbance signals ug , yg that are compatible

with a plant Pp,rg and the observation ug, ys over the interval [a,b], a <b.

Let

(@, 7%, = argmin (Bl ) + I3+ I6513), kN (3:30)

0,k
uf b b e ZI0M (ws)

be the smallest (in a least-squares sense) such disturbances and initial condition over
the interval [0, k], k € N.

Definition 3.8. A causal operator F: W, — Y. : (u2,y2) — 91 that constructs a signal
71 for the plant P = Pp@g and observation (uz,y2)’ € W, such that

J1(k) = By, zp(tf — u2)(k), k€N

where (ah, gh, 7h) are as in equation (3.30), is called a deterministic least-squares filter.

The least-squares filter therefore reconstructs the output signal 7;(k) at time k € N,
which forms the prediction of y;(k), by driving a plant P = Pp,xg with initial condi-
tion :178 = 5:8 and disturbances (&8,@5); that are the smallest least-squares solutions,

consistent with the observation (ug,y2)’ € W, and P, 27 up to time k € N.

As a notion of the output error between the observation ys and the estimation of the
Kalman filter, define the (scaled) residual r : N — R* by

T 1/2
T(T) = Z Hy2(k) - gl(k)|’[2HZ(k)HT+[]—l , T'>0.
k=0

Note that the inverse [HY(k)H " +I]~! exists since it can be shown that (k) is positive
semi-definite for all £ € N provided £(0) > 0 (see Lemma A.1 in the Appendix).
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We now claim the following:

Theorem 3.9. [Theorem A.6] Let p = (A,, By, Cp) € Prrr and suppose Cp, is full
row rank. Let (F,G,B,H) = (A, By, —Bp,Cy,). The Kalman filter equations (3.25)-
(3.29) with initial condition #(0) = 0 and $(0) = X(0)" > 0 describe a deterministic

least-squares filter:

r(T) = inf (Il 110y + llugll3 + ll5113)-

0,
(b8 aB)e 25" (wy)

Proof The proof of this result can be found in the Appendix. The overall strategy
of the argument is based on Willems (2006) and Willems (2004). The statements of
Lemma A.2, A4, A.5 are from Willems (2004). The proof of Theorem 3.9[Theorem A.6]
is based on Willems (2004). All other theorem/lemma statements and proofs are due to

the present author. O

For the purpose of this thesis it is of interest that the Kalman filter computes the
residual 7(7T") recursively, which in turn is related to the computation of the smallest
consistent disturbances, rather than the predictive abilities of the Kalman filter. That
is, the Kalman filter may be used to compute the size of the least-squares disturbance
estimates, i.e. the infinite horizon disturbance estimates in Iy (estimator A). Observe
that the infinite horizon disturbance estimates of estimator A are constructed such that
they are compatible with the observation wo and the plant model P, = Pp,rg for a zero
initial condition zf = 0. Hence, to be able to use the Kalman filter for disturbance
estimation, we have to ensure that the residual computation relates to the least-squares
filter initialised to zero. In Fisher-Jeffes (2003) this is assumed implicitly, but does not

appear to be proved. Here we state the required property as a theorem:

Theorem 3.10. [Theorem A.8] Let p = (A, By, Cp) € Prrr and suppose C, is full
row rank. Let (F,G,B,H) = (A, By, —Bp,C},). The Kalman filter equations (3.25)—
(3.29) with initial condition #(0) = 0 and $(0) = X(0)" = 0 describe a deterministic

least-squares filter initialised to zero:

r(T) = inf (g3 + llwb113)-
(w58 NG (w2)
Proof The proof of is given in the Appendix. O
Now since
(1) = inf (I3 + IwB13)

(W82 eNY T (wo)

= (inf{r >0|r=/vol2, vo€ NILO’T](wﬁ})Q = (T’p[T])27
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the Kalman filter can be utilised to compute X 4 in Section 1.1 in the Iy setting. Note

that the computation of the least-squares solution

(@) = argmin  (|lafll3 + 165 13)
(b )N (w2)

at time 7" € N is not recursive, however the residual 7(7") of the Kalman filter is deter-

mined recursively, hence the computation is feasible.

An important implication of Theorem 3.10 is that we do not have to further show that
the Kalman filter satisfies Assumptions 3.4 since by the equality to the least-squares filter
(estimator A in [3) these properties reflect back onto the Kalman filter; the Kalman filter
implicitly utilises optimal (least squares) disturbance estimates that are consistent with

the plant P, and the observation ws to construct the estimate y;.

5 Disturbance estimation by optimisation methods

With the Kalman filter we have already introduced the only known, realisable solution
to the infinite horizon disturbance estimation problem (estimator A), which only applies
in Lo, ly. Limiting the focus to infinite horizon estimation would therefore, by the fact
that practical implementations only exist in [, essentially reduce the application of the
algorithm to l5. Results in other [, signal spaces 1 < r < 0o, r # 2 would appear to be

of theoretical (non-implementable) interest only.

By considering finite horizon estimation (Estimator B) we can overcome this limitation.
The computation of the finite horizon disturbance estimates turns out to be much more
approachable since it is a standard optimisation problem with many possible implemen-

tations.

To see this, recall that we have to solve the optimisation problem
@b e inf{r >0 | 7= |, v e N;b—avbl(wQ)}, a<beN

for P,, p € P.

Since P, is assumed to be observable we can by Polderman and Willems (1997) find a
matrix of suitable dimension G, : R**" such that for all w} € /\/lz[ga’b] we have Gpw! = 0.
Then G, is called a kernel representation of P,. Observe that with wg = w’f + Rp—a,aW2

we have Gpwé’ = GpP&p—qqw2 = b.

Equivalently we can therefore formulate the constraint optimisation problem in ‘standard

form’ as follows:

minimise f(z) = ||z||, subject to the constraint G,z = b, (3.31)
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where x = w} and b = Gp%p—q qwo.

As discussed in Chapter 2 in terms of metric projections, such norm optimisation prob-
lems are unique in [,., 1 < r < oo however not necessarily in li, l,. However, by
convexity, every solution to an [., 1 < r < oo norm optimisation problem is a global
solution. For disturbance estimation this non-uniqueness does not matter since every
solution will satisfy Assumptions 3.4 and the later analysis will merely require the size

of the disturbance estimate, which is equal for all solutions.

In I5, a solution to the optimisation problem can directly be calculated via the pseudo

inverse (Moore-Penrose inverse) Gy of Gp. Let G = U YV be the singular value

decomposition of G, and define the pseudo inverse G; = VY WUT. Then z = G; b

provides a unique solution to the optimisation problem (e.g. see Boyd and Vandenberghe

(2004)) and we obtain W = Gf Gp&p-aaws where Gif G, is the (Euclidean) projection
[a,b]

onto Np"™ (wg).

In [; we can reformulate the optimisation problem in equation (3.31) to:
minimise y, subject to the constraints y >z, y > —x, G,x =0
where x = wg and b = Gp%p—q,qw2. Equivalently we can write:

minimise cTz, subject to the constraints Hz > 0, Jz =1

wherecT:[l O],z:[z],H:E _11] andJ:[O Gp}.

This can be solved by linear programming with algorithms such as the ellipsoid method,
the interior point method or the simplex algorithm (e.g. see Schrijver (1998)). The

disturbance estimate can then be computed from the minimising z by letting ﬁ;g =
[0 1] z.

In [, we can solve the same linear programming problem:
minimise (¢'z)(i), subject to the constraints Hz > 0, Jz =b

for each i € [a,b] (|b — a| times) and then take the maximum over the solutions.

In a general [, 1 < r < oo norm setting or in the non-linear domain, under appropriate
convexity assumptions, there also exist efficient algorithms to solve the optimisation
problem, e.g. by gradient descent, the Newton method or geometric programming (e.g.
see Boyd and Vandenberghe (2004)).

This poses a major advantage over observer based switching algorithms since, as men-

tioned in the introduction, the construction of observers for a wide class of non-linear
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systems is difficult and unclear. In contrast, convex optimisation problems are well

studied and many algorithms for various (non-linear) scenarios are readily available.



Chapter 4

Estimation-based Multiple Model
Switched Adaptive Control

In this Chapter we will develop the structure of the EMMSAC algorithm. First we will
introduce the notion of a controller design procedure K that assigns a corresponding
controller to every plant model and formalise the requirement that a controller Cf ;)
to a plant P, must be stabilising, i.e. the atomic closed loop [P, C’K(p)], Vp € P needs
to be gain stable. We then state two abstract controller assumptions on which the
subsequent analysis will rest. The advantage of such an axiomatic approach is that it
clears the analysis of any plant or controller structure (state space matrices, transfer
functions, etc.); in fact it is irrelevant how plant and controllers are represented (they
can be non-linear), as long as every atomic plant and controller pair fulfils the controller
assumptions. This will very much benefit a later generalisation to a wider class of

systems.

We will then define a switching signal ¢ based on the estimator introduced in the previous
chapter and define the switching controller C' at time k € N via the controller Cx(q))
corresponding to the plant P ).

1 Finite horizon behaviour of the atomic closed loop

A crucial design step for any multiple model type algorithm is to assign stabilising
controllers to all plant models. We will do this via the controller design procedure given
by a map

K:P->C

where analog to P we let C be a set parametrising a collection of controller operators
usg = Ceys (4.1)

85
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for ¢ € C. For example in the case of linear systems we let C = Cppy, where

Crrr =

{(AB’C’ D) € Uy BP0 x BP0 5 B RO (A,B) is controllable } |

(A,C) 1is observable

(4.2)
and
Ce: Ve = U : y§ = u§7 Cc= (Am B, Cm Dc) € Crrr (43)
is defined by
z(k+1) = Aczc(k) + Beys(k) (4.4)
uy (k) = Cexe(k) + Deys (k) (4.5)
z.(—k)=0, ke N. (4.6)

Note the clash of notation in equation (4.3) where C, denotes both the controller operator
and a state space matrix. This, however, is of no further consequence, since we will use
either the operator or the state space description and not both at the same time, where
the meaning is apparent from the context. Also note that since z.(—k) =0 for all k € N
it follows that u§(—k) = C.(y5)(—k) =0 for all k € N.

Let o(c), ¢ € C denote the minimum length of the interval that the signal (u$,yS)"

needs to be observed to uniquely determine the initial condition of C,, i.e.

ug = Ccyg, ﬁ’% = Oc:g§7
o(c):=minq k>0 : VI =0, (u$,y8) roww = (45,55 'posny (- (4.7)
ys = 5 = u§ = a5
Similarly let o(p), p € P denote the minimum length of the interval that the signal

(uff, y¥ )T needs to be observed to uniquely determine the initial condition of P, i.e.

y117 = Ppuf’ g]lu = Ppazljv
o(p)=min¢ k>0 : V>0, (uf,y7) lpien = (@, 97) pin, - (4.8)

D _ p_ p
Uy =uy =Y =Y

For minimal MIMO LTT systems it can be shown that o(p) = n, — 1 where n, is the
dimension of A, € R"*" (A, -,-,-) € Prrrand o(c) = n.—1 where n. is the dimension
of A, € R"*"e (A, - -,+) € Crry.

Instead of giving a particular controller design procedure K : P — C we will now state

two general assumptions imposed upon the atomic closed loop systems [P,,C.] and
[PP7 CK(p)] .
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Assumption 4.1. There exist functions
a,0:PxCxRxR—R

such that the following holds:

1. (Linear growth of [P,,C.]): Let p € P, ¢ € C and the closed loop system [Py, C]
be well—posed. Let ll,ll,ZQ,lg,l4 S N, h <l < l3 < l4 and I} = [ll,ZQ),IQ =
l2,13), I3 = [l3,14). Suppose wa, ws,w] € We, wh € W satisfy equations (3.8)-
(3.10),(4.1) on I; U Iy U I3. Suppose that either

wg‘ll = 07 w§|12U13 = w2|[2U13

or
w§|11U12UI3 = w2|[1UIQUI3
where
|I| = Iy — I3 > max{o(p),o(c)}. (4.9)
Then, in both cases:
w2l || < elp, e, | |, T3] [lwalr | + B(p, ¢, [ 12|, | I3]) [ w | nunu)- (4.10)

2. (Stability of [Py, Crp)]): Let p € P and x € N. Then
a(p, K(p),a,z) — 0 as a — o0 (4.11)

and o 18 monotonic in a.

Note that the monotonicity requirement in the second assumption follows without loss
of generality since any function & satisfying equation (4.11) can be dominated point-wise
by a monotonic function « satisfying equation (4.11). In the special case of LTI systems
we provide an explicit construction of a monotonic « satisfying equation (4.11) from a

non-monotonic & satisfying equation (4.11).

Assumptions 4.1 now allow the following interpretation: We expect to be able to bound
future signals ||wz|,|| by some (linear) function of the system’s initial conditions, given
by |lwa|r, ||, and the system’s input wh|r,urur, for any well-posed closed loop system
[Py, C¢]. This is reflected by equation (4.10). However |lwa|r, || only allows an interpre-
tation as an initial condition if the interval Iy is sufficiently long. This is reflected by
equations (4.7)—(4.9). We will show below that the given assumptions hold for (stabil-
ising) controller design procedures K : Prrr — Crry.

Note that the choice w§|;, = 0 corresponds to an initialisation of the controller to zero

at time [y and the choice w§|;, = wa|r, corresponds to continued closed loop operation of
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the same controller. The need for such a construction will become apparent in Chapter
5 in the context of ‘virtual’ switching times where we do not actually switch from one
controller to another but remain with the same controller, hence execute a virtual switch

to the same controller.
We will now show that the given assumptions can be met by minimal MIMO LTT systems:

Definition 4.2. K : P — C is said to be a stabilising design if [Py, C’K(p)] is gain stable
for allp € P.

Recall that

Prrr =

{(A,B,C, D) € Ups R™™ x R™X™ x ROX™  ROX™

(A, B) is controllable
(A,C) is observable ’
(3.2)

Crrr ==

{(A,B,C, D) € Ups R™™ x R™X0 x R™X7 x R™MX0

(A,B) is controllable
(A,C) is observable

(4.2)
and
Prrr =
(A, B,C) € Uys R™™ x R¥M 5 ROXN (A, B) is controllable  (3.24)
T "= (A,C) is observable
Also define
Crrr =

{(A,B,C) € Ups R x RM%O x R™MX7

(A, B) is controllable (4.12)
(A,C) is observable S

Lemma 4.3. Let Prrr,Crrr be defined by equations (3.2),(4.2) and Prry,Crrr be de-
fined by equations (3.24),(4.12). Let K : P — C where (P,C) € {(Prr1,Crrr), (Prr1,Crrr)}-
Then Assumption 4.1(1) holds. Let K : P — C be a stabilising design. Then 4.1(2)
holds.

Proof Since
(P,C) € {(Prr1,Crr1), Prr1,Crrr)},
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we can let
p= (Ap,Bp,Cp,Dp) € Prrr, m,o,n, =n € N

and
c= (A, B.,C.,D.) € Corr, myo,n.=n €N

where either D), or D, is zero.

Let the observability matrix O, € R?"»*" be given by
Cp
o-| |
C,Apr
the controllability matrix K, € R"*™" be given by

np—1 np—2
K,=|4p7'B, Ay7°B, - A,B, B

and the input-output matrix 7;, € R"»*"" be given by

[ D, 0 0 0 0 |
C,B, D, 0 0 0
Tp _ CpApo C’po 0 0 0
CpALB, CpA,By D, 0 0
_CPAZP_2BP CPAZP_SBP CpApo Cpo Dp |

Let & € N. With the controllability matrix K, and by equations (3.4) we can write

uf(k—np+1)
zp(k+1) = A xp(k —np+ 1) + K, - : (4.13)

uy (k)
With the observability matrix O, and equations (3.4),(3.5) we can also write

Wk +1) ul (k+1)
: =Opzp(k+1)+ T, :
yf(k: + np) uf(k + np)

Note that since P, is observable, O, € R°"»*" is rank n,. Let O; denote the Moore-

Penrose pseudoinverse of O,,. Since all columns of O, are linearly independent, it follows
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that O; Op = I and hence we can rearrange to give

yzlg(k —np + 1) Uf(k —np+ 1)
: - T, : . (4.14)

zp(k —np+1) = OFf :
yi (k) uy (k)

p

We can now see that in order to reconstruct the state x, we have to observe the signals
(uf,y7) for n, — 1 time steps. Hence we have that o(p) = n, — 1. Analogously we have
that o(c) = n. — 1.

Substituting equation (4.14) in equation (4.13) leads to

—np—l—l) uf (k —np+1)
zp(k+1) = npOJr -1, :
uy (k)
uf (k —np+1)
+K, :
uy (k)
Yy (k—np+1) uf (k —np+1)
= 40 : + (Kp — Ay OFTy) :
yi (k) uf (k)
and therefore
|2 (k + D] < Yp [} |—np 10| < Yo |w2lpony 11| + Yo [ whlp—nyr1m]  (4.15)

where
v, = |[ayrop K, - ayoim)|-

Analogously for ¢ € C we have

|ze(k + 1)] < Yo || whlp—not10]| (4.16)

where

Y, =||[aror K- aport.]

For the closed loop [P,, C.] we have by equations (3.4),(4.4) that

zp(k +1) uﬁ”(k)] | (417)

z(k+1)

A, 0
0 A

zp (k)
x.(k)

B, 0
0 B.

y2(k)
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With equations (3.9),(3.10),

[u2(k) o ¢ acp(k:)] [0 DC] [ul(k)]
Y (k) Cp 0| |xe(k) Dy 0] (k)]
we have
[uff(k:)] _ [ua’(k) Jo xpuf)]_[o Dc] [uluc)]
y2(k) Yo (k) Cp 0| |zc(k) Dy, 0] |y2(k)
. 0 D.| |uf(k .
Furthermore by adding [Dp O] [yg(k:] we obtain
[I DC] [uff(k)] _ [ug(k) e xp(k)]' (418)
D, I | |ya(k) yh (k) Cp 0] |z.(k)

Observe that since by assumption either D), or D, is zero we have

[ I DC] - [ I —Dc]
— . (4.19)
D, I -D, I,

Multiplying inequality (4.18) with equation (4.19) from the left yields:

[ug’(k)] _ [ I —Dc] [ug(k:)] _[-pc,  c
ya(k) =D, I | |y(k)

C, —D,C.

?"EZ ;] . (4.20)



92 Chapter 4 Estimation-based Multiple Model Switched Adaptive Control

Substitution into equation (4.17) gives us

rp(k+1)1 (A 0| [zp(k) N B, 0
ze(k+1)| [0 A |we(k)] 0 B,
x(k+1)
I -p) [wk)] [-DCy  Co ] [2p(k)
D, I | |y(k) Cp  —DyCe |xe(k)
_ |4 0 xp(k)-+ By —ByD.| |ug(k)
|0 A |z(k)|  |-BD, B yh (k)
—-B,D.C, B,C. xp(k)
B.C,  —B.D,C.| |zc(k)
_ |4,+B,D.C,  —B,C. (k)
B ~B.C, Ac+ B.DyCo| |xe(k)
~ ——
A z(k)
_ D
| B Bebe “g(k). (4.21)
—B.D,  B. | |yh(k)
——
B w (k)
From equation (4.20) we have
wl)] _[—dw)] e
y2(k) | y2(k) 0
[ -1 D) [upk)]  [pCy  —Ce ] [aplk) . ub (k)
=Dy I |k C, —D,C.| |z(k) 0
_ [-pc,  c. ] [ak) 0 D] [urk)
| ¢, D,C.| |z(k) -D, I |4f(k)
- C D

and therefore

z(k+1) = Az(k)+ Buwh(k)
wo(k) = Cua(k)+ Dub(k),
where with p =n, +n., A € R°*? B € Rpx(m—l-o)’ o= R(m+o)xp7 D e R(m+o)x(m+o)

Let ll,ll,ZQ,lg,l4 S N, ll < 12 < l3 <lyand I; = [ll,ZQ),IQ = [lQ,lg),Ig = [13,l4). We

now initialise the controller either with z.(l2) = 0 or z.(l2) # 0.

For w§|;, = wa|;, we have with

|I1| > max{o(p),o(c)} = max{n, — 1,n, — 1}
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that z,(l2) and z.(l2) are uniquely defined and therefore by equations (4.15),(4.16)

[l (l2)l

[2p(l2), ze(l2)]]
Yy llwaln | + Yy [Jwln | + Ye l[walr |
(Yp + Ye) [Jwaln, | + Y3 [[wGln Il

IN

IN

Analogously for w§|;, = 0 there follows from equation (4.16) that x.(l2) = 0 hence

So in either case

We also have with

K, =

that

[zl = [lap(le), zc(l2)]]
< Yy llwaln | + Yy wilnll -
[z(l2)|] < (Yp + Ye) lwalr, || + Yy [Jw|n || - (4.22)
A41B A2B ... AB B|,a>0
[ C
CA
] ,a>0
_CAa_l
[ D 0 0 0 0 |
CB 0 0 0
CAB CB 0 0 0
,a>0
CA2B CAB D 0 0
_C’A“_QB CA*3B ... CAB CB D |
w (l2)
2(ls) = Alz(ly) + K, : ,
’u)g(lg—l)
wa(l3) wg (13)

= O|13\x(l3) + Ty
’LU2(l4 — 1) wg(l4 — 1)
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Substitution leads to

wa(l3) w (l)
: = O (l3) + iy :
wa(ly — 1) | wp (I3 — 1)
) wg (1)
= Oy A2la(l) + Oy K T :
wh(ly — 1)

Taking norms and substituting equation (4.22) leads to

IA

lwalzs | < 1101, A2 |2() | + (101 K pog | + 1T 1) 8 13015
1055 A2 ([ (Y + Yo) [wal 1, |

+([10) 5 AP, + 1101 K |+ 1Ty DN 100 -

A

We therefore arrive at
Jwa| ]l < &(p, ¢, | L], | I) lwa|n | + B, ¢, | L2|, | 13]) |wg| nunus |l
where

a(p,c.| L)1) = 1|05 ATI|(Y, + Y.)
Bp,c, 1Ll 1Is) = (|0, AP, + 1105, K ny |l + 1T 11

Hence Assumption 4.1(1) holds.

If K is stabilising design, then [P,, Ck ()], p € P is stable. This implies that with A
defined as in equation (4.21):

Ap —BpCr(p)
—Brp)Cp  Ak(p) + Br(p)DpCk )

A=

it follows that A is a stable matrix and
|A|| — 0 for a — oo.

Therefore
a(p, K(p), [12], [13]) — 0 as |Iz| — oo.

Although & does converge for large |I3| it is not monotonic in |I5| in general.
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Let t,z € N. Since &(p, K(p),t,z) — 0 for t — oo, for all N > 0 there exist times t;
such that &(p, K(p),s,z) < 1/N for all s > t;. Therefore for all ¢ € [t;_1,t;] we let

6(p K(p):t:2) < alp. K(p) to) = | max a(p, K (p).s.2),

hence Assumption 4.1(2) holds as required. O

We will now utilise the established definition of a (stabilising) design procedure K to

define the switching controller C.

2 The switching algorithm

We noted in the introduction that for infinite horizon disturbance estimation the size of
the disturbance estimate or the residual (given by X 4(w2)(k)(p)) can be thought of as
the distance between the observation wy € W, and the plant P,, p € P. Alternatively
Xa(w2)(k)(p) can be thought of as a measure of how likely the observation wy € W, is
explained by the plant P,.

The intuitive choice for the switching strategy is therefore to define the switching signal
q¢(k), k € N as a pointer to the plant p € P which is closest to the observation Zws
in the sense that X 4(w2)(k)(p) is minimal at time & € N. Therefore g¢(k) points to
the plant whose corresponding estimator is able to explain the observation Z,ws with
minimum disturbance. Note that the size of the finite horizon disturbance estimate
Xp(w2)(k)(p) = NEp(w2)(k)(p) from Chapter 3, Section 2.2 does not directly represent
the distance between the observation and the plant, since the structure of Eg(w2)(k)(p)
is different. However, Xp(w2)(k)(p) preserves a notion of distance that appears to be

sufficient for the argument.

We will now formally introduce the estimation-based switching algorithm — as depicted
in Figure 4.1 — where D is the ‘delay’ operator, GG is the ‘plant-generating operator’
and M is the minimisation operator which has the purpose to return the plant model

which corresponding residual is minimal.

Initially consider the ‘free’ causal switching operator
St : We — map(N,P*) : wa — qf (4.23)

via the combination of the estimation operator E, the norm operator IV, the minimisa-

tion operator M and the plant-generating operator G with

S = M(NE,G) = M(X,G), (4.24)
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FIGURE 4.1: Magnified switching strategy S

where N, E, X, X = NFE have been defined in the previous section and G, M, D are
defined below.

The plant-generating operator G is intended to specify the (candidate) plant set available
to the algorithm at time k& € N and is defined as follows.

Let P* be the powerset of P. Let ) # P; € P*, i € N.

Definition 4.4. A map Q : W, — map(N, P*) is said to be a plant-generating operator

if it is causal and satisfies
Q(w2)(0) = P1, Q(w2)(k) = Pyx), k€N
for some i : N — N with i(0) = 1. Q is said to be finite if P; is a finite set for all i € N,

constant if P; = Pj, Vi,j € N and compact if P; is compact for all i € N.

Now let
G : W, — map(N, P*) (4.25)

be a plant-generating operator, where we also define

G ._
P = ngWE kLEJN G(we)(k) C P.

PC is the union of all plant model sets possibly represented by G. To improve readability
we write G(k) := G(w2)(k), k € N.
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We often let G be constant however the algorithm then becomes conservative — as
discussed in the introduction and later in Chapter 6. This motivates the time-varying,

dynamic nature of G, as used in dynamic EMMSAC.

Definition 4.5. An EMMSAC algorithm with an underlying plant-generating operator
G that is:

o time-varying, i.e. there existi,j € N such that G(i) # G(j), is said to be dynamic.
e constant, i.e. G(i) = G(j) for alli,j € N, is said to be static.
On the first pass of reading this document it is recommended to the reader to only

consider the static EMMSAC case. A deeper discussion of GG is conducted in the next

section.

Since we intend to define the free switching signal ¢, such that it points to the plant in the
plant model set whose corresponding residual is minimal, we introduce the minimising

operator M as follows. Let

M : (map(N, map(P,R")), map(N, P*)) — map(N, P*) (4.26)
and
[k = (0= rplk]) b = GUR)] = [k qg(h)] (4.27)
where
q¢(k) := argminr,[k], Vk € N. (4.28)
peG(k)

If there are multiple minimising residuals, an arbitrary ordering on G(k) is imposed
a priori, i.e. G(k) = {p1,p2,--- ,pn}, and argming,c ;(x) rplk] is defined to return the

parameter p; € G(k) with the smallest index ¢ such that r,,[k] is minimal.

Equation (4.28) also includes the implicit assumption that a minimiser exists. In the
scenario considered in this thesis, whereby G is finite or G is compact and p — rp[k] is

continuous, this holds.

The undelayed, ‘free’ switching signal ¢;(k) at time k € N therefore is a direct function
of the size of the residuals rp[k], p € G(k). Due to disturbances acting on the system,
i.e. wy # 0, the switching signal ¢; might not settle but switch rapidly between members
of G. Since we would like to utilise the switching signal for controller selection this is

undesirable as it can lead to instability.

For example consider a switched linear system given by z,(k + 1) = Ayz(k) + Bpu(k)
where (Ap, Bp) € {(Ap,, Bp,), (Apy, Bpy) } and (Ap,, By, -, +), (Apy s By, -, ) € Prrr are of
compatible dimension. It can be shown that there exist stable A, , A, and a sufficiently
fast periodic switching sequence between (A, , By, ) and (Ap,, Bp,) such that the system
is unstable (see Liberzon (2003)).
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The purpose of D is now to delay the free switching signal gy long enough to prevent
instability effects caused by rapid switching and to ensure the overall convergence of the
closed loop signals. For that purpose we will associate a minimum delay A(p) to every
plant P,, p € P which must elapse before another switch is permitted. We will encode

this information into the ‘transition delay’ function
A:P —N. (4.29)
This leads to the following definition of the delay operator D. Define
D : map(N,P) — map(N, P) (4.30)

by
[k qr(k)] — [k — q(k)] (4.31)

where (k) is defined recursively:

_ )k i k= ks(k) = Ag(ks(K)))
q(k) == { d(ka(k) else (4.32)
and where ks : N — N is given by
ks(k) :=max{i e N | 0<i<k, qi) #q(i —1)}. (4.33)

Note that ks(k) returns the last time up to time k£ € N where the algorithm switches

from one plant to another. Also note that D is causal.

We are now in the position to define the global switching operator

S:W. — map(N,P*) :wy —q
S = DM(NE,G)=DM(X,G)

as depicted in Figure 4.1 where we note that S = DSy and Sy is the free switching
operator as given in equations (4.23),(4.24).

Let a controller design procedure K : P — C be given. The switching controller C' is
then defined via the switching signal ¢ and the controller design procedure K in the
following way: At every time instance k € N the atomic controller, defined by C (41,
is put into closed loop — as depicted in Figure 4.2. However, since we allow the atomic
controllers to have memory, we also have to define an initial condition at the switching
time. We therefore let

C:Ye U :ys— us (4.34)
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FIGURE 4.2: Magnified switching controller C

for all k£ € N be defined by

uz(k) = Cr(qe)) (W2 — Ty (k)—192) (K), (4.35)

where we recall that ks(k) is the last timei € N, i < ks.t. ¢(i) # q(i—1). Equation (4.35)
ensures a zero initial condition for the atomic controller C(4(x)) when it is switched into
closed loop. Note that if E satisfies Assumption 3.4(1) (causality) and G is causal, then

S is causal.

We therefore arrive at Figure 4.3 where all involved sub systems have been defined.

3 The plant-generating operator G

To shed some light on the role of the plant-generating operator G and to emphasise the
ample design freedom we enjoy in EMMSAC, we will now briefly discuss a selection of
algorithms for the construction of G and note that some of these ideas will be followed

up in Chapter 6.

e Static EMMSAC:
The standard approach in multiple model control, e.g. in Morse (1996, 1997), is to
choose a constant plant model set and a corresponding controller set from which

the algorithm may select controllers. Although the simplicity of this approach has
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FIGURE 4.3: EMMSAC in detail

its virtue, the resulting algorithm is conservative as shown in Chapter 6, Theorem
6.6.

Dynamic EMMSAC - expansion of G:

The complication that the plant-generating operator G is allowed to be time-
varying may initially appear unnecessarily complex to the reader. However, it is
the device that brings unheard of freedom to the design process and by which
we can make the algorithm universal. The mechanism which we will exploit in
Theorem 6.6 — to show that the algorithm is conservative — is that the algorithm
can be confused by appropriate choices of disturbances (of arbitrarily small size) to
switch to the atomic controller in the controller set with the highest gain. Note that
we have to ensure that at least one of the plant models in a constant plant model
set G is close to the true plant P = P, , so that its corresponding controller can
have a stabilising effect on P. An increasingly large uncertainty in the plant will
therefore necessarily lead to an increasingly large constant plant model set G and
thus to an increasingly large corresponding controller set (typically incorporating
controllers with increasingly high gains). This is enough to show that for constant
G, the performance of the algorithm degrades with an increasingly large level of

uncertainty in the true plant P — the algorithm is conservative.

A remedy to this problem is to define a time-varying plant-generating operator
G that specifies a plant model set that is initially small but expanded over time,
i.e. the algorithm is initially only allowed to choose from a small number of plant

models. This essentially eliminates the possibility that the algorithm switches to
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the worst case controller right away. We will then define a performance-orientated
rule on how to expand G. In particular, GG is expanded as long as performance is
degrading, and expansion of G is stopped if the performance is converging. The
intuitive idea behind such a choice of G is that the plant model set is expanded
until a controller that stabilises the true plant P = P, enters G. The hope is that
if performance converges then G converges. And indeed, we will show in Chapter
6 that dynamic expansion of G is the device by which the algorithm achieves gain

function bounds invariant to the level of uncertainty — that it is universal.

e Dynamic EMMSAC - refinement of G:
Although a well chosen constant, coarse plant model set G may be sufficient to
provide a stabilising controller for the true plant P = P, with a bounded uncer-
tainty, we expect the performance to diminish for an increasing distance between
the true plant P and the closest plant model P,, p € G, since the corresponding
controller C'(,) may only be mildly stabilising for P.

By choosing a constant, dense plant model set G we expect the overall performance
to be better, however this approach requires the implementation of a larger number
of estimators where most of them will never produce a residual that is minimal;
hence such a construction is usually conservative from a implementational point
of view (see Chapter 6, Section 8). Also an overly dense plant model set G may
lead to ‘oversampling’ effects, analogously to the ‘over-fitting’ of functions with too
many control points. Although such effect may increase the actual closed loop gain,
they do not do so unboundedly (see Chapter 5, Theorem 5.14 which establishes

an upper bound on the closed loop gain; also if G is a compact continuum.)

One possibility to address these problems is to have a time-varying G, initially
containing only few plant models which form a coarse grid over the uncertainty set
of P (ensuring stability) and then to refine G over time. A brute force method of
doing so would be to introduce more and more plant models distributed uniformly

over the uncertainty set of P.

Usually there is probabilistic information available about the uncertainty problem
in the sense that some uncertainties are more likely than others. For example if
a manufacturing process is producing items of a mass m, we usually expect the
uncertainty to form, for example, a Gaussian probability distribution around m,
and therefore it is more likely that an item has a mass close to m. We could then
utilise this information to refine the plant model set and add plant models in an
increasingly large neighbourhood around m in order to increase the expected value

of the average performance.

e Dynamic EMMSAC - advanced algorithms:
The above methods to introduce new plant models to GG are rather basic. More
complex dynamic refinement schemes could include a local search for the smallest

disturbance estimate — as depicted in Figure 4.4. For example, assume that
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G consists initially of a coarse grid of plant models (Figure 4.4 (A)) which is
sufficiently dense for the EMMSAC algorithm to be stabilising. We could then
interpolate the position of a potentially better fitting plant model from the n
smallest disturbance estimates and the corresponding plant models and implement
its corresponding estimator on-line (Figure 4.4 (B)). This process can then be
repeated (Figure 4.4 (C)) until, for example, the performance is satisfactory or the
algorithm is only introducing plant models that are very close to each other and

we can expect to have reached a minimum.

A B C

G(k)

FIGURE 4.4: Local search via interpolation

An alternative approach would be to compute a local gradient from the n smallest
disturbance estimates and then consecutively add plant models along this gradient
to G (gradient descent). This approach has the advantage that it can project
outside the initial plant model set hence is also potentially suitable to orchestrate

the enlargement of G.

Essentially any performance-driven search scheme which provides a stabilising
G(k) for all k € N can be incorporated in EMMSAC.

Such schemes are very interesting in this context since the problem of local minima
is not an issue here: the search is only conducted locally where the global algorithm
can switch to any plant model in the plant model set G. Hence the desired multiple
model control properties, such as simultaneous stabilisation and control of non-

convex sets, are preserved.

A scheme that is loosely related to the dynamic refinement of G is the one of Narendra
et al. (1995) and Narendra and Balakrishnan (1997), where the authors utilise multiple
model switched adaptive control as the global framework, but implement some atomic
controllers as classical adaptive controllers to improve performance. The underlying idea
is similar: the improvement of the expected performance by supplying an appropriate
controller for the region of the uncertainty where the algorithm is expecting the true
plant. This is achieved by the tuning behaviour of the atomic adaptive controllers. In

contrast to our approach, where the multiple model scheme is used for local refinement,



Chapter 4 Estimation-based Multiple Model Switched Adaptive Control 103

Narendra et. al. introduce additional complexity with the adaptive tuning scheme. Also,
as mentioned in the introduction, such an approach is problematic since we will neces-
sarily find ourselves confronted with the usual robust stability and structural limitations

of the classical adaptive controller.

4 EMMSAC in practice

This section is intended to give the reader an idea of how to ‘run’ the algorithm in

practice and what implementational complexity is to be expected.

Assume that we have decided upon some (possibly time-varying) construction of a plant-
generating operator G (see Chapter 6 for a performance-orientated guideline on how
to make that choice). The next step is then to determine a corresponding controller
K(p) and a transition delay A(p) to all p € P%. Observe that the construction of
K(p), A(p), p € PE can only be computationally feasible if P is finite and a priori
known (G(k) = G(wz)(k) is known for all we € W, and for all k£ € N), since we would
otherwise have to compute K (p), A(p) for all p € P D P (which may be a continuum).
If P¢ is indeed known, small and finite, then off-line computation of K (p), A(p) for all
p € P appears feasible and one could store this information in memory to be employed
by the algorithm when in on-line operation. However, P¢ is usually unknown if G (k) is
a function of observed signals, e.g. if G(k) describes an advanced refinement scheme (as

discussed in Chapter 4, Section 3) and off-line computation of K and A is not feasible.

To overcome this problem we now consider the on-line computation of the controller as
well as the transition delay. It is important to note that only one controller is active
at a time, hence only a single controller and corresponding delay needs to be calculated
every time the algorithm performs a switch. This implies that calculating the controller
and delay on-line reduces the (possibly infinitely large) computational complexity of
determining K and A off-line to a single computational operation every time a switch
occurs. We can therefore trade off memory size and computational off-line resource

versus computational on-line resource, or even implement hybrid schemes.

In principle K and A can be any operator satisfying Assumptions 4.1 (note that later in
Chapter 5, inequality (5.16) will also constrain A), hence even the construction of each
K(p), A(p), p € PY by hand is possible. However, manual construction will not be
feasible in many situations, i.e. if P is large or unknown. We will therefore assume that
K and A are determined by some automated procedure. Automated design procedures
for K and A can for example be implemented by using (the code from) suitable MATLAB
toolboxes with the purpose to automatically construct a stabilising H,, LQG, PID
controller, or some iterative method to determine A that satisfies inequality (5.16) in
Chapter 5 (given some [ : P — RT). The challenge for the designer then reduces to the

problem of setting suitable parameters for the automation.
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With A and K, determined on- or off-line, we now proceed as follows.

1. Construct the estimators:
Depending on the signal space we can, for example, choose from Kalman filter
estimators or finite horizon estimators. Other estimation algorithms are allowed as
long as they satisfy Assumptions 3.4. Note that the Kalman filter implementation
as well as the finite horizon implementation of the estimator is recursive. Therefore,
for these estimator constructions, only the scalar value of the residual between
recursive steps has to be stored for each plant p € G. In the special case of the
Kalman filter, additionally the filter state & as well as ¥ have to be stored for all
p € G. The computational costs of evaluating the residual rp[k], & € N to plants
p € G(k) depend on the order of P, and the particular estimation algorithm, but

are invariant to k € N.

If P¢ is known, a fixed bank of disturbance estimators may be set up off-line for
disturbance estimation. However, for a general dynamic G, P¢ is unknown and
‘new’ disturbance estimators have to be introduced on-line. This is conducted
in the following way: if a new plant is introduced to G on-line at time k € N,
the corresponding estimator is iterated forward from zero to time £ € N. For
a recursive estimator implementation the computational costs to introduce a new
estimator on-line at time k € N is therefore k times the costs of a one step iteration.

It is therefore more expensive to introduce estimators later.

The computation of the free switching signal q¢(k) = argmin,cq ) 7p [k] from the

residuals rp[k] is then a simple comparison of n = |G(k)| scalars.

2. Implement the delay:
Assume the algorithm switched from one controller to another at time a € N, i.e.
q(a — 1) # g(a). Now compute the delay A(g(a)) and store A(g(a)) as well as
¢(a) in memory to be evaluated by some delay routine. Since these operations
only apply to a single plant ¢(a), the computational cost is invariant to the size of
G(k), ke N.

3. Compute the control signal:

As before, assume the algorithm switched from one controller to another at time
a € N. Now compute K(g(a)) and compute the control signal us(i) via ug(i) =
Ck(g(a))¥2(7), a < i < b where b is the next switching time and the controller is
initialised to zero at time a. For example, if the controller is given by C., ¢ € Prr;
from equations (4.2)-(4.6) we would let z.(a) = 0 and w§(i) = wa(i), a < i < b.
Since these operations only apply to a single plant ¢(a), the computational cost is
invariant to the size of G(k), k € N.

We now come to the central chapter of this thesis, establishing bounds on the closed
loop gain for the given EMMSAC algorithm.



Chapter 5

Stability and gain bound analysis

of the nominal closed loop system

In this chapter we will establish /., 1 < r < co norm bounds on the observation signal
wy € W, in terms of the external disturbance signal wy € W. A particular feature of the
bounds is that they depend on the size and geometry of a ‘cover’ of the candidate plant
set, rather than the plant set itself. This characteristic allows the refinement scaling of
plant model sets as a successively increasing fidelity sampling of e.g. a continuum of
plants. The main result of this chapter establishes exactly this viewpoint. The following
chapter then fully interprets this result and derives many consequences of the gain bound

given here, including clear approaches to design.

On the first pass of reading this document the reader is advised to read Section 1 and the
statement of the results in Section 5, omitting the detailed construction of the bounds
in Section 2, 3, 4 and to follow the argument of Chapter 6 to the end of Section 2 first.
There we will fill the objects G, H, U, v with meaning.

Before we come to our first intermediate result, establishing gain bounds for atomic

closed loop systems, we introduce some necessary notation.

1 Preliminaries

1.1 Uncertainty sets and covers

Let
U: W, — map(N, P¥)

105
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be a monotonic plant-generating operator where

U ._
PUi= U U Ulwn)(k) C P,

U has the role of specifying an uncertainty set we seek to control at a given time k£ € N.

For example let a plant P, be given by
P,:y1(k+1) =ay1 (k) + u1, a € [—amazs Gmaz) (5.1)
where a is an uncertain parameter. For a given finite a,,4, then take U to be constant:
U =U(k) = [~maz> @maz), Yk € N

Hence U specifies the uncertainty set. An implementation of an EMMSAC controller
will then be based on a plant model set specified by a constant plant generating operator
G, where G is a suitable sampling of U. However, for a constant uncertainty set, we will
show in Theorem 6.6 that the closed loop gain scales with the uncertainty a,,q.; that is
that the algorithm is conservative. A remedy to this problem is to dynamically expand
the uncertainty set U(k) (along with G(k)) until some performance requirement is met.
For the purpose of our example we could, for example, let U(k) = [—k, k]. We will show
in Chapter 6 that a performance-orientated expansion of U and G leads to gain function
bounds that are invariant to the level of uncertainty in the system, and give algorithms

of finite computational complexity.
We now consider sets of plants that are close to each other within each U (k).

Let x : P x P — R* be as in Assumption 3.4(5). Let
H : W, — map(N, P*) (5.2)
be a plant-generating operator where

H . _
Pl= Y U Hws)(k) C P,

Let v : W, — map(N, map(P,R")) be given. As in Chapter 4 we write U(k), H(k), v (k)
for U(ws)(k), H(w2)(k),v(w2)(k).

Now define the ball

By(p,v(k)(p) :=={p} U{m € P | x(p,;1) <v(k)(p)}NU(k), p€P, keN (53)

to be the set of plants that reside within a neighbourhood of radius v(k)(p), as measured
by x, around p € H(k) in U (k). For an appropriate choice of H and v, the union of the

corresponding neighbourhoods in U then leads to a cover for U:
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Definition 5.1. (H,v) is said to be a monotonic cover for a plant-generating operator
U ifVk e N, wo € W,:

1. H and v define a cover for U:

U(k) C R(k) = Uperrge By (p, v(B)(p))), Yk € N, wy € WL.

2. The cover is monotonic:
R(k) C R(k+1), Vk € N, Yws € Wh.
(H,v) is said to be a finite cover if H(k) is a finite set for all k € N, wqy € W,.
We will establish sufficient conditions for the existence of a finite cover (H,v) for U in

Chapter 6.

Returning to the example in equation (5.1), we can construct a monotonic cover in the

following way: Assume a4, = 100. Let
H(k) = {p17p27p37p47p5} = {_1007 _507 07 507 100}7 Vk e N

and v(k) = 2maxi<i<4 X(Pi, Pi+1), Yk € N. Then U C R = Upeu By(p,v(p))), wa € W,

where the cover is monotonic (since it is constant).

The introduction of (H,v) is the device by which we are able to express gain bounds
which scale in terms of the number of elements of |H (k)| rather than the absolute size
of the set |G(k)|. This will lead to a notion of ‘complexity’ of a plant model uncertainty

set in the next chapter.

. € G(k)
x € H(k)

FIGURE 5.1: Uncertainty set U(k), cover (H(k),v(k)) and sampling G(k)

Consider the example in Figure 5.1. We will think about the objects U, H,v,G in the

following way:
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e U is the uncertainty, or more precisely U specifies the uncertainty set,

e The cover (H,v) for U is the device by which we assess the ‘complexity’ of the

uncertainty U,

e (G is an appropriate sampling of the uncertainty set U.

1.2 Switching times

Let g5 € map(N,P), and let ¢ = Dq; (equations (4.29)—(4.33)) denote the switching
signal. Let

Ly={lo=0,l1,ls---} ={leN| gl —1) #q(l), 0<I<k} (5.4)

be an ordered set, i.e. if [;,l; € Ly, i < j then l; <;, interpreted as the set of physical
switching times up to time k € N. These are the times where the algorithm switches

from one controller to another.

To every pair of consecutive physical switching times [;,l;11 define the set of virtual

switching times V'(I;,1;4+1) by

(5.5)

Vv li,li =<a€eN
(istist) { li <a<liv1 —Aq(li))

3b e N st a=1+bAg(l:)), }

The idea of a virtual switch arises from the fact that if the algorithm switches to a
controller Cg(4,)) and remains switched to that controller for a long interval of time
we can interpret this as a series of consecutive switches to the same controller. However
note that a virtual switch differs from a physical switch in that the atomic controller is
not intentionally initialised to 0 at the virtual switching time. Note that the interval
[l;,li+1] might in some cases not be of sufficient length to accommodate a virtual switch
at all. In that case V(I;,1;11) is an empty set. Also note that virtual switching times are
defined purely for analytical purposes and do not affect the actual switching algorithm

whatsoever.

Now define the ordered set of all switching times, physical and virtual,

Qr = {ko=0,k1, k2, ---}, 0< ky <hkip1 <k (5.6)
by
Qp := L U U{V(li,lz’—i-l) | li,liv1 € Ly}, (5.7)
i>0

where we treat for the remaining document virtual and physical switches alike. Let

Qr(p) ={i€Qk|qli)=p} CQk, pEP



Chapter 5 Stability and gain bound analysis of the nominal closed loop system 109

be the switching times where the algorithm switches to a plant p.

Let p € H(k) and let

Qr(p,v(k)(P)) = Usen, (k) () 1@k () } (5.8)

be the set of all switching times corresponding to the plants in the neighbourhood
By (p,v(k)(p)) around a plant p € H (k).

For p € H(k), let

{max(Qx(p, v(k)(p)))} if max(Qx (p, v(k)(p))) # 0

0 otherwise

Fy.(p,v(k)(p)) == {
(5.9)

be the switching time where the algorithm switches to a plant within the neighbourhood
By (p,v(k)(p)) for the last time in the interval [0, k]. Note that Fj(p,v(k)(p)) is always
defined since max Qg (p, v(k)(p)) < k.

Let
F := Upenr iy Fre(p, v (k) (p)) (5.10)

and note that:
Fi(p,v(k)(p)) C Fi C Q.

Let

Qp,v(k)(p) \ Fr.(p,v(k)(p)) if Qr(p,v(k)(p)) #0

0 otherwise

Ok (p,v(k)(p)) == {
(5.11)

be the set of all ‘ongoing’ switching times corresponding to the plants in the neighbour-
hood B, (p,v(k)(p)) around the plant p, i.e. the algorithm will switch back to a plant
within B, (p,v(k)(p)) at a later time in the interval [0, k]. We let:

Oy, := Uper(x)Ok(p, v(Kk)(p)) (5.12)

and note that:
Ok (p,v(k)(p)) C Ok C Q.

For example, assume that there are only four plants and they are positioned as in Figure
5.2. Let g be such that the set of switching times @; and the set of switching times
corresponding to each plant Qx(p;), 1 < ¢ < 4 are as in the Table 5.1. Note that if
a plant lies in more then one neighbourhood, it is counted multiple times. Hence its

corresponding final switching time for one neighbourhood may be in the set of ongoing
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switching times for another neighbourhood, i.e.

Fy.(pi,v(k)(pi)) € O(pj,v(k)(py)), i # J.

Wﬂ
%p@

D1 D2
) D4
b3

FIGURE 5.2: Neighbourhoods By (p1,v(p1)), By(p4,v(pa))

Qr 1 5 11 22 44 101 202 212 333
Qr(p1) 1 11 44 202

Qr(p2) 5 292

Qr(p3) 101 212
Qk(p4) 333
Qr(pr,v(pr)) |1 5 11 22 44 202

Qr(pa, v(p4)) 5 22 101 212 333
F.(p1,v(p1)) 202

F(pa, v(pa)) 333
Or(pi,v(p1)) |1 5 11 22 44

Oy (p4,v(pa)) 5 22 101 212

TABLE 5.1: A switched system with corresponding switching times

Note that this example is only to demonstrate the relationship between these sets of
switching times. It is important to note that they will not appear in any gain bound
and we do not impose any knowledge on them. In particular we do not impose knowledge
about when the algorithm will switch, how often it will switch or to which controller.
This is very important since allowing arbitrary disturbances of a certain size acting on
the system it is impossible to predict every possible resulting switching sequence. The
only time-structure property of these sets that will be used in the argument is that there
exists an upper and lower bound on the pause between two switches (see Lemma 5.4).
This is a result of the switching delay, the definition of the virtual switching times and
the fact that the sets are ordered.

Impose the following constraint on the set PY:

Assumption 5.2. Let PU C P have the property:

o:= max max{o(p1),c(K(p2))} < 0.
p1,p2€PY
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where we recall that o(p) and o(c) are defined by equation (4.8) and (4.7).

Therefore o represents the total number of time steps the controller and plant signals
need to be observed to uniquely define the initial condition of any closed loop system
[Ppl,C’K(m)], p1,p2 € PY. This implies finite dimensionality of the plants and con-

trollers.

Furthermore assume the following:

Assumption 5.3. We assume the delay transition function A : P — N satisfies:

A(p) > o, ¥p e PY.

For all switching times k; € Q)i define the intervals

AZ' = [k‘z — 0, k‘z) (5.13)
BZ‘ = [k‘i,ki_ﬂ — O'). (514)

Note that by Lemma 5.4:
kiv1 — ki > A(q(ki)) > o
hence k;y1 — o > k; and A;, B; are defined and form a disjoint cover of N.

Upper and lower bounds on the switching times are now given as follows:

Lemma 5.4. Suppose A : P — N is a given delay transition function and suppose the
delay operator D is given by equation (4.30)—(4.33). Let k € N and let ¢; € map(N,PY).
Let ¢ = Dqy. Suppose k; < ki1 are consecutive switching times, k;, ki1 € Qp where
Qy; 1s defined by equations (5.4)—(5.7). Let p = q(k;). Then:

A(p) < kit1 — ki < 2A(p). (5.15)
Proof By the definition of the switching delay in equation (4.32) it follows that A(p) <

kitq1 — k. If k;yq is a virtual switching time, then k; 11 —k; = A(q(k;)) by equation (5.5),

and if k;11 is a physical switching time, then
k‘i = lz' + bA(q(lZ)) § k‘i+1 — A(q(lz)) < lz + (b + 1)A(q(lz)) = k‘z‘ + A(q(lz)),

hence k;11 — k; < 2A(q(k;)) and equation (5.15) follows. O

We are now in the position to begin with the construction of the gain bound. The proof

is organised into sections as follows.

Section 2. Gain bounds for atomic closed loop systems:

In this section we are concerned with a) the atomic closed loop [Py, , Cg ()], that
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is the closed loop system containing the true plant P, , p, € P and a controller
based on any plant F,, p € P, and b) the atomic closed loop [P, Cx ()], p € P,
that is the closed loop system containing a matching plant-controller pair. In both
cases we will establish a bound on (portions of) the observation ws in terms of the
disturbance estimate dp[k]. The bounds from a) will be used in the cont ex of final
switching times, i.e. k; € Fj, where the bounds from b) will be used in the context

of non-final switching times, i.e. k; € Oy.

Section 3. Bounds on disturbance estimates:
Since the established bounds on the observation in Section 2 are given in terms of
disturbance estimates dp[k|, and the overall goal is to construct a bound on the
observation ws in terms of the true disturbance wg, we now establish bounds on

the disturbance estimates d,[k] in terms of the true disturbance wy.

Section 4. Gain bounds for non-final switching intervals:
In this section we will utilise the results from Section 3. to show that (a series of)
disturbance estimates d,[k;] corresponding to intervals associated with non-final
switching times, i.e. k; € Og, can be bounded efficiently in terms of the true
disturbance wgy. This leads to a bound on wsy in terms of wq for sequences of

intervals associated with non-final switching times.

Section 5. Main result:
Finally, all gain results are collated to the main result that establishes a bound on
wy in terms of wg for both, intervals associated with final and non-final switching

times — hence over the whole time axis.

2 Gain bounds for atomic closed loop systems

The first result establishes bounds on the gain from the disturbance signals wqy to the
internal signals wo for the atomic closed loop interconnection between the true plant
and the controller switched into closed loop at time k;, i.e. [Pp*,C’K(q(ki))] as depicted

in Figure 5.3, on the various intervals of type A;, B;, k; € Q4.

The two cases w§| 4, = 0 and w§|4, = wa|a, correspond to the case whereby the controller
is initialised to zero at time k; i.e. k; € Ly (a physical switch) or the case where the
controller is not intentionally initialised to zero at time k; i.e k; € Qi \ Li (a virtual

switch). To improve readability we repeat all relevant equations in Table 5.2.
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y1 = Pu (2.7)
Ug = UL+ U2 (2.8)
Yo = Y1+Yy2 (2.9)
W = Cuf (4.1)
D : map(N,P) — map(N, P) (4.30)
k> g (k)] = [k — q(k) (4.31)
_ ar(k) ik —ks(k) = Ag(ks(k)))
q(k) := { A el (4.32)
ks(k) :=max{i e N | 0<i <k, q(i) #q(i —1)} (4.33)
Ly :={lo=0,l1,lz---} ={leN| q(l = 1) #q(I), 0<I <k} (5.4)
R b e Ns.t. a=1; + bA(q(ly)),
V(li,liy1) == {a eN ‘ L < a<lis—Alg(l) (5.5)
Qk:{kOZOakla k2) }7 ngzgkz—f—lgk (56)
Qr = LU U{V(l“ li_|_1) | li,li+1 € Lk} (57)
i>0
Ai = [k)l — O, kz) (513)
Bi = [l{?l, ki—i—l - 0') 514)

TABLE 5.2: Details for Proposition 5.5
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ug
oy
s
c g | Y
g {A]
k D g ys
Y5 Y2

FIGURE 5.3: Closed loop [Py, , Ck(q(k,))] With magnified switching controller C

Proposition 5.5. Let 1 < r < oco. Suppose PV C P satisfies Assumption 5.2. Let
pe € PY and P = P,.. Let K : P — C be a given control design satisfying Assumption
4.1(1). Suppose A is a given delay transition function satisfying Assumption 5.3 and
suppose the delay operator D is given by equation (4.30)—(4.33).

Let k € N and let q5 € map(N,PY). Let q = Dqy. Suppose k; < ki1 are consecutive
switching times, ki, ki+1 € Qp where Qp is defined by equations (5.4)—(5.7) and let
the intervals A;, Ajy1, B; be given by equations (5.13),(5.14). Suppose (wgy,wr,ws) €
WX We X We, w§ € W, satisfy equations (2.7)—(2.9),(4.1) on the interval A;UB;UA; 41,
where p = q(k;), ¢ = K(p) and either

c _ c _
w2|Ai =0, w2|BiUAi+1 = W2|B;UA; 41
or
c
Wy AiUBiUAi+1 = W2 AiUBiUAiJrl'

Then, in both cases,

[ Thisa w2l < 1P| Tk 1wzl + 72 (p)[woll

where with «, B from Assumption 4.1 define

1) = 1+ sup  a(p«, K(p),0,z)
A(p)<z<2A(p)

y2(p) = sup  B(p«, K(p),0, ).
A(p)<z<2A(p)
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Proof Let

L = Ai=[k—ok)

L = 0

Is = B;UAjp1 = [ki,kiy1)
Since

(11| = |Ai| = o = max{o(p.), o (K(q(k:)))}

by Assumption 4.1(1) we have for the closed loop [Py, , Ck(4(,))] that

[ Thi—1w2| < ([ Th—1wal| + [lwe g ||

< N Tk—we|| + alps, K(g(ks)), 0, [13])[|wa] 1, |

+6(p+, K(q(ki)), 0, [13])[[wo| nunus|

| Tk —1w2| + cpe, K(q(k:)), 0, [ I3])[| T, —1 w2 |

+B(px; K(q(ki)), 0, [I3])][wo|

< (1 + alps, K(q(ki)), 0, [I3) | Th; —1wall + B(ps, K (q(k:)), 0, [I3])]Jwo|

IN

By Lemma 5.4 we now have
A(p) < |Is] = kit1 — ki < 2A(p).
and arrive at

| Ty —1wall < (1 + alps, K(p), 0, | I3])|| Th, —1w2 || + B(p«, K (), 0, |I3])|lwo |
< Tk —1w2]| +v2(p)l|wol|

as required. O
Before we discuss the next gain bound we give an elementary bound.

For z,y,c € R define
lc] :==max{n € Z | n < c} and (az) =
Yy

Lemma 5.6. Let 1 <& < oo. Let a,b> 0. Then

(a+b)* < J(€)(a® +b°).

B §
) =: (Lsm) |

where
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Proof Let v,w € N. Observe that since

a’b?

a’b?

IN

a"tifb<a

VT if a < b

IN

it follows that

a’b” < max{a”",p'T*} < @t 4 pUTY,

We then have

(a+b)° = i § at =it < ¢ i: at =
=0\ S \L82]) =
£

-1
= as + bt as =i’
(L§/2J> SRREAPD ]
§ € ey N e
< <L£/2J> (a +b)+Z:1(a +b)
¢ as + bt
= L£/2J>( )
as required. O

Note that when applying this lemma later, £ € N will be chosen to be

&=

r for 1<r<oo
1 for r =00

where r determines the space [, in which the analysis is being conducted.

Up to this point, the transition delay function A : P — N and the controller design
procedure K : P — C have not been connected in any way. We will now do so with the
help of the so-called attenuation function [ : P — [0,1): Let A, K, satisfy:

J(r)a”(p, K(p), Alp) —o0,0) < I(p) <1, ¥pePVif 1 <r < oo (5.16)
- .

a(p, K(p), A(p) — 0,0) Ilp) <1, Vpe PV if r =0

where A satisfies Assumption 5.3 (A(p) > o, p € PY) and «, 3 are defined in Assump-

tions 4.1.

The purpose of the attenuation function [ is to define an upper bound on the signal
attenuation that is achieved by the atomic closed loop interconnection between the
plant P, and the corresponding controller C'k(,,) over some interval of length A(p) — 0.
In practise, one would choose a stabilising design procedure K, an attenuation function

I, a norm [, and then compute for all p € PV a corresponding A(p) such that inequality
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(5.16) holds, hence note that there always exists such a A. Inequality (5.16) therefore
establishes a relationship between delay and attenuation. This freedom in choosing A
can now be utilised in many ways. For example, it can be utilised to decouple control
sampling rate and switching rate, e.g. by choosing A large we would maintain a high
update rate for controller sampling and updating the disturbance estimates, however

have a low switching rate between controllers.

The next result establishes bounds on the gain from the disturbance signals w to the
internal signals wy for the atomic closed loop [P, Ck ()], p = q(ki) on the various
intervals of type A;, B;, k; € Q. That is the closed loop loop interconnection between:
the controller the algorithm switches to at time k;, and its corresponding plant — as
depicted in Figure 5.4. To improve readability we repeat all relevant equations in Table

5.3.

P
Uy
+ p
U2
C
C
Us
A
c -
Y2 Y2

FIGURE 5.4: Closed loop [Py, Ck ()] with magnified switching controller C
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B o= Byl (3.8)
uh = ul +ug (3.9)
Yy = Yty (3.10)
i = O (4.1)
D : map(N, P) — map(N, P) (4.30)
[k = qr(K)] = [k — q(k)] (4.31)
_ a(k) i k—ks(k) > Aq(ks(K)))
q(k) := { g(ks(k)) else (4.32)
ks(k) :=max{i e N | 0<i <k, q(i) #q(i —1)} (4.33)
Lk::{lozo,ll,lg~~~}:{l€N‘q(l—l);ﬁq(l),Oglgk} (54)
db e N s.t. a=1; + bA(q(l;)),
V(liyliv1) == {a €N ‘ li<a<liy1— A(q((l(f)() ) } (5:5)
Qr ={ko=0,k1, ko, ---}, 0<k; <kiy1 <k (5.6)
Qk 0= Lk U U{V(l“ li_|_1) | li,li+1 € Lk} (57)
i>0
Ai = [k)l — 0, kz) (513)
Bi = [l{?l, ki—i—l - 0') (514)
J(r)a" (p, K(p),Alp) —o,0) < I(p)<1, VYpePVif 1<r<oo (5.16)
a(p, K(p),A(p) —o,0) < I(p)<1, ¥pePUifr=o00 ’

TABLE 5.3: Details for Proposition 5.7
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Proposition 5.7. Let 1 < r < oco. Suppose p € Q C PV C P, ¢ = K(p) and PY
satisfies Assumption 5.2. Let K : P — C be a given control design satisfying Assumption
4.1(1),(2). Suppose A is a given delay transition function satisfying Assumption 5.8 and
suppose the delay operator D is given by equation (4.30)—~(4.33). Letl:P — [0,1) be a
given attenuation function and suppose that K, Al satisfy inequality (5.16). Let k € N
and let g5 € map(N,PY). Let ¢ = Dqy and suppose q(k;) = p. Suppose k; < ki1 are
consecutive switching times, k;, kiy1 € Qr where Qy, is defined by equations (5.4)—(5.7).
Let the intervals A;, Air1, B; be given by equations (5.13),(5.14). Suppose (wh, w!,ws) €
WX We x We, w§ € Wk satisfy equations (3.8)—(3.10),(4.1) on the interval A;UB;UA; 41
and either

wg‘Az = 07 wS‘BZ‘UAi+1 - w2‘BiUAi+1 (517)

or

w§|AiUBiUAi+1 = w2|AiUBiUAi+1- (5.18)

Then, in both cases, for 1 < r < oco:

k;
aop(Q)|lwa] a7 + Bor(Q)|wi® | a,uB0a, . I}

a0s(Q)|[wala,ll- + Bos(Q)lwi™ | a0 |;

IA

||w2|Ai+1||:

[wal B |17

IN

and for r = oo:

k;
aop(Q)|[wal a;llo + Bor(Qwe™ | auB0a:41 oo

IN

||w2|Ai+1||00

k;
[walBille < a0s(Q)lwala,llso + Bos(Q)wi™ | 405 oo

where for J(§) from Lemma (5.6) and o, B from Assumption 4.1 define

r for 1<r<oo
f =
1 for r =00

aop(Q) = ;Illgél(pl)

BOP(Q) = J(g) sup sup ﬁg(pvi(pl)vx _0-70-)
P1€Q A(p1)<z<2A(p1)

aos(Q) = J(&) sup sup ag(pl,K(pl),O,x —0)
P1€Q A(p1)<z<2A(p1)

Bos(Q) = J(€) sup sup B%(p1, K(p1),0,2 — o).
P1E€Q A(p1)<z<2A(p1)

Proof By Lemma 5.4, inequality (5.15) we have

A(p) < |Bi U Ajpr| = |Bi| +0 = kip1 — ki <2A(p). (5.19)
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Let

.[1 = AZ:[kZ—O',]{IZ)
I = B;j=[kikit1—0)

I3 = A1 =[kiy1 — o0, kig1).

By Assumption 5.2,
(11| = |Ai| = 0 = max{o(p),o(K(p))},

it follows from Assumption 4.1(1) inequality (4.10) that:
||w2|Ai+1 ||£ < (Oé(p, K(p)v |BZ|’ |Ai+1 |)||w2|Az ||7“
. K (p). Bil. | Ava [ Laopa 1)

< (a(p,K(p),A(p) - U7U)Hw2‘Ai”T
+B(p, K (p), |Bil, o) |[wh | asomiaies 1)

where the second inequality follows from the fact that « is monotonically decreasing in
the third parameter (Assumption 4.1(2)) and |B;| > A(p) — o (equation (5.19)).

Since K, A, satisfy inequality (5.16) for 1 < r < oo we have that:
J(€)a* (p, K(p), A(p) —0,0) <1(p) < 1, ¥p € PY.
Hence by Lemma 5.6 and equation (5.19) we obtain

||w2|Ai+1||1§” < J(&)O&é(p,K(p),A(p)—0‘,0‘)||’LUQ|AZ.||£
—I—J(g)ﬁf(p, K(p)v |BZ|7 U)||w8|AiUBiUAi+1 ||7é:

< 1 wala, || max J S(p, K(p),x — o,0)||wl|a.u,04,. . ||
< U unla i+ max IO 0K @) = 0.0) b laomon
and hence
lwal 4, 15 < aop(Q)||wala; |15 + Bor(Q)llwh | auBuas, 15
Now let

I = Aj=Tki—ok)
I, =
13 = Bz’ = [ki,ki+1 — O‘).

=

By Assumption 5.2,
|I1| > o > max{o(p1),0(K(p2))}
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and it follows from Assumption 4.1(1) (inequality (4.10)), Lemma 5.6 and equation
(5.19) that:

||w2|Bz||7€” < (a(p,K(p),O, |Bz|)||w2|Al||T + ﬁ(p’ K(p)’ 0, |B2|)||wg|AZUBZ||T)€
= J(€)a (p, K (p), 0,2 — I
- A(p)gl?zg;A(p) (g)Oé (p7 (p)7 , L U)||w2|Az||r
J(E) B (p, K(p),0, 2 — Pl g
+A(p)gﬂ&g;A(p) ()5 (p, K(p), 0,z — o)|Jwg|a,uB; Iz
< aos(Qllw2la,l} + Bos(Q)llwh|aus,I;
as required. .

3 Bounds on disturbance estimates

The next proposition follows directly from Assumption (3.4)(5) and gives a bound on
a series of disturbance estimates. The idea is to cover a set of plants by a union of
sub-covers B; and then use Assumption (3.4)(5) to bound disturbance estimates corre-
sponding to all plants within a sub-cover B; by a disturbance estimate of a single plant
zj in Bj. This technique opens up the possibility to use infinitely many plant models
since the bound will only depend on the cover and not the (number of) plants covered

by it. To improve readability we repeat all relevant equations in Table 5.4.

E : W, — map(N, map(P, map(N,R"))) (3.14)
wy — [k (p— dplk])] (3.15)

TABLE 5.4: Details for Proposition 5.8

Proposition 5.8. Let 1 < r < oco. Suppose PV C P and let a,\,m,n € N, m < n.
Suppose E is given by equations (3.14),(3.15) and satisfies Assumption 3.4(5). Let
kiki €N, 0 <k <\ ki < kiz1, BiCPY, m<i<mn. Let k> 1,wy € W, and
dplk] = E(w2)(k)(p), p € P. Suppose p;,z; € P satisfy pi, zi € B;. Then:

195, e [Bm]s @5, dois Bt ]s - @ oy [Rn] || + Xl T, w2l
where
X = max sup X(p7 Q) (5-20)

MSISN p e B;

and x(-,-), ®;j,c are defined as in Assumption 3.4(5).
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Proof Observe that
la+b,e+d| < lla,el] + [b,dl, a,bc,d R

and
la, bl = [[llall [oll-]],, a;b,€ S, 1T <r < oo.

By Assumption (3.4)(5) we then have

H(p];’mdp’m [km]7 ¢]_€m+1dpm+1 [km“l‘l]? Ty @E’ndpn [l;:n] ”
”q)l_cmdzT [];m]” + X(Pm, 2m) | T, w2ll,
195, o)+ X1, 2 DI T 2]l
19, Az Kn | + X (Pns 20) | T, w2
< H(I)Emdzm [l%m]v ¢Em+1dzm+l [];:m-i-l]’ Tt q)fcndzn []%n] H
+ XHT,}mwQ, T];mﬂw% e 7T];nw2||-
For 1 <r < o0, and since l;:Z < ];i—i-l we can write
n 1/r
||T]}mw27T]}m+1w27"' 7T]}nw2||r = (Z ||T,~€Zw2||§>
;n 1/r
< | DI wally
k=0
];:n k 1/7“
= (DD 1rhw) ()"
k=0 5=0
];:n k ]./7”
= 22D ek = Hwa(i)I
k=0 j=0
Fon fon—k Lr
= (D lwaB)" D> eI
k=0 j=0
]';:n ]./7”
< D fwa B el
k=0
<

el Il 7, wallr
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and for r = oo

Ty, w2, Tp,  wa, - T wnllee < oﬁi’in{”rwﬂ“’}

= max max |C k— Nw .
OSkgz::nggk'( Jw2(j)]

= max [wz(k)| max |c(j)|
0<k<kn 0<j<kn

< llellooll Z,, w2loo-

Hence for 1 < r < oo we have:

H(I)I?:mdpm [l;mL q)l_cm+1dpm+1 [l;m-i-l]? T (I)I?:nd]}n [];n] H <

197, e (R, P, Doy o]y 5 @, ey, (Rl + Xl | T, w2

as required. O

The next proposition shows that the disturbance estimates corresponding to a plant
z € P at time x € N bounds a series of disturbance estimates for the same plant up to

time x. To improve readability we repeat all relevant equations in Table 5.5.

E : W, — map(N, map(P, map(N,R"))) (3.14)
wy — [k (p— dplk])] (3.15)

TABLE 5.5: Details for Proposition 5.9

Proposition 5.9. Suppose E is given by equations (3.14),(3.15) and satisfies Assump-
tions 3.4(3)-(4) for X € N. Let x € N. Let q : N — P be a switching signal and let
z = q(z). Suppose aj,a; € N, 1 < j <i, i €N, satisfy:

Suppose wy € We. Let d,[k] = E(w2)(k)(z). Then:
[®ad:[ao], Payd:[an], - -, Pa;dafai]l| < |[(1, D[l ]|
where ®; is defined by Assumption 3.4(3).
Proof We first claim that for 1 < j <4:
|®ayd:[ao), Payd=fan], - @aydelag)]| < [ld:laj], d:[ag]]) (5.23)

Observe that

lz, yllr = [Hlzle, ylle]],, 2,y €S, 1<r < oo (5.24)
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This proof is by induction. Let ¢ = 5 = 1. For the ease of notation let

Ry [K] = Ry ud K.

Since
[%a,d-[a]]] < |ld:[alll, 0<1<4, (5.25)
we have :
) ) Ass. (3.4)(3),(5.24) ) )
[|®agdz[aol, Pa, dz[a]]] < 1| %a0 d (o] |, | Za, d-[ad ]|l
(5.25),(5.24) 3 R
< |d: [ao], d[aa]|]-
Therefore the base step is shown.
For the inductive step, assume equation (5.23) holds for 2 < j <+i — 1. Then
~ ~ ~ (5.23),(5.24) d,|a;_ d,|a;—
[y fi), B dofir], - B defal] Jdtti-slll, [ eo-21l
[P,y dz[ai-1]l], | Pa,d-[ad]|
Ass. (34)(3) Iz [ai—s]ll, l[d-[ai—2]|l,
B |Za;_ydz[ai1]ll, | %a, d- @i H
< |d[ai—sll, || #a;_, dz]ai-1]
- lldz[ai—2]|l, II%idz[az']ll
Ass. (24)(4) ”%if?)dz[&i—lm? ”%quz[ai—lm
B ”%i72d7~' [&Z]Ha ”%fh' d; [a’l]H

(5.21),(5.24)

| /\

|d[@;i—1], dz[a] |-

This completes the inductive step and establishes the claimed inequality (5.23).

We now bound disturbance estimates d[a;] by d.[x]. We will exploit the fact that

q(z) = z where z > @; (inequality (5.22)).

We then have with Assumption 3.4(4) that:

- z=q(x) -
lld [ai]]] = | dg(z) @il
Ass.(3.4)(4),(5.22)

< H%Z q(z[ ]H
|

d Id.lal |

(5.26)

(5.27)
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Hence by inequality (5.23) and inequality (5.27) we have:
. . B 5.23) B .
H(I)Zlodz [a0]7 q)flldz [a1]7 T 7q)flidz [al] H < ”dz [ai—1]7 d; [al] H
(3.4)(4) ) )
< ”%ifldz[ai]?dz[aim
[I-]
< @ Dfd: ][]
as required. O

The next key proposition is short and shows that if the algorithm switches at time = to

a plant z that the disturbance estimate at this time z, given by d.[z] = E(w2)(z)(z),

can be bounded by the real disturbance wy — as indicated by the gray squares in Figure

5.5. To improve readability we repeat all relevant equations in Table 5.6.
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Yy = Pu1 (27)
Ug = UL+ U2 2.8)
Yo = Y1+Y2 (2.9)
E : W, — map(N, map(P, map(N, R"))) (3.14)
wy — [k — (p— dplk])] (3.15)
N : map(N, map(P, map(N,R"))) — map(N, map(P,R1)) (3.16)
[k (= plk])] = [k = (p = lldplk]l| = rp[K])] (3.17)
G : W, — map(N, P*) (4.25)
M : (map(N, map(P,R")), map(N, P*)) — map(N, P*) (4.26)
[k — (p— Tp[k]), k— G(k)] — [k — qf(k)] (4.27)
qf(k) := argminrylk], Vk € N (4.28)
pEG(k)

D : map(N, P) — map(N, P) (4.30)
[k = qp (k)] = [k — q(k)] (4.31)

_J ar(k) ik —ke(k) = Aq(ks(k)))
q(k) == { g(ka(F)) else (4.32)
ks(k) :=max{i e N | 0<i <k, q(i) #q(i —1)} (4.33)
Lp:={lo=0,l1,la---} ={leN|q(l =1) #q(I), 0<I <k} (5.4)

N db € N s.t. a =1; + bA(q(l;)),
V(i liv1) :== {a eN ‘ li < a < i1 — Adglly) } (5.5)
Qr=1{ko=0,k1, kg, ---}, 0< ki <kjp1 < k (5.6)
Qr == Lp U J{V (i, lis1) | Ly ligr € Ly} (5.7)

i>0

TABLE 5.6: Details for Proposition 5.10
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<0
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Y2

FIGURE 5.5: Bounding d,[z| in terms of wg = (ug,y0)" for z = q¢(x) = DM (X, G)(x)

Proposition 5.10. Let 1 < r < oco. Suppose PV C P and let p, € PY. Suppose
A is a given delay transition function and suppose the delay operator D is given by
equations (4.30)—(4.33). Suppose G is a plant-generating operator. Suppose E satisfies
Assumptions 3.4(1)-(4) for some A € R and the switching operator S = DM (NE,G)
is given by equations (3.14)—(3.17),(4.26)(4.28),(4.30) (4.33). Let k € N. Suppose
(wo, wy,we) € WX W, x W, satisfy equations (2.7)~(2.9) for P =P,,. Let x € Qk, z =
q(z) = S(w2)(z) where Qy, is defined by equations (5.4)—(5.7) and suppose p, € G(x).
Then:
| Ews)(2)(@)]| = lld:[a]| < pulwoll.

Proof By the definition of the switching algorithm ¢¢(t) = M(NE,G)(t), t € N, will
always point to the plant which corresponding disturbance estimates are minimal. Since
P« € G(x) and by the definition of M we have

de.olzll| = inf ||dy|z]]| < ||dp,[x]||-

g ) 2] pee(@H plalll < [ldp, []]

Since by the definition of D, gf(x) = q(x) it follows that

gy (=]l = lldgy @y 2] < lldyp. [2]]] (5.28)
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hence
lld []]| = lldg(z) ]|
(5.28)
< [ dp. []]
Ass.(3.4)(2)

< il Tewo |

Il

< il [wo|
as required. O

4 Gain bounds for non-final switching intervals

Before we commence with establishing gain bounds, we give a intermediate result that

is self-contained and purely combinatorial.

Proposition 5.11. Let 1 <r < oo and

5—{T for 1<r<oo

1 for T =00

Let z,f,B3,e : N — R" and a,b,d,e € R, a < 1. Let m,n € N and suppose for all

m<i<n:

Zi1 = aZf—Fdﬂf (5.29)
&< bt teeh. (5.30)
Then:
|2l it 1,417 Flimng ]| < 33(G)|zm] + 32 1Bl | + F5(D €l |
where
g = (a,b,d,e)
1/r
. 14647y (= bUT for 1<r<
55(G) = (1+ )(1_a) + or 1<r<oo
max{1,b}a +b for r=o0
1/r
_ 1+bYm) (L for 1<r<
@ = 1Y) e 1w

max{1,b} L for r=o0

B /T for 1 <r<oo
¥5(9) = {
e for r =00
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Proof Let 1 <& =r < o0. Define for i € N

— € = T
Z'_ sz’L'_fzaﬂ’L'_ 17 Z'_Ei'

By equation (5.29) we have

IN

2m+1 aém + dﬂm

Smae < %3, 4 d (aBm + Bm+1>

A

~ ~ 2 3 3 3
Zmysz < a®Zn,+d <a Bm + aBm+1 + 5m+2)

an—m+12m + d (Bman—m + Bm—i—lan_m_1 + -+ Bn—la + Bn) .

IN

én-l—l

Summing vertically gives us

n+1 n—m-+1 n—m—1 1 .
Sy a+d<ﬁmza+ﬁm+l > e +5n—1zaz+ﬂn>
i=m+1 =0

n—m-+1

Zm Z a' +dZ/8]Za

j=m =0

IN

Since a < 1 we have that for any j > 0

J 1 J
E a' < and E a < ,
—a < 1—a
=0 =1
hence
n+1 n

and therefore

Hz‘[m-i-l,n—i-l]Hr =

IN

IN
/N N N N
— .
| | =
<)

(@ Lzl + @7 ||Blgm ], ) (5.31)
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By inequality (5.30) we have

n n 1/7”
Wi, < (1355 +34)
< OV |zl ]l + €7 (el pmam]l, (5.32)

By inequalities (5.32) and equations (5.31) we arrive at

Hz|[m+l,n+1}’f|[m,n]Hr < Hz|[m+l,n+l}Hr + Hf|[m,n]HT
< Nzl mall, + 07 [, + €7 el ],
< (1487 [elmsnmsll, + 6Vl + " lelmmll,
T 1 l/r ' T
< (o) (125) (@ tenl + @ )

07 2| + €7 ||l
1r 1 Lr 1/r 1/r
((1+b )(ﬁ) a’m+b )'Zm|

IN

1 1/r
H0+0) (122) @ Wl + € el

V3(9)|2m | + 32 (DBl m) - + 5(G) €l pmmy I

IN

as required.

Let r = 00, so £ = 1. By equation (5.29) we have

Zmy1 < azm+ dBm
Zm—+2 S CL2Z1n + d (aﬂm + Bm-i—l)
Zm+3 < CLSZ1n +d (a2ﬂm + aﬂm—i—l + 5m+2)

Zn+1 < an—m+lzm +d (Bman_m + 5m—i—lan_m_1 +o Bn—la + Bn) .

Taking norms leads to

2l inrlle = m+1II§1?§n+l‘Zj‘

n—m
< alzml +d Y @|Blmmllo
=0

d
< e .
=~ CL|Zm| + 1_ a”ﬁ“m,n} ||OO
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Furthermore by equation (5.30) we have

|f il = max 1fs

IN

0|2l | oo + € ll€lpmonl [l o -
Substitutions lead to

|2l 1417 Flimng || o max{[|2|(m+1,n41) loos bl 2fm,n) lloo + €ll€pm,n lloo }

< max{[|2lpm+1,n4+1) oo, bl 2pmt1,n41)loc + blzm| + €ll€fmnylloo }
< maX{L b}”z|[m+1,n+1} Hoo + b|zm‘ + e”e[m,n}Hoo
d
< max{1,b}(alzy| + mllﬁl[m,n}lloo) + b|zm| + ell€jm,n)ll oo
d
< (max{1,b}a +b)|zp| + max{1, b}Ta 18] m,n lloo + €ll€fmn lloo
< 33(9)|zm| + 3a(G)1Blimn) lloo + V5 () €pmn llo
as required. O

In Proposition 5.7 we established a gain relationship between ws and disturbance signals
wg which are consistent with p € P and we € W, over some finite interval. Since it is
the overall goal to establish a bound on the gain from the real world disturbances wg to

the internal signals wo we need to bound the consistent disturbance signals w§ by the
real world disturbances wy.

Uo Yo
+ +

U2 - fL u1 P y1 - Jg Y2
/ p /

U2 U9

*

}

Y2

FIGURE 5.6: Bounding intervals of wy = (ug,y2)

times, in terms of wg = (ug, Yo

, corresponding to ongoing switching
)T

We do this by considering intervals [k, kn], m,n € N, m < n, ky,, k, € Q) where all
intermediate switching times are ongoing, i.e. k; € Ok, m < i < n and then use the fact
that after a series of ongoing switches there must follow a final switch hence Proposition
5.10 is applicable. The next result establishes bounds on intervals of we in terms of

wo — as indicated by the gray squares in Figure 5.6. Before we give the statement we
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make the following definition. To improve readability we repeat all relevant equations
in Table 5.7 and Table 5.8.

X : W, — map(N,map(P,R")) : wy — [k — (p — rp[k])] (3.7)
G : We — map(N, P*) (4.25)
M : (map(N, map(P,R")), map(N, P*)) — map(N, P*) (4.26)
[k — (p— rplk]), k — G(k)] — [k gf(k)] (4.27)
qf(k) := argminry[k], Vk € N (4.28)
peG(k)

D : map(N, P) — map(N, P) (4.30)
[k — qp (k)] = [k — q(k)] (4.31)
) ={ 0 R 2 Al ) )
ks(k) :=max{i e N | 0<i<k, qi) #q(i —1)} (4.33)
C:Ye = U :yz— u (4.34)
uz(k) = Ck (k) (Y2 — Thy(k)-192) (k) (4.35)
J(r)a" (p, K(p),A(p) —o,0) < Ilp)<1, Vpe PZ ?f 1<r<oo (5.16)

alp, K(p),A(p) —o,0) < I(p) <1, VpeP” if r=00

TABLE 5.7: Details for the definition of standard EMMSAC in Definition 5.12

Definition 5.12. An EMMSAC algorithm is said to be standard if it satisfies:

K : P — C is a given control design satisfying Assumption 4.1(1),(2)

A : P — N is a delay transition function satisfying Assumption (5.3) and the delay
operator D is given by equations (4.30)—(4.33)

K, A and a given attenuation function | : P — [0,1) satisfy inequality (5.16)

E satisfies Assumptions 3.4(1)-(5) where

A= gg}g(ZA(p) +0) (5.33)

The switching operator S = DM (X, G) is given by equations (3.7),(4.26)—(4.28)
and (4.30)(4.33)

The switching controller C' is defined by equations (4.34),(4.35).
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y1 = Pu (2.7)
Uy = Ul + U2 (2.8)
Yo = Y1+Y2 (2.9)
Uy = Cyz (2.10)
L :={lo=0,l1,la---} ={leN| gl = 1) #q(l), 0<I<k (5.4)
. Jb € N s.t. a—l+bA
V(lislitr) = {a eN ‘ L <a<lin } (5.5)
Qk:{kozoakla k?) }7 ngz Sk’L—l—l Sk (56)
Qr =Ly U U{V(l“ li+1) | li,li+1 € Lk} (57)
>0

TABLE 5.8: Details for Proposition 5.13

Proposition 5.13. Let 1 < r < co. Suppose p, € PV C P where PU satisfies Assump-
tion 5.2. Let P = P, . Let U be a monotonic plant generating operator and suppose
(H,v) defines a monotonic cover for U. Suppose the EMMSAC algorithm is standard.
Let k € N. Let G be a plant generating operator that satisfies G(3) C U(j), j < k. Sup-
pose (wo, w1, wz) € W x We x W, satisfy the closed loop [P,C] equations (2.7)—(2.10)
over the interval [0,k). Let ki, i € N be defined by equations (5.4)~(5.7) and suppose
kn+1 < k. Let myn € N, suppose Fi N [k, — 0, knt1] =0 . If pe € G(j), j > km,

||c||(74( () + 75U )))XV(H(J) v(j) <1, Vj<k (5.34)
and aop(U(K)) < 1 then
| Tk —1w2ll - < 6(U k), H(E), v(k))|| Th,, 1 wall + v7 (U (k), H(k), v (k))|lwoll
where for Q1 C PY, Qy C PH, e: P - Rt:

Xv(Q2,€) = 2 sup €(p) (5.35)
pEQ>

1/r aop(Q1) 1/r 1/r .
13(Q1) = (1 —I—O@S(Q ) (#p(&)) + o os(Ql) if 1<r<oo
max{1,a0s(Q1))}aop(Q1) + aos(Q1) if r=o0

1/7“ 8 o /r
(@ - {< do) (299) " it 1<

max{l,aos(Ql)})% if =0

BHe(Q1) if 1<r<oo
Q =
) { Bos(Q1) if r=o0
= 1+v3(Q1)
76(Q1, Q2,€) = 1— Il (va(Q1) +75(Q1)) X (Qo, €)
1/r 1/r
Q1. O = 2l (a(Q) +35(Q1))

1 — [lef|(74(Q1) +75(Q1)) X0 (Qa2, €)
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and aop,os, Bop, Bos are from Proposition 5.7 and ¢ is as in Assumption 3.4(5).

Proof Let 1 <r < oo and

1 if T =00

r if 1<r<oo
- { |
Let k € N. Let (wg, w1, ws) € W x W, x W, denote the solution to the closed loop
equations (2.7)—(2.10) with P = P, and C as in equations (4.34),(4.35). Let the intervals
A = ki — o0, ki), B = [ki, ki1 —0)

be defined by equations (5.13),(5.14). In particular (wp, wy,ws) € W x W, x W, satisfy
equations (2.7)—(2.10) on the intervals A; U B; U A;41 where

A;UB;UAi1 C[ky —0,kpi1) C[0,k)

for m <7 <n.

For k; € Q, define k;, k; as follows. Let

ol

i = kipgn—ki+o-—1

okl

i = kipi—1
and note that Al @] Bz @] Ai+1 = [I;ZZ - ]%Z', ];ZZ]

We now intend to apply Proposition 5.7. For that purpose we first observe the following

facts.
By Lemma 5.4, Assumption 5.3 and equation (5.33) we have
0<ki=khkiy1—ki+o—1<2A(q(k;)) +0 <A (5.36)
Let p = q(k;). Define
{ o, dy[ki](k) it ke A UB;UAj
0 otherwise
By Assumption 3.4(3) we know that:

q)’_ﬂi dp [/;ZZ] S Np[]}i_ki’]}i} (’wg).
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For every k; € Qy let w§ € W, satisty

wg(k) if ke B;U Ai+1 and k; € Ly,
wg(k:) = wg(k‘) if ke A; UB; U Az’—i—l and k; € Qg \ L .
0 otherwise

Note that we, w§ satisfy equations (5.17),(5.18) of Proposition 5.7.

There exists a wf € W, such that

(wh, wh, wy) € Wy We x W,

satisfies equations (2.7)-(2.10) for P = P, and C as in equation (4.35) on the intervals

A;UB; U Ay = [k — 0, ki) = [ki — K, k).

To see this observe that ws is generated by the special structure of C, i.e. the controller

C. at time k; is initialised to zero if k; € L; and inherits an initial value at time k;

determined from ws|4, if k; € Qp \ L.

Define
a = aopU(k)) <1
b = aos(U(k))
d = pPor(U(k))
e = Pos(U(k))
so= [lwsla,llr > llw§la,lr
fi = llwels e = S|l
B = Mwi™ | aosoa e = 195, dygey kil
& = [wl® sl < B = 1@k, dygesy il

where we note that since U is monotonic, hence G(k;) C U(k;) C U(k), it follows for all

k; € Qy, that:
aop(G(ki)) < aop(U(ki)) < aop(U(k))
aos(G(ki)) < aos(U(ki)) < aos(U(k))
Bor(G(ki)) < Bopr(U(k:)) < Bor(U(k))
Bos(G(ki)) < Pos(U(k:)) < Pos(U(k))
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Since ||wa|p; ||r = ||w§|B,]- it follows from Proposition 5.7 that:

IN

azf + dﬂf
bzf + eef.

'3
Zit1

ff

IN

Since ¢; < f; it follows that [|€|(y, n)ll < ||B]pm,n|l and by Proposition 5.11 we then have
for 1 < r < oo that:

”wQ‘[km,knJrl)” = HHw2|Am+1”7 Hw2‘Am+2”7 ) ”w2|An+1H7
[wal By lls 12| B [l -+ w2l B, | (5.37)

- Hd[m—i—l,n-l—lbf‘[m,n]“
V3(U (k) 2m| 4+ ¥4 (U B Blimn | + 75U (k) €l
(U (K))|2m| + (ya(U (k) + 35 (U (k) 13, m I (5.38)

IN

IN

Recall that
%de[]] = %z,]dp[]]a 1 < ja JAS 7)7

also recall that

lz, ylle = [zl ylle]],» 2,y €S, 1<r < o (5.39)

By Assumption 3.4(3) we have

??‘l

illl-

g™ laopoacnll = 1125 dgge Rl < 125, g
Let m < i <n. For k; € Qi let p; € H(k) such that:
q(k:) € By(pi,v(k)(p:))
where the existence of such a p; € H(k) is guaranteed since
q(k;) € G(kj) C U(kj) C R(k;) C R(k),

where R(j) = Upen ) Bx(p, v(7)(p))-

Let z; = q(Fi(p;)) and let B; = By (p;,v(k)(p;)) hence q(k;),z; € B;. Observe that
k; = kizg —1< k:z+1 = kiio — 1 and that 0 < k; < A (equation (5.36)).

We are now in the position to apply Proposition 5.8. With equation (5.39) we obtain:

1Blimmll = HH%M gt B 1 195 gy B ]l -+ 5 1@, i) enl [
= 19, datk) Fomls @y Dyl ) Bt ] P, Ao [l |
< I19g,d [’f L @y s o], -+ B, oy [hn] |
+xu (H (), v(k))lclll| 7, w2l (5.40)
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where by equations (5.20) and equation (5.35)

x = max sup x(p,q) <2 sup v(k)(p) = xy(H(k),v(k)).
MISN p geB; peH (k)

We now bound the term ||®; d.,, [kpn], .|| in terms of ||wo|| using Proposition 5.9.

Let p € H(k). Let

{ao, a1, -+ aiv, ai} = [km, kn] 0 Qr(p, v(K)(p))

be the ordered set (a; < ajy1, 0 < j < i — 1) of switching times corresponding to the
plants within the set B, (p, v(k)(p)) over the interval [k, k,]. For j € N, let:

a; = aj+1—aj+a—1
a; = Qj41 — 1.

First observe that

aj—2 < aj —aj.

Since Fj N [k — 0, kpy1] = 0, it follows that a; € Ok(p,v(k)(p)), 0 < j < i, hence
the switching sequence g(aj;) will switch back to a plant within the neighbourhood
By (p,v(k)(p) for one final time in [0, k], after a;, i.e. there exists a time x € Qj such
that:

k>x=Fi(p,v(k)(p) >a;,=ai11—1>k,

and z = g(x) € By(p,v(k)(p)).

Define
Y(p) = Pad:aol, Pa dz(ar], -, Pad[a].
Since x € @ and since p, € G(z) we have by Proposition 5.10 that
d:[z] < pflwol-
Hence by Proposition 5.9:

[P = 1 ®agdz[ao), ®ay dzla], -+, Pad:faill| < (L D[[[d=[z][] < (1L, Dlplfwoll-

Let {p1,po,-- ,pa} = H(k), a =|H(k)|. Since

[k knl 0 Ok = Upe ey {[Fm, kn] 0 Ox(p, v(F)(p))}
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it follows that

19, e ], @5y ey o]+ @ ey [l < [[9(01), (p2), -+ %o (pa)|
= |llv@)I; @)l [ (pa)
< H L1l HNHwOH
—_——
2|H (k)|
= 2V H (k)Y plwo
hence by inequality (5.40) and equation (5.39):
181 mm Il < 2" [H (B llwoll + xo (H (K), v(B))lelll| Tr, 4, —1w2]l- (5.41)

By inequality (5.41) and inequality (5.38) and since

|zm| = [lwa|a,, | < (| Tk, —1w2]]
we have
| Tk 112l < ([ Ty —1w2]] + [|w2] kg )l
< N T rw2ll + 23U (K))[2m] + (va(U (k) 4+ v5 (U (R)) 18l |
< (14U E) T —1w2|l + (1a(U (k) + 75U (k)))

(2R ol + o (R), () el 1)

Since inequality (5.34) holds, we can now rearrange to obtain:

| Fi oyl < !
T2 =T el (ra(U (k) + 75 (U (R))) xo (H (k) v (K))
(U + 2@ ) Tyl
27 (3a (U () + 35U () [H(B) M o
< o(U(k), H(k), v(k))|| Ti, —1wal| + 37 (U (k), H(k), v(k))||wo|
as required. O

In Chapter 6 we will establish sufficient conditions that inequality (5.34) can be satisfied
by a finite cover (H,v) for U.

5 Main result

Define the two time intervals [0, k,) and [k, oo] where the inclusion time k, € NU oo is

the time at which the parameter p., corresponding to the unknown true plant P = P,_,
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belongs to the set of available parameters for the first time (see equation (5.42)). Note
that in the classical setup (e.g. see French and Trenn (2005); Fisher-Jeffes (2003);
Hespanha et al. (2003); Morse (1996, 1997)) we have p, € G(k) = G, Vk € N so k, = 0.

In Proposition 5.13 we have established gain bounds for sequences of intervals (ongoing
intervals) relating to ongoing switches, i.e. m,n € N, k; € O, 0 < m < i < n and
in Proposition 5.5 we have established gain bounds which can be applied to intervals
(final intervals) relating to final switches, i.e. k; € Fi,. Now observe the following: to
every p € H(k), provided that Qx(p,v(k)(p)) is not empty, there exists a plant z in
the neighbourhood B (p,v(k)(p)), such that the algorithm switches to that plant for
the last time on the interval [0,k], i.e. z = q(Fk(p)), z € By(p,v(k)(p)). This implies
that none, one, or a sequences of ongoing intervals is always followed by a final interval.
This progression may repeat itself a maximum of |H (k)| times since there can be only a

maximum of |Fy| = |H (k)| final switches.

These facts will be used in the following main result establishing gain bounds on ws in
terms of wy for dynamic and static EMMSAC — as indicated by the gray squares in

Figure 5.7. To improve readability we repeat all relevant equations in Table 5.9.

U2

Y2

FIGURE 5.7: Bounding ws = (u2,%2) " in terms of wg = (uo, yo) "
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y1 = Pu (2.7)
Ug = UL+ U2 (2.8)
Yo = Y1+Y2 (2.9)
U2 = Cyg (2.10)

TABLE 5.9: Details for Theorem 5.14

Theorem 5.14. Let 1 < r < co. Suppose p, € PV C P where PY satisfies Assumption
5.2. Let P = P, . Let U be a monotonic plant generating operator and suppose (H,v)
defines a monotonic cover for U. Suppose the EMMSAC algorithm is standard. Let
k € N. Let G be a plant generating operator that satisfies G(j) C U(j), j < k. Suppose
(wo, w1, we) € W X We x W, satisfy the closed loop equations (2.7)—(2.10). Let

- { min{i € Qoo | ps € G(i)} %f 3 s.t. pe € G(j), Vi > i (5.42)
0 if not
and suppose k, < co. If
lell (3 () + OGN ) xw (), v(5) < 1, ¥ < k (5.43)

and aop(U(k)) < 1 then:
| Twall < BU(K), H(k),v(k), p) | T —rw2|| + (U (k), H(k), v(k), ps) [woll

where for Q1 C PY, Qo c PH e:P - R*:

aop(Q) = sup l(p1)
p1EQ
Bop(Q) = J(&) sup sup B5(p1, K(p1), = — 0,0)
P1€Q A(p1)<z<2A(p1)
aps(Q) = J(§) sup sup af(pl,K(pl),O,x —0)
P1€Q A(p1)<z<2A(p1)
Bos(Q) = J(&) sup sup  B(p1, K(p1),0,2 — o)
P1€Q A(p1)<z<2A(p1)
1) = 14+  sup  alp., K(p),0,x)
A(p)<z<2A(p)
72(1)) = sup B(p*rK(p)?Oax)
A(p)<z<2A(p)
1/r
1/r lo% Q 1/r .
Q) = (1+aO/S(Q1)) (#}(,(19)10 +ozo/s(Q1) if 1<r<oo
max{1l,a0s(Q1))}aop(Q1) + 2os(Q1) if r=o0
1/r Bor(@1) \M7 .
74(91) (I1+ag5(Q)) (1—221(”(31)) if 1<r<oo

max{1, xps(Q1)})

Bopr(Q1) :
1_2(1;P(191) if

T =00
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BYI(Q1) if 1<r< oo
o) — <
() {503(91) if  r=o0
Xv(Q2,€) = 2supe(p)
peEQ
1+ v3(Q1)
(90209 = TG+ 1s(20) 0 (2210
27 1) Qo |V (74(Q1) + 75(Q1))
Q1, Qo, =
(91, Q2ne) 1—||c||(v4<91>+75<Ql>)xy<92,e>
B(Q1, Qae) = %201, 05,6 [] nlp
pEQs
A(Q1, Q2600 = 722(Q1, Qav6) IT n@) | 1Q21v7(Q1, Q2. 6,p.) + Y 2(p)
pEQ2 pEQs

where ¢ is as in Assumption 3.4(5) and J(§) is from Lemma (5.6).

Proof Let 1 <r < oo. Suppose 0 < k < k, — 1. Observe that since the gain
a=73U()) 20, j<k

and
0<b=|lcll(mU) +U6)))xu(H(G),v(5) <1, 5 <k

by assumption, it follows that

Also observe that since
a(pe, K(p),0,2) >0, pe PV, z €N
it follows that

'Yl(p) =1+ sup a(p*7K(p)707$) > 17 pE PU

A(p)<z<2A(p)
therefore
BUG), HG).v(G)ps) =7 UG, HG),v(G)p) [ m) 21, 5 <k

and we have

[Fewa| < [T, 1wl < BWUG), H(G),v(5), p) | T —1w2ll + (U (), H(G), v(5))llwoll

as required.
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Now suppose k > k.. Let

{ko = ks kg g} = Upe (i {max(Ox(p)) } U {ki} U Fy
be an ordered set of switching times, i.e. ky, < ky, , 0 <i<m.

Observe that the algorithm might not switch to some neighbourhood By (p, v(k)(p)), p €
H (k) at all, i.e. there might exist a p € H(k) such that Fy(p) = Og(p) = 0, and indeed
Ok (pi) N Fi(pj) may not be empty for all 4,j < k however

m = |Fil + | Upergny (max(Ox(p))}] < 2/H (k)]

Let
ap, = { V6(U(k), H(k),v(k)) if ky, € O
! m(alky,)) if ky, € F,
by, = { (U(k), H(k),v(k)) if ky € Ok
! 2(alky;)) if ky, € Fy

where ay, > 0 since 71,76 > 1, as previously. Now define

/-Cme = min{a > kfm | a € Qa}

and observe that ky, < k < ky, ., where ky, € Qr C Qk, o 0= <m and
kposkfq € Qkme. We then have with

2t = |G, 1wl 0<i<m+1.
and by Propositions 5.5, 5.13 that:

Zfi < agzf + bfiH’on, 0<1<m.
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Since kj, = ks there follows that zz, = |7, —1w2|| hence we obtain
[Tewall < 2fis
< [Janzn+ (H agbpy + [[anbn +--+ [ anbp + bfm> [[woll
=0 i=1 =2 i=m
< [lax <Zfo + ZM\U}OH)
=0 i=0
H(k
< v wm).HE),v®) T no)
pEH (k)
2o+ (HE) (U (), HE),v(R)) + 3 72(0)) o
pEH (k)
< BWU(k), H(k),v(k), p)l| Th,.—1w2|| + §(U (k), H(k), v(k), ps)|lwol|
as required. O

We will establish sufficient conditions for the existence of a finite cover (H,v) satisfying
inequality (5.43) in Chapter 6.

Theorem 5.14 establishes gain bounds for the case where p, € G(j), j > k«. In the
case where U describes a finite constant set the theorem is directly applicable taking
G = U, e.g. for the case of an integrator with an unknown sign, i.e. P¢ = PV =

{(1,-1,1),(1,41,1)}, a robustness guarantee can be given via Theorem 2.12.

In the case where U describes a continuum, one can still take G = U, however the
controller may not have a finite dimensional realisation as a continuum of estimators
is involved. However, in the next chapter, we will establish results where G represents
a finite sampling of the uncertainty set U, and gives rise to a feasible controller for
implementation. With appropriate constructions and under mild conditions, it will be

shown that such controllers robustly stabilise all plants p, € U.

Finally, we claim that if the plant model set contains a plant model of the form
P, :xp(k+ 1) = Apzp(k) + Bpul(k), vi (k) = Cpx(k) + Dpul(k), k € N (5.44)

where A, = -2,B, =1,C), = —%, D, =1, p > 0, the given bounds have the property
that they scale unboundedly for p — oo. This is due to a loss of observability in P, for
large p, i.e. C, — 0 as p — oco. Equivalently, the corresponding transfer function
p
Yy 2+ 24—

. _ p+1
B ="y
Uy z+

tends towards a pole/zero cancellation for increasingly large p.



144 Chapter 5 Stability and gain bound analysis of the nominal closed loop system

To show that this loss of observability causes the gain bound to behave badly, we will
first show that « in Assumptions 4.1 scales unboundedly for p — oo. Recall from
Assumptions 4.1 that Iy, 13,14 € N, Iy <l3 <l4, I3 =[l3,l4). It follows from the output
equation in (5.44) that

ap(l2) = C; M (1 (I2) — Dypuf(I2)), 12 € N.

Since C; ' — 00 as p — oo it follows that for any non-zero wf, ||z, (l2)|| — oo as p — oo.
Given lg,l3,14 we have that ||wa|r] (in equation (4.10)) must have the property that
||wa|rs|| — o0 as p — oo since the closed loop signal we|z, is a function of the previous

state x,(l2). Hence there cannot exist an M < oo such that

Oz(p,K(p),a,ac) < M7 Va,x as p — oo.

To see that this is reflected by the o in Lemma 4.3, note that for P, as in equation
5.44 the observability matrix O), in the proof of Lemma 4.3 is given by O, = C,,. Hence
O; = Cp_l = —1%1 and Y, — oo as p — oo and also a(p, K(p),a,x) — oo, Va,z as

p — 00.

Now observe that in order to satisfy the attenuation ineqality 5.16 for increasingly large
values of o we have to choose increasingly large delays A(p), i.e. A(p) — oo as p — 0.
Since a(p, K(p),+,a), a € N is an increasing function in a, this implies that if p € Q we

have for

aos(Q) = J(§) sup sup ot (p1, K (p1),0,z — o)
P1€Q A(p1)<z<2A(p1)

from Theorem 5.14 that

a0s(Q) — 0o as p — 00

and hence 73, 76 as well as 4 and 3 grow unboundedly as p — oo. This establishes the

claim.



Chapter 6
Design

The outcome of any design process in multiple model switched control must include
a (possibly time-varying) plant model set that allows the algorithm to achieve some
performance objective. Hence a designer is necessarily confronted with the following

design questions:

1. How many plant models are needed?
2. How should they be (geometrically) distributed over the uncertainty set?

3. How can a conservative design be avoided?

At this point we emphasise that even though this thesis has been presented in a different
order, the driving questions that lead to the analysis as it is, i.e. the introduction of
the plant-generating operator G and the cover (H,v) for the uncertainty U, have been

precisely the ones asked above.

To find answers to these questions is considered to be one of the key outstanding issues
in the field of multiple model control. As mentioned in the introduction, the first two
questions are for example addressed in Fekri et al. (2006), where the authors ask: “How
to divide the initial parameter uncertainty set into N smaller subsets, how large should
N be, etc.” and then provide an explicit, however sub-optimal, design procedure to find
a constant plant model set, based on the atomic closed-loop performance of matching
plant and controller pairs. Anderson et al. (2000) make first steps towards a principled
construction of a constant plant model set, whereby they construct a cover for the
uncertainty set from local robust stability margins of atomic plant and controller pairs.
Furthermore in Anderson (2005) similar questions to Fekri et al. (2006) are asked: “How
many plants (models) should be chosen, how does one choose a representative set of

plants (plant model set), etc.”.

145
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The third question for a non-conservative design of the plant model set, however, has
not been addressed previously for MMSAC and is considered to be a key contribution of
this thesis. For example, Morse (2004) assumes the uncertainty set to be compact and
known. This implies conservativeness since the achieved bounds scale with the size of
the uncertainty set. However, no discussion of this issue has yet been conducted in the
literature although we note that one of the key reason why adaptive control algorithms

are employed at all is their potential for non-conservativeness.

This chapter will give explicit, performance-orientated approaches to answering all of
these questions for EMMSAC. We start by attaching some further meaning to the objects
H,vand U.

1 Uncertainty, information and complexity

The purpose of the plant-generating operator U is to specify the uncertainty of the true
plant P = P, in terms of a plant model set. Let U be a constant. If we have complete
information about p, we would let U = {p.} C P hence U is a single plant. Usually

we are uncertain about p,, however we may have enough information to confine p, to

1

sta’ @ € [_amaxaamax] let

a region in P, i.e. p, € U C P. For example for P, =
U(k) = [_amazaamaz]y Vk € N.

There is also the possibility that there is no information about the ‘size’ of the uncer-
tainty available, but only on its structure. For example if P, = SJ%a, a € (0,00). This
scenario motivates a dynamic U, as discussed later in this chapter. However for now we

will confine ourselves to the case where U is constant.

We now employ a suitable measure to quantify the amount of information that is rep-
resented by an uncertainty set specified by U. We will denote this quantity the “metric
entropy” or the complexity of U. A higher complexity implies less prior information.
This concept of interlinking information with complexity is due to Zames (1998), where

it is utilised to seek to define the term ‘adaptive’ in a control context.

For our purpose this connection is important since the complexity of U, as measured by
H and v, determines the gain bound 4 from Theorem 5.14. The purpose of this chapter
is to address design, e.g. how to choose a suitable sampling G of U for the actual
implementation in order to ensure robust stabilisation of all p, € U. The resulting gain
bound for the implemented algorithm will then depend on the complexity of U rather
than the absolute number of the allowable plant models in G. For example in the case
of static EMMSAC, we will give conditions for G which guarantee robust stabilisation

of all p, € U, together with a complexity-dependent gain bound.
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1.1 Complexity and metric entropy

The following definitions of complexity are interpretations via metric entropy, which is
the minimum number of elements that are required to approximate any given subset in

a metric space, given an error bound e.

We define the metric entropy
Cg: (P*,RT) - N

by
Ce(A,e) ={n € N|n=min(|h|) s.t. A C UpepBy(p,€), h € P*}

where we note that the size of the neighbourhoods ¢ € RT is required to equal for all

p € h.

The Kolmogorov (1956) ‘n-width’ is the inverse concept, hence returning the size e of

the neighbourhoods in terms of the number of neighbourhoods n. Define the n-width
Cy: (P*,N) - R"

by
Cn(A,n)={a R |a=inf(e) s.t. A C UpcpBy(p,€), h € P*, |h| =n}.

Note that for a given constant, compact plant-generating operator U the choice of €
in Cg(U,¢) or n in Cy(U,n) defines a cover (h,¢€) for U and we could therefore rewrite
the gain bound in Theorem 5.14 in terms of the complexity Cg or Cn of U by letting
(U,H,v) = (U, h,e). Such covers will satisfy inequality (5.43) for sufficiently large choices
of n in Cg(U,n) and sufficiently small choices of € in Cy(U,€). We can therefore relate
the complexity of the uncertainty set U to performance. However at this stage we have
no handle on how to choose n or €. A further minimisation of the gain-bound with
respect to either n or € could then be performed. Additionally, these classic definitions
are limited since they provide a cover with neighbourhoods of a common size ¢ where a
cover in terms of (H,v) is more flexible and allows for neighbourhoods of different sizes
for each p € H.

We now combine the idea of measuring complexity in terms of a cover with the constraint

imposed by the gain bound 4 in Theorem 5.14.

Let A C P be compact and assume that k, = 0 hence § = 0. Let 4 be defined as in
Theorem 5.14. Now define the smallest achievable gain bound 4opr with respect to 4
by

Yopr : P* — RF
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and

7" =1inf(§(4, h,€,ps)), px € A
Jopr(A) = 7" €R | sit. A C UperBy(p,e(p)), he P*, e: P—RT 5. (6.1)
and (U, H,v) = (A, h,€) satisfy (5.43)

So as before, for a constant, compact plant-generating operator U, Jopr(U) defines a
(in general non-unique) cover (h,e€) for U. However, this cover is minimal in respect to
4. This makes the design problem of constructing a cover explicit. 4op7 will critically
depend on the behaviour of the gain bound 4. For example assume that for some
algorithm, (U, h, €, p,) does not depend on the number of elements in h, but only on
the size of e. This algorithm will for an uncertainty set U with many plants (or a
continuum) achieve a lower 4o pp than an algorithm where 5(U, h, €, p,) scales with | A|.
For a general, time-varying plant-generating operator U, covers can be constructed by
evaluating Yopr(U(k)) for all k € N.

Let A C P be a compact plant model set and (h, €) provide a cover for A. The complexity
of A, as evaluated by (h, €), is therefore given by C(A) := |h|. For example if the cover
(hopr, €opr) is minimising Jopr(A) then the complexity of A, as measured by the
minimising cover (hopr,€opr), is given by Co(A) = |hopr|. The given gain bounds

are therefore implicitly functions of complexity.

In general it is not possible to solve the optimisation problem in equation (6.1) and
to determine the cover (h,e) that minimises 4 for A = U explicitly. This, however, is
not necessary since we may utilise any suitable (possibly non-minimal) cover for U in

practice. With the true gain v we therefore arrive at v < Aopr < 4.

2 Scaling

The overall objective of this chapter is to indicate performance-orientated design strate-
gies for the plant generating operator GG. Since no measure of the actual performance
~ is available, we seek to optimise upper bounds on ~, e.g. Jopr or %, with respect
to the plant-generating operator GG instead. For the sake of argument, this section will
introduce two key ‘scaling geometries’ of G and investigate the behaviour of the bounds
in their respect. In particular these scalings describe either a refinement or an expansion

in the parameter space of G.

Consider the following example. Let U be a constant plant-generating operator defined
by
U= [(_lv 1’ 1)’ (+la 1’ 1)] C 75LTI - RS, > 0.

A water tank could have such an uncertainty set, where U describes the uncertainty of

the flow rate in or out of the tank.
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A possible sampling of U is then given as follows. Let the parameter bound ! > 0, [ € R
and the parameter step m > 0, m € R define the plant model set

Prm = {(i,1,1) € Pry; CR*|i=xam, a €N, |i| <1}. (6.2)

All elements in Py ,,, are therefore bounded by [, and m apart where we observe that the

constant plant generating operator G = P, ,, is a subset of U for all m > 0.

We are now interested in how the algorithm behaves when the number of plant models
under consideration is large, e.g. the number of elements of P, ,, is large. In particular
consider the two cases depicted in Figure 6.1 where 1. [ is constant and m is increasingly
small, and 2. m is constant and [ is increasingly large. In a geometrical sense we will
observe in the first case a ‘refinement’ in parameter space and an ‘expansion’ in the

latter. These geometries are motivated by the following observations:

m m
}—.—0—.—0—.—{ - }—Q—O—Q—{
—1 l g -1 l 5
s £
2 2
m g m "
«> 8 «—> o
+—H—0—0—0—0—0—0—0—+ +—0—0—0—0—0—+
—1 l , —l l |

FIGURE 6.1: Increasing the number of elements in P, ,,, by scaling

e Assume that computational resource is not an issue and we can implement as
many plant models (with corresponding estimators) as we like. We might now be
interested in choosing a very fine grid of plant models, corresponding to a small
m, in the hope that making plant models available to the algorithm that are very
close to the true plant improves performance. This case is concerned with the

refinement geometry.

e Assume that the amount of available computational resource is limited. We then
might ask the question: What level of refinement m > 0 is required to achieve
a given performance objective? This case is also concerned with the refinement

geometry.

e Assume that for the true plant P = P, = F; 1,1) the parameter ¢ is poorly known,
i.e. we only know that |i| < iy, Where iy, is large. We are then concerned with
providing a stabilising plant model set for all possible values of 7. Therefore the
plant model has to be expanded for increasingly large values of 4,,4,. This case is

concerned with the expansion geometry.
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We now study the effects of the given scaling scenarios on the algorithm where we utilise
different fixed plant model sets P ,,, for the argument. Let Y =Y =1[,, 1 <r < oo:

e How does the established gain behave with respect to the refinement geometry?
E.g. for G =P, with [ € R and m — 0.

e How does the established gain behave with respect to the expansion geometry?
E.g. for G = P;,, with m € N and [ — oo.

The answers to these questions will heavily influence the design of the plant model set.

3 Refinement scaling

Observe that all previously established EMMSAC gain bounds in the literature scale
with the number of elements in the plant set (e.g. see French and Trenn (2005)). This
is analogous to choosing p, € G = H and v = 0 in Theorem 5.14. Then 4 will also
scale exponentially with the number of elements in G. In Hespanha et al. (2001), which
is concerned with an observer based multiple model switched adaptive algorithm in the
style of Morse, the established bound on the size of the state as well as the robustness
margin also scale with the number of elements in the plant model set. The authors then

propose a modification to the switching logic to circumvent this analytic issue.

However, is there reason to believe that the actual closed loop gain of multiple model

switched adaptive control algorithms is not well behaved in respect to refinement scaling?

Consider this: let I € R and consider an arbitrary plant P,, p € Pi,,. If m > 0
becomes small, an increasing number of plants will accumulate in neighbourhoods of
P,. However, since all plants in small neighbourhoods of P, are naturally ‘close’ to
P,, we could attempt to model them as a single plant P, with a small (time-varying)
perturbation. Therefore, if we specify a finite number of neighbourhoods covering the
whole of P ,,, any plant in P;,, can be modeled by perturbations to central cover

elements for an arbitrarily small m > 0 — as depicted in Figure 6.2.

We have already introduced a suitable device to formally express this intuitive idea for
EMMSAC. Observe that B, (p,v(p)) specifies a single neighbourhood with radius v(p)
around the plant p € H. H then specifies the centre of all neighbourhoods that cover
U, hence we say that (H,v) provides a cover for U. Since the gain bound in Theorem
5.14 holds for any p, € G C U, where U can be a continuum, we are potentially allowed
to use an arbitrary number of plant models within G. However, observe that the bound

of Theorem 5.14 scales with the number of elements in H, where (H,v) is required to
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FIGURE 6.2: Covering P, ,, by neighbourhoods: The plants labelled x are modelled as
perturbations of the central plant P,

satisfy inequality (5.43), i.e.

2supv(p) = x»(H,v) < - :
pei Jell () + 35 (V)

This inequality implies a constraint on the size of the neighbourhoods v(p), p € H (an
upper bound), where ¢ depends on the estimator and 74,5 depend on the order and the
stabilising effect of all atomic closed loops [P, Ck )], p € Upen By (p,v(p)), given the
controller design procedure K. The fact that the allowable size of the neighbourhoods
is a function of the uncertainty set specified by U poses the question if to a compact
plant operating operator U, there always exists a finite cover (H,v), hence a finite 4 in
Theorem 5.14.

That this is indeed the case is shown next:

Definition 6.1. Let 0 € N . Let U be a plant-generating operator. Let «, 3 be defined
by Assumptions 4.1 and A : P — N, [ : P — R* satisfy inequality (5.16). A control
design K : P — C is said to be U regular if for all A(p) < x < 2A(p), the functions l(p),
B(p1, K(p),x —o0,0), a(p1, K(p),0,x — o), B(p1, K(p),0,x — o), = € N are continuous
with respect to all py,p € PY.

Proposition 6.2. Let U be a compact plant-generating operator and suppose K is U
regular. Suppose x|pu is continuous. Then there exists a finite cover (H,v) of U which

satisfies inequality (5.43) .

Proof Let j € N. Since U is compact and K is U regular, the suprema

aop(Q) = sup I(p1), Q@ c PY
p1EQ
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exists and app(U(j)) < 1. Also aps(U(j)) < oo and Sop(U(j)) < oco. Therefore there

exist €; > 0 such that
1

2ell (U (G)) + (U G))

Recall from Chapter 5, equation 5.3 that

€; <

By(p,ej) = {p}U{p1 € P | x(p,m) <&} NU(), peP.

Since x|puv is continuous, By (p, €;) is open and hence { By (p, €;) }per ;) is an open cover
of U(j) with respect to the subspace topology of U(j). Since U(j) is compact, there
exists a finite set h; C U(j) such that {By(p,€;)}pen; covers U(j).

Let v;(p) = ¢;, Vp € P hence (hj,v;) € (P*,map(P,RT)) is a finite cover of U(j). Since

vj is constant it follows that €; = 3 Xv; (hj,v;). Hence

lxvy-(hj,”j) =¢ < : :
2ell (U () + (U G)))

2

We can therefore construct a monotonic cover (H,v) by letting H (k) = U;j<ihj, v(k)(p) =
minj<y €j, Vp € P, It is straightforward to verify that (H,v) satisfies inequality (5.43)
a

as required.

We will now show for an example that the existence of a finite cover allows the construc-

tion of EMMSAC gain bounds that are invariant to refinement scaling.

3.1 Example

Let the true plant be given by P, , p. = (0,1,1) where the constant plant-generating
operator U specifying the uncertainty set, is given by U = [(—[,1,1),(+[,1,1)], I > 0.
Apply Proposition 6.2 to give a finite, constant cover (H,v) for U. Let the constant
plant-generating operator G be given by equation (6.2), i.e. G = Py, and suppose that
p« € G. Observe that P;,, describes a sampling of U and therefore G C U.

Let the plant models P, : Uy — Ve, p € Pim be given by
Plape) zp(k +1) = axy(k) + bl (k), oi(k) = cxp(k), z,(—k) =0, VE€ N.  (6.3)

Let the controller design procedure K corresponding to the plant P,, as defined in
equation (6.3), be such that C, : Vo — U, satisfies:

OK(p) : ZLQ(]C) = —iyg(k), Vp = (i, 1, 1). (64)

Observe that for all p € Py, [P, Cr(p)] is gain stable. Cg ) is a so-called dead-beat
controller since it has the property that if applied to P, it will bring the plant output y
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to zero after one time step, assuming zero disturbances, i.e. if ¢(k) = p and [P,,C K(q(k))]

then y?'(k + 1) = 0 assuming (uo,y0) " = 0.

Let the switching controller be defined by
C[Pl,m] Ve = Ue : Y2 — U2 (65)

with
uz(k) = (C[Prmly2) (k) = (Cg(qa)y2)(k), k €N (6.6)

where q(k) = S(w2)(k) = DM (X, G)(wy)(k) is given by equations (3.7),(4.25)—(4.33)
and A = 1. Observe that equations (4.34),(4.35) reduce to equations (6.5),(6.6) for the
special case where all plant models and controllers are dead-beat (stabilisable) since we

do not have to consider an initialisation at switching times and can simplify.

Now since p, € G, Theorem 5.14 applies where k, =0, =0 and 54 =AU, H,v,p.) <
00. Most importantly, since 4 is invariant to G, the bound can be achieved for any

refinement level m > 0.

This has the following important implication: if we are not limited by implementation
considerations we can arbitrarily increase the number of plant models in P ,,, whilst
maintaining a common gain bound 4. However note that this does not necessarily mean
that the actual closed loop gain v = |[Ilp,_//cpp,,.)|l is minimised as m — 0 but only that

it does not grow unboundedly in the refinement scaling geometry, i.e. v <4, ¥Vm > 0.

4 Sampling of the uncertainty set

Up to this point we assumed that p, is in the plant model set G or that there exists a
time k. € N such that p, is in G(k.). For any p, € U C P this can only be ensured by
the choice G = U C P and hence G may possibly describe a continuum in P. In order
for the EMMSAC design to be feasible, we would have to construct estimators that can
provide residuals for a continuum of plant models and are bounded in computational
complexity. Note that the estimator constructions (estimator A and B) in Chapter 3 are
not suitable for a direct implementation of such plant model sets. Hence for the purpose
of this thesis we only consider an EMMSAC design to be feasible if G is finite:

Definition 6.3. An EMMSAC controller is said to be feasible if the underlying plant-

generating operator G is finite.

The construction of estimators that are able to deal with a continuum of plant models
goes beyond the scope of this thesis, however note that common plant model sets provide
a lot of exploitable structure. For example Morse (1996, 1997, 2004) utilises a state

shared observer to allow plant model sets that form a continuum.
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In the next section we will show how this implementation issue can be overcome and
how a finite plant model set G may be constructed by sampling (possibly continuous)
uncertainty sets U. The results will establish conditions under which feasible EMMSAC
controllers robustly stabilise any p, € U, and further that these designs are invariant to

refinement scaling.

4.1 Sampling of a constant uncertainty set U

Consider a bound 7 on the closed loop gain that holds for all p, € G and has the property
that it scales with the number of elements in G. All previously established EMMSAC
gain bounds have this property, e.g. see French and Trenn (2005), which is equivalent
to taking U = G = H, v = 0 and gives ¥ = sup,epc (G, G,0,p) in Theorem 5.14 (on
the appropriate class of systems). Notwithstanding their scaling behaviour, such gain
bounds lead with Theorem 2.12 to a global robust stability margin bpc = ~~L. Note
that we utilise the bound 4 > 4 for design, since (G, G, 0, p.) depends on the true plant
P,., p« € G, which is unknown.

e c (@

FIGURE 6.3: Covering U by neighbourhoods of size bp,c around p € G

Given some constant, compact plant-generating operator U, we now would like to con-

~! around each p € G combine to a

struct G such that the robustness margins bpc =7
cover! for U, i.e. U C Upe Us(p,p1)<bpc 1P1}- 1f such a finite G can be constructed then
a feasible EMMSAC design exists that robustly stabilises all plants in U — as depicted

in Figure 6.3.

!This cover construction follows essentially the same idea as the local cover construction (H,v) for
U. However, note that v defines neighbourhoods in the structured uncertainty set U in order to give a
notion of complexity of U and to be able to deal with infinitely many plant models, whereas bp,c = 7!
defines (global) robustness margins (gap balls) in P.
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However, since 7 scales with the number of elements in G, and bpc = 1

specifies
the size of the robustness margins around each p € G, bpc may shrink to zero as the
number of plant models in G increases and there may not exist a finite cover at all (see

Figure 6.4 (A-C)).

A B C

N ey | )
Saiat \Loode

FIGURE 6.4: Attempt to cover U by neighbourhoods bp ¢, where bp ¢ scales with |G|

Hespanha et al. (2001) essentially face the same problem for their observer-based mul-
tiple model switched adaptive algorithm. They note: “[...] if the range of parametric
uncertainty is large [...] then the amount of unmodeled dynamics that the switching
controller can tolerate becomes small, and might not be sufficient to cover the entire
family of admissible process models.” In order to rectify this issue, the authors then

propose a modification to their switching logic.

To establish robustness margins that are well-behaved in the refinement geometry is
therefore not just a theoretical exercise, but it is in fact essential to ensure the existence

of a feasible design for the uncertainty set U.

Now assume that (H,v) provides a suitable constant cover for U which satisfies inequality
(5.43). Furthermore assume initially that p, € G C U. We then have by Theorem 5.14
that k. = 0, 8 = 0 and 5 = sup,epv (U, H,v,p) < oo. Since this ¥ is well behaved
in the refinement geometry and invariant to G C U, a feasible EMMSAC design exists.

This brings us to our next main result:

Theorem 6.4. Let U be a constant, compact plant-generating operator and suppose
pe € PY. Suppose the controller design procedure K : P — C is U-reqular. Assume the
EMMSAC algorithm is standard where (H,v) is a constant cover for U which satisfies
inequality (5.43). Let % be as in Theorem 5.14. Then there exists a constant, finite plant
generating operator G satisfying P¢ C PU and 7d < 1, where

’_}/ = Sup ’S/(U? H? V?p)7
pePU
d = sup inf g(pl ,D2)

pocPU P1EPC



156 Chapter 6 Design

where the standard EMMSAC design based on K and G stabilises all P = P,, and

1+d
II <~ .
1, el ST 74

(6.7)

Proof Since U is compact there exists a constant, finite plant generating operator GG
such that P¢ c PV and such that 4d < 1. Let p; € P% be such that g(p*,pl) < d.
Since P¢ € PV and U, G are constant it follows that G(j) C U(j), Vj € N, and hence
by Theorem 5.14 that

”prl//C” S /AY(UJ‘Hayapl) S 7}/ < 00.

-

Since 0(ps,p1) <d < 5!

= bp,c the result follows from Theorem 2.12 as required. O

It is important to note the following facts:

e A refinement of G is always possible since the bound on the closed loop gain in

1

inequality 6.7 holds for any refinement level d such that d < ¥7*. Hence we have

a positive answer to our first scaling question regarding refinement in a general

setting.

e The bound in inequality 6.7 also holds for any plant p, € U > U where

A -

U=Uyepc{peP|dp,p) <d}

Since § describes gap-balls in P, this implies that the EMMSAC algorithm robustly
stabilises all p, € U.

e Recall that Theorem 5.14 allowed plant models of the form

p
p oW _2tha
Pl z24+2 ’

although we have shown that then the corresponding gain bounds scale unbound-
edly for increasingly large p (see Page 143). However in Theorem 6.4 such plant
models are excluded by the assumption that U is compact, i.e. in the limit, P, is
not observable hence not contained in U C P which, by Assumption 5.2, is a set

of observable plants.

Note that Theorem 5.14 only requires that p, € G C U. So for a constant U, G may be

time-varying. This leads to the following result:

Theorem 6.5. Let U be a constant, compact plant-generating operator and suppose
pe € PY. Suppose the controller design procedure K : P — C is U-reqular. Assume the
EMMSAC algorithm is standard where (H,v) is a constant cover for U which satisfies
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inequality (5.43). Let % be as in Theorem 5.14. Then there exists a finite plant generating
operator G satisfying P¢ € PY and 4d < 1, where

3/ = Sup ”y(U7 H7 U7p)7
pePU

d = sup sup inf 5(p1 p2)
kEN pycpU P1EG(K) ’

where the standard EMMSAC design based on K and G stabilises all P = P, and

1+d
1—A~d

e el <5

Proof The proof is identical to the one of Theorem 6.4, where we construct all G(k), k €
N sufficiently dense that the robustness margins around p € G(k), given by bpc =571,

cover U. O

This opens the EMMSAC algorithm up to a large class of on-line refinement schemes,
so-called dynamic EMMSAC, as discussed in Chapter 4, Section 3 and later in Section
8 of this chapter.

We conclude this section by observing the following facts, which apply to the setting of

compact, constant U:

e If there is an infinite amount of computational resource available we may include
as many plant models in G C U as we like without weakening the gain bounds from
Theorem 6.4 and Theorem 6.5. Furthermore for G = U the bounds are minimised,
e.g. G being a continuum, and collapse to the one in Theorem 5.14. However,
note that this does not imply that the true gain is minimised for G = U but only

that it remains bounded.

e If there is sufficient but finite amount of computational resource available, we can
always construct a feasible EMMSAC design.

e If the algorithm does not stabilise a plant p, € U, the only explanation is that the
plant model sets G(k), k € N are not dense enough.

These results only hold if a finite cover exists. Sufficient conditions for such covers are
given in Proposition 6.2, which includes the requirement that y is continuous. See the

discussion in Chapter 3, Section 3.

5 Expansion scaling and the cause of conservativeness

We now return to our scaling example (equations (6.2)—(6.6)) for a fixed m > 0 and some

I > 0. Observe that all previously established gain bounds, e.g. the one in Theorem
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5.14, scale with the size of the candidate plant set G = P, ,, hence with [. The reason
for this behaviour may be that either these bounds are unnecessarily weak or that it is
in fact the actual closed loop gain that scales with the size of the uncertainty set and
therefore its upper bounds. In the following we will prove that it is indeed the true

closed loop gain that behaves badly for large .

Intuitively this can be explained in the following way: Observe that for a parametric
uncertainty of ‘level’ [ € R the controller set will have to include controllers which
are able to deal with a true plant of the worst case parameter value [. This implies,
since in our example [ represents a bound on the gain of the true plant, we will have
to introduce for increasingly large gains [, controllers with increasingly large controller
gain to the controller set in order to provide a stabilising controller. If we now manage
to confuse the algorithm by a suitable choice of disturbance and convince it to switch
the controller with the highest gain into closed loop, we will experience high closed loop
gains. We can therefore potentially show that the closed loop gain scales with [ — that

it is conservative.

We will now show for a simple example that the static EMMSAC algorithm indeed has
this undesirable property. Note that although the argument applies to the EMMSAC
algorithm, one would expect similar phenomena for other multiple model schemes e.g.

designs in the sense of Morse etc.

Theorem 6.6. Let m > 0 and let the parameter set Py, be given by equation (6.2).
Suppose the EMMSAC algorithm is standard where A =1, X = 2 and G = Py ,,. Let
the atomic plant and controller be defined by equations (6.3),(6.4). Let the switching
controller C[Py ] be given by equations (6.5),(6.6). Then for p, = (1,1,1), P = P,
the closed loop system [P, C[P; ]| has the property that there does not exist M > 0 such
that

e i, < M vz 1

Proof Let m = 1. Then the set of plants under consideration parametrised by the
uncertainty level [ > 1 is given by:
Pi=Pim = {(-1,1,1),...,(-2,1,1),(-1,1,1),(1,1,1),(=2,1,1),...,(,,1,1)}

= {pla"'7p47p27pl:p*7p37"'7pl—1}

and
G(k) = Pi1 = const., Vk € N.

Observe that with plant and controller being defined by equations (6.3),(6.4) the closed
loop [Py, C ()] is gain stable for all p € P ;.

The proof is now in two steps. First we will show that we can always make the switching

algorithm switch to the controller corresponding to the plant with the largest possible
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TABLE 6.1: Signals for the true plant P = P,, up to time k =3

a €N, (a,1,1) € P, that is a = [ € N. Second we will show that this condition leads to

the unbounded increase in the gain of the closed loop operator as [ increases.

Let pp = (b,1,1),p; = (I,1,1) € P11, 1 < b < l. Now consider the closed-loop system
[P,C[P11]] and let

()= (G)6) o) () 6)-)

We now claim that these disturbances make the algorithm switch to the controller C),

where B > 0.

in two time steps, i.e. ¢(2) = p; = ¢f(2) = S(w2)(2), and that the signals in Table 6.1

are consistent with

Uq uo
( ) = py/crp ) <y ) » Up = ur + U2, Yo = Y1+ Y2
0

Y1
as well as
P = Pp* : yl(k + 1) = yl(k:) + ul(k)
Pp, :yi(k+1) = byl(k) +uj(k)
Py iyi(k+1) = lyi(k)+ul(k)
y1(0) = 9i(0) =4i(0) =0

To see this we argue as follows. At time k = 0 the disturbance estimates dp[0], p €

{pv, 1} are forced by y0(0) = B and zero initial conditions to be

X X
dp[0] = <y3(0)> = <B) , P € {1}

Here and throughout this proof, a vector with an entry marked x indicates that the

entry is irrelevant to the calculation that follows.
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Consequently ||d,[0]| = B, p € {py, i} and since the switching operator S returns
the parametrisation p; € P, with the lowest index 4 if there exist multiple minimal

residuals, we have ¢(0) = p. = p;.

To order Py ,, in this way is a choice we made earlier, however observe that if for example
the order is reversed and the lowest index is assigned such that p; = (I,1,1) we would
have shown the fist step right away. Hence assume the original definition which is most
favourable to the algorithm. With u3(0) = —y2(0) = —B and up(0) = 0 we then have
u1(0) = B.

At time k£ = 1 we have y;(1) = B and with yo(1) = 0 there holds y2(1) = —B. The
smallest disturbance dp[1], p € {py, 1} consistent with (Fua, Z1y2) and P,,, P,, can,
by the general property |dp[k]|| < ||d,[k +1]||, p € P, k € N be found to be

dp[1] = ((g) (0)) pe {mm}

Since ||dp, [1]]| = ||dp,[1]]|, ¢(1) = p« and no switch occurs. Furthermore with us(1) =
_y2(1) = B a‘nd Uo(O) == 0 we have 'LL]_(]_) = —B

At time k = 2 we have y;(2) = 0 and with yo(2) = B — (B there holds y2(2) = B — IB.
Now, the smallest disturbance estimate for d,[2] consistent with (Fjug, Z5y2) and P,

w1 ((5) () )

since similarly minimality is ensured by consistency and ||d,, [2]|| = ||dp,[1]]|. In fact, the
disturbances (ug, yo) are not arbitrary but have been chosen so that this holds.
Since yh*(0) = B, ||dp,[2]]] > ||dp, [2]]|, however the choice d,, (2] = d,[2], py # pi is not

possible since the trajectories would have the property that

Herp, /P, @0, 2] = Hep, 11/ Py, dp (2] # (Fiuz, Tiy2).

This can be seen by choosing

4, [2] = (@ @ <y§bx<2>>> |

In this case we have y}*(2) = bB — B. With ¢5*(2) = B — B from above we would have
to choose
P (2) =bB — 1B £0, Vb #£1

to be consistent with (Fjus, Joy2) and P,,. Therefore we can conclude that

ldp, 211l = B < lldp, [2]]]-
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Consequently we have ¢(2) = [ and obtain us(2) = [(IB — B). Furthermore with
uo(2) = 0 there follows u1(2) = (B — IB).

At time k£ = 3 we are only interested in y;(3) = I(B — [B), which can be calculated
directly. This establishes the first claim.

We now show that this leads to the unbounded increase of the gain of the closed loop

operator as [ increases. From the definition of IIp/,cpp, ;] we have

Iy /cp, 41 (wo)l
H = Sup ’
Weyepall = s [lwoll
[|lw]] > [y1(3)]
[[woll ™ [lwoll
B|(l - 1?)]
BH171_Z70707 ||

v

Furthermore there exist scalars L > 1, o, 8 > 0 such that
=1’ >al®, VI>L

and
II1,1—-1,0,0,--- ||lp < g@l, Yl > L.

Therefore with
«
e, /jcrp il = Bl, vI> L

and the fact that the analysis can be repeated for all m > 0, the proof is complete. O

Since the closed loop system is homogeneous, i.e. Ilp; c(awp) = allp,,c(wo), we have
shown that we can make the algorithm switch to an arbitrary controller in the presence
of an arbitrarily small disturbance. In order to do so, we exploited the zero initial
condition assumption on the system and ‘simulated’ the output of the plant P, by
inducing appropriate disturbances. Finally we proved that the algorithm is conservative
since the actual closed loop gain has been shown to scale with the uncertainty level
[>1.

Note that a clever choice of a cover (H,v) will in this case not provide a finite gain bound
since we established a lower bound for the actual closed loop gain. (H,v) is merely a
theoretical device to establish a bound which is invariant to the number of elements in

G, e.g. in the refinement scaling scenario.

6 Tackling conservativeness

In this section we will discuss the role of a time-varying plant-generating operator G in

dynamic EMMSAC and present a particular construction of G for which we give a gain
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function bound that is invariant to uncertainty level information of the plant (that is, it
is universal). We will achieve this by dynamically expanding the plant model set, which

is motivated by the following observation of natural adaptive systems.

When children learn to ride a bike for the first time, they usually approach this rather
complex control problem in the following way: They first trial various ‘careful’ control
strategies, i.e. they drive slowly, and fail to control the system since a bike is rather
difficult to control at low speeds. Then, they become more and more vigorous until
the control strategy is of appropriate aggressiveness (speed) to control the bike with
satisfying performance. This strategy is not restricted to riding a bike but proves to be
a successful one in ‘learning’ many physical activities. The approach is known in the
literature as the “windsurfer approach” which is due to Lee et al. (1993), where in a
different context it is proposed to gradually increase the bandwidth of a controller in
order to improve the performance of a closed loop system. Exceptions arise, where we
have a priori knowledge on how much vigour is needed, and then approach the problem

appropriately from the start.

To replicate this strategy for EMMSAC we have to evaluate the performance of the al-
gorithm given the current plant model set and then, if not sufficient, include more plant
models, e.g. resulting in higher gain controllers. There are a number of possibilities
for evaluating the current performance of the algorithm. One strong indicator of per-
formance, assuming reasonably small disturbances ||wy]|, is the size of the disturbance
estimates. If they are all rather large in size, none of the plant models is very close to
the true plant and we can usually expect bad performance. Another more direct and
arguably crude performance measure, which we will be using subsequently, is the size
of the observation || 7wzl at some time k& € N. This choice is based on the observation
that if there is no adequate controller in the controller set for the true plant, we expect

large closed loop signals and small closed loop signals if controlled sufficiently.

Assume that the uncertainty set, as specified by the plant-generating operator U, is
finite. We can therefore let U = G = H and achieve a feasible EMMSAC design. This
leads to the following construction of a dynamic EMMSAC algorithm.

Let a plant level set, representing the ‘learning level’ of the algorithm, be given by
PZ'EP*,Q#P]'CP]'+1,1§j<i,i6N (6.8)

where we assume that all P;, ¢ € N are finite and that there exists an index ¢ € N such
that p, € P, VI > 1.

Let
7(Q) = max (%(Q, Q,0,p) + 5(Q,Q,0,p)), @ C P

peQ

where 4 and 3 are from Theorem 5.14.
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Let with v > 2 the expansion rule be given by

G(k?) = Pi(k)7 keN (6.9)

Z.(k):{max{aervma)—av(Pl)s||%w2||} f0<k<oo o

00 if k=00
Theorem 5.14 applies with the choice G(k) = U(k) = H(k), v = 0.
This brings us to our next result:

Theorem 6.7. Let k € N. Let P; be given by equations (6.8) and suppose that there
exists i € N such that p, € Py, | > i. Let the expansion rule be given by equation (6.10)
which gives the plant-generating operator G via equation (6.9). Suppose the EMMSAC
algorithm is standard. Suppose (wo, w1, ws) € W x We x W, satisfy the closed loop
equations (2.7)—(2.10). Then for all wy € W:

[[wa| < Ymoa(l[woll)
where Ymoa : RT — RT is given by
Ymod(r) = B1 + Bar + PBar?,
with

Q) = max (7(Q,9,0,p) + 3(Q,2,0,p))

peE
B = F"P(Pn)+3(Pn)F(P)
B = 273 (Pn)+7"V(PNn)F"(P1)
Bs = F*U(Py)

where B and 4 are from Theorem 5.14 and

N :=min{i > 1| p. € P;}.

Proof Let wy € W and let k, be given by equation (5.42). By equation (6.10)
| Twall <7 (Piky+1)) — 7" (P1) <7 (Pigry+1), Vk € N. (6.11)

By the fact that
i(ky) > N > (ke — 1) + 1, (6.12)
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which follows from the definition of k. and since 4(P;) is monotonically increasing with

i, we can write equation (6.11) with k =k, — 1 as
| T —1w2ll <7 (Pigr.—1)41) <7 (Pn). (6.13)

We now have to consider the two possibilities that

1. k. =00

2. ky < 00.

Note that case 1 can occur if no disturbances are acting on the system, i.e. wg = 0
since it will then rest at the initial condition and Z,wy = 0 for all k¥ € N. We then have
by equation (6.10) that no plants can be introduced to G hence there does not exits a
k. € N such that p, € G(ky).

We then have that
B> 3"(Py) = 7°(Pn)

hence
wall = | Fh,—1w2| < 7(Pn) < B

In case 2 with k£ < k, — 1 it follows similarly to 1. that
| Tews|| < B
For k > k. — 1 we have by equations (6.10), Theorem 5.14 and inequality (6.13) that

| Zwall +7°(P1)
V(Pik)) (|, —1w2l| + [lwoll) +5°(P1)
V(Pi)) (7" (Pn) + [lwoll) +7°(P)-

3 (Pigky)

IN A

IN

Multiplication with ’yl_”(PZ-(k)) > 0 yields

F(Piry) < 727 (Pigy)(hwoll +7°(Pw)) + 31 (Pigry )7 (P1).-

Furthermore, since 4(P;) is monotonically increasing with i, we have with equation
(6.12) that ¥(Pn) < 7(Pi))- Hence

Y (Piy) <A (PN), Vg <w
and we obtain

F(Piy) < 7°(Pn) + 77 (Pw)llwoll + 37 (Pn)7" (P1). (6.14)
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By Theorem 5.14, inequality (6.14) and inequality (6.13) we now have that:

| Zrwall < A(Pige) )| Thou—1w2 || + [Jwol])
< (3 ( ) + 7 (Pr)lwoll + 7' (Pn)F (P1)) (| Fr—1wsal | + [Jwo])
< (F(Pn) + 7 (Pw)llwoll + 3 (Pn)F" (P1) (70 (Pw) + [lwoll)
< FUP(PN) +A(PN)FY(PL) + (2 (Pn) + 7' (Pn)7Y (P1)) wol|
+7270 (Pw) [[wolI?
< Bi+ Ballwoll + Bsllwoll*.

We observe that the bound is independent of k& and therefore

[wa]] < Br + Ballwoll + Bsllwoll*.

as required. O

Now observe that the given dynamic EMMSAC algorithm is universal. This important
fact follows directly from Theorem 6.7. The constants i, 32,33 are invariant to any
uncertainty level information and only depend on P; and N where IV defines the smallest
‘learning level’ ¢ such that the true plant p, is included in Py. Hence we have a positive

answer to our second scaling question regarding expansion.

We are now in the position to compare these result for dynamic EMMSAC to the ones
obtained in Theorem 5.14 for static EMMSAC, and to the counter example in Theorem
6.6.

g[P, C[P )] (r) Theorem 5.14 )
1 true gain static
X Tue s EMMSAC
Theorem 6.6

X5 ’ Theorem 6.7 } dynamic
OERRSSEL o 7 77 70, true gain EMMSAC

> ]

FIGURE 6.5: Gain comparison for EMMSAC under parametric uncertainty of level [

Consider Figure 6.5. In Theorem 6.6 we have discussed how the algorithm behaves in

the presence of an increasingly large parametric uncertainty ! € R, represented by the
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plant model set G = P; 1 with
Pri={(-1,1,1),...,(-2,1,1),(-1,1,1),(1,1,1),(—2,1,1),...,(,1,1)}

and we concluded that the actual closed loop gain |[IIp, //cpp, | scales at least linearly
with the uncertainty level [ € R. This gives a lower bound on the closed loop gain in

Figure 6.5 where

9B, C[PLmll(r) = sup [Up, //cmp,qwoll, 7 €R
llwoll<r
is the worst case gain from the disturbances wg to the internal signals ws at a disturbance
level » € R, as a function of [. Now observe that an increasingly large [ in G = P;;
corresponds to an increasingly large constant U since G C U. This however means that

the bound # in Theorem 5.14 scales with [ — as depicted in Figure 6.5.

In contrast we have show in Theorem 6.7 that for a special (dynamic) choice of G we
obtain a gain (function) bound which is invariant to . We therefore conclude that for
large parametric uncertainties, dynamic EMMSAC allows for better performance than
static EMMSAC.

7 Dynamic versus static EMMSAC

We will now discuss in detail when dynamic EMMSAC promises tighter gain bounds
than static EMMSAC and vice versa. First recall that for a constant, compact plant-
generating operator U and a corresponding constant cover (H,v), assuming p, € G C U,
there follows k. = 0 hence || 7}, —1w2| = 0. By Theorem 5.14 we then obtain a (linear)
gain bound (Figure 6.6 (A)) of the form

Hw2H S ’?(U7 H7 V7p*)”w0”7

where the gain 4 depends on the uncertainty set specified by U and the corresponding
cover (H,v). From Theorem 6.7, we have for a dynamic construction of U = G = H,v =
0, assuming that there exists a k. < oo such that p, € G(k.), a gain function bound of

the form
l[wal| < B1 + Ballwol| + Bs]|wol|?

where (31, 32, B3 are constant and depend on v > 2, the design of the level set P; and
the true plant P = P,  (Figure 6.6 (B)). Since our goal is to optimise the bound on
the signal amplification from the disturbances ||wp|| to the internal signals |lws||, we
can now intersect these two curves and argue by Figure 6.6 (C) that for disturbances
lwol| < a, |Jwo| > b the gain bound obtained for static EMMSAC is tighter than the
gain bound for dynamic EMMSAC where for a < ||wg|| < b the converse relation holds.
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FIGURE 6.6: Gain bound comparison of static and dynamic EMMSAC

Usually there is no exact information on the size of the disturbances available. However
in many cases we will have a rough idea how the size of the disturbances is distributed,
e.g. small disturbances might be more likely than larger ones, and we can now use this
information to trade off the two approaches. Also note that the intersection points a, b
depend on 4 and (31, B2, B3 where in some scenarios they do not intersect at all, i.e. for
4 < P2, and a constant plant set should be preferred over a time-varying one. In all
other cases the two curves will intersect for sufficiently large ||wg|| since the (quadratic)
gain function grows faster then the (linear) gain. This implies that for high noise en-
vironments, i.e. where large disturbances are very likely, a constant plant model set

should be preferred over a time-varying one.

The defining entities of the gain function bound that we are able to influence are there-

fore:

1. The constant v > 2 in

B = FT(PN) +F(Pn)F'(P1)
Bo = 27*(Pn)+ 7 (Pn)F"(P1)
Bs = F7U(Pn).

2. The design of G (and U, H,v) for dynamic EMMSAC.

For 1. observe that increasingly large v will effectively straighten the curve since (3
will become increasingly small and the influence of the quadratic term is diminished.
However the offset 57 will increase. Alternatively, small v will lead to small offsets and
a faster quadratic growth. The choice of v > 2 is therefore dominated by the available
information on the size of ||wp]|, i.e. if ||wo]| is expected to be large it is advantageous to
choose v large since then the gain function curve is more linear, which leads to smaller
signal amplification. However if ||wg] is expected to be small, v should be small since

we have to compete with the zero offset of the gain bound for a constant G.
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In the next section we give exemplar designs for (time-varying) plant model sets G.

8 Example

FIGURE 6.7: Robotic arm handling uncertain loads

Consider the example in Figure 6.7. Assume that a robotic arm with 1 degree of freedom
is handling items of weight m € {mq,mo, ms}, m; < mg < mg, where the control
objective is to keep the arm perpendicular to the base, i.e. to keep a small. Furthermore
assume the robotic arm to be of neglectable mass and that due to the manufacturing
process there is a tolerance on the weight of t%. Let the parametrised uncertainty set
be given by

{(L+5)m}, jeR

U
0<j<t me{mi,ma2,ms3}
where the true, unknown plant is given by p, = 1.04m;. Assume that the design
objective is to stabilise any true plant p, in the uncertainty set, where the implementation
of plant models is computationally expensive and we prefer a small number of them. The

control algorithm is reset before every pickup.

8.1 Static EMMSAC

Assume that the tolerance t is known and finite. Therefore let the plant generating

operator U be constant and defined by
PY= U U 1+j)m}, jeR.
OSjStme{mhmz,m:s}{( ]) } J

Also let the cover (H,v) for U be constant. The following designs of plant model sets

are constant therefore GG is a constant plant-generating operator.

Consider Figure 6.8 and a constant plant generation operator U specifying the uncer-
tainty set PU = [m1(1—t),ms3(1+1t)] D PY. Construct a cover (H, ) for U, satisfying
inequality (5.43), and compute 5 = SUP,, . po 4(U, H, D, p) where 4 is as in Theorem 5.14.
Let G = G be such that it spans a grid over the uncertainty set U and make G dense
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enough that the global robustness margins bpc = 41 overlap (Figure 6.8 with G = G1).

Gl 0000+0000000 0000000+0000000 0000000+0000

Gy (o) oo oo + oo oo + oo
Gs (e([e o oe e/d s oo ed g oo
q(m)
mq mo ms m

FIGURE 6.8: Sensible choices for G; G3 in respect to the probability distribution g(m)

Observe that although this construction of G provides stability for all p, € U, it is
conservative since by considering an overly large uncertainty set U>U wel. provide
stability for plants that are not in U, 2. reduce the (global) robust stability margin
since (U, H,v,p) < ’y(ﬁ JH, D, p), p € PY and 3. introduce unnecessary computational
complexity since G is overly large. It is therefore important to be as precise as possible

about the uncertainty specification.

The obvious improvement is to work with the uncertainty set U directly. We therefore
construct a cover (H,v) for U, satisfying inequality (5.43), compute 4 and then construct
a reasonably sparse G such that the (global) robustness margins provide a cover for U
(Figure 6.8 with G = G2).

A different approach to construct G with the objective to optimise the expected per-
formance would be to consider the probability distribution ¢(m) of m imposed by the
manufacturing process. We would then distribute the plants within G such that the grid
is more ‘dense’ where the p(m) is large (Figure 6.8 with G = G3). This will on average
reduce the distance between the true plant p, € U and a plant p € G. Since |G2| = |G3]
the computational complexity is equivalent to the choice G = 5. However, we have at
present no means of showing that this construction actually leads to an on average lower
closed loop gain. Furthermore observe that the gain bound in Theorem 6.4 is weaker for
G = G5 than for G = G5 since the maximum distance between p € U and the closest
p € G is larger. We will show in the next section how probabilistic information may be

utilised to explicitly improve the gain bound on average.

Note that although the cover (H,v) is a powerful tool to deal with infinitely many plant
models in G, the underlying principles that make the algorithm conservative remain in

place.
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8.2 Dynamic EMMSAC - refinement of GG

Assume that the tolerance t is known and finite. Define U to be a constant plant

generating operator where

PY = U U 1+5)m}, j €R.
OSjStmE{mLTnQ,m:s}{( ])m} J

Also let the cover (H,v) for U be constant.

A dynamic on-line refinement strategy for G, inspired by the schemes introduced in

Chapter 4, Section 3, is given as follows.

Assume we determined a sufficiently dense, stabilising plant model set G(0) such that
the neighbourhoods bpc around m € G(0) cover U. For example let G(0) = G2 from
Section 8.1. Note that such G(0) can be constructed off-line. Then start the algorithm
and construct further G(k) D G(0), k > 0 on-line by interpolating new plant models in
G with respect to the two smallest residuals; however only if the corresponding plants

are adjacent. This is depicted in Figure 6.9.

G(0) (oo ? \0/ o()e()pe()e o()o()9()e)e

Glk) o o 4 ooe Ve R S

o o eceo 00\4 o o o o o o

k e o o coe ecses o o P S
mq mo ms m

FIGURE 6.9: On-line refinement of GG in respect to the size of residuals

A concrete algorithm could be given as follows. Let G(0) = G2 be constructed as in
Section 8.1. Let a;,b; € G(i), ¢ > 0 be such that the corresponding residuals 74, and 7,
satisfy:

re; [1] < i), Ym e G(i), ry,[i] < rpli], Vm € G(i) \ a;.

If there are multiple minimal r,, or 7, choose the ones that minimise |a;| or |b;|. Then
let for j > 0 and some z € N

G((j + D)) = G(ja) Umys, G(i) = Gja), je <i < (j+ e
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where

My = { % if #m € G(jz) s.t. ajz <m < bj, and §(mj,, m) > €, Vm € G(jz)

0 otherwise

Note that new elements are introduced to GG as long as the distance to previously intro-
duced elements is above a certain pre-determined threshold e, i.e. as long as §(mjz, m) >
€, Vm € G(jx). Such a G is monotonic by construction hence all G(k), k € N are suffi-

ciently dense to provide a stabilising controller since G(0) is sufficiently dense.

Although it seems intuitive that (on-line) refinement does improve performance — plant
models are potentially closer to the true plant — it does not follow from the present
analysis. To give analytic proof that (on-line) refinement does indeed improve perfor-
mance remains open. The advantage of using on-line refinement in favour of a static
EMMSAC algorithm based on a constant, highly refined plant model set G, is that it
has the potential to utilise only a sufficient amount of computational resource (mainly
determined by the number of plant models and corresponding estimators). This may,
for example, be interesting from a power consumption point of view. However, in the
worst case, the given on-line refinement scheme will introduce as many plant models as

there is computational resource.

To suppress such behaviour, one could modify the scheme such that only a finite number
n of refined plant models is allowed. When the scheme requests more than n plant mod-
els, one could, for example, remove the ‘oldest’ plant model (from a time of introduction
point of view) in G which is not in G(0). This would imply that the required amount

of computational resource is bounded. Many other algorithms are thinkable.

8.3 Dynamic EMMSAC - expansion of ¢

For the purpose of this example we assume that the tolerance ¢ is unknown. Furthermore

we assume that the uncertainty set is finite and given by

U U 14+0.029 , J€EN
0<5<50t me{mLTnz,m3}{( m}; J

where the weight increase 0.02 is some small, physically meaningful number.

Finiteness of the uncertainty set is necessary since only then we can let G = U and
obtain a feasible EMMSAC design. This allows the direct application of Theorem 5.14

and Theorem 6.7 and makes the results comparable.

We have shown in Theorem 6.6 that for a constant plant-generating operator G the
EMMSAC algorithm is conservative under an increasingly large parametric uncertainty.
This was due to the fact that we can make the algorithm switch to the controller with the

highest gain. We then employed a dynamically expanding plant model set to overcome
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this issue in Theorem 6.7. We now give two design strategies for a dynamically expanding

G, based on the idea to use probabilistic information for ordering the level set P;.

Strategy 1:
Consider Figure 6.10. We construct GG such that less probable parametrisations, indi-

cated by ¢q(m), are introduced later. For that purpose let

Pl = U U {(1 £0.02§)m}, i,j € N.

Y 0<j<ime{mi,ma,ms}

With the expansion rule i(k), given by equation (6.10), this defines G(k) = Pil(k), keN
where we let G(k) = U(k) = H(k), k € N, v = 0. We then have N = 3 and PL, = P!

I
o ./ (X X ] o000
0000 o0o00 o0000
0000000 000000 000000
,L' 000000000 000000000 000000000
g(m)
mq mo ms m

FIGURE 6.10: Strategy for designing the level set P; with respect to g(m)

since
N:=min{i > 1| p. € P;}

and p, = 1.04m, ¢ 732[ but p. € 73?{ . The gain function bound in Theorem 6.7 is therefore

given by
Fmod([[woll) = B + Ballwol| + Bsl|wo|*

where

B = 3"P3) +A(P3)T (PI)
B = 2P +5 " (PA"(PI)
g o= 7P

Now observe that (1, 32, 83 are invariant to the tolerance ¢t and constant where 4 from
the last section scales with ¢ (it is conservative). We therefore conclude that there exists

a tolerance t such that the gain function bound ~,,,q is superior to the gain bound 4.

A further strategy that is making use of even more a priori probabilistic information is

given next.
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Strategy 2:

We now also utilise the probabilistic information on how likely it is to encounter an item
of a certain weight, indicated by ga(m), to further optimise the (expected value of the)
average performance. For that purpose we modify the strategy from the last example
and first introduce plants in the neighbourhood of the most likely item, then plants in

the neighbourhood of the second most likely item and so on.

’PiII e D«
.Il./
(XX TIT]
[ XXITTY)
000000000 [ )
00000000000 000
7: 0000000000000 (XX IT]
000000000000000 0000000
000000000 ®
00000000000 [ I 1)
0000000000000 00000
000000000000000 0000000
0000060000
q1(m)
g@(m) ¢ | m
[ ]
mi mo ms m

FIGURE 6.11: Strategy for designing a time varying G, minding ¢;(m) and g2(m)

Such a strategy is depicted in Figure 6.11 where for a,i € N, ¢ > 0

5 Ua§j<i{(1 + 002(] — (I))’I’)’L} if a <1
0 otherwise

and
PZ.II = ﬁi(mla 0) U ﬁi(m27 4) U ﬁi(m?” 8)

With the expansion rule i(k), given by equation (6.10), this defines G(k) = Pil(i,), keN
where we let G(k) =U(k) = H(k), ke N, v =0.

For this setup N = 3 however, since 773{1 - 773{ and (1, (o, 03 are all strictly increasing

functions we can conclude that the second strategy yields a tighter bound.

Naturally, if the probabilistic assumptions about p, are incorrect and p, is close to its
worst case, e.g. p. = (1 + t)mg, the advantage over a constant plant set is lost. To
see this, note that for the first strategy N = 50t + 1 where for the second strategy
N =50t+9. With 4 > 1 from Theorem 5.14 and 2 from Theorem 6.7 we have in either
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case

= AP 77D 707
¥ ;g%y( N, Pn,0,p)

max (B(Pn,Pn,0,p) +4(Pn,Pn,0,p))

pPEPN

7(Pn)
27%(Pn) + 7' 7 (Pn)7" (PN)
= [

IN A

IN

As discussed in Section 6, there are other sensible choices apart from ||Z,ws| for mea-
suring the current performance at time k& € N. However, the overall objective must be
to dynamically expand G as a function of performance (determined by some measure)
since only then are we able to overbound the gain in Theorem 5.14 to obtain a constant
gain function. We can therefore expect similar tradeoffs for other algorithms that utilise

performance information to dynamically expand plant model sets.

We have sketched how a priori information about the plant can be utilised to construct
plant model sets and evaluated tradeoffs between the probability distribution on |jwy]|,
the probability distribution on the plant, v > 2 and the design of the plant model
set itself. Furthermore, we have shown how on-line refinement may be conducted. A

principled design methodology is within reach; however further research is required.
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Conclusion

This thesis presents comprehensive robustness and performance guarantees for Estimation-
based Multiple Model Switched Adaptive Control (EMMSAC) algorithms in terms of
lr, 1 <r < oo gain (function) bounds on the gain from the external disturbances wy to
the internal signals wo. The axiomatic style and abstraction level of the analysis lead
to the generality of the results: they apply to the class of minimal MIMO LTI plants
but also to non-linear plants showing linear growth. Large classes of estimation algo-
rithms, such as Kalman filters or (matrix) optimisation methods, may be utilised in the

estimation process.

Remarkably, the style in which the analysis was conducted led to generalisations almost
by accident (e.g. to the MIMO case and to the case of atomic non-linear plants showing
linear growth) and makes future generalisations appear inevitable, e.g. to time-varying

plants and to non-linear plants with super-linear growth.

It was shown that performance and robustness of the algorithm is guaranteed invariant
to the refinement scaling of the plant model set. However it was also shown that if the
plant model set is constant then performance and robustness diminish for expansion
scaling of the plant model set corresponding to an increasing level of uncertainty — a
static EMMSAC algorithm can be conservative. To overcome the conservativeness issue,
an extension based on a dynamic (on-line) expansion law for the plant model set was
introduced, which lead to the construction of gain function bounds that are invariant to

the level of uncertainty — that is a dynamic EMMSAC algorithm is universal.

One particular feature of EMMSAC algorithms is that robustness guarantees can be
supplied where LTI controllers fail to perform satisfactory or do not provide stability at
all: for plants with large uncertainties and for non-simultaneously stabilisable plants. A
qualitative, however completely rigorous discussion was provided, showing when dynamic
EMMSAC promises tighter gain bounds than static EMMSAC and vice versa. Also

dynamic (on-line) refinement schemes for the plant model set were discussed which

175
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seamlessly embed into the EMMSAC framework. Fundamental design questions on how
to construct plant model sets, as posed at the beginning of this thesis (Chapter 1), have

been addressed and answered from the perspective of prior information and performance.

1 Directions for future research

There are two specific technical questions that follow directly from this thesis: Firstly, it
needs to be shown that both estimators can satisfy Assumption 3.4(5), or a modification
thereof, with a continuous x. Secondly, it needs to be investigated how sampling of a
time-varying uncertainty set (e.g. a continuum) can lead to the construction of a real-
isable, stabilising time-varying plant model set (see Chapter 6, Section 4). A positive
answer to the first question will allow the unconditional application of the algorithm to
compact uncertainty sets, while the answer to the second question may allow the utili-
sation of sampled, finite plant model sets in dynamic expansion schemes for continuous

uncertainty sets.

It is important to investigate the relationship between the distance x (Assumption
3.4(5)) and the gap metric d, since then the local cover constructions in terms of (H,v)
and the global cover constructions in terms of G and bp ¢ may be unified. The question

of computing x in different signal spaces also needs to be addressed.

An interesting question from a performance and design perspective is how the estab-
lished gain bound may be improved. Superficially, there is plenty of room for such
improvements since many simplifications and shortcuts in the analysis are conservative.
However, the current bound appears to correctly specify (at least qualitatively) the
tradeoffs involved in choosing the algorithm’s key variables: the plant-generating oper-
ator GG, the controller design procedure K as well as the attenuation function [ and the
delay A. We therefore do not expect significant qualitative changes in the bound — per-
haps with the exception of (on-line) refinement of the plant model set since the current
bound is invariant to refinement and does not reflect expected performance tradeoffs
in this respect. This relationship needs to be established in order to make refinement

schemes part of a performance-orientated design methodology.

Of great interest are also further schemes that exploit the freedom that G is allowed to
be time-varying, although some may require a modified analysis. For example unfalsi-
fied control type schemes, where plant models are removed from the plant model set if
it is unlikely that they represent the true plant (see Safonov and Tsao (1997)), or safe
switching schemes (e.g. see Anderson et al. (2001)), where plant models are excluded if
the corresponding controller could be destabilising to the true plant. Covariance infor-
mation from the Kalman filter may be utilised in this respect to indicate the ‘confidence’
in a plant model. Schemes that could be implemented within the existing framework

directly are, for example, a dynamic expansion/refinement law of the plant model set in
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relation to residual information from the estimators, or a scheme to momentarily disable
estimators corresponding to plant models that will not be considered in the near future

e.g. since their residuals are too large in relation to others.

Furthermore it is of great interest to broaden the underlying plant class further, for ex-
ample to non-linear plants with super-linear growth. As a first step one could consider
only local disturbances and overbound super-linear growth by local linear growth. How-
ever, in general, non-linear modifications to the controller assumptions and the analysis

are required.

The algorithm can already be applied to mildly time-varying plants, where the variation
is contained within a small neighbourhood. For larger variations the present estimator
assumptions need to be modified to include some kind of ‘forgetting factor’. A time-
varying generalisation would also potentially allow the application of EMMSAC in the
domain of fault detection and fault tolerant control. This link is very interesting since

many algorithms in this area are based on Kalman filters.

The investigation of disturbance estimation algorithms which are low in complexity and
allow large or even continuous plant model sets is important in order to fully exploit the
EMMSAC approach in practice. First steps in this direction could be the use of state
sharing ideas, e.g. in the style of Morse, for disturbance estimation. Analogously to a
state shared observer, a bank of optimal estimators then shares common information in
order to reduce computational complexity. The construction of the estimator necessarily
leads to the question of implementation, i.e. to find efficient, numerically stable hardware

estimator implementations.

Another open question here is the relationship between optimal estimators and (output
error type) observers. This relationship appears to be close (the Kalman filter estimator
has observer structure) and it may be possible to treat general (non Kalman filter type)
observers as sub-optimal estimators. If this link can be made explicit in terms of bounds
between residuals, then the presented theory would encompass the class of observer

based multiple model switched adaptive control algorithms.

Further research is needed to conduct a fully Bayesian treatment of the plant model
set design problem. L.e. given a signal norm [, 1 < r < oo, (user) constraints on the
attenuation function [ as well as the delay A and given probability distributions on the
uncertainty and the disturbance signal wg, a general formalism needs to be constructed
that has a (time-varying) plant model set G and the delay A as an outcome. For dynamic
EMMSAC, such a design flow requires a sensible interpretation of a time varying U in
respect to the uncertainty description the control problem. A formalised approach to

design would provide a considerable advance over existing theory.
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Let P, ,» be defined by

Pp,xﬁ U — Ve Ul =yl p=(4,,Bp,Cp) € Prrr (A1)
where
zp(k + 1) = Apz, (k) + Byul (k) (A.2)
y1 (k) = Cpzp(k) (A.3)
z,(0) = 2b, ke N. (A4)

This definition is similar to the one in equations (3.4)—(3.4) however with a possibly

non-zero initial condition ajg.

Let the Kalman filter to a plant Pp,mﬁ with
= T = (b, 27 T = " (F,G,B,H) = (4, By, —B,,Cp),n =
L = Tp, (w7v) (u07y0) ,(u,y) (u27y2) ) ( y My ) ( Py P> P> p)?n Tp

and T >0, ¥ : N— R™" & :[0,7] — R" given by

ik +1/2) = 2(k) + 2(k)H "[HS(K)H " + I Yy (k) — Hi(k)] (A.5)
S(k+1/2) =S(k) — S(k)H[HE(K)HT + 1" H(k) (A.6)
#(k+1) = Fi(k +1/2) + Bu(k) (A7)
S(k4+1)=FX(k+1/2)F" +GGT (A.8)
yi(k) = Hz(k) (A.9)

where $(0) = 2(0)T € R™™ and %(0) = 2(0)T > 0.

179
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Define as a notion of the output error between observation and estimation the (scaled)
residual r : N — RT by

1/2

- 1/2
Z ([ly(k )H[Hz(k)HT.i_[} )] [Z ly(k H[Hz(k)HT-H}
k=

for T > 0.

The following lemma shows that r is defined, i.e. that HX(k)H " + I is always invertible.
It formalises known properties of the discrete-time Riccati equation, which nevertheless

appear hard to source in the literature.

Lemma A.1. Let (F,G,H) € Prr; and suppose H is full row rank. Let the Kalman
filter equations for ¥ be given by equations (A.6),(A.8). If X(0) = ZT(0) > 0 then
Y(k) =X (k) > 0 for all k > 0. If 2(0) = X7(0) > 0 then X(k) = BT (k) > 0 for all
k> 0.

Proof Let k > 0. We first show that £(0) = £7(0) > 0 implies X(k) = 2T (k) > 0. The

proof is by induction.
Since £(0) = ¥(0)" > 0 by assumption, the base step holds trivially.

For the inductive step have to show that (k) = X7 (k) > 0 implies ©(k +1) = X7 (k +
1) > 0.

Substituting equation (A.6) into equation (A.8) leads to
S(k+1)=F(k)FT —FS(k)H (HS()H" + ) 'HS(B)FT +GGT.  (A.10)

From (k) = X7 (k) > 0, it follows that HX(k)H ™ + I is symmetric and invertible,
hence T 1
((Hz(k;)HT + I)—l) - ((Hz(k;)HT + I)T)

and we have from equation (A.10) that:

Sk+1)T = (Fz(k;)FT ~ FY(k)H"(HS(K)HT + ) ' HY(k)FT + GGT)T
= FY(k)FT - FS(k)H" ((HZ(k)HT + I)‘l)T HS(k)FT +GGT
— FS(KFT - FS(k)HT ((Hz(k:)HT + I)T>_l HS(K)FT + GGT
= FX(k)F' —FX(k)H (HS(K)H" + D) 'HX(k)FT + GGT
= N(k+1).

Observe that equation (A.10) can be written as

Y(k) - S(k)HT(HS(K)HT +I)"'HX(k) 0

. ; 7 G]T. (A.11)

S(k+1) = [F G}
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Since (F,G,H) € Pprr is minimal, (F,G) is controllable. By the Popov-Belevitch-
Hautus (PBH) test this implies that [Iz - F G} , z € Cis full row rank (e.g. see
Hendricks et al. (2009), page 141 or Hogben et al. (2007), page 57-8) hence with z =0
that [— F G} is full row rank. Since left or right multiplication by a non-singular

matrix is a rank preserving operation (e.g. see Hogben et al. (2007), page 2-4) and
-1 0
[F G] = [—F G] 0 I we have that also [F G] is full row rank. By equation

(A.11) it follows that ¥(k + 1) is positive definite if
S(k) > S(k)H (HZ()H" + 1) H(K). (A.12)
Since H is full row rank, inequality (A.12) holds if
HY(KH" > HY(K)H" (HE(K)H" + 1) *HY(R)H ' (A.13)

holds, where inequality (A.13) is derived by left and right multiplication of inequality
(A.12) with H and H.

Let « = HY(K)HT > 0. Then a = HX(k)H" + I > 0, hence o + I is invertible and
(a+1)"t > 0. Since a(a+1) = (a+I)a, it follows that (a+I)"ta = a(a+1)~!, and
hence a(a + I)~! > 0 (see Horn and Johnson (1990)).

Then:
O<afa+D)t=ala+D) M I+a-a)=a—ala+I)la

hence
HY(KYH" > HS(K)HT(HS(K)HT + 1) *HY(K)H T

andso X(k+1)=%(k+1)" >0if Z(k) = 2(k)" > 0.

This completes the induction and we conclude that if £(0) = $(0)" > 0 then (k) =
Y(k)T > 0 for all & € N. The same argument holds in the semi-definite case with >
instead of > in the above inequalities and noting that &« > 0 = (a+I) > 0 and hence
is invertible. Therefore X(k + 1) > 0 if (k) > 0 as required. O

1 Half-step identities

We now give two key identities that are crucial to subsequent calculations.
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Lemma A.2. Let z,m € R?, v € R, H € R%*% gnd ¥ € R™", ¥ =T > 0 where
m,n,0 € N. Then HEH" + I is invertible. Define

y = Hzx+wv
T T -1
i = m+3SH [HZH +I} (y — Hm)

T T -1
$ = s-su[HSH +1| HY.
Then X2, S are invertible and the following identity holds:

(z—2)"2 N z—2)=vTo+(@-—m)' S Hoe—m)—(y—Hm)" [HEHT +I}_1 (y—Hm)

Proof For notational convenience let

- [HSHT + f} o
= I-SH"aH

where we note that HXH ' + I is invertible since HYH ' is positive semi-definite. Then

i = Bm+ISH aHz+XH av
S o= By
It now follows that:
(z—2)"S 2—2) = |o—SH aHz—Bm— EHTowH;f1

= |18z — fm - BH av|3
= Bz —m)—SH aw)" S YB(x —m) — ZH av)
= (z=—m)" BT —v T aHL)S Bz — m) — SH " aw).

Observe that 3 is invertible and

fl=I+XH'"H.
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Since ¥ is symmetric, 71 = $-1571 = (BT)~'271, hence

(z—2)"S N z—2) = (z—m)'S ' —vTaHB ) (B(x —m)—SH aw)

= (x—m)"S7 8@ —m)—v a(H(x—m)) — (H(x—m)) av
+o aHB'SH T av

— (@-m) T @ —m) — (H(z —m) a(H(w - m))
—va(H(z —m)) — (H(z —m)) ow
+o aHB'SH  aw

= (z—m) 2V z—m)— (Hx—m)+v) a(Hx—m)+v)
ol (a + aHﬁ_lZHTa) .

It remains to show that (a + aHﬁ_lZHTa) =1.

To see this observe that

a+aHB 'SH'a = a+aHSH 'a+aHSH HSH o
— ataHSHT [HEHT n 1] a

N— ———
a1
= a [HZHT + I]
—_——
a-1
= 1
as required. O

Note that a is more than a simple notational convenience. It turns out to be the scaling

factor in the least-squares calculation below.

Before we state the second key identity we give a preliminary result.
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Lemma A.3. Let (F,G,H) € Prr; and suppose H is full row rank. Let ¥1 = ZIT > 0.
Then there exists [K L} such that

e 201 (;] []L(TT ~ 0 (A.14)
5 1] F;l ? g: = 0 (A.15)
[K L] Fol ?] [IL{TT . (A.16)

F
s 1nvertible.

Proof Since (F,G,:) € Ppr; are minimal, (F,G) is controllable. This implies that
[F G] is full row rank (see the proof of Lemma A.1 above). Let V' = rowspan( [F G} )
After Gram-Schmidt we can construct a orthonormal basis for V- with respect to the

1

0
welgnt = and the weighted scalar product (z,y)w =« y. Let the basis
igh . W and th ighted scal d TWy. Let the basi

vectors of V1 be the rows of [K L].

Equations (A.14)-(A.16) now follow directly from the definition of the weighted scalar

F G
product. Since [F G} is full row rank, [K L] and hence [K L] is full rank. There-

F

fore is invertible as required. O

We now come to the second key identity:

Lemma A.4. Let (F,G, H) € Prrr and suppose H is full row rank. Let ¥1 = X > 0.
Define
Yy :=FS FT +GGT. (A.17)

Then ¥1,Y9 are invertible and there exist K,L such that
[Fa+ Gbl5-1 + | Ka + Lb||* = [lal3-1 + [b]?
2 1

for all a,b.

Proof Let [K L} be constructed as in Lemma A.3. From equation (A.17) and Lemma

A .3 it follows that -
Y9 O
0o I

F d
K L

Y1 0
0 I

F d
K L
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F G
Since [K L] is invertible by construction and X > 0 it follows that ¥ is invertible

and
F oG] [0 o] [F @ >t o
2 = |7t . (A.18)
K L 0 I||K L 0 I
Therefore by equation (A.18) for all [Z] there holds
W] ' [F 6] [55t o] [F @
a
|Fa+ Gbl|3 1 + ||Ka+ Lb||> = 2
2 b |[K L] |0 I)J|K L]|[b
- - T - 1 -
_a X1 0] |a
I IR
= llall§ + [1bl*.
as required. O

2 Kalman filtering and least squares

We are now in the position to combine the two established key lemmas.

Lemma A.5. Let (A, By, Cp) € Prrr and suppose Cy, is full row rank. Let (F,G,B,H) =
(Ap, Bp, =By, Cy). Let v,w € ly and $(0) = %(0)" > 0. Then for all T > 0 there exists
a K(k), L(k), k €[0,T] such that

& +1) = ST+ Dlidgy s = 19(0) — 3O+ + 3 (w2 + [0(k)?)

T
= 32 (k) = a0 By o)
T

= 3 1K (R)[x(k) — &(k + 1/2)] + L(k)w(k)|

= (A.19)
and [K(k) L(k)} s full rank.

Proof Let k € [0,7]. By Lemma A.1 ¥(i) = X(i)T > 0 for all i > 0 hence %(k) =
T (k) > 0 is invertible. From equations (A.5)—(A.9) and Lemma A.2 we have with

S=%k+1/2), S =%(k), m=ik), y=yk), v=ok), z==zk), & =2k+1/2)

that X (k + 1/2) is invertible and

lo(k) = 20k + /2|31 /21 = (k) = 2(0) 351 =
lo(B)I* = lly(k) = Ha (k)| Forss gy .11
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Furthermore since z(k + 1) = Fa(k) + Bu + Gw we have by equations (A.2), equations
(A.7), (A.8) and Lemma A.4 with

S =%(k+1/2), So=%(k+1), K=K(k), L=L(k), a=xz(k)—2(k+1/2), b=w

that

z(k+1) —2(k + 1)||22(k+1)—1 — [|z(k) — 2(k + 1/2)||22(k+1/2)—1
= w®)|” = | K (k)[x(k) — 2(k + 1/2)] + L{k)w(k)|*.

Adding these two equalities gives

ol + 1) = &0k + DIy — (k) = 200)[ 2
= Jo ()12 + llw(®) ~ ly(k) — H20) Py
— B (k) [ (k) — @k + 1/2)] + Lk,

Summing from k& = 0 to k = T leads to equation (A.19) as required. O

Define

2y w) =
(b, yh.2h) T € U x Ve x R” s.t.
v € RUTHL) o po(T+1) o Rpn Rpy—a, bP (uo —ug) = %b_a’b(yg — ),
N
v = ('@b—a,b%,%—a,byé’ , D)

which is the set of initial conditions z}, and disturbance signals uf), y¥ that are compatible

with a plant Pp,xﬁ and the observation ug, ys over the interval [a,b], a < b.

Theorem A.6. [Theorem 3.9] Let p = (A,, By, Cp) € Prrr and suppose Cp is full
row rank. Let (F,G,B,H) = (A, Bp,—Bp,Cp). The Kalman filter equations (A.5)-
(A.9) with initial condition #(0) = 0 and X(0) = £(0)" > 0 describe a deterministic

least-squares filter:

AT = it (Bl + I+ BB
(“07907550)62 (w2)

Proof Let #(0) = 0. We then have from equality (A.19) that:

T T
S k) = He () sy 1-1) < 12Oy + S (w®)? + [o(k)[). (A.20)
k=0 k=0

where & is generated from y by equations (A.5),(A.7) and X is from equations (A.6),(A.8).
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Observe that £ depends on y but not on the disturbances v, w and the initial condition

x(0) that generated y. Hence

T
()31 gy + D (lw(®) I + [lo(k)]*)
k=0

is minimised if equality holds in inequality (A.20).
With the sufficient conditions z(0) =0, (T + 1) = (T + 1) and
K(k)[z(k) —2(k+1/2)] + L(k)w(k) =
K(k) {x(k:) —@(k) = S(R)H[HE(k)H " + 17 y(k) — Ha(k)]| + L(k)w(k) =0,

for k € [0, T] we have from (A.19) that
T T
12(0) 1310y + D (lw®)I* + o (R)II*) = D (ly(k B) Forsseyrrr+0-1)-
k=0 k=0

In the following we show that these sufficient conditions can be met. From equation

(A.2), describing P, ks We have with

w_u07u_u17 (FG B) (ApoIH_BP)v L= Tp

that
z(k+1) = Fz(k) + Gw(k) + Bu(k),

hence we obtain for k € [0, 7]

[ 2(k+1) — Bu(k) ] | Foc ] [x(k:)]

K(k) [2(k) + S(k)HT[HS(k)HT — 1) [y(k) — Hi(k)]] K(k) L(k)| |w(k)|
: F G |. . ) N .
Since K(E) Lk is invertible and u(k),y(k), (k), X(k), k € [0,T] are known, this

can be solved backwards for z(k), w(k), k € [0,T + 1]. Therefore there exist solutions
x =2 and w = @ for £(0) = 0 such that (T + 1) = (T + 1). Hence

K (k) [o(k) = (k) = S)H T HE(R)H " + 17 [y(k) — Ha (k)]

+ L(K)w(k) =0, k € [0,T].

Recall that (z(0),w,v)" = (zh,ub, v5) " and (u,y)" = (u2,y2)". To see that the Kalman

filter is a least-squares filter observe that if

zp(k +1) = Az, (k) + Buf (k) = Az, (k) + B(ua(k) — ub(k))
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is initialised with z,(0) = 25 = #(0) and driven by ul(k) = w(k), k € [0,T] then
xp(T+1) = 2(T + 1). Hence

T
12(0)[13-1 o) + D (lw(®)* + [lo(k)]1?)
k=0

— nf ([l ) + )3 + B 13)
(uo,yo,xo) €2y (w2)
T
= (ly(k )||[Hz(k)HT+1} ) =r3(T)
k=0
as required. H
-

At this point we emphasise that (@, 0,Z)' are generated by the least-squares filter in a

non-recursive way. This, however, does not matter since more importantly z(k), X(k), k €

N are recursively generated via the Kalman filter equations and so is the residual r(k).

Before we come to our last Theorem, showing the relation of the Kalman filter to a

least-squares filter for the initial condition ¥(0) = 0, we establish the following lemma:

Lemma A.7. Let L be a closed subset of R™. Let

(@",g") = argmin(nz|* + [|y[|?). (A.21)
z,y)EL

Suppose (Z",y") — (0,9) as n — oo. Then

(0,§) = argmin [jy|*.
(0,y)eL

Proof Suppose
(0,y) = argmin [[y|*. (A.22)

(0,y)eL
Since L is closed, (2",9") € L implies (0,y) € L. Therefore we have
10, )II* < 110, 9)] (A.23)

since (0,y) is the minimiser, but (0,¢) € L is not necessarily the minimiser.

For all n > 1 we also have from equation (A.21) that
nllZ° 1 + 17117 < nllzl* + ll7)?
for any (z,y) € L, in particular if (0,y) € L then

2 2 2 2 2
nllZ)” + [[gl" < nlol” + llyl” = llyl”
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We therefore arrive at
lyl® = @ 1 + 15" 11> = 15"11* = 117 = § + 3" = (gl = 157" = 71)*-
Since §" — ¢, ||gn — 9|| — 0 hence ||y||? > ||7/|*> and therefore
100, 9)11* = 110,71 (A.24)
Inequalities (A.23),(A.24) now lead to

10,)] = [1(0, )| = argmin [|y||*
(0,y)eL

as required. O

Recall the definition of /\/’,La’b} from Chapter 3:

H(ug,yg)T e W, s.t.
nga,b} (’U)Q) ={ve W|[a,b} %b—a,bpp (Ug — ’LL2) = %b—a,b(yg - y2)7 - W“a,b].
v = (:@b_a,bugyi@b—a,byg)

Hence NZEO’T} (we) = ZZ[,O’T} (w2) when mg = 0. The next theorem is to handle this case

(332 = 0) in contrast to the previous theorem where this is not enforced.

Theorem A.8. [Theorem 3.10] Let p = (A, By, Cp) € Prrr and suppose C, is full
row rank. Let (F,G,B,H) = (A,, Bp,—Bp,Cp). The Kalman filter equations (A.5)-
(A.9) with initial condition #(0) = 0 and X(0) = £(0)" = 0 describe a deterministic

least-squares filter initialised to zero:

r(T) = inf (ladll3 + [l 1)-

(B )N (ws)

Proof Let T € N. For n € N define £,(0) = 1. So £,(0) = £,(0)" > 0. Let

T n

(g, 9o, o) = argmin (H$0H§;1(0) + [luoll3 + llwoll3)
(U07y0,$0)€zz[70’T] (w2)

that is the least-squares estimate from the Kalman filter initialised with

at time T € N.

Since there is a solution (ug,yp) € /\/}LO’T] (w2), hence a solution(ug,yo,0) € ZI[,O’T] (wo) it
follows that
151157 + g1l + 176115 < lluoll3 + llvoll3 (A.25)
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which implies ||Zj|| — 0 for n — oo (since if not, ||Z{ ||, — o0 as n — oo but the right
half side of inequality (A.25) is constant), hence Z{j — 0. By continuity of the Kalman
filter equation solutions with respect to the initial conditions (3(0),z(0)) = (2,(0),0)
on the interval [0, 7] it follows that (ag,y{) — (%o, %o) as n — oo where (4o, §o) is the
solution of the Kalman filter equations on [0,7] with initial condition (X(0),£(0)) =
(0,0). The desired result then follows from Lemma A.7 with §" = (ag, 43), y" = (@0, Jo)

iy =i and L = 2 (ws):

AT =lm il (aol3 g + el + lluol3)

oo (uo7yo,w0)631[70’T] (w2)

= infOT (113 + [lyh113)
(2 yB) N T (wa)

as required. O
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