
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other 
copyright owners. A copy can be downloaded for personal non-commercial 
research or study, without prior permission or charge. This thesis cannot be 
reproduced or quoted extensively from without first obtaining permission in writing 
from the copyright holder/s. The content must not be changed in any way or sold 
commercially in any format or medium without the formal permission of the 
copyright holders.
  

 When referring to this work, full bibliographic details including the author, title, 
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name 
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/


UNIVERSITY OF SOUTHAMPTON

Robust Stability and Performance for

Multiple Model Switched Adaptive

Control

by

Dominic Buchstaller

A thesis submitted for the degree of Doctor of Philosophy

in the

Faculty of Engineering, Science and Mathematics

School of Electronics and Computer Science

University of Southampton

January 2010

http://www.soton.ac.uk
mailto:dbuchstaller@web.de
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk
http://www.soton.ac.uk




ABSTRACT

While the concept of switching between multiple controllers to achieve a control objec-

tive is not new, the available analysis to date imposes various structural and analytical

assumptions on the controlled plant. The analysis presented in this thesis, which is

concerned with an Estimation-based Multiple Model Switched Adaptive Control (EMM-

SAC) algorithm originating from Fisher-Jeffes (2003); Vinnicombe (2004), is shown not

to have such limitations. As the name suggests, the key difference between EMMSAC

and common multiple model type switching schemes is that the switching decision is

based on the outcome of an optimal estimation process. The use of such optimal esti-

mators is the key that allows for a simplified, axiomatic approach to analysis. Also, since

estimators may be implemented by standard optimisation techniques, their construction

is feasible for a broad class of systems.

The presented analysis is the first of its kind to provide comprehensive robustness and

performance guarantees for a multiple model control algorithm, in terms of lp, 1 ≤ p ≤ ∞
bounds on the closed loop gain, and is applicable to the class of minimal MIMO LTI

plants. A key feature of this bound is that it permits the on-line alteration of the

plant model set (dynamic EMMSAC) in contrast to the usual assumption that the plant

model set is constant (static EMMSAC). It is shown that a static EMMSAC algorithm

is conservative whereas a dynamic EMMSAC algorithm, based on the technique of dy-

namically expanding the plant model set, can be universal. It is also shown that the

established gain bounds are invariant to a refinement of the plant model set, e.g. as a

successive increasing fidelity sampling of a continuum of plants. Dynamic refinement of

the plant model set is considered with the view to increase expected performance.

Furthermore, the established bounds — which are also a measure of performance — have

the property that they are explicit in the free variables of the algorithm. It is shown

that this property of the bound forms the basis for a principled, performance-orientated

approach to design. Explicit, performance-orientated design examples are given and the

trade off between dynamic and static constructions of plant model sets are investigated

with respect to prior information on the acting disturbances and the uncertainty.
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Nomenclature

α Bound on the growth of w2 for the atomic closed loop [Pp, CK(p)]
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Chapter 1

Introduction

When Harold Stephen Black invented the feedback amplifier in 1927 (see Black (1934))

he revolutionised the telecommunications industry and created a prime example which

highlights the key aspects of control theory. The problem at the time was that variations

in supply voltage and amplifier gain resulted in large variations of the transmission

characteristics of the then used feed-forward amplifiers. In contrast, by feeding back the

output, he created a device which preserved its transmission characteristic even in the

presence of disturbances in the supply voltage and uncertainty of the open-loop gain.

Explicit technological applications of feedback can be found in antiquity. For exam-

ple feedback control ensured stability of the outrigger canoe prior to 1500 BC (see

Abramovitch (2005)) despite the odds of wind, waves and inconsistent load; making

safer and further sea travel possible. It also allowed the construction of the water clocks

of the ancient Greeks and Arabs around 200 BC (see Mayr (1970)) where the water flow-

ing from a vessel was taken as a measure of time and a feed-back control system ensured

the constance of the water level/pressure inside the vessel to improve the accuracy.

Notwithstanding these significant ancient applications, it was the feedback amplifier of

Black which provided much of the stimulus for the development of classical feedback

control theory, which in turn formed the foundation of robust control theory (H∞ etc.)

in the 1980’s. Note that the roots of modern control theory itself, rather than the

uncertainty/robustness aspects, can be traced to the works of Maxwell and Routh on

the stability of governors (see Maxwell (1868); Routh (1877)).

Abstractly we can describe a feed-back control system as the interconnection between

a physical process or plant P : u1 7→ y1 and controller C : y2 7→ u2 as in Figure 1.1,

where (u1, y1)
⊤ represents the plant signals, (u2, y2)

⊤ the controller signals, (u0, y0)
⊤

the external disturbances acting on the system, and P and C are operators typically

modelled by differential or difference equations.
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2 Chapter 1 Introduction

P

C

u0 u1

u2

y1

y2 y0

Figure 1.1: Closed loop system [P,C]

We denote P a plant ‘model’ since the equations describing P are a simplified represen-

tation of the true physical plant denoted by P1. These equations are usually obtained

by analytical or empirical techniques. P therefore only represents an approximation of

the physical system P1.

The required accuracy of the model P , and hence the mismatch between the plant model

P and the physical system P1, is strongly influenced by the nature of the dynamics of P ,

and the requirements of the control objective. To see this observe that the development

of a controller for an air conditioning system within a building does not require a very

accurate model P of the physical properties of the room P1; a coarse model is sufficient

to construct a corresponding controller C that keeps the temperature variation within

reasonable bounds. However, when positioning the head of a hard disk drive accurately

within milliseconds, an accurate model P of the drive’s arm P1 is indispensable to

construct a sufficiently good controller C. The knowledge of P therefore determines the

achievable performance of the controller C.

To quantify the mismatch of the physical system and the model, or the uncertainty

in the physical system, we typically invoke a suitable so-called uncertainty model. In

this thesis this is described by introducing an appropriate measure of distance δ(P,P1)

between plants P and P1. The uncertainty around a nominal model P is then described

by the set of plants P1 lying within some specified distance ǫ > 0 of P , e.g.

∆ǫ = {P1 : δ(P,P1) < ǫ}. Throughout this thesis, we take the distance δ to be the gap

metric.

The second major factor influencing stability and performance of dynamical systems are

external disturbances acting on the system. A stable system has to remain so even in

the presence of disturbances (disturbance rejection). For example an airplane guided

by an auto pilot shows good disturbance rejection since it maintains its course and

altitude even in the presence of disturbances, e.g. wind or air pockets. In contrast,

an example of unwanted disturbance amplification is the Tacoma Narrows suspension

bridge, where disturbances in the form of strong winds caused resonant oscillations of

increasing magnitude in the bridge structure and ultimately led to its destruction.
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Observe that in L2 or l2 the norm of a signal relates to its energy content:

‖x‖2 =

(∫ ∞

0
|x(t)|2dt

)1/2

, in continuous time (L2)

‖x‖2 =

(
∞∑

i=0

|xi|2
)1/2

, in discrete time (l2).

A good test for stability would then be to check whether a system fed with signals of finite

energy responds with signals of finite energy; or in other words, that the amplification

or gain from ‖(u0, y0)
⊤‖2 to ‖(u2, y2)

⊤‖2 is finite (we will later see that this also implies

that the gain from ‖(u0, y0)
⊤‖2 to ‖(u1, y1)

⊤‖2 is finite).

A system is therefore said to be gain stable if the operator ΠP//C :

(

u0

y0

)

7→
(

u2

y2

)

is

bounded, i.e. if

γ = ‖ΠP//C‖2 = sup
(u0,y0)⊤ 6=0

‖(u2, y2)
⊤‖2

‖(u0, y0)⊤‖2
<∞.

The quantity γ thus denotes the gain from the external disturbances to the internal

signals and hence if a closed-loop system is gain stable, then γ is a sensible measure of

nominal performance.

Under a technical assumption of well-posedness (see Chapter 2) we can now inter-relate

disturbances, uncertainty, stability, robustness and performance in the following way:

Theorem 1.1. Let P,P1, C be linear and time invariant. If the closed loop [P,C] is

gain stable and

δ(P,P1) <
1

‖ΠP//C‖2
= bP,C

then the closed loop [P1, C] is also gain stable.

Proof The proof can be found in Georgiou and Smith (1990) which is based on Zames

and El-Sakkary (1980). 2

Therefore, if a controller C is able to stabilise a plant P it will also stabilise all plants

in the neighbourhood δ(P,P1) < bP,C where bP,C is the inverse of the maximum gain

from the external disturbances to the internal signals and is denoted the robust stability

margin. Hence bP,C is both a measure of nominal performance and robust stability. This

relationship will be of major importance to us since by analysis of the nominal plant

model P in closed loop with controller C we can then show by the above theorem that

if the closed loop [P,C] is gain stable and the mismatch between the plant model P and

the physical plant P1 is smaller then the robust stability margin bP,C , then the closed

loop [P1, C] will also be gain stable.
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It can be shown that the given robust stability framework also extends to the non-linear

domain and to general signal spaces (see Georgiou and Smith (1997)). However in a

general non-linear setting the worst case signal amplification from (u0, y0)
⊤ to (u2, y2)

⊤

can vary with magnitude of the signal (u0, y0)
⊤. Hence Georgiou and Smith (1997) also

establish robust stability results where the gain is measured by a so-called gain function:

γ(r) = sup{‖(u2, y2)
⊤‖ : ‖(u0, y0)

⊤‖ ≤ r}, r ≥ 0.

The gain function γ(r) measures the maximum size of the internal signals, given a

disturbance of size smaller then r ≥ 0. This gives us a comprehensive set of tools to

analyse the robustness properties of (non-linear) closed-loop systems.

The remainder of the introduction has the purpose of motivating the class of algorithms

considered in this thesis. We will first show that a single, fixed, linear time invariant

(LTI) controller C is generally insufficient to control a plant P if the uncertainty in P is

large (i.e. if δ(P,P1) is large, where P represents the plant model and P1 the physical

system). This arises when P lies in some known, but potentially large set ∆, for example

if ∆ describes a parametrically uncertain system with a large parameter variation. One

solution to such a problem is to make the controller adaptive. We will discuss various

(classical) adaptive algorithms and their limitations in terms of robust stability. Such

robust stability considerations will then motivate the class of Multiple Model Switched

Adaptive Control (MMSAC) algorithms and Estimation-based MMSAC (EMMSAC)

algorithms - the latter will be the focus of this thesis.

1 Insufficiency of LTI control theory

Although LTI control theory gives good design methodologies for LTI control problems

where the uncertainties in the system are small, there are many applications where it

cannot give sufficient performance and robustness guarantees or even fails to give them

at all. Here we detail two such scenarios:

Conservativeness: Consider a plant P given by the transfer function

P : u1 7→ y1 : y1 =
1

s− a
u1.

Let a > 0 be a fixed but uncertain parameter, for example an unknown mass, and

consider a proportional controller

C : y2 7→ u2 : u2 = −ly2, l > 0
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to be in a closed loop interconnection with P as in Figure 1.1. The resulting closed-loop

transfer function from y0 to u1 is given by

S =
u1

y0
= − C

1 − CP
=

l(s− a)

s+ (l − a)

where u1, y0 are the Laplace transforms of the corresponding time domain signals. All

poles must reside in the left complex half plane in order to ensure bounded input -

bounded output (BIBO) stability of S. This requires us to choose the controller gain l

larger than a. Consequently for a large uncertainty in a, i.e. if all that is known is that

|a| ≤ amax where amax is large, we will have to choose a large l, i.e. l > amax, to ensure

stability of S.

We can now establish a lower bound for the closed loop gain (with Theorem 2.3) in the

following way:

‖ΠP//C‖2 = b−1
P,C = sup

(u0,y0)⊤ 6=0

‖(u2, y2)
⊤‖2

‖(u0, y0)⊤‖2
≥ sup

y0 6=0

‖u1‖2

‖y0‖2
= ‖S‖∞ = sup

w∈R

|S(jw)|

where

|S(jω)|2 =
|jωl − la|2

|jω + (l − a)|2 =
ω2l2 + l2a2

ω2 + (l − a)2
.

A simple calculation shows that |S(jω)|2 reaches its maximum at ω = ∞, where

lim
ω→∞

|S(jω)|2 = l2 > a2
max.

This shows that the maximum gain from the external disturbances to the plant signals

scales with l > amax; and therefore its inverse, the robust stability margin bP,C , shrinks

to zero as amax becomes large — as depicted in Figure 1.2.

amax

b P
,C

Figure 1.2: Stability margin bP,C vs. uncertainty amax

Controllers with this property are regarded as conservative:

Definition 1.2. A controller C is said to be conservative if the closed loop performance

degrades with an increasingly large uncertainty in P = Pp∗. (See Figure 1.3.)
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Definition 1.3. A controller C is said to be universal if it maintains a constant level

of performance invariant to the uncertainty in P = Pp∗. (See Figure 1.3.)

One way of showing that a controller is non-conservative is therefore to show that it

is universal. It can be shown that all LTI controllers and also non-linear memoryless

controllers are conservative (see French (2008)) with respect to bP,C . In this thesis we

will present necessarily non-linear and dynamic control designs that are universal.

uncertainty

p
er

fo
rm

an
ce

universal

conservative

Figure 1.3: Closed loop performance for conservative and universal controllers under
increasing uncertainty

Simultaneous stabilisation: In practise we often need to consider two distinct plant

models P1 and P2 and ask the question whether a given controller C can ensure closed-

loop stability for both of them, i.e. ensure that [P1, C] and [P2, C] are stable. This arises

if we seek to control systems with different dynamics with the same controller or the

control of systems that can abruptly change their dynamic behaviour over time. For

example in fault tolerant control we are interested if a controller, designed to control a

nominal system P1, also controls a faulty system P2 with a different dynamic behaviour.

It is well known that the problem of simultaneous stabilisation is related to the problem

of strong stabilisation. A plant P is said to be strongly stabilisable if a controller C can

be found such that the closed loop [P,C] is stable and C is itself stable.

In the case where plants and controllers are LTI, Youla et al. (1974) and Saeks and

Murray (1982) showed that two plants, given by the real-rational transfer functions P1

and P2 are simultaneously stabilisable if and only if

P =
N2M1 −N1M2

N2X1 +M2Y1

is strongly stabilisable where M1,M2, N1, N2 are coprime factors of P1 and P2. Further-

more we have from Saeks and Murray (1982) and Vidyasagar (1985) that P is strongly

stabilisable if and only if it has an even number of real poles between every pair of real

zeros in Re s ≥ 0.
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We now consider an explicit example: Consider the two real rational plants

P1 =
1

s
, P2 = −1

s
.

We now claim that no LTI controller can simultaneously stabilise P1 and P2.

We express P1 and P2 in a coprime factor form:

P1 =
M1

N1
, P2 =

M2

N2
,

where Mi, Ni,Xi, Yi, i ∈ {1, 2} are given by

M1 =
1

s+ 1
, N1 =

s

s+ 1
, X1 = 1, Y1 = 1

M2 = − 1

s+ 1
, N2 =

s

s+ 1
, X2 = 1, Y2 = −1

and satisfy the required Bezout identities

NiXi +MiYi = 1, i ∈ {1, 2}.

Hence P1 and P2 are simultaneous stabilisable if and only if

P =
N2M1 −N1M2

N2X1 +M2Y1
=

2s(s+ 1)

(s+ 1)2(s− 1)
=

2s

(s+ 1)(s − 1)

is strongly stabilisable.

Since P has zeros at s = 0 and s = ∞ and only one intermediate pole (s = 1), P is

not strongly stabilisable and therefore P1 and P2 are not simultaneous stabilisable by a

linear controller. The non-linear control designs considered in this thesis are designed

to handle such scenarios.

2 Adaptive control

We have shown in the previous section that LTI controllers have difficulties in some

situations. In particular they do not pose a solution to the simultaneous stabilisation

problem and they are conservative.

These limitations motivate the field of adaptive control. The basic idea behind adap-

tive control is that a learning component in the controller gathers information from

the on-line observation of closed loop signals of an uncertain physical system P in or-

der to learn about the uncertainty. This information is then utilised to generate con-

trol signals promising better performance then a fixed, non-learning controller. Whilst

adaptive control has a long history, and whilst such controllers have the potential to be
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non-conservative and handle non-simultaneously stabilisable plants there is currently a

relatively poor understanding of their robustness properties.

The substantive body of research on ‘robust adaptive control’ confines uncertainty mod-

els to additive or multiplicative classes (see Ioannou and Sun (1996) for a comprehensive

review of these approaches). However more recent work French (2008) and French et al.

(2006) has established robust stability margins for classical schemes in the context of

gap metric uncertainty models — this thesis builds on the approaches therein.

We start with the discussion of continuously tuned adaptive controllers and then turn

to multiple model type algorithms where the concept of switching is introduced along

the way.

3 Continuous adaptive control

3.1 Nominal stability

Assume that no disturbances are acting on the system for now, i.e. (u0, y0)
⊤ = 0.

Consider the plant

P : u1 7→ y1 : y1 =
1

s− a
u1

equally defined by the corresponding differential equation

P : ẏ1 = ay1 + u1, y1(−t) = 0, ∀t ∈ R (1.1)

where a is an uncertain parameter. A typical non-switched adaptive control implemen-

tation is given by the equations

C : y2 7→ u2 :







u2 = −y2(1 + â)
˙̂a = y2

2

â(0) = 0.

(1.2)

The time-varying parameter â is thought of the estimate of the parameter a, since

in the case where a = â we have by equations (1.1),(1.2) and with (u0, y0)
⊤ = 0 =

(u1, y1)
⊤ + (u2, y2)

⊤ from Figure 1.1 that

ẏ2 = ay2 + u2 = ay2 − ây2 − y2 = −y2

which is asymptotically stable. However for the case where a 6= â we have to consider

the mismatch θ = a− â.

Consider the Lyapunov function

V (y2, θ) =
1

2
y2
2 +

1

2
θ2. (1.3)
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By equations (1.1)–(1.3) and since θ̇ = − ˙̂a = −y2
2, we obtain:

V̇ (y, θ) = y2ẏ2+θθ̇ = y2(ay2+u2)−θy2
2 = y2(ay2−ây2−y2)−θy2

2 = θy2
2−y2

2−θy2
2 = −y2

2.

Since V̇ is negative semidefinite, by La-Salle’s theorem, we have y2 → 0 for t → ∞. It

is then straightforward to verify that the signals â, u1, y1, u2, y2 are all bounded. Also

observe these properties hold for any value of a. A controller with this property is

denoted a universal controller and it is therefore non-conservative.

Designs of this type share the deficiencies of LTI controllers in simultaneously stabilis-

ing 1
s ,−1

s . In fact it has been shown in French (2004) that no smooth controller can

simultaneously stabilise 1
s ,−1

s .

A continuously tuned controller that can cope with such plants is the Nussbaum universal

controller (Nussbaum (1983)) in equation (1.4)

C : y2 7→ u2 :







u2 = y2â
2 cos â

˙̂a = y2
2

â(0) = 0,

(1.4)

which stabilises any plant P ∈ ∆ where ∆ = { ±1
s−a : a ∈ R}. This is accomplished by

introducing the oscillatory function cos â. Hence if y2 6= 0, ˙̂a > 0 then â is increasing

and u2 will oscillate in sign. Therefore the controller will ‘try out’ negative and positive

signs. Now, as the generated control output u2 manages to stabilise the plant, i.e. y2

becomes small, then ˙̂a becomes small and â settles to a constant value. This means that

the oscillation will slow down and the sign of cos â will remain constant over increasingly

long intervals, essentially giving the individual controllers an increasing amount of time

to stabilise (and destabilise) the system. The algorithm will then eventually settle on

the correct sign since the oscillation stops if y2 = 0. This result was later generalised to

systems with arbitrary relative degree in continuous time by Mudgett and Morse (1985)

and discrete-time by Lee and Narendra (1986).

3.2 Instabilities due to lack of robustness

One major problem of the above approaches is that the effects of (input and output)

disturbances and unmodeled dynamics on stability and robustness were neglected due to

the initial belief that analogously to the LTI case the control system would tolerate them

if sufficiently small. Unfortunately this belief was proven wrong by Rohrs et al. (1985)

which showed that virtually all continuously tuning implementations at that time could

in fact become unstable in the presence of seemingly harmless unmodeled dynamics and

arbitrarily small disturbances.
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For example assume the nominal plant

P =
2

s+ 1

is perturbed multiplicatively by

Φ =
229

s2 + 30s + 229

to give

P1 = PΦ =
2

s+ 1

229

s2 + 30s + 229
.

As before, let the adaptive controller C be given by

C :







u2 = −y2(1 + â)
˙̂a = y2

2

â(0) = 0

and assume it to be in closed-loop configuration [P1, C] with the perturbed plant P1

where the input and output disturbances are constant and given by u0 = 0, y0 = 3.

This setup is commonly known as Rohrs counter example.

Observe that the open-loop transfer function P1 is stable and the perturbation Φ has a

unity DC gain and two well damped complex poles distinct from P at −15Rad/s. Such

a perturbation would in the LTI case not be considered as a problematic unmodeled

dynamic.

However, as the simulation in Figure 1.4 shows, the given adaptive control algorithm

becomes unstable.

This is due to the following mechanism of instability: 1. â diverges as time increases

(this is known as parameter drift) and 2. the closed loop becomes unstable for high

closed-loop gains.

To see 1. assume that â remains bounded, i.e. â(t) < A < ∞, ∀t > 0. Since ˙̂a = y2
2 we

have that

â(t) =

∫ t

0
y2
2dt = ‖y2|[0,t]‖2

L2

This implies that y2 ∈ L2 as ‖y2‖L2 ≤
√
A. From y0 = y1 + y2 we therefore have that

(y0 − y1) is in L2. However, since y0 = 3 /∈ L2 it follows that y1 /∈ L2.

Now observe that since P1 is stable (u1 ∈ L2 ⇒ P1u1 = y1 ∈ L2) it follows that if

y1 /∈ L2 then u1 /∈ L2. However, since u1 = −u2 = −y2(1 + â), A < ∞ and y2 ∈ L2, it
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Figure 1.4: Classical adaptive controller in the presence of a minor perturbation and
a constant output disturbance (l = â)

follows that:

‖u1‖2
L2

=

∫ ∞

0
u2

1dt =

∫ ∞

0
y2
2(1 + â)2dt

≤
∫ ∞

0
y2
22(1 + â2)dt

≤ 2(1 +A2)

∫ ∞

0
y2
2dt

< ∞.

Hence u1 ∈ L2, which is a contradiction and therefore â→ ∞.

To see 2. consider the root-locus plot of P1 in Figure 3.2 which displays the loci of the

closed-loop poles in the complex plane in respect to the feed-back gain â > 0. Since

the open-loop equation P1 has no zeros and three poles, its closed-loop poles diverge

to infinity separated by a 120 degree angle for increasing feed-back gains. Since we

have shown above that â (and therefore the feed-back gain) grows over all bounds, i.e.

â(t) → ∞ as t→ ∞, the closed-loop will eventually become unstable.

This insight now allows an intuitive interpretation of the plot in Figure 1.4. Up to

time t = 900 the closed-loop remains stable since â is still within reasonable bounds.
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Figure 1.5: Root locus of the open loop transfer function P

However, shortly after t = 900, the growing feed-back gain â > 0 forces the roots of

the closed-loop to cross over to the complex right half plane and the closed-loop system

becomes unstable, which leads to a rapid growth in size of the involved signals.

See also French et al. (2006), where a similar mechanism of instability is rigorously

proved for a multiplicative all pass perturbation Φ(s) = M−s
M+s , M >> 1. Related results

showing parameter drift for nominal plants can be found e.g. in Georgiou and Smith

(1997, 2001).

3.3 Robust adaptive control

Note that in the previous example the maximum gain from the external disturbances to

the internal signals is in this (non-linear) case not a simple gain of a transfer function but

depends on the (non-linear) worst case behaviour of the system. For the Rohrs counter

example we can simply observe, at least in an L∞ setting, that this gain is indeed infinite
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since we managed to produce with finite disturbances u0 = 0, y0 = 3 an unbounded y2.

Hence the closed loop system is not gain stable.

At the time (in the 1980s) the control community was increasingly aware of a systematic

problem and that neglecting robustness was no longer viable. However, there was no

analytical framework available — like the one of Georgiou and Smith (1997) — to study

the robustness properties of the algorithms in a systematic kind of way.

What followed was the investigation into so-called robust adaptive control algorithms

where robustness referred more to avoiding the phenomena of parameter drift than devel-

oping a principled robustness theory. Since the unbounded increase of â was identified as

the problematic part that ultimately caused the overall instability, typical robust adap-

tive control approaches are aimed at keeping â within reasonable bounds. In particular,

modifications to the algorithm were proposed such as the inclusion of dead-zone, σ mod-

ifications, or projection operators to ensure robustness in the presence of disturbances

and unmodeled dynamics. Assumptions that the reference signal is sufficiently rich to

ensure parameter convergence or the injection of artificial probing signals had a similar

purpose. A summary of robust adaptive control ideas and corresponding robustness

proofs for plants can be found in standard text books on the topic, e.g. Ioannou and

Sun (1996), Narendra and Annaswamy (1989) and Sastry and Bodson (1989). These

approaches apply to plants perturbed by multiplicative and additive uncertainty only.

For a recent example of this style of analysis see Ikhouane and Krstic (1998), where the

authors are able to show for a continuously tuned adaptive controller that all closed loop

signals are bounded and the tracking error is proportional to the size of the disturbance;

however only allow multiplicative uncertainties and output disturbances.

We will now discuss some of these modifications, however note that since most robust

adaptive controllers provide for zero output disturbances (y0 = 0) an infinite robustness

margin for the parametric uncertainty, a measurement of performance in terms of such

margins is not meaningful. We therefore consider alternative, non-singular, measures of

performance that are related to bP,C . For example in French (2002) the performance is

evaluated by an integral costs functional that penalises the state and the control effort,

where in Sanei and French (2006) the costs functional is a sum of L∞ measures of the

state trajectory, the control signal and its derivative.

Dead zones: The idea behind dead zones is to monitor the measurable signals and to

disable the parameter update law for â if they enter the dead-zone region Ω, where a poor

signal to noise ratio could destabilise the system. The region Ω naturally depends on an

a priori knowledge of the size of the disturbances and introduces some conservativeness

to the design.
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The modified controller from equation (1.2) then reads

Cdead :







u2 = −y2(1 + â)

˙̂a =

{

y2
2 if (u2, y2)

⊤ /∈ Ω,

0 if (u2, y2)
⊤ ∈ Ω

â(0) = 0

.

Projections: The aim of the projection modification is to directly bound the size of

the tuning parameter â and is given by

Cproj :







u2 = −y2(1 + â)

˙̂a =

{

y2
2 if â < âmax,

0 if â ≥ âmax

â(0) = 0

where we observe that a priori knowledge of an upper bound âmax of â is required to

construct Cproj.

See Sanei and French (2006) for a direct performance comparison between the dead

zone and the projection modification, where the authors show that if the bound on the

uncertainty is sufficiently conservative then a dead-zone modified controller outperforms

its projection modified counterpart. The converse holds when the a priori information

on the disturbance level is sufficiently conservative.

Sigma modification: A further possibility to prevent â from drifting to infinity is to

add an additional term to the parameter update law and penalise large values of â. With

σ being a small, positive constant we would then have a controller

Cσ :







u2 = −y2(1 + â)
˙̂a = y2

2 − σâ

â(0) = 0.

If however the true parameter a is large then â is large hence via the parameter update

equation â will be forced away from its equilibrium point âeq. The introduction of an

offset, i.e. ˙̂a = y2
2 −σ(âeq − â), would solve this problem however implies a priori knowl-

edge about âeq which, if it exists, would question the use of an adaptive controller in

the first place. Also uncertainties in the knowledge of âeq would lead to conservativeness.

These and other modifications to standard adaptive algorithms all follow the same basic

principle: to suppress the parameter drift of â; where unfortunately a certain amount

of conservativeness is introduced along the way. Although initial robustness results for

additive and multiplicative uncertainty in terms of Lyapunov stability theory do exist,

there remains the lack of a coherent theory capturing the robustness properties of the

algorithms in the presence of general disturbances and fully unstructured uncertainty.
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Due to this lack of theory and the often unpredictable behaviour of the algorithm,

the community’s interest in adaptive control cooled down noticeably over the years.

Additionally, reports of failed practical tests with sometimes devastating results — like

the flight of the X-15 (see Staff of the Flight Research Center (1971)), which disintegrated

in mid-air due to controller induced high-gain instability — left a permanent mark on

the adaptive approach in general. Note that the investigation of continuously tuned

adaptive controllers continues up until today and various successful applications have

been reported, e.g. see Guan and Pan (2008) for the control of an uncertain electro-

hydraulic actuator or Hung et al. (2008) for the control of robot manipulators with non-

linearly parametrised uncertainties, to cite only two recent ones. However the discussed

difficulties remain.

3.4 Robust stability theory

When 27 experts were asked in survey about “[...] major open problems in control

theory” (Blondel et al. (1995)), one of them gave a particularly revealing answer for the

area of adaptive control:

“There is not as yet an adequate robust adaptive control theory; this may

be due to the fact that there is a complete mismatch between the current

mathematical formulations of robust and adaptive control.” (P. E. Caines)

More recently, attempts were made to overcome this problem and re-investigate the

robustness properties of adaptive control algorithms from the perspective of robust con-

trol theory. French (2008) analyses the robustness properties of a continuously tuned

adaptive controller in the framework of Georgiou and Smith (1997) for the case of fully

unstructured uncertainties (in the gap metric) and the disturbance model as depicted

in Figure 1.1. The author then shows that there exists a class of non-conservative, con-

tinuously tuned adaptive controllers that robustly stabilise finite-dimensional, minimum

phase plants P perturbed to P1 where the gap distance between P and P1, the initial

condition and the disturbances (u0, y0)
⊤ are sufficiently small.

Although the given robustness guarantees only allow local disturbances and the estab-

lished gain function bounds grow rapidly with the bound on the size of the disturbances,

these results are important from the perspective of this thesis as:

1. They are the first of their kind that establish comprehensive robustness results

in terms of fully unstructured uncertainties in the gap metric for an adaptive

algorithm; this inspired the type of robustness analysis conducted in this thesis.

2. They provide insight and motivation for the non-conservative extensions of the

algorithm considered in this thesis (in Chapter 6).
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3. They demonstrate that it is possible to achieve a robust stability margin, even

when the closed loop gain is infinite, and that this scenario is typical in adaptive

control.

4. The author establishes gain (function) bounds and robustness margins which are

compatible with the disturbance model in Figure 2.1. Therefore the two very

different approaches of classical adaptive control and the multiple model switching

method considered in this thesis become comparable in terms of their robustness

and performance properties.

French et al. (2006) then extend on work from French (2008), considering more standard

robust adaptive control designs, and revisit a specific example from Georgiou and Smith

(1997) (Example 9), where a plant P = 1
s−a is perturbed by the all pass factor M−s

M+s , M >

0 (i.e. in series connection). The robustness result shows that the closed loop system

is stable if the gap distance between the perturbed and nominal plant as well as the L2

disturbances are sufficiently small. Various mechanism of instability are then illustrated.

In particular they show L2 instability of the closed loop system for large initial conditions

or large L2 disturbances. Finally they show that L∞ disturbances imply that the internal

signals do not remain in L∞ hence the system is considered L∞ unstable.

4 Multiple Model Adaptive Control

Multiple model type algorithms represent an alternative to the continuously tuned al-

gorithms discussed in the previous section. The name refers to the fact that control

is performed on the basis of having a number of (plant) hypotheses, represented in a

so-called plant model set, rather than working directly with a parametrised model.

Every multiple model algorithm incorporates three basic building blocks:

1. Plant model set:

For example for the plant

Pp =
1

s− p

with uncertain parameter 1 ≤ p ≤ 10. We might choose the plant model set to be

{
1

s− 1
,

1

s− 2
, · · · , 1

s− 10

}

.

To represent such sets efficiently we let P denote a parametrisation set, e.g. co-

efficients of transfer function or state space matrices (A,B,C,D), corresponding

to a model. In the case of our example we would write Pi = {1, 2, · · · , 10} ⊂ P
where the models are given by Pp, p ∈ Pi.
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2. Controller set:

The controller set is related to the plant model set via a controller design procedure

K : P → C where C is the parametrised set of all controllers. We usually require

that each ‘atomic’ plant-controller pair is closed loop stable, i.e. [Pp, CK(p)] is gain

stable.

3. Performance function:

The performance function returns a performance signal dp and has the purpose

to assess how valid each plant model p ∈ P is, where by convention, a smaller

performance signal indicates higher validity.

Typically these building blocks are then interconnected in the following way. The per-

formance signal dp is evaluated for a (finite) subset Pi ⊂ P denoted the plant model set.

Then the controller for which the corresponding plant model p ∈ Pi has the smallest

performance signal is switched into closed loop (or multiple controllers are implemented

in parallel and the outputs are weighted according to their corresponding performance

signals). Assuming that the true plant Pp∗ is included in the plant model set, i.e. p∗ ∈ Pi

and the performance signal is minimal for the plant model corresponding to p∗ (or mini-

mal for a plant model close to p∗), the implemented controller might indeed stabilise the

true plant Pp∗ . Such a design framework can also be utilised in the time-varying setting,

subject to performance signals being evaluated over suitable short moving horizons.

4.1 Gain scheduled control

We will now briefly consider gain scheduled control (see Murray-Smith and Johansen

(1997) for an overview) which fits into the multiple model framework in the time-varying

setting; although note that the remainder of the thesis will handle the time invariant case,

under significant less observation information e.g. no measurement of the ‘scheduling

variables’.

In the process or aviation industry one often has to deal with dynamical systems depend-

ing non-linearly on some key process variables (the so-called scheduling variables). For

example the aerodynamic properties of an airplane such as lift, drag etc. are non-linear

functions of altitude, speed and other variables which can be directly measured. The

dynamical changes are so significant over the whole flight envelope that there is no hope

in adequately controlling the system by a single LTI controller.

Typically a non-linear plant P (a) : u 7→ y is therefore linearised over a finite set of

equilibrium points aj , 1 ≤ j ≤ i, i ∈ N of representative operating conditions corre-

sponding to a plant model set Pi = {p1, p2, · · · , pi}, i ∈ N. Via the controller design

procedure K, to every plant model Pp, p ∈ Pi a corresponding controller CK(p) is con-

structed such that the controller pairs [Pp, CK(p)], p ∈ Pi fulfils certain performance
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criteria. The scheduling variables are then measured and the atomic controller outputs

are interpolated (linearly) between linearisation points, e.g. see Rugh (1991).

A naive implementation of such an approach is depicted in Figure 1.6, where a is the

measured scheduling variable and ap, p ∈ Pi are the equilibrium points of the plants

P (a). The performance function to each Pp is then given by

dp = |a− ap|, p ∈ Pi

and

x = argmin
p∈Pi

dp, z = argmin
p∈Pi\x

dp,

are the two ‘closest’ models where the weights wp, p ∈ Pi are chosen such that u is a

linear interpolation of the atomic controller outputs

u =
∑

p∈Pi

wpup, up = CK(p)y, p ∈ Pi

with

wx = 1 − wz, wz =
dx

|az − ax|
, ax ≤ a ≤ az, wp = 0, p ∈ Pi \ {x, z}.

ap1

ap2

api

f(a)

a

CK(p1)

CK(p2)

CK(pi)

⇒

⇒

⇒

y

wp1

wp2

wpi

uu

up1

up2

upi

⇒

⇒

⇒
P (a)

Figure 1.6: Gain scheduling algorithm with equilibrium points aj and corresponding
controller designs CK(pj)

Interpolation or blending between models has the purpose of reducing design and im-

plementation complexity, i.e. to reduce the number of linearisations and the number

of controllers. It also has the benefit that it effectively smoothens the overall control

signal enabling bumpless transfer. However to ensure that that resulting blended signal
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is ‘sensible’ for control it must be assumed that the dynamical model and controller set

satisfies continuity properties in the model parameter space. A ‘hard’ switch can be

implemented e.g. by letting

wx = 1, wp = 0, p ∈ Pi \ {x}.

Although this is less common in a gain scheduling context it has more in common with

what follows.

In the gain scheduling context, stability is usually shown under the assumption that

the rate of change of the involved system variables is slow. Abrupt changes in the

process variables, for example by some fault in the sensor or excessive sensor noise,

could lead to a fast switching / blending sequence and potentially destabilise the system.

For this purpose it is sensible to restrict how fast the algorithm is allowed to blend

or switch between controllers. This is enforced by a dynamical requirement that the

gain scheduling variables have a slow variation. In the adaptive controllers that follow,

switching delays or dwell times are explicitly introduced to prevent instabilities. For

example see Liberzon (2003) for mechanisms of switching induced instability.

A particular and potentially restrictive assumption in gain scheduling is that the direct

measurement of the scheduling variables is possible. For the given examples of sensor

failure or excessive sensor noise this assumption might be impossible to satisfy. Also in

many situations the required scheduling variables can not be measured directly in the

first place and further complexity has to be introduced to estimate them. The following

approaches utilise performance functions which do not depend on the measurement

of scheduling variables but determine the validity of every plant model by comparing

its dynamical behaviour to the observable input and output signals of the true plant

(u2, y2)
⊤. However note that they have a different scope to gain scheduled control since

they are usually designed to control a fixed uncertain LTI plant rather than a plant with

a time-varying parametric non-linearity.

4.2 Multiple Model Switched Adaptive Control (MMSAC)

A typical switched multiple model algorithms — as depicted in Figure 1.7 — is composed

of two basic parts:

1. The subsystem determining the best plant candidate — switching logic S

2. The subsystem implementing the feedback controller — switching controller C

As Figure 1.7 suggests, the signal interconnecting the two subsystems S and C is to be

denoted the switching signal q. To be able to deal with possible time dependent building

blocks in the algorithm it is sensible to introduce a time base to the involved signals.
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P

u0 y0

u2

y2

y2

q
SC

u2

Figure 1.7: Multiple model switched system with switching logic S and controller C

In particular we later implement a switching delay to prevent overly fast switching and

possible instability and need to quantify how long such a delay should last.

Here q then naturally becomes a piecewise constant function of time — it is discon-

tinuous at switching times, where the switching logic chooses a new controller to be

switched into closed loop, and constant everywhere else. Given some set of controllers

C = {c1, c2, · · · , ci}, i ∈ N, the switching signal q : R → C and switching times

{t1, t2, · · · , tv, · · · }, v ∈ N, a possible trajectory of q is depicted in Figure 1.8.

t

q(t)

c1

c2

ci

t1 t2 tv

Figure 1.8: Switching signal q

Before the potential benefits of MMSAC systems are discussed, a simple example for

a switching logic S is given. Let all plant models run in parallel to the true plant

and assume that the size of each model’s output error (when compared to the true

plant’s output) represents the performance signal, i.e. let the plant model set Pi =

{p1, p2, · · · , pi}, i ∈ N and dp = |ep|, p ∈ Pi in Figure 1.9 where the true plant is given

by Pp∗ . This rudimentary scheme is completely deterministic and follows the underlying

idea that if a model and the true plant are close to each other, their dynamical response

should be similar and therefore the output error small. However this implementation

proves to be problematic since arbitrarily small differences in the initial conditions lead
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Pp1

Ppi

ep1

epi

Pp∗

u0 y0

u1 y1u2 y2

Figure 1.9: Free running plant models

to growing output errors even if the model and true plant are identical, which is only

eliminated if the plant and model are both stable. One remedy to this problem is to

utilise observers (Figure 1.10) instead of free running plants since they are known to

Op1

Opi

ep1

epi

Pp∗

u0 y0

u1 y1u2 y2

y2

u2

u2

y2

yp1
1

ypi
1

Figure 1.10: Observer bank

ensure error convergence even if plant and model are unstable (assuming zero distur-

bances). The ‘free’ switching signal qf is then determined from ep, p ∈ Pi for example

via

qf (t) = argmin
p∈Pi

∫ t

0
|ep(τ)|2dτ.

The signal qf is denoted free since no delay is involved in its construction. We will later

(in Chapter 4) introduce a switching delay (operator) D : qf 7→ q that delays the signal

qf to q to prevent instability effects due to overly fast switching.

Before we introduce an important algorithm adopting the idea, i.e. to utilise observers for

performance evaluation, we want to emphasise that even at this basic level of discussion

of MMSAC systems it can be seen that they have the potential to have a number of

desirable properties, i.e. there is no conceptual reason why they should not have these

properties.
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In principle, MMSAC allows the use of controllers built from entirely standard

(off the shelf) design procedures unlike many other adaptive algorithms where the

control design is constrained by the specifics of the algorithm itself. The only

restriction is that for every plant in the plant (model) set Pp, p ∈ P the corre-

sponding controller CK(p), constructed by the design procedure K, is stabilising,

i.e. [Pp, CK(p)] is gain stable. This also allows the easy assimilation of already

existing control designs into the given structure.� Allows for non-convex parameter sets:

In continuously tuned adaptive algorithms difficulties arise if the process model is

parametrised over non-convex sets, as during the tuning of the parameter the al-

gorithm can enter regions of undesired parametrisation. The MMSAC algorithms

naturally does not have this problem since it can ‘jump’ to the controller corre-

sponding to the best-performing plant straight away.

For example consider the chemical reactor in Figure 1.11 where the overall system

dynamic of the reactor is assumed to be governed by two chemicals a and b. Let the

parametrisation of the actual reactor be fixed and unknown however assume it to

lie withing the pictured parameter surface, symbolising all feasible combinations.

Applying a continuous adaptive control algorithm to this non-convex problem, the

a

b
Possible combinations of a and b

tuning trajectory

Plant models

Figure 1.11: Tuning versus switching

tuning trajectory might actually exit the parameter surface and therefore control

the reactor based on false, potentially dangerous assumptions about a and b. On

the other hand if we utilise MMSAC the algorithm has the freedom to ‘jump’ the

concavity and avoid this problem. (for a further discussion see Hespanha et al.

(2003)).� Copes with the simultaneous stabilisation problem:

This is another implication of the switching nature of the MMSAC algorithm and
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simply follows from the fact the algorithm can switch to any controller in the

controller set. If we consider the simultaneous stabilisation example in Section 1

concerning two plants Pp1 = 1
s and Pp2 = −1

s , we could choose the corresponding

controllers to be CK(p1) = 1 and CK(p2) = −1, where we note that the atomic closed

loops [Pp1 , CK(p1)] and [Pp2 , CK(p2)] are stable. In the ideal case the algorithm will

then switch to (or remain long enough with) the correct controller, so that the

system is stable.� Allows for Multiple Input Multiple Output Systems:

In the multiple model framework the inclusion of MIMO systems virtually comes

for free since there are inherently no restrictions on the dimension of the involved

signals. The only (trivial) requirement is that the signal dimensions of the true

plant, plant models, corresponding controllers and the switching logic are compat-

ible.

Although no conceptual limitations prevent MMSAC to be applied to MIMO prob-

lems, very little MIMO analysis is available in the literature to date, however see

Mosca et al. (2001) for an exception.� Modularised approach:

Observe that the problems of performance evaluation and generation of the switch-

ing signal q, performed by the switching logic S and the feedback implementation

given by the controller C — as depicted in Figure 1.7 — are only interlinked via q

and otherwise completely separated. This allows a simplified implementation and

analysis of the algorithm since changes in C do not necessarily require changes in

S and vice versa; hence they can be designed and analysed separately. In practise

this is of great importance since it will reduce the overall complexity of the design

process.

For an enthusiastic promotion of multiple model switched adaptive control see Hespanha

et al. (2003).

The structural freedom in MMSAC stands out, especially if compared to other adaptive

algorithms such as the continuously tuned adaptive controllers introduced in Section 3.

Their controller design is completely dictated by the structure of the algorithm itself.

Also, they can experience bursting effects for some unfortunate value of the tuned param-

eter (see Anderson (2005)) hence potentially have difficulties if the plant is parametrised

over non-convex parameter sets. The Nussbaum controller is the only continuously tuned

algorithm theoretically capable of dealing with the simultaneous stabilisation problem

however there is little hope to ever apply it in practice. Furthermore the analysis of

classical adaptive algorithms is usually limited to the SISO case and the generalisation

to MIMO is extremely cumbersome.

However note that for MMSAC it is common in the literature to impose assumptions on

the plant, controller and algorithm to simplify the analysis. Standard such assumptions
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are that the controllers have a particular design, the plant is SISO, possibly stable, S

and C are somehow interwoven, etc. Hence some of the native features are sacrificed

for the simplicity of the analysis. The literature to date therefore only reflects a subset

of possible MMSAC designs. We will shortly discuss multiple model type algorithms in

detail in order to illustrate this.

In contrast we will show that the class of algorithms and the corresponding analysis

developed in this thesis will fully achieve the potential by incorporating all the above

features. Additionally we will show that the schemes are amenable to a strong robustness

analysis, i.e. we will establish explicit gain (function) bounds on the gain from the

external disturbances (u0, y0)
⊤ to the internal signals (u2, y2)

⊤ hence we can give (by

Georgiou and Smith (1997)) explicit robustness guarantees. We will also show that

variations on the schemes leads to non-conservativeness.

Before a discussion of historic multiple model schemes is entered, note that although

time-varying systems are not the focus of this thesis there is no inherent assumption in

MMSAC that the true plant needs to be fixed, i.e. MMSAC is potentially applicable

to similar system classes as the gain scheduled controllers introduced above. The only

constraint that we need to satisfy on an algorithmic level is that for every frozen time

instance of the plant Pp∗(t), t ∈ R there exists a controller in C such that the atomic

closed loop [Pp∗(t), CK(p)] is gain stable for some p ∈ Pi. Furthermore the performance

of each plant model would have to be evaluated over a shorter horizon to include some

kind of ‘forgetting’ into the algorithm since otherwise the algorithm will slow due to

the accumulated history in the performance signals. There does not exist a workable

theory on how to apply MMSAC to time-varying problems to date, however for later

generalisations the absence of structural obstacles will be necessary.

4.3 [Robust] Multiple Model Adaptive Control ([R]MMAC)

Two historic predecessors to the MMSAC concept were the Multiple Model Adaptive

Estimation (MMAE) and Multiple Model Adaptive Control (MMAC) algorithms due to

Lainiotis (1971, 1976a,b), Saridis and Dao (1972) and Deshpande et al. (1973). We will

now briefly discuss these historic multiple model schemes and note that they are not

switched in a strict sense. The global control signal is constructed by ‘blending’ together

various atomic control signals, as with the common practise in gain scheduled control.

However the structural similarity of these algorithm in comparison to MMSAC justifies

their discussion at this point.

MMAE and MMAC algorithms are set in the stochastic domain and seek to control a

fixed LTI plant incorporating some uncertainty. The idea of MMAE is to utilise a bank

of Kalman filters for state estimation of an unknown plant. The global state estimate

is then calculated by summing over the weighed local state estimates of the Kalman
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filters where the weights are determined by a so-called “Posterior Probability Evaluator

(PPE)” from the Kalman filter residuals (details are omitted). The (state) controller is

realised by certainty equivalence with the global state estimate. MMAC is a (control)

extension to MMAE where local control signals are calculated from each Kalman filter

state estimate and a corresponding LQ controller. Similarly to the construction of the

global state in MMAE, the global control signal is constructed by utilising the weights

from the MMAE’s PPE to generate a weighted sum of the local control signals. This

essentially follows the same principle as the discussed gain scheduling algorithm where

the performance function is now a stochastic estimation process and the performance

signal indicates the probability related to each model. There are a variety of examples

where MMAC has been applied successfully: in medical applications He et al. (1986)

and Martin et al. (1987); aerospace applications Athans et al. (1975) and Maybeck and

Stevens (1990a) and controlling flexible structures Maybeck and Stevens (1990b) and

Fitch and Maybeck (1994) (to pick only a few). Maybeck also produced as series of text

books in which he discusses the topic extensively Maybeck (1979, 1982a,b).

Recently, in Fekri et al. (2004), a similar scheme denoted Robust Multiple Model Adap-

tive Control (RMMAC) was introduced however with the difference that the local control

designs are by ‘state of the art’ mixed µ synthesis techniques leading to output feed-

back controllers (instead of state controllers as in MMAC). The global control signal is

constructed as a weighted sum of all local controller outputs, where the weights are gen-

erated by a PPE as in MMAE. This allows for MIMO plants. See Fekri et al. (2006) for

a nice overview of MMAE, MMAC and RMMAC algorithms where the authors evaluate

the performance of their algorithm through many simulations.

Although some of these stochastic algorithms work well in practice, no analytical ro-

bustness/performance results have been reported to date; where by robustness we mean

that the system remains stable in the presence of input and output disturbances as well

as unmodeled dynamics. This prevents a principled performance-orientated design of

the algorithm, especially the design of the plant model set. Fekri et al. (2006) try to

circumvent this problem and utilise the ‘atomic’ robustness margins of [Pp, CK(p)] as a

measure of performance instead, which leads to a rudimentary performance-orientated

design procedure for the plant model set. This is discussed in more detail later in the

next section.

We now turn to two completely deterministic MMSAC schemes which are broadly ap-

plicable and open to a simplified analysis with the aim of developing hard robustness

results: one where the performance function is implemented with observers and one

where it is implemented utilising so-called disturbance estimators.
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4.4 Observer based MMSAC

(State) observers are intriguing candidates for implementing the performance function

in a deterministic setting. They are part of the basic vocabulary of control and have an

intuitive interpretation: that an observer attempts to estimate the state of the observed

system and that the observed state converges to the true state assuming zero distur-

bances. This is invariant to the stability of the corresponding plant. Furthermore, per-

formance evaluation via observers provides an interesting link to the stochastic MMAE,

MMAC and RMMAC approaches discussed above, since the Kalman filter allows both

deterministic and stochastic observer interpretations.

Assume P in Figure 1.1 to be represented by the following state space equations:

ẋ = Ax+Bu1

y1 = Cx+Du1

and assume (A,C) to be observable and the disturbances to be zero, i.e. (u0, y0) = 0.

We then have with (u0, y0)
⊤ = (u1, y1)

⊤ + (u2, y2)
⊤ that (u1, y1)

⊤ = −(u2, y2)
⊤ hence

ẋ = Ax−Bu2

y2 = −Cx+Du2.

A typical (Luenberger type) observer for P is then given by

˙̂x = Ax̂+ L(y2 − ŷ2) −Bu2

ŷ2 = −Cx̂+Du2.

The purpose of the second term in the observer state equation, L(y − ŷ), is to force

output error convergence between the observer and the true output, where the choice

of the matrix L is of major importance. To see this let the state error e be given by

e = x̂− x. We then have

ė = ˙̂x− ẋ = Ax̂+ L(y2 − ŷ2) −Bu2 −Ax+Bu2

= A(x̂− x) + L(−Cx+Du2 + Cx̂−Du2)

= Ae− LCe

= (A− LC)e

hence if we choose L such that A−LC has eigenvalues with strictly negative parts then

the observer state asymptotically converges to the state of the true system, i.e. x̂(t) →
x(t) as t → ∞. This nice property motivates the choice dp = ep as the performance

function, where p = (A,B,C,D). For a plant model set Pi = {p1, p2, · · · , pi}, i ∈ N

a observer bank with corresponding output errors is depicted in Figure 1.12 which we
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Figure 1.12: Observer bank

utilise to construct S. Typically the switching signal is then computed from ep, p ∈ Pi

by integrating the output error hence to account for the history of the error signal in

the switching decision, e.g.

qf (t) = argmin
p∈Pi

∫ t

0
|ep(τ)|2dτ.

One obvious implication of utilising observers is that the class of systems we seek to

control must allow the construction of observers in the first place. Although this is well

understood in the linear domain with the notion of observability, things become less

clear in the non-linear case, e.g. see Hespanha et al. (2002). There exist various non-

linear observer designs such as high gain observers, sliding-mode observers or non-linear

extended state observers, however their design and application is far from being trivial.

Also fundamental questions related to error convergence or robustness often remain

unanswered. This implies that the very fact that the algorithm relies on observers will

complicate if not preclude a later generalisation to a wide class of non-linear systems.

Various authors have conducted analytical studies of observer based MMSAC algorithms

in order to show their stability and robustness. The most prominent one is due to Morse

(1996), where the author shows the asymptotic convergence of the output to a constant

reference signal r of an observer based MMSAC algorithm controlling a fixed LTI SISO

plant P =
αp∗
βP∗

in the presence of a constant disturbance d with n = 0, δa
p∗ = δm

p∗ = 0

(Figure 1.13 B) where
αp∗
βp∗

is proper, βp∗ is monic and νp∗ is a polynomial of degree less

then βp∗ . Later in Morse (1997) δa
p∗ , δ

m
p∗ are allowed to be non-zero. The plant model

set is always required to be compact.

Morse addresses the problem of implementing a large number of observers in parallel

from the start. In particular he shows that observers can be written in a state shared

fashion, i.e. some estimator state xE is common to all observers which is generated by the

‘multi estimator’ ΣE in Figure 1.13 (A), hence only the output equation yp = CpxE must
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Figure 1.13: Closed loop system considered in Morse (1996, 1997)

be evaluated for all p ∈ P. Therefore ΣE is a state shared implementation of Figure 1.12.

This reduces the computational complexity from evaluating i observer state and output

equations to the complexity of evaluating one observer state equation and i output

equations which is significant for a later implementation. However, computational trade-

offs are expected, especially for large plant model sets.

The building block ΣW returns an exponentially weighted matrixW which is constructed

from y and xE (details are omitted). ΣD then determines from W and Cp the observer

which performs best and lets q point to the corresponding plant model (after some

suitable delay, or dwell time). In short, q points to the plant model which corresponding

observer shows the smallest output error (measured in some weighted L2 norm), where

q is suitably delayed.

In Morse (1997) the algorithm from Morse (1996) is then shown to be stable in the

presence of additive and multiplicative perturbations δa
p∗ and δm

p∗ of suitable size where

d, n are non-zero bounded, piecewise-continuous disturbance inputs (Figure 1.13 (B)).

In Morse (2004) the setup of Morse (1996) is revisited and explicit bounds on the gain

from the disturbance d to the tracking error eT are given, however with d entering the

system before the plant P (without a corresponding disturbance weight), and where the

output disturbance n is assumed to be zero.

Although these results are significant (especially since they are the first of their kind)

they are unfortunately not able to preserve all of the potential features promised by the

MMSAC concept as stated in Section 4.2:� LTI SISO:

All results are given for LTI SISO plants. A discussion on how suitable the given

analysis is for a later generalisation to MIMO and non-linear systems is mostly
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absent. It is noted that the problem of controller construction for a continuum of

plant models becomes more complicated in the MIMO and non-linear case. Initial

work has been performed by Mosca et al. (2001).

We note that Morse’s analysis relies heavily on transfer function and linear state

space equation notation that inherently ties it to the linear domain and makes a

later generalisation at least cumbersome. Stability analysis aside, we have men-

tioned before that even the construction of observers can be problematic in the

non-linear case, e.g. see Chang et al. (2001) where a great deal of attention goes

to the construction and stability proof of the utilised non-linear state observer.� No complete unstructured uncertainty model:

In order to obtain a comprehensive robustness result it is essential to not only

deal with additive and multiplicative uncertainty but also with uncertainties of an

inverse multiplicative type. A common way to address the complete unstructured

uncertainty problem in the linear domain is to employ a coprime perturbation

model, discussed in Section 4, page 53, where it is required that we allow for

two possible disturbance inputs placed symmetrically on both sides of the plant

as in Figure 1.1. The disturbance model in Figure 1.1 is also utilised in the

robustness theory of Georgiou and Smith (1990, 1997) hence if we are able to

establish a finite bound on the gain from the disturbances to the internal signals

we automatically have a powerful robustness analysis at hand, i.e. for non-linear

systems see Georgiou and Smith (1997), Theorem 1.

In contrast, the model in Figure 1.13 from Morse (1996, 1997) injects the distur-

bance d, n after the plant. To move d to the left beyond 1
s is impossible if the

true plant does not have a ‘natural’ pole at zero and we were forced to artificially

augment the plant input with an integrator in order to meet the given plant con-

straints since then the noise input d would act on the controller. These structural

issues essentially prevent a straight forward generalisation of the results to allow

for general unstructured uncertainties and a direct application of known robustness

results.� Pole at zero:

Morse assumes that the true system possesses a pole at zero. This assumption is

rather restrictive since it only holds for a small class of physical systems, e.g. a

mass, spring, damper arrangement only has a pole at zero if the spring constant is

zero (there is no spring). In order to apply Morse’s theory we would therefore have

to artificially augment systems with an integrator, which has other undesirable

effects, as discussed above.� Results only in a (weighted) L2 setting:

It is desirable to have gain stability results not only in L2 but also in other relevant

signal spaces, for example L∞ is interesting in practice since it deals with possible

offsets naturally present in any physical signal.
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A different type of analysis deals with the improvement of performance in MMSAC sys-

tems while preserving stability. Narendra and Balakrishnan (1993) considers a number

of parametrised adaptive controllers and utilises a switching scheme to select one of

them for closed loop operation. In Narendra et al. (1995) and Narendra and Balakr-

ishnan (1997) the authors extend Narendra and Balakrishnan (1993) and also consider

fixed controllers and re-initialised adaptive controllers alongside the (free-running) adap-

tive controllers from Narendra and Balakrishnan (1993). They also perform extensive

numerical simulation evaluating the performance of different combinations of the men-

tioned controller choices. No gain bounds or robustness margins are given where the

authors merely note: “Since all the models used in the procedure [...] are either fixed

or adaptive, one would expect the overall system to be robust under perturbations, if

each model-controller pair is individually robust. This indeed turns out to be the case.”

Such robustness results would therefore at best inherit the limitations of the robustness

theory for classical adaptive controllers and no explicit details were given.

For the present analysis of MMSAC algorithms we therefore conclude the following:� Limitations by analysis:

For all discussed algorithms there remains a vast gap between theory and practice,

e.g. the wide gap between the class of systems MMSAC algorithms can be used for

(see the list at the beginning of Section 4.2) or can be implemented for in practice

and the class of systems that the analysis applies to. Also the assumption that the

plant set is compact postulates a priori knowledge of a bound on the uncertainty,

which makes the algorithm conservative (Chapter 6 shows how such limitations

may be removed for the algorithm under consideration in this thesis). This is very

unfortunate since non-conservativeness is thought to be one of the key benefits of

adaptive control.

Reducing complexity by limiting scope is the natural thing to do when approaching

complex problems however the adoption of many structural assumptions into the

analysis seems to have inhibited the generalisation effort over the last decade, i.e.

the system classes considered by the authors remain virtually unaltered to date.� Limited robustness results:

We have argued that although the theory of Morse (1996, 1997, 2004) is suitable

for showing stability in the presence of additive and multiplicative uncertainty, it

fails to fully incorporate unstructured uncertainty since this is disallowed by the

structure of the utilised disturbance model. The claim of robustness in Narendra

and Balakrishnan (1997) can be considered problematic since it relies on traditional

robust adaptive control results. For all other approaches robustness results do not

exist at all.

Since any control algorithm is subjected to input and output disturbances as well

as unmodeled dynamics in practice, the corresponding robustness theory must
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include these. Furthermore explicit measures of the algorithm’s performance, e.g.

in the form of gain bounds, are very important since they are essential to conduct

performance-orientated design (see below).� No theoretically grounded design methodology:

Since in MMSAC the controller design procedure K is usually given, design relates

almost exclusively to the question on how to choose an appropriate plant model

set Pi controlling an uncertain plant P . For example if

Pp =
1

s− p

where 1 ≤ p ≤ 10 is an uncertain parameter, how should the finite plant set Pi be

chosen?

Recall that in MMSAC there exists the basic requirement that every atomic plant

model controller pair [Pp, CK(p)], p ∈ Pi is gain stable. Furthermore we must

ensure that the plant models are distributed such that over the whole uncertainty

set of P there always exists a controller CK(p), p ∈ Pi such that [Pp, CK(p)] is

gain stable for all 1 ≤ p ≤ 10. Otherwise we could find a value of p such that all

controllers are destabilising. For example we might choose Pi = {1, 5, 10} where

the plant models are given by Pp, p ∈ Pi, however, we then have to ensure that

all the intermediate parametrisations a ∈ [1, 10] \ {1, 5, 10} can be stabilised by at

least one of the corresponding controllers CK(p), p ∈ Pi.

This basic relationship between placement of plant models and atomic stability

is exploited in Anderson et al. (2000). It is shown that to an uncertain plant P ,

incorporating a bounded real uncertainty, and the corresponding compact uncer-

tainty set P, a finite plant model set Pi ⊂ P can be constructed such that there

always exists a corresponding controller that stabilises P , i.e.

∃n ∈ N, Pi ⊂ P, |Pi| < n, s.t. ∀p∗ ∈ P ∃p ∈ Pi s.t. [Pp∗ , CK(p)] is gain stable.

The argument can be constructed by noting that for each atomic plant-controller

pair [Pp, CK(p)], which is required to be (gain) stable, by standard linear robust

stability theory, there exists a robustness margin of radius bPp,CK(p)
around each

Pp, p ∈ P. The union of these neighbourhoods with radii corresponding to the

robustness margins then results in a cover. By compactness, this cover of P there-

fore has a finite sub-cover which determines the finite plant model set Pi. This

leads to the desired result.

In Fekri et al. (2006) the authors are explicitly interested in a performance-

orientated design guideline for the plant model set Pi and the corresponding con-

troller set. They utilise the performance of atomic plant-controller pairs [Pp, CK(p)]

for that purpose. For a scalar uncertainty p the number and distribution of the



32 Chapter 1 Introduction

plant models is then determined by an iterative process. Starting from the up-

per bound of the uncertain parameter pu, p ≤ pu the performance of the first

controller design C1 (where the controller is constructed for each new uncertainty

interval by mixed µ synthesis techniques) is evaluated for the atomic closed loop

[Pp, CK(p)] over the uncertainty interval α1 ≤ p ≤ pu for decreasing α1. Since the

performance of the (fixed) controller under increasing uncertainty will naturally

decrease (it is conservative) it will eventually cross some pre-defined lower perfor-

mance bound A. This event defines α1 and the first controller Cp1 . The procedure

is then repeated for α2 ≤ p ≤ α1 with α2 decreasing until the lower bound of the

uncertainty pl, pl ≤ p it reached. This implicitly defines Pi. Since the atomic

performance of matching plant and controller pairs [Pp, CK(p)] is also a measure

of atomic robustness this essentially relates the number of plant models to the

atomic robust stability margins as in Anderson et al. (2000); however it also gives

a design guideline for Pi.

Note that for non-parametric uncertainties the design problem becomes more com-

plex since we also have to consider the geometric distribution of the plant models.

We conclude that the relationship between the number of plant models and atomic

robustness margins is in the one dimensional case, at least conceptually, well estab-

lished however design on this level, although it produces answers, remains heuristic

since we do not know how a particular construction of Pi will effect the global per-

formance of the algorithm. It is obvious that we are missing a key constraint in

the form of a global measure of performance in order to sensibly optimise Pi.

This motivates Chapter 6 where we will give performance-orientated design guide-

lines for the EMMSAC algorithm.

We will now focus on the class of switching algorithms where the performance function

is implemented by some optimal estimator.

4.5 Estimation-based Multiple Model Switched Adaptive Control

The idea of EMMSAC, i.e. to utilise optimal disturbance estimation for performance

evaluation, is due to Fisher-Jeffes (2003) and Vinnicombe (2004). It forms the basis for

what follows. To emphasise the optimality aspect of EMMSAC we will introduce the

algorithm from a system identification point of view.

Let P be the class of systems under consideration. Consider Figure 1.14 where the signal

(u2, y2)
⊤ is an observed measurement of a dynamical system, i.e. from Figure 1.1, where

for simplicity we have assumed that all signals are bounded. Let Mp denote the graph

of Pp, p ∈ P, that is the set of all allowable (or compatible) bounded input-output

combinations (up
1, y

p
1)

⊤ of Pp.
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Pp

up
0 yp

0

up
1 yp

1
u2 y2

Figure 1.14: System identification from the observation (u2, y2)
⊤

Now consider an optimal system identification algorithm that determines the plant

Pqf
, qf ∈ P such that the error (u

qf

0 , y
qf

0 )⊤ between the observed signals (u2, y2)
⊤

and the signals (u
qf

1 , y
qf

1 )⊤ in the graph of Pqf
is minimal at time k ∈ N:

qf (k) = argmin
p∈P

(

min
(up

1 ,yp
1)⊤∈TkMp

‖Tk(u2, y2)
⊤ + Tk(u

p
1, y

p
1)

⊤‖
)

= argmin
p∈P

(

min
(up

1 ,yp
1)⊤∈TkMp

‖Tk(u
p
0, y

p
0)

⊤‖
)

(1.5)

where Tkv represents the truncation of a signal v a time k ∈ N. The inner minimisation

can also be thought of as a (metric) projection onto the graph TkMp of Pp — as

depicted in Figure 1.15 — hence it represents the distance between the plant model and

the observation Tk(u2, y2)
⊤.

Tk(u2, y2)
⊤

TkMp

minimising Tk(u
p
1, y

p
1)

⊤

Tk(u
p
0, y

p
0)

⊤

Figure 1.15: Projection onto the graph TkMp of Pp, p ∈ P at time k ∈ N

A possible multiple model control strategy employing this identification scheme would

put a controller designed to stabilise the ‘identified’ plant qf (k) into closed loop. A

concrete design procedure would then be as follows.� For all Pp, p ∈ P construct a corresponding controller CK(p) such that the atomic

closed loop [Pp, CK(p)] is stable.� For all Pp, p ∈ P use the above procedure to construct the smallest ‘disturbance

estimate’ Tk(u
q
0, y

q
2)

⊤ that is consistent with the observation Tk(u2, y2)
⊤ and the

plant Pp (inner minimisation) up to time k ∈ N .
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estimate is minimal for all p ∈ P.� Switch the controller CK(qf (k)) corresponding to the plant Pqf (k) into closed loop

at time k ∈ N.

System identification on its own is a large and very active area of research and an in depth

analysis of existing algorithms would go beyond the scope of this thesis (Ljung (1999)

gives a good overview). We regard identification algorithms not minimising ‖(up
0, y

p
0)

⊤‖
as in equation (1.5) as non-optimal. Various solutions to the non-optimal identification

problem (see Ljung (1999) and the references therein) and optimal identification problem

(e.g. see Markovsky et al. (2005) for a recent approach via structured least-squares) are

known, however the inclusion of disturbances into the analysis usually poses a major

complication. Also concrete algorithms may face the problem of local minima if P is

non-convex and are usually limited to off-line application.

A straightforward way to simplify the identification problem is to consider only a dis-

crete, finite plant model set Pi ⊂ P since this would reduce the outer minimisation

problem in equation (1.5) to the simple comparison of finitely many scalars. The dis-

crete identification problem would then read

qf (k) = argmin
p∈Pi

(

min
(up

1 ,yp
1)⊤∈TkMp

‖Tk(u0, y0)
⊤‖
)

. (1.6)

Observe that discrete identification can be an approximate of the identification over the

whole of P as in equation (1.5), i.e. if P represents a continuum.

In Chapter 3 we will show that in L2, l2 the size of the disturbance estimate can be

determined from the residuals of a Kalman filtering process which allows a direct on-line

implementation of the disturbance estimator and underlines the close relationship to

MMAE and MMAC (in this special case). Furthermore, since the analysis presented in

this thesis requires disturbance estimates to be optimal only over some finite interval

[k−σ, k], σ, k ∈ N (also see French and Trenn (2005)), and since the inner minimisation

problem is usually convex, e.g. in the linear case, there exist simple (matrix optimisation)

techniques of bounded computational complexity to compute finite horizon disturbance

estimates in a general lr, 1 ≤ r ≤ ∞ norm setting (see Chapter 3).

The switching function in equation (1.6) forms the heart of the EMMSAC algorithm

considered in this thesis.

As noted, the idea to utilise optimal disturbance estimation for performance evaluation

is due to Fisher-Jeffes (2003) and Vinnicombe (2004). It was the key that allowed

for a simplified, axiomatic analysis in French and Trenn (2005), it opened the door to

further generalisations in Buchstaller and French (2007, 2008) and also made this thesis
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possible. Also the clever treatment of disturbances in the analysis and the fundamental

properties of estimators deduced in French and Trenn (2005) live on in the present result

and guide the developments to date. Last but not least the knowledge that finite bounds

on the gain from the external disturbances to the internal signals promises robustness

(Georgiou and Smith (1997)) defines the overall setting and objective of the analysis.

In Vinnicombe (2004) the author was able to establish initial bounds on the gain from the

external disturbances to the internal signals for a plant model set consisting of only two

plant models 1
z ,−1

z (the simultaneous stabilisation problem). Fisher-Jeffes (2003) was

able to show that such gain bounds can be established by either a version of Lyapunov

stability theory adapted to account for switching or linear matrix inequalities (LMIs) for

any two plant models. Furthermore he shows that the problem of determining optimal

disturbance estimates is equivalent to the problem of calculating the scaled residuals of a

Kalman filter. Unfortunately the path to a more general result is rather unclear since the

reasoning is specifically tied to the analysis of two plant models. A novel way of treating

disturbances in French and Trenn (2005), i.e. to utilised input and output disturbances

as a central part of the argument instead of considering them an unwanted nuisance,

then opened up the algorithm to a simplified and axiomatic analysis. This change of

perspective allowed the authors to first state four general assumption on the disturbance

estimator and then to establish lr, 1 ≤ r ≤ ∞ gain bounds for the class of dead-beat

stabilisable plants1 based on these abstract assumptions, thus divorcing the problem of

(optimal) disturbance estimation and the robust stability analysis of the algorithm. The

authors also introduce a finite horizon disturbance estimator which is only optimal over

a finite interval however it is shown to meet the (estimator) assumptions and is therefore

applicable.

Finally we emphasise the key differences and similarities between traditional observer

based MMSAC control algorithms in the sense of Morse et. al., and the introduced

EMMSAC control algorithm. Observe that:� The disturbance estimate in EMMSAC replaces the observer error in MMSAC as

the performance signal.� Observers, similarly to estimators, give some notion of distance from the observed

signal (u2, y2)
⊤ to the plant it has been constructed for, however this distance is

in general not minimal (optimal) in the given sense.� In l2 the Kalman filter may be utilised for optimal disturbances estimation. Ob-

serve that the Kalman filter estimator is also an observer or has observer structure.

Hence in the special case where Kalman filters are utilised for performance evalu-

ation, EMMSAC and MMSAC algorithms coincide in the performance function.

1The class of dead-beat stabilisable plant is the class of plants where to every member P there exists
a dead-beat controller C such that for the closed loop [P, C] and zero disturbances the output y2 is
forced to zero in one time step.
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To conclude the introduction we set the contributions of our work into perspective

against previous results.

5 Contributions of this thesis

We start by discussing what we consider the most important contribution of this thesis:

the axiomatic treatment of the problem in the theory. All results are the fruits of this

abstraction effort.

Axiomatic treatment in theory� Robustness:

By Georgiou and Smith (1997) finite bounds on the gain from the disturbances

(u0, y0)
⊤ to the internal signals (u2, y2)

⊤ translate into explicit robustness guar-

antees. This fact motivates the overall setting of the analysis: to show for an

algorithm that such bounds exist. In Chapter 5 this is done explicitly for the

EMMSAC algorithm. This way of showing robustness is rather different to the

one for example in Morse (1996, 1997), where the author proves error convergence

for the algorithm in the presence of additive and multiplicative uncertainty and

output disturbances.

The gain bound approach to robustness has the advantage that it essentially cleans

the analysis of any uncertainty related objects, in fact robustness can be completely

neglected at first, one merely has to show that such a gain bounds exists and

robustness follows.� Estimators:

In Chapter 3 we establish abstract assumptions on the disturbance estimator on

which the subsequent analysis will rest. This axiomatic treatment of the relevant

estimator properties initiated by French and Trenn (2005) has the advantage that

unlike other multiple model adaptive algorithms to date — which are tied to

one specific performance evaluating element, i.e. the so-called multi estimator in

MMSAC (Morse (1996, 1997)) or Kalman filters in MMAC or RMMAC — we are

free to choose any estimator that fulfils the assumptions. In particular we will show

that optimal (finite and infinite horizon) disturbance estimation algorithms fulfil

these assumptions. The optimal infinite horizon estimators in an l2 setting are

closely related to the Kalman filter however different horizons length and signals

spaces give rise to a variety of different estimators.� Atomic plant-controllers pairs:

Similar to the estimator assumption we will not explicitly give a controller design

or even assume a certain representation of the plant models and corresponding con-

trollers, i.e. state space matrices or transfer functions, but only require the atomic
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loop interconnection [Pp, CK(p)], p ∈ P to satisfy two rather simplistic (linear)

signal growth assumptions (see Chapter 4) on which the subsequent analysis will

rest. We call these two assumptions the controller assumptions. This approach

is fundamentally different to other theoretical treatments of this problem in the

literature, i.e. in MMAC controllers are required to be state controllers, in MM-

SAC (Morse (1996, 1997)) we are free to chose the controllers however the notation

is based on linear transfer matrix function notation. Also in Fisher-Jeffes (2003)

the analysis is tied to state space notation where the controller design is fixed

(H∞). This axiomatic treatment leads to the greater generality of the algorithm

as discussed next.

We began the discussion of multiple model switched adaptive algorithms in Section 4.2

by compiling a list of desirable features that an algorithm could possess. During the

course of this thesis we will show that in fact all these features are preserved by the

analysis. We will now discuss these and additional features of the algorithms, where we

note that they almost exclusively follow directly from the axiomatic treatment of key

elements as described above.

Generality of the algorithm� Broad system class, full controller design freedom:

In MMSAC (Morse (1996, 1997)) it is assumed that the true plant has a pole at zero

and we noted that this poses problems in generalising the underlying disturbance

model. Unfortunately, since a great deal of the analysis rests on this assumption,

it is not straightforward to remove it. In French and Trenn (2005) the system class

is limited to dead-beat stabilisable systems where the controllers are dead-beat.

For classical adaptive controllers it is often imposed that the plants are minimum

phase and the relative degree as well as the sign of the high frequency gain is

known, i.e. see Narendra and Annaswamy (1989).

We do not require any such assumptions for EMMSAC.

We will only require that the controller design procedure K : P → C is such that

any atomic closed loop pair [Pp, CK(p)], p ∈ P satisfies the controller assumptions;

this can be achieved by any control design methodology. It will be shown in

Chapter 4 that for linear systems this assumption simply relates to atomic closed

loop pairs that are (gain) stable. However this assumption is also satisfied by non-

linear atomic closed loop pairs which show linear growth. Although non-linear

systems are not the focus of this thesis we note that this fact brings a fully non-

linear treatment of the problem within reach.� MIMO:

The majority of adaptive algorithms in the literature are assumed to be operating

on SISO plants. For classical adaptive controllers this arises from the structure
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of the problem since for general MIMO systems it becomes rather difficult to

construct an appropriate parameter update law. As mentioned before, multiple

model type algorithms do not have these structural problems and MIMO integrates

almost naturally into the scheme. The restriction to SISO for example in Morse

(1996, 1997, 2004) and Narendra and Annaswamy (1989) therefore originates from

simplicity of the analysis (however see Mosca et al. (2001) where a MIMO MMSAC

design is considered).

Since many control applications are indeed MIMO problems, the creation of an

algorithm and corresponding robustness result that allows for MIMO is consid-

ered an important issue in MMSAC. For example Fekri et al. (2006) acknowledge

this fact and specifically design their Robust Multiple Model Adaptive Control

(RMMAC) algorithm such that it can be applied to the MIMO case.

In the case of EMMSAC, the axiomatic nature of the approach allows MIMO

almost by accident. Recall that from a plant model and controller point of view

it is required that the atomic closed loop pairs [Pp, CK(p)], p ∈ P satisfy the

controller assumptions. It turns out that it is irrelevant if they are MIMO or SISO

since the assumption only deals with the size of signals. For the construction

of the estimator, the optimisation problem simply becomes higher dimensioned,

which is computationally more expensive but otherwise unproblematic (see the

point ‘Optimisation based performance evaluation’ below).� Non conservative:

One key problem that sparked the investigation of adaptive control algorithms was

the conservativeness of linear controllers; indeed basic continuously tuned adap-

tive controllers have the virtue of being universal. In order to ensure the stability

of the algorithms in the presence of disturbances and unmodeled dynamics, vari-

ous modifications (dead zones, projections, σ-modification, etc.) were considered

which lead to the introduction of some conservativeness to the design. However

see French (2008) where the author was able to establish that the underlying un-

modified universal controllers are robust to unmodeled dynamics in the presence of

sufficiently small disturbances. In MMSAC (Morse (1996, 1997)) the algorithm is

limited to compact plant model sets, which translates into the condition that there

must be a known bound on the uncertainty of the plant, in turn leading to con-

servativeness. In French and Trenn (2005) performance degrades for increasingly

large uncertainties.

The basic EMMSAC designs presented in this thesis are also conservative, however

we will present a variant of the EMMSAC algorithm in Chapter 6 that maintains

its performance invariant to the size of the uncertainty — it is universal.� Continuous plant sets:

Unlike French and Trenn (2005), where the established bound on the gain from the

disturbances to the internal signals scales with the number of elements in the plant
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set Pi (hence the robustness guarantee is lost for large sets Pi), we will show in

Chapter 5 that the present gain bound is invariant to the number of plant models

in Pi. Instead it depends on the ‘complexity’ of Pi (see Chapter 6). Note that the

analysis in MMSAC (Morse (1996, 1997)) is also invariant to the number of plant

models within a plant model set Pi. However see Hespanha et al. (2001) where

for the same algorithm the established bound on the size of the state as well as

the robustness margin scale with the number of elements in the plant model set.

The authors then propose a modification to the switching logic to circumvent this

issue.� Optimisation based performance evaluation:

Usually multiple model type algorithms are based on specific implementations of

the performance evaluator, i.e. the multi estimator in MMSAC (Morse (1996,

1997)), or Kalman filters in MMAC and RMMAC. The present analysis rests on

abstract estimator assumptions that can be satisfied by infinite and finite opti-

mal disturbance estimators (see Chapter 3). Since in particular the finite horizon

disturbance estimation problem is a standard convex optimisation problem with

many possible solutions, i.e. in l2 via the pseudo inverse or in l∞ via linear pro-

gramming, the analysis is applicable to a variety of algorithms. Furthermore the

Kalman filter provides a finite dimensional realisation of the infinite horizon l2

optimal estimator.

Even in the non-linear domain, under appropriate convexity assumptions, the finite

horizon optimisation problem remains computationally tractable.� Any lr, 1 ≤ r ≤ ∞ norm:

Since the entire analysis is based on the gain relationships between signals, or parts

of signals, it can be conducted in any lr, 1 ≤ r ≤ ∞ norm. In contrast, algorithms

that are based on Kalman filter state estimates such as MMAC or RMMAC only

apply in the L2, l2 setting. The stability proofs for MMSAC (Morse (1996, 1997))

are also limited to L2.� Fully modularised:

The reason why modularisation is very important is twofold. Firstly it simplifies

the analysis since every sub-component can be analysed separately. For example we

would like to argue about plant model set design, controller design, and construc-

tion of efficient estimators individually, since each component is complex enough

in its own right. Secondly it allows the actual implementation to be modularised.

This means that the individual sub-components can be constructed separately,

where changes in one component does not require changes in a second component.

For example in Fisher-Jeffes (2003) this is not the case and parts of the estimator

are utilised to construct the controller, hence a later modification to either the con-

troller or the estimator would imply a complete re-analysis and re-implementation

of both of them. This also significantly hinders later generalisations.
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On the other hand for example, if a design uses common states in the estimator

(e.g. a Kalman filter) and the controller then an implementation can exploit this.� Fully unstructured uncertainty model:

In contrast to MMSAC Morse (1996, 1997) and classical adaptive, continuously

tuned schemes, where only additive and multiplicative uncertainties are permitted

by the corresponding stability and robustness analysis, we allow the plant to be

perturbed by a fully unstructured uncertainty in the gap metric which is very im-

portant for a later implementation. This is a direct consequence of the robustness

analysis in the style of Georgiou and Smith (1997).� No (stochastic) assumptions on the disturbances:

In many publications in control the analysis is simplified by imposing assumptions

on the disturbances which are acting on the system. Standard assumptions are

that the disturbances are produced by a stationary Gaussian processes, that they

are white, sufficiently rich, Lipschitz differentiable, zero, etc. We will only require

that they are bounded in an lr, 1 ≤ r ≤ ∞ norm. This is a further benefit of

conducting a robustness analysis in the style of Georgiou and Smith (1997).� Non-convex and simultaneous stabilisation control problems:

That EMMSAC is applicable to such problems follows from its multiple model

nature.

Finally we want to emphasise the importance of the following contribution: a theoreti-

cally grounded design methodology. From an implementation perspective, any body of

theory can only be of value if it eventually, directly or indirectly, finds its way into a

practical application. Design guidelines that lead to a solution to a given (control) prob-

lem, under utilisation of the available design freedom in the algorithm with respect to

performance and uncertainty description, are an essential tool that allows this transition.

Design grounded in theory

As discussed in Section 4.4, attempts have been made in Anderson et al. (2000) and Fekri

et al. (2006) to establish initial design guidelines for the plant model sets of multiple

model algorithms. In both cases, plant model sets are constructed on the basis of atomic

robust stability margins rather than any global measure of performance; hence from a

global performance point of view these constructions are heuristics. The authors draw

attention to this and explicitly ask the following questions:
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1. How to divide the initial large parameter uncertainty set into N smaller subsets?

2. How to determine the ‘size’ or ‘boundary’ of each parameter subsets?

3. How large should N be? Presumably the ‘larger’ the N , the ‘better’ the perfor-

mance of the adaptive system should be.

Additionally we may ask:

4. How to prevent a conservative design?

U

∈ Pi

ǫ

Figure 1.16: Covering U by neighbourhoods of size ǫ around p ∈ Pi

In this thesis the problem of ‘dividing up’ the uncertainty into neighbourhoods will

present itself in the following way. Let the set U ⊂ P denote the uncertainty in the

true plant P = Pp∗ , i.e. p∗ ∈ U . For the sake of the argument, take U to be a compact

continuum in a finite dimensional parameter space. The techniques in this thesis now

construct an infinite dimensional (unrealisable) multiple model adaptive controller based

on a continuum of plant models Pi = U (and a continuum of corresponding estimators).

This controller stabilises any p∗ ∈ U and provides a robustness margin of size ǫ, which

depends on U .

However, since the amount of available computational resource is usually finite, we

want Pi to be finite and need to discretise the controller. Since ǫ defines a global

robust stability margin around each p∗ ∈ Pi ⊂ U , we can arrange Pi such that the

neighbourhoods of robustness ‘cover’ U in order to ensure stability for all p∗ ∈ U —

as depicted in Figure 1.16. The theory then ensures that the corresponding multiple

model adaptive controller, based on a single atomic controller and estimator for each

neighbourhood, also stabilises any p∗ ∈ U . Such a controller is typically realisable.
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The selection of Pi and the determination of ǫ thus address the first two questions of

Anderson et al. (2000) and Fekri et al. (2006). It remains to determine how the number

of plant models influences the performance, and how to prevent a conservative design.

To investigate these question we will utilise two fundamental scaling geometries. Let

the parameter bound l > 0, l ∈ R and the parameter discretisation step m > 0, m ∈ R

define the set

Pl,m =
{
(i, 1, 1) ∈ R3 | i = ±am, a ∈ N, |i| ≤ l

}
,

where Pl,m parametrises the plant model Pp, p ∈ Pl,m given by

P(a,b,c) : xp(k + 1) = axp(k) + bup
1(k), y

p
1(k) = cxp(k), xp(−k) = 0, ∀k ∈ N.

Consider Figure 1.17. We now ask the following scaling questions and note that scaling

is performed off-line — we are interested how the algorithm behaves for different scaling

scenarios and use fixed plant model sets for the argument.

How does the algorithm perform in the case of� Refinement scaling:

The number of (unique) plant models is increasingly large however the plant model

set is bounded, i.e. fix l <∞ where m > 0. This leads to a dense plant model set.� Expansion scaling:

The number of plant models is increasingly large however the distance between

them is kept constant, i.e. fix m > 0 where l > 0. This leads to a large, sparse

plant model set.

These scaling scenarios are motivated by the two possibilities that: either the uncertainty

U is bounded and we might want to have a large number of plant models that are close

in the hope to increase the performance (on the other hand the increased number of

candidate plants might degrade e.g. the transient performance), or U is overly large and

we will have to introduce a large number of distinct plant models in order to provide a

stabilising controller (this may lead to conservatism).

Since we will establish a global measure of performance and robustness ǫ = bP,C = γ̂−1 in

Chapter 5 that we can optimise for and which reflects the geometric trade-offs in choosing

all key variables, we will be able to give explicit answers to these scaling questions. A

technique that plays an important role in this respect is that operations on the plant

model set may be performed on-line, which we denote dynamic EMMSAC. Analogously,

an EMMSAC algorithm based on a constant plant model set is said to be static. ; The

results established in Chapter 6 show the following:
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Figure 1.17: Refinement and expansion scaling by Pl,m� Above a certain critical refinement level an EMMSAC design becomes stabilising

and a common bound γ̂ for the true gain γ is given for all higher levels of refine-

ment, i.e. performance does not diverge under refinement scaling. This opens the

door to on-line refinement schemes that start off with a plant model set refined

beyond the critical stabilising refinement level, and then introduces plant models

corresponding to regions where the algorithm is expecting the true plant, based

on the observation of closed loop signals.� The actual closed loop gain γ for static EMMSAC is conservative in the expansion

geometry, i.e. γ → ∞ as l → ∞. To address this issue we introduce a dynamic

EMMSAC scheme that follows the strategy to expand the plant model set on-line

until the performance is satisfactory. This technique allows the construction of a

constant gain (function) bound that is invariant to the level of uncertainty. Hence

the algorithm is universal.

This addresses the third and fourth question, and gives the insight required to provide

a systematic approach to design addressing the first to questions.

6 Chapter Organisation

In Chapter 2 we will introduce necessary notation and give a brief introduction to

signals and systems, uncertainty descriptions and (modern) robust stability analysis.

This chapter is not intended to give an exhaustive study of such topics but only to

supply the necessary machinery for the arguments that follow.

Chapter 3 formally introduces disturbance estimation. Two exemplar constructions of

disturbance estimators are presented, followed by the introduction of five axiomatic

requirements on the estimator. All that follows from there on will rest on these esti-

mator assumptions, not on particular estimator realisations. All exemplar estimators

are shown to meet the estimator assumptions. The equivalence between infinite horizon

optimal estimation in l2 and the Kalman filter is established. Continuity properties of

the estimators are discussed.
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Chapter 4 describes the actual EMMSAC algorithm with all involved sub-components.

It starts by establishing two controller assumptions which are then shown to be met by

all minimal MIMO LTI plants and controllers. All that follows from there on will rest

on these controller assumption, not on particular controller constructions. The plant-

generating operator G is introduced and its role in dynamic EMMSAC is discussed with

the help of examples.

Chapter 5 is technical and establishes the main result: a bound γ̂ on the gain from

the external disturbances w0 to the internal signals w2. The Chapter introduces the

device of covers of the uncertainty set in order to express the gain bound in terms of the

complexity of the candidate plant set (described by the size of the cover set) and hence

achieves gain bounds which are independent of the size of the candidate plant set. The

global gain bound is established for both algorithms based on continuums of plants and

for sampled (and realisable) versions.

Chapter 6 relates the cover constructions of Chapter 5 to the concept of metric entropy

and then asks two fundamental scaling questions: the behaviour of the gain bound if

there is a refinement in parameter space, or an expansion. With the established gain

bound in Chapter 5, which is invariant to the number of elements in the plant model set,

the next main result is established, which, under some continuity assumptions, shows

that the global gain bound is invariant to refinement scaling. Expansion scaling is in-

vestigated and it is shown for a fundamental example that the actual closed loop gain

scales badly in this case. A dynamic EMMSAC extension is introduced that establishes

a gain (function) bound which is invariant to expansion scaling. It is then investigated

when dynamic EMMSAC constructions promise tighter gain bounds than static EMM-

SAC constructions and vice versa. The chapter is concluded with an example where it

is shown qualitatively how to conduct performance-orientated design both for the static

and dynamic version of EMMSAC.

In Chapter 7 conclusions are drawn and future directions of research are indicated.
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Preliminaries

In this chapter, we will establish the notation used in the remainder of the thesis and

review the underlying mathematical and system-theoretic framework. We will first in-

troduce the notion of a signal and an operator (which acts on a signal). Then we will

discuss various important properties of closed loop systems comprising of an interconnec-

tion between two operators, such as well-posedness, stability and robustness and their

relation to uncertainty modelling in the gap metric.

1 Norms and signals

In order to study physical systems analytically, physical variables — such as speed,

current or pressure — have to be expressed in a systematic kind of way. These variables

can be considered maps from time to value which we call a signal.

A signal can now be defined in discrete time, e.g. when a temperature is measured/sam-

pled every T ∈ R+ seconds, or in continuous time when measured continuously without

interruption. This naturally leads to the signal space

S := map(T,Rh)

where h ∈ N and T can be the set of real numbers R, the set of positive real numbers

R+, the set of integers Z or the set of natural numbers N.

Sometimes we may record values only over a finite window of time. The corresponding

signal is then only defined on a subset [a, b], a ≤ b, a, b ∈ T of T where

[a, b] = {x ∈ T | a ≤ x ≤ b}.

In this case we write S|[a,b] := map([a, b],Rh) hence S|[a,b] is the set of maps that are

defined only on the interval [a, b], a, b ∈ T.

45
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Let T ∈ {N,Z} and

x = (xa, xa+1, · · · , xb) ∈ S|[a,b], a ≤ b

y = (yc, yc+1, · · · , yd) ∈ S|[c,d], c ≤ d

z = (ze, ze+1, · · · , zf ) ∈ S|[e,f ], e ≤ f.

The concatenation of signals is then defined as

cat(x, y) := (xa, xa+1, · · · xb, yc, yc+1, · · · yd)

cat(x, y, z) := cat(cat(x, y), z) ∈ S|[g,h].

For notational simplicity we often write (x, y, z) for cat(x, y, z).

We also consider signals that are defined over the whole horizon, however we are only

interested in their initial portion. For that purpose introduce the truncation operator

Tt : S ∪b∈T S|[0,b] → S, t ∈ T defined by:

(Ttv)(τ) =

{

v(τ) if 0 ≤ τ ≤ t, t ∈ T

0 otherwise
.

This operator returns a signal that equals v ∈ S ∪b∈T S|[0,b] up to time t ∈ T and is zero

everywhere else.

An important property of a signal is its ‘size’ where we will have to define a suitable

measure to make explicit what we mean by size. For that purpose we equip the signal

space with a norm ‖ · ‖ : S ∪a≤b S|[a,b] → R+ ∪ {∞}.

Definition 2.1. ‖ · ‖ : S ∪a≤b S|[a,b] → R+ ∪{∞} is said to be a norm if for all v,w ∈ S
and v,w ∈ S|[a,b], a ≤ b:� v = 0 ⇔ ‖v‖ = 0 : positivity,� ‖av‖ = |a|‖v‖, a ∈ R : homogenity,� ‖v + w‖ ≤ ‖v‖ + ‖w‖ : triangle inequality.

Important examples of norms are Lr and lr, 1 ≤ r ≤ ∞, since they are able to express

many physically relevant properties of a signal, e.g. the energy or its largest value. They

are defined as follows: for a ∈ S where T = N,Z define

‖a‖r =

(
∑

i∈T

|a(i)|r
)1/r

, 1 ≤ r <∞

‖a‖∞ = sup
i∈T

|a(i)|
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and where T = R,R+ define

‖a‖r =

(∫

T

|a(t)|rdt
)1/r

, 1 ≤ r <∞

‖a‖∞ = esssup
t∈T

|a(t)|.

If a ∈ ∪a≤bS|[a,b], then the sums and suprema are only taken over the relevant interval

[a, b]. Note that we will often write ‖·‖ for ‖·‖r if the statement holds for any 1 ≤ r ≤ ∞.

Although our overall goal is to control a system such that all signals are bounded (in

norm), we cannot assume signals to be bounded a priori and have to account for the

possibly that signals are indeed unbounded (in norm). To be able to refer to such

bounded and unbounded signals, define the two corresponding signal spaces V and Ve:

For V ⊂ S let

V := {a ∈ S | a(−t) = 0, ∀t ∈ T; ‖a‖ <∞}

and note that V is a normed vector space including only norm bounded signals. In this

thesis the signal spaces under consideration will usually be V = Lr for T = R and V = lr

for T = Z.

Since V does not contain signals v ∈ S such that ‖v‖ = ∞, i.e. ‖v‖ = ∞ ⇒ v /∈ V, we

extend the signal space V by signals that are allowed to grow unboundedly in norm over

an infinite horizon, i.e. ‖Ttv‖ → ∞ for t → ∞. However, we require that for any finite

t <∞, ‖Ttv‖ is bounded. Consequently, define the extended space Ve, V ⊂ Ve ⊂ S by

Ve := {v ∈ S | ∀t ∈ T : Ttv ∈ V} .

In for example French (2008) and French et al. (2006), a further signal space called the

ambient space Va is introduced to account for the possibility of a finite escape time, i.e.

∃t < ∞ such that ‖Ttv‖ = ∞. However, in this thesis we will restrict our attention

to systems where this cannot occur, e.g. switched linear systems, and therefore all

signals can be measured by a finite norm over a finite interval. Observe that then in the

particular cases where V = Lr, lr, 1 ≤ r ≤ ∞:

Ve = S, 1 ≤ r ≤ ∞.

If v ∈ V then v is said to be bounded, and if v ∈ Ve \ V then v is said to be unbounded.

2 Operators and the frequency domain

We now introduce the notion of operators which act on signals. Define for m ∈ N, the

dimension of the input space, and o ∈ N, the dimension of the output space, the input
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and output signal spaces

U := V × · · · × V
︸ ︷︷ ︸

m

= Vm, Y := V × · · · × V
︸ ︷︷ ︸

o

= Vo.

Define Ue,Ye accordingly.

In general, an operator is an object that maps some input signal u ∈ Ue to an output

signal y ∈ Ye. For example H : Ue → Ye might represent the input/output relationship

corresponding to a plant y1 = Hu1. An important property is the signal amplification

or gain attached to an operator.

A reasonable definition of such a gain is given by the induced operator norm

‖H‖ := sup
u∈Ve, t∈T, ‖Ttu‖6=0

‖TtHTtu‖
‖Ttu‖

which measures the maximum achievable input-output amplification of the input/output

operator H, where the size of the input and output is measured in the corresponding

signal norm.

An important property of an operator is causality:

Definition 2.2. An operator H is said to be causal if:

TtHTtv = TtHv, ∀t ∈ T, v ∈ S.

Causality ensures that the output of the operator H up to time t ∈ T cannot depend

on the values of the input after t ∈ T. Note that all physical systems are causal; a non-

causal operator cannot be physically implemented since the computation of the current

output relies on future input values.

The notation up to this point has purely been developed in the time domain. Since

in the literature LTI systems are usually analysed in the frequency domain and the

corresponding transfer function notation is expected to be more familiar to the reader,

we will continue to present examples in this language when appropriate.

In continuous time (T = R) a signal v ∈ S in the time domain is related to a signal ṽ in

the frequency domain via the Laplace transform

ṽ(s) =

∫ ∞

0
e−stv(t)dt

and in discrete time (T = Z) a signal v ∈ S in the time domain is related to a signal ṽ

in the frequency domain via the Z-transform

ṽ(z) =
∞∑

n=0

v(n)z−n.
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Time domain and frequency domain LTI operators are then related via the transforms

of their impulse and frequency responses.

We now quote an important result relating time and frequency domain. Observe that

the L2 and l2 norms measure the energy of a signal. Since we are concerned with the

stability analysis of dynamical systems one could argue that a good stability requirement

is that if a system is fed with an input signal of bounded energy, it responds with an

output signal of bounded energy. Hence we would require that input and output have a

finite ‖ · ‖2 norm.

Denote the transfer function matrix H̃ the frequency domain representation of some

linear operator H. Then:

Theorem 2.3. Let H be a linear time invariant operator. If H : L2 → L2 then:

‖H̃(jR)‖∞ = sup
0≤ω≤∞

σ̄(H̃(jω)) = ‖H‖2 = sup
u∈L2, u 6=0

‖Hu‖2

‖u‖2
, (2.1)

and if H : l2 → l2 then:

‖H̃(∂D)‖∞ = sup
s∈C:|s|=1

σ̄(H̃(s)) = ‖H‖2 = sup
u∈l2, u 6=0

‖Hu‖2

‖u‖2
(2.2)

where σ̄(H̃) denotes the maximum singular value1 of H̃ and D = {s ∈ C | |s| < 1}.

Definition 2.4. We let H∞ denote the space of all functions that are analytic and

bounded:� in the open right-half plane C+ in continuous time, with norm (2.1).� outside the unit disk s ∈ C, |s| > 1 in discrete time, with norm (2.2).

To distinguish between the continuous and discrete cases we write H∞ = H(jR) and

H∞(∂D) for the two respective cases.

3 Closed loop system, well-posedness and stability

Given a plant

P : Ue → Ye (2.3)

satisfying

P (0) = 0 (2.4)

1The maximum singular value σ̄(H̃) of H̃ is given by σ̄(H̃) =
q

λ̄(H̃∗H̃) where λ̄ returns the largest

eigenvalue and H̃∗ is the conjugate transpose of H̃ . The conjugate transpose X∗ of a matrix X = [xab] ∈
Cp×q is defined as [x̄ba] where x̄ba = r − qi if xba = r + qi.
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and a controller

C : Ye → Ue (2.5)

satisfying

C(0) = 0 (2.6)

the closed loop system [P,C] under consideration in Figure 2.1 is defined via the following

set of system equations:

y1 = Pu1 (2.7)

u0 = u1 + u2 (2.8)

y0 = y1 + y2 (2.9)

and

u2 = Cy2. (2.10)

P

C

u0 u1

u2

y1

y2 y0

Figure 2.1: Closed loop [P,C]

For notational convenience we often write W = U × Y and We = Ue × Ye where w0 =

(u0, y0)
⊤ ∈ W represents the input and output disturbances acting on the plant P ,

w1 = (u1, y1)
⊤ ∈ We represents the plant’s input and output and w2 = (u2, y2)

⊤ ∈ We

represents the observed signal or observation.

Our main concern in control theory is to study the stability, robustness and performance

of such closed loop systems [P,C]. However, this is only feasible if the closed loop system

satisfies essential properties that allow its analysis. In particular we require it to be well-

posed:

Definition 2.5. A closed loop system [P,C] given by equations (2.7)–(2.10) is said to

be well-posed if for all w0 ∈ W there exists a unique solution (w1, w2) ∈ We ×We.

We now verify this property for linear switched systems, which we are mainly concerned

with in this thesis.
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Definition 2.6. Let m, o, n ≥ 1. Let w0 ∈ map(T,Rm), (w1, w2) ∈ map(T,Ro). A

system w0 7→ (w1, w2) is said to be a linear switched system if there exists a decomposition

T = ∪i∈N[ti, ti+1), ti < ti+1, t0 = 0 such that: for all i ∈ N, there exists x0 ∈ Rn, Ai ∈
Rn×n, Bi ∈ Rn×m, Ci ∈ Ro×n,Di ∈ Ro×m such that the equations

x(t+ 1) = Aix(t) +Biw0(t), x(ti) = V (w0, w1, w2)(ti) (2.11)

(w1, w2)(t) = Cix(t) +Diw0(t) (2.12)

have a unique solution x(t), t ∈ [ti, ti+1) where V : W ×We ×We → Rn is bounded and

causal.

Lemma 2.7. Linear switched systems are well-posed.

Proof By induction on i ∈ N, we assume w1, w2 are uniquely defined up to time ti. Since

V is bounded and causal, x(ti) ∈ Rn is defined and for all t ∈ [ti, ti+1], i ∈ N equations

(2.11),(2.12) describe a LTI system with some initial condition, which is known to be

well-posed. Hence for bounded input signals w0 ∈ W there exists a unique solution

(w1, w2) ∈ We ×We up to time ti+1. The base step i = 0 holds trivially here, hence the

linear switched system is well-posed as required. 2

However, note that for non-linear systems well-posedness is not implicit and we have

to take further measures to ensure it. Well-posedness is important since the potential

non-existence of solutions, which arises e.g. if a system has a finite escape time, would

require a rather different analysis over small windows of time where the system is ensured

to have a solution. Furthermore, the non-uniqueness of solutions would be problematic

since then the analysis would have to account for all (possibly infinitely many) of them.

Given a closed loop system [P,C] which is structured as in Figure 2.1, a good measure of

stability and performance is the amplification or the gain from the external disturbances

w0 to the internal signals w1, w2.

The following notation and results follow from Georgiou and Smith (1990, 1997). Let

HP,C : W → We ×We : w0 7→ (w1, w2)

denote the closed loop operator mapping the external disturbances w0 ∈ W to the unique

internal closed loop signals w1, w2 ∈ We. Observe that the closed-loop operator HP,C

can be decomposed into the operator ΠP//C (which is the map from the disturbances

w0 ∈ W to the plant signals w1 ∈ We) and the operator ΠC//P (which is the map from

the disturbances w0 ∈ W to the controller signals w2 ∈ We), i.e.

ΠP//C : W → We : w0 7→ w1,

ΠC//P : W → We : w0 7→ w2
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where

HP,C = (ΠC//P ,ΠP//C).

We now define the notion of gain stability via the gain of ΠP//C in the following way:

Definition 2.8. Let the closed loop system [P,C], defined by equations (2.7)–(2.10), be

well-posed. [P,C] is said to be gain stable if there exists a M > 0 such that:

sup
w0∈W , w0 6=0

‖ΠP//Cw0‖
‖w0‖

= ‖ΠP//C‖ < M <∞.

Note that since for all w0 ∈ W we have:

ΠP//Cw0 + ΠC//Pw0 = w1 + w2 = w0,

it follows that

ΠP//C + ΠC//P = I.

Hence gain stability of ΠP//C also ensures gain stability for ΠC//P and HP,C . We will

therefore refer to ΠP//C ,ΠC//P and HP,C as the closed loop operator.

Sometimes this measure of stability is too strong, i.e. in a general (non-linear) setting

the signal amplification from (u0, y0)
⊤ to (u2, y2)

⊤ might not be a linear gain. For that

purpose we define the gain function γ : R+ → R+ by

γ(r) = sup{‖ΠP//Cw0‖ : ‖w0‖ ≤ r},

and hence measure the maximum size of the internal signal ‖w2‖ = ‖ΠP//Cw0‖, given a

disturbance w0 of size ‖w0‖ ≤ r ∈ R.

Definition 2.9. Let the closed loop system [P,C], defined by equations (2.7)–(2.10), be

well-posed. [P,C] is said to be gain function stable if for all r > 0 there exist Mr > 0

such that:

γ(r) < Mr <∞.

This definition is rather useful since especially universal adaptive control schemes do

not appear to be gain stable — however, they can be gain function stable. For example,

French (2008) has shown that continuously tuned adaptive systems are gain function

stable. We will later show that the universal variants of the algorithms considered in

this thesis will also show gain function stability.

Nominal stability, however, is not enough to ensure that a control algorithm works well

in practice. We must show that it remains stable even if there is a certain amount

of uncertainty in the plant, e.g. unmodeled dynamics. Stability in the presence of

disturbances and uncertainty leads to the notion of robustness which we will discuss

next.
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4 Uncertainty and Robustness

The analysis of systems is preferentially performed on simplified nominal models (derived

either empirically or analytically) rather than on complete mathematical descriptions of

the underlying physical system. This is due to the following facts:

1. Complete knowledge of a physical system is unrealistic:

In particular it is impossible to model the high frequency dynamics of physical

systems accurately. To see this consider the classical mass-spring-damper arrange-

m

F

Figure 2.2: Mass spring damper arrangement with force F and mass m

ment depicted in Figure 2.2, where an oscillating force F is acting. At low frequen-

cies the behaviour of the system is dominated by the ideal equations of motion we

all got to know in high school physics since sub-components of the arrangement

with higher natural frequencies have little influence. However, at higher frequen-

cies, for example close to the natural frequency of the material of the spring wire,

the dynamic behaviour will be dominated by the complex dynamical behaviour of

the spring wire itself. This makes the high frequency part incredibly difficult to

model. Taking this example even further, it would in theory require a modeling

effort on a sub-atomic level and beyond to obtain a completely accurate model of

the system. In practice this high frequency part can fortunately be neglected for

appropriately designed control systems.

2. Less detail promises simplicity:

Even if detailed knowledge of a physical system is available, usually only a small

subset of this information is required to design an appropriate controller. Hence

in practice we intentionally neglect (dynamical) components that are irrelevant to

the control objective in order to simplify analysis and design.

After obtaining an appropriate nominal model P for the physical plant Pp1 we then, by

the above discussion, perform the stability analysis on P , i.e. we show that for some

controller the closed loop [P,C] is stable. However, we then need to show that C also

stabilises the true plant Pp1 since this is the physical system we will have to control in

practice. For that purpose we introduce so-called uncertainty models that quantify the

mismatch between the physical plant Pp1 and the model P . The overall goal of a later

robustness analysis is then to quantify how much uncertainty or mismatch the closed

loop system [P,C] can tolerate without becoming unstable or the performance degrading

too far.
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We differentiate between structured and unstructured uncertainty models. For example

consider the plant given by the real rational transfer function

Pp1 =
1

s+ a

where amin ≤ a ≤ amax is an uncertain parameter. We can therefore say that Pp1 lies

in the uncertainty set {
1

s+ a
: amin ≤ a ≤ amax

}

,

which is structured since the possible uncertainty is dictated by the structure of 1
s+a .

Although the simplicity of structured uncertainty models has virtue, they are inherently

unable to express (dynamical) uncertainty outside of the defining structure. This is

unfortunate since by the above argument we should always account for a certain amount

of unstructured dynamics.

Consider the following example inspired by Doyle et al. (1990). Let

Pp1 = e−τs 1

s− 1

where 0 ≤ τ ≤ 0.01 is an uncertain time delay. A silo filled by a short conveyor belt could

have such a transfer function where the input is the flow into the silo and the output

is the volume of material inside the silo. Since the properties of finite dimensional LTI

systems are very well understood and the corresponding theory is much simpler than

the infinite dimensional counterpart, we would usually like to simplify the plant Pp1 to

a finite dimensional P and work with P instead. One possibility is to simplify Pp1 to

P = 1
s−1 and hence neglect the small time delay e−τs. To describe the mismatch between

Pp1 and its approximation P we now employ a multiplicative uncertainty model in the

following way:

Let ∆m be a stable transfer function. The multiplicative uncertainty set is then given

by

{(1 + ∆m)P : ‖∆m‖ < r}.

If we rearrange Pp1 = (1 + ∆m)P to

∥
∥
∥
∥

Pp1

P
− 1

∥
∥
∥
∥

= ‖∆m‖ < r

we can see that this uncertainty set describes a disk with centre 1, radius r in the

complex plane. For the concrete example of Pp1 = e−τs 1
s−1 and P = 1

s−1 we therefore

have ∥
∥
∥
∥

Pp1

P
− 1

∥
∥
∥
∥

=
∥
∥e−τs − 1

∥
∥ < r.
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Since e−τs describes the unit circle in the complex plane we have that for sufficiently

large r, Pp1 ∈ {(1 + ∆m)P : ‖∆m‖ < r}.

Now consider the transfer function

Pp1 =
1001

(s− 1)(s + 1000)
.

The filling process of a silo could have such a transfer function where the input is the

flow into the silo and the output is the volume of material inside the silo; however the

contents are setting over time which reduces the volume. As before we would like to

simplify Pp1 to P = 1
s−1 and neglect the dynamics due to the setting process. We now

describe the mismatch between Pp1 and P with an additive uncertainty model:

Let ∆a be a stable transfer function. The additive uncertainty set is then given by

{P + ∆a : ‖∆a‖ < r}.

Since we can write Pp1 as

Pp1 =
1001

(s− 1)(s + 1000)
=

(s+ 1000) − (s− 1)

(s − 1)(s + 1000)
=

1

s− 1
− 1

s+ 1000
,

we can see that for sufficiently large r, Pp1 ∈ {P + ∆m : ‖∆a‖ < r}.

P

∆a∆m

Figure 2.3: Additive and multiplicative uncertainty model

The combined additive and multiplicative uncertainty model is now depicted in Figure

2.3 where the corresponding uncertainty set is given by

{(1 + ∆m)P + ∆a : ‖∆m‖ < r1, ‖∆a‖ < r2}, r1, r2 > 0.

The full model of the silo incorporating both the delay and the drying dynamics is given

by

Pp1 = e−τs 1001

(s− 1)(s + 1000)
.

We conclude that for sufficiently large r1, r2 > 0:

Pp1 ∈ {(1 + ∆m)P + ∆a : ‖∆m‖ < r1, ‖∆a‖ < r2}, r1, r2 > 0.
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As discussed in the introduction, classical robust adaptive control (Ioannou and Sun

(1996)) as well as multiple model adaptive control in the sense of Morse et. all. is

confined to this class of additive and multiplicative uncertainties. However, there are

a number of important uncertainty scenarios which this uncertainty model is unable to

represent such as neglected high frequency dynamics, low frequency parameter errors

and especially neglected right half poles. They give rise to uncertainty models such

as inverse additive, inverse multiplicative and others. See Doyle et al. (1982) for a

comprehensive discussion of uncertainty scenarios and appropriate uncertainty models.

One can then construct a linear robustness theory around such uncertainty models and

impose constraints on the different ∆s to ensure robust stability and performance of the

closed loop system, e.g. see Doyle et al. (1990) and the references therein. Albeit being

a viable strategy, employing a number of such uncertainty models and dealing with them

in the analysis turns out to be rather cumbersome.

Zames and El-Sakkary (1980) introduced a more generic measure of uncertainty, the

gap metric, which essentially fuses all the above uncertainty scenarios and represents

the global uncertainty by a single scalar. We will now show how the linear gap metric

is constructed.

Let X∗ be the conjugate transpose to a matrix X. Let R denote the space of all real

rational2 transfer matrix functions where we write RH∞ = R ∩ H∞. Let P ∈ R. A

normalised right coprime factorisation (NRCF), (N,M) for P satisfies:

P = NM−1

and

M∗M +N∗N = 1 (Bezout identity)

where

M∗,M,N∗, N ∈ RH∞.

With (Mi, Ni) being a NRCF for Ppi , i ∈ {1, 2}, hence Ppi = Ni
Mi
, i ∈ {1, 2}, the linear

directed gap distance
~δ : R×R → R+

is given by

~δ(p1, p2) = inf
(∆N,∆M)∈RH∞

{∥
∥
∥
∥
∥

∆N

∆M

∥
∥
∥
∥
∥
H∞

∣
∣
∣
∣
∣

(

∆N

∆M

)

∈ RH∞, Pp2 =
N1 + ∆N

M1 + ∆M

}

.

(2.13)

Note that in general
~δ(p1, p2) 6= ~δ(p2, p1),

2We say that a transfer function is real rational if it can be written as a ratio of polynomials in s ∈ C
with real coefficients.
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hence ~δ is not a metric. We therefore let

δ(p1, p2) = max{~δ(p1, p2), ~δ(p2, p1)}

then δ(p1, p2) = δ(p2, p1) and δ is a metric (see El-Sakkary (1985)). The linear gap metric

measures the size of the smallest coprime perturbation that is required to perturb Pp1

to Pp2 — as depicted in Figure 2.4. It can be argued (see Vinnicombe (2000)) that this

measure incorporates all the features captured by the standard unstructured uncertainty

models (additive/multiplicative/inverse multiplicative, etc.).

A further advantage of the gap metric is that “perturbations which are small in the gap

are precisely those which give small closed-loop errors” (see the introduction of Georgiou

and Smith (1997)). Hence the gap metric allows the comparison of stable and unstable

plants where for example δ( 1
s−ǫ ,

1
s+ǫ) is small if ǫ is small. In contrast, additive and

multiplicative uncertainty models do not allow such a comparison since in that case ∆m

or ∆a would have to be unstable.

N1M−1
1

∆M ∆N

N2M
−1
2

Figure 2.4: Coprime perturbation model

It is important to note that by Georgiou (1988) the L2 directed linear gap in continuous

time is equivalently given by:

~δ(p1, p2) = inf
Q∈H∞(jR)

∥
∥
∥
∥
∥

(

M1

N1

)

−
(

M2

N2

)

Q

∥
∥
∥
∥
∥
∞

.

By Cantoni and Glover (1998) the l2 directed linear gap in discrete time can also be

expressed as:

~δ(p1, p2) = inf
Q∈H∞(∂D)

∥
∥
∥
∥
∥

(

M1

N1

)

−
(

M2

N2

)

Q

∥
∥
∥
∥
∥
∞

.

Hence the calculation of the gap reduces to a standard H∞ optimisation problem and

is therefore computationally tractable.

These key observations now allows, with the definition of ‖ΠP//C‖ or the (gain) effect

of disturbances on the internal signals, the construction of a major robustness result.

Let V be L2 or l2 and

bP,C =

{
1

‖ΠP//C‖2
if ‖ΠP//C‖ > 0

0 otherwise
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denote the robust stability margin of [P,C] and note that for ‖ΠP//C‖ → ∞, bP,C → 0.

Theorem 2.10. Let Pp1 , Pp2 , C ∈ R and assume the closed loop [Ppi , C], i = {1, 2} to

be well-posed. Let the closed loop [Pp1 , C] be gain stable. If

~δ(p1, p2) <
1

‖ΠPp1//C‖2
= bPp1 ,C

then the closed loop system [Pp2 , C] is gain stable. 2

Proof The proof can be found in Georgiou and Smith (1990) which is based on Zames

and El-Sakkary (1980). 2

The above result is the basis for the analysis performed in this thesis. In particular it

shows that robustness can be established purely by considering the nominal system: one

has to show that ‖ΠP//C‖ is finite and robustness follows. Theorem 2.10 is only valid in

the linear domain and since we are dealing with switched linear systems in this thesis,

which are inherently non-linear, this result does not apply directly. We would also like

to perform analysis in other signal spaces than L2, l2.

However, Theorem 2.10 can be generalised via the following construction:

Definition 2.11. The graph Mp of Pp, p ∈ P is defined by:

Mp =

{

v ∈ W
∣
∣
∣
∣
∣

∃(up
1, y

p
1)

⊤ ∈ W s.t. Ppu
p
1 = yp

1,

v = (up
1, y

p
1)

⊤

}

⊂ W.

A signal w ∈ W is said to be in the graph of Pp if w ∈ Mp.

Note that the graph Mp is the collection of bounded pairs (up
1, y

p
1)

⊤ ∈ W compatible

with the plant Pp, p ∈ P.

Define the possibly empty set of maps between the graphs of Pp1 and Pp2 , p1, p2 ∈ P

Op1,p2 := {Φ : Mp1 → Mp2 | Φ is causal, bijective, and Φ(0) = 0}.

Now define the non-linear directed gap by

~δ(p1, p2) :=







infΦ∈Op1,p2
supx∈Mp1\0, k>0

(
‖Tk(Φ−I)|Mp1

Tkx‖

‖Tkx‖

)

if Op1,p2 6= ∅
∞ if Op1,p2 = ∅

As before, we symmetrise this relation to give the non-linear gap metric

δ : P × P → [0,∞]

with

δ(p1, p2) = max{~δ(p1, p2), ~δ(p2, p1)}.
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Note that for δ(p1, p2) < 1, p1, p2 ∈ P this definition can be shown to equal the definition

in equation (2.13) for linear systems in L2, l2, e.g. see the Appendix of Georgiou and

Smith (1997).

Theorem 2.12. Let U = Y = lr, 1 ≤ r ≤ ∞. Let Pp1, Pp2 ∈ map(Ue,Ye), C ∈
map(Ye,Ue) and assume the closed loop [Ppi , C], i = {1, 2} to be well-posed. Let the

closed loop [Pp1 , C] be gain stable. If

~δ(p1, p2) <
1

‖ΠPp1//C‖
= bPp1 ,C

then the closed loop system [Pp2 , C] is gain stable and

‖ΠPp2//C‖ ≤ ‖ΠPp1//C‖
1 + ~δ(p1, p2)

1 − ‖ΠPp1//C‖~δ(p1, p2)
.

Proof The proof can be found in Georgiou and Smith (1997). 2

5 Finite horizon analysis

Since we are concerned with a switched system we will have to deal with signals that are

defined only on a finite intervals of time between switches. This motivates the following

finite horizon treatment of signals and operators.

The restriction operator Rσ,t : S → Rh(σ+1) has the purpose to extract only a finite

window of length σ ≥ 0 of a signal, i.e. for σ, t ∈ T define

Rσ,tv := (v(t − σ), · · · , v(t)), v ∈ map(T,Rh).

Hence Rσ,tv returns a signal that equals v ∈ S over some finite interval of length σ and

is undefined everywhere else.

Although we intend to present the analysis in this thesis in an ‘operators act on signals’

kind of way, and we will do so wherever possible, in some cases this is impractical and

we adopt the following alternative notation: For 0 ≤ a ≤ b, a, b ∈ T let

[a, b] := {x ∈ T | a ≤ x ≤ b}
[a, b) := {x ∈ T | a ≤ x < b}

noting that [a, a] := {a}.
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Let the size of the given intervals | · | be defined by

|[a, b]| := b− a+ 1

|[a, b)| := b− a.

For a signal v ∈ S we then define the restriction of v over the interval I = [c, d] by

v|I := (v(c), · · · , v(d))

where c ≤ d, c, d ∈ T, and similarly for I = [c, d).

Note that for v ∈ S, a ≤ b we have v|[a,b] = Rb−a,bv hence ‖v|[a,b]‖ = ‖Rb−a,bv‖. Also

‖v|[0,b]‖ = ‖Tbv‖, however v|[0,b] 6= Tbv because the domains differ.

6 Projections and disturbance estimation

The problem of disturbance estimation, i.e. to find the smallest disturbances that are

compatible with a plant Pp, p ∈ P and the observation w2, can be understood as a

(metric) projection onto a particular (linear) vector space (also see Figure 1.15).

Definition 2.13. Let ∅ 6= Y ⊂ X be finite dimensional normed vector spaces.

ΠY : X → Y is said to be a projection if for all x ∈ X

ΠY x ∈ {n ∈ Y | ‖n − x‖ ≤ ‖m− x‖, ∀m ∈ Y }.

Definition 2.14. A subset X of a normed vector space Y is said to be open if for all

x ∈ X there exists ǫ > 0 such that B(x, ǫ) ⊂ X where B(x, ǫ) = {y ∈ Y | ‖x − y‖ < ǫ}
defines an open neighbourhood of radius ǫ around x. A set X is said to be closed if the

complement Xc = Y \X is open.

Definition 2.15. A vector space X is said to be convex if x1, x2 ∈ X implies that

(1 − t)x1 + tx2 ⊆ X for all 0 ≤ t ≤ 1.

Lemma 2.16. Suppose ∅ 6= Y ⊂ X, Y is closed and convex and X is a linear subspace

of lr, 1 < r <∞. Then there exists a unique projection ΠY : X → Y .

Proof A sufficient condition for uniqueness is that the norm is strictly convex (see Boyd

and Vandenberghe (2004), Chapter 8.1). The Lr, lr, 1 < r < ∞ norm can be shown to

have this property. 2

Note that if ΠY : X → Y is unique we can write

ΠY x = argmin
n∈Y

‖n− x‖.
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(−1, 0) (1, 0)

(0, 1)

Figure 2.5: Unit ball around (0, 1) in L∞

As the restrictions in Lemma 2.16 suggest, such best approximations are not necessarily

unique. For example if

Y = {(λ, 0) | λ ∈ R} ∈ R2, X = R2

with the L∞ norm, then the point (0, 1) is a distance of 1 away from all the points

{(λ, 0) | − 1 < λ < 1} since the unit ball around (0, 1) forms a square — as depicted in

Figure 2.5. A similar argument holds for L1 where the unit ball is a tilted square.

However, we can guarantee the existence of projections in any Lr, lr, 1 ≤ r ≤ ∞ norm.

Lemma 2.17. Suppose ∅ 6= Y ⊂ X, Y is closed and convex and X is a linear subspace

of Lr, lr, 1 ≤ r ≤ ∞. Then there exists a projection ΠY : X → Y .

Proof See for example Boyd and Vandenberghe (2004), Chapter 8.1.1 as required. 2

The disturbance estimation algorithms considered in this thesis will utilise the distance

‖x−ΠY x‖ rather than ΠY itself, hence the existence without uniqueness is sufficient for

our purposes.





Chapter 3

Disturbance estimation

In this Chapter we introduce the disturbance estimator as motivated in the introduction.

After discussing the basic estimator structure and some key examples of so-called finite

and infinite horizon estimators, we will state five abstract estimator assumptions on

which the subsequent analysis will rest. In addition to generality, the strong advantage

of this axiomatic approach is that we separate the problem of realising (efficient) distur-

bance estimation from the problem of robust stability analysis of the closed loop system.

Our study of disturbance estimation algorithms will not be exhaustive, however the fi-

nite and infinite horizon estimator will be shown to satisfy the estimator assumptions.

We will also illustrate how these algorithms can be implemented in practice, including

the relation to the Kalman filter.

1 The disturbance estimation principle

The purpose of the disturbance estimator is at each time step to assign a positive scalar

to each candidate plant, termed the residual, which has the interpretation of being a

measure of the size of the disturbance signals wp
0 = (up

0, y
p
0)

⊤ required to ‘explain’ the

observation w2 = (u2, y2)
⊤ in a manner consistent with the candidate plant Pp — as

depicted in Figure 3.1.

P = Pp∗

u0 y0

u1 y1u2 y2

Pp

up
0 yp

0

up
1 yp

1up
2 yp

2

Figure 3.1: Disturbances and consistency with the observation

63
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Let P be a set, parametrising a collection of plant operators

Pp : Ue → Ye : up
1 7→ yp

1 , p ∈ P. (3.1)

For example, in the case of linear systems, we let P = PLTI where

PLTI :=
{

(A,B,C,D) ∈ ∪n≥1R
n×n × Rn×m × Ro×n × Ro×m

∣
∣
∣
∣
∣

(A,B) is controllable

(A,C) is observable

}

(3.2)

and

Pp : Ue → Ye, p = (Ap, Bp, Cp,Dp) ∈ PLTI (3.3)

is defined by

xp(k + 1) = Apxp(k) +Bpu
p
1(k) (3.4)

yp
1(k) = Cpxp(k) +Dpu

p
1(k) (3.5)

xp(−k) = 0, k ∈ N. (3.6)

Note that since xp(−k) = 0 for all k ∈ N it follows that yp
1(−k) = Pp(u

p
1)(−k) = 0 for

all k ∈ N.

The residual operator is then of the form

X : We → map(N,map(P,R+)) : w2 7→ [k → (p 7→ rp[k])] (3.7)

where rp[k] is said to be the residual of a plant Pp, p ∈ P at time k ∈ N.

In Section 2 we will impose considerable structure on the operator X, in particular

that it factorises in the form X = NE, where the assumptions on N,E ensure that X

can be given the interpretation above. Note that the implementation of the EMMSAC

algorithm requires a realisation of the operator X = NE and it is only the analysis that

requires the factorisation into the operators N , E. We now introduce two key classes

of disturbance estimators. Both classes are based on measuring the sizes of minimal

consistent disturbances for which we introduce the following notation:

Consider disturbances (up
0, y

p
0)

⊤ that are consistent with a plant model Pp and the ob-

servation (u2, y2)
⊤; we are interested in disturbances (up

0, y
p
0)

⊤ such that, given the plant

model Pp, p ∈ P and given an observation signal (u2, y2)
⊤, we have (up

2, y
p
2)

⊤ = (u2, y2)
⊤

over the interval [a, b], a ≤ b, a, b ∈ Z (also see Figure 3.1). Typically, the observations
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(u2, y2)
⊤ are generated from a ‘true’ plant Pp∗ (where the true plant Pp∗ is not neces-

sarily equal to the plant model Pp) with ‘observed’ signal (u2, y2)
⊤ and non-observed

‘true’ disturbances (u0, y0)
⊤.

We therefore require that the equations

yp
1 = Ppu

p
1 (3.8)

up
0 = up

1 + u2 (3.9)

yp
0 = yp

1 + y2 (3.10)

are satisfied over the interval [a, b]:

Definition 3.1. Let a ≤ b, a, b ∈ Z. The set of weakly consistent disturbance signals

N [a,b]
p (w2) to a plant Pp, p ∈ P and the observation w2 = (u2, y2)

⊤ is defined by:

N [a,b]
p (w2) :=







v ∈ W|[a,b]

∣
∣
∣
∣
∣
∣
∣

∃(up
0, y

p
0)

⊤ ∈ We s.t.

Rb−a,bPp (up
0 − u2) = Rb−a,b(y

p
0 − y2),

v = (Rb−a,bu
p
0,Rb−a,by

p
0)







⊂ W|[a,b].

Hence N [a,b]
p (w2) denotes the set of all disturbances (up

0|[a,b], y
p
0 |[a,b])

⊤ compatible with

observation (u2|[a,b], y2|[a,b])
⊤ and equations (3.8)–(3.10) for p ∈ P .

For the remainder of this chapter we assume N [a,b]
p (w2) is closed and convex for all

a ≤ b ∈ T, w2 ∈ We, noting that if Pp is linear, then this holds.

The following classes of optimal disturbance estimators are from French and Trenn

(2005).

1.1 Estimator A: The infinite horizon estimator

Let k ∈ N and w2 ∈ We. To a plant model Pp, p ∈ P, let the residual operator XA be

given by:

XA(w2)(k)(p) = rA
p [k] = inf{r ≥ 0 | r = ‖v0‖, v0 ∈ N [0,k]

p (w2)}, (3.11)

where N [0,k]
p (w2) is the set of all disturbance signals consistent with the observation w2

as well as the plant Pp over the interval [0, k].

Observe that a direct implementation of XA is not feasible since the computational

complexity of the optimisation problem grows with k ∈ N. However, in the l2 setting

the residuals rA
p [k], p ∈ P can be determined from the residuals in a Kalman filter bank

(see Fisher-Jeffes (2003) and Section 4). This makes the computation of rA
p [k] feasible

as the Kalman filter algorithm is recursive — the computational complexity is invariant

to k ∈ N and only depends on the order of the corresponding plant model p ∈ P.
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1.2 Estimator B: The finite horizon estimator

Let k, λ ∈ N and let w2 ∈ We. To a plant model Pp, p ∈ P let the residual operator XB

be given by:

XB(w2)(k)(p) = rB
p [k] =

∥
∥
∥rB

p [k − 1], ip[k]
∥
∥
∥ (3.12)

where

ip[k] = inf{r ≥ 0 | r = ‖v0‖, v0 ∈ N [k−λ,k]
p (w2)} (3.13)

and N [k−λ,k]
p (w2) is the set of all disturbance signals consistent with the observation w2

and the plant Pp over the interval [k − λ, k] .

Note that the formulation of XB is recursive by construction, therefore the computa-

tional complexity does not depend on k ∈ N but only on the complexity of the involved

optimisation, i.e. the computation of ip[k] for all k ∈ N, which is of bounded complexity.

The norm in (3.12) and (3.13) can be taken to be lr, 1 ≤ r ≤ ∞, giving rise to differ-

ent optimisations. In Section 5 we will show that such standard (matrix) optimisation

problems can be solved by many possible implementations, i.e. in the linear case via

computing a suitable pseudo inverse in l2 or via linear programming in l∞ .

2 Estimator structure

We have indicated that there will be a requirement that the residual operatorX factorises

to X = NE. This factorisation is necessary since we will argue about the estimator’s

internal properties, such as consistency and structure of disturbance estimates, that

cannot be inferred from the residual only.

For k ∈ N, p ∈ P define the estimation operator

E : We → map(N,map(P,map(N,Rh))) (3.14)

by

w2 7→
[
k 7→ (p 7→ dp[k])

]
(3.15)

where dp[k] represents the time series of the disturbance estimates at time k ∈ N corre-

sponding to a plant p ∈ P denoted by

dp[k] : N → map(N,Rh)

and

dp[k] = (dp[k](0), dp[k](1), . . . , dp[k](k), 0, · · · )

where h ∈ N ∪ {∞} depends on the plant.
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Note that this estimate will not be recursive in general, i.e.

Tkdp[l] 6= Tkdp[k], l > k.

Since we are interested in the size of the disturbance estimates, we define the norm

operator

N : map(N,map(P,map(N,Rh))) → map(N,map(P,R+)) (3.16)

by
[
k 7→ (p 7→ dp[k])

]
7→
[
k 7→ (p 7→ ‖dp[k]‖ = rp[k])

]
(3.17)

where we recall that X is needed for the algorithm and the factorisation NE is only for

analytical purposes.

We will now revisit estimator A and B and investigate their internal structure by giving

an explicit formulation of the estimation operator E.

2.1 Estimator A: The infinite horizon estimator

To a plant model Pp, p ∈ P, k ∈ N let estimator A with h = ∞ in equation (3.14) be

given by:

EA(w2)(k)(p) = dA
p [k] ∈ map(N,Rh) (3.18)

dA
p [k] = Tk argmin

w0∈N
[0,k]
p (w2)

‖w0‖ (3.19)

if there exists a unique minimum, or any dA
p [k] satisfying

dA
p [k] ∈ {w0 ∈ N [0,k]

p (w2)| ‖w0‖ = inf{r ≥ 0 | r = ‖v0‖, v0|[0,k] ∈ N [0,k]
p (w2)} (3.20)

if the minimum is not unique, where we recall from Definition 3.1 that N [0,k]
p (w2) is the

set of all disturbance signals consistent with the observation w2 as well as the plant Pp

over the interval [0, k].

Observe that dA
p [k] is structured as in Figure 3.2, i.e. at every time instance i, 0 ≤ i ≤ k

the disturbance estimate dp[k](i) consists of a single element (up
0(i), y

p
0(i))⊤.

To see that XA does indeed factorise to N and EA consider the following lemma:

Lemma 3.2. Let XA be defined as in equation (3.11), EA be defined as in equations

(3.18)–(3.20) and N be defined as in equations (3.16),(3.17). Then XA = NEA.

Proof Observe that for all w2 ∈ We,

NEA(w2)(k)(p) = ‖dp[k]‖ = rp[k] = XA(w2)(k)(p), ∀k ∈ N, ∀p ∈ P.
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dA
p [k](k)

dA
p [k](k − 1)

dA
p [k](0)

dA
p [k](1)

dA
p [k](i)

dA
p [k]

dA
p [k − 1]

dA
p [0]

kk − 1

dA
p [1]

dA
p [i]

ii− 10 1

Figure 3.2: Structure of dA
p [k]

Hence XA = NEA as required. 2

2.2 Estimator B: The finite horizon estimator

The second example is motivated by the fact that the EMMSAC algorithm only requires

disturbance estimates that are consistent over suitable finite intervals of length j ∈
N, 0 ≤ j ≤ λ, where λ ∈ N is fixed. This allows for the construction of a finite horizon

estimator as follows.

Let k, λ, i ∈ N, 0 ≤ i ≤ k. To a plant model Pp, p ∈ P let estimator B with h =

(m+ o)(λ+ 1) in equation (3.14) be given by:

EB(w2)(k)(p) = dB
p [k] ∈ map(N,Rh) (3.21)

dB
p [k](i) = argmin

w0∈N
[i−λ,i]
p (w2)

‖w0‖, (3.22)
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if there exists a unique minimum, or any dB
p [k](i) satisfying

dB
p [k](i) ∈ N [i−λ,i]

p (w2) | ‖w0‖ = inf{r ≥ 0 | r = ‖v0‖, v0 ∈ N [i−λ,i]
p (w2)} (3.23)

if the minimum is not unique, where N [i−λ,i]
p (w2) is the set of all disturbance signals

consistent with the observation w2 and the plant Pp over the interval [i− λ, i].

Observe that dB
p [k](i) = dB

p [i](i) for 0 ≤ i ≤ k and that dB
p [k] is structured as in Figure

3.3, i.e. at every time instance i, 0 ≤ i ≤ k the disturbance estimate dp[k](i) consists of

a ‘slice’ of disturbance estimates with length λ.

dB
p [k](k)

dB
p [k](k − 1)

dB
p [k](0)

dB
p [k]

dB
p [k](1)

dB
p [k](i)

dB
p [k]

dB
p [i]

kk − 1

i0 1

dB
p [i]

Figure 3.3: Structure of dB
p [k]

To see that XB does indeed factorise to N and EB consider the following lemma:

Lemma 3.3. Let XB be defined as in equations (3.12),(3.13), EB be defined as in

equations (3.21)–(3.23) and N be defined as in equations (3.16),(3.17). Then XB =

NEB .

Proof Note that

‖a, b‖r =
∥
∥‖a‖r, ‖b‖r

∥
∥

r
, a, b ∈ lr, 1 ≤ r ≤ ∞.
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Since dB
p [k](i) = dB

p [i](i) for 0 ≤ i ≤ k, we have for all w2 ∈ W2 that:

NEB(w2)(k)(p) = ‖dp[k]‖
= ‖dp[k](0), dp[k](1), · · · , dp[k − 1](k), dp[k](k)‖
= ‖dp[k − 1](0), dp[k − 1](1), · · · , dp[k − 1](k − 1), dp[k](k)‖
= ‖‖dp[k − 1]‖, ‖dp[k](k)‖‖

where

dp[k](k) ∈ {w0 ∈ N [k−λ,k]
p (w2)| ‖w0‖ = inf{r ≥ 0 | r = ‖v0‖, v0 ∈ N [k−λ,k]

p (w2)}.

Since

ip[k] = ‖dp[k](k)‖ = inf{r ≥ 0 | r = ‖v0‖, v0 ∈ N [k−λ,k]
p (w2)},

we arrive with rp[k] = ‖dp[k]‖ at

NEB(w2)(k)(p) = rp[k] =
∥
∥
∥rp[k − 1], ip[k]

∥
∥
∥ = XB(w2)(k)(p).

Hence XB = NEB as required. 2

3 The estimator axioms

Instead of working with estimator A or B directly, we now state 5 abstract estima-

tor assumptions that any estimator is required to satisfy and on which the subsequent

analysis will rest. The purpose of such an axiomatic treatment, as discussed in the intro-

duction, is to separate the problem of conducting (robustness) analysis from the problem

of (efficient) disturbance estimation; any particular construction or implementation of

an estimator is allowed as long as it satisfies the following estimator assumptions.

Assumption 3.4. Let λ ∈ R be given.

1. (Causality): E is causal.

2. (Minimality): There exists a µ > 0 such that for all k ≥ 0, for p ∈ P and for all

(w0, w1, w2) ∈ W ×We ×We satisfying equations (2.7)–(2.9) for P = Pp,

NE(w2)(k)(p) = ‖E(w2)(k)(p)‖ = ‖dp[k]‖ ≤ µ‖Tkw0‖.

3. (Weak consistency): Let 0 ≤ j ≤ λ. For all p ∈ P there exist maps

Φj : map(N,Rh) → Rm(j+1) × Ro(j+1),
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such that for all (w0, w1, w2) ∈ W ×We ×We satisfying equations (2.7)–(2.9) for

P = Pp and for all k ∈ N,

ΦjE(w2)(k)(p) = Φjdp[k] ∈ N [k−j,k]
p (w2)

and

‖ΦjE(w2)(k)(p)‖ = ‖Φjdp[k]‖ ≤ ‖Rj,kdp[k]‖ = ‖Rj,kE(w2)(k)(p)‖.

4. (Monotonicity): For all p ∈ P, for all k, l ∈ N with 0 ≤ k ≤ l and for all

(w0, w1, w2) ∈ W × We × We satisfying equations (2.7)–(2.9) for P = Pp, there

holds

‖E(w2)(k)(p)‖ = ‖dp[k]‖ ≤ ‖Tkdp[l]‖ = ‖TkE(w2)(l)(p)‖.

5. (Continuity): There exists a c : Z → R, ‖c‖ < ∞ and a function χ : P × P →
R+ ∪ {∞}, χ(p, p) = 0, ∀p ∈ P, such that for all p1, p2 ∈ P and w2 ∈ We, there

holds

∣
∣‖ΦjE(w2)(k)(p1)‖ − ‖ΦjE(w2)(k)(p2)‖

∣
∣ =

∣
∣‖Φjdp1 [k]‖ − ‖Φjdp2[k]‖

∣
∣

≤ χ(p1, p2)‖Υkw2‖, 0 ≤ j ≤ λ, k ∈ N

where Φj is as in Assumption 3 and

(Υkw2)(i) =

{

c(k − i)w2(i) if i ≤ k

0 else
.

Although these assumptions may appear rather technical, they have very intuitive in-

terpretations:

1. A later implementation requires causality so we impose it from the start. Note

that N is always causal and therefore it suffices to assume that E is causal.

2. We denote an optimal infinite horizon disturbance estimator to a plant Pp, an

estimator which returns the smallest disturbances consistent with the observation

w2 and Pp over the interval [0, k], k ∈ N. However, to require optimality over the

interval [0, k], k ∈ N per se is too strong in a sense that no other estimator than

the infinite horizon estimator will satisfy it.

Instead, we impose a milder assumption: we require that the disturbance estimate

‖Ep(w2)(k)(p)‖, corresponding to an estimator constructed to a plant model Pp

which equals the true plant P , is smaller (up to a constant µ > 0) than the true

disturbances ‖Tkw0‖ at time k ∈ N. Note that the true disturbances are always

consistent with P and the observation w2 since w2 is constructed from them.
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3. The purpose of the map Φj : map(N,Rh) → Rm(j+1) × Ro(j+1) is to extract the

relevant parts from the disturbance estimate to allow a test for weak consistency.

4. This assumption is also inspired by the properties of the optimal infinite horizon

estimator. We require that a disturbance estimate dp[k] is minimal at time k ∈ N

in a sense that no future disturbance estimate dp[l], l > k truncated at k given by

Tkdp[l], can be smaller.

5. The last assumption implies that if two plants are close to each other, their dis-

turbance estimates are also ‘close’, i.e. their difference is small in norm. χ can be

thought of as a measure of distance between two plants, and in fact it will turn

out later that for the estimators considered here, χ is related to the gap metric.

The weight c describes the effect of w2 on the disturbance estimates. Since we

require ‖c‖ <∞ this effect is required to be bounded. For example in lr, 1 ≤ r <

∞ we can say that the effect of w2 needs to diminish over time since ‖c‖r < ∞
implies that c is summable, hence c needs to converge to zero. Therefore Υkw2

returns a weighted signal w2 such that earlier w2(i), i ∈ N have smaller weights.

For l∞ we merely require that the weights c(i), i ∈ N are finite.

We will now show that these assumptions are met by the given estimator constructions.

Lemma 3.5. Estimator A fulfils assumptions 3.4(1–5).

Proof Let 1 ≤ r ≤ ∞. Let λ = ∞.

1. Causality: The disturbance estimate at time k ∈ N does not depend on future

information w2|(k,∞) and is therefore causal.

2. Minimality: Observe that for any (w0, w1, w2) ∈ W×We×We satisfying equations

(2.7)–(2.9) for P = Pp and for k ∈ N we have Tkw0 ∈ TkN [0,k]
p (w2). Hence

‖EA(w2)(k)(p)‖ = inf{r ≥ 0 | r = ‖v0‖, v0 ∈ N [0,k]
p (w2)} ≤ ‖Tkw0‖ ≤ ‖w0‖

and hence µ = 1.

3. Weak consistency: Let 0 ≤ j ≤ λ, p ∈ P, w2 ∈ We. Let Φj be defined by

Φjx = Rj,kx, x ∈ S, and therefore ‖ΦjEA(w2)(k)(p)‖ = ‖Rj,kEA(w2)(k)(p)‖. We

then have

ΦjEA(w2)(k)(p) = Rj,kEA(w2)(k)(p) ∈ Rj,kN [0,k]
p (w2) ⊂ N [k−j,k]

p (w2).

4. Monotonicity: Let p ∈ P, let k ≤ l, k, l ∈ N and suppose (w0, w1, w2) ∈ W ×
We×We satisfy equations (2.7)–(2.9) for P = Pp. Observe that TkEA(w2)(l)(p) ∈
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TkN [0,k]
p (w2). Since

‖EA(w2)(k)(p)‖ = inf{r ≥ 0 | r = ‖v0‖, v0 ∈ N [0,k]
p (w2)}

it follows that ‖EA(w2)(k)(p)‖ ≤ ‖TkEA(w2)(l)(p)‖ as required.

5. Continuity: Let p1, p2 ∈ P, k ∈ N, w2 ∈ W2. Then

∣
∣‖Φjd

A
p1

[k]‖ − ‖Φjd
A
p2

[k]‖
∣
∣ ≤

∣
∣‖Φjd

A
p1

[k] − Φjd
A
p2

[k]‖
∣
∣ ≤ χ(p1, p2)‖Υkw2‖

where

χ(p1, p2) =

{

0 if p1 = p2

∞ if not

for some Υ with ‖c‖ <∞. 2

Lemma 3.6. Let 1 ≤ r ≤ ∞ and λ ∈ N. Estimator B fulfils Assumptions 3.4(1–5).

Proof Let k ∈ N.

1. Causality: EB is invariant to w2|(k,∞).

2. Minimality: Observe that for any (w0, w1, w2) ∈ W×We×We satisfying equations

(2.7)–(2.9) for P = Pp and for k ∈ N we have Rλ,iw0 ∈ N [i−λ,i]
p (w2), 0 ≤ i ≤ k.

Hence

‖dB
p [k](i)‖ = inf{r ≥ 0 | r = ‖v0‖, v0 ∈ N [i−λ,i]

p (w2)}
≤ ‖Rλ,iw0‖, 0 ≤ i ≤ k, k ∈ N.

This leads to

‖EB(w2)(k)(p)‖ = ‖dB
p [k](0), dB

p [k](1), . . . , dB
p [k](k)‖

≤ ‖Rλ,0w0, Rλ,1w0, · · · , Rλ,kw0‖

≤

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

w0(−λ), w0(1 − λ), · · · , w0(k − λ)

w0(1 − λ), w0(2 − λ), · · · , w0(k + 1 − λ)
...

...
...

...

w0(0), w0(1), · · · , w0(k)

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

= (λ+ 1)1/r‖w0‖
= µ‖w0‖

where the first inequality follows from the fact that ‖‖a‖, ‖b‖‖ = ‖(a, b)‖ holds in

lr, 1 ≤ r ≤ ∞.
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3. Weak consistency: Let 0 ≤ j ≤ λ, p ∈ P. Let Φj be defined by Φjd
B
p [k] =

Rj,λd
B
p [k](k). Since

Rj,λd
B
p [k](k) ⊂ Rj,kd

B
p [k]

there holds

‖ΦjEB(w2)(k)(p)‖ = ‖Rj,λd
B
p [k](k)‖ ≤ ‖Rj,kd

B
p [k]‖ = ‖Rj,kEB(w2)(k)(p)‖.

Also

Φjd
B
p [k] = Rj,λd

B
p [k](k) ∈ N [k−j,k]

p (w2).

4. Monotonicity: Let p ∈ P, let k ≤ l, k, l ∈ N and suppose (w0, w1, w2) ∈ W×We×
We satisfy equations (2.7)–(2.9) for P = Pp. Since Tkd

B
p [l] = dB

p [k] it follows that

‖EB
p (w2)(k)(p)‖ = ‖TkE

B
p (w2)(l)(p)‖.

5. Continuity: Note that in the finite horizon case a similar construction for χ as in

the infinite horizon case is sufficient to satisfy Assumption 3.4(5). However, we

will later seek to establish an additional continuity property of χ, hence give an

alternative construction.

Let 1 ≤ j ≤ λ, k ∈ N, p ∈ P. From Assumption 3 let Φj be defined by

Φjd
B
p [k] = Rj,λd

B
p [k](k).

Define Π
[k−λ,k]
p : W2|[k−λ,k] → W2|[k−λ,k] by

Π[k−λ,k]
p Rk−λ,kw2 = dB

p [k](k).

We therefore have

Φjd
B
p [k] = Rj,λΠ[k−λ,k]

p Rλ,kw2.

For p1, p2 ∈ P let

χk(p1, p2) = sup
x∈We|[k−λ,k], ‖x‖6=0

∣
∣‖Rj,λΠ

[k−λ,k]
p1 x‖ − ‖Rj,λΠ

[k−λ,k]
p2 x‖

∣
∣

‖x‖

hence

∣
∣‖Φjd

B
p1

[k]‖ − ‖Φjd
B
p2

[k]‖
∣
∣ ≤

∣
∣‖Rj,λΠ[k−λ,k]

p1
Rλ,kw2‖ − ‖Rj,λΠ[k−λ,k]

p2
Rλ,kw2‖

∣
∣

≤ χ(p1, p2)‖Rλ,kw2‖.

It is important to observe that for p ∈ {p1, p2}, Π
[i−λ,i]
p = Π

[j−λ,j]
p for all i, j >

σ, i, j ∈ N since N [i−λ,i]
p (w2) = N [j−λ,j]

p (w2) for all i, j > σ, i, j ∈ N. However for

0 ≤ i ≤ σ the constraint set N [i−λ,i]
p (w2) includes the additional constraint that
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the initial condition of Pp is zero. Hence we can let

χ(p1, p2) = max
k≥0

χk(p1, p2).

Also note that it follows trivially that χ(p, p) = 0, p ∈ P.

Finally, let

c(i) =

{

1 for 0 ≤ i ≤ λ

0 else

and

(Υkw2)(i) =

{

c(k − i)w2(i) if i ≤ k

0 else
.

We then have

‖Rλ,kw2‖ = ‖w2(k), w2(k − 1), · · · , w2(k − λ)‖
= ‖c(0)w2(k), c(1)w2(k − 1), · · · , c(λ)w2(k − λ)‖
= ‖Υkw2‖

hence
∣
∣‖Φjd

B
p1

[k]‖ − ‖Φjd
B
p2

[k]‖
∣
∣ ≤ χ(p1, p2)‖Υkw2‖

as required. 2

In Chapter 6, it will be important to require that χ : P ×P → R+ ∪ {∞} is continuous

on certain subsets.

Conjecture 3.7. Let 1 < r <∞. Suppose Ω ⊂ PLTI is compact. For p1, p2 ∈ Ω, let

χ(p1, p2) = max
k≥0

sup
x∈We|[k−λ,k], ‖x‖6=0

∣
∣‖Rj,λΠ

[k−λ,k]
p1 x‖ − ‖Rj,λΠ

[k−λ,k]
p2 x‖

∣
∣

‖x‖

Then χ|Ω is continuous.

Continuity of χ|Ω is expected to follow from the well-posedness of the underlying opti-

misation problem. However at present, this remains an open question.

Note that for r = 2, an alternative choice for χ is given by

χ(p1, p2) = max
k≥0

‖Π[k−λ,k]
p1

− Π[k−λ,k]
p2

‖
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since

∣
∣‖Φjd

B
p1

[k]‖ − ‖Φjd
B
p2

[k]‖
∣
∣ ≤ ‖Φjd

B
p1

[k] − Φjd
B
p2

[k]‖
= ‖Rj,λΠ[k−λ,k]

p1
Rλ,kw2 − Rj,λΠ[k−λ,k]

p2
Rλ,kw2‖

= ‖Rj,λ(Π[k−λ,k]
p1

− Π[k−λ,k]
p2

)Rλ,kw2‖
≤ ‖(Π[k−λ,k]

p1
− Π[k−λ,k]

p2
)Rλ,kw2‖

≤ ‖Π[k−λ,k]
p1

− Π[k−λ,k]
p2

‖‖Rλ,kw2‖
≤ χ(p1, p2)‖Rλ,kw2‖.

χ is closely related to the gap metric. To see this note that since w̃p
0 = Π

[0,∞]
p w2 is the

unique minimizer in N [0,∞]
p (w2), we have with Π̂

[0,∞]
p = I − Π

[0,∞]
p that

Π̂[0,∞]
p w2 = w2 − Π[0,∞]

p w2 = w̃p
1 ∈ Mp

and Π̂
[0,∞]
p has the interpretation of a (unique) projection onto the graph Mp of the

plant p ∈ P.

Now recall from Georgiou and Smith (1990) that for linear plants and V = L2, l2:

δ(p1, p2) = ‖Π̂[0,∞]
p1

− Π̂[0,∞]
p2

‖ = ‖Πp1
[0,∞] − Πp2

[0,∞]‖.

Hence χ is a version of the gap metric where only signals over finite intervals [k − λ, k]

are considered.

The use of a finite horizon in estimator B is penalised with a

µ = (λ+ 1)1/r > 1, 1 ≤ r ≤ ∞

in contrast to estimator A, where µ = 1. However, the computational complexity of

estimator B is invariant to k and only depends on the horizon length λ ∈ N.

3.1 Continuity of χ for Estimator A

We now give an alternative formulation of χ in estimator A and show that χ does not

allow a sensible interpretation as a distance since it may be unbounded.

Define

Π[0,k]
p Rk,kw2 = dA

p [k] = EA(w2)(p)(k).

Let

Υ̂kv = (c−1(k)v(0), c−1(k − 1)v(1), · · · , c−1(0)v(k)), v ∈ We,
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hence Υ̂kΥkw2 = Rk,kw2. Similarly to the construction for estimator B, with p1, p2 ∈ P
let

χk(p1, p2) = sup
x∈We|[0,k], ‖x‖6=0

∣
∣‖Rj,kΠ

[0,k]
p1 Υ̂kx‖ − ‖Rj,kΠ

[0,k]
p2 Υ̂kx‖

∣
∣

‖x‖ .

Since

Φjd
A
p [k] = Rj,kd

A
p [k] = Rj,kΠ

[0,k]
p Rk,kw2

we have that

∣
∣‖Φjd

A
p1

[k]‖ − ‖dA
p2

[k]‖
∣
∣ =

∣
∣‖Rj,kΦjΠ

[0,k]
p1

Rk,kw2‖ − ‖Rj,kΠ
[0,k]
p2

Rk,kw2‖
∣
∣

=
∣
∣‖Rj,kΠ

[0,k]
p1

Υ̂kΥkw2‖ − ‖Rj,kΠ
[0,k]
p2

Υ̂kΥkw2‖
∣
∣

≤ χk(p1, p2)‖Υkw2‖.

For r = ∞, we can now let c = 1 since then ‖c‖∞ = 1 <∞ and (Υ̂kv2)(i) = (Υkv2)(i) =

v(i), v ∈ We, 0 ≤ i ≤ k where

χk(p1, p2) = sup
x∈We|[0,k], ‖x‖6=0

∣
∣‖Rj,kΠ

[0,k]
p1 x‖ − ‖Rj,kΠ

[0,k]
p2 x‖

∣
∣

‖x‖ .

Hence we arrive with χ(p1, p2) = supk≥0 χk(p1, p2) at

∣
∣‖Φjd

A
p1

[k]‖ − ‖Φjd
A
p2

[k]‖
∣
∣ ≤ χ(p1, p2)‖Υkw2‖

which we expect to have a similar continuity property as in the finite horizon case.

However for 1 ≤ r < ∞, since ‖c‖r < 0, 1 ≤ r < ∞ implies that c(k) → 0 as k → ∞,

we have that c(k)−1 → ∞ as k → ∞. However χk(p1, p2) is given by

χk(p1, p2) = sup
x∈We|[0,k], ‖x‖6=0

∣
∣‖Rj,kΠ

[0,k]
p1 Υ̂kx‖ − ‖Rj,kΠ

[0,k]
p2 Υ̂kx‖

∣
∣

‖x‖

≤ max{‖Rj,kΦjΠ
[0,k]
p1

Υ̂k‖, ‖Rj,kΦjΠ
[0,k]
p2

Υ̂k‖}

and the given upper bound scales with k. Hence χk may indeed be unbounded.

To develop alternative formulations of Assumption 3.4(5) such that a continuity property

can be satisfied by estimator A, remains an open question.

We will now introduce the Kalman filter and show its relevance for disturbance estima-

tion.
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4 The Kalman filter as a disturbance estimator

The question that historically motivated the Kalman filter was as follows. Considering

y0

y2
Pu2

u0

FILTER
ỹ1y1u1

Figure 3.4: A common filtering problem: reconstruct ỹ from y

Figure 3.4, assume that the plant P is driven by a signal u2, for example a force, that

is corrupted by an unknown input disturbance signal u0. Furthermore assume that

the plant output y1 is corrupted by an unknown disturbance signal y0, resulting in the

signal y2. The objective is now to reconstruct or predict the undisturbed output signal

y1 or an estimate ỹ1 of it from y2 and u2 — hence to ‘filter’ away the effects of y0

and u0. Applications of major historic importance are the tracking of ballistic missiles

or airplanes with radar. In both cases, the basic dynamical properties of the tracked

objects, as well as the input (e.g. thrust), are known. However the (position) data from

radar or other positioning systems is often noisy due to reflections, weather conditions

etc.

An early approach to such a filtering problem was given by Wiener (1949) where his

Wiener filter is constructed such that the expected value of the squared output error e =

y2 − ỹ1 is minimised. Due to the computational complexity of the filter implementation

that grows with time, the Wiener filter was of limited use to on-line applications such

as tracking.

A decade later Kalman (1960) (in discrete time) and Kalman and Bucy (1961) (in

continuous time) gave an efficient, recursive solution to the problem, overcoming these

limitations, which is known as the famous Kalman (Bucy) filter algorithm.

Define

P̄LTI :=
{

(A,B,C) ∈ ∪n≥1R
n×n × Rn×m × Ro×n

∣
∣
∣
∣
∣

(A,B) is controllable

(A,C) is observable

}

. (3.24)

Let Pp,xp
0

be defined by

Pp,xp
0

: Ue → Ye : up
1 7→ yp

1, p = (Ap, Bp, Cp) ∈ P̄LTI
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where

xp(k + 1) = Apxp(k) +Bpu
p
1(k)

yp
1(k) = Cpxp(k)

xp(0) = xp
0, k ∈ N.

This definition is similar to the one in equations (3.4)–(3.6), however with a possible

non-zero initial condition xp
0.

The discrete-time Kalman filter equations, corresponding to Pp,xp
0

and written in the

notational style of Willems (2004, 2006) for comparability, are as follows. Let:� (w, v)⊤ = (up
0, y

p
0)

⊤� (u, y)⊤ = (u2, y2)
⊤� (F,G,B,H) = (Ap, Bp,−Bp, Cp)

and T ≥ 0, Σ : N 7→ Rn×n, x̂ : [0, T ] 7→ Rn be given by

x̂(k + 1/2) = x̂(k) + Σ(k)H⊤[HΣ(k)H⊤ + I]−1[y(k) −Hx̂(k)] (3.25)

Σ(k + 1/2) = Σ(k) − Σ(k)H⊤[HΣ(k)H⊤ + I]−1HΣ(k) (3.26)

x̂(k + 1) = Fx̂(k + 1/2) +Bu(k) (3.27)

Σ(k + 1) = FΣ(k + 1/2)F⊤ +GG⊤ (3.28)

ỹ1(k) = Hx̂(k) (3.29)

where the initial conditions are specified by Σ(0), x̂(0). The idea is that x̂ is an estimate

of xp and ỹ1 (as in Figure 3.4) is given by equation (3.29).

Traditionally the Kalman filter is analysed in a stochastic setting where, analogously

to the Wiener filter, it can be shown to minimise the expected value of the squared

estimation error (e.g. see Kalman (1960); Maybeck (1979); Stengel (1986); Welch and

Bishop (2001)) — in fact the Kalman filter is known to asymptotically reduce to the

Wiener filter. However, the Kalman filter also allows an interpretation as a deterministic

least-squares filter (see Mortenson (1968); Hijab (1980); Fleming (1997); McEneaney

(1998)). In particular Swerling (1971), Sontag (1998) and Willems (2004) analyse the

continuous-time Kalman filter in the deterministic domain and are able to show explicitly

that the Kalman filtering problem is equivalent to the deterministic least-squares filtering

problem. Fisher-Jeffes (2003) utilised dynamic programming to deterministically show

the connection between the Kalman filter and the least-squares filter in discrete time.
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The intention of the following argument is to establish an alternative, simple and com-

plete proof showing the equivalence of discrete-time Kalman filtering and least-squares

filtering in the deterministic setting.

Define

Z [a,b]
p (w2)

:=







v ∈ Rm(T+1) × Ro(T+1) × Rn

∣
∣
∣
∣
∣
∣
∣

∃(up
0, y

p
0, x

p
0)

⊤ ∈ Ue × Ye × Rn s.t.

Rb−a,bPp,xp
0
(up

0 − u2) = Rb−a,b(y
p
0 − y2),

v =
(
Rb−a,bu

p
0,Rb−a,by

p
0, x

0
p

)⊤







,

which is the set of initial conditions xp
0 and disturbance signals up

0, y
p
0 that are compatible

with a plant Pp,xp
0

and the observation u2, y2 over the interval [a, b], a ≤ b.

Let

(ũp
0, ỹ

p
0, x̃

p
0) = argmin

up
0,yp

0 ,xp
0∈Z

[0,k]
p (w2)

(

‖xp
0‖2

Σ−1(0) + ‖up
0‖2

2 + ‖yp
0‖2

2

)

, k ∈ N (3.30)

be the smallest (in a least-squares sense) such disturbances and initial condition over

the interval [0, k], k ∈ N.

Definition 3.8. A causal operator F : We → Ye : (u2, y2) 7→ ỹ1 that constructs a signal

ỹ1 for the plant P = Pp,x̃p
0

and observation (u2, y2)
⊤ ∈ We such that

ỹ1(k) = Pp,x̃p
0
(ũp

0 − u2)(k), k ∈ N

where (ũp
0, ỹ

p
0 , x̃

p
0) are as in equation (3.30), is called a deterministic least-squares filter.

The least-squares filter therefore reconstructs the output signal ỹ1(k) at time k ∈ N,

which forms the prediction of y1(k), by driving a plant P = Pp,xp
0

with initial condi-

tion xp
0 = x̃p

0 and disturbances (ũp
0, ỹ

p
0); that are the smallest least-squares solutions,

consistent with the observation (u2, y2)
⊤ ∈ We and Pp,xp

0
up to time k ∈ N.

As a notion of the output error between the observation y2 and the estimation of the

Kalman filter, define the (scaled) residual r : N → R+ by

r(T ) =

[
T∑

k=0

‖y2(k) − ỹ1(k)‖2
[HΣ(k)H⊤+I]−1

]1/2

, T ≥ 0.

Note that the inverse [HΣ(k)H⊤+I]−1 exists since it can be shown that Σ(k) is positive

semi-definite for all k ∈ N provided Σ(0) ≥ 0 (see Lemma A.1 in the Appendix).
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We now claim the following:

Theorem 3.9. [Theorem A.6] Let p = (Ap, Bp, Cp) ∈ P̄LTI and suppose Cp is full

row rank. Let (F,G,B,H) = (Ap, Bp,−Bp, Cp). The Kalman filter equations (3.25)–

(3.29) with initial condition x̂(0) = 0 and Σ(0) = Σ(0)⊤ > 0 describe a deterministic

least-squares filter:

r2(T ) = inf
(up

0,yp
0 ,xp

0)∈Z
[0,T ]
p (w2)

(‖xp
0‖Σ−1(0) + ‖up

0‖2
2 + ‖yp

0‖2
2).

Proof The proof of this result can be found in the Appendix. The overall strategy

of the argument is based on Willems (2006) and Willems (2004). The statements of

Lemma A.2, A.4, A.5 are from Willems (2004). The proof of Theorem 3.9[Theorem A.6]

is based on Willems (2004). All other theorem/lemma statements and proofs are due to

the present author. 2

For the purpose of this thesis it is of interest that the Kalman filter computes the

residual r(T ) recursively, which in turn is related to the computation of the smallest

consistent disturbances, rather than the predictive abilities of the Kalman filter. That

is, the Kalman filter may be used to compute the size of the least-squares disturbance

estimates, i.e. the infinite horizon disturbance estimates in l2 (estimator A). Observe

that the infinite horizon disturbance estimates of estimator A are constructed such that

they are compatible with the observation w2 and the plant model Pp = Pp,xp
0

for a zero

initial condition xp
0 = 0. Hence, to be able to use the Kalman filter for disturbance

estimation, we have to ensure that the residual computation relates to the least-squares

filter initialised to zero. In Fisher-Jeffes (2003) this is assumed implicitly, but does not

appear to be proved. Here we state the required property as a theorem:

Theorem 3.10. [Theorem A.8] Let p = (Ap, Bp, Cp) ∈ P̄LTI and suppose Cp is full

row rank. Let (F,G,B,H) = (Ap, Bp,−Bp, Cp). The Kalman filter equations (3.25)–

(3.29) with initial condition x̂(0) = 0 and Σ(0) = Σ(0)⊤ = 0 describe a deterministic

least-squares filter initialised to zero:

r2(T ) = inf
(up

0 ,yp
0)∈N

[0,T ]
p (w2)

(‖up
0‖2

2 + ‖yp
0‖2

2).

Proof The proof of is given in the Appendix. 2

Now since

r2(T ) = inf
(up

0,yp
0)∈N

[0,T ]
p (w2)

(

‖up
0‖2

2 + ‖yp
0‖2

2

)

=
(

inf{r ≥ 0 | r = ‖v0‖2, v0 ∈ N [0,T ]
p (w2)}

)2
= (rp[T ])2 ,
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the Kalman filter can be utilised to compute XA in Section 1.1 in the l2 setting. Note

that the computation of the least-squares solution

(ũp
0, ỹ

p
0) = argmin

(up
0,yp

0)∈N
[0,T ]
p (w2)

(

‖up
0‖2

2 + ‖yp
0‖2

2

)

at time T ∈ N is not recursive, however the residual r(T ) of the Kalman filter is deter-

mined recursively, hence the computation is feasible.

An important implication of Theorem 3.10 is that we do not have to further show that

the Kalman filter satisfies Assumptions 3.4 since by the equality to the least-squares filter

(estimator A in l2) these properties reflect back onto the Kalman filter; the Kalman filter

implicitly utilises optimal (least squares) disturbance estimates that are consistent with

the plant Pp and the observation w2 to construct the estimate ỹ1.

5 Disturbance estimation by optimisation methods

With the Kalman filter we have already introduced the only known, realisable solution

to the infinite horizon disturbance estimation problem (estimator A), which only applies

in L2, l2. Limiting the focus to infinite horizon estimation would therefore, by the fact

that practical implementations only exist in l2, essentially reduce the application of the

algorithm to l2. Results in other lr signal spaces 1 ≤ r ≤ ∞, r 6= 2 would appear to be

of theoretical (non-implementable) interest only.

By considering finite horizon estimation (Estimator B) we can overcome this limitation.

The computation of the finite horizon disturbance estimates turns out to be much more

approachable since it is a standard optimisation problem with many possible implemen-

tations.

To see this, recall that we have to solve the optimisation problem

w̃p
0 ∈ inf

{

r ≥ 0 | r = ‖v0‖, v0 ∈ N [b−a,b]
p (w2)

}

, a ≤ b ∈ N

for Pp, p ∈ P.

Since Pp is assumed to be observable we can by Polderman and Willems (1997) find a

matrix of suitable dimension Gp : Ru×v such that for all wp
1 ∈ M[a,b]

p we have Gpw
p
1 = 0.

Then Gp is called a kernel representation of Pp. Observe that with wp
0 = wp

1 + Rb−a,aw2

we have Gpw
p
0 = GpRb−a,aw2 = b.

Equivalently we can therefore formulate the constraint optimisation problem in ‘standard

form’ as follows:

minimise f(x) = ‖x‖, subject to the constraint Gpx = b, (3.31)
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where x = wp
0 and b = GpRb−a,aw2.

As discussed in Chapter 2 in terms of metric projections, such norm optimisation prob-

lems are unique in lr, 1 < r < ∞ however not necessarily in l1, l∞. However, by

convexity, every solution to an lr, 1 ≤ r ≤ ∞ norm optimisation problem is a global

solution. For disturbance estimation this non-uniqueness does not matter since every

solution will satisfy Assumptions 3.4 and the later analysis will merely require the size

of the disturbance estimate, which is equal for all solutions.

In l2, a solution to the optimisation problem can directly be calculated via the pseudo

inverse (Moore-Penrose inverse) G+
p of Gp. Let Gp = UΣV ⊤ be the singular value

decomposition of Gp and define the pseudo inverse G+
p = V Σ−1U⊤. Then x = G+

p b

provides a unique solution to the optimisation problem (e.g. see Boyd and Vandenberghe

(2004)) and we obtain w̃p
0 = G+

p GpRb−a,aw2 where G+
p Gp is the (Euclidean) projection

onto N [a,b]
p (w2).

In l1 we can reformulate the optimisation problem in equation (3.31) to:

minimise y, subject to the constraints y ≥ x, y ≥ −x, Gpx = b

where x = wp
0 and b = GpRb−a,aw2. Equivalently we can write:

minimise c⊤z, subject to the constraints Hz ≥ 0, Jz = b

where c⊤ =
[

1 0
]

, z =

[

y

x

]

, H =

[

1 −1

1 1

]

and J =
[

0 Gp

]

.

This can be solved by linear programming with algorithms such as the ellipsoid method,

the interior point method or the simplex algorithm (e.g. see Schrijver (1998)). The

disturbance estimate can then be computed from the minimising z by letting w̃p
0 =

[

0 1
]

z.

In l∞ we can solve the same linear programming problem:

minimise (c⊤z)(i), subject to the constraints Hz ≥ 0, Jz = b

for each i ∈ [a, b] (|b− a| times) and then take the maximum over the solutions.

In a general lr, 1 < r <∞ norm setting or in the non-linear domain, under appropriate

convexity assumptions, there also exist efficient algorithms to solve the optimisation

problem, e.g. by gradient descent, the Newton method or geometric programming (e.g.

see Boyd and Vandenberghe (2004)).

This poses a major advantage over observer based switching algorithms since, as men-

tioned in the introduction, the construction of observers for a wide class of non-linear
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systems is difficult and unclear. In contrast, convex optimisation problems are well

studied and many algorithms for various (non-linear) scenarios are readily available.



Chapter 4

Estimation-based Multiple Model

Switched Adaptive Control

In this Chapter we will develop the structure of the EMMSAC algorithm. First we will

introduce the notion of a controller design procedure K that assigns a corresponding

controller to every plant model and formalise the requirement that a controller CK(p)

to a plant Pp must be stabilising, i.e. the atomic closed loop [Pp, CK(p)], ∀p ∈ P needs

to be gain stable. We then state two abstract controller assumptions on which the

subsequent analysis will rest. The advantage of such an axiomatic approach is that it

clears the analysis of any plant or controller structure (state space matrices, transfer

functions, etc.); in fact it is irrelevant how plant and controllers are represented (they

can be non-linear), as long as every atomic plant and controller pair fulfils the controller

assumptions. This will very much benefit a later generalisation to a wider class of

systems.

We will then define a switching signal q based on the estimator introduced in the previous

chapter and define the switching controller C at time k ∈ N via the controller CK(q(k))

corresponding to the plant Pq(k).

1 Finite horizon behaviour of the atomic closed loop

A crucial design step for any multiple model type algorithm is to assign stabilising

controllers to all plant models. We will do this via the controller design procedure given

by a map

K : P → C

where analog to P we let C be a set parametrising a collection of controller operators

uc
2 = Ccy

c
2 (4.1)

85
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for c ∈ C. For example in the case of linear systems we let C = CLTI , where

CLTI :=
{

(A,B,C,D) ∈ ∪n≥1R
n×n × Rn×o × Rm×n × Rm×o

∣
∣
∣
∣
∣

(A,B) is controllable

(A,C) is observable

}

,

(4.2)

and

Cc : Ye → Ue : yc
2 7→ uc

2, c = (Ac, Bc, Cc,Dc) ∈ CLTI (4.3)

is defined by

xc(k + 1) = Acxc(k) +Bcy
c
2(k) (4.4)

uc
2(k) = Ccxc(k) +Dcy

c
2(k) (4.5)

xc(−k) = 0, k ∈ N. (4.6)

Note the clash of notation in equation (4.3) whereCc denotes both the controller operator

and a state space matrix. This, however, is of no further consequence, since we will use

either the operator or the state space description and not both at the same time, where

the meaning is apparent from the context. Also note that since xc(−k) = 0 for all k ∈ N

it follows that uc
2(−k) = Cc(y

c
2)(−k) = 0 for all k ∈ N.

Let σ(c), c ∈ C denote the minimum length of the interval that the signal (uc
2, y

c
2)

⊤

needs to be observed to uniquely determine the initial condition of Cc, i.e.

σ(c) := min







k ≥ 0 : ∀l ≥ 0,

uc
2 = Ccy

c
2, û

c
2 = Ccŷ

c
2,

(uc
2, y

c
2)

⊤|[l,l+k] = (ûc
2, ŷ

c
2)

⊤|[l,l+k],

yc
2 = ŷc

2 ⇒ uc
2 = ûc

2







. (4.7)

Similarly let σ(p), p ∈ P denote the minimum length of the interval that the signal

(up
1, y

p
1)

⊤ needs to be observed to uniquely determine the initial condition of Pp, i.e.

σ(p) := min







k ≥ 0 : ∀l ≥ 0,

yp
1 = Ppu

p
1, ŷ

p
1 = Ppû

p
1,

(up
1, y

p
1)

⊤|[l,l+k] = (ûp
1, ŷ

p
1)

⊤|[l,l+k],

up
1 = ûp

1 ⇒ yp
1 = ŷp

1







. (4.8)

For minimal MIMO LTI systems it can be shown that σ(p) = np − 1 where np is the

dimension of Ap ∈ Rnp×np , (Ap, ·, ·, ·) ∈ PLTI and σ(c) = nc−1 where nc is the dimension

of Ac ∈ Rnc×nc , (Ac, ·, ·, ·) ∈ CLTI .

Instead of giving a particular controller design procedure K : P → C we will now state

two general assumptions imposed upon the atomic closed loop systems [Pp, Cc] and

[Pp, CK(p)].
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Assumption 4.1. There exist functions

α, β : P × C × R × R → R

such that the following holds:

1. (Linear growth of [Pp, Cc]): Let p ∈ P, c ∈ C and the closed loop system [Pp, Cc]

be well-posed. Let l1, l1, l2, l3, l4 ∈ N, l1 < l2 ≤ l3 < l4 and I1 = [l1, l2), I2 =

[l2, l3), I3 = [l3, l4). Suppose w2, w
c
2, w

p
1 ∈ We, w

p
0 ∈ W satisfy equations (3.8)–

(3.10),(4.1) on I1 ∪ I2 ∪ I3. Suppose that either

wc
2|I1 = 0, wc

2|I2∪I3 = w2|I2∪I3

or

wc
2|I1∪I2∪I3 = w2|I1∪I2∪I3

where

|I1| = l2 − l1 ≥ max{σ(p), σ(c)}. (4.9)

Then, in both cases:

‖w2|I3‖ ≤ α(p, c, |I2|, |I3|)‖w2|I1‖ + β(p, c, |I2|, |I3|)‖wp
0 |I1∪I2∪I3‖. (4.10)

2. (Stability of [Pp, CK(p)]): Let p ∈ P and x ∈ N. Then

α(p,K(p), a, x) → 0 as a→ ∞ (4.11)

and α is monotonic in a.

Note that the monotonicity requirement in the second assumption follows without loss

of generality since any function α̂ satisfying equation (4.11) can be dominated point-wise

by a monotonic function α satisfying equation (4.11). In the special case of LTI systems

we provide an explicit construction of a monotonic α satisfying equation (4.11) from a

non-monotonic α̂ satisfying equation (4.11).

Assumptions 4.1 now allow the following interpretation: We expect to be able to bound

future signals ‖w2|I3‖ by some (linear) function of the system’s initial conditions, given

by ‖w2|I1‖, and the system’s input wp
0|I1∪I2∪I3 for any well-posed closed loop system

[Pp, Cc]. This is reflected by equation (4.10). However ‖w2|I1‖ only allows an interpre-

tation as an initial condition if the interval I1 is sufficiently long. This is reflected by

equations (4.7)–(4.9). We will show below that the given assumptions hold for (stabil-

ising) controller design procedures K : PLTI → CLTI .

Note that the choice wc
2|I1 = 0 corresponds to an initialisation of the controller to zero

at time l2 and the choice wc
2|I1 = w2|I1 corresponds to continued closed loop operation of
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the same controller. The need for such a construction will become apparent in Chapter

5 in the context of ‘virtual’ switching times where we do not actually switch from one

controller to another but remain with the same controller, hence execute a virtual switch

to the same controller.

We will now show that the given assumptions can be met by minimal MIMO LTI systems:

Definition 4.2. K : P → C is said to be a stabilising design if [Pp, CK(p)] is gain stable

for all p ∈ P.

Recall that

PLTI :=
{

(A,B,C,D) ∈ ∪n≥1R
n×n × Rn×m × Ro×n × Ro×m

∣
∣
∣
∣
∣

(A,B) is controllable

(A,C) is observable

}

,

(3.2)

CLTI :=
{

(A,B,C,D) ∈ ∪n≥1R
n×n × Rn×o × Rm×n × Rm×o

∣
∣
∣
∣
∣

(A,B) is controllable

(A,C) is observable

}

(4.2)

and

P̄LTI :=
{

(A,B,C) ∈ ∪n≥1R
n×n × Rn×m × Ro×n

∣
∣
∣
∣
∣

(A,B) is controllable

(A,C) is observable

}

. (3.24)

Also define

C̄LTI :=
{

(A,B,C) ∈ ∪n≥1R
n×n × Rn×o × Rm×n

∣
∣
∣
∣
∣

(A,B) is controllable

(A,C) is observable

}

. (4.12)

Lemma 4.3. Let PLTI , CLTI be defined by equations (3.2),(4.2) and P̄LTI , C̄LTI be de-

fined by equations (3.24),(4.12). Let K : P → C where (P, C) ∈ {(P̄LTI , CLTI), (PLTI , C̄LTI)}.
Then Assumption 4.1(1) holds. Let K : P → C be a stabilising design. Then 4.1(2)

holds.

Proof Since

(P, C) ∈ {(P̄LTI , CLTI), (PLTI , C̄LTI)},
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we can let

p = (Ap, Bp, Cp,Dp) ∈ PLTI , m, o, np = n ∈ N

and

c = (Ac, Bc, Cc,Dc) ∈ CLTI , m, o, nc = n ∈ N

where either Dp or Dc is zero.

Let the observability matrix Op ∈ Ronp×np be given by

Op =









Cp

CpAp

. . .

CpA
np−1
p









,

the controllability matrix Kp ∈ Rnp×mnp be given by

Kp =
[

A
np−1
p Bp A

np−2
p Bp · · · ApBp Bp

]

and the input-output matrix Tp ∈ Ronp×mnp be given by

Tp =















Dp 0 · · · 0 0 0

CpBp Dp · · · 0 0 0

CpApBp CpBp
. . . 0 0 0

CpA
2
pBp CpApBp · · · Dp 0 0
...

...
. . .

...
. . .

...

CpA
np−2
p Bp CpA

np−3
p Bp · · · CpApBp CpBp Dp















.

Let k ∈ N. With the controllability matrix Kp and by equations (3.4) we can write

xp(k + 1) = A
np
p xp(k − np + 1) +Kp ·







up
1(k − np + 1)

...

up
1(k)






. (4.13)

With the observability matrix Op and equations (3.4),(3.5) we can also write







yp
1(k + 1)

...

yp
1(k + np)







= Opxp(k + 1) + Tp







up
1(k + 1)

...

up
1(k + np)






.

Note that since Pp is observable, Op ∈ Ronp×np is rank np. Let O+
p denote the Moore-

Penrose pseudoinverse of Op. Since all columns of Op are linearly independent, it follows
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that O+
p Op = I and hence we can rearrange to give

xp(k − np + 1) = O+
p













yp
1(k − np + 1)

...

yp
1(k)






− Tp







up
1(k − np + 1)

...

up
1(k)












. (4.14)

We can now see that in order to reconstruct the state xp we have to observe the signals

(up
1, y

p
1) for np − 1 time steps. Hence we have that σ(p) = np − 1. Analogously we have

that σ(c) = nc − 1.

Substituting equation (4.14) in equation (4.13) leads to

xp(k + 1) = A
np
p O+

p













yp
1(k − np + 1)

...

yp
1(k)






− Tp







up
1(k − np + 1)

...

up
1(k)













+Kp







up
1(k − np + 1)

...

up
1(k)







= A
np
p O+

p







yp
1(k − np + 1)

...

yp
1(k)







+ (Kp −A
np
p O+

p Tp)







up
1(k − np + 1)

...

up
1(k)







and therefore

|xp(k + 1)| ≤ Yp

∥
∥wp

1|[k−np+1,k]

∥
∥ ≤ Yp

∥
∥w2|[k−np+1,k]

∥
∥+ Yp

∥
∥wp

0|[k−np+1,k]

∥
∥ (4.15)

where

Yp =
∥
∥
∥

[

A
np
p O+

p Kp −A
np
p O+

p Tp

]∥
∥
∥ .

Analogously for c ∈ C we have

|xc(k + 1)| ≤ Yc

∥
∥wc

2|[k−nc+1,k]

∥
∥ (4.16)

where

Yc =
∥
∥
∥

[

Anc
c O

+
c Kc −Anc

c O
+
c Tc

]∥
∥
∥ .

For the closed loop [Pp, Cc] we have by equations (3.4),(4.4) that

[

xp(k + 1)

xc(k + 1)

]

=

[

Ap 0

0 Ac

] [

xp(k)

xc(k)

]

+

[

Bp 0

0 Bc

][

up
1(k)

y2(k)

]

. (4.17)
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With equations (3.9),(3.10),

[

up
1(k)

y2(k)

]

=

[

up
0(k)

yp
0(k)

]

−
[

u2(k)

yp
1(k)

]

and equations (3.5),(4.5),

[

u2(k)

yp
1(k)

]

=

[

0 Cc

Cp 0

][

xp(k)

xc(k)

]

+

[

0 Dc

Dp 0

][

up
1(k)

y2(k)

]

,

we have

[

up
1(k)

y2(k)

]

=

[

up
0(k)

yp
0(k)

]

−
[

0 Cc

Cp 0

][

xp(k)

xc(k)

]

−
[

0 Dc

Dp 0

][

up
1(k)

y2(k)

]

.

Furthermore by adding

[

0 Dc

Dp 0

] [

up
1(k)

y2(k)

]

we obtain

[

I Dc

Dp I

] [

up
1(k)

y2(k)

]

=

[

up
0(k)

yp
0(k)

]

−
[

0 Cc

Cp 0

][

xp(k)

xc(k)

]

. (4.18)

Observe that since by assumption either Dp or Dc is zero we have

[

I Dc

Dp I

]−1

=

[

I −Dc

−Dp I,

]

. (4.19)

Multiplying inequality (4.18) with equation (4.19) from the left yields:

[

up
1(k)

y2(k)

]

=

[

I −Dc

−Dp I

][

up
0(k)

yp
0(k)

]

−
[

−DcCp Cc

Cp −DpCc

][

xp(k)

xc(k)

]

. (4.20)
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Substitution into equation (4.17) gives us

[

xp(k + 1)

xc(k + 1)

]

︸ ︷︷ ︸

x(k+1)

=

[

Ap 0

0 Ac

][

xp(k)

xc(k)

]

+

[

Bp 0

0 Bc

]

·
([

I −Dc

−Dp I

][

up
0(k)

yp
0(k)

]

−
[

−DcCp Cc

Cp −DpCc

][

xp(k)

xc(k)

])

=

[

Ap 0

0 Ac

][

xp(k)

xc(k)

]

+

[

Bp −BpDc

−BcDp Bc

][

up
0(k)

yp
0(k)

]

−
[

−BpDcCp BpCc

BcCp −BcDpCc

][

xp(k)

xc(k)

]

=

[

Ap +BpDcCp −BpCc

−BcCp Ac +BcDpCc

]

︸ ︷︷ ︸

A

[

xp(k)

xc(k)

]

︸ ︷︷ ︸

x(k)

+

[

Bp −BpDc

−BcDp Bc

]

︸ ︷︷ ︸

B

[

up
0(k)

yp
0(k)

]

︸ ︷︷ ︸

wp
0(k)

. (4.21)

From equation (4.20) we have

[

u2(k)

y2(k)

]

=

[

−up
1(k)

y2(k)

]

+

[

up
0(k)

0

]

=

[

−I Dc

−Dp I

][

up
0(k)

yp
0(k)

]

−
[

DcCp −Cc

Cp −DpCc

][

xp(k)

xc(k)

]

+

[

up
0(k)

0

]

=

[

−DcCp Cc

−Cp DpCc

]

︸ ︷︷ ︸

C

[

xp(k)

xc(k)

]

+

[

0 Dc

−Dp I

]

︸ ︷︷ ︸

D

[

up
0(k)

yp
0(k)

]

and therefore

x(k + 1) = Ax(k) +Bwp
0(k)

w2(k) = Cx(k) +Dwp
0(k),

where with ρ = np + nc, A ∈ Rρ×ρ, B ∈ Rρ×(m+o), C ∈ R(m+o)×ρ, D ∈ R(m+o)×(m+o).

Let l1, l1, l2, l3, l4 ∈ N, l1 < l2 ≤ l3 < l4 and I1 = [l1, l2), I2 = [l2, l3), I3 = [l3, l4). We

now initialise the controller either with xc(l2) = 0 or xc(l2) 6= 0.

For wc
2|I1 = w2|I1 we have with

|I1| ≥ max{σ(p), σ(c)} = max{np − 1, nc − 1}
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that xp(l2) and xc(l2) are uniquely defined and therefore by equations (4.15),(4.16)

‖x(l2)‖ = ‖xp(l2), xc(l2)‖
≤ Yp ‖w2|I1‖ + Yp ‖wp

0|I1‖ + Yc ‖w2|I1‖
≤ (Yp + Yc) ‖w2|I1‖ + Yp ‖wp

0|I1‖ .

Analogously for wc
2|I1 = 0 there follows from equation (4.16) that xc(l2) = 0 hence

‖x(l2)‖ = ‖xp(l2), xc(l2)‖
≤ Yp ‖w2|I1‖ + Yp ‖wp

0 |I1‖ .

So in either case

‖x(l2)‖ ≤ (Yp + Yc) ‖w2|I1‖ + Yp ‖wp
0 |I1‖ . (4.22)

We also have with

Ka =
[

Aa−1B Aa−2B · · · AB B
]

, a ≥ 0

Oa =









C

CA
...

CAa−1









, a ≥ 0

Ta =















D 0 · · · 0 0 0

CB D · · · 0 0 0

CAB CB
. . . 0 0 0

CA2B CAB · · · D 0 0
...

...
. . .

...
. . .

...

CAa−2B CAa−3B · · · CAB CB D















, a ≥ 0

that

x(l3) = A|I2|x(l2) +K|I2|







wp
0(l2)
...

wp
0(l3 − 1)






,







w2(l3)
...

w2(l4 − 1)







= O|I3|x(l3) + T|I3|







wp
0(l3)
...

wp
0(l4 − 1)






.
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Substitution leads to







w2(l3)
...

w2(l4 − 1)







= O|I3|x(l3) + T|I3|







wp
0(l2)
...

wp
0(l3 − 1)







= O|I3|A
|I2|x(l2) +

[

O|I3|K|I2| T|I3|

]







wp
0(l2)
...

wp
0(l4 − 1)






.

Taking norms and substituting equation (4.22) leads to

‖w2|I3‖ ≤ ‖O|I3|A
|I2|‖‖x(l2)‖ +

(
‖O|I3|K|I2|‖ + ‖T|I3|‖

)
‖wp

0|I2∪I3‖
≤ ‖O|I3|A

|I2|‖(Yp + Yc)‖w2|I1‖
+(‖O|I3|A

|I2|‖Yp + ‖O|I3|K|I2|‖ + ‖T|I3|‖)‖w
p
0 |I1∪I2∪I3‖.

We therefore arrive at

‖w2|I3‖ ≤ α̂(p, c, |I2|, |I3|)‖w2|I1‖ + β(p, c, |I2|, |I3|)‖wp
0 |I1∪I2∪I3‖

where

α̂(p, c, |I2|, |I3|) = ‖O|I3|A
|I2|‖(Yp + Yc)

β(p, c, |I2|, |I3|) = (‖O|I3|A
|I2|‖Yp + ‖O|I3|K|I2|‖ + ‖T|I3|‖).

Hence Assumption 4.1(1) holds.

If K is stabilising design, then [Pp, CK(p)], p ∈ P is stable. This implies that with A

defined as in equation (4.21):

A =

[

Ap −BpCK(p)

−BK(p)Cp AK(p) +BK(p)DpCK(p)

]

it follows that A is a stable matrix and

‖Aa‖ → 0 for a→ ∞.

Therefore

α̂(p,K(p), |I2|, |I3|) → 0 as |I2| → ∞.

Although α̂ does converge for large |I2| it is not monotonic in |I2| in general.
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Let t, x ∈ N. Since α̂(p,K(p), t, x) → 0 for t → ∞, for all N > 0 there exist times ti

such that α̂(p,K(p), s, x) < 1/N for all s ≥ ti. Therefore for all t ∈ [ti−1, ti] we let

α̂(p,K(p), t, x) ≤ α(p,K(p), t, x) = max
ti−1≤s≤ti

α̂(p,K(p), s, x),

hence Assumption 4.1(2) holds as required. 2

We will now utilise the established definition of a (stabilising) design procedure K to

define the switching controller C.

2 The switching algorithm

We noted in the introduction that for infinite horizon disturbance estimation the size of

the disturbance estimate or the residual (given by XA(w2)(k)(p)) can be thought of as

the distance between the observation w2 ∈ We and the plant Pp, p ∈ P. Alternatively

XA(w2)(k)(p) can be thought of as a measure of how likely the observation w2 ∈ We is

explained by the plant Pp.

The intuitive choice for the switching strategy is therefore to define the switching signal

qf (k), k ∈ N as a pointer to the plant p ∈ P which is closest to the observation Tkw2

in the sense that XA(w2)(k)(p) is minimal at time k ∈ N. Therefore qf (k) points to

the plant whose corresponding estimator is able to explain the observation Tkw2 with

minimum disturbance. Note that the size of the finite horizon disturbance estimate

XB(w2)(k)(p) = NEB(w2)(k)(p) from Chapter 3, Section 2.2 does not directly represent

the distance between the observation and the plant, since the structure of EB(w2)(k)(p)

is different. However, XB(w2)(k)(p) preserves a notion of distance that appears to be

sufficient for the argument.

We will now formally introduce the estimation-based switching algorithm — as depicted

in Figure 4.1 — where D is the ‘delay’ operator, G is the ‘plant-generating operator’

and M is the minimisation operator which has the purpose to return the plant model

which corresponding residual is minimal.

Initially consider the ‘free’ causal switching operator

Sf : We → map(N,P∗) : w2 7→ qf (4.23)

via the combination of the estimation operator E, the norm operator N , the minimisa-

tion operator M and the plant-generating operator G with

Sf = M(NE,G) = M(X,G), (4.24)
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Pp∗

u0 y0

u2 y2

y2

q
SC

y2u2

u2 y2

q

‖ · ‖

‖ · ‖

E(p1)

E(pn)

ENM

min

D

∆

arg

G

dp1

dpn

rp1

rpn

qf
X

Figure 4.1: Magnified switching strategy S

where N,E,X, X = NE have been defined in the previous section and G,M,D are

defined below.

The plant-generating operator G is intended to specify the (candidate) plant set available

to the algorithm at time k ∈ N and is defined as follows.

Let P∗ be the powerset of P. Let ∅ 6= Pi ∈ P∗, i ∈ N.

Definition 4.4. A map Q : We → map(N,P∗) is said to be a plant-generating operator

if it is causal and satisfies

Q(w2)(0) = P1, Q(w2)(k) = Pi(k), k ∈ N

for some i : N → N with i(0) = 1. Q is said to be finite if Pi is a finite set for all i ∈ N,

constant if Pi = Pj , ∀i, j ∈ N and compact if Pi is compact for all i ∈ N.

Now let

G : We → map(N,P∗) (4.25)

be a plant-generating operator, where we also define

PG := ∪
w2∈We

∪
k∈N

G(w2)(k) ⊂ P.

PG is the union of all plant model sets possibly represented by G. To improve readability

we write G(k) := G(w2)(k), k ∈ N.



Chapter 4 Estimation-based Multiple Model Switched Adaptive Control 97

We often let G be constant however the algorithm then becomes conservative — as

discussed in the introduction and later in Chapter 6. This motivates the time-varying,

dynamic nature of G, as used in dynamic EMMSAC.

Definition 4.5. An EMMSAC algorithm with an underlying plant-generating operator

G that is:� time-varying, i.e. there exist i, j ∈ N such that G(i) 6= G(j), is said to be dynamic.� constant, i.e. G(i) = G(j) for all i, j ∈ N, is said to be static.

On the first pass of reading this document it is recommended to the reader to only

consider the static EMMSAC case. A deeper discussion of G is conducted in the next

section.

Since we intend to define the free switching signal qf such that it points to the plant in the

plant model set whose corresponding residual is minimal, we introduce the minimising

operator M as follows. Let

M : (map(N,map(P,R+)),map(N,P∗)) → map(N,P∗) (4.26)

and
[
k 7→ (p 7→ rp[k]), k 7→ G(k)

]
7→
[
k 7→ qf (k)

]
(4.27)

where

qf (k) := argmin
p∈G(k)

rp[k], ∀k ∈ N. (4.28)

If there are multiple minimising residuals, an arbitrary ordering on G(k) is imposed

a priori, i.e. G(k) = {p1, p2, · · · , pn}, and argminp∈G(k) rp[k] is defined to return the

parameter pi ∈ G(k) with the smallest index i such that rpi [k] is minimal.

Equation (4.28) also includes the implicit assumption that a minimiser exists. In the

scenario considered in this thesis, whereby G is finite or G is compact and p 7→ rp[k] is

continuous, this holds.

The undelayed, ‘free’ switching signal qf (k) at time k ∈ N therefore is a direct function

of the size of the residuals rp[k], p ∈ G(k). Due to disturbances acting on the system,

i.e. w0 6= 0, the switching signal qf might not settle but switch rapidly between members

of G. Since we would like to utilise the switching signal for controller selection this is

undesirable as it can lead to instability.

For example consider a switched linear system given by xp(k + 1) = Apx(k) + Bpu(k)

where (Ap, Bp) ∈ {(Ap1 , Bp1), (Ap2 , Bp2)} and (Ap1 , Bp1, ·, ·), (Ap2 , Bp2 , ·, ·) ∈ PLTI are of

compatible dimension. It can be shown that there exist stable Ap1, Ap2 and a sufficiently

fast periodic switching sequence between (Ap1 , Bp1) and (Ap2, Bp2) such that the system

is unstable (see Liberzon (2003)).



98 Chapter 4 Estimation-based Multiple Model Switched Adaptive Control

The purpose of D is now to delay the free switching signal qf long enough to prevent

instability effects caused by rapid switching and to ensure the overall convergence of the

closed loop signals. For that purpose we will associate a minimum delay ∆(p) to every

plant Pp, p ∈ P which must elapse before another switch is permitted. We will encode

this information into the ‘transition delay’ function

∆ : P → N. (4.29)

This leads to the following definition of the delay operator D. Define

D : map(N,P) → map(N,P) (4.30)

by

[k 7→ qf (k)] 7→ [k 7→ q(k)] (4.31)

where q(k) is defined recursively:

q(k) :=

{

qf (k) if k − ks(k) ≥ ∆(q(ks(k)))

q(ks(k)) else
(4.32)

and where ks : N → N is given by

ks(k) := max{i ∈ N | 0 ≤ i ≤ k, q(i) 6= q(i− 1)}. (4.33)

Note that ks(k) returns the last time up to time k ∈ N where the algorithm switches

from one plant to another. Also note that D is causal.

We are now in the position to define the global switching operator

S : We → map(N,P∗) : w2 7→ q

S = DM(NE,G) = DM(X,G)

as depicted in Figure 4.1 where we note that S = DSf and Sf is the free switching

operator as given in equations (4.23),(4.24).

Let a controller design procedure K : P → C be given. The switching controller C is

then defined via the switching signal q and the controller design procedure K in the

following way: At every time instance k ∈ N the atomic controller, defined by CK(q(k)),

is put into closed loop — as depicted in Figure 4.2. However, since we allow the atomic

controllers to have memory, we also have to define an initial condition at the switching

time. We therefore let

C : Ye → Ue : y2 7→ u2 (4.34)
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Pp∗

u0 y0

u2 y2

y2

q
SC

y2u2 q

y2

u2

CK(p1)

CK(pn)

CK(p2)

q

Figure 4.2: Magnified switching controller C

for all k ∈ N be defined by

u2(k) = CK(q(k))(y2 − Tks(k)−1y2)(k), (4.35)

where we recall that ks(k) is the last time i ∈ N, i ≤ k s.t. q(i) 6= q(i−1). Equation (4.35)

ensures a zero initial condition for the atomic controller CK(q(k)) when it is switched into

closed loop. Note that if E satisfies Assumption 3.4(1) (causality) and G is causal, then

S is causal.

We therefore arrive at Figure 4.3 where all involved sub systems have been defined.

3 The plant-generating operator G

To shed some light on the role of the plant-generating operator G and to emphasise the

ample design freedom we enjoy in EMMSAC, we will now briefly discuss a selection of

algorithms for the construction of G and note that some of these ideas will be followed

up in Chapter 6.� Static EMMSAC:

The standard approach in multiple model control, e.g. in Morse (1996, 1997), is to

choose a constant plant model set and a corresponding controller set from which

the algorithm may select controllers. Although the simplicity of this approach has
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Pp∗

u0 y0

y2u2

q

y2

CK(p1)

CK(pn)

CK(p2)

q
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‖ · ‖

‖ · ‖

E(p1)

E(pn)

ENM

min

D

∆

arg

G

dp1

dpn

rp1

rpn

qf

C

u2 y2

u2

u1 y1

X

Figure 4.3: EMMSAC in detail

its virtue, the resulting algorithm is conservative as shown in Chapter 6, Theorem

6.6.� Dynamic EMMSAC - expansion of G:

The complication that the plant-generating operator G is allowed to be time-

varying may initially appear unnecessarily complex to the reader. However, it is

the device that brings unheard of freedom to the design process and by which

we can make the algorithm universal. The mechanism which we will exploit in

Theorem 6.6 — to show that the algorithm is conservative — is that the algorithm

can be confused by appropriate choices of disturbances (of arbitrarily small size) to

switch to the atomic controller in the controller set with the highest gain. Note that

we have to ensure that at least one of the plant models in a constant plant model

set G is close to the true plant P = Pp∗ , so that its corresponding controller can

have a stabilising effect on P . An increasingly large uncertainty in the plant will

therefore necessarily lead to an increasingly large constant plant model set G and

thus to an increasingly large corresponding controller set (typically incorporating

controllers with increasingly high gains). This is enough to show that for constant

G, the performance of the algorithm degrades with an increasingly large level of

uncertainty in the true plant P — the algorithm is conservative.

A remedy to this problem is to define a time-varying plant-generating operator

G that specifies a plant model set that is initially small but expanded over time,

i.e. the algorithm is initially only allowed to choose from a small number of plant

models. This essentially eliminates the possibility that the algorithm switches to
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the worst case controller right away. We will then define a performance-orientated

rule on how to expand G. In particular, G is expanded as long as performance is

degrading, and expansion of G is stopped if the performance is converging. The

intuitive idea behind such a choice of G is that the plant model set is expanded

until a controller that stabilises the true plant P = Pp∗ enters G. The hope is that

if performance converges then G converges. And indeed, we will show in Chapter

6 that dynamic expansion of G is the device by which the algorithm achieves gain

function bounds invariant to the level of uncertainty — that it is universal.� Dynamic EMMSAC - refinement of G:

Although a well chosen constant, coarse plant model set G may be sufficient to

provide a stabilising controller for the true plant P = Pp∗ with a bounded uncer-

tainty, we expect the performance to diminish for an increasing distance between

the true plant P and the closest plant model Pp, p ∈ G, since the corresponding

controller CK(p) may only be mildly stabilising for P .

By choosing a constant, dense plant model set G we expect the overall performance

to be better, however this approach requires the implementation of a larger number

of estimators where most of them will never produce a residual that is minimal;

hence such a construction is usually conservative from a implementational point

of view (see Chapter 6, Section 8). Also an overly dense plant model set G may

lead to ‘oversampling’ effects, analogously to the ‘over-fitting’ of functions with too

many control points. Although such effect may increase the actual closed loop gain,

they do not do so unboundedly (see Chapter 5, Theorem 5.14 which establishes

an upper bound on the closed loop gain; also if G is a compact continuum.)

One possibility to address these problems is to have a time-varying G, initially

containing only few plant models which form a coarse grid over the uncertainty set

of P (ensuring stability) and then to refine G over time. A brute force method of

doing so would be to introduce more and more plant models distributed uniformly

over the uncertainty set of P .

Usually there is probabilistic information available about the uncertainty problem

in the sense that some uncertainties are more likely than others. For example if

a manufacturing process is producing items of a mass m, we usually expect the

uncertainty to form, for example, a Gaussian probability distribution around m,

and therefore it is more likely that an item has a mass close to m. We could then

utilise this information to refine the plant model set and add plant models in an

increasingly large neighbourhood around m in order to increase the expected value

of the average performance.� Dynamic EMMSAC - advanced algorithms:

The above methods to introduce new plant models to G are rather basic. More

complex dynamic refinement schemes could include a local search for the smallest

disturbance estimate — as depicted in Figure 4.4. For example, assume that
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G consists initially of a coarse grid of plant models (Figure 4.4 (A)) which is

sufficiently dense for the EMMSAC algorithm to be stabilising. We could then

interpolate the position of a potentially better fitting plant model from the n

smallest disturbance estimates and the corresponding plant models and implement

its corresponding estimator on-line (Figure 4.4 (B)). This process can then be

repeated (Figure 4.4 (C)) until, for example, the performance is satisfactory or the

algorithm is only introducing plant models that are very close to each other and

we can expect to have reached a minimum.

A B C

G(k)
k

Figure 4.4: Local search via interpolation

An alternative approach would be to compute a local gradient from the n smallest

disturbance estimates and then consecutively add plant models along this gradient

to G (gradient descent). This approach has the advantage that it can project

outside the initial plant model set hence is also potentially suitable to orchestrate

the enlargement of G.

Essentially any performance-driven search scheme which provides a stabilising

G(k) for all k ∈ N can be incorporated in EMMSAC.

Such schemes are very interesting in this context since the problem of local minima

is not an issue here: the search is only conducted locally where the global algorithm

can switch to any plant model in the plant model set G. Hence the desired multiple

model control properties, such as simultaneous stabilisation and control of non-

convex sets, are preserved.

A scheme that is loosely related to the dynamic refinement of G is the one of Narendra

et al. (1995) and Narendra and Balakrishnan (1997), where the authors utilise multiple

model switched adaptive control as the global framework, but implement some atomic

controllers as classical adaptive controllers to improve performance. The underlying idea

is similar: the improvement of the expected performance by supplying an appropriate

controller for the region of the uncertainty where the algorithm is expecting the true

plant. This is achieved by the tuning behaviour of the atomic adaptive controllers. In

contrast to our approach, where the multiple model scheme is used for local refinement,
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Narendra et. al. introduce additional complexity with the adaptive tuning scheme. Also,

as mentioned in the introduction, such an approach is problematic since we will neces-

sarily find ourselves confronted with the usual robust stability and structural limitations

of the classical adaptive controller.

4 EMMSAC in practice

This section is intended to give the reader an idea of how to ‘run’ the algorithm in

practice and what implementational complexity is to be expected.

Assume that we have decided upon some (possibly time-varying) construction of a plant-

generating operator G (see Chapter 6 for a performance-orientated guideline on how

to make that choice). The next step is then to determine a corresponding controller

K(p) and a transition delay ∆(p) to all p ∈ PG. Observe that the construction of

K(p), ∆(p), p ∈ PG can only be computationally feasible if PG is finite and a priori

known (G(k) = G(w2)(k) is known for all w2 ∈ We and for all k ∈ N), since we would

otherwise have to compute K(p), ∆(p) for all p ∈ P ⊃ PG (which may be a continuum).

If PG is indeed known, small and finite, then off-line computation of K(p), ∆(p) for all

p ∈ PG appears feasible and one could store this information in memory to be employed

by the algorithm when in on-line operation. However, PG is usually unknown if G(k) is

a function of observed signals, e.g. if G(k) describes an advanced refinement scheme (as

discussed in Chapter 4, Section 3) and off-line computation of K and ∆ is not feasible.

To overcome this problem we now consider the on-line computation of the controller as

well as the transition delay. It is important to note that only one controller is active

at a time, hence only a single controller and corresponding delay needs to be calculated

every time the algorithm performs a switch. This implies that calculating the controller

and delay on-line reduces the (possibly infinitely large) computational complexity of

determining K and ∆ off-line to a single computational operation every time a switch

occurs. We can therefore trade off memory size and computational off-line resource

versus computational on-line resource, or even implement hybrid schemes.

In principle K and ∆ can be any operator satisfying Assumptions 4.1 (note that later in

Chapter 5, inequality (5.16) will also constrain ∆), hence even the construction of each

K(p), ∆(p), p ∈ PG by hand is possible. However, manual construction will not be

feasible in many situations, i.e. if PG is large or unknown. We will therefore assume that

K and ∆ are determined by some automated procedure. Automated design procedures

forK and ∆ can for example be implemented by using (the code from) suitable MATLAB

toolboxes with the purpose to automatically construct a stabilising H∞, LQG, PID

controller, or some iterative method to determine ∆ that satisfies inequality (5.16) in

Chapter 5 (given some l : P → R+). The challenge for the designer then reduces to the

problem of setting suitable parameters for the automation.
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With ∆ and K, determined on- or off-line, we now proceed as follows.

1. Construct the estimators:

Depending on the signal space we can, for example, choose from Kalman filter

estimators or finite horizon estimators. Other estimation algorithms are allowed as

long as they satisfy Assumptions 3.4. Note that the Kalman filter implementation

as well as the finite horizon implementation of the estimator is recursive. Therefore,

for these estimator constructions, only the scalar value of the residual between

recursive steps has to be stored for each plant p ∈ G. In the special case of the

Kalman filter, additionally the filter state x̂ as well as Σ have to be stored for all

p ∈ G. The computational costs of evaluating the residual rp[k], k ∈ N to plants

p ∈ G(k) depend on the order of Pp and the particular estimation algorithm, but

are invariant to k ∈ N.

If PG is known, a fixed bank of disturbance estimators may be set up off-line for

disturbance estimation. However, for a general dynamic G, PG is unknown and

‘new’ disturbance estimators have to be introduced on-line. This is conducted

in the following way: if a new plant is introduced to G on-line at time k ∈ N,

the corresponding estimator is iterated forward from zero to time k ∈ N. For

a recursive estimator implementation the computational costs to introduce a new

estimator on-line at time k ∈ N is therefore k times the costs of a one step iteration.

It is therefore more expensive to introduce estimators later.

The computation of the free switching signal qf (k) = argminp∈G(k) rp[k] from the

residuals rp[k] is then a simple comparison of n = |G(k)| scalars.

2. Implement the delay:

Assume the algorithm switched from one controller to another at time a ∈ N, i.e.

q(a − 1) 6= q(a). Now compute the delay ∆(q(a)) and store ∆(q(a)) as well as

q(a) in memory to be evaluated by some delay routine. Since these operations

only apply to a single plant q(a), the computational cost is invariant to the size of

G(k), k ∈ N.

3. Compute the control signal:

As before, assume the algorithm switched from one controller to another at time

a ∈ N. Now compute K(q(a)) and compute the control signal u2(i) via u2(i) =

CK(q(a))y2(i), a ≤ i < b where b is the next switching time and the controller is

initialised to zero at time a. For example, if the controller is given by Cc, c ∈ PLTI

from equations (4.2)–(4.6) we would let xc(a) = 0 and wc
2(i) = w2(i), a ≤ i < b.

Since these operations only apply to a single plant q(a), the computational cost is

invariant to the size of G(k), k ∈ N.

We now come to the central chapter of this thesis, establishing bounds on the closed

loop gain for the given EMMSAC algorithm.



Chapter 5

Stability and gain bound analysis

of the nominal closed loop system

In this chapter we will establish lr, 1 ≤ r ≤ ∞ norm bounds on the observation signal

w2 ∈ We in terms of the external disturbance signal w0 ∈ W. A particular feature of the

bounds is that they depend on the size and geometry of a ‘cover’ of the candidate plant

set, rather than the plant set itself. This characteristic allows the refinement scaling of

plant model sets as a successively increasing fidelity sampling of e.g. a continuum of

plants. The main result of this chapter establishes exactly this viewpoint. The following

chapter then fully interprets this result and derives many consequences of the gain bound

given here, including clear approaches to design.

On the first pass of reading this document the reader is advised to read Section 1 and the

statement of the results in Section 5, omitting the detailed construction of the bounds

in Section 2, 3, 4 and to follow the argument of Chapter 6 to the end of Section 2 first.

There we will fill the objects G,H,U, ν with meaning.

Before we come to our first intermediate result, establishing gain bounds for atomic

closed loop systems, we introduce some necessary notation.

1 Preliminaries

1.1 Uncertainty sets and covers

Let

U : We → map(N,P∗)

105
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be a monotonic plant-generating operator where

PU := ∪
w2∈We

∪
k∈N

U(w2)(k) ⊂ P.

U has the role of specifying an uncertainty set we seek to control at a given time k ∈ N.

For example let a plant Pa be given by

Pa : y1(k + 1) = ay1(k) + u1, a ∈ [−amax, amax] (5.1)

where a is an uncertain parameter. For a given finite amax then take U to be constant:

U = U(k) = [−amax, amax], ∀k ∈ N

Hence U specifies the uncertainty set. An implementation of an EMMSAC controller

will then be based on a plant model set specified by a constant plant generating operator

G, where G is a suitable sampling of U . However, for a constant uncertainty set, we will

show in Theorem 6.6 that the closed loop gain scales with the uncertainty amax; that is

that the algorithm is conservative. A remedy to this problem is to dynamically expand

the uncertainty set U(k) (along with G(k)) until some performance requirement is met.

For the purpose of our example we could, for example, let U(k) = [−k, k]. We will show

in Chapter 6 that a performance-orientated expansion of U and G leads to gain function

bounds that are invariant to the level of uncertainty in the system, and give algorithms

of finite computational complexity.

We now consider sets of plants that are close to each other within each U(k).

Let χ : P × P → R+ be as in Assumption 3.4(5). Let

H : We → map(N,P∗) (5.2)

be a plant-generating operator where

PH := ∪
w2∈We

∪
k∈N

H(w2)(k) ⊂ P.

Let ν : We → map(N,map(P,R+)) be given. As in Chapter 4 we write U(k),H(k), ν(k)

for U(w2)(k),H(w2)(k), ν(w2)(k).

Now define the ball

Bχ(p, ν(k)(p)) := {p} ∪ {p1 ∈ P | χ(p, p1) < ν(k)(p)} ∩ U(k), p ∈ P, k ∈ N (5.3)

to be the set of plants that reside within a neighbourhood of radius ν(k)(p), as measured

by χ, around p ∈ H(k) in U(k). For an appropriate choice of H and ν, the union of the

corresponding neighbourhoods in U then leads to a cover for U :
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Definition 5.1. (H, ν) is said to be a monotonic cover for a plant-generating operator

U if ∀k ∈ N, w2 ∈ We:

1. H and ν define a cover for U :

U(k) ⊂ R(k) := ∪p∈H(k)Bχ(p, ν(k)(p))), ∀k ∈ N, w2 ∈ We.

2. The cover is monotonic:

R(k) ⊂ R(k + 1), ∀k ∈ N, ∀w2 ∈ W2.

(H, ν) is said to be a finite cover if H(k) is a finite set for all k ∈ N, w2 ∈ We.

We will establish sufficient conditions for the existence of a finite cover (H, ν) for U in

Chapter 6.

Returning to the example in equation (5.1), we can construct a monotonic cover in the

following way: Assume amax = 100. Let

H(k) = {p1, p2, p3, p4, p5} = {−100,−50, 0, 50, 100}, ∀k ∈ N

and ν(k) = 2max1≤i≤4 χ(pi, pi+1), ∀k ∈ N. Then U ⊂ R = ∪p∈HBχ(p, ν(p))), w2 ∈ We

where the cover is monotonic (since it is constant).

The introduction of (H, ν) is the device by which we are able to express gain bounds

which scale in terms of the number of elements of |H(k)| rather than the absolute size

of the set |G(k)|. This will lead to a notion of ‘complexity’ of a plant model uncertainty

set in the next chapter.

U(k)

ν(p)(k)

ν(q)(k)

∈ G(k)

∈ H(k)

p

q

Figure 5.1: Uncertainty set U(k), cover (H(k), ν(k)) and sampling G(k)

Consider the example in Figure 5.1. We will think about the objects U,H, ν,G in the

following way:
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uncertainty U ,� G is an appropriate sampling of the uncertainty set U .

1.2 Switching times

Let qf ∈ map(N,P), and let q = Dqf (equations (4.29)–(4.33)) denote the switching

signal. Let

Lk := {l0 = 0, l1, l2 · · · } = {l ∈ N | q(l − 1) 6= q(l), 0 ≤ l ≤ k} (5.4)

be an ordered set, i.e. if li, lj ∈ Lk, i ≤ j then li ≤ lj , interpreted as the set of physical

switching times up to time k ∈ N. These are the times where the algorithm switches

from one controller to another.

To every pair of consecutive physical switching times li, li+1 define the set of virtual

switching times V (li, li+1) by

V (li, li+1) :=

{

a ∈ N

∣
∣
∣
∣
∣

∃b ∈ N s.t. a = li + b∆(q(li)),

li < a ≤ li+1 − ∆(q(li))

}

. (5.5)

The idea of a virtual switch arises from the fact that if the algorithm switches to a

controller CK(q(li)) and remains switched to that controller for a long interval of time

we can interpret this as a series of consecutive switches to the same controller. However

note that a virtual switch differs from a physical switch in that the atomic controller is

not intentionally initialised to 0 at the virtual switching time. Note that the interval

[li, li+1] might in some cases not be of sufficient length to accommodate a virtual switch

at all. In that case V (li, li+1) is an empty set. Also note that virtual switching times are

defined purely for analytical purposes and do not affect the actual switching algorithm

whatsoever.

Now define the ordered set of all switching times, physical and virtual,

Qk = {k0 = 0, k1, k2, · · · }, 0 ≤ ki ≤ ki+1 ≤ k (5.6)

by

Qk := Lk ∪
⋃

i≥0

{V (li, li+1) | li, li+1 ∈ Lk}, (5.7)

where we treat for the remaining document virtual and physical switches alike. Let

Qk(p) := {i ∈ Qk | q(i) = p} ⊂ Qk, p ∈ P



Chapter 5 Stability and gain bound analysis of the nominal closed loop system 109

be the switching times where the algorithm switches to a plant p.

Let p ∈ H(k) and let

Qk(p, ν(k)(p)) := ∪x∈Bχ(p,ν(k)(p)){Qk(x)} (5.8)

be the set of all switching times corresponding to the plants in the neighbourhood

Bχ(p, ν(k)(p)) around a plant p ∈ H(k).

For p ∈ H(k), let

Fk(p, ν(k)(p)) :=

{

{max(Qk(p, ν(k)(p)))} if max(Qk(p, ν(k)(p))) 6= ∅
∅ otherwise

(5.9)

be the switching time where the algorithm switches to a plant within the neighbourhood

Bχ(p, ν(k)(p)) for the last time in the interval [0, k]. Note that Fk(p, ν(k)(p)) is always

defined since maxQk(p, ν(k)(p)) ≤ k.

Let

Fk := ∪p∈H(k)Fk(p, ν(k)(p)) (5.10)

and note that:

Fk(p, ν(k)(p)) ⊂ Fk ⊂ Qk.

Let

Ok(p, ν(k)(p)) :=

{

Q(p, ν(k)(p)) \ Fk(p, ν(k)(p)) if Qk(p, ν(k)(p)) 6= ∅
∅ otherwise

(5.11)

be the set of all ‘ongoing’ switching times corresponding to the plants in the neighbour-

hood Bχ(p, ν(k)(p)) around the plant p, i.e. the algorithm will switch back to a plant

within Bχ(p, ν(k)(p)) at a later time in the interval [0, k]. We let:

Ok := ∪p∈H(k)Ok(p, ν(k)(p)) (5.12)

and note that:

Ok(p, ν(k)(p)) ⊂ Ok ⊂ Qk.

For example, assume that there are only four plants and they are positioned as in Figure

5.2. Let q be such that the set of switching times Qk and the set of switching times

corresponding to each plant Qk(pi), 1 ≤ i ≤ 4 are as in the Table 5.1. Note that if

a plant lies in more then one neighbourhood, it is counted multiple times. Hence its

corresponding final switching time for one neighbourhood may be in the set of ongoing
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switching times for another neighbourhood, i.e.

Fk(pi, v(k)(pi)) ∈ Ok(pj, v(k)(pj)), i 6= j.

p4

p3

p1
p2

ν(p4)

ν(p1)

Figure 5.2: Neighbourhoods Bχ(p1, ν(p1)), Bχ(p4, ν(p4))

Qk 1 5 11 22 44 101 202 212 333

Qk(p1) 1 11 44 202
Qk(p2) 5 22
Qk(p3) 101 212
Qk(p4) 333

Qk(p1, ν(p1)) 1 5 11 22 44 202
Qk(p4, ν(p4)) 5 22 101 212 333

Fk(p1, ν(p1)) 202
Fk(p4, ν(p4)) 333

Ok(p1, ν(p1)) 1 5 11 22 44
Ok(p4, ν(p4)) 5 22 101 212

Table 5.1: A switched system with corresponding switching times

Note that this example is only to demonstrate the relationship between these sets of

switching times. It is important to note that they will not appear in any gain bound

and we do not impose any knowledge on them. In particular we do not impose knowledge

about when the algorithm will switch, how often it will switch or to which controller.

This is very important since allowing arbitrary disturbances of a certain size acting on

the system it is impossible to predict every possible resulting switching sequence. The

only time-structure property of these sets that will be used in the argument is that there

exists an upper and lower bound on the pause between two switches (see Lemma 5.4).

This is a result of the switching delay, the definition of the virtual switching times and

the fact that the sets are ordered.

Impose the following constraint on the set PU :

Assumption 5.2. Let PU ⊂ P have the property:

σ := max
p1,p2∈PU

max{σ(p1), σ(K(p2))} <∞.
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where we recall that σ(p) and σ(c) are defined by equation (4.8) and (4.7).

Therefore σ represents the total number of time steps the controller and plant signals

need to be observed to uniquely define the initial condition of any closed loop system

[Pp1 , CK(p2)], p1, p2 ∈ PU . This implies finite dimensionality of the plants and con-

trollers.

Furthermore assume the following:

Assumption 5.3. We assume the delay transition function ∆ : P → N satisfies:

∆(p) > σ, ∀p ∈ PU .

For all switching times ki ∈ Qk define the intervals

Ai := [ki − σ, ki) (5.13)

Bi := [ki, ki+1 − σ). (5.14)

Note that by Lemma 5.4:

ki+1 − ki ≥ ∆(q(ki)) > σ

hence ki+1 − σ > ki and Ai, Bi are defined and form a disjoint cover of N.

Upper and lower bounds on the switching times are now given as follows:

Lemma 5.4. Suppose ∆ : P → N is a given delay transition function and suppose the

delay operator D is given by equation (4.30)–(4.33). Let k ∈ N and let qf ∈ map(N,PU ).

Let q = Dqf . Suppose ki ≤ ki+1 are consecutive switching times, ki, ki+1 ∈ Qk where

Qk is defined by equations (5.4)–(5.7). Let p = q(ki). Then:

∆(p) ≤ ki+1 − ki < 2∆(p). (5.15)

Proof By the definition of the switching delay in equation (4.32) it follows that ∆(p) ≤
ki+1−ki. If ki+1 is a virtual switching time, then ki+1−ki = ∆(q(ki)) by equation (5.5),

and if ki+1 is a physical switching time, then

ki := li + b∆(q(li)) ≤ ki+1 − ∆(q(li)) < li + (b+ 1)∆(q(li)) = ki + ∆(q(li)),

hence ki+1 − ki < 2∆(q(ki)) and equation (5.15) follows. 2

We are now in the position to begin with the construction of the gain bound. The proof

is organised into sections as follows.

Section 2. Gain bounds for atomic closed loop systems:

In this section we are concerned with a) the atomic closed loop [Pp∗ , CK(p)], that
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is the closed loop system containing the true plant Pp∗ , p∗ ∈ P and a controller

based on any plant Pp, p ∈ P, and b) the atomic closed loop [Pp, CK(p)], p ∈ P,

that is the closed loop system containing a matching plant-controller pair. In both

cases we will establish a bound on (portions of) the observation w2 in terms of the

disturbance estimate dp[k]. The bounds from a) will be used in the cont ex of final

switching times, i.e. ki ∈ Fk where the bounds from b) will be used in the context

of non-final switching times, i.e. ki ∈ Ok.

Section 3. Bounds on disturbance estimates:

Since the established bounds on the observation in Section 2 are given in terms of

disturbance estimates dp[k], and the overall goal is to construct a bound on the

observation w2 in terms of the true disturbance w0, we now establish bounds on

the disturbance estimates dp[k] in terms of the true disturbance w0.

Section 4. Gain bounds for non-final switching intervals:

In this section we will utilise the results from Section 3. to show that (a series of)

disturbance estimates dp[ki] corresponding to intervals associated with non-final

switching times, i.e. ki ∈ Ok, can be bounded efficiently in terms of the true

disturbance w0. This leads to a bound on w2 in terms of w0 for sequences of

intervals associated with non-final switching times.

Section 5. Main result:

Finally, all gain results are collated to the main result that establishes a bound on

w2 in terms of w0 for both, intervals associated with final and non-final switching

times — hence over the whole time axis.

2 Gain bounds for atomic closed loop systems

The first result establishes bounds on the gain from the disturbance signals w0 to the

internal signals w2 for the atomic closed loop interconnection between the true plant

and the controller switched into closed loop at time ki, i.e. [Pp∗ , CK(q(ki))] as depicted

in Figure 5.3, on the various intervals of type Ai, Bi, ki ∈ Qk.

The two cases wc
2|Ai = 0 and wc

2|Ai = w2|Ai correspond to the case whereby the controller

is initialised to zero at time ki i.e. ki ∈ Lk (a physical switch) or the case where the

controller is not intentionally initialised to zero at time ki i.e ki ∈ Qk \ Lk (a virtual

switch). To improve readability we repeat all relevant equations in Table 5.2.
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y1 = Pu1 (2.7)

u0 = u1 + u2 (2.8)

y0 = y1 + y2 (2.9)

uc
2 = Ccy

c
2 (4.1)

D : map(N,P) → map(N,P) (4.30)

[k 7→ qf (k)] 7→ [k 7→ q(k)] (4.31)

q(k) :=

{
qf (k) if k − ks(k) ≥ ∆(q(ks(k)))
q(ks(k)) else

(4.32)

ks(k) := max{i ∈ N | 0 ≤ i ≤ k, q(i) 6= q(i− 1)} (4.33)

Lk := {l0 = 0, l1, l2 · · · } = {l ∈ N | q(l − 1) 6= q(l), 0 ≤ l ≤ k} (5.4)

V (li, li+1) :=

{

a ∈ N

∣
∣
∣
∣

∃b ∈ N s.t. a = li + b∆(q(li)),
li < a ≤ li+1 − ∆(q(li))

}

(5.5)

Qk = {k0 = 0, k1, k2, · · · }, 0 ≤ ki ≤ ki+1 ≤ k (5.6)

Qk := Lk ∪
⋃

i≥0

{V (li, li+1) | li, li+1 ∈ Lk} (5.7)

Ai := [ki − σ, ki) (5.13)

Bi := [ki, ki+1 − σ) (5.14)

Table 5.2: Details for Proposition 5.5
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Pp∗

u0 y0

u2 y2

yc
2

q

S

C

u2

q

yc
2

uc
2 CK(p)

q

D
∆

qf

uc
2

y2

y2u1 y1

Figure 5.3: Closed loop [Pp∗
, CK(q(ki))] with magnified switching controller C

Proposition 5.5. Let 1 ≤ r ≤ ∞. Suppose PU ⊂ P satisfies Assumption 5.2. Let

p∗ ∈ PU and P = Pp∗. Let K : P → C be a given control design satisfying Assumption

4.1(1). Suppose ∆ is a given delay transition function satisfying Assumption 5.3 and

suppose the delay operator D is given by equation (4.30)–(4.33).

Let k ∈ N and let qf ∈ map(N,PU ). Let q = Dqf . Suppose ki ≤ ki+1 are consecutive

switching times, ki, ki+1 ∈ Qk where Qk is defined by equations (5.4)–(5.7) and let

the intervals Ai, Ai+1, Bi be given by equations (5.13),(5.14). Suppose (w0, w1, w2) ∈
W×We×We, w

c
2 ∈ We satisfy equations (2.7)–(2.9),(4.1) on the interval Ai∪Bi∪Ai+1,

where p = q(ki), c = K(p) and either

wc
2|Ai = 0, wc

2|Bi∪Ai+1 = w2|Bi∪Ai+1

or

wc
2|Ai∪Bi∪Ai+1 = w2|Ai∪Bi∪Ai+1.

Then, in both cases,

‖Tki+1−1w2‖ ≤ γ1(p)‖Tki−1w2‖ + γ2(p)‖w0‖

where with α, β from Assumption 4.1 define

γ1(p) = 1 + sup
∆(p)≤x≤2∆(p)

α(p∗,K(p), 0, x)

γ2(p) = sup
∆(p)≤x≤2∆(p)

β(p∗,K(p), 0, x).
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Proof Let

I1 = Ai = [ki − σ, ki)

I2 = ∅
I3 = Bi ∪Ai+1 = [ki, ki+1)

Since

|I1| = |Ai| = σ ≥ max{σ(p∗), σ(K(q(ki)))}

by Assumption 4.1(1) we have for the closed loop [Pp∗ , CK(q(ki))] that

‖Tki+1−1w2‖ ≤ ‖Tki−1w2‖ + ‖w2|I3‖
≤ ‖Tki−1w2‖ + α(p∗,K(q(ki)), 0, |I3|)‖w2|I1‖

+β(p∗,K(q(ki)), 0, |I3|)‖w0|I1∪I2∪I3‖
≤ ‖Tki−1w2‖ + α(p∗,K(q(ki)), 0, |I3|)‖Tki−1w2‖

+β(p∗,K(q(ki)), 0, |I3|)‖w0‖
≤ (1 + α(p∗,K(q(ki)), 0, |I3|))‖Tki−1w2‖ + β(p∗,K(q(ki)), 0, |I3|)‖w0‖

By Lemma 5.4 we now have

∆(p) ≤ |I3| = ki+1 − ki ≤ 2∆(p).

and arrive at

‖Tki+1−1w2‖ ≤ (1 + α(p∗,K(p), 0, |I3|))‖Tki−1w2‖ + β(p∗,K(p), 0, |I3|)‖w0‖
≤ γ1(p)‖Tki−1w2‖ + γ2(p)‖w0‖

as required. 2

Before we discuss the next gain bound we give an elementary bound.

For x, y, c ∈ R define

⌊c⌋ := max{n ∈ Z | n ≤ c} and

(

x

y

)

:=
x!

y!(x− y)!
.

Lemma 5.6. Let 1 ≤ ξ <∞. Let a, b ≥ 0. Then

(a+ b)ξ ≤ J(ξ)(aξ + bξ).

where

J(ξ) = ξ

(

ξ

⌊ξ/2⌋

)

.
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Proof Let v,w ∈ N. Observe that since

avbw ≤ av+w if b ≤ a

avbw ≤ bv+w if a ≤ b

it follows that

avbw ≤ max{av+w, bv+w} ≤ av+w + bv+w.

We then have

(a+ b)ξ =

ξ
∑

i=0

(

ξ

i

)

aξ−ibi ≤
(

ξ

⌊ξ/2⌋

)
ξ
∑

i=0

aξ−ibi

=

(

ξ

⌊ξ/2⌋

)[

(aξ + bξ) +

ξ−1
∑

i=1

aξ−ibi

]

≤
(

ξ

⌊ξ/2⌋

)[

(aξ + bξ) +

ξ−1
∑

i=1

(aξ + bξ)

]

≤ ξ

(

ξ

⌊ξ/2⌋

)

(aξ + bξ)

as required. 2

Note that when applying this lemma later, ξ ∈ N will be chosen to be

ξ =

{

r for 1 ≤ r <∞
1 for r = ∞

where r determines the space lr in which the analysis is being conducted.

Up to this point, the transition delay function ∆ : P → N and the controller design

procedure K : P → C have not been connected in any way. We will now do so with the

help of the so-called attenuation function l : P → [0, 1): Let ∆,K, l satisfy:

J(r)αr(p,K(p),∆(p) − σ, σ) ≤ l(p) < 1, ∀p ∈ PU if 1 ≤ r <∞
α(p,K(p),∆(p) − σ, σ) ≤ l(p) < 1, ∀p ∈ PU if r = ∞

(5.16)

where ∆ satisfies Assumption 5.3 (∆(p) > σ, p ∈ PU ) and α, β are defined in Assump-

tions 4.1.

The purpose of the attenuation function l is to define an upper bound on the signal

attenuation that is achieved by the atomic closed loop interconnection between the

plant Pp and the corresponding controller CK(p) over some interval of length ∆(p) − σ.

In practise, one would choose a stabilising design procedure K, an attenuation function

l, a norm lr and then compute for all p ∈ PU a corresponding ∆(p) such that inequality
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(5.16) holds, hence note that there always exists such a ∆. Inequality (5.16) therefore

establishes a relationship between delay and attenuation. This freedom in choosing ∆

can now be utilised in many ways. For example, it can be utilised to decouple control

sampling rate and switching rate, e.g. by choosing ∆ large we would maintain a high

update rate for controller sampling and updating the disturbance estimates, however

have a low switching rate between controllers.

The next result establishes bounds on the gain from the disturbance signals wp
0 to the

internal signals w2 for the atomic closed loop [Pp, CK(p)], p = q(ki) on the various

intervals of type Ai, Bi, ki ∈ Qk. That is the closed loop loop interconnection between:

the controller the algorithm switches to at time ki, and its corresponding plant — as

depicted in Figure 5.4. To improve readability we repeat all relevant equations in Table

5.3.

Pp

up
0 yp

0

u2 y2

yc
2

q

S

C

u2

q

yc
2

uc
2 CK(p)

q

D
∆

qf

uc
2

y2

y2up
1 yp

1

Figure 5.4: Closed loop [Pp, CK(p)] with magnified switching controller C
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yp
1 = Ppu

p
1 (3.8)

up
0 = up

1 + u2 (3.9)

yp
0 = yp

1 + y2 (3.10)
uc

2 = Ccy
c
2 (4.1)

D : map(N,P) → map(N,P) (4.30)

[k 7→ qf (k)] 7→ [k 7→ q(k)] (4.31)

q(k) :=

{
qf (k) if k − ks(k) ≥ ∆(q(ks(k)))
q(ks(k)) else

(4.32)

ks(k) := max{i ∈ N | 0 ≤ i ≤ k, q(i) 6= q(i− 1)} (4.33)

Lk := {l0 = 0, l1, l2 · · · } = {l ∈ N | q(l − 1) 6= q(l), 0 ≤ l ≤ k} (5.4)

V (li, li+1) :=

{

a ∈ N

∣
∣
∣
∣

∃b ∈ N s.t. a = li + b∆(q(li)),
li < a ≤ li+1 − ∆(q(li))

}

(5.5)

Qk = {k0 = 0, k1, k2, · · · }, 0 ≤ ki ≤ ki+1 ≤ k (5.6)

Qk := Lk ∪
⋃

i≥0

{V (li, li+1) | li, li+1 ∈ Lk} (5.7)

Ai := [ki − σ, ki) (5.13)

Bi := [ki, ki+1 − σ) (5.14)

J(r)αr(p,K(p),∆(p) − σ, σ) ≤ l(p) < 1, ∀p ∈ PU if 1 ≤ r <∞
α(p,K(p),∆(p) − σ, σ) ≤ l(p) < 1, ∀p ∈ PU if r = ∞ (5.16)

Table 5.3: Details for Proposition 5.7
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Proposition 5.7. Let 1 ≤ r ≤ ∞. Suppose p ∈ Q ⊂ PU ⊂ P, c = K(p) and PU

satisfies Assumption 5.2. Let K : P → C be a given control design satisfying Assumption

4.1(1),(2). Suppose ∆ is a given delay transition function satisfying Assumption 5.3 and

suppose the delay operator D is given by equation (4.30)–(4.33). Let l : P → [0, 1) be a

given attenuation function and suppose that K,∆, l satisfy inequality (5.16). Let k ∈ N

and let qf ∈ map(N,PU ). Let q = Dqf and suppose q(ki) = p. Suppose ki ≤ ki+1 are

consecutive switching times, ki, ki+1 ∈ Qk where Qk is defined by equations (5.4)–(5.7).

Let the intervals Ai, Ai+1, Bi be given by equations (5.13),(5.14). Suppose (wp
0, w

p
1 , w2) ∈

W×We×We, w
c
2 ∈ We satisfy equations (3.8)–(3.10),(4.1) on the interval Ai∪Bi∪Ai+1

and either

wc
2|Ai = 0, wc

2|Bi∪Ai+1 = w2|Bi∪Ai+1 (5.17)

or

wc
2|Ai∪Bi∪Ai+1 = w2|Ai∪Bi∪Ai+1. (5.18)

Then, in both cases, for 1 ≤ r <∞:

‖w2|Ai+1‖r
r ≤ αOP (Q)‖w2|Ai‖r

r + βOP (Q)‖wq(ki)
0 |Ai∪Bi∪Ai+1‖r

r

‖w2|Bi‖r
r ≤ αOS(Q)‖w2|Ai‖r

r + βOS(Q)‖wq(ki)
0 |Ai∪Bi‖r

r

and for r = ∞:

‖w2|Ai+1‖∞ ≤ αOP (Q)‖w2|Ai‖∞ + βOP (Q)‖wq(ki)
0 |Ai∪Bi∪Ai+1‖∞

‖w2|Bi‖∞ ≤ αOS(Q)‖w2|Ai‖∞ + βOS(Q)‖wq(ki)
0 |Ai∪Bi‖∞

where for J(ξ) from Lemma (5.6) and α, β from Assumption 4.1 define

ξ =

{

r for 1 ≤ r <∞
1 for r = ∞

αOP (Q) = max
p1∈Q

l(p1)

βOP (Q) = J(ξ) sup
p1∈Q

sup
∆(p1)≤x≤2∆(p1)

βξ(p1,K(p1), x− σ, σ)

αOS(Q) = J(ξ) sup
p1∈Q

sup
∆(p1)≤x≤2∆(p1)

αξ(p1,K(p1), 0, x − σ)

βOS(Q) = J(ξ) sup
p1∈Q

sup
∆(p1)≤x≤2∆(p1)

βξ(p1,K(p1), 0, x− σ).

Proof By Lemma 5.4, inequality (5.15) we have

∆(p) ≤ |Bi ∪Ai+1| = |Bi| + σ = ki+1 − ki ≤ 2∆(p). (5.19)
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Let

I1 = Ai = [ki − σ, ki)

I2 = Bi = [ki, ki+1 − σ)

I3 = Ai+1 = [ki+1 − σ, ki+1).

By Assumption 5.2,

|I1| = |Ai| = σ ≥ max{σ(p), σ(K(p))},

it follows from Assumption 4.1(1) inequality (4.10) that:

‖w2|Ai+1‖ξ
r ≤

(
α(p,K(p), |Bi|, |Ai+1|)‖w2|Ai‖r

+β(p,K(p), |Bi|, |Ai+1|)‖wp
0 |Ai∪Bi∪Ai+1‖r

)ξ

≤
(
α(p,K(p),∆(p) − σ, σ)‖w2|Ai‖r

+β(p,K(p), |Bi|, σ)‖wp
0 |Ai∪Bi∪Ai+1‖r

)ξ

where the second inequality follows from the fact that α is monotonically decreasing in

the third parameter (Assumption 4.1(2)) and |Bi| ≥ ∆(p) − σ (equation (5.19)).

Since K,∆, l satisfy inequality (5.16) for 1 ≤ r ≤ ∞ we have that:

J(ξ)αξ(p,K(p),∆(p) − σ, σ) ≤ l(p) < 1, ∀p ∈ PU .

Hence by Lemma 5.6 and equation (5.19) we obtain

‖w2|Ai+1‖ξ
r ≤ J(ξ)αξ(p,K(p),∆(p) − σ, σ)‖w2|Ai‖ξ

r

+J(ξ)βξ(p,K(p), |Bi|, σ)‖wp
0 |Ai∪Bi∪Ai+1‖ξ

r

≤ l(p)‖w2|Ai‖ξ
r + max

∆(p)≤x≤2∆(p)
J(ξ)βξ(p,K(p), x− σ, σ)‖wp

0 |Ai∪Bi∪Ai+1‖ξ
r

and hence

‖w2|Ai+1‖ξ
r ≤ αOP (Q)‖w2|Ai‖ξ

r + βOP (Q)‖wp
0 |Ai∪Bi∪Ai+1‖ξ

r.

Now let

I1 = Ai = [ki − σ, ki)

I2 = ∅
I3 = Bi = [ki, ki+1 − σ).

By Assumption 5.2,

|I1| ≥ σ ≥ max{σ(p1), σ(K(p2))}
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and it follows from Assumption 4.1(1) (inequality (4.10)), Lemma 5.6 and equation

(5.19) that:

‖w2|Bi‖ξ
r ≤

(
α(p,K(p), 0, |Bi|)‖w2|Ai‖r + β(p,K(p), 0, |Bi|)‖wp

0 |Ai∪Bi‖r

)ξ

≤ J(ξ)αξ(p,K(p), 0, |Bi|)‖w2|Ai‖ξ
r + J(ξ)βξ(p,K(p), 0, |Bi|)‖wp

0 |Ai∪Bi‖ξ
r

≤ max
∆(p)≤x≤2∆(p)

J(ξ)αξ(p,K(p), 0, x − σ)‖w2|Ai‖ξ
r

+ max
∆(p)≤x≤2∆(p)

J(ξ)βξ(p,K(p), 0, x − σ)‖wp
0 |Ai∪Bi‖ξ

r

≤ αOS(Q)‖w2|Ai‖ξ
r + βOS(Q)‖wp

0 |Ai∪Bi‖ξ
r

as required. 2

3 Bounds on disturbance estimates

The next proposition follows directly from Assumption (3.4)(5) and gives a bound on

a series of disturbance estimates. The idea is to cover a set of plants by a union of

sub-covers Bj and then use Assumption (3.4)(5) to bound disturbance estimates corre-

sponding to all plants within a sub-cover Bj by a disturbance estimate of a single plant

zj in Bj . This technique opens up the possibility to use infinitely many plant models

since the bound will only depend on the cover and not the (number of) plants covered

by it. To improve readability we repeat all relevant equations in Table 5.4.

E : We → map(N,map(P,map(N,Rh))) (3.14)

w2 7→
[
k 7→ (p 7→ dp[k])

]
(3.15)

Table 5.4: Details for Proposition 5.8

Proposition 5.8. Let 1 ≤ r ≤ ∞. Suppose PU ⊂ P and let a, λ,m, n ∈ N, m ≤ n.

Suppose E is given by equations (3.14),(3.15) and satisfies Assumption 3.4(5). Let

k̄i, k̃i ∈ N, 0 ≤ k̄i ≤ λ, k̃i < k̃i+1, Bi ⊂ PU , m ≤ i ≤ n. Let k ≥ 1, w2 ∈ We and

dp[k] = E(w2)(k)(p), p ∈ P. Suppose pi, zi ∈ P satisfy pi, zi ∈ Bi. Then:

‖Φk̄m
dpm[k̃m],Φk̄m+1

dpm+1 [k̃m+1], · · · ,Φk̄n
dpn [k̃n]‖ ≤

‖Φk̄m
dzm [k̃m],Φk̄m+1

dzm+1 [k̃m+1], · · · ,Φk̄n
dzn [k̃n]‖ + χ‖c‖‖Tk̃n

w2‖

where

χ = max
m≤i≤n

sup
p,q∈Bi

χ(p, q) (5.20)

and χ(·, ·),Φj , c are defined as in Assumption 3.4(5).
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Proof Observe that

‖a+ b, c+ d‖ ≤ ‖a, c‖ + ‖b, d‖, a, b, c, d ∈ R

and

‖a, b‖r = ‖‖a‖r, ‖b‖r‖r , a, b,∈ S, 1 ≤ r ≤ ∞.

By Assumption (3.4)(5) we then have

‖Φk̄m
dpm[k̃m],Φk̄m+1

dpm+1 [k̃m+1], · · · ,Φk̄n
dpn [k̃n]‖

≤

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

‖Φk̄m
dzm [k̃m]‖ + χ(pm, zm)‖Υk̃m

w2‖,
‖Φk̄m+1

dzm+1 [k̃m+1]‖ + χ(pm+1, zm+1)‖Υk̃m+1
w2‖,

...,

‖Φk̄n
dzn [k̃n]‖ + χ(pn, zn)‖Υk̃n

w2‖

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

≤ ‖Φk̄m
dzm [k̃m],Φk̄m+1

dzm+1 [k̃m+1], · · · ,Φk̄n
dzn [k̃n]‖

+ χ‖Υk̃m
w2,Υk̃m+1

w2, · · · ,Υk̃n
w2‖.

For 1 ≤ r <∞, and since k̃i < k̃i+1 we can write

‖Υk̃m
w2,Υk̃m+1

w2, · · · ,Υk̃n
w2‖r =

(
n∑

i=m

‖Υk̃i
w2‖r

r

)1/r

≤





k̃n∑

k=0

‖Υkw2‖r
r





1/r

=





k̃n∑

k=0

k∑

j=0

|(Υkw2)(j)|r




1/r

=





k̃n∑

k=0

k∑

j=0

|c(k − j)w2(j)|r




1/r

=





k̃n∑

k=0

|w2(k)|r
k̃n−k∑

j=0

|c(j)|r




1/r

≤





k̃n∑

k=0

|w2(k)|r‖c‖r
r





1/r

≤ ‖c‖r‖Tk̃n
w2‖r
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and for r = ∞

‖Υk̃m
w2,Υk̃m+1

w2, · · · ,Υk̃n
w2‖∞ ≤ max

0≤k≤k̃n

{‖Υkw2‖∞}

= max
0≤k≤k̃n

max
0≤j≤k

|c(k − j)w2(j)|

= max
0≤k≤k̃n

|w2(k)| max
0≤j≤k̃n

|c(j)|

≤ ‖c‖∞‖Tk̃n
w2‖∞.

Hence for 1 ≤ r ≤ ∞ we have:

‖Φk̄m
dpm[k̃m],Φk̄m+1

dpm+1 [k̃m+1], · · · ,Φk̄n
dk̃n

[k̃n]‖ ≤
‖Φk̄m

dzm [k̃m],Φk̄m+1
dzm+1 [k̃m+1], · · · ,Φk̄n

dzn [k̃n]‖ + χ‖c‖‖Tk̃n
w2‖

as required. 2

The next proposition shows that the disturbance estimates corresponding to a plant

z ∈ P at time x ∈ N bounds a series of disturbance estimates for the same plant up to

time x. To improve readability we repeat all relevant equations in Table 5.5.

E : We → map(N,map(P,map(N,Rh))) (3.14)

w2 7→
[
k 7→ (p 7→ dp[k])

]
(3.15)

Table 5.5: Details for Proposition 5.9

Proposition 5.9. Suppose E is given by equations (3.14),(3.15) and satisfies Assump-

tions 3.4(3)–(4) for λ ∈ N. Let x ∈ N. Let q : N → P be a switching signal and let

z = q(x). Suppose āj, ãj ∈ N, 1 ≤ j ≤ i, i ∈ N, satisfy:

ãj−2 < ãj − āj (5.21)

ãi ≤ x. (5.22)

Suppose w2 ∈ We. Let dz[k] = E(w2)(k)(z). Then:

‖Φā0dz[ã0],Φā1dz[ã1], · · · ,Φāidz[ãi]‖ ≤ ‖(1, 1)‖‖dz [x]‖

where Φj is defined by Assumption 3.4(3).

Proof We first claim that for 1 ≤ j ≤ i:

∥
∥Φā0dz[ã0],Φā1dz[ã1], · · · ,Φājdz[ãj ]

∥
∥ ≤ ‖dz[ãj−1], dz [ãj ]‖. (5.23)

Observe that

‖x, y‖r =
∥
∥‖x‖r, ‖y‖r

∥
∥

r
, x, y ∈ S, 1 ≤ r ≤ ∞. (5.24)
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This proof is by induction. Let i = j = 1. For the ease of notation let

Rσdz[k] = Rσ,kdz[k].

Since

‖Rāl
dz[ãl]‖ ≤ ‖dz [ãl]‖, 0 ≤ l ≤ i, (5.25)

we have :

‖Φā0dz[ã0],Φā1dz[ã1]‖
Ass. (3.4)(3),(5.24)

≤ ‖‖Rā0dz[ã0]‖, ‖Rā1dz[ã1]‖‖
(5.25),(5.24)

≤ ‖dz [ã0], dz[ã1]‖.

Therefore the base step is shown.

For the inductive step, assume equation (5.23) holds for 2 ≤ j ≤ i− 1. Then

‖Φā0dz[ã0],Φā1dz[ã1], · · · ,Φāidz[ãi]‖
(5.23),(5.24)

≤
∥
∥
∥
∥
∥

‖dz[ãi−3]‖, ‖dz [ãi−2]‖,
‖Φāi−1dz[ãi−1]‖, ‖Φāidz[ãi]‖

∥
∥
∥
∥
∥

Ass. (3.4)(3)

≤
∥
∥
∥
∥
∥

‖dz [ãi−3]‖, ‖dz [ãi−2]‖,
‖Rāi−1dz[ãi−1]‖, ‖Rāidz[ãi]‖

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥

‖dz[ãi−3]‖, ‖Rāi−1dz[ãi−1]‖,
‖dz[ãi−2]‖, ‖Rāidz[ãi]‖

∥
∥
∥
∥
∥

Ass. (3.4)(4)

≤
∥
∥
∥
∥
∥

‖Tãi−3dz[ãi−1]‖, ‖Rāi−1dz[ãi−1]‖,
‖Tãi−2dz[ãi]‖, ‖Rāidz[ãi]‖

∥
∥
∥
∥
∥

(5.21),(5.24)

≤ ‖dz[ãi−1], dz [ãi]‖.

This completes the inductive step and establishes the claimed inequality (5.23).

We now bound disturbance estimates dz[ãi] by dz[x]. We will exploit the fact that

q(x) = z where x ≥ ãi (inequality (5.22)).

We then have with Assumption 3.4(4) that:

‖dz [ãi]‖
z=q(x)

= ‖dq(x)[ãi]‖ (5.26)

Ass.(3.4)(4),(5.22)

≤ ‖Tãidq(x)[x]‖
‖·‖
≤ ‖dz [x]‖ (5.27)
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Hence by inequality (5.23) and inequality (5.27) we have:

‖Φā0dz[ã0],Φā1dz [ã1], · · · ,Φāidz[ãi]‖
(5.23)

≤ ‖dz[ãi−1], dz [ãi]‖
(3.4)(4)

≤ ‖Tãi−1dz[ãi], dz [ãi]‖
‖·‖
≤ ‖(1, 1)‖‖dz [x]‖.

as required. 2

The next key proposition is short and shows that if the algorithm switches at time x to

a plant z that the disturbance estimate at this time x, given by dz[x] = E(w2)(z)(x),

can be bounded by the real disturbance w0 — as indicated by the gray squares in Figure

5.5. To improve readability we repeat all relevant equations in Table 5.6.
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y1 = Pu1 (2.7)

u0 = u1 + u2 (2.8)

y0 = y1 + y2 (2.9)

E : We → map(N,map(P,map(N,Rh))) (3.14)

w2 7→
[
k 7→ (p 7→ dp[k])

]
(3.15)

N : map(N,map(P,map(N,Rh))) → map(N,map(P,R+)) (3.16)
[
k 7→ (p 7→ dp[k])

]
7→
[
k 7→ (p 7→ ‖dp[k]‖ = rp[k])

]
(3.17)

G : We → map(N,P∗) (4.25)

M : (map(N,map(P,R+)),map(N,P∗)) → map(N,P∗) (4.26)
[
k 7→ (p 7→ rp[k]), k 7→ G(k)

]
7→
[
k 7→ qf (k)

]
(4.27)

qf (k) := argmin
p∈G(k)

rp[k], ∀k ∈ N (4.28)

D : map(N,P) → map(N,P) (4.30)

[k 7→ qf (k)] 7→ [k 7→ q(k)] (4.31)

q(k) :=

{
qf (k) if k − ks(k) ≥ ∆(q(ks(k)))
q(ks(k)) else

(4.32)

ks(k) := max{i ∈ N | 0 ≤ i ≤ k, q(i) 6= q(i− 1)} (4.33)

Lk := {l0 = 0, l1, l2 · · · } = {l ∈ N | q(l − 1) 6= q(l), 0 ≤ l ≤ k} (5.4)

V (li, li+1) :=

{

a ∈ N

∣
∣
∣
∣

∃b ∈ N s.t. a = li + b∆(q(li)),
li < a ≤ li+1 − ∆(q(li))

}

(5.5)

Qk = {k0 = 0, k1, k2, · · · }, 0 ≤ ki ≤ ki+1 ≤ k (5.6)

Qk := Lk ∪
⋃

i≥0

{V (li, li+1) | li, li+1 ∈ Lk} (5.7)

Table 5.6: Details for Proposition 5.10
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‖dz‖Pp∗

u0 y0

u2 y2

y2

q
SC

y2u2

u2 y2

q

‖ · ‖

‖ · ‖

E(p1)

E(pn)

ENM

min

D

∆

arg

G

qf X

u1 y1

‖ · ‖ E(z)
dz

Figure 5.5: Bounding dz[x| in terms of w0 = (u0, y0)
⊤ for z = q(x) = DM(X,G)(x)

Proposition 5.10. Let 1 ≤ r ≤ ∞. Suppose PU ⊂ P and let p∗ ∈ PU . Suppose

∆ is a given delay transition function and suppose the delay operator D is given by

equations (4.30)–(4.33). Suppose G is a plant-generating operator. Suppose E satisfies

Assumptions 3.4(1)–(4) for some λ ∈ R and the switching operator S = DM(NE,G)

is given by equations (3.14)–(3.17),(4.26)–(4.28),(4.30)–(4.33). Let k ∈ N. Suppose

(w0, w1, w2) ∈ W×We ×We satisfy equations (2.7)–(2.9) for P = Pp∗. Let x ∈ Qk, z =

q(x) = S(w2)(x) where Qk is defined by equations (5.4)–(5.7) and suppose p∗ ∈ G(x).

Then:

‖E(w2)(z)(x)‖ = ‖dz [x]‖ ≤ µ‖w0‖.

Proof By the definition of the switching algorithm qf (t) = M(NE,G)(t), t ∈ N, will

always point to the plant which corresponding disturbance estimates are minimal. Since

p∗ ∈ G(x) and by the definition of M we have

‖dqf (x)[x]‖ = inf
p∈G(x)

‖dp[x]‖ ≤ ‖dp∗ [x]‖.

Since by the definition of D, qf (x) = q(x) it follows that

‖dq(x)[x]‖ = ‖dqf (x))[x]‖ ≤ ‖dp∗ [x]‖ (5.28)
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hence

‖dz [x]‖ = ‖dq(x)[x]‖
(5.28)

≤ ‖dp∗ [x]‖
Ass.(3.4)(2)

≤ µ‖Txw0‖
‖·‖
≤ µ‖w0‖

as required. 2

4 Gain bounds for non-final switching intervals

Before we commence with establishing gain bounds, we give a intermediate result that

is self-contained and purely combinatorial.

Proposition 5.11. Let 1 ≤ r ≤ ∞ and

ξ =

{

r for 1 ≤ r <∞
1 for r = ∞

.

Let z, f, β, ǫ : N → R+ and a, b, d, e ∈ R+, a < 1. Let m,n ∈ N and suppose for all

m ≤ i ≤ n:

zξ
i+1 ≤ azξ

i + dβξ
i (5.29)

f ξ
i ≤ bzξ

i + eǫξi . (5.30)

Then:
∥
∥z|[m+1,n+1], f |[m,n]

∥
∥ ≤ γ̃3(G)|zm| + γ̃4(G)‖β|[m,n]‖ + γ̃5(G)‖ǫ|[m,n]‖

where

G = (a, b, d, e)

γ̃3(G) =







(1 + b1/r)
(

a
1−a

)1/r
+ b1/r for 1 ≤ r <∞

max{1, b}a + b for r = ∞

γ̃4(G) =







(1 + b1/r)
(

d
1−a

)1/r
for 1 ≤ r <∞

max{1, b} d
1−a for r = ∞

γ̃5(G) =

{

e1/r for 1 ≤ r <∞
e for r = ∞



Chapter 5 Stability and gain bound analysis of the nominal closed loop system 129

Proof Let 1 ≤ ξ = r <∞. Define for i ∈ N

ẑi := zr
i , f̂i := f r

i , β̂i := βr
i , ǫ̂i := ǫri .

By equation (5.29) we have

ẑm+1 ≤ aẑm + dβ̂m

ẑm+2 ≤ a2ẑm + d
(

aβ̂m + β̂m+1

)

ẑm+3 ≤ a3ẑm + d
(

a2β̂m + aβ̂m+1 + β̂m+2

)

...
...

...

ẑn+1 ≤ an−m+1ẑm + d
(

β̂ma
n−m + β̂m+1a

n−m−1 + · · · + β̂n−1a+ β̂n

)

.

Summing vertically gives us

n+1∑

i=m+1

ẑi ≤ ẑm

n−m+1∑

i=1

ai + d

(

β̂m

n−m∑

i=0

ai + β̂m+1

n−m−1∑

i=0

ai + · · · + β̂n−1

1∑

i=0

ai + β̂n

)

≤ ẑm

n−m+1∑

i=1

ai + d

n∑

j=m

β̂j

n−j
∑

i=0

ai

Since a < 1 we have that for any j > 0

j
∑

i=0

ai ≤ 1

1 − a
and

j
∑

i=1

ai ≤ a

1 − a
,

hence

n+1∑

i=m+1

ẑi ≤ 1

1 − a

(

aẑm + d

n∑

i=m

β̂i

)

and therefore

‖z|[m+1,n+1]‖r =

(
n+1∑

i=m+1

ẑi

)1/r

≤
(

1

1 − a

)1/r
(

aẑm + d

n∑

i=m

β̂i

)1/r

=

(
1

1 − a

)1/r
(

azr
m + d

n∑

i=m

βr
i

)1/r

≤
(

1

1 − a

)1/r (

a1/r|zm| + d1/r
∥
∥β|[m,n]

∥
∥

r

)

. (5.31)
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By inequality (5.30) we have

∥
∥f |[m,n]

∥
∥

r
≤

(

b

n∑

i=m

zr
i + e

n∑

i=m

ǫri

)1/r

≤ b1/r
∥
∥z|[m,n]

∥
∥

r
+ e1/r

∥
∥ǫ|[m,n]

∥
∥

r
. (5.32)

By inequalities (5.32) and equations (5.31) we arrive at

∥
∥z|[m+1,n+1], f |[m,n]

∥
∥

r
≤

∥
∥z|[m+1,n+1]

∥
∥

r
+
∥
∥f |[m,n]

∥
∥

r

≤
∥
∥z|[m+1,n+1]

∥
∥

r
+ b1/r

∥
∥z|[m,n]

∥
∥

r
+ e1/r

∥
∥ǫ|[m,n]

∥
∥

r

≤
(

1 + b1/r
)∥
∥z|[m+1,n+1]

∥
∥

r
+ b1/r|zm| + e1/r

∥
∥ǫ|[m,n]

∥
∥

r

≤
(

1 + b1/r
)( 1

1 − a

)1/r (

a1/r|zm| + d1/r
∥
∥β|[m,n]

∥
∥

r

)

+b1/r|zm| + e1/r
∥
∥ǫ|[m,n]

∥
∥

r

≤
(

(1 + b1/r)

(
1

1 − a

)1/r

a1/r + b1/r
)

|zm|

+(1 + b1/r)

(
1

1 − a

)1/r

d1/r‖β|[m,n]‖ + e1/r
∥
∥ǫ|[m,n]

∥
∥

r

≤ γ̃3(G)|zm| + γ̃4(G)‖β|[m,n]‖r + γ̃5(G)‖ǫ|[m,n]‖r

as required.

Let r = ∞, so ξ = 1. By equation (5.29) we have

zm+1 ≤ azm + dβm

zm+2 ≤ a2zm + d (aβm + βm+1)

zm+3 ≤ a3zm + d
(
a2βm + aβm+1 + βm+2

)

...
...

...

zn+1 ≤ an−m+1zm + d
(
βma

n−m + βm+1a
n−m−1 + · · · + βn−1a+ βn

)
.

Taking norms leads to

∥
∥z|[m+1,n+1]

∥
∥
∞

= max
m+1≤j≤n+1

|zj |

≤ a|zm| + d
n−m∑

i=0

ai‖β|[m,n]‖∞

≤ a|zm| + d

1 − a
‖β|[m,n]‖∞.
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Furthermore by equation (5.30) we have

∥
∥f |[m,n]

∥
∥
∞

= max
m≤j≤n

|fj |

≤ b
∥
∥z|[m,n]

∥
∥
∞

+ e
∥
∥ǫ|[m,n]

∥
∥
∞
.

Substitutions lead to

∥
∥z|[m+1,n+1], f |[m,n]

∥
∥
∞

≤ max{‖z|[m+1,n+1]‖∞, b‖z[m,n]‖∞ + e‖ǫ[m,n]‖∞}
≤ max{‖z|[m+1,n+1]‖∞, b‖z[m+1,n+1]‖∞ + b|zm| + e‖ǫ[m,n]‖∞}
≤ max{1, b}‖z|[m+1,n+1]‖∞ + b|zm| + e‖ǫ[m,n]‖∞

≤ max{1, b}
(
a|zm| + d

1 − a
‖β|[m,n]‖∞

)
+ b|zm| + e‖ǫ[m,n]‖∞

≤
(
max{1, b}a + b

)
|zm| + max{1, b} d

1 − a
‖β|[m,n]‖∞ + e‖ǫ[m,n]‖∞

≤ γ̃3(G)|zm| + γ̃4(G)‖β|[m,n]‖∞ + γ̃5(G)‖ǫ[m,n]‖∞

as required. 2

In Proposition 5.7 we established a gain relationship between w2 and disturbance signals

wp
0 which are consistent with p ∈ P and w2 ∈ We over some finite interval. Since it is

the overall goal to establish a bound on the gain from the real world disturbances w0 to

the internal signals w2 we need to bound the consistent disturbance signals wp
0 by the

real world disturbances w0.

y2

y2

q
SC

u2

Pp∗

u0 y0

u1 y1u2

u2

Figure 5.6: Bounding intervals of w2 = (u2, y2)
⊤, corresponding to ongoing switching

times, in terms of w0 = (u0, y0)
⊤

We do this by considering intervals [km, kn], m, n ∈ N, m ≤ n, km, kn ∈ Qk where all

intermediate switching times are ongoing, i.e. ki ∈ Ok, m ≤ i ≤ n and then use the fact

that after a series of ongoing switches there must follow a final switch hence Proposition

5.10 is applicable. The next result establishes bounds on intervals of w2 in terms of

w0 — as indicated by the gray squares in Figure 5.6. Before we give the statement we
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make the following definition. To improve readability we repeat all relevant equations

in Table 5.7 and Table 5.8.

X : We → map(N,map(P,R+)) : w2 7→ [k → (p 7→ rp[k])] (3.7)

G : We → map(N,P∗) (4.25)

M : (map(N,map(P,R+)),map(N,P∗)) → map(N,P∗) (4.26)
[
k 7→ (p 7→ rp[k]), k 7→ G(k)

]
7→
[
k 7→ qf (k)

]
(4.27)

qf (k) := argmin
p∈G(k)

rp[k], ∀k ∈ N (4.28)

D : map(N,P) → map(N,P) (4.30)

[k 7→ qf (k)] 7→ [k 7→ q(k)] (4.31)

q(k) :=

{
qf (k) if k − ks(k) ≥ ∆(q(ks(k)))
q(ks(k)) else

(4.32)

ks(k) := max{i ∈ N | 0 ≤ i ≤ k, q(i) 6= q(i− 1)} (4.33)

C : Ye → Ue : y2 7→ u2 (4.34)

u2(k) = CK(q(k))(y2 − Tks(k)−1y2)(k) (4.35)

J(r)αr(p,K(p),∆(p) − σ, σ) ≤ l(p) < 1, ∀p ∈ PU if 1 ≤ r <∞
α(p,K(p),∆(p) − σ, σ) ≤ l(p) < 1, ∀p ∈ PU if r = ∞ (5.16)

Table 5.7: Details for the definition of standard EMMSAC in Definition 5.12

Definition 5.12. An EMMSAC algorithm is said to be standard if it satisfies:� K : P → C is a given control design satisfying Assumption 4.1(1),(2)� ∆ : P → N is a delay transition function satisfying Assumption (5.3) and the delay

operator D is given by equations (4.30)–(4.33)� K,∆ and a given attenuation function l : P → [0, 1) satisfy inequality (5.16)� E satisfies Assumptions 3.4(1)–(5) where

λ = max
p∈PU

(2∆(p) + σ) (5.33)� The switching operator S = DM(X,G) is given by equations (3.7),(4.26)–(4.28)

and (4.30)–(4.33)� The switching controller C is defined by equations (4.34),(4.35).
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y1 = Pu1 (2.7)

u0 = u1 + u2 (2.8)

y0 = y1 + y2 (2.9)

u2 = Cy2 (2.10)

Lk := {l0 = 0, l1, l2 · · · } = {l ∈ N | q(l − 1) 6= q(l), 0 ≤ l ≤ k} (5.4)

V (li, li+1) :=

{

a ∈ N

∣
∣
∣
∣

∃b ∈ N s.t. a = li + b∆(q(li)),
li < a ≤ li+1 − ∆(q(li))

}

(5.5)

Qk = {k0 = 0, k1, k2, · · · }, 0 ≤ ki ≤ ki+1 ≤ k (5.6)

Qk := Lk ∪
⋃

i≥0

{V (li, li+1) | li, li+1 ∈ Lk} (5.7)

Table 5.8: Details for Proposition 5.13

Proposition 5.13. Let 1 ≤ r ≤ ∞. Suppose p∗ ∈ PU ⊂ P where PU satisfies Assump-

tion 5.2. Let P = Pp∗. Let U be a monotonic plant generating operator and suppose

(H, ν) defines a monotonic cover for U . Suppose the EMMSAC algorithm is standard.

Let k ∈ N. Let G be a plant generating operator that satisfies G(j) ⊂ U(j), j ≤ k. Sup-

pose (w0, w1, w2) ∈ W × We × We satisfy the closed loop [P,C] equations (2.7)–(2.10)

over the interval [0, k). Let ki, i ∈ N be defined by equations (5.4)–(5.7) and suppose

kn+1 ≤ k. Let m,n ∈ N, suppose Fk ∩ [km − σ, kn+1] = ∅ . If p∗ ∈ G(j), j ≥ km,

‖c‖
(

γ4(U(j)) + γ5(U(j))
)

χν(H(j), ν(j)) < 1, ∀j ≤ k (5.34)

and αOP (U(k)) < 1 then

‖Tkn+1−1w2‖ ≤ γ6(U(k),H(k), ν(k))‖Tkm−1w2‖ + γ7(U(k),H(k), ν(k))‖w0‖

where for Q1 ⊂ PU , Q2 ⊂ PH , ǫ : P → R+:

χν(Q2, ǫ) = 2 sup
p∈Q2

ǫ(p) (5.35)

γ3(Q1) =







(1 + α
1/r
OS(Q1))

(
αOP (Q1)

1−αOP (Q1)

)1/r
+ α

1/r
OS(Q1) if 1 ≤ r <∞

max{1, αOS(Q1))}αOP (Q1) + αOS(Q1) if r = ∞

γ4(Q1) =







(1 + α
1/r
OS(Q1))

(
βOP (Q1)

1−αOP (Q1)

)1/r
if 1 ≤ r <∞

max{1, αOS(Q1)}) βOP (Q1)
1−αOP (Q1)

if r = ∞

γ5(Q1) =

{

β
1/r
OS (Q1) if 1 ≤ r <∞
βOS(Q1) if r = ∞

γ6(Q1,Q2, ǫ) =
1 + γ3(Q1)

1 − ‖c‖
(
γ4(Q1) + γ5(Q1)

)
χν(Q2, ǫ)

γ7(Q1,Q2, ǫ) =
21/rµ|Q2|1/r

(
γ4(Q1) + γ5(Q1)

)

1 − ‖c‖
(
γ4(Q1) + γ5(Q1)

)
χν(Q2, ǫ)
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and αOP , αOS , βOP , βOS are from Proposition 5.7 and c is as in Assumption 3.4(5).

Proof Let 1 ≤ r ≤ ∞ and

ξ =

{

r if 1 ≤ r <∞
1 if r = ∞

.

Let k ∈ N. Let (w0, w1, w2) ∈ W × We × We denote the solution to the closed loop

equations (2.7)–(2.10) with P = Pp∗ and C as in equations (4.34),(4.35). Let the intervals

Ai = [ki − σ, ki), Bi = [ki, ki+1 − σ)

be defined by equations (5.13),(5.14). In particular (w0, w1, w2) ∈ W ×We ×We satisfy

equations (2.7)–(2.10) on the intervals Ai ∪Bi ∪Ai+1 where

Ai ∪Bi ∪Ai+1 ⊆ [km − σ, kn+1) ⊆ [0, k)

for m ≤ i ≤ n.

For ki ∈ Qk, define k̄i, k̃i as follows. Let

k̄i = ki+1 − ki + σ − 1

k̃i = ki+1 − 1

and note that Ai ∪Bi ∪Ai+1 = [k̃i − k̄i, k̃i].

We now intend to apply Proposition 5.7. For that purpose we first observe the following

facts.

By Lemma 5.4, Assumption 5.3 and equation (5.33) we have

0 ≤ k̄i = ki+1 − ki + σ − 1 ≤ 2∆(q(ki)) + σ ≤ λ (5.36)

Let p = q(ki). Define

wp
0(k) =

{

Φk̄i
dp[k̃i](k) if k ∈ Ai ∪Bi ∪Ai+1

0 otherwise
.

By Assumption 3.4(3) we know that:

Φk̄i
dp[k̃i] ∈ N [k̃i−k̄i,k̃i]

p (w2).
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For every ki ∈ Qk let wc
2 ∈ We satisfy

wc
2(k) =







w2(k) if k ∈ Bi ∪Ai+1 and ki ∈ Lk

w2(k) if k ∈ Ai ∪Bi ∪Ai+1 and ki ∈ Qk \ Lk

0 otherwise

.

Note that w2, w
c
2 satisfy equations (5.17),(5.18) of Proposition 5.7.

There exists a wp
1 ∈ We such that

(wp
0, w

p
1 , w2) ∈ W×We ×We

satisfies equations (2.7)–(2.10) for P = Pp and C as in equation (4.35) on the intervals

Ai ∪Bi ∪Ai+1 = [ki − σ, ki+1) = [k̃i − k̄i, k̃i].

To see this observe that w2 is generated by the special structure of C, i.e. the controller

Cc at time ki is initialised to zero if ki ∈ Lk and inherits an initial value at time ki

determined from w2|Ai if ki ∈ Qk \ Lk.

Define

a = αOP (U(k)) < 1

b = αOS(U(k))

d = βOP (U(k))

e = βOS(U(k))

zi = ‖w2|Ai‖r ≥ ‖wc
2|Ai‖r

fi = ‖w2|Bi‖r = ‖wc
2|Bi‖r

βi = ‖wq(ki)
0 |Ai∪Bi∪Ai+1‖r = ‖Φk̄i

dq(ki)[k̃i]‖r

ǫi = ‖wq(ki)
0 |Ai∪Bi‖r ≤ βi = ‖Φk̄i

dq(ki)[k̃i]‖r

where we note that since U is monotonic, hence G(ki) ⊂ U(ki) ⊂ U(k), it follows for all

ki ∈ Qk that:

αOP (G(ki)) ≤ αOP (U(ki)) ≤ αOP (U(k))

αOS(G(ki)) ≤ αOS(U(ki)) ≤ αOS(U(k))

βOP (G(ki)) ≤ βOP (U(ki)) ≤ βOP (U(k))

βOS(G(ki)) ≤ βOS(U(ki)) ≤ βOS(U(k)).
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Since ‖w2|Bi‖r = ‖wc
2|Bi‖r it follows from Proposition 5.7 that:

zξ
i+1 ≤ azξ

i + dβξ
i

f ξ
i ≤ bzξ

i + eǫξi .

Since ǫi ≤ βi it follows that ‖ǫ|[m,n]‖ ≤ ‖β|[m,n]‖ and by Proposition 5.11 we then have

for 1 ≤ r ≤ ∞ that:

‖w2|[km,kn+1)‖ =
∥
∥‖w2|Am+1‖, ‖w2|Am+2‖, · · · , ‖w2|An+1‖,

‖w2|Bm‖, ‖w2|Bm+1‖, · · · , ‖w2|Bn‖
∥
∥ (5.37)

=
∥
∥z|[m+1,n+1], f |[m,n]

∥
∥

≤ γ3(U(k))|zm| + γ4(U(k))‖β|[m,n]‖ + γ5(U(k))‖ǫ|[m,n]‖
≤ γ3(U(k))|zm| +

(
γ4(U(k)) + γ5(U(k))

)
‖β|[m,n]‖. (5.38)

It remains to show that
∥
∥β|[m,n]

∥
∥, |zm| are bounded by ‖w0‖ and ‖w2‖.

Recall that

Ridp[j] := Ri,jdp[j], i ≤ j, p ∈ P,

also recall that

‖x, y‖r =
∥
∥‖x‖r, ‖y‖r

∥
∥

r
, x, y ∈ S, 1 ≤ r ≤ ∞. (5.39)

By Assumption 3.4(3) we have

‖wq(ki)
0 |Ai∪Bi∪Ai+1‖ = ‖Φk̄i

dq(ki)[k̃i]‖ ≤ ‖Rk̄i
dq(ki)[k̃i]‖.

Let m ≤ i ≤ n. For ki ∈ Qk let pi ∈ H(k) such that:

q(ki) ∈ Bχ(pi, ν(k)(pi))

where the existence of such a pi ∈ H(k) is guaranteed since

q(kj) ∈ G(kj) ⊂ U(kj) ⊂ R(kj) ⊂ R(k),

where R(j) = ∪p∈H(j)Bχ(p, ν(j)(p)).

Let zi = q(Fk(pi)) and let Bi = Bχ(pi, ν(k)(pi)) hence q(ki), zi ∈ Bi. Observe that

k̃i = ki+1 − 1 ≤ k̃i+1 = ki+2 − 1 and that 0 ≤ k̄i ≤ λ (equation (5.36)).

We are now in the position to apply Proposition 5.8. With equation (5.39) we obtain:

‖β|[m.n]‖ = ‖‖Φk̄m
dq(km)[k̃m]‖, ‖Φk̄m+1

dq(km+1)[k̃m+1]‖, · · · , ‖Φk̄n
dq(kn)[k̃n]‖‖

= ‖Φk̄m
dq(km)[k̃m],Φk̄m+1

dq(km+1)[k̃m+1], · · · ,Φk̄n
dq(kn)[k̃n]‖

≤ ‖Φk̄m
dzm [k̃m],Φk̄m+1

dzm+1 [k̃m+1], · · · ,Φk̄n
dzn [k̃n]‖

+χν(H(k), ν(k))‖c‖‖Tk̃n
w2‖ (5.40)
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where by equations (5.20) and equation (5.35)

χ = max
m≤i≤n

sup
p,q∈Bi

χ(p, q) ≤ 2 sup
p∈H(k)

ν(k)(p) = χν(H(k), ν(k)).

We now bound the term ‖Φk̄m
dzm [k̃m], ...‖ in terms of ‖w0‖ using Proposition 5.9.

Let p ∈ H(k). Let

{a0, a1, · · · , ai−1, ai} = [km, kn] ∩Qk(p, ν(k)(p))

be the ordered set (aj ≤ aj+1, 0 ≤ j ≤ i − 1) of switching times corresponding to the

plants within the set Bχ(p, ν(k)(p)) over the interval [km, kn]. For j ∈ N, let:

āj = aj+1 − aj + σ − 1

ãj = aj+1 − 1.

First observe that

ãj−2 < ãj − āj.

Since Fk ∩ [km − σ, kn+1] = ∅, it follows that aj ∈ Ok(p, ν(k)(p)), 0 ≤ j ≤ i, hence

the switching sequence q(aj) will switch back to a plant within the neighbourhood

Bχ(p, ν(k)(p) for one final time in [0, k], after ãi, i.e. there exists a time x ∈ Qk such

that:

k ≥ x = Fk(p, ν(k)(p)) ≥ ãi = ai+1 − 1 ≥ kn

and z = q(x) ∈ Bχ(p, ν(k)(p)).

Define

ψ(p) = Φā0dz[ã0],Φā1dz[ã1], · · · ,Φāidz[ãi].

Since x ∈ Qk and since p∗ ∈ G(x) we have by Proposition 5.10 that

dz[x] ≤ µ‖w0‖.

Hence by Proposition 5.9:

‖ψ(p)‖ = ‖Φā0dz[ã0],Φā1dz[ã1], · · · ,Φāidz[ãi]‖ ≤ ‖(1, 1)‖‖dz [x]‖ ≤ ‖(1, 1)‖µ‖w0‖.

Let {p1, p2, · · · , pa} = H(k), a = |H(k)|. Since

[km, kn] ∩Ok = ∪p∈H(k){[km, kn] ∩Ok(p, ν(k)(p))}
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it follows that

‖Φk̄m
dzm [k̃m],Φk̄m+1

dzm+1 [k̃m+1], · · · ,Φk̄n
dzn [k̃n]‖ ≤ ‖ψ(p1), ψ(p2), · · · , ψ(pa)‖

= ‖‖ψ(p1)‖, ‖ψ(p2)‖, · · · , ‖ψ(pa)‖‖
≤ ‖ 1, 1, · · · , 1

︸ ︷︷ ︸

2|H(k)|

‖µ‖w0‖

= 21/r|H(k)|1/rµ‖w0‖

hence by inequality (5.40) and equation (5.39):

‖β|[m,n]‖ ≤ 21/r|H(k)|1/rµ‖w0‖ + χν(H(k), ν(k))‖c‖‖Tkn+1−1w2‖. (5.41)

By inequality (5.41) and inequality (5.38) and since

|zm| = ‖w2|Am‖ ≤ ‖Tkm−1w2‖

we have

‖Tkn+1−1w2‖ ≤ ‖Tkm−1w2‖ + ‖w2|[km,kn+1)‖
≤ ‖Tkm−1w2‖ + γ3(U(k))|zm| +

(
γ4(U(k)) + γ5(U(k))

)
‖β|[m,n]‖

≤ (1 + γ3(U(k)))‖Tkm−1w2‖ +
(
γ4(U(k)) + γ5(U(k))

)

·
(

21/r|H(k)|1/rµ‖w0‖ + χν(H(k), ν(k))‖c‖‖Tkn+1−1w2‖
)

Since inequality (5.34) holds, we can now rearrange to obtain:

‖Tkn+1−1w2‖ ≤ 1

1 − ‖c‖
(
γ4(U(k)) + γ5(U(k))

)
χν(H(k), ν(k))

·
(

(1 + γ3(U(k)))‖Tkm−1w2‖

+21/r
(
γ4(U(k)) + γ5(U(k))

)
|H(k)|1/rµ‖w0‖

)

≤ γ6(U(k),H(k), ν(k))‖Tkm−1w2‖ + γ7(U(k),H(k), ν(k))‖w0‖

as required. 2

In Chapter 6 we will establish sufficient conditions that inequality (5.34) can be satisfied

by a finite cover (H, ν) for U .

5 Main result

Define the two time intervals [0, k∗) and [k∗,∞] where the inclusion time k∗ ∈ N ∪∞ is

the time at which the parameter p∗, corresponding to the unknown true plant P = Pp∗ ,
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belongs to the set of available parameters for the first time (see equation (5.42)). Note

that in the classical setup (e.g. see French and Trenn (2005); Fisher-Jeffes (2003);

Hespanha et al. (2003); Morse (1996, 1997)) we have p∗ ∈ G(k) = G, ∀k ∈ N so k∗ = 0.

In Proposition 5.13 we have established gain bounds for sequences of intervals (ongoing

intervals) relating to ongoing switches, i.e. m,n ∈ N, ki ∈ Ok, 0 ≤ m ≤ i ≤ n and

in Proposition 5.5 we have established gain bounds which can be applied to intervals

(final intervals) relating to final switches, i.e. ki ∈ Fk. Now observe the following: to

every p ∈ H(k), provided that Qk(p, ν(k)(p)) is not empty, there exists a plant z in

the neighbourhood Bχ(p, ν(k)(p)), such that the algorithm switches to that plant for

the last time on the interval [0, k], i.e. z = q(Fk(p)), z ∈ Bχ(p, ν(k)(p)). This implies

that none, one, or a sequences of ongoing intervals is always followed by a final interval.

This progression may repeat itself a maximum of |H(k)| times since there can be only a

maximum of |Fk| = |H(k)| final switches.

These facts will be used in the following main result establishing gain bounds on w2 in

terms of w0 for dynamic and static EMMSAC — as indicated by the gray squares in

Figure 5.7. To improve readability we repeat all relevant equations in Table 5.9.

Pp∗

u0 y0

y2u2

q

y2

CK(p1)

CK(pn)

CK(p2)

q

S

‖ · ‖

‖ · ‖

E(p1)

E(pn)

ENM

min

D

∆

arg

G

dp1

dpn

rp1

rpn

qf

C

u2 y2

u2

u1 y1

X

Figure 5.7: Bounding w2 = (u2, y2)
⊤ in terms of w0 = (u0, y0)

⊤
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y1 = Pu1 (2.7)

u0 = u1 + u2 (2.8)

y0 = y1 + y2 (2.9)

u2 = Cy2 (2.10)

Table 5.9: Details for Theorem 5.14

Theorem 5.14. Let 1 ≤ r ≤ ∞. Suppose p∗ ∈ PU ⊂ P where PU satisfies Assumption

5.2. Let P = Pp∗. Let U be a monotonic plant generating operator and suppose (H, ν)

defines a monotonic cover for U . Suppose the EMMSAC algorithm is standard. Let

k ∈ N. Let G be a plant generating operator that satisfies G(j) ⊂ U(j), j ≤ k. Suppose

(w0, w1, w2) ∈ W ×We ×We satisfy the closed loop equations (2.7)–(2.10). Let

k∗ =

{

min{i ∈ Q∞ | p∗ ∈ G(i)} if ∃i s.t. p∗ ∈ G(j), ∀j ≥ i

∞ if not
(5.42)

and suppose k∗ <∞. If

‖c‖
(

γ4(U(j)) + γ5(U(j))
)

χν(H(j), ν(j)) < 1, ∀j ≤ k (5.43)

and αOP (U(k)) < 1 then:

‖Tkw2‖ ≤ β(U(k),H(k), ν(k), p∗)‖Tk∗−1w2‖ + γ̂(U(k),H(k), ν(k), p∗)‖w0‖

where for Q1 ⊂ PU , Q2 ⊂ PH , ǫ : P → R+:

αOP (Q) = sup
p1∈Q

l(p1)

βOP (Q) = J(ξ) sup
p1∈Q

sup
∆(p1)≤x≤2∆(p1)

βξ(p1,K(p1), x− σ, σ)

αOS(Q) = J(ξ) sup
p1∈Q

sup
∆(p1)≤x≤2∆(p1)

αξ(p1,K(p1), 0, x− σ)

βOS(Q) = J(ξ) sup
p1∈Q

sup
∆(p1)≤x≤2∆(p1)

βξ(p1,K(p1), 0, x − σ)

γ1(p) = 1 + sup
∆(p)≤x≤2∆(p)

α(p∗,K(p), 0, x)

γ2(p) = sup
∆(p)≤x≤2∆(p)

β(p∗,K(p), 0, x)

γ3(Q1) =







(1 + α
1/r
OS(Q1))

(
αOP (Q1)

1−αOP (Q1)

)1/r
+ α

1/r
OS(Q1) if 1 ≤ r <∞

max{1, αOS(Q1))}αOP (Q1) + αOS(Q1) if r = ∞

γ4(Q1) =







(1 + α
1/r
OS(Q1))

(
βOP (Q1)

1−αOP (Q1)

)1/r
if 1 ≤ r <∞

max{1, αOS(Q1)}) βOP (Q1)
1−αOP (Q1) if r = ∞
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γ5(Q1) =

{

β
1/r
OS (Q1) if 1 ≤ r <∞
βOS(Q1) if r = ∞

χν(Q2, ǫ) = 2 sup
p∈Q

ǫ(p)

γ6(Q1,Q2, ǫ) =
1 + γ3(Q1)

1 − ‖c‖
(
γ4(Q1) + γ5(Q1)

)
χν(Q2, ǫ)

γ7(Q1,Q2, ǫ) =
21/rµ|Q2|1/r

(
γ4(Q1) + γ5(Q1)

)

1 − ‖c‖
(
γ4(Q1) + γ5(Q1)

)
χν(Q2, ǫ)

β(Q1,Q2, ǫ) = γ
|Q2|
6 (Q1,Q2, ǫ)

∏

p∈Q2

γ1(p)

γ̂(Q1,Q2, ǫ, p∗) = γ
|Q2|
6 (Q1,Q2, ǫ)

∏

p∈Q2

γ1(p)



|Q2|γ7(Q1,Q2, ǫ, p∗) +
∑

p∈Q2

γ2(p)





where c is as in Assumption 3.4(5) and J(ξ) is from Lemma (5.6).

Proof Let 1 ≤ r ≤ ∞. Suppose 0 ≤ k ≤ k∗ − 1. Observe that since the gain

a = γ3(U(j)) ≥ 0, j ≤ k

and

0 ≤ b = ‖c‖
(
γ4(U(j)) + γ5(U(j))

)
χν(H(j), ν(j)) < 1, j ≤ k

by assumption, it follows that

γ6(U(j),H(j), ν(j)) =
1 + a

1 − b
≥ 1, j ≤ k.

Also observe that since

α(p∗,K(p), 0, x) ≥ 0, p ∈ PU , x ∈ N

it follows that

γ1(p) = 1 + sup
∆(p)≤x≤2∆(p)

α(p∗,K(p), 0, x) ≥ 1, p ∈ PU

therefore

β(U(j),H(j), ν(j), p∗) = γ
|H(k)|
6 (U(j),H(j), ν(j), p∗)

∏

p∈H(j)

γ1(p) ≥ 1, j ≤ k

and we have

‖Tkw2‖ ≤ ‖Tk∗−1w2‖ ≤ β(U(j),H(j), ν(j), p∗)‖Tk∗−1w2‖ + γ(U(j),H(j), ν(j))‖w0‖

as required.



142 Chapter 5 Stability and gain bound analysis of the nominal closed loop system

Now suppose k ≥ k∗. Let

{kf0 = k∗, kf1 , · · · , kfm} = ∪p∈H(k){max(Ok(p))} ∪ {k∗} ∪ Fk

be an ordered set of switching times, i.e. kfi
≤ kfi+1

, 0 ≤ i < m.

Observe that the algorithm might not switch to some neighbourhood Bχ(p, ν(k)(p)), p ∈
H(k) at all, i.e. there might exist a p ∈ H(k) such that Fk(p) = Ok(p) = ∅, and indeed

Ok(pi) ∩ Fk(pj) may not be empty for all i, j ≤ k however

m = |Fk| + | ∪p∈H(k) {max(Ok(p))}| ≤ 2|H(k)|.

Let

afi
=

{

γ6(U(k),H(k), ν(k)) if kfi
∈ Ok

γ1(q(kfi
)) if kfi

∈ Fk

bfi
=

{

γ7(U(k),H(k), ν(k)) if kfi
∈ Ok

γ2(q(kfi
)) if kfi

∈ Fk

where afi
≥ 0 since γ1, γ6 ≥ 1, as previously. Now define

kfm+1 = min{a > kfm | a ∈ Qa}

and observe that kfm ≤ k < kfm+1 where kfi
∈ Qk ⊂ Qkfm+1

, 0 ≤ i ≤ m and

kfm , kfm+1 ∈ Qkfm+1
. We then have with

zfi
= ‖Tkfi

−1w2‖r, 0 ≤ i ≤ m+ 1.

and by Propositions 5.5, 5.13 that:

zfi+1
≤ afi

zfi
+ bfi

‖w0‖, 0 ≤ i ≤ m.
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Since kf0 = k∗ there follows that zf0 = ‖Tk∗−1w2‖ hence we obtain

‖Tkw2‖ ≤ zfm+1

≤
m∏

i=0

afi
zf0 +

(
m∏

i=1

afi
bf0 +

m∏

i=2

afi
bf1 + · · · +

m∏

i=m

afi
bfm−1 + bfm

)

‖w0‖

≤
m∏

i=0

afi

(

zf0 +

m∑

i=0

bfi
‖w0‖

)

≤ γ
|H(k)|
6 (U(k),H(k), ν(k))

∏

p∈H(k)

γ1(p)

·



zf0 +
(

|H(k)|γ7(U(k),H(k), ν(k)) +
∑

p∈H(k)

γ2(p)
)

‖w0‖





≤ β(U(k),H(k), ν(k), p∗)‖Tk∗−1w2‖ + γ̂(U(k),H(k), ν(k), p∗)‖w0‖

as required. 2

We will establish sufficient conditions for the existence of a finite cover (H, ν) satisfying

inequality (5.43) in Chapter 6.

Theorem 5.14 establishes gain bounds for the case where p∗ ∈ G(j), j ≥ k∗. In the

case where U describes a finite constant set the theorem is directly applicable taking

G = U , e.g. for the case of an integrator with an unknown sign, i.e. PG = PU =

{(1,−1, 1), (1,+1, 1)}, a robustness guarantee can be given via Theorem 2.12.

In the case where U describes a continuum, one can still take G = U , however the

controller may not have a finite dimensional realisation as a continuum of estimators

is involved. However, in the next chapter, we will establish results where G represents

a finite sampling of the uncertainty set U , and gives rise to a feasible controller for

implementation. With appropriate constructions and under mild conditions, it will be

shown that such controllers robustly stabilise all plants p∗ ∈ U .

Finally, we claim that if the plant model set contains a plant model of the form

Pp : xp(k + 1) = Apxp(k) +Bpu
p
1(k), y

p
1(k) = Cpx(k) +Dpu

p
1(k), k ∈ N (5.44)

where Ap = −2, Bp = 1, Cp = − 2
p+1 ,Dp = 1, p > 0, the given bounds have the property

that they scale unboundedly for p→ ∞. This is due to a loss of observability in Pp for

large p, i.e. Cp → 0 as p→ ∞. Equivalently, the corresponding transfer function

Pp :
yp
1

up
1

=
z + 2 p

p+1

z + 2
,

tends towards a pole/zero cancellation for increasingly large p.
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To show that this loss of observability causes the gain bound to behave badly, we will

first show that α in Assumptions 4.1 scales unboundedly for p → ∞. Recall from

Assumptions 4.1 that l2, l3, l4 ∈ N, l2 ≤ l3 < l4, I3 = [l3, l4). It follows from the output

equation in (5.44) that

xp(l2) = C−1
p

(
yp
1(l2) −Dpu

p
1(l2)

)
, l2 ∈ N.

Since C−1
p → ∞ as p→ ∞ it follows that for any non-zero wp

1, ‖xp(l2)‖ → ∞ as p→ ∞.

Given l2, l3, l4 we have that ‖w2|I3‖ (in equation (4.10)) must have the property that

‖w2|I3‖ → ∞ as p → ∞ since the closed loop signal w2|I3 is a function of the previous

state xp(l2). Hence there cannot exist an M <∞ such that

α(p,K(p), a, x) < M, ∀a, x as p→ ∞.

To see that this is reflected by the α in Lemma 4.3, note that for Pp as in equation

5.44 the observability matrix Op in the proof of Lemma 4.3 is given by Op = Cp. Hence

O+
p = C−1

p = −p+1
2 and Yp → ∞ as p → ∞ and also α(p,K(p), a, x) → ∞, ∀a, x as

p→ ∞.

Now observe that in order to satisfy the attenuation ineqality 5.16 for increasingly large

values of α we have to choose increasingly large delays ∆(p), i.e. ∆(p) → ∞ as p→ ∞.

Since α(p,K(p), ·, a), a ∈ N is an increasing function in a, this implies that if p ∈ Q we

have for

αOS(Q) = J(ξ) sup
p1∈Q

sup
∆(p1)≤x≤2∆(p1)

αξ(p1,K(p1), 0, x− σ)

from Theorem 5.14 that

αOS(Q) → ∞ as p→ ∞

and hence γ3, γ6 as well as γ̂ and β grow unboundedly as p → ∞. This establishes the

claim.
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Design

The outcome of any design process in multiple model switched control must include

a (possibly time-varying) plant model set that allows the algorithm to achieve some

performance objective. Hence a designer is necessarily confronted with the following

design questions:

1. How many plant models are needed?

2. How should they be (geometrically) distributed over the uncertainty set?

3. How can a conservative design be avoided?

At this point we emphasise that even though this thesis has been presented in a different

order, the driving questions that lead to the analysis as it is, i.e. the introduction of

the plant-generating operator G and the cover (H, ν) for the uncertainty U , have been

precisely the ones asked above.

To find answers to these questions is considered to be one of the key outstanding issues

in the field of multiple model control. As mentioned in the introduction, the first two

questions are for example addressed in Fekri et al. (2006), where the authors ask: “How

to divide the initial parameter uncertainty set into N smaller subsets, how large should

N be, etc.” and then provide an explicit, however sub-optimal, design procedure to find

a constant plant model set, based on the atomic closed-loop performance of matching

plant and controller pairs. Anderson et al. (2000) make first steps towards a principled

construction of a constant plant model set, whereby they construct a cover for the

uncertainty set from local robust stability margins of atomic plant and controller pairs.

Furthermore in Anderson (2005) similar questions to Fekri et al. (2006) are asked: “How

many plants (models) should be chosen, how does one choose a representative set of

plants (plant model set), etc.”.

145
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The third question for a non-conservative design of the plant model set, however, has

not been addressed previously for MMSAC and is considered to be a key contribution of

this thesis. For example, Morse (2004) assumes the uncertainty set to be compact and

known. This implies conservativeness since the achieved bounds scale with the size of

the uncertainty set. However, no discussion of this issue has yet been conducted in the

literature although we note that one of the key reason why adaptive control algorithms

are employed at all is their potential for non-conservativeness.

This chapter will give explicit, performance-orientated approaches to answering all of

these questions for EMMSAC. We start by attaching some further meaning to the objects

H, ν and U .

1 Uncertainty, information and complexity

The purpose of the plant-generating operator U is to specify the uncertainty of the true

plant P = Pp∗ in terms of a plant model set. Let U be a constant. If we have complete

information about p∗ we would let U = {p∗} ⊂ P hence U is a single plant. Usually

we are uncertain about p∗, however we may have enough information to confine p∗ to

a region in P, i.e. p∗ ∈ U ⊂ P. For example for Pa = 1
s+a , a ∈ [−amax, amax] let

U(k) = [−amax, amax], ∀k ∈ N.

There is also the possibility that there is no information about the ‘size’ of the uncer-

tainty available, but only on its structure. For example if Pa = 1
s+a , a ∈ (0,∞). This

scenario motivates a dynamic U , as discussed later in this chapter. However for now we

will confine ourselves to the case where U is constant.

We now employ a suitable measure to quantify the amount of information that is rep-

resented by an uncertainty set specified by U . We will denote this quantity the “metric

entropy” or the complexity of U . A higher complexity implies less prior information.

This concept of interlinking information with complexity is due to Zames (1998), where

it is utilised to seek to define the term ‘adaptive’ in a control context.

For our purpose this connection is important since the complexity of U , as measured by

H and ν, determines the gain bound γ̂ from Theorem 5.14. The purpose of this chapter

is to address design, e.g. how to choose a suitable sampling G of U for the actual

implementation in order to ensure robust stabilisation of all p∗ ∈ U . The resulting gain

bound for the implemented algorithm will then depend on the complexity of U rather

than the absolute number of the allowable plant models in G. For example in the case

of static EMMSAC, we will give conditions for G which guarantee robust stabilisation

of all p∗ ∈ U , together with a complexity-dependent gain bound.
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1.1 Complexity and metric entropy

The following definitions of complexity are interpretations via metric entropy, which is

the minimum number of elements that are required to approximate any given subset in

a metric space, given an error bound ǫ.

We define the metric entropy

CE : (P∗,R+) → N

by

CE(A, ǫ) = {n ∈ N | n = min(|h|) s.t. A ⊂ ∪p∈hBχ(p, ǫ), h ∈ P∗}

where we note that the size of the neighbourhoods ǫ ∈ R+ is required to equal for all

p ∈ h.

The Kolmogorov (1956) ‘n-width’ is the inverse concept, hence returning the size ǫ of

the neighbourhoods in terms of the number of neighbourhoods n. Define the n-width

CN : (P∗,N) → R+

by

CN (A,n) = {a ∈ R | a = inf(ǫ) s.t. A ⊂ ∪p∈hBχ(p, ǫ), h ∈ P∗, |h| = n} .

Note that for a given constant, compact plant-generating operator U the choice of ǫ

in CE(U, ǫ) or n in CN (U, n) defines a cover (h, ǫ) for U and we could therefore rewrite

the gain bound in Theorem 5.14 in terms of the complexity CE or CN of U by letting

(U,H, ν) = (U, h, ǫ). Such covers will satisfy inequality (5.43) for sufficiently large choices

of n in CE(U, n) and sufficiently small choices of ǫ in CN (U, ǫ). We can therefore relate

the complexity of the uncertainty set U to performance. However at this stage we have

no handle on how to choose n or ǫ. A further minimisation of the gain-bound with

respect to either n or ǫ could then be performed. Additionally, these classic definitions

are limited since they provide a cover with neighbourhoods of a common size ǫ where a

cover in terms of (H, ν) is more flexible and allows for neighbourhoods of different sizes

for each p ∈ H.

We now combine the idea of measuring complexity in terms of a cover with the constraint

imposed by the gain bound γ̂ in Theorem 5.14.

Let A ⊂ P be compact and assume that k∗ = 0 hence β = 0. Let γ̂ be defined as in

Theorem 5.14. Now define the smallest achievable gain bound γ̂OPT with respect to γ̂

by

γ̂OPT : P∗ → R+
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and

γ̂OPT (A) =







γ∗ ∈ R

∣
∣
∣
∣
∣
∣
∣

γ∗ = inf(γ̂(A,h, ǫ, p∗)), p∗ ∈ A
s.t. A ⊂ ∪p∈hBχ(p, ǫ(p)), h ∈ P∗, ǫ : P → R+

and (U,H, ν) = (A,h, ǫ) satisfy (5.43)







. (6.1)

So as before, for a constant, compact plant-generating operator U , γ̂OPT (U) defines a

(in general non-unique) cover (h, ǫ) for U . However, this cover is minimal in respect to

γ̂. This makes the design problem of constructing a cover explicit. γ̂OPT will critically

depend on the behaviour of the gain bound γ̂. For example assume that for some

algorithm, γ̂(U, h, ǫ, p∗) does not depend on the number of elements in h, but only on

the size of ǫ. This algorithm will for an uncertainty set U with many plants (or a

continuum) achieve a lower γ̂OPT than an algorithm where γ̂(U, h, ǫ, p∗) scales with |A|.
For a general, time-varying plant-generating operator U , covers can be constructed by

evaluating γ̂OPT (U(k)) for all k ∈ N.

Let A ⊂ P be a compact plant model set and (h, ǫ) provide a cover for A. The complexity

of A, as evaluated by (h, ǫ), is therefore given by CC(A) := |h|. For example if the cover

(hOPT , ǫOPT ) is minimising γ̂OPT (A) then the complexity of A, as measured by the

minimising cover (hOPT , ǫOPT ), is given by CC(A) = |hOPT |. The given gain bounds

are therefore implicitly functions of complexity.

In general it is not possible to solve the optimisation problem in equation (6.1) and

to determine the cover (h, ǫ) that minimises γ̂ for A = U explicitly. This, however, is

not necessary since we may utilise any suitable (possibly non-minimal) cover for U in

practice. With the true gain γ we therefore arrive at γ ≤ γ̂OPT ≤ γ̂.

2 Scaling

The overall objective of this chapter is to indicate performance-orientated design strate-

gies for the plant generating operator G. Since no measure of the actual performance

γ is available, we seek to optimise upper bounds on γ, e.g. γ̂OPT or γ̂, with respect

to the plant-generating operator G instead. For the sake of argument, this section will

introduce two key ‘scaling geometries’ of G and investigate the behaviour of the bounds

in their respect. In particular these scalings describe either a refinement or an expansion

in the parameter space of G.

Consider the following example. Let U be a constant plant-generating operator defined

by

U = [(−l, 1, 1), (+l, 1, 1)] ⊂ P̄LTI ⊂ R3, l > 0.

A water tank could have such an uncertainty set, where U describes the uncertainty of

the flow rate in or out of the tank.
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A possible sampling of U is then given as follows. Let the parameter bound l > 0, l ∈ R

and the parameter step m > 0, m ∈ R define the plant model set

Pl,m =
{
(i, 1, 1) ∈ P̄LTI ⊂ R3| i = ±am, a ∈ N, |i| ≤ l

}
. (6.2)

All elements in Pl,m are therefore bounded by l, and m apart where we observe that the

constant plant generating operator G = Pl,m is a subset of U for all m > 0.

We are now interested in how the algorithm behaves when the number of plant models

under consideration is large, e.g. the number of elements of Pl,m is large. In particular

consider the two cases depicted in Figure 6.1 where 1. l is constant and m is increasingly

small, and 2. m is constant and l is increasingly large. In a geometrical sense we will

observe in the first case a ‘refinement’ in parameter space and an ‘expansion’ in the

latter. These geometries are motivated by the following observations:

−l l
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m
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Figure 6.1: Increasing the number of elements in Pl,m by scaling� Assume that computational resource is not an issue and we can implement as

many plant models (with corresponding estimators) as we like. We might now be

interested in choosing a very fine grid of plant models, corresponding to a small

m, in the hope that making plant models available to the algorithm that are very

close to the true plant improves performance. This case is concerned with the

refinement geometry.� Assume that the amount of available computational resource is limited. We then

might ask the question: What level of refinement m > 0 is required to achieve

a given performance objective? This case is also concerned with the refinement

geometry.� Assume that for the true plant P = Pp∗ = P(i,1,1) the parameter i is poorly known,

i.e. we only know that |i| < imax where imax is large. We are then concerned with

providing a stabilising plant model set for all possible values of i. Therefore the

plant model has to be expanded for increasingly large values of imax. This case is

concerned with the expansion geometry.
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We now study the effects of the given scaling scenarios on the algorithm where we utilise

different fixed plant model sets Pl,m for the argument. Let U = Y = lr, 1 ≤ r ≤ ∞:� How does the established gain behave with respect to the refinement geometry?

E.g. for G = Pl,m with l ∈ R and m→ 0.� How does the established gain behave with respect to the expansion geometry?

E.g. for G = Pl,m with m ∈ N and l → ∞.

The answers to these questions will heavily influence the design of the plant model set.

3 Refinement scaling

Observe that all previously established EMMSAC gain bounds in the literature scale

with the number of elements in the plant set (e.g. see French and Trenn (2005)). This

is analogous to choosing p∗ ∈ G = H and ν = 0 in Theorem 5.14. Then γ̂ will also

scale exponentially with the number of elements in G. In Hespanha et al. (2001), which

is concerned with an observer based multiple model switched adaptive algorithm in the

style of Morse, the established bound on the size of the state as well as the robustness

margin also scale with the number of elements in the plant model set. The authors then

propose a modification to the switching logic to circumvent this analytic issue.

However, is there reason to believe that the actual closed loop gain of multiple model

switched adaptive control algorithms is not well behaved in respect to refinement scaling?

Consider this: let l ∈ R and consider an arbitrary plant Pp, p ∈ Pl,m. If m > 0

becomes small, an increasing number of plants will accumulate in neighbourhoods of

Pp. However, since all plants in small neighbourhoods of Pp are naturally ‘close’ to

Pp, we could attempt to model them as a single plant Pp with a small (time-varying)

perturbation. Therefore, if we specify a finite number of neighbourhoods covering the

whole of Pl,m, any plant in Pl,m can be modeled by perturbations to central cover

elements for an arbitrarily small m > 0 — as depicted in Figure 6.2.

We have already introduced a suitable device to formally express this intuitive idea for

EMMSAC. Observe that Bχ(p, ν(p)) specifies a single neighbourhood with radius ν(p)

around the plant p ∈ H. H then specifies the centre of all neighbourhoods that cover

U , hence we say that (H, ν) provides a cover for U . Since the gain bound in Theorem

5.14 holds for any p∗ ∈ G ⊂ U , where U can be a continuum, we are potentially allowed

to use an arbitrary number of plant models within G. However, observe that the bound

of Theorem 5.14 scales with the number of elements in H, where (H, ν) is required to
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Figure 6.2: Covering Pl,m by neighbourhoods: The plants labelled × are modelled as
perturbations of the central plant Pp

satisfy inequality (5.43), i.e.

2 sup
p∈H

ν(p) = χν(H, ν) <
1

‖c‖
(

γ4(U) + γ5(U)
) .

This inequality implies a constraint on the size of the neighbourhoods ν(p), p ∈ H (an

upper bound), where c depends on the estimator and γ4, γ5 depend on the order and the

stabilising effect of all atomic closed loops [Pp, CK(p)], p ∈ ∪p∈HBχ(p, ν(p)), given the

controller design procedure K. The fact that the allowable size of the neighbourhoods

is a function of the uncertainty set specified by U poses the question if to a compact

plant operating operator U , there always exists a finite cover (H, ν), hence a finite γ̂ in

Theorem 5.14.

That this is indeed the case is shown next:

Definition 6.1. Let σ ∈ N . Let U be a plant-generating operator. Let α, β be defined

by Assumptions 4.1 and ∆ : P → N, l : P → R+ satisfy inequality (5.16). A control

design K : P → C is said to be U regular if for all ∆(p) ≤ x ≤ 2∆(p), the functions l(p),

β(p1,K(p), x − σ, σ), α(p1,K(p), 0, x − σ), β(p1,K(p), 0, x − σ), x ∈ N are continuous

with respect to all p1, p ∈ PU .

Proposition 6.2. Let U be a compact plant-generating operator and suppose K is U

regular. Suppose χ|PU is continuous. Then there exists a finite cover (H, ν) of U which

satisfies inequality (5.43) .

Proof Let j ∈ N. Since U is compact and K is U regular, the suprema

αOP (Q) = sup
p1∈Q

l(p1), Q ⊂ PU
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exists and αOP (U(j)) < 1. Also αOS(U(j)) < ∞ and βOP (U(j)) < ∞. Therefore there

exist ǫj > 0 such that

ǫj <
1

2‖c‖
(

γ4(U(j)) + γ5(U(j))
) .

Recall from Chapter 5, equation 5.3 that

Bχ(p, ǫj) = {p} ∪ {p1 ∈ P | χ(p, p1) < ǫj} ∩ U(j), p ∈ P.

Since χ|PU is continuous, Bχ(p, ǫj) is open and hence {Bχ(p, ǫj)}p∈U(j) is an open cover

of U(j) with respect to the subspace topology of U(j). Since U(j) is compact, there

exists a finite set hj ⊂ U(j) such that {Bχ(p, ǫj)}p∈hj
covers U(j).

Let νj(p) = ǫj, ∀p ∈ P hence (hj , νj) ∈ (P∗,map(P,R+)) is a finite cover of U(j). Since

νj is constant it follows that ǫj = 1
2χνj(hj , νj). Hence

1

2
χνj(hj , νj) = ǫj <

1

2‖c‖
(

γ4(U(j)) + γ5(U(j))
) .

We can therefore construct a monotonic cover (H, ν) by lettingH(k) = ∪j≤khj , ν(k)(p) =

minj≤k ǫj, ∀p ∈ PH . It is straightforward to verify that (H, ν) satisfies inequality (5.43)

as required. 2

We will now show for an example that the existence of a finite cover allows the construc-

tion of EMMSAC gain bounds that are invariant to refinement scaling.

3.1 Example

Let the true plant be given by Pp∗ , p∗ = (0, 1, 1) where the constant plant-generating

operator U specifying the uncertainty set, is given by U = [(−l, 1, 1), (+l, 1, 1)], l > 0.

Apply Proposition 6.2 to give a finite, constant cover (H, ν) for U . Let the constant

plant-generating operator G be given by equation (6.2), i.e. G = Pl,m, and suppose that

p∗ ∈ G. Observe that Pl,m describes a sampling of U and therefore G ⊂ U .

Let the plant models Pp : Ue → Ye, p ∈ Pl,m be given by

P(a,b,c) : xp(k + 1) = axp(k) + bup
1(k), y

p
1(k) = cxp(k), xp(−k) = 0, ∀k ∈ N. (6.3)

Let the controller design procedure K corresponding to the plant Pp, as defined in

equation (6.3), be such that Cc : Y2 → Ue satisfies:

CK(p) : u2(k) = −iy2(k), ∀p = (i, 1, 1). (6.4)

Observe that for all p ∈ Pl,m, [Pp, CK(p)] is gain stable. CK(p) is a so-called dead-beat

controller since it has the property that if applied to Pp it will bring the plant output yp
1
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to zero after one time step, assuming zero disturbances, i.e. if q(k) = p and [Pp, CK(q(k))]

then yp
1(k + 1) = 0 assuming (u0, y0)

⊤ = 0.

Let the switching controller be defined by

C[Pl,m] : Ye → Ue : y2 7→ u2 (6.5)

with

u2(k) = (C[Pl,m]y2)(k) := (CK(q(k))y2)(k), k ∈ N (6.6)

where q(k) = S(w2)(k) = DM(X,G)(w2)(k) is given by equations (3.7),(4.25)–(4.33)

and ∆ = 1. Observe that equations (4.34),(4.35) reduce to equations (6.5),(6.6) for the

special case where all plant models and controllers are dead-beat (stabilisable) since we

do not have to consider an initialisation at switching times and can simplify.

Now since p∗ ∈ G, Theorem 5.14 applies where k∗ = 0, β = 0 and γ̂ = γ̂(U,H, ν, p∗) <

∞. Most importantly, since γ̂ is invariant to G, the bound can be achieved for any

refinement level m > 0.

This has the following important implication: if we are not limited by implementation

considerations we can arbitrarily increase the number of plant models in Pl,m, whilst

maintaining a common gain bound γ̂. However note that this does not necessarily mean

that the actual closed loop gain γ = ‖ΠPp∗//C[Pl,m]‖ is minimised as m → 0 but only that

it does not grow unboundedly in the refinement scaling geometry, i.e. γ ≤ γ̂, ∀m > 0.

4 Sampling of the uncertainty set

Up to this point we assumed that p∗ is in the plant model set G or that there exists a

time k∗ ∈ N such that p∗ is in G(k∗). For any p∗ ∈ U ⊂ P this can only be ensured by

the choice G = U ⊂ P and hence G may possibly describe a continuum in P. In order

for the EMMSAC design to be feasible, we would have to construct estimators that can

provide residuals for a continuum of plant models and are bounded in computational

complexity. Note that the estimator constructions (estimator A and B) in Chapter 3 are

not suitable for a direct implementation of such plant model sets. Hence for the purpose

of this thesis we only consider an EMMSAC design to be feasible if G is finite:

Definition 6.3. An EMMSAC controller is said to be feasible if the underlying plant-

generating operator G is finite.

The construction of estimators that are able to deal with a continuum of plant models

goes beyond the scope of this thesis, however note that common plant model sets provide

a lot of exploitable structure. For example Morse (1996, 1997, 2004) utilises a state

shared observer to allow plant model sets that form a continuum.
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In the next section we will show how this implementation issue can be overcome and

how a finite plant model set G may be constructed by sampling (possibly continuous)

uncertainty sets U . The results will establish conditions under which feasible EMMSAC

controllers robustly stabilise any p∗ ∈ U , and further that these designs are invariant to

refinement scaling.

4.1 Sampling of a constant uncertainty set U

Consider a bound γ̄ on the closed loop gain that holds for all p∗ ∈ G and has the property

that it scales with the number of elements in G. All previously established EMMSAC

gain bounds have this property, e.g. see French and Trenn (2005), which is equivalent

to taking U = G = H, ν = 0 and gives γ̄ = supp∈PG γ̂(G,G, 0, p) in Theorem 5.14 (on

the appropriate class of systems). Notwithstanding their scaling behaviour, such gain

bounds lead with Theorem 2.12 to a global robust stability margin bP,C = γ̄−1. Note

that we utilise the bound γ̄ ≥ γ̂ for design, since γ̂(G,G, 0, p∗) depends on the true plant

Pp∗ , p∗ ∈ G, which is unknown.

U

bP,C

∈ G

Figure 6.3: Covering U by neighbourhoods of size bP,C around p ∈ G

Given some constant, compact plant-generating operator U , we now would like to con-

struct G such that the robustness margins bP,C = γ̄−1 around each p ∈ G combine to a

cover1 for U , i.e. U ⊂ ∪p∈G ∪δ(p,p1)<bP,C
{p1}. If such a finite G can be constructed then

a feasible EMMSAC design exists that robustly stabilises all plants in U — as depicted

in Figure 6.3.

1This cover construction follows essentially the same idea as the local cover construction (H,ν) for
U . However, note that ν defines neighbourhoods in the structured uncertainty set U in order to give a
notion of complexity of U and to be able to deal with infinitely many plant models, whereas bP,C = γ̄−1

defines (global) robustness margins (gap balls) in P .
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However, since γ̄ scales with the number of elements in G, and bP,C = γ̄−1 specifies

the size of the robustness margins around each p ∈ G, bP,C may shrink to zero as the

number of plant models in G increases and there may not exist a finite cover at all (see

Figure 6.4 (A-C)).

U

bP,C

A B C

∈ G

Figure 6.4: Attempt to cover U by neighbourhoods bP,C , where bP,C scales with |G|

Hespanha et al. (2001) essentially face the same problem for their observer-based mul-

tiple model switched adaptive algorithm. They note: “[...] if the range of parametric

uncertainty is large [...] then the amount of unmodeled dynamics that the switching

controller can tolerate becomes small, and might not be sufficient to cover the entire

family of admissible process models.” In order to rectify this issue, the authors then

propose a modification to their switching logic.

To establish robustness margins that are well-behaved in the refinement geometry is

therefore not just a theoretical exercise, but it is in fact essential to ensure the existence

of a feasible design for the uncertainty set U .

Now assume that (H, ν) provides a suitable constant cover for U which satisfies inequality

(5.43). Furthermore assume initially that p∗ ∈ G ⊂ U . We then have by Theorem 5.14

that k∗ = 0, β = 0 and γ̄ = supp∈PU γ̂(U,H, ν, p) < ∞. Since this γ̄ is well behaved

in the refinement geometry and invariant to G ⊂ U , a feasible EMMSAC design exists.

This brings us to our next main result:

Theorem 6.4. Let U be a constant, compact plant-generating operator and suppose

p∗ ∈ PU . Suppose the controller design procedure K : P → C is U -regular. Assume the

EMMSAC algorithm is standard where (H, ν) is a constant cover for U which satisfies

inequality (5.43). Let γ̂ be as in Theorem 5.14. Then there exists a constant, finite plant

generating operator G satisfying PG ⊂ PU and γ̄d < 1, where

γ̄ = sup
p∈PU

γ̂(U,H, ν, p),

d = sup
p2∈PU

inf
p1∈PG

~δ(p1, p2)
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where the standard EMMSAC design based on K and G stabilises all P = Pp∗ and

‖ΠP//C‖ ≤ γ̄
1 + d

1 − γ̄d
. (6.7)

Proof Since U is compact there exists a constant, finite plant generating operator G

such that PG ⊂ PU and such that γ̄d < 1. Let p1 ∈ PG be such that ~δ(p∗, p1) < d.

Since PG ⊂ PU and U, G are constant it follows that G(j) ⊂ U(j), ∀j ∈ N, and hence

by Theorem 5.14 that

‖ΠPp1//C‖ ≤ γ̂(U,H, ν, p1) ≤ γ̄ <∞.

Since ~δ(p∗, p1) < d < γ̄−1 = bP,C the result follows from Theorem 2.12 as required. 2

It is important to note the following facts:� A refinement of G is always possible since the bound on the closed loop gain in

inequality 6.7 holds for any refinement level d such that d < γ̄−1. Hence we have

a positive answer to our first scaling question regarding refinement in a general

setting.� The bound in inequality 6.7 also holds for any plant p∗ ∈ Û ⊃ U where

Û = ∪p1∈PG{p ∈ P | ~δ(p1, p) < d}.

Since ~δ describes gap-balls in P, this implies that the EMMSAC algorithm robustly

stabilises all p∗ ∈ U .� Recall that Theorem 5.14 allowed plant models of the form

Pp :
yp
1

up
1

=
z + 2 p

p+1

z + 2
, p > 0,

although we have shown that then the corresponding gain bounds scale unbound-

edly for increasingly large p (see Page 143). However in Theorem 6.4 such plant

models are excluded by the assumption that U is compact, i.e. in the limit, Pp is

not observable hence not contained in U ⊂ P which, by Assumption 5.2, is a set

of observable plants.

Note that Theorem 5.14 only requires that p∗ ∈ G ⊂ U . So for a constant U , G may be

time-varying. This leads to the following result:

Theorem 6.5. Let U be a constant, compact plant-generating operator and suppose

p∗ ∈ PU . Suppose the controller design procedure K : P → C is U -regular. Assume the

EMMSAC algorithm is standard where (H, ν) is a constant cover for U which satisfies
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inequality (5.43). Let γ̂ be as in Theorem 5.14. Then there exists a finite plant generating

operator G satisfying PG ⊂ PU and γ̄d < 1, where

γ̄ = sup
p∈PU

γ̂(U,H, ν, p),

d = sup
k∈N

sup
p2∈PU

inf
p1∈G(k)

~δ(p1, p2)

where the standard EMMSAC design based on K and G stabilises all P = Pp∗ and

‖ΠP//C‖ ≤ γ̄
1 + d

1 − γ̄d
.

Proof The proof is identical to the one of Theorem 6.4, where we construct all G(k), k ∈
N sufficiently dense that the robustness margins around p ∈ G(k), given by bP,C = γ̄−1,

cover U . 2

This opens the EMMSAC algorithm up to a large class of on-line refinement schemes,

so-called dynamic EMMSAC, as discussed in Chapter 4, Section 3 and later in Section

8 of this chapter.

We conclude this section by observing the following facts, which apply to the setting of

compact, constant U :� If there is an infinite amount of computational resource available we may include

as many plant models in G ⊂ U as we like without weakening the gain bounds from

Theorem 6.4 and Theorem 6.5. Furthermore for G = U the bounds are minimised,

e.g. G being a continuum, and collapse to the one in Theorem 5.14. However,

note that this does not imply that the true gain is minimised for G = U but only

that it remains bounded.� If there is sufficient but finite amount of computational resource available, we can

always construct a feasible EMMSAC design.� If the algorithm does not stabilise a plant p∗ ∈ U , the only explanation is that the

plant model sets G(k), k ∈ N are not dense enough.

These results only hold if a finite cover exists. Sufficient conditions for such covers are

given in Proposition 6.2, which includes the requirement that χ is continuous. See the

discussion in Chapter 3, Section 3.

5 Expansion scaling and the cause of conservativeness

We now return to our scaling example (equations (6.2)–(6.6)) for a fixed m > 0 and some

l > 0. Observe that all previously established gain bounds, e.g. the one in Theorem
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5.14, scale with the size of the candidate plant set G = Pl,m hence with l. The reason

for this behaviour may be that either these bounds are unnecessarily weak or that it is

in fact the actual closed loop gain that scales with the size of the uncertainty set and

therefore its upper bounds. In the following we will prove that it is indeed the true

closed loop gain that behaves badly for large l.

Intuitively this can be explained in the following way: Observe that for a parametric

uncertainty of ‘level’ l ∈ R the controller set will have to include controllers which

are able to deal with a true plant of the worst case parameter value l. This implies,

since in our example l represents a bound on the gain of the true plant, we will have

to introduce for increasingly large gains l, controllers with increasingly large controller

gain to the controller set in order to provide a stabilising controller. If we now manage

to confuse the algorithm by a suitable choice of disturbance and convince it to switch

the controller with the highest gain into closed loop, we will experience high closed loop

gains. We can therefore potentially show that the closed loop gain scales with l — that

it is conservative.

We will now show for a simple example that the static EMMSAC algorithm indeed has

this undesirable property. Note that although the argument applies to the EMMSAC

algorithm, one would expect similar phenomena for other multiple model schemes e.g.

designs in the sense of Morse etc.

Theorem 6.6. Let m > 0 and let the parameter set Pl,m be given by equation (6.2).

Suppose the EMMSAC algorithm is standard where ∆ = 1, λ = 2 and G = Pl,m. Let

the atomic plant and controller be defined by equations (6.3),(6.4). Let the switching

controller C[Pl,m] be given by equations (6.5),(6.6). Then for p∗ = (1, 1, 1), P = Pp∗

the closed loop system [P,C[Pl,m]] has the property that there does not exist M > 0 such

that
∥
∥
∥ΠP//C[Pl,m]

∥
∥
∥ ≤M, ∀l ≥ 1.

Proof Let m = 1. Then the set of plants under consideration parametrised by the

uncertainty level l ≥ 1 is given by:

Pl,1 = Pl,m = {(−l, 1, 1), . . . , (−2, 1, 1), (−1, 1, 1), (1, 1, 1), (−2, 1, 1), . . . , (l, 1, 1)}
= {pl, . . . , p4, p2, p1 = p∗, p3, . . . , pl−1}

and

G(k) = Pl,1 = const., ∀k ∈ N.

Observe that with plant and controller being defined by equations (6.3),(6.4) the closed

loop [Pp, CK(p)] is gain stable for all p ∈ Pl,1.

The proof is now in two steps. First we will show that we can always make the switching

algorithm switch to the controller corresponding to the plant with the largest possible
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k

(
u0

y0

) (
u1

y1

) (
u2

y2

)

0

(
0
B

) (
B
0

) (
−B
B

)

1

(
0
0

) (
−B
B

) (
B
−B

)

2

(
0

B − lB

) (
l(B − lB)

0

) (
l(lB −B)
B − lB

)

3

(
0
0

) (
×

l(B − lB)

) (
×
×

)

Table 6.1: Signals for the true plant P = Pp∗
up to time k = 3

a ∈ N, (a, 1, 1) ∈ Pl, that is a = l ∈ N. Second we will show that this condition leads to

the unbounded increase in the gain of the closed loop operator as l increases.

Let pb = (b, 1, 1), pl = (l, 1, 1) ∈ Pl,1, 1 ≤ b < l. Now consider the closed-loop system

[P,C[Pl,1]] and let

(

u0

y0

)

=

((

0

B

)

,

(

0

0

)

,

(

0

B − lB

)

,

(

0

0

)

,

(

0

0

)

, · · ·
)

where B > 0.

We now claim that these disturbances make the algorithm switch to the controller Cpl

in two time steps, i.e. q(2) = pl = qf (2) = S(w2)(2), and that the signals in Table 6.1

are consistent with

(

u1

y1

)

= ΠP//C[Pl,1]

(

u0

y0

)

, u0 = u1 + u2, y0 = y1 + y2

as well as

P = Pp∗ : y1(k + 1) = y1(k) + u1(k)

Ppb
: yb

1(k + 1) = byb
1(k) + ub

1(k)

Ppl
: yl

1(k + 1) = lyl
1(k) + ul

1(k)

y1(0) = y1
1(0) = yl

1(0) = 0.

To see this we argue as follows. At time k = 0 the disturbance estimates dp[0], p ∈
{pb, pl} are forced by y0(0) = B and zero initial conditions to be

dp[0] =

(

×
yp
0(0)

)

=

(

×
B

)

, p ∈ {pb, pl}.

Here and throughout this proof, a vector with an entry marked × indicates that the

entry is irrelevant to the calculation that follows.
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Consequently ‖dp[0]‖ = B, p ∈ {pb, pl} and since the switching operator S returns

the parametrisation pi ∈ Pl,m with the lowest index i if there exist multiple minimal

residuals, we have q(0) = p∗ = p1.

To order Pl,m in this way is a choice we made earlier, however observe that if for example

the order is reversed and the lowest index is assigned such that p1 = (l, 1, 1) we would

have shown the fist step right away. Hence assume the original definition which is most

favourable to the algorithm. With u2(0) = −y2(0) = −B and u0(0) = 0 we then have

u1(0) = B.

At time k = 1 we have y1(1) = B and with y0(1) = 0 there holds y2(1) = −B. The

smallest disturbance dp[1], p ∈ {pb, pl} consistent with (T0u2,T1y2) and Ppb
, Ppl

can,

by the general property ‖dp[k]‖ ≤ ‖dp[k + 1]‖, p ∈ P, k ∈ N be found to be

dp[1] =

((

0

B

)(

×
0

))

, p ∈ {pb, pl}.

Since ‖dpl
[1]‖ = ‖dpb

[1]‖, q(1) = p∗ and no switch occurs. Furthermore with u2(1) =

−y2(1) = B and u0(0) = 0 we have u1(1) = −B.

At time k = 2 we have y1(2) = 0 and with y0(2) = B − lB there holds y2(2) = B − lB.

Now, the smallest disturbance estimate for dpl
[2] consistent with (T1u2,T2y2) and Ppl

is

dpl
[2] =

((

0

B

)(

0

0

)(

×
0

))

since similarly minimality is ensured by consistency and ‖dpl
[2]‖ = ‖dpl

[1]‖. In fact, the

disturbances (u0, y0) are not arbitrary but have been chosen so that this holds.

Since ypb
0 (0) = B, ‖dpb

[2]‖ ≥ ‖dpl
[2]‖, however the choice dpb

[2] = dpl
[2], pb 6= pl is not

possible since the trajectories would have the property that

ΠC[Pl,1]//Ppb
dpb

[2] = ΠC[Pl,1]//Ppb
dpl

[2] 6= (T1u2,T1y2).

This can be seen by choosing

dpb
[2] =

((

0

B

)(

0

0

)(

×
ypb
0 (2)

))

.

In this case we have ypb
1 (2) = bB−B. With ypb

2 (2) = B− lB from above we would have

to choose

ypb
0 (2) = bB − lB 6= 0, ∀b 6= l

to be consistent with (T1u2,T2y2) and Ppb
. Therefore we can conclude that

‖dpl
[2]‖ = B < ‖dpb

[2]‖.
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Consequently we have q(2) = l and obtain u2(2) = l(lB − B). Furthermore with

u0(2) = 0 there follows u1(2) = l(B − lB).

At time k = 3 we are only interested in y1(3) = l(B − lB), which can be calculated

directly. This establishes the first claim.

We now show that this leads to the unbounded increase of the gain of the closed loop

operator as l increases. From the definition of ΠP//C[Pl,1] we have

‖ΠP//C[Pl,1]‖ = sup
w0∈W \{0}

‖ΠP//C[Pl,1](w0)‖
‖w0‖

≥ ‖w1‖
‖w0‖

≥ |y1(3)|
‖w0‖

=
B|(l − l2)|

B‖1, 1 − l, 0, 0, · · · ‖ .

Furthermore there exist scalars L > 1, α, β > 0 such that

|l − l2| ≥ αl2, ∀l ≥ L

and

‖1, 1 − l, 0, 0, · · · ‖lp ≤ βl, ∀l ≥ L.

Therefore with

‖ΠP∗//C[Pl,1]‖ ≥ α

β
l, ∀l ≥ L

and the fact that the analysis can be repeated for all m > 0, the proof is complete. 2

Since the closed loop system is homogeneous, i.e. ΠP//C(αw0) = αΠP//C(w0), we have

shown that we can make the algorithm switch to an arbitrary controller in the presence

of an arbitrarily small disturbance. In order to do so, we exploited the zero initial

condition assumption on the system and ‘simulated’ the output of the plant Ppl
by

inducing appropriate disturbances. Finally we proved that the algorithm is conservative

since the actual closed loop gain has been shown to scale with the uncertainty level

l ≥ 1.

Note that a clever choice of a cover (H, ν) will in this case not provide a finite gain bound

since we established a lower bound for the actual closed loop gain. (H, ν) is merely a

theoretical device to establish a bound which is invariant to the number of elements in

G, e.g. in the refinement scaling scenario.

6 Tackling conservativeness

In this section we will discuss the role of a time-varying plant-generating operator G in

dynamic EMMSAC and present a particular construction of G for which we give a gain
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function bound that is invariant to uncertainty level information of the plant (that is, it

is universal). We will achieve this by dynamically expanding the plant model set, which

is motivated by the following observation of natural adaptive systems.

When children learn to ride a bike for the first time, they usually approach this rather

complex control problem in the following way: They first trial various ‘careful’ control

strategies, i.e. they drive slowly, and fail to control the system since a bike is rather

difficult to control at low speeds. Then, they become more and more vigorous until

the control strategy is of appropriate aggressiveness (speed) to control the bike with

satisfying performance. This strategy is not restricted to riding a bike but proves to be

a successful one in ‘learning’ many physical activities. The approach is known in the

literature as the “windsurfer approach” which is due to Lee et al. (1993), where in a

different context it is proposed to gradually increase the bandwidth of a controller in

order to improve the performance of a closed loop system. Exceptions arise, where we

have a priori knowledge on how much vigour is needed, and then approach the problem

appropriately from the start.

To replicate this strategy for EMMSAC we have to evaluate the performance of the al-

gorithm given the current plant model set and then, if not sufficient, include more plant

models, e.g. resulting in higher gain controllers. There are a number of possibilities

for evaluating the current performance of the algorithm. One strong indicator of per-

formance, assuming reasonably small disturbances ‖w0‖, is the size of the disturbance

estimates. If they are all rather large in size, none of the plant models is very close to

the true plant and we can usually expect bad performance. Another more direct and

arguably crude performance measure, which we will be using subsequently, is the size

of the observation ‖Tkw2‖ at some time k ∈ N. This choice is based on the observation

that if there is no adequate controller in the controller set for the true plant, we expect

large closed loop signals and small closed loop signals if controlled sufficiently.

Assume that the uncertainty set, as specified by the plant-generating operator U , is

finite. We can therefore let U = G = H and achieve a feasible EMMSAC design. This

leads to the following construction of a dynamic EMMSAC algorithm.

Let a plant level set, representing the ‘learning level’ of the algorithm, be given by

Pi ∈ P∗, ∅ 6= Pj ⊂ Pj+1, 1 ≤ j < i, i ∈ N (6.8)

where we assume that all Pi, i ∈ N are finite and that there exists an index i ∈ N such

that p∗ ∈ Pl, ∀l ≥ i.

Let

γ̃(Q) = max
p∈Q

(γ̂(Q,Q, 0, p) + β(Q,Q, 0, p)) , Q ⊂ PG

where γ̂ and β are from Theorem 5.14.
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Let with v > 2 the expansion rule be given by

G(k) = Pi(k), k ∈ N (6.9)

where

i(k) =

{

max{a ∈ N | γ̃v(Pa) − γ̃v(P1) ≤ ‖Tkw2‖} if 0 ≤ k <∞
∞ if k = ∞

. (6.10)

Theorem 5.14 applies with the choice G(k) = U(k) = H(k), ν = 0.

This brings us to our next result:

Theorem 6.7. Let k ∈ N. Let Pi be given by equations (6.8) and suppose that there

exists i ∈ N such that p∗ ∈ Pl, l ≥ i. Let the expansion rule be given by equation (6.10)

which gives the plant-generating operator G via equation (6.9). Suppose the EMMSAC

algorithm is standard. Suppose (w0, w1, w2) ∈ W × We × We satisfy the closed loop

equations (2.7)–(2.10). Then for all w0 ∈ W:

‖w2‖ ≤ γmod(‖w0‖)

where γmod : R+ → R+ is given by

γmod(r) = β1 + β2r + β3r
2,

with

γ̃(Q) = max
p∈Q

(γ̂(Q,Q, 0, p) + β(Q,Q, 0, p))

β1 = γ̃v+2(PN ) + γ̃(PN )γ̃v(P1)

β2 = 2γ̃2(PN ) + γ̃1−v(PN )γ̃v(P1)

β3 = γ̃2−v(PN )

where β and γ̂ are from Theorem 5.14 and

N := min{i ≥ 1 | p∗ ∈ Pi}.

Proof Let w0 ∈ W and let k∗ be given by equation (5.42). By equation (6.10)

‖Tkw2‖ ≤ γ̃v(Pi(k)+1)) − γ̃v(P1) ≤ γ̃v(Pi(k)+1), ∀k ∈ N. (6.11)

By the fact that

i(k∗) ≥ N ≥ i(k∗ − 1) + 1, (6.12)
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which follows from the definition of k∗ and since γ̃(Pi) is monotonically increasing with

i, we can write equation (6.11) with k = k∗ − 1 as

‖Tk∗−1w2‖ ≤ γ̃v(Pi(k∗−1)+1) ≤ γ̃v(PN ). (6.13)

We now have to consider the two possibilities that

1. k∗ = ∞

2. k∗ <∞.

Note that case 1 can occur if no disturbances are acting on the system, i.e. w0 = 0

since it will then rest at the initial condition and Tkw2 = 0 for all k ∈ N. We then have

by equation (6.10) that no plants can be introduced to G hence there does not exits a

k∗ ∈ N such that p∗ ∈ G(k∗).

We then have that

β1 ≥ γ̃v+2(PN ) ≥ γ̃v(PN )

hence

‖w2‖ = ‖Tk∗−1w2‖ ≤ γ̃v(PN ) ≤ β1.

In case 2 with k ≤ k∗ − 1 it follows similarly to 1. that

‖Tkw2‖ ≤ β1.

For k > k∗ − 1 we have by equations (6.10), Theorem 5.14 and inequality (6.13) that

γ̃v(Pi(k)) ≤ ‖Tkw2‖ + γ̃v(P1)

≤ γ̃(Pi(k))(‖Tk∗−1w2‖ + ‖w0‖) + γ̃v(P1)

≤ γ̃(Pi(k))(γ̃
v(PN ) + ‖w0‖) + γ̃v(P1).

Multiplication with γ̃1−v(Pi(k)) > 0 yields

γ̃(Pi(k)) ≤ γ̃2−v(Pi(k))(‖w0‖ + γ̃v(PN )) + γ̃1−v(Pi(k))γ̃
v(P1).

Furthermore, since γ̃(Pi) is monotonically increasing with i, we have with equation

(6.12) that γ̃(PN ) ≤ γ̃(Pi(k)). Hence

γ̃q−v(Pi(k)) ≤ γ̃q−v(PN ), ∀q < v

and we obtain

γ̃(Pi(k)) ≤ γ̃2(PN ) + γ̃2−v(PN )‖w0‖ + γ̃1−v(PN )γ̃v(P1). (6.14)
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By Theorem 5.14, inequality (6.14) and inequality (6.13) we now have that:

‖Tkw2‖ ≤ γ̃(Pi(k))(‖Tk∗−1w2‖ + ‖w0‖)
≤

(
γ̃2(PN ) + γ̃2−v(PN )‖w0‖ + γ̃1−v(PN )γ̃v(P1)

)
(‖Tk∗−1w2‖ + ‖w0‖)

≤
(
γ̃2(PN ) + γ̃2−v(PN )‖w0‖ + γ̃1−v(PN )γ̃v(P1)

)
(γ̃v(PN ) + ‖w0‖)

≤ γ̃v+2(PN ) + γ̃(PN )γ̃v(P1) + (2γ̃2(PN ) + γ̃1−v(PN )γ̃v(P1))‖w0‖
+γ̃2−v(PN )‖w0‖2

≤ β1 + β2‖w0‖ + β3‖w0‖2.

We observe that the bound is independent of k and therefore

‖w2‖ ≤ β1 + β2‖w0‖ + β3‖w0‖2.

as required. 2

Now observe that the given dynamic EMMSAC algorithm is universal. This important

fact follows directly from Theorem 6.7. The constants β1, β2, β3 are invariant to any

uncertainty level information and only depend on Pi and N where N defines the smallest

‘learning level’ i such that the true plant p∗ is included in PN . Hence we have a positive

answer to our second scaling question regarding expansion.

We are now in the position to compare these result for dynamic EMMSAC to the ones

obtained in Theorem 5.14 for static EMMSAC, and to the counter example in Theorem

6.6.
}

static
EMMSAC

l

g[P,C[Pl,m]](r) Theorem 5.14

Theorem 6.7

Theorem 6.6

true gain

true gain

} dynamic
EMMSAC

Figure 6.5: Gain comparison for EMMSAC under parametric uncertainty of level l

Consider Figure 6.5. In Theorem 6.6 we have discussed how the algorithm behaves in

the presence of an increasingly large parametric uncertainty l ∈ R, represented by the
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plant model set G = Pl,1 with

Pl,1 = {(−l, 1, 1), . . . , (−2, 1, 1), (−1, 1, 1), (1, 1, 1), (−2, 1, 1), . . . , (l, 1, 1)}

and we concluded that the actual closed loop gain ‖ΠPp∗//C[Pl,1]‖ scales at least linearly

with the uncertainty level l ∈ R. This gives a lower bound on the closed loop gain in

Figure 6.5 where

g[Pp∗ , C[Pl,m]](r) = sup
‖w0‖<r

‖ΠPp∗//C[Pl,m]w0‖, r ∈ R

is the worst case gain from the disturbances w0 to the internal signals w2 at a disturbance

level r ∈ R, as a function of l. Now observe that an increasingly large l in G = Pl,1

corresponds to an increasingly large constant U since G ⊂ U . This however means that

the bound γ̂ in Theorem 5.14 scales with l — as depicted in Figure 6.5.

In contrast we have show in Theorem 6.7 that for a special (dynamic) choice of G we

obtain a gain (function) bound which is invariant to l. We therefore conclude that for

large parametric uncertainties, dynamic EMMSAC allows for better performance than

static EMMSAC.

7 Dynamic versus static EMMSAC

We will now discuss in detail when dynamic EMMSAC promises tighter gain bounds

than static EMMSAC and vice versa. First recall that for a constant, compact plant-

generating operator U and a corresponding constant cover (H, ν), assuming p∗ ∈ G ⊂ U ,

there follows k∗ = 0 hence ‖Tk∗−1w2‖ = 0. By Theorem 5.14 we then obtain a (linear)

gain bound (Figure 6.6 (A)) of the form

‖w2‖ ≤ γ̂(U,H, ν, p∗)‖w0‖,

where the gain γ̂ depends on the uncertainty set specified by U and the corresponding

cover (H, ν). From Theorem 6.7, we have for a dynamic construction of U = G = H, ν =

0, assuming that there exists a k∗ < ∞ such that p∗ ∈ G(k∗), a gain function bound of

the form

‖w2‖ ≤ β1 + β2‖w0‖ + β3‖w0‖2

where β1, β2, β3 are constant and depend on v > 2, the design of the level set Pi and

the true plant P = Pp∗ (Figure 6.6 (B)). Since our goal is to optimise the bound on

the signal amplification from the disturbances ‖w0‖ to the internal signals ‖w2‖, we

can now intersect these two curves and argue by Figure 6.6 (C) that for disturbances

‖w0‖ < a, ‖w0‖ > b the gain bound obtained for static EMMSAC is tighter than the

gain bound for dynamic EMMSAC where for a < ‖w0‖ < b the converse relation holds.
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‖w0‖

‖w2‖

γ

‖w0‖

‖w2‖

β1, β2, β3
‖w0‖

‖w2‖

γ

A B C

a b

Figure 6.6: Gain bound comparison of static and dynamic EMMSAC

Usually there is no exact information on the size of the disturbances available. However

in many cases we will have a rough idea how the size of the disturbances is distributed,

e.g. small disturbances might be more likely than larger ones, and we can now use this

information to trade off the two approaches. Also note that the intersection points a, b

depend on γ̂ and β1, β2, β3 where in some scenarios they do not intersect at all, i.e. for

γ̂ < β2, and a constant plant set should be preferred over a time-varying one. In all

other cases the two curves will intersect for sufficiently large ‖w0‖ since the (quadratic)

gain function grows faster then the (linear) gain. This implies that for high noise en-

vironments, i.e. where large disturbances are very likely, a constant plant model set

should be preferred over a time-varying one.

The defining entities of the gain function bound that we are able to influence are there-

fore:

1. The constant v > 2 in

β1 = γ̃v+2(PN ) + γ̃(PN )γ̃v(P1)

β2 = 2γ̃2(PN ) + γ̃1−v(PN )γ̃v(P1)

β3 = γ̃2−v(PN ).

2. The design of G (and U,H, ν) for dynamic EMMSAC.

For 1. observe that increasingly large v will effectively straighten the curve since β3

will become increasingly small and the influence of the quadratic term is diminished.

However the offset β1 will increase. Alternatively, small v will lead to small offsets and

a faster quadratic growth. The choice of v > 2 is therefore dominated by the available

information on the size of ‖w0‖, i.e. if ‖w0‖ is expected to be large it is advantageous to

choose v large since then the gain function curve is more linear, which leads to smaller

signal amplification. However if ‖w0‖ is expected to be small, v should be small since

we have to compete with the zero offset of the gain bound for a constant G.
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In the next section we give exemplar designs for (time-varying) plant model sets G.

8 Example

m

α

Figure 6.7: Robotic arm handling uncertain loads

Consider the example in Figure 6.7. Assume that a robotic arm with 1 degree of freedom

is handling items of weight m ∈ {m1,m2,m3}, m1 ≤ m2 ≤ m3, where the control

objective is to keep the arm perpendicular to the base, i.e. to keep α small. Furthermore

assume the robotic arm to be of neglectable mass and that due to the manufacturing

process there is a tolerance on the weight of t%. Let the parametrised uncertainty set

be given by

∪
0≤j≤t

∪
m∈{m1,m2,m3}

{(1 ± j)m}, j ∈ R

where the true, unknown plant is given by p∗ = 1.04m1. Assume that the design

objective is to stabilise any true plant p∗ in the uncertainty set, where the implementation

of plant models is computationally expensive and we prefer a small number of them. The

control algorithm is reset before every pickup.

8.1 Static EMMSAC

Assume that the tolerance t is known and finite. Therefore let the plant generating

operator U be constant and defined by

PU = ∪
0≤j≤t

∪
m∈{m1,m2,m3}

{(1 ± j)m}, j ∈ R.

Also let the cover (H, ν) for U be constant. The following designs of plant model sets

are constant therefore G is a constant plant-generating operator.

Consider Figure 6.8 and a constant plant generation operator Û specifying the uncer-

tainty set PÛ = [m1(1 − t),m3(1 + t)] ⊃ PU . Construct a cover (Ĥ, ν̂) for Û , satisfying

inequality (5.43), and compute γ̄ = sup
p∈PÛ γ̂(Û , Ĥ, ν̂, p) where γ̂ is as in Theorem 5.14.

Let G = G1 be such that it spans a grid over the uncertainty set Û and make G dense
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enough that the global robustness margins bP,C = γ̄−1 overlap (Figure 6.8 with G = G1).

m1 m2

G1

G2

G3

m3 m

q(m)

Figure 6.8: Sensible choices for G; G3 in respect to the probability distribution q(m)

Observe that although this construction of G provides stability for all p∗ ∈ U , it is

conservative since by considering an overly large uncertainty set Û ⊃ U we 1. provide

stability for plants that are not in U , 2. reduce the (global) robust stability margin

since γ̂(U,H, ν, p) ≤ γ̂(Û , Ĥ, ν̂, p), p ∈ PU and 3. introduce unnecessary computational

complexity since G is overly large. It is therefore important to be as precise as possible

about the uncertainty specification.

The obvious improvement is to work with the uncertainty set U directly. We therefore

construct a cover (H, ν) for U , satisfying inequality (5.43), compute γ̄ and then construct

a reasonably sparse G such that the (global) robustness margins provide a cover for U

(Figure 6.8 with G = G2).

A different approach to construct G with the objective to optimise the expected per-

formance would be to consider the probability distribution q(m) of m imposed by the

manufacturing process. We would then distribute the plants within G such that the grid

is more ‘dense’ where the p(m) is large (Figure 6.8 with G = G3). This will on average

reduce the distance between the true plant p∗ ∈ U and a plant p ∈ G. Since |G2| = |G3|
the computational complexity is equivalent to the choice G = G2. However, we have at

present no means of showing that this construction actually leads to an on average lower

closed loop gain. Furthermore observe that the gain bound in Theorem 6.4 is weaker for

G = G3 than for G = G2 since the maximum distance between p ∈ U and the closest

p ∈ G is larger. We will show in the next section how probabilistic information may be

utilised to explicitly improve the gain bound on average.

Note that although the cover (H, ν) is a powerful tool to deal with infinitely many plant

models in G, the underlying principles that make the algorithm conservative remain in

place.
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8.2 Dynamic EMMSAC - refinement of G

Assume that the tolerance t is known and finite. Define U to be a constant plant

generating operator where

PU = ∪
0≤j≤t

∪
m∈{m1,m2,m3}

{(1 ± j)m}, j ∈ R.

Also let the cover (H, ν) for U be constant.

A dynamic on-line refinement strategy for G, inspired by the schemes introduced in

Chapter 4, Section 3, is given as follows.

Assume we determined a sufficiently dense, stabilising plant model set G(0) such that

the neighbourhoods bP,C around m ∈ G(0) cover U . For example let G(0) = G2 from

Section 8.1. Note that such G(0) can be constructed off-line. Then start the algorithm

and construct further G(k) ⊃ G(0), k > 0 on-line by interpolating new plant models in

G with respect to the two smallest residuals; however only if the corresponding plants

are adjacent. This is depicted in Figure 6.9.

m1 m2 m3 m

G(0)

k

G(k)

Figure 6.9: On-line refinement of G in respect to the size of residuals

A concrete algorithm could be given as follows. Let G(0) = G2 be constructed as in

Section 8.1. Let ai, bi ∈ G(i), i ≥ 0 be such that the corresponding residuals rai and rbi

satisfy:

rai [i] ≤ rm[i], ∀m ∈ G(i), rbi
[i] ≤ rm[i], ∀m ∈ G(i) \ ai.

If there are multiple minimal rai or rbi
choose the ones that minimise |ai| or |bi|. Then

let for j ≥ 0 and some x ∈ N

G((j + 1)x) = G(jx) ∪mjx, G(i) = G(jx), jx ≤ i < (j + 1)x
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where

mjx =

{
ajx+bjx

2 if ∄m ∈ G(jx) s.t. ajx < m < bjx and δ(mjx,m) > ǫ, ∀m ∈ G(jx)

∅ otherwise
.

Note that new elements are introduced to G as long as the distance to previously intro-

duced elements is above a certain pre-determined threshold ǫ, i.e. as long as δ(mjx,m) >

ǫ, ∀m ∈ G(jx). Such a G is monotonic by construction hence all G(k), k ∈ N are suffi-

ciently dense to provide a stabilising controller since G(0) is sufficiently dense.

Although it seems intuitive that (on-line) refinement does improve performance — plant

models are potentially closer to the true plant — it does not follow from the present

analysis. To give analytic proof that (on-line) refinement does indeed improve perfor-

mance remains open. The advantage of using on-line refinement in favour of a static

EMMSAC algorithm based on a constant, highly refined plant model set G, is that it

has the potential to utilise only a sufficient amount of computational resource (mainly

determined by the number of plant models and corresponding estimators). This may,

for example, be interesting from a power consumption point of view. However, in the

worst case, the given on-line refinement scheme will introduce as many plant models as

there is computational resource.

To suppress such behaviour, one could modify the scheme such that only a finite number

n of refined plant models is allowed. When the scheme requests more than n plant mod-

els, one could, for example, remove the ‘oldest’ plant model (from a time of introduction

point of view) in G which is not in G(0). This would imply that the required amount

of computational resource is bounded. Many other algorithms are thinkable.

8.3 Dynamic EMMSAC - expansion of G

For the purpose of this example we assume that the tolerance t is unknown. Furthermore

we assume that the uncertainty set is finite and given by

∪
0≤j≤50t

∪
m∈{m1,m2,m3}

{(1 ± 0.02j)m}, j ∈ N

where the weight increase 0.02 is some small, physically meaningful number.

Finiteness of the uncertainty set is necessary since only then we can let G = U and

obtain a feasible EMMSAC design. This allows the direct application of Theorem 5.14

and Theorem 6.7 and makes the results comparable.

We have shown in Theorem 6.6 that for a constant plant-generating operator G the

EMMSAC algorithm is conservative under an increasingly large parametric uncertainty.

This was due to the fact that we can make the algorithm switch to the controller with the

highest gain. We then employed a dynamically expanding plant model set to overcome



172 Chapter 6 Design

this issue in Theorem 6.7. We now give two design strategies for a dynamically expanding

G, based on the idea to use probabilistic information for ordering the level set Pi.

Strategy 1:

Consider Figure 6.10. We construct G such that less probable parametrisations, indi-

cated by q(m), are introduced later. For that purpose let

PI
i = ∪

0≤j<i
∪

m∈{m1,m2,m3}
{(1 ± 0.02j)m}, i, j ∈ N.

With the expansion rule i(k), given by equation (6.10), this defines G(k) = PI
i(k), k ∈ N

where we let G(k) = U(k) = H(k), k ∈ N, ν = 0. We then have N = 3 and PI
N = PI

3

PI
i

i

m1 m2 m3 m

q(m)

p∗

Figure 6.10: Strategy for designing the level set Pi with respect to q(m)

since

N := min{i ≥ 1 | p∗ ∈ Pi}

and p∗ = 1.04m1 /∈ PI
2 but p∗ ∈ PI

3 . The gain function bound in Theorem 6.7 is therefore

given by

γmod(‖w0‖) = β1 + β2‖w0‖ + β3‖w0‖2

where

β1 = γ̃v+2(PI
3 ) + γ̃(PI

3 )γ̃v(PI
1 )

β2 = 2γ̃2(PI
3 ) + γ̃1−v(PI

3 )γ̃v(PI
1 )

β = γ̃2−v(PI
3 ).

Now observe that β1, β2, β3 are invariant to the tolerance t and constant where γ̂ from

the last section scales with t (it is conservative). We therefore conclude that there exists

a tolerance t such that the gain function bound γmod is superior to the gain bound γ̂.

A further strategy that is making use of even more a priori probabilistic information is

given next.
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Strategy 2:

We now also utilise the probabilistic information on how likely it is to encounter an item

of a certain weight, indicated by q2(m), to further optimise the (expected value of the)

average performance. For that purpose we modify the strategy from the last example

and first introduce plants in the neighbourhood of the most likely item, then plants in

the neighbourhood of the second most likely item and so on.

q1(m)

PII
i

p∗

i

q2(m)

m1 m2 m3 m

m

Figure 6.11: Strategy for designing a time varying G, minding q1(m) and q2(m)

Such a strategy is depicted in Figure 6.11 where for a, i ∈ N, i > 0

P̄i(m,a) =

{

∪a≤j<i{(1 ± 0.02(j − a))m} if a < i

∅ otherwise

and

PII
i = P̄i(m1, 0) ∪ P̄i(m2, 4) ∪ P̄i(m3, 8).

With the expansion rule i(k), given by equation (6.10), this defines G(k) = PII
i(k), k ∈ N

where we let G(k) = U(k) = H(k), k ∈ N, ν = 0.

For this setup N = 3 however, since PII
3 ⊂ PI

3 and β1, β2, β3 are all strictly increasing

functions we can conclude that the second strategy yields a tighter bound.

Naturally, if the probabilistic assumptions about p∗ are incorrect and p∗ is close to its

worst case, e.g. p∗ = (1 + t)m3, the advantage over a constant plant set is lost. To

see this, note that for the first strategy N = 50t + 1 where for the second strategy

N = 50t+9. With γ̂ > 1 from Theorem 5.14 and β2 from Theorem 6.7 we have in either
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case

γ̄ = max
p∈PN

γ̂(PN ,PN , 0, p)

< max
p∈PN

(β(PN ,PN , 0, p) + γ̂(PN ,PN , 0, p))

≤ γ̃(PN )

≤ 2γ̃2(PN ) + γ̃1−v(PN )γ̃v(PN )

= β2.

As discussed in Section 6, there are other sensible choices apart from ‖Tkw2‖ for mea-

suring the current performance at time k ∈ N. However, the overall objective must be

to dynamically expand G as a function of performance (determined by some measure)

since only then are we able to overbound the gain in Theorem 5.14 to obtain a constant

gain function. We can therefore expect similar tradeoffs for other algorithms that utilise

performance information to dynamically expand plant model sets.

We have sketched how a priori information about the plant can be utilised to construct

plant model sets and evaluated tradeoffs between the probability distribution on ‖w0‖,
the probability distribution on the plant, v > 2 and the design of the plant model

set itself. Furthermore, we have shown how on-line refinement may be conducted. A

principled design methodology is within reach; however further research is required.
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Conclusion

This thesis presents comprehensive robustness and performance guarantees for Estimation-

based Multiple Model Switched Adaptive Control (EMMSAC) algorithms in terms of

lr, 1 ≤ r ≤ ∞ gain (function) bounds on the gain from the external disturbances w0 to

the internal signals w2. The axiomatic style and abstraction level of the analysis lead

to the generality of the results: they apply to the class of minimal MIMO LTI plants

but also to non-linear plants showing linear growth. Large classes of estimation algo-

rithms, such as Kalman filters or (matrix) optimisation methods, may be utilised in the

estimation process.

Remarkably, the style in which the analysis was conducted led to generalisations almost

by accident (e.g. to the MIMO case and to the case of atomic non-linear plants showing

linear growth) and makes future generalisations appear inevitable, e.g. to time-varying

plants and to non-linear plants with super-linear growth.

It was shown that performance and robustness of the algorithm is guaranteed invariant

to the refinement scaling of the plant model set. However it was also shown that if the

plant model set is constant then performance and robustness diminish for expansion

scaling of the plant model set corresponding to an increasing level of uncertainty — a

static EMMSAC algorithm can be conservative. To overcome the conservativeness issue,

an extension based on a dynamic (on-line) expansion law for the plant model set was

introduced, which lead to the construction of gain function bounds that are invariant to

the level of uncertainty — that is a dynamic EMMSAC algorithm is universal.

One particular feature of EMMSAC algorithms is that robustness guarantees can be

supplied where LTI controllers fail to perform satisfactory or do not provide stability at

all: for plants with large uncertainties and for non-simultaneously stabilisable plants. A

qualitative, however completely rigorous discussion was provided, showing when dynamic

EMMSAC promises tighter gain bounds than static EMMSAC and vice versa. Also

dynamic (on-line) refinement schemes for the plant model set were discussed which

175
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seamlessly embed into the EMMSAC framework. Fundamental design questions on how

to construct plant model sets, as posed at the beginning of this thesis (Chapter 1), have

been addressed and answered from the perspective of prior information and performance.

1 Directions for future research

There are two specific technical questions that follow directly from this thesis: Firstly, it

needs to be shown that both estimators can satisfy Assumption 3.4(5), or a modification

thereof, with a continuous χ. Secondly, it needs to be investigated how sampling of a

time-varying uncertainty set (e.g. a continuum) can lead to the construction of a real-

isable, stabilising time-varying plant model set (see Chapter 6, Section 4). A positive

answer to the first question will allow the unconditional application of the algorithm to

compact uncertainty sets, while the answer to the second question may allow the utili-

sation of sampled, finite plant model sets in dynamic expansion schemes for continuous

uncertainty sets.

It is important to investigate the relationship between the distance χ (Assumption

3.4(5)) and the gap metric δ, since then the local cover constructions in terms of (H, ν)

and the global cover constructions in terms of G and bP,C may be unified. The question

of computing χ in different signal spaces also needs to be addressed.

An interesting question from a performance and design perspective is how the estab-

lished gain bound may be improved. Superficially, there is plenty of room for such

improvements since many simplifications and shortcuts in the analysis are conservative.

However, the current bound appears to correctly specify (at least qualitatively) the

tradeoffs involved in choosing the algorithm’s key variables: the plant-generating oper-

ator G, the controller design procedure K as well as the attenuation function l and the

delay ∆. We therefore do not expect significant qualitative changes in the bound — per-

haps with the exception of (on-line) refinement of the plant model set since the current

bound is invariant to refinement and does not reflect expected performance tradeoffs

in this respect. This relationship needs to be established in order to make refinement

schemes part of a performance-orientated design methodology.

Of great interest are also further schemes that exploit the freedom that G is allowed to

be time-varying, although some may require a modified analysis. For example unfalsi-

fied control type schemes, where plant models are removed from the plant model set if

it is unlikely that they represent the true plant (see Safonov and Tsao (1997)), or safe

switching schemes (e.g. see Anderson et al. (2001)), where plant models are excluded if

the corresponding controller could be destabilising to the true plant. Covariance infor-

mation from the Kalman filter may be utilised in this respect to indicate the ‘confidence’

in a plant model. Schemes that could be implemented within the existing framework

directly are, for example, a dynamic expansion/refinement law of the plant model set in
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relation to residual information from the estimators, or a scheme to momentarily disable

estimators corresponding to plant models that will not be considered in the near future

e.g. since their residuals are too large in relation to others.

Furthermore it is of great interest to broaden the underlying plant class further, for ex-

ample to non-linear plants with super-linear growth. As a first step one could consider

only local disturbances and overbound super-linear growth by local linear growth. How-

ever, in general, non-linear modifications to the controller assumptions and the analysis

are required.

The algorithm can already be applied to mildly time-varying plants, where the variation

is contained within a small neighbourhood. For larger variations the present estimator

assumptions need to be modified to include some kind of ‘forgetting factor’. A time-

varying generalisation would also potentially allow the application of EMMSAC in the

domain of fault detection and fault tolerant control. This link is very interesting since

many algorithms in this area are based on Kalman filters.

The investigation of disturbance estimation algorithms which are low in complexity and

allow large or even continuous plant model sets is important in order to fully exploit the

EMMSAC approach in practice. First steps in this direction could be the use of state

sharing ideas, e.g. in the style of Morse, for disturbance estimation. Analogously to a

state shared observer, a bank of optimal estimators then shares common information in

order to reduce computational complexity. The construction of the estimator necessarily

leads to the question of implementation, i.e. to find efficient, numerically stable hardware

estimator implementations.

Another open question here is the relationship between optimal estimators and (output

error type) observers. This relationship appears to be close (the Kalman filter estimator

has observer structure) and it may be possible to treat general (non Kalman filter type)

observers as sub-optimal estimators. If this link can be made explicit in terms of bounds

between residuals, then the presented theory would encompass the class of observer

based multiple model switched adaptive control algorithms.

Further research is needed to conduct a fully Bayesian treatment of the plant model

set design problem. I.e. given a signal norm lr, 1 ≤ r ≤ ∞, (user) constraints on the

attenuation function l as well as the delay ∆ and given probability distributions on the

uncertainty and the disturbance signal w0, a general formalism needs to be constructed

that has a (time-varying) plant model set G and the delay ∆ as an outcome. For dynamic

EMMSAC, such a design flow requires a sensible interpretation of a time varying U in

respect to the uncertainty description the control problem. A formalised approach to

design would provide a considerable advance over existing theory.
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Appendix

Let Pp,xp
0

be defined by

Pp,xp
0

: Ue → Ye : up
1 7→ yp

1, p = (Ap, Bp, Cp) ∈ P̄LTI (A.1)

where

xp(k + 1) = Apxp(k) +Bpu
p
1(k) (A.2)

yp
1(k) = Cpxp(k) (A.3)

xp(0) = xp
0, k ∈ N. (A.4)

This definition is similar to the one in equations (3.4)–(3.4) however with a possibly

non-zero initial condition xp
0.

Let the Kalman filter to a plant Pp,xp
0

with

x = xp, (w, v)⊤ = (up
0, y

p
0)

⊤, (u, y)⊤ = (u2, y2)
⊤, (F,G,B,H) = (Ap, Bp,−Bp, Cp), n = np

and T ≥ 0, Σ : N 7→ Rn×n, x̂ : [0, T ] 7→ Rn given by

x̂(k + 1/2) = x̂(k) + Σ(k)H⊤[HΣ(k)H⊤ + I]−1[y(k) −Hx̂(k)] (A.5)

Σ(k + 1/2) = Σ(k) − Σ(k)H⊤[HΣ(k)H⊤ + I]−1HΣ(k) (A.6)

x̂(k + 1) = Fx̂(k + 1/2) +Bu(k) (A.7)

Σ(k + 1) = FΣ(k + 1/2)F⊤ +GG⊤ (A.8)

ỹ1(k) = Hx̂(k) (A.9)

where Σ(0) = Σ(0)⊤ ∈ Rn×n and Σ(0) = Σ(0)⊤ ≥ 0.
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Define as a notion of the output error between observation and estimation the (scaled)

residual r : N → R+ by

r(T ) =

[
T∑

k=0

(‖y(k) −Hx̂(k)‖2
[HΣ(k)H⊤+I]−1)

]1/2

=

[
T∑

k=0

‖y(k) − ỹ1(k)‖2
[HΣ(k)H⊤+I]−1

]1/2

for T ≥ 0.

The following lemma shows that r is defined, i.e. that HΣ(k)H⊤+I is always invertible.

It formalises known properties of the discrete-time Riccati equation, which nevertheless

appear hard to source in the literature.

Lemma A.1. Let (F,G,H) ∈ P̄LTI and suppose H is full row rank. Let the Kalman

filter equations for Σ be given by equations (A.6),(A.8). If Σ(0) = Σ⊤(0) > 0 then

Σ(k) = Σ⊤(k) > 0 for all k ≥ 0. If Σ(0) = Σ⊤(0) ≥ 0 then Σ(k) = Σ⊤(k) ≥ 0 for all

k ≥ 0.

Proof Let k > 0. We first show that Σ(0) = Σ⊤(0) > 0 implies Σ(k) = Σ⊤(k) > 0. The

proof is by induction.

Since Σ(0) = Σ(0)⊤ > 0 by assumption, the base step holds trivially.

For the inductive step have to show that Σ(k) = Σ⊤(k) > 0 implies Σ(k + 1) = Σ⊤(k +

1) > 0.

Substituting equation (A.6) into equation (A.8) leads to

Σ(k + 1) = FΣ(k)F⊤ − FΣ(k)H⊤(HΣ(k)H⊤ + I)−1HΣ(k)F⊤ +GG⊤. (A.10)

From Σ(k) = Σ⊤(k) > 0, it follows that HΣ(k)H⊤ + I is symmetric and invertible,

hence
(

(HΣ(k)H⊤ + I)−1
)⊤

=
(

(HΣ(k)H⊤ + I)T
)−1

and we have from equation (A.10) that:

Σ(k + 1)⊤ =
(

FΣ(k)F⊤ − FΣ(k)H⊤(HΣ(k)H⊤ + I)−1HΣ(k)F⊤ +GG⊤
)⊤

= FΣ(k)F⊤ − FΣ(k)H⊤
(

(HΣ(k)H⊤ + I)−1
)⊤

HΣ(k)F⊤ +GG⊤

= FΣ(k)F⊤ − FΣ(k)H⊤
(

(HΣ(k)H⊤ + I)T
)−1

HΣ(k)F⊤ +GG⊤

= FΣ(k)F⊤ − FΣ(k)H⊤(HΣ(k)H⊤ + I)−1HΣ(k)F⊤ +GG⊤

= Σ(k + 1).

Observe that equation (A.10) can be written as

Σ(k + 1) =
[

F G
]
[

Σ(k) − Σ(k)H⊤(HΣ(k)H⊤ + I)−1HΣ(k) 0

0 I

]
[

F G
]⊤
. (A.11)
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Since (F,G,H) ∈ P̄LTI is minimal, (F,G) is controllable. By the Popov-Belevitch-

Hautus (PBH) test this implies that
[

Iz − F G
]

, z ∈ C is full row rank (e.g. see

Hendricks et al. (2009), page 141 or Hogben et al. (2007), page 57-8) hence with z = 0

that
[

−F G
]

is full row rank. Since left or right multiplication by a non-singular

matrix is a rank preserving operation (e.g. see Hogben et al. (2007), page 2-4) and
[

F G
]

=
[

−F G
]
[

−I 0

0 I

]

we have that also
[

F G
]

is full row rank. By equation

(A.11) it follows that Σ(k + 1) is positive definite if

Σ(k) > Σ(k)H⊤(HΣ(k)H⊤ + I)−1HΣ(k). (A.12)

Since H is full row rank, inequality (A.12) holds if

HΣ(k)H⊤ > HΣ(k)H⊤(HΣ(k)H⊤ + I)−1HΣ(k)H⊤ (A.13)

holds, where inequality (A.13) is derived by left and right multiplication of inequality

(A.12) with H and H⊤.

Let α = HΣ(k)H⊤ > 0. Then α = HΣ(k)H⊤ + I > 0, hence α + I is invertible and

(α+ I)−1 > 0. Since α(α+ I) = (α+ I)α, it follows that (α+ I)−1α = α(α+ I)−1 , and

hence α(α+ I)−1 > 0 (see Horn and Johnson (1990)).

Then:

0 < α(α + I)−1 = α(α+ I)−1(I + α− α) = α− α(α+ I)−1α

hence

HΣ(k)H⊤ > HΣ(k)H⊤(HΣ(k)H⊤ + I)−1HΣ(k)H⊤

and so Σ(k + 1) = Σ(k + 1)⊤ > 0 if Σ(k) = Σ(k)⊤ > 0.

This completes the induction and we conclude that if Σ(0) = Σ(0)⊤ > 0 then Σ(k) =

Σ(k)⊤ > 0 for all k ∈ N. The same argument holds in the semi-definite case with ≥
instead of > in the above inequalities and noting that α ≥ 0 ⇒ (α+ I) > 0 and hence

is invertible. Therefore Σ(k + 1) ≥ 0 if Σ(k) ≥ 0 as required. 2

1 Half-step identities

We now give two key identities that are crucial to subsequent calculations.
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Lemma A.2. Let x,m ∈ Rn, v ∈ Ro, H ∈ Ro×x and Σ ∈ Rn×n, Σ = Σ⊤ > 0 where

m,n, o ∈ N. Then HΣH⊤ + I is invertible. Define

y = Hx+ v

x̂ = m+ ΣH⊤
[

HΣH⊤ + I
]−1

(y −Hm)

Σ̂ = Σ − ΣH⊤
[

HΣH⊤ + I
]−1

HΣ.

Then Σ, Σ̂ are invertible and the following identity holds:

(x− x̂)⊤Σ̂−1(x− x̂) = v⊤v+(x−m)⊤Σ−1(x−m)−(y−Hm)⊤
[

HΣH⊤ + I
]−1

(y−Hm)

Proof For notational convenience let

α =
[

HΣH⊤ + I
]−1

β = I − ΣH⊤αH

where we note that HΣH⊤ + I is invertible since HΣH⊤ is positive semi-definite. Then

x̂ = βm+ ΣH⊤αHx+ ΣH⊤αv

Σ̂ = βΣ.

It now follows that:

(x− x̂)⊤Σ̂−1(x− x̂) = ‖x− ΣH⊤αHx− βm− ΣH⊤αv‖2
Σ̂−1

= ‖βx− βm− ΣH⊤αv‖2
Σ̂−1

= (β(x−m) − ΣH⊤αv)⊤Σ̂−1(β(x−m) − ΣH⊤αv)

= ((x−m)⊤β⊤ − v⊤αHΣ)Σ̂−1(β(x−m) − ΣH⊤αv).

Observe that β is invertible and

β−1 = I + ΣH⊤H.
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Since Σ̂ is symmetric, Σ̂−1 = Σ−1β−1 = (β⊤)−1Σ−1, hence

(x− x̂)⊤Σ̂−1(x− x̂) = ((x−m)⊤Σ−1 − v⊤αHβ−1)(β(x−m) − ΣH⊤αv)

= (x−m)⊤Σ−1β(x−m) − v⊤α(H(x−m)) − (H(x−m))⊤αv

+v⊤αHβ−1ΣH⊤αv

= (x−m)⊤Σ−1(x−m) − (H(x−m))⊤α(H(x−m))

−v⊤α(H(x −m)) − (H(x−m))⊤αv

+v⊤αHβ−1ΣH⊤αv

= (x−m)⊤Σ−1(x−m) − (H(x−m) + v)⊤α(H(x −m) + v)

+v⊤
(

α+ αHβ−1ΣH⊤α
)

v.

It remains to show that
(
α+ αHβ−1ΣH⊤α

)
= I.

To see this observe that

α+ αHβ−1ΣH⊤α = α+ αHΣH⊤α+ αHΣH⊤HΣH⊤α

= α+ αHΣH⊤
[

HΣH⊤ + I
]

︸ ︷︷ ︸

α−1

α

= α
[

HΣH⊤ + I
]

︸ ︷︷ ︸

α−1

= I

as required. 2

Note that α is more than a simple notational convenience. It turns out to be the scaling

factor in the least-squares calculation below.

Before we state the second key identity we give a preliminary result.
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Lemma A.3. Let (F,G,H) ∈ P̄LTI and suppose H is full row rank. Let Σ1 = Σ⊤
1 > 0.

Then there exists
[

K L
]

such that

[

F G
]
[

Σ1 0

0 I

][

K⊤

L⊤

]

= 0 (A.14)

[

K L
]
[

Σ1 0

0 I

][

F⊤

G⊤

]

= 0 (A.15)

[

K L
]
[

Σ1 0

0 I

][

K⊤

L⊤

]

= I (A.16)

and

[

F G

K L

]

is invertible.

Proof Since (F,G, ·) ∈ P̄LTI are minimal, (F,G) is controllable. This implies that
[

F G
]

is full row rank (see the proof of Lemma A.1 above). Let V = rowspan(
[

F G
]

).

After Gram-Schmidt we can construct a orthonormal basis for V ⊥ with respect to the

weight

[

Σ1 0

0 I

]

= W and the weighted scalar product 〈x, y〉W = x⊤Wy. Let the basis

vectors of V ⊥ be the rows of
[

K L
]

.

Equations (A.14)–(A.16) now follow directly from the definition of the weighted scalar

product. Since
[

F G
]

is full row rank,
[

K L
]

and hence

[

F G

K L

]

is full rank. There-

fore

[

F G

K L

]

is invertible as required. 2

We now come to the second key identity:

Lemma A.4. Let (F,G,H) ∈ P̄LTI and suppose H is full row rank. Let Σ1 = Σ⊤
1 > 0.

Define

Σ2 := FΣ1F
⊤ +GGT . (A.17)

Then Σ1,Σ2 are invertible and there exist K,L such that

‖Fa+Gb‖2
Σ−1

2
+ ‖Ka+ Lb‖2 = ‖a‖2

Σ−1
1

+ ‖b‖2

for all a,b.

Proof Let
[

K L
]

be constructed as in Lemma A.3. From equation (A.17) and Lemma

A.3 it follows that
[

Σ2 0

0 I

]

=

[

F G

K L

][

Σ1 0

0 I

][

F G

K L

]⊤

.
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Since

[

F G

K L

]

is invertible by construction and Σ1 > 0 it follows that Σ2 is invertible

and
[

F G

K L

]⊤ [

Σ−1
2 0

0 I

][

F G

K L

]

=

[

Σ−1
1 0

0 I

]

. (A.18)

Therefore by equation (A.18) for all

[

a

b

]

there holds

‖Fa+Gb‖2
Σ−1

2
+ ‖Ka+ Lb‖2 =

[

a

b

]⊤ [

F G

K L

]⊤ [

Σ−1
2 0

0 I

][

F G

K L

][

a

b

]

=

[

a

b

]⊤ [

Σ−1
1 0

0 I

][

a

b

]

= ‖a‖2
Σ−1

1
+ ‖b‖2.

as required. 2

2 Kalman filtering and least squares

We are now in the position to combine the two established key lemmas.

Lemma A.5. Let (Ap, Bp, Cp) ∈ P̄LTI and suppose Cp is full row rank. Let (F,G,B,H) =

(Ap, Bp,−Bp, Cp). Let v,w ∈ l2 and Σ(0) = Σ(0)⊤ > 0. Then for all T ≥ 0 there exists

a K(k), L(k), k ∈ [0, T ] such that

‖x(T + 1) − x̂(T + 1)‖2
Σ(T )−1 = ‖x(0) − x̂(0)‖2

Σ(0)−1 +
T∑

k=0

(‖w(k)‖2 + ‖v(k)‖2)

−
T∑

k=0

(‖y(k) −Hx̂(k)‖2
[HΣ(k)H⊤+I]−1)

−
T∑

k=0

‖K(k)[x(k) − x̂(k + 1/2)] + L(k)w(k)‖2

(A.19)

and
[

K(k) L(k)
]

is full rank.

Proof Let k ∈ [0, T ]. By Lemma A.1 Σ(i) = Σ(i)⊤ > 0 for all i ≥ 0 hence Σ(k) =

Σ⊤(k) > 0 is invertible. From equations (A.5)–(A.9) and Lemma A.2 we have with

Σ̂ = Σ(k + 1/2), Σ = Σ(k), m = x̂(k), y = y(k), v = v(k), x = x(k), x̂ = x̂(k + 1/2)

that Σ(k + 1/2) is invertible and

‖x(k) − x̂(k + 1/2)‖2
Σ(k+1/2)−1 − ‖x(k) − x̂(k)‖2

Σ(k)−1 =

‖v(k)‖2 − ‖y(k) −Hx̂(k)‖2
[HΣ(k)H⊤+I]−1.
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Furthermore since x(k + 1) = Fx(k) +Bu+Gw we have by equations (A.2), equations

(A.7), (A.8) and Lemma A.4 with

Σ1 = Σ(k + 1/2), Σ2 = Σ(k + 1), K = K(k), L = L(k), a = x(k) − x̂(k + 1/2), b = w

that

‖x(k + 1) − x̂(k + 1)‖2
Σ(k+1)−1 − ‖x(k) − x̂(k + 1/2)‖2

Σ(k+1/2)−1

= ‖w(k)‖2 − ‖K(k)[x(k) − x̂(k + 1/2)] + L(k)w(k)‖2.

Adding these two equalities gives

‖x(k + 1) − x̂(k + 1)‖2
Σ(k+1)−1 − ‖x(k) − x̂(k)‖2

Σ(k)−1

= ‖v(k)‖2 + ‖w(k)‖2 − ‖y(k) −Hx̂(k)‖2
[HΣ(k)H⊤+I]−1

− ‖K(k) [x(k) − x̂(k + 1/2)] + L(k)w(k)‖2 .

Summing from k = 0 to k = T leads to equation (A.19) as required. 2

Define

Z [a,b]
p (w2) =







v ∈ Rm(T+1) × Ro(T+1) × Rn

∣
∣
∣
∣
∣
∣
∣

∃(up
0, y

p
0 , x

p
0)

⊤ ∈ Ue × Ye × Rn s.t.

Rb−a,bPp,xp
0
(up

0 − u2) = Rb−a,b(y
p
0 − y2),

v =
(
Rb−a,bu

p
0,Rb−a,by

p
0, x

0
p

)⊤







which is the set of initial conditions xp
0 and disturbance signals up

0, y
p
0 that are compatible

with a plant Pp,xp
0

and the observation u2, y2 over the interval [a, b], a ≤ b.

Theorem A.6. [Theorem 3.9] Let p = (Ap, Bp, Cp) ∈ P̄LTI and suppose Cp is full

row rank. Let (F,G,B,H) = (Ap, Bp,−Bp, Cp). The Kalman filter equations (A.5)–

(A.9) with initial condition x̂(0) = 0 and Σ(0) = Σ(0)⊤ > 0 describe a deterministic

least-squares filter:

r2(T ) = inf
(up

0,yp
0 ,xp

0)∈Z
[0,T ]
p (w2)

(‖xp
0‖2

Σ−1(0) + ‖up
0‖2

2 + ‖yp
0‖2

2).

Proof Let x̂(0) = 0. We then have from equality (A.19) that:

T∑

k=0

(‖y(k) −Hx̂(k)‖2
[HΣ(k)H⊤+I]−1) ≤ ‖x(0)‖2

Σ−1(0) +

T∑

k=0

(‖w(k)‖2 + ‖v(k)‖2). (A.20)

where x̂ is generated from y by equations (A.5),(A.7) and Σ is from equations (A.6),(A.8).
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Observe that x̂ depends on y but not on the disturbances v,w and the initial condition

x(0) that generated y. Hence

‖x(0)‖2
Σ−1(0) +

T∑

k=0

(‖w(k)‖2 + ‖v(k)‖2)

is minimised if equality holds in inequality (A.20).

With the sufficient conditions x̂(0) = 0, x(T + 1) = x̂(T + 1) and

K(k) [x(k) − x̂(k + 1/2)] + L(k)w(k) =

K(k)
[

x(k) − x̂(k) − Σ(k)H⊤[HΣ(k)H⊤ + I]−1[y(k) −Hx̂(k)]
]

+ L(k)w(k) = 0,

for k ∈ [0, T ] we have from (A.19) that

‖x(0)‖2
Σ−1(0) +

T∑

k=0

(‖w(k)‖2 + ‖v(k)‖2) =
T∑

k=0

(‖y(k) −Hx̂(k)‖2
[HΣ(k)H⊤+I]−1).

In the following we show that these sufficient conditions can be met. From equation

(A.2), describing Pp,xp
0
, we have with

w = up
0, u = up

1, (F,G,B) = (Ap, Bp,−Bp), x = xp

that

x(k + 1) = Fx(k) +Gw(k) +Bu(k),

hence we obtain for k ∈ [0, T ]

[

x(k + 1) −Bu(k)

K(k)
[
x̂(k) + Σ(k)H⊤[HΣ(k)H⊤ − I]−1[y(k) −Hx̂(k)]

]

]

=

[

F G

K(k) L(k)

][

x(k)

w(k)

]

.

Since

[

F G

K(k) L(k)

]

is invertible and u(k), y(k), x̂(k), Σ(k), k ∈ [0, T ] are known, this

can be solved backwards for x(k), w(k), k ∈ [0, T + 1]. Therefore there exist solutions

x = x̃ and w = w̃ for x̂(0) = 0 such that x(T + 1) = x̂(T + 1). Hence

K(k)
[

x(k) − x̂(k) − Σ(k)H⊤[HΣ(k)H⊤ + I]−1[y(k) −Hx̂(k)
]

+ L(k)w(k) = 0, k ∈ [0, T ].

Recall that (x(0), w, v)⊤ = (xp
0, u

p
0, y

p
0)

⊤ and (u, y)⊤ = (u2, y2)
⊤. To see that the Kalman

filter is a least-squares filter observe that if

xp(k + 1) = Axp(k) +Bup
1(k) = Axp(k) +B(u2(k) − up

0(k))
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is initialised with xp(0) = xp
0 = x̃(0) and driven by up

0(k) = w̃(k), k ∈ [0, T ] then

xp(T + 1) = x̂(T + 1). Hence

‖x(0)‖2
Σ−1(0) +

T∑

k=0

(‖w(k)‖2 + ‖v(k)‖2)

= inf
(up

0,yp
0 ,xp

0)∈Z
[0,T ]
p (w2)

(‖xp
0‖2

Σ−1(0) + ‖up
0‖2

2 + ‖yp
0‖2

2)

=

T∑

k=0

(‖y(k) −Hx̂(k)‖2
[HΣ(k)H⊤+I]−1) = r2(T )

as required. 2

At this point we emphasise that (w̃, ṽ, x̃)⊤ are generated by the least-squares filter in a

non-recursive way. This, however, does not matter since more importantly x̂(k),Σ(k), k ∈
N are recursively generated via the Kalman filter equations and so is the residual r(k).

Before we come to our last Theorem, showing the relation of the Kalman filter to a

least-squares filter for the initial condition Σ(0) = 0, we establish the following lemma:

Lemma A.7. Let L be a closed subset of Rn. Let

(x̃n, ỹn) = argmin
(x,y)∈L

(n‖x‖2 + ‖y‖2). (A.21)

Suppose (x̃n, ỹn) → (0, ỹ) as n→ ∞. Then

(0, ỹ) = argmin
(0,y)∈L

‖y‖2.

Proof Suppose

(0, y) = argmin
(0,y)∈L

‖y‖2. (A.22)

Since L is closed, (x̃n, ỹn) ∈ L implies (0, ỹ) ∈ L. Therefore we have

‖(0, y)‖2 ≤ ‖(0, ỹ)‖2 (A.23)

since (0, y) is the minimiser, but (0, ỹ) ∈ L is not necessarily the minimiser.

For all n ≥ 1 we also have from equation (A.21) that

n‖x̃n‖2 + ‖ỹn‖2 ≤ n‖x̄‖2 + ‖ȳ‖2

for any (x̄, ȳ) ∈ L, in particular if (0, y) ∈ L then

n‖x̃‖2 + ‖ỹ‖2 ≤ n‖0‖2 + ‖y‖2 = ‖y‖2.
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We therefore arrive at

‖y‖2 ≥ n‖x̃n‖2 + ‖ỹn‖2 ≥ ‖ỹn‖2 ≥ ‖ỹ − ỹ + ỹn‖2 ≥ (‖ỹ‖ − ‖ỹn − ỹ‖)2 .

Since ỹn → ỹ, ‖ỹn − ỹ‖ → 0 hence ‖y‖2 ≥ ‖ỹ‖2 and therefore

‖(0, y)‖2 ≥ ‖0, ỹ‖2. (A.24)

Inequalities (A.23),(A.24) now lead to

‖(0, ỹ)‖ = ‖(0, y)‖ = argmin
(0,y)∈L

‖y‖2

as required. 2

Recall the definition of N [a,b]
p from Chapter 3:

N [a,b]
p (w2) :=







v ∈ W|[a,b]

∣
∣
∣
∣
∣
∣
∣

∃(up
0, y

p
0)

⊤ ∈ We s.t.

Rb−a,bPp (up
0 − u2) = Rb−a,b(y

p
0 − y2),

v = (Rb−a,bu
p
0,Rb−a,by

p
0)







⊂ W|[a,b].

Hence N [0,T ]
p (w2) = Z [0,T ]

p (w2) when x0
p = 0. The next theorem is to handle this case

(x0
p = 0) in contrast to the previous theorem where this is not enforced.

Theorem A.8. [Theorem 3.10] Let p = (Ap, Bp, Cp) ∈ P̄LTI and suppose Cp is full

row rank. Let (F,G,B,H) = (Ap, Bp,−Bp, Cp). The Kalman filter equations (A.5)–

(A.9) with initial condition x̂(0) = 0 and Σ(0) = Σ(0)⊤ = 0 describe a deterministic

least-squares filter initialised to zero:

r2(T ) = inf
(up

0 ,yp
0)∈N

[0,T ]
p (w2)

(‖up
0‖2

2 + ‖yp
0‖2

2).

Proof Let T ∈ N. For n ∈ N define Σn(0) = 1
nI. So Σn(0) = Σn(0)⊤ > 0. Let

(ũn
0 , ỹ

n
0 , x̃

n
0 ) = argmin

(u0,y0,x0)∈Z
[0,T ]
p (w2)

(‖x0‖2
Σ−1

n (0)
+ ‖u0‖2

2 + ‖y0‖2
2)

that is the least-squares estimate from the Kalman filter initialised with

Σn(0) =
1

n
I, x̂(0) = 0

at time T ∈ N.

Since there is a solution (u0, y0) ∈ N [0,T ]
p (w2), hence a solution(u0, y0, 0) ∈ Z [0,T ]

p (w2) it

follows that

‖x̃n
0‖2

nI + ‖ũn
0‖2

2 + ‖ỹn
0 ‖2

2 ≤ ‖u0‖2
2 + ‖y0‖2

2 (A.25)
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which implies ‖x̃n
0‖ → 0 for n → ∞ (since if not, ‖x̃n

0‖nI → ∞ as n → ∞ but the right

half side of inequality (A.25) is constant), hence x̃n
0 → 0. By continuity of the Kalman

filter equation solutions with respect to the initial conditions (Σ(0), x̂(0)) = (Σn(0), 0)

on the interval [0, T ] it follows that (ũn
0 , ỹ

n
0 ) → (ũ0, ỹ0) as n → ∞ where (ũ0, ỹ0) is the

solution of the Kalman filter equations on [0, T ] with initial condition (Σ(0), x̂(0)) =

(0, 0). The desired result then follows from Lemma A.7 with ỹn = (ũn
0 , ỹ

n
0 ), yn = (ũ0, ỹ0)

x̃n = x̃n
0 and L = Z [0,T ]

p (w2):

r2(T ) = lim
n→∞

inf
(u0,y0,x0)∈Z

[0,T ]
p (w2)

(‖x0‖2
Σ−1

n (0)
+ ‖u0‖2

2 + ‖y0‖2
2)

= inf
(up

0 ,yp
0)∈N

[0,T ]
p (w2)

(‖up
0‖2

2 + ‖yp
0‖2

2)

as required. 2
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