
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

School of Electronics and Computer Science

Bringing Requirements Engineering to Formal Methods:

Timing diagrams for Event-B and KAOS

by

Tossaporn Joochim

Thesis for the degree of Doctor of Philosophy

February, 2010

i

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

BRINGING REQUIREMENTS ENGINEERING TO FORMAL METHODS:

TIMING DIAGRAMS FOR EVENT-B AND KAOS

by Tossaporn Joochim

Event-B is a language for the formal development of reactive systems. At

present the RODIN toolkit (RODIN, 2009) for Event-B is used for modelling

requirements, specifying refinements and verification. In order to extend the

ability to model graphically requirements for the real-time domain, where timing

constraints are essential, we use Timing diagrams for Event-B, UML-B and

Knowledge Acquisition in autOmated Specification (KAOS). The Timing

diagrams, based on UML 2.0 Timing diagram notation (OMG, 2007), provide an

intuitive graphical specification capability for timing constraints and causal

dependencies between system events. Translation schemes to Event-B, UML-B

and KAOS are proposed and presented.

The benefit of our contribution is providing a graphical option to generate

timing constraints and causal dependencies of a reactive system to Event-B,

UML-B and KAOS Goals. Thus, instead of manually generating these Event-B,

UML-B and KAOS Goal models in a textual form, users can use the TD as a

graphical front-end, and these target models are created automatically.

We compare the three applications of the Timing diagrams in terms of their

contribution to formal requirements engineering. A partial case study of a Lift

System is used to demonstrate the translation in practice.

ii

Contents

Chapter 1� Introduction .. 1�

1.1� Overview ... 1�

1.2� Motivation ... 9�

1.3� Goal ... 10�

1.4� Contribution Overview .. 12�

1.5� Document Structure... 14�

Chapter 2� Technical Background ... 17�

2.1� Requirements Engineering .. 18�

2.2� Formal Methods .. 19�

2.3� Event-B Modelling .. 20�

2.3.1� Contexts and Machines ... 21�

2.3.2� Before-After predicates associated with an assignment 23�

2.3.3� Refinement .. 25�

2.4� RODIN Tools .. 27�

2.5� UML-B .. 29�

2.5.1� Package diagram ... 29�

2.5.2� Context diagram .. 30�

2.5.3� Class diagrams... 31�

2.5.4� Statemachines .. 33�

2.5.5� Implementation of UML-B ... 34�

2.6� Linear Temporal Logic (LTL)... 36�

2.7� Knowledge Acquisition in autOmated Specification (KAOS) 38�

2.7.1� Goal model .. 39�

2.7.2� Goal formal definition ... 40�

2.7.3� Goal refinement ... 42�

2.7.4� Formal goal refinement patterns ... 44�

2.7.5� Operation model .. 46�

2.8� Metamodelling .. 49�

iii

2.8.1� Meta-Object Facility (MOF) ... 49�

2.8.2� Eclipse Modelling Framework .. 51�

2.9� Atlas Transformation Language (ATL) .. 53�

2.9.1� Header ... 55�

2.9.2� Transformation rules ... 56�

2.9.3� Helpers .. 59�

2.10� Summary ... 62�

Chapter 3� Other Relevant Work ... 63�

3.1� SysML ... 63�

3.2� Action/Reaction Pattern and B .. 66�

3.3� KAOS and B.. 67�

3.4� KAOS and UML ... 68�

3.5� CSP and B ... 69�

3.6� Other concepts ... 70�

3.7� LTL properties and Requirements Engineering 72�

3.8� Summary ... 74�

Chapter 4� Timing Diagrams and Lift Specification 75�

4.1� Lift Specification ... 72�

4.2� UML 2.0 Timing Diagram .. 74�

4.3� UML Timing Diagram Amended .. 76�

4.4� Timing Diagram for the Lift specifications....................................... 79�

4.5� A brief glossary for Timing Diagrams .. 82�

4.6� Preliminary Timing diagram editor ... 83�

4.7� Summary ... 85�

Chapter 5� Translating Timing Diagrams into Event-B models (direct

translation) ... 86�

5.1� TD BNF definition .. 87�

5.2� Event-B model parts vs. Top-level textual translation rules 92�

5.3� Translation rules .. 94�

5.3.1� Translation rules for creating a set in the Context part 96�

iv

5.3.2� Translation rules for creating variables and their initialvalues

 ... 97�

5.3.3� Structure of Translation rules for creating an Event-B event

……. .. 101�

5.3.4� Creating an event’s name .. 104�

5.3.5� Creating non-deterministic local variables and their values 105�

5.3.6� Creating an Event’s guards ... 107�

5.3.7� Creating an Event’s guards from Timing constraints.......... 111�

������ Creating an Event’s actions from an effect segment 113�

5.3.9� Creating an Event’s action from a SimultaneityArrow.

 ... 115�

5.3.10� Creating an action for recording current time whenever that

event is activated ... 118�

5.3.11� Creating an event Ticktok ... 118�

5.4� User manual input on modelling ... 121�

5.5� Summary ... 125�

Chapter 6� Translating Timing diagrams into UML-B 127�

6.1� Timing Diagram used for translation into UML-B 129�

6.2� Overview of the TD to UML-B ATL transformation 129�

6.3� Timing diagram Metamodel .. 130�

6.4� Generating a TD input model .. 133�

6.5� ATL Translation rules ... 134�

6.5.1� Top-Level ATL translation rules... 136�

6.5.2� Creating UML-B Project ... 137�

6.5.3� Creating a UML-B Context’s name and Machine 139�

6.5.4� Creating UML-B Class and local attributes 142�

6.5.5� Creating UML-B Statemachines ... 145�

6.5.6� ATL translation rules for creating UML-B Statemachine

states, transitions and actions .. 146�

6.5.7� Creating UML-B Statemachine states 147�

6.5.8� Creating UML-B Statemachine transitions and actions 148�

v

6.5.9� Creating an Event name .. 150�

6.5.10� Creating UML-B transition’s guards................................... 153�

6.6� UML-B Model alteration .. 159�

6.6.1� Adding UML-B Context diagram body 159�

6.6.2� Modifying UML-B Classes ... 160�

6.6.3� Modifying to create a lift in a system 162�

6.6.4� Modifying UML-B Statemachine 163�

6.6.5� Modifying UML-B event guards .. 169�

6.6.6� Timing Constraints .. 171�

6.7� Summary ... 172�

Chapter 7� Translating Timing diagrams into KAOS 174�

7.1� Scope of LTL operators and shape of Timing Diagrams 175�

7.2� BNF Timing Diagram for KAOS .. 177�

7.3� Steps in generating KAOS Goal and Operation models 179�

7.4� Textual translation rules for generating a goal 180�

7.5� Textual translation rules for creating a goal from segments 181�

7.5.1� Creating pre-conditions from cause states and conditions .. 182�

7.5.2� Creating post-conditions ... 186�

7.6� Top-level textual translation rules for creating a goal from a

SimultaneityArrow .. 188�

7.7� Splitting OR relationships in a goal pre-condition into subgoals ... 191�

7.8� Generating goal trees ... 193�

7.8.1� A goal tree illustrates an object’s state change causes another

object’s state to be changed ... 194�

7.8.2� A goal tree is generated from a group of

CauseEffectArrows and SimultaneityArrows that

share the same cause segment ... 197�

7.9� Manual input to modelling .. 199�

7.10� Operation model .. 201�

7.11� Summary ... 203�

Chapter 8� Comparison and Evaluation .. 205�

vi

8.1� Comparison between Event-B, UML-B and KAOS models........... 205�

8.1.1� Timing diagram notations ... 205�

8.1.2� Identify TD Timing constraints ... 206�

8.1.3� How models are generated .. 206�

8.1.4� TD components used for the translation 207�

8.1.5� Ease of production and amendment 207�

8.1.6� Manual additional information .. 208�

8.1.7� Invariants ... 209�

8.1.8� Controlling time progress: Ticktok event............................ 210�

8.1.9� Easy to Understand.. 210�

8.1.10� Capturing all requirements .. 211�

8.2� Comparison with other related works ... 211�

8.3� Evaluation.. 213�

8.3.1� Tool validation .. 213�

8.3.2� Validation of the correctness of the transformations defined ...

 ... 214�

8.4� Quantification manual editing ... 215�

8.4.1� Event-B.. 215�

8.4.2� UML-B .. 215�

8.4.3� KAOS .. 216�

8.5� Example of proof obligations .. 216�

Chapter 9� Contribution and Limitations ... 219�

9.1� Benefits.. 219�

9.2� Contribution .. 220�

9.2.1� Requirements to TD .. 221�

9.2.2� TD to Event-B Translation .. 221�

9.2.3� TD to UML-B Translation .. 222�

9.2.4� TD to KAOS Translation .. 222�

9.3� Limitations .. 223�

9.3.1� General limitations .. 223�

9.3.2� Timing diagram notations and tool limitations 224�

vii

9.3.3� KAOS translation limitation ... 224�

9.4� Future directions .. 224�

References .. 226�

Appendix A.� Event-B Textual Translation rules 237�

A.1 Event-B systematic textual direct translation rules 237�

A.2 Translation rules for creating an event .. 240�

Appendix B.� An Event-B model created from the Direct translation rules .

 ... 247�

B.1 Context : LiftSystem_EventB_ctx ... 247�

B.2 Machine : LiftSystem_EventB .. 249�

Appendix C.� ATL Translation rules .. 264�

Appendix D.� UML-B and Event-B models from ATL Translation rules 271�

D.1 An UML-B model for the lift system: Package diagram 271�

D.2 An UML-B model for the lift system: Context diagram 271�

D.3 An UML-B model for the lift system: Class diagram 272�

D.4 An UML-B model for the lift system: State diagram 273�

D.5 An Event-B model is generated from an UML-B model 274�

D.5.1 Context : L_ctx ... 275�

D.5.2 Context : L_mch_implicitContext ... 277�

D.5.3 Machine : L_mch .. 280�

Appendix E.� KAOS Textual Translation rules ... 300�

E.1 Translation rules for creating a KAOS goal from segments defined with

CauseEffectArrow ... 300�

E.2 Translation rules for creating a KAOS goal from

SimultaneityArrow ... 303�

Appendix F.� KAOS Goals and Operation models 305�

F.1 Goal Model .. 305�

F.2 The Detail of Goal and Operation Models: .. 312�

viii

List of Figures

Figure 1-1 Example of Statecharts for Door, Lift and Floorsensor 5�

Figure 1-2 Example of Timing diagram for Door, Lift and Floorsensor 6�

Figure 1-3 Problem diagram ... 8�

Figure 1-4 Research aim ... 13�

Figure 2-1 Event-B Static structure: Context .. 21�

Figure 2-2 Event-B Dynamic structure: Machine ... 22�

Figure 2-3 Event-B Structure .. 22�

Figure 2-4 Examples of each Event-B Structure ... 23�

Figure 2-5 Refinement model structure .. 26�

Figure 2-6 RODIN Modelling Perspective ... 28�

Figure 2-7 RODIN Proving Perspective ... 28�

Figure 2-8 UML-B Package diagram perspective... 29�

Figure 2-9 UML-B Context diagram perspective ... 30�

Figure 2-10 Event-B .. 31�

Figure 2-11 UML-B Context diagram perspective ... 31�

Figure 2-12 An Event-B variable is generated from an UML-B non-fixed

property class... 32�

Figure 2-13 An Event-B class is generated from an UML-B fixed property class

 ... 32�

Figure 2-14 An example Statemachine ... 33�

Figure 2-15 An event On created from a transition .. 34�

Figure 2-16 Parts of UML-B Metamodel .. 35�

Figure 2-17 UMLBabstractClass, UMLBEvent and UMLBabstractAttribute

Metamodel ... 36�

Figure 2-18 An example of a goal ... 40�

Figure 2-19 A definition of the goal Achieve[PrtcptsCstrKnown] 41�

Figure 2-20 KAOS goal refinement graph .. 43�

Figure 2-21 Symbols for AND and OR refinement .. 43�

ix

Figure 2-22 A Milestone-driven goal refinement pattern 44�

Figure 2-23 A case-driven goal refinement pattern: split antecedent 45�

Figure 2-24 Operation model: Global invariant .. 47�

Figure 2-25 Operation model: Bounded achieve .. 48�

Figure 2-26 Four-layer MOF Architecture ... 50�

Figure 2-27 Example of UML diagram of interfaces:... 51�

Figure 2-28 Ecore model is generated from a UML diagram 52�

Figure 2-29 TDmetamodel Model Plug-in .. 53�

Figure 2-30 ATL transformation approach ... 54�

Figure 2-31 An example of the using section .. 57�

Figure 2-32 An example of the do section ... 57�

Figure 2-33 Example of TDMetamodel (parts of) .. 58�

Figure 2-34 Example of a rule: Constraint .. 58�

Figure 2-35 Example of an Operation helper: getNodePredicate 60�

Figure 2-36 Example of an Attribute helper: SimpleCond() 61�

Figure 3-1 UML 2.0 and SysML 1.0 ... 64�

Figure 3-2 An example of Requirements diagram for a lift system 65�

Figure 3-3 Examples of action and reaction pattern ... 66�

Figure 3-4 Action/Reaction patterns and corresponding B machines 67�

Figure 3-5 Timing diagram representing {req;busy[*4];gnt} 70�

Figure 3-6 An example of a Timing diagram .. 71�

Figure 3-7 Timeline ... 71�

Figure 3-8 Timing diagram for p → � q notation.. 72�

Figure 4-1 Lift Position Display.. 72�

Figure 4-2 A simple TD shows relationship between floorlamp and floorsensor

 ... 74�

Figure 4-3 Compact Timing diagram (OMG, 2007) ... 75�

Figure 4-4 Robust Timing diagram (Ambler, 2004) ... 75�

Figure 4-5 Robust Timing ... 78�

Figure 4-6 Timing diagram from Floorsensor, Lift, Uplamp and Downlamp 80�

Figure 4-7 Timing diagram for the lift specification... 81�

x

Figure 4-8 Timing diagram and named parts .. 82�

Figure 4-9 Timing diagram editor window ... 83�

Figure 4-10 Timing diagram editor: Parameter... 85�

Figure 5-1 Timing diagram for floorsensor, lift and uplamp (Parts of Figure 5-2)

 ... 87�

Figure 5-2 Timing diagram for an Event-B model direct translation 91�

Figure 5-3 Event-B model’s parts correspond with top-level textual rules 92�

Figure 5-4 A set DIR ... 93�

Figure 5-5 Rule ������ : creating axioms in an Event-B Context 97�

Figure 5-6 Rule ���	
����: creating machine variables to record time 97�

Figure 5-7 Rule ���	
�
	
����: creating machine variables to record states

 ... 99�

Figure 5-8 Rule ���	
�
	
����
: creating initial values for those variables

used to record states .. 100�

Figure 5-9 Structure of translation rules to create an Event-B event 101�

Figure 5-10 Structure of translation rules and Event-B model types 103�

Figure 5-11 Rule �����
�	��: creating an event’s name 104�

Figure 5-12 Timing diagram for floorsensor and lift (parts of Figure 5-2)....... 104�

Figure 5-13 Rule ��	
	���
: creating a list of local variables for an event 105�

Figure 5-14 Rule ��
��

�
 and sub-rules .. 107�

Figure 5-15 Rule� ���
�
��
���: creating event guards from timing

constraints, cause segments and conditions .. 108�

Figure 5-16 Timing diagram for floorsensor and lift (same as Figure 5-6) 110�

Figure 5-17 An example of a process for creating guards from Figure 5-16 110�

Figure 5-18 Rule����������	
�: creating a timing constraint guard 112�

Figure 5-19 Parts of an event floorsensorOff .. 113�

Figure 5-20 Rule������
: creating an Event’s action from a Segment 114�

Figure 5-21 Timing diagram shows Simultaneity between lift, uplamp and

downlamp (parts of Figure 5-2) .. 116�

Figure 5-22 Rule�������: creating a substitution ... 117�

Figure 5-23 Rule����������: creating an action ... 118�

xi

Figure 5-24 Rule �����
��: creating a Ticktok event 119�

Figure 5-25 Ticktok event’s guards (parts of) ... 120�

Figure 5-26 SimultaneityArrow for the lift object 122�

Figure 5-27 A floorsensorOff event before revision ... 123�

Figure 5-28 Two new events are regenerated from floorsensorOff event......... 124�

Figure 6-1 Timing Diagram used for transforming into a UML-B model 128�

Figure 6-2 Overview of the TD to UML-B ATL transformation 129�

Figure 6-3 Timing diagram Metamodel .. 131�

Figure 6-4 An example TD vs. TDMetamodel ... 132�

Figure 6-5 Timing diagram instance generated by Eclipse EMF...................... 133�

Figure 6-6 Header section of TDtoUMLB.atl ... 135�

Figure 6-7 UML-B Metamodel (parts of) ... 135�

Figure 6-8 Top-level ATL rules .. 137�

Figure 6-9 TDMetamodel and umlbMetamodel : Project and Machine 138�

Figure 6-10 ATL rules for creating UML-B Project ... 139�

Figure 6-11 TDMetamodel and umlbMetamodel : Machine and Class 140�

Figure 6-12 ATL rules for creating UML-B Machine 141�

Figure 6-13 Package Diagrams and Event Ticktok in a Machine part.............. 142�

Figure 6-14 TDMetamodel and umlbMetamodel : Class and Attribute 143�

Figure 6-15 ATL rules for creating UML-B Class ... 144�

Figure 6-16 Lift system Class diagrams .. 145�

Figure 6-17 ATL rule for creating a UML-B Statemachine 146�

Figure 6-18 An example of a Statemachine generated from the rule Statemachine

 ... 146�

Figure 6-19 ATL rules for creating UML-B Statemachine State, Transition,

Parameters and Actions ... 147�

Figure 6-20 ATL rule for creating UML-B State .. 147�

Figure 6-21 TDMetamodel and umlbMetamodel : Statemachine, State,

Transition, Action, Guard and Parameter... 148�

Figure 6-22 ATL rule for creating UML-B Transition 149�

Figure 6-23 A floorsensorOff transition action ... 150�

Figure 6-24 ATL rule for creating an event name .. 150�

xii

Figure 6-25 Timing diagram: floorsensor and Lift with

SimultaneityArrows .. 151�

Figure 6-26 The floorsensorOff transitions are generated from

SimultaneityArrows .. 152�

Figure 6-27 UML-B floorsensor Class diagram and its Statemachine 153�

Figure 6-28 ATL main rule for creating UML-B Guards 153�

Figure 6-29 TDMetamodel and umlbMetamodel: .. 154�

Figure 6-30 A helper for checking node types and event’s guards 155�

Figure 6-31 A helper for creating a UML-B guard from a cause segment 156�

Figure 6-32 Guards generated from a cause segment for the floorsensorOff event

 ... 157�

Figure 6-33 The helper for creating a UML-B guard from a timing constraint 157�

Figure 6-34 Timing constraint guard for floorsensorOff event 158�

Figure 6-35 Context Diagram for the Lift system ... 159�

Figure 6-36 Event-B Context part is generated from UML-B diagram for the Lift

system .. 160�

Figure 6-37 UML-B Class diagram for Floorlamp before and after modification

 ... 161�

Figure 6-38 Association between classes .. 162�

Figure 6-39 A class lift is changed to a Statemachine lift_state 163�

Figure 6-40 Parts of an Event-B model: generate door initialisation 163�

Figure 6-41 UML-B Statemachine for Door before and after modification 164�

Figure 6-42 TD for the Lift and Floorsensor .. 165�

Figure 6-43 Statemachine for the Lift generated from ATL 165�

Figure 6-44 An Event-B liftStopAtFloor event generated from UML-B

liftStopAtFloor transition... 165�

Figure 6-45 UML-B transitions liftStopAtFloorUp and liftStopAtFloorDown after

modification .. 166�

Figure 6-46 Event-B events: liftStopAtFloorUp�and liftStopAtFloorDown 167�

Figure 6-47 An Event-B floorsensorOff.. 168�

Figure 6-48 A Statemachine for floorsensor ... 168�

Figure 6-49 A Statemachine for lift and floorsensor... 169�

xiii

Figure 6-50 An association between classes Floorlamp, Floor and Floorsensor

 ... 170�

Figure 6-51 An event ���������	
��� is generated in Event-B 171�

Figure 6-52 A Ticktok event .. 172�

Figure 7-1 A timing diagram where KAOS translation is allowed 175�

Figure 7-2 Timing diagrams where KAOS translation is not allowed 176�

Figure 7-3 Timing diagram used for KAOS Models .. 179�

Figure 7-4 Top-level rules structure for creating a goal from a segment 181�

Figure 7-5 Rule: � �
��

�
 and sub-rules ... 183�

Figure 7-6 Rule: � ��
�
��
��� .. 183�

Figure 7-7 Timing diagram for floorsensor and lift (parts of Figure 7.3) 184�

Figure 7-8 Steps for generating pre-conditions for lines 3.1 and 3.2 in Figure 7-7

 ... 184�

Figure 7-9 Rules: � �����

�
 and � ��
�������
��� 187�

Figure 7-10 Example steps of generating post-conditions for a segment Off2 . 187�

Figure 7-11 A goal 3.1 & 3.2 description ... 188�

Figure 7-12 Top-level rules structure for creating a goal from

SimultaneityArrows .. 189�

Figure 7-13 Rules for creating a KAOS goal from a SimultaneityArrow190�

Figure 7-14 The goal formal definition for the SimultaneityArrow line 16

 ... 191�

Figure 7-15 Splitting an OR relationship in a goal pre-condition into subgoals192�

Figure 7-16 An example of AND relationship in a goal pre-condition 192�

Figure 7-17 The lift timing diagram (parts of Figure 7-3) 194�

Figure 7-18 Parts of a goal tree ... 195�

Figure 7-19 Parts of a goal tree after alteration ... 196�

Figure 7-20 A pattern for generating KAOS goal tree 196�

Figure 7-21 Parts of a goal tree representing requestlamp, lift, door, uplamp and

downlamp .. 197�

Figure 7-22 A goal tree representing lines 6, 9, 10 and 11 in Figure 7-21 199�

Figure 7-23 The MainG1... 201�

xiv

Figure 7-24 Operation patterns: Bounded Achieve and Global

Invariant ... 202�

xv

List of Tables

Table 2-1 Goal types with temporal logic formulas .. 41�

Table 4-1 Timing diagram notations ... 78�

Table 5-1 Basic rules for TD to Event-B translation .. 96�

Table 7-1 Additional basic rules for TD to KAOS transformation 181�

xvi

Declaration of Authorships

I, Tossaporn Joochim, declare that the thesis entitled “Bringing

requirements engineering to formal methods: timing diagrams for Event-B and

KAOS” and the work presented in the thesis are both my own, and have been

generated by me as the result of my own original research. I confirm that:

• this work was done wholly or mainly while in candidature for a

research degree at this university:

• where any part of this thesis has previously been submitted for a

degree or any other qualification at this university or any other

institution, this has been clearly stated;

• where I have consulted the published work of others, this is always

clearly attributed;

• where I have quoted for the work of others, the source is always

given. With the exception of such quotations, this thesis is entirely

my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with

others, I have made clear exactly what was done by others and

what I have contributed myself.

• parts of this work have been published as :

Joochim, T. and Poppleton, M. (2007) Transforming

Timing Diagrams into Knowledge Acquisition in Automated

Specification. In: IAIT2007: The 2nd International Conference on

Advances in Information Technology 2007, Bangkok, Thailand.

xvii

Joochim, T. et. al. (2010) Timing Diagrams Requirements

Modeling using Event-B Formal Methods. In: SE 2010: Software

Engineering 2010, Innsbruck, Austria: Actapress.

Signed:

Date:

xviii

Acknowledgements

I would like to thank and extend my heartfelt gratitude to the following

persons who have made the completion of this thesis possible:

My supervisors, Dr. Mike R. Poppleton and Dr. Andrew M. Gravell, for

providing assistance in numerous ways. For supervision and continuous

guidance enabled me to complete my work. Thank you for their expertise,

patience, and kindness.

My parents, grandparents, my brothers and their family, for their vital

encouragement; for their ultimate supporting and loving, for they have never

hesitate to help if I needed and for all their sacrificing;

Antonin Hrdlicka for always being here to provide physical and mental

support, very concerning of my safety and giving a great help in all matters;

Dr. Colin Snook who had done a wonderful job and I really appreciate his

incredible advices on UML-B, and the willingness to help;

Dr. Emmanuel Letier for his expertise and great advice on KAOS;

Prof. Peter Henderson who gave me an opportunity to join the group; for

his kindliness and his grateful advices during my exams;

Dr. Quintin Gee, Stuart McIntosh, Andy Edmund, and Alain J. Alherbe for

proofreading my thesis;

My Thai friends, Mar Y. Said, Nurlida Basir, and DSSE secretaries;

The Royal Thai government, for the full funding during my PhD;

I would like to give very special thanks to Dr. Andrew M. Gravell. This

thesis would not have been possible without him.

xix

To my beloved grandfather, Mr. Boonchom Prasertsri

xx

Definitions and Abbreviations Used

API Application programming interface

ATL Atlas Transformation Language

BNF Backus-Naur Form

EMF Eclipse Modelling Framework

FM Formal Method

GMF Graphical Modelling Framework

GORE Goal-Oriented requirements engineering

IDE Integrated Development Environment

KAOS Knowledge Acquisition in automated Specification

MOF Meta-Object Facility�

OMG Object Management Group

POs Proof Obligations

RE Requirements engineering

TD Timing Diagram

UML Unified Modelling Language

Chapter 1 Introduction

1.1 Overview

A requirement is “a feature of the system or a description of something the

system is capable of doing in order to fulfil the system’s purpose” (Pfleeger, 1998).

Requirements engineering (RE) is a part of the software development life cycle that

is important for acquiring explicit system requirements. The RE is used to explore

problems and potential solutions. It is also used for comparing alternative solutions

and deciding which solution should be adopted for that system (Jureta, 2006). To

specify requirements, one can use many different techniques, such as rich text,

dataflow diagram, prototyping, Unified Modelling Language (UML) (OMG, 2008),

Goal-Oriented Requirements Engineering (GORE), Knowledge Acquisition in

autOmated Specification (KAOS) (Lamsweerde, Dardenne et al., 1991), and

Formal Methods (FMs).

Critical systems are systems whose failure may have serious consequences to

human beings, systems or businesses. Examples are: fire alarms, medical systems,

traffic control, chemical plant control, and automotive control systems. Thus, to

develop critical systems, one has to ensure that, as far as possible, the processes

used are rigorous. Using mathematical notations – which describe the system in

terms of predicates, booleans, sets, relations, and functions, as in Formal Methods

(FMs) – is a way to improve the conformance of design to specifications, and to

help eliminate errors early in the design process (Abrial, 1996; Bowen and

Hinchey, 2006).

Chapter 1 Introduction 2

Since FMs has the concept of proving correctness, which supports the

accuracy of software development, FMs have a major benefit in defining the precise

specification and processing its verification (Abrial, 2005; Hall, 2007). The benefits

of FMs can be summarized as follows:

• Developers are forced to consider more error behaviours arising from

requirements, which can be eliminated by well-defined mathematical

notations (Abrial, 2007; Langari and Pidduck, 2005). Developers are

guided towards creating reliable and secure software systems. This aspect

is always omitted from informal descriptions (Hall, 2007).

• Formal modelling is a way of improving the system analysis phase

(Agerholm and Larsen, 1998). It can help developers achieve a better

understanding of requirements and discover errors early in the lifecycle

(Langari and Pidduck, 2005). This reduces the overall cost of the project

(Agerholm and Larsen, 1998; Hall, 2007). King (King, Hammond et al.,

2000) has shown that performing proof of correctness in FMs can detect

more errors early in the development lifecycle; which is expedient from the

economic point of view.

• Formal specifications of design and refinements can be proved consistent

by model checking and by proof (Abrial, 2008a). It is also possible to use

animation to help validate. Examples of tool support are in RODIN

(RODIN, 2009), Atelier B (Requet, 2008; ClearSy, 2009) and ProB (ProB,

2009).

• Reasoning about derived system properties by stating theorems and other

properties about the system makes the models more precise (George and

Vaughn, 2003; Lamsweerde, 2009).

• In the formal development, the first model is called the abstract model. The

abstract model is transformed through a formal sequence to obtain the

refinement/concrete model. The concept of refinement in formal methods

allows more detail, and the expression of some design decisions, to be

added, in a stepwise manner, into the model. The advantage of refinement

is allowing the model to be analysed at an abstract level, resulting in

Chapter 1 Introduction 3

reduced complexity/ambiguities (Abrial and Hallerstede, 2006). Absence

of ambiguities is a benefit brought about by using formal specifications.

• FMs have been shown to provide more valuable documentation (Bowen

and Hinchey, 2006).

The Event-B (Abrial and Hallerstede, 2006) method is an FM developed by

Jean-Raymond Abrial. It is a formal language for state-based modelling and

verification for reactive systems, developed in the context of RODIN (RODIN,

2009), a European IST project. Event-B itself is composed of static and dynamic

parts. The static part is called a CONTEXT and is used to declare constants, carrier

sets and axioms. The dynamic part is called a MACHINE, which contains state

variables, variable properties described by invariants and units of behaviour, which

are called EVENTS. Event-B is good for identifying precise system requirements

(due to its use of mathematical notation, and well-defined semantics), but it is not

yet clear how best to model various complex requirements patterns in Event-B, such

as timing constraints and causal dependencies on system events. Moreover, Event-B

can be difficult to uses and it requires trained professionals (Bashar and

Easterbrook, 2000; Lamsweerde, 2000; Bowen and Hinchey, 2006).

UML (OMG, 2008) is a language for specifying, visualizing, and

documenting the artifacts of software systems using graphical diagrams. UML is

suitable for using in object-oriented analysis and design (Popandreeva, 2007) and is

best used to describe functional requirements (defining what the system has to do in

its environment). For example, the lift must stop at the requested floors, and the

lift’s door must be opened only when the lift is stopped are functional requirements

for the lift system. Other examples of systems that can use UML to identify their

specfications are handling control of technical equipment (e.g. uses Sequence

diagram and Statechart), embedded systems such as mobile phones (e.g. uses

Component diagram), and giving a clear description of what the system should do

(e.g. uses Use-case diagram). Currently, the official version is UML 2.0 (OMG,

2008).

Even though UML is a popular object-oriented modelling approach and has

been using widely, it lacks mappings to formal models. Presently, many groups of

people are trying to bridge the gap between B-Method and UML diagrams (Ledang

Chapter 1 Introduction 4

and Souquierès, 2002a; Ledang and Souquierès, 2002b; Jiufu, 2007; Younes and

Ayed, 2007); the U2B and UML-B (Snook and Butler, 2008a) projects.

UML-B tool is a graphical front end for Event-B; UML-B language defines

abstract syntax with the Eclipse Meta-Object Facility (MOF) (OMG-MOF, 2007).

MOF is one of the OMG standards and a meta-metamodel. It is a mechanism for

building metamodels, which is used to define types of model structures and

architecture. MOF is designed as a four-layered structure:

M0: this level is used to describe real-world objects.

M1: this level is used to define models such as UML and UML-B diagrams.

M2: this level is used to define metamodel description –syntax and semantic-

of elements in the M1 layer. For instance, the UML-B metamodel and our

Timing Diagram (TDs) metamodel are defined at this level.

M3: this level is a meta-metamodel; it is used to define MOF itself.

UML-B uses UML-like diagrams, i.e. Class diagrams and Statecharts, to

generate system specifications models. UML-B models can then be translated into

Event-B by using a U2B translator. Users can update/add/modify information

directly using the tool.

Timing constraints and causal dependencies among objects play an essential

role in the different varieties of systems. Timing constraints are one of the control

issues in reactive and critical systems that are particularly critical to systems and

must be controlled (Liu, Chou et al., 2001; Ng and Patel, 1994). A system which

fails to meet the timing constraints deadline may not only be able to make an

emergency control but can have also other inconvenient consequences (Groom,

Maciejewski et al., 1999). Some failures may cost a great deal of money and even

human lives (LeMieux, 2003). Thus, it is important to correctly model timing and

causal constraints system.

Timing diagrams (TDs) (OMG, 2008) are one of the new artefacts introduced

to UML 2.0 and are used to explain the behaviours of objects throughout a given

period of time (Ambler, 2004; Khan, Geihs et al., 2006). TDs are best used to depict

functional requirements with causal dependencies between objects and timing

constraints (Gavras, 2003; Brisolara, Kreutz et al., 2009). For example, parts of a

lift system: “…The lift will be stopped at the current floor between 1-5 seconds

Chapter 1 Introduction 5

after the current floor sensor is set on. A lift door does not open until the lift

stops…”

Even though the information on the TD, such as the lift system, can be

expressed in other diagrams, for example using Statecharts in UML-B, it is not a

helpful way for the users to operate. For instance, one can put timing or state

constraints into Statecharts, but, in general, one Statemachine refers to other

Statecharts for the dependency.

If we have three different classes, and each object of these classes has state

changes, then we need three Statecharts. Each such Statechart may have guards that

refer to other Statecharts which means, in using UML-B, we have guards on the

state transitions here which refer to some activities going on somewhere else. For

(Sommerville, 2004) example, Figure 1-1, there are three different Statecharts:

Door, Lift and Floorsensor. There are guards from the Lift to the Floorsensor, from

the Door to the Lift, and from the Floorsensor to the Lift.

Figure 1-1 Example of Statecharts for Door, Lift and Floorsensor

Chapter 1 Introduction 6

If a guard is concerned with timing constraints, it must be declared with a

long condition on the state transition (as shown in Figure 1-1 by the guard between

MovingArringUp and StopAtFloor states of the Lift Statechart). In UML-B, the

causal interaction between these objects cannot be contained in a single diagram.

Thus, we have many charts to display at the same time which makes it difficult to

read on a computer screen, and is not helpful for the users in terms of modelling.

In TDs, as shown in Figure 1-2, we can describe the causality explicitly with

arrows between the Door, the Lift and the Floor sensor, and have them all on the

same screen.

Figure 1-2 Example of Timing diagram for Door, Lift and Floorsensor

The TD notations include graphically described extra conditions (as shown by

f : reqFl & f = currentFl) and timing constraints (as shown by [1,5]). It is very

natural to form expressions in timing constraints using a TD timing constraints

notation. Therefore, combining TD and UML-B would be beneficial for the user.

There are other two mathematical modelling languages concerned with time:

Timed Petri Nets (Berthomieu and Diaz, 1991; Ramchandani, 1974) and Time Petri

Nets (TPNs) (Cerone and Maggiolo-Schettini, 1999). Both are graphic

representation for concurrent formalisms approaches for specifiying real-time

formal systems and extend Petri Net (Reisig, 1985). Timed Petri Nets and TPNs

consist of places, transitons, time, and directed arcs which represent conditions,

events, timing constraints of the transtitions, and relationships between places and

transtions in the system respectively. For Timed Petri Net, a transition can fire as

Chapter 1 Introduction 7

soon as possible whilst for TPNs it fires within a time interval (Cassez and Roux,

2005).

In this research we selected TDs over Timed Petri Nets/TPNS since adding

new notations (with the purpose of generating expressions to interface with Event-B

and KAOS, as described in Chapter 4) is more flexible with TDs than Timed Petri

Nets/TPNs. Moreover, TDs use simple graphical notations and are not difficult to

understand.

Requirements are often unclear when first elicited from stakeholders. Goal-

Oriented requirements engineering (GORE) allows the requirements to be clarified

throughout an incremental process. It concerns the use of goals for eliciting,

elaborating and refining, specifying and modelling of requirements (Lamsweerde

2004; Anwer and Ikram 2006). Examples of the goal-oriented approach are Non-

Functional Requirements (NFRs) (Chung, 1993), i
*
 diagrams (Yu, 1993), Goal-

Oriented Idea Generation Method (GOIG) (Oshiro, Watahiki et al., 2003) and

Knowledge Acquisition in autOmated Specification (KAOS) (Dardenne,

Lamsweerde et al., 1993) frameworks. NFRs are used to represent and analyze non-

functional requirements and guides the design processes. i
*
 diagrams show how

actors in a system depend on each others for a specific goal in a system. GOIG is

focused on idea-generation, that is, stakeholders’ ideas are elicited as sub-goals. The

ideas are grouped, and associations between those ideas are used to generate a goal

graph.

KAOS is a goal-oriented modelling requirements specification technique, in

which a goal defines an objective of the composite system. KAOS has concepts of

refining goals, identifying agents, and exploring alternative responsibilities (Letier

and Lamsweerde 2002a); it uses the Goal model to declare the system requirements.

The Goal model is composed of a goal name, definition, and formal definition,

where the latter is written as a temporal logic statement using linear temporal logic

(LTL). Since the LTL can explain the specification of some properties - for

example, next (�) and eventually (�) - those properties are similar with what can be

expressed by TD. This is the reason KAOS is selected over the other GOREs.

KAOS is a semi-FM and does not have the capability of generating and discharging

proof obligations as in full FMs. Thus, an attempt to generate a FM model from a

KAOS model is founded in (Nakagawa, Taguchi et al., 2007) to transform KAOS

Chapter 1 Introduction 8

into VDM++ (Fitzgerald, Larsen et al. 2004), a formal object-oriented specification

language. There are a number of tools supports that generation of KAOS models

such as Objectiver (Delor, farimont et al., 2003; Ponsard, Balych et al., 2006) and

FAUST tool (Rifaut, Massonet et al., 2003). The Objectiver is a tool for generating

KAOS models and documents while the FAUST tool is used to verify KAOS

models. Heaven and Finkelstein attempted to combine UML and KAOS; the

researchers created a tool to allow KAOS to be represented in UML by using a

profile (Heaven and Finkelstein, 2004).

Problem Frames (Jackson, 1995) is a technique to demonstrate problem

requirements in a diagrammatic form, which the diagram is called Problem

diagrams. As shown in Figure 1-3, a Problem diagram comprises a software

Machine, real world which is called Problem World, and the system requirements

are represented by a dotted oval (Jackson, 2001). The Problem diagrams identify

how these system components relevant with each others. The machine interacts with

the Problem World by shared control phenomena (e.g. shared events and/or shared

states), called specification phenomena. The links between the Problem World and

the requirements are called requirement phenomena which are “the phenomena that

the customer for the system would observe to determine whether the requirement is

satisfied” (Jackson, 2005).

Figure 1-3 Problem diagram

Problem Frames has a concept of decomposition in which a large problem can

be separated into subproblems. Each subproblem is a complete system which has its

own Problem diagram, a Machine, a requirement and Problem World (Jackson,

2005; Cox, Hall et al., 2005).

Even though the concept of Problem Frames to refine a large problem into

subproblem is similar with KAOS, the Problem Frames is not aiming at using

formal descriptions such as temporal logics nor mathematic notations. Thus, the

Chapter 1 Introduction 9

Problem Frames is not selected in this research as we aim at generating tool

supported formal method models.

1.2 Motivation

The key contributions of this work are indicated by three motivating

assumptions we make:

1. When FMs are used early in the system development process, they help to

remove ambiguity, incompleteness, and inconsistencies in system

specifications (Sommerville, 2004; Wing, 1990). This decreases

requirements’ errors because it forces the developers to do a detailed

analysis of the requirements (Abrial, 2005; Hall, 2007). Thus,

implementation and validation costs should be reduced, as there are fewer

errors in the specifications; that is useful in term of requirement

engineering. However, FMs demand costly trainings of engineers because

of their mathematical and logical basis (Bashar and Easterbrook, 2000;

Lamsweerde, 2000; Bowen and Hinchey, 2006). This leads to the second

assumption.

2. It is useful to enable more requirements to be expressed graphically when

working with FMs. That is, we wish to enhance the graphical aspects of

FMs with graphical elements (such as is done in UML-B and KAOS).

Using graphical methods has some benefits over FMs as in the following:

• Presenting requirements in graphical form is an easier way

and more readable for software developers/students to define

their requirement specifications than by difficult using of

formal notations (Yoder and Black, 2006). As (Razili, Snook

et al., 2007) has suggested that model comprehensibility can

be improved by using UML-based graphical specifications

rather than the formal notation alone.

• It reduces the training for the formalism if developers are able

to model graphically rather than using FMs (Becker-

Kornstaedt, Neu et al., 2001). Modelling may become

Chapter 1 Introduction 10

accessible to more staff and it does not require a high level of

professional training.

• Using simple symbols helps teaching FM courses (Snook and

Butler., 2001; Razili, Snook et al., 2007).

There are other papers to support those ideas, such as Zimmerman who

states that tabular and diagrammatic notations are more readable than

textual ones in a complex system. (Zimmerman, Lundqvist et al., 2002).

This is confirmed by a number of related studies in (Petre, 1995).

3. The integration of different specification modelling frameworks for

specifying and reasoning about requirements is beneficial (Allemand,

Attiogbé et al., 2002; Attiogbé, Poizat et al., 2003). Moreover, it is also

useful to describe one system in multiple views.

1.3 Goal

The goals for the research are identified as in the following

1. To provide an option to help users/developers generate timing constraints

and casual dependecies requirements in a reactive system in forms of

Event-B and UML-B formal models.

2. To generate a translation technique to transform a TD into KAOS Goal

models. The TD graphical front-end is beneficial in an engineering context

since the original KAOS Goals’ formal definitions is defined by linear

temporal logics (LTLs) textual declarations. It is inconvenient for a user

who is unfamiliar with using temporal logics. Thus, a TD is used as

graphical front-end to represent a KAOS Goal model. With the translation

rules, KAOS goals are automatically generated from TD.

3. To confirm that using graphical TD to specify timing constraints and

casual dependencies requirements in Event-B is easier than using textual

methods.

According to the goals above, we select some modelling frameworks as the

basis for our contribution:

Chapter 1 Introduction 11

1. Extended Timing diagrams (TDs): OMG UML2.0 TD notations are clearly

defined and widely used to describe behaviours of objects in many critical

systems and even within electronics engineering for a long time (Fowler

and Scott 2004). Thus, we select to extend UML TD notations for timing

constraints graphical modelling and causal event dependencies. The reason

to extend UML TDs is they do not support adequate notations to explain

certain kinds of specification. For example, identifying combination of

causes that make something to happen, and showing synchronisation of

objects that change their states simultaneously. Thus, AND and OR node

notations are created as well as simultaneity arrows (more detail in Chapter

4). Here, a TD is used as a source model in generating target models:

Event-B, UML-B and KAOS models.

2. Event-B is selected as it is well used in Electronics and Computer Science

school, University of Southampton. There are many partners through the

RODIN project and is used in industries (Europe). Moreover, it is

integrated well with Eclipse and has good tools support such as Event-B

RODIN toolkits, B prover and animators. Although, Event-B is good for

identifying precise system requirements by using set-theoretic notation, it

is not yet clear how to model timing constraints and causal dependencies

on system requirements in Event-B. Thus, we selected to add TDs as the

front-end for Event-B. Event-B then can be described by visualisation

graphics for the time.

3. UML-B is selected as it is plug-in for RODIN and is developed on Eclipse.

UML-B is graphical Event-B modelling in which Class diagrams and

Statecharts are used to express formal specifications. An Event-B model is

generated automatically when the model is saved. Thus, it is suitable as an

alternative way to generate an Event-B model.

4. KAOS has been widely applied in many critical systems, according to

(Lamsweerde 2004), it is used in Air Traffic Control (conflict handling

between ground and on board collision avoidance systems) and Aerospace

(design of test suites for rocket launch). KAOS explains timing constraints

by LTLs, and cause-effect relationships in pre- and post-conditons which

are in textual form. In contrast, TDs timing constraints can be clearly

Chapter 1 Introduction 12

explained using notations that are time bounds and causal dependencies

arrows. TDs use more natural visualisation graphical to declare the time

than in the KAOS LTL operators. Thus, TD is selected as a front-end for

KAOS. Moreover, both KAOS and Event-B use first-order predicate logics

to describe system behaviour and have a concept of refinement to explain

more system detail in the further steps. Thus, it is interesting to integrate

TD to KAOS which aims to generate Event-B models later.

5. Atlas Transformation Language (ATL) (ATL 2008) is developed on

Eclipse and a language to generate a target model from source models

based on metamodel. We select ATL as a language for generation an

UML-B model from a TD since UML-B is also developed on Eclipse.

Moreover, there are many ATL examples on-lines.

6. Backus-Nuar Form (BNF): BNF is used to describe TD notations which

are used to generate an Event-B model and KAOS Goal model. BNF is

widely used for explaining syntax of a language and provides standard

symbols to do that. Thus, it is suitable to use BNF for creating formally

systematic translation rules in our work.

7. A lift case study is used in the transformations. Even though, the lift is a

single example, it is appropriate to validate my work as follows. It has real

time properties; represents causal dependencies among objects in the

system; and some parts of the specification cannot be modelled by timing

diagram (see section 5.2, 6.5.1 and 8.1.6 for detail) which is useful as an

example of fulfilling models by hand. Moreover, a specification of lift is

well-known, not hard to understand and is widely used in many works, as

details describe in section 8.2.

1.4 Contribution Overview

Our contribution focuses on how parts of system’s requirements, concerned

with timing constraints and causal dependencies between a system’s objects, are

transformed into FM models. The aim of this contribution is to enable users to

easily model critical system requirements using graphical notations e.g. TD; by

Chapter 1 Introduction 13

adding UML-B and KAOS graphical capability to express timing constraints and

event dependencies requirements.

Figure 1-4 Research aim

Figure 1-4 presents the whole thesis scenario. Requirements are partitioned

into other requirements (non-timing), and timing and causal dependency

requirements. The requirements which can be described by causal dependency and

timing constraints are modelled by TD. Formal translation rules 1 and rule 2 are

built based on TD BNF definitions to create Event-B and KAOS models from TD

respectively. Other requirements are used to generate the remainder of the Event-B

and KAOS models for completion. Atlas Transformation Language (ATL) (ATL

2008) transformation rules are generated to create UML-B Class diagrams and

Statecharts from TD. The remainder of the UML-B models are also generated from

the rest of the requirements. Next, Event-B and UML-B models are

analysed/verified by the RODIN Toolkit. If there are any errors, ambiguities or

incompleteness, which are indicated by the RODIN (model checking and proof

obligations), the Event-B and UML-B models are revised; the TD can be fixed as

well as system requirements may be revised. This step is repeated until the models

Chapter 1 Introduction 14

are correct by means of proof. This process has a beneficial effect on system

requirements as it increases the degree of confidence that the output system has few

errors, is unambiguous and consistent. It enables the gaining of a clear

understanding of the task at an early stage.

1.5 Document Structure

The remainder of this thesis is structured as follows:

Chapter 2 reviews the literature on the technical approaches that are directly

involved in the research. The chapter starts with describing the general idea of RE

techniques and FMs. The Event-B notations and methods used to develop Event-B

are described. The use of refinement in Event-B, that takes a model of abstract level

to one with more concrete detail, is explained. The RODIN tool set that can be used

in Event-B development is also explained. The UML-B toolkit, a graphical front-

end for Event-B, and its implementation, are demonstrated. The KAOS framework,

that is a technique for goal-oriented modelling of requirements specification, and its

notation, are described. There is an explanation of MOF and Eclipse

metamodelling, which are used to generate UML-B and TD metamodel. The

chapter finishes with an explanation of the ATL language, which is used to generate

formal rules to transform TD to UML-B model, illustrated by examples of ATL

rules.

Chapter 3 describes other relevant techniques which are elaborated in this thesis.

The chapter starts with giving explanation of OMG System Modelling Language

(SysML), which is a graphical modelling language for specifying, analyzing, and

designing systems. Requirements diagram, which is a new diagram for SysML is

discussed, illustrated with an example of modelling a lift system. An

Action/Reaction pattern, which is used as a guideline for translating TD to Event-B,

is described. Relevant researches on combining KAOS, B, UML and CSP, is

discussed; likewise works on transforming TD to LTL formulas. The chapter

finished with an explanation of properties that are significant for maintaining the

correctness of doing RE, i.e. traceability, safety, liveness and fairness.

Chapter 1 Introduction 15

Chapter 4 describes a case study, lift System, which provides examples of

requirements focusing on timing constraints and causal dependencies among

objects. It is used for exploring translations from TD to Event-B, UML-B and

KAOS. UML TD 2.0 is described; this is the standard notation used for defining the

behaviour of different objects within a time-scale. Selected and amended TD

notations are explained. A preliminary TD editor is introduced at the end of the

chapter, but it was based on outdated TD notations, and so was not used for creating

TD here. Instead, we created TD from Microsoft Visio for the

representation/visualisation. For translating TD into UML-B, the TD description is

generated by EMF.

Chapter 5 describes how to generate direct translation rules that are used to

transform TD into Event-B model. TD BNF definitions are provided and used as

input parameters for formal translation rules. The rule definitions are explained,

followed by illustrations of generating Event-B models from the rules. The chapter

finishes with a description of how non-timing requirements are added to complete

the Event-B model.

Chapter 6 describes the translation rules for generating UML-B models from TD.

The chapter starts with explanation of TD Metamodel created by EMF. TD used for

the translation is introduced. ATL translation rules which, are used to create UML-

B components, are described through examples. The chapter finishes with an

explanation of how additional information are added to the model.

Chapter 7 describes the translation techniques that are used for generating KAOS

Goal models from TD. The chapter starts by explaining a scope of TD and LTL

operators which can be used for the translation. Next, explanation of TD BNF, and

formal translation rules are provided, together with examples. Steps of goal trees

creation and manual information addition are illustrated. The chapter finishes with a

description of how Operation models are created.

Chapter 1 Introduction 16

Chapter 8 gives a comparative evaluation of the three direct translation

methodologies; that is from TD to Event-B, UML-B and KAOS models. The

comparisons explain what the differences and similarities in techniques and

notations used to generate those models, as well as what additional information and

where it is needed for each. We address how straightforward or complicated it is to

generate and alter the models. This chapter provides the comparison with other

related works. The comparison of a number of proof obligations in Event-B and

UML-B models is provided. Finally, an example of proof obligations is explained.

Chapter 9 explains the contributions of this research. Limitations of the work are

examined. Possible directions for future work are described.

Chapter 2 Technical

Background

This chapter aims at giving background to the knowledge used in the thesis.

Many fields of knowledge are used vary from FMs: specifically Event-B and

UML-B techniques, Goal-oriented requirement engineering, Eclipse modelling

framework and metamodel. The knowledge explanations are provided along with

examples.

The structure of this chapter is as follows. Section 2.1 introduces background

knowledge of RE methodologies, along with FMs. Section 2.2 explains FM

methodologies and their categories. Section 2.3 gives the detail of Event-B

modelling by describing the philosophy, followed by an introduction to the

constructs used for modelling systems in Event-B. More detail is given on the

refinement method used to develop Event-B models and proof obligations. Section

2.4 explains the RODIN tools used for creating and verifying the models generated

in the thesis. Section 2.5 explains an UML-B tool that is used to develop a UML-B

model. Section 2.6 discusses Linear Temporal Logic (LTL) operators that are used

to describe KAOS Goal and Operation models. Section 2.7 explains KAOS

frameworks, with corresponding examples. Section 2.8 introduces metamodelling:

creating types and model structures for the models. Section 2.9 describes ATL and

its components.

Chapter 2 Technical Background 18

2.1 Requirements Engineering

Requirements engineering (RE) is the first step of the system development

process. It is concerned with activities for eliciting, evaluating, specifying,

analysing, documenting, and revising, the objectives, functionalities, and

constraints to be obtained for a proposed system within a particular environment.

Requirements can be grouped into two categories: functional and non-functional.

Functional requirements associate with specific functions, tasks or behaviours the

proposed system must support. For example, “lift doors must be closed when the

lift is moving”, and “the lift must be eventually stop at requested floors” are

functional requirements. Non-functional requirements provide constraints that are

not explicitly functional but do satisfy functional requirements. They include

availability, reliability, performance, convenience, installation, and maintainability

requirements. For example, “the lift should move smoothly between floors”, “the

lift position must be clearly seen at any time by users”, and “the lift has to be tested

every year”, are non-functional requirements. This thesis focuses on functional

requirements.

Requirements are elicited (by using techniques such as data collection,

questionnaires, prototyping, knowledge reuse) and evaluated (e.g. by inconsistency

management and risk analysis). More detail of elicitation and evaluation can be

found in (Lamsweerde, 2009). Later, the results of elicitation and evaluation need

to be specified and documented. There are many techniques for identifying

requirements specification. For example, describing in natural language, using

decision tables, entity-relationship diagrams (ERD) (Chen, 1976), dataflow

diagrams (DFD), UML diagrams (OMG, 2008), e.g. TD, UML-like diagrams, e.g.

UML-B (Snook and Butler, 2008a), semi-formal specifications, e.g. KAOS

(Lamsweerde, et al., 1991), and formal specifications, e.g. Z (Spivey, 1992) and

Event-B (RODIN, 2009).

This thesis examines a combination of requirements specification techniques:

TDs, Event-B, UML-B, and KAOS (as described in Chapter 1). TD was selected

because we emphasise modelling a system’s timing requirements where there are

causal dependencies between system objects. Moreover, OMG UML provides TD

standard notations, some of which are appropriate for our translation. Event-B and

Chapter 2 Technical Background 19

UML-B were chosen as they are techniques for FM modelling and have effective

tools support. KAOS is a semi-formal method, which uses timing constraints by

discrete time points. Thus, it was selected to combine with TD.

2.2 Formal Methods

FMs are a set of techniques used to create a formal specification, develop a

new specification (for example: refinements), and verify a specification by using

mathematical notations for software engineering. The benefit expected from

formalization is a higher degree of precision in specification, as it forces one to

write an unambiguous detailed description and consider all the cases that may

cause erroneous behaviour. As a result, the specification gains a high-level of

correctness of requirements and benefits the design process. Using a FM helps

reduce defect rates in software development and saves money in fixing errors in

requirements, as shown by (Praxis High Integrity Systems, 2008) and (Hall, 2005).

FMs can be broadly classified into two categories.

• State-based notations: this kind of FM supports creating system

specifications by construction of a set-theoretic model. The model is

described by invariants, state variables, and operations over the states.

Invariants define condition constraints that the system’s states must be

always hold. Variables are used to indicate system state information. An

operation is defined by pre- and post-conditions over system variables. A

pre-condition contains necessary input variables that are constraints for an

operation to be applied. A post-condition contains output variables after an

operation is applied; it updates the system states. Examples of this kind of

FM are VDM (Jones, 1986), Z (Spivey, 1992) and B (Abrial, 1996).

• Process algebras notations: this kind of FM supports creating system

specifications by using methods derived from algebraic operators. It

specifies a system as collections of concurrent and communication

processes. These processes can be executed by many abstract machines

according to specific rules of interaction. In particular, this FM requires

interactions between components of software architectures and protocols.

Chapter 2 Technical Background 20

Examples of this kind of FM are LOTOS (Bolognesi and Brinksma, 1987)

and Communicating Sequential Process (CSP) (Hoare, 1985).

There are some other FM methodologies, whose features are defined in

between those categories above. Two examples are: Petri Nets (Peterson, 1981)

which is state-based, defined as a graphical language, and suitable for modelling

concurrent behaviour of distributed systems; and Larch (Guttag, et al., 1993) which

is a state-based and algebraic specification method, specialized in the specification

of abstract data types and their properties.

2.3 Event-B Modelling

The classical B-Method (Abrial, 1996; Schneider, 2001) is a mathematical

method for formal system specification, design and implementation of software

based on refinement. The classical B-Method defines a machine with variables,

invariants, and operations. It has a concept of refinement that allows one to

gradually build a model more and more precise in detail. The benefit of refinement

helps to reduce degree of model’s complexity. Moreover, if the model is massive, it

is impossible to represent everything. To verify the correctness of a B model, proof

obligations and model checking are used. Examples of tools supporting verification

in B are Atelier B (ClearSy, 2009), B-toolkit (Sørensen, 1994) and ProB (ProB,

2009).

Event-B is derived from classical B. It keeps the concepts of classical B-

Method but adds the concept of event. Event-B has simplified language syntax,

stronger refinement notion and more powerful tool support (RODIN, 2009). Since

Event-B models have well-defined syntax and semantics, it is possible to test them

by proving that transitions made during the software process are correct. The

Event-B provides proof obligations (POs) to ensure the correctness of a model. The

POs are generated according to the correctness criteria, which are required within

the models. Those POs have to be discharged by users and can be supported by

automated proof tools, the RODIN tool (Butler and Hallerstede, 2007). Other plug-

ins for RODIN are UML-B (Snook and Butler, 2008b) for adding class-oriented

and Statemachine Event-B modelling capabilities, ProB (Leuschel, 2007) for

Chapter 2 Technical Background 21

animating, systematically checking and assisting proving a B model, and BRAMA

(Requet, 2007) for animating B models.

The B-Method has been successfully employed in the development of safety-

critical systems such as signalling on Line 14 of the Paris Metro (Dehbonei and

Mejia, 1995), and the Roissy Airport Shuttle (Abrial, 2006; Abrial, 2007).

Bicarregui reports using B in six case studies, such as a short-term conflict alert air

traffic control application, and clinical biochemistry (Bicarregui, et al., 1997). The

B-Method also contributed to the development of IBM’s CICS product (Hoare, et

al., 1996).

2.3.1 Contexts and Machines

Event-B’s kernel mathematical language is defined and explained in

(Métayer and Voisin, 2007). An Event-B model comprises static and dynamic

parts, which are called CONTEXT and MACHINE respectively. A machine SEES at

least one context.

The CONTEXT may contain carrier sets, constants, axioms and theorems.

Carrier SETS (s) define sets and are represented by their name. Different carrier sets

are independent. CONSTANTS (c) are defined by a number of AXIOMS A(s,c).

AXIOMS gives properties about constraints and are dependent on the carrier sets s

(Abrial and Hallerstede, 2006). THEOREMS are required assertions for proving.

They are derived properties that should be provable from axioms (Hallerstede,

2006). The structure of an Event-B context is illustrated in the following:

 CONTEXT context_name

 SETS s

 CONSTANTS c

 AXIOMS A(s,c)

 THEOREMS

Figure 2-1 Event-B Static structure: Context

The MACHINE defines the behaviour of the Event-B model. It includes

VARIABLES v, INVARIANTS I(s, c, v), INITIALISATION T and EVENTS E. VARIABLES

Chapter 2 Technical Background 22

define machine variables, which are used to maintain state information while

performing events. INVARIANTS are used to define a property over the states and

context of the system that must be satisfied by all events. INITIALISATION is used to

specify the initial values of variables, while EVENTS define the units of behaviour

that include possible state changes. The structure of an Event-B machine is

illustrated in the following:

 MACHINE machine_name

 SEES context_name

 VARIABLES v

 INVARIANTS I(s, c, v)

 INITIALISATION T

 EVENTS

 E1 = WHEN G1(s, c, v) THEN S1(s, c, v) END

 E2 = ANY l WHERE G1(l, s, c, v) THEN S2(l, s, c, v) END

 …

 END

Figure 2-2 Event-B Dynamic structure: Machine

An event has a name and is composed of guards G(s, c, v) and actions S(s, c,

v). Guards identify lists of conditions for the event to occur, while actions identify

how the state variables evolve when the event occurs. Alternatively, an event can

be defined without a guard or possibly with a non-deterministic clause, as shown in

Figure 2-3. From this figure, three possible structure types of an event are shown:

Simple, Guarded and Non deterministic.

Figure 2-3 Event-B Structure

Chapter 2 Technical Background 23

A Simple structure declares an event that does not have a guard but actions

S(s, c, v). A Guarded structure is used to identify an event with guards G(s, c, v) and

actions S(s, c, v) but omitting local variables l. A Non deterministic structure is the

general form of an event and used when the event has local variables l with guards

G(l, s, c, v) and actions G(l, s, c, v). Examples of each Event-B structure are given

below:

Figure 2-4 Examples of each Event-B Structure

From Figure 2-4, an event Ticktok is defined as a Simple structure and gclock

as a machine variable. An event doorClosed is defined as a Guard structure, where

doorState and currentFl are machine variables. Note that currentFl will be defined as

an element of a class FLOOR, while doorState is defined as a surjective function

from a class FLOOR to a set of door’s states in INVARIANT. An event floorlampOn is

defined as a Non deterministic structure with a non-deterministic local variable f

under ANY clause. The guards, f : FLOOR & f = currentFl & floorlampState(f) = Off, are

defined in a WHERE clause, where currentFl and floorlampState are machine

variables. The action clause is defined by floorlampState(f) := On.

2.3.2 Before-After predicates associated with an assignment

A before-after predicate (BA) is used to express a relationship between the

machine’s state variable before an assignment takes place (denoted by v), and after

an assignment takes place (denoted by v'). The before-after predicates are defined

within three kinds of assignment: Deterministic, Non-deterministic and Empty.

Chapter 2 Technical Background 24

Deterministic: a deterministic assignment is in a form <variable identifier list> :=

<expression list>. That is, if v is a list of variables and E a list of expressions, an

action is declared by v := E(v) in which its before-after predicate is defined by

v' = E(v). For example, an action v := v + 1 is written in the form of a before-after

as v' = v + 1.

Non-deterministic: a non-deterministic assignment is in a form of

<variable identifier list> :| <before-after predicate>.

For example, v,y :| v' = v + 1 ∧ y' = y + 1 which is equivalent to v,y := v + 1, y + 1.

Empty: the substitution does nothing and is assigned to skip. The before-after state

for this kind of substitution is v' = v.

Consistency Proofs

An Event-B model has to perform consistency proofs to ensure the

correctness of the model. In the RODIN tool, the POs are automatically generated

by the Proof obligation generator and the outcomes are transmitted to the Prover

(Abrial, 2008b). The Prover performs automatic or interactive proofs and provides

the outcomes. The detail of the tool is described in section 2.4 below. There are a

number of POs that have to be generated, as described in (Métayer, et al., 2005;

Abrial and Hallerstede, 2006; Abrial, et al., 2007). Here, we give examples of two

proof obligations: Invariance Preservation and Feasibility.

The invariant preservation statement (INV) is the PO that each invariant is

maintained whenever variables’ values are changed by each event. The formal

definition of INV is illustrated below (Abrial, 2008b).

Axioms A(s,c)

(1)

Invariants I(s, c, v)

Guards of the event G(s, c, v)

Before-after predicate of the event BA(s, c, v, v’)

� �

Modified Specific Invariant Im(s, c, v’)

Chapter 2 Technical Background 25

A feasibility statement (FIS) is the PO that under the axiom A(s,c), the

invariants I(s, c, v), and the guard G(s, c, v), the action gives at least an after value v'.

The formal definition of FIS is illustrated below (Abrial, 2008a).

Axioms A(s,c)

(2)
Invariants I(s, c, v)

Guards of the event G(s, c, v)

� �

∃ v’ Before-after predicate ∃ v ’BA(s, c, v, v’)

2.3.3 Refinement

The concept of refinement in Event-B allows more detail, and the expression

of some design decisions, to be added, in a stepwise manner, into the model. The

advantage of refinement is allowing the model to be analysed at an abstract level,

resulting in reduced complexity (Abrial and Hallerstede, 2006). In the formal

development, the first Event-B model is called the abstract model. The abstract

model is transformed through a formal sequence to obtain the refinement/concrete

model. Performing refinements can be done in many ways, such as adding new

variables and constants, introducing new events, decomposition of events,

changing/adding algorithms detail, and replacing existing variables.

Refinement is sub-categorized into feature augmentation and structural

refinement (Butler, et al., 2008).

• Feature augmentation: a feature augmentation is a refinement in which

existing model features are maintained and additional features are added,

such as variables, invariant, events, additional guards and actions. This kind

of refinement defines new properties for a model. It can be called a

superposition or a horizontal refinement.

• Structural refinement: this refinement is adding detailed design to the

implementation. Examples of structural refinements are refining the

algorithm of an event’s operators, event decomposition, and replacing an

existing event’s variable with new variables. This refinement can be called

a procedural refinement or a vertical refinement.

Chapter 2 Technical Background 26

When a Structural refinement is applied to a model, gluing invariants must

be introduced. A gluing invariant links the state of the concrete model to the states

of its abstract model. For example, one performs a refinement when a variable v in

the abstract model is replaced by a variable w in the concrete model. In this case, a

gluing invariant J(v, w) is used to glue variable v to the variable w mathematically.

Thus, the states of abstract machines are related to the states of refinement

machines. An example of defining a gluing invariant is now given.

Model A(v) has a variable v defined by v ⊆ T, where T is a set of integers;

model B(w) has a variable w that represents a sequence of integers and is defined

by w ∈ seq(T). A possible refinement of model A by model B has gluing invariant

J(v, w) ≅ v = ran(w). This gluing invariant includes the abstract variable v and is

called a gluing invariant because it glues the two models together. It is used to

relate new variables to those in the abstract models.

The general form of a refinement model is shown in Figure 2-5 where w

represents concrete variables, J(s, c, v, w) gluing invariants, and N concrete

initialisation. H(s, c, w) and R(s, c, w) are guards and actions for concrete event Er1

respectively.

 MACHINE refinement_model_name

 REFINES abstract_model_name

 SEES context_name

 VARIABLES w

 INVARIANT J(s, c, v, w)

 INITIALISATION N

 EVENTS

 Er1 REFINES E1 = WHEN H(s, c, w) THEN R(s, c, w) END

 Er2 REFINES E2 = ANY … WHERE…THEN … END

 …

 END

Figure 2-5 Refinement model structure

Chapter 2 Technical Background 27

Consistency Proofs for Refinement

Since new events can be introduced in the refinement, the new events also

have to be proved. For example, it is necessary to prove that the new events will

not run forever, or, when a concrete event in the new event is enabled, the

corresponding abstract one is enabled. The latter is called Guard strengthening

(GRD) and is an example of a PO illustrated in the following formula (Abrial,

2008b). Other numbers of POs can be found in (Métayer, et al., 2005).

Axioms A(s,c)

(3)

Abstract invariants and theorems I(s, c, v)

Concrete invariants and J(s, c, v, w)

Concrete event guards H(s, c, w)

� �
Abstract event specific guard g(s, c, v)

2.4 RODIN Tools

The RODIN toolkit version 0.9.1 (Event-B.org, 2009), used in this thesis, is

an Eclipse environment for modelling and proof in Event-B. RODIN is built on the

Eclipse platform and comprises many features, for example, refinement, PO

generation and some plug-in tools. Some of the latter are: Atelier B (ClearSy,

2009), ProB (ProB, 2009), UML-B (Snook and Butler, 2008b), and B2Latex

(Event-B.org, 2008). The RODIN tool has two default perspectives as shown in

Figure 2-6 and Figure 2-7.

In RODIN, Event-B CONTEXTS, MACHINES and their refinements, are

created within the same project as shown in the Project Explorer tab in Figure 2-6.

The Editor tab (in the centre) is for editing a model whose elements’ properties are

shown in the Properties tab beneath. The Outline tab displays the list of model

elements.

Chapter 2 Technical Background 28

Figure 2-6 RODIN Modelling Perspective

The RODIN tool contains a proof obligation generator, automated and

interactive provers (Abrial, et al., 2008). The automated and interactive proof is

shown in the Obligations Explorer tab, Figure 2-7. To perform interactive proof,

one can select hypotheses from the Selected Hypotheses tab (in the upper centre).

The Proof Tree and Goal tabs display the sequence of proving, and the goal of

proving, respectively. The proved result and a number of provers (provided by the

tool) are in the Proof Control panel.

Figure 2-7 RODIN Proving Perspective

Chapter 2 Technical Background 29

2.5 UML-B

UML-B (Snook and Butler, 2008b) has been developed as a plug-in for

RODIN toolkits and implemented by the Eclipse Modelling Framework (EMF). It

is a graphical formal modelling notation based on UML (Booch, et al., 2003), and

relies on Event-B (Abrial, et al., 2007) and its verification tool (Abrial, et al.,

2005). UML-B is a tool that supports the construction of a graphical model, using

UML-like diagrams, i.e. Class diagram and Statemachines, and an Event-B like

annotation language. UML-B models can then be automatically translated to Event-

B using the U2B translator for further analysis. In this thesis, the UML-B version

0.4.3 is used.

2.5.1 Package diagram

The UML-B top-level Package diagram is first opened with an empty

canvas. This is the default perspective for representing a UML-B project.

Figure 2-8 UML-B Package diagram perspective

Chapter 2 Technical Background 30

A Package diagram is used to describe the association between machines and

contexts in a UML-B project. UML-B provides drawing tools as illustrated in the

Palette panel, on the right. This is used to create machines and contexts with a

graphical representation as shown in the Editor panel in the centre. For example, in

Figure 2-8, My_Machine is a machine while My_Context is a context. A

machine sees a context via the relationship Sees. The Properties tab represents

properties of the selected component in the Editor view, while the Navigator tab is

for displaying the list of diagrams within a project.

2.5.2 Context diagram

Static data in Event-B, such as sets, constants, axioms and theorems, are

modelled in the CONTEXT part. UML-B provides this in a separate package

called a Context diagram. The Context diagram is drawn as a Class diagram but

has constant data represented by ClassType, Attributes, Constants and Association.

Figure 2-9 UML-B Context diagram perspective

Whenever a UML-B model generates an Event-B model, ClassTypes are

defined as carrier sets or constants. In Figure 2-9, ClassType C1 and C2 are defined

Chapter 2 Technical Background 31

as sets, while ClassType C3 is defined as a constant as shown in Figure 2-10. C3

is generated as a constant since it is assigned to constant values {1, 2, 3}. An

association between ClassType, for example c1toc2, is also generated as a

constant with a corresponding axiom as shown below.

Figure 2-10 Event-B

2.5.3 Class diagrams

The dynamic part is generated in a Class diagram and used to describe a

machine. In a machine, one can define classes, variables, events, Statemachines

and invariants.

Figure 2-11 UML-B Context diagram perspective

Chapter 2 Technical Background 32

“Classes represent subsets (variable or fixed) of the ClassType that were

introduced in the context” (Snook and Butler, 2008b). That means a class’s Fixed

property can be set to false (default value) or true. If it is set to false, that

class is generated as a variable unless it is a
��. For example, in Figure 2-11, class

D is generated as a variable for a machine with its invariants D � � (D_SET) as

shown in Figure 2-12.

Figure 2-12 An Event-B variable is generated from an UML-B non-fixed property class

If the Fixed property for class D is set to true, the Event-B generated from

class � is shown in Figure 2-13.

Figure 2-13 An Event-B class is generated from an UML-B fixed property class

Chapter 2 Technical Background 33

Associations between classes, for example an association AtoB� in Figure 2-

11 and Figure 2-12, define machine variables (global variables). Attributes and

events that are attached to a class are generated as events’ local variables and

machine events respectively.

2.5.4 Statemachines

A Statemachine is used to model the behaviours of a system. It can be

identified in two ways: within a corresponding class, and as a Machine

Statemachine. A Statemachine is defined within a class in order to explain the

behaviour of a class’s states changing and modifying a class’s variables. In

contrast, if an object has to be represented by a Statemachine, a Machine

Statemachine is utilized. For example, from Figure 2-11, the A_Statemachine� is

defined within class A while B_Statemachine�is a Machine Statemachine. Below is

an example of the A_Statemachine.

Figure 2-14 An example Statemachine

A Statemachine transition represents an event with behaviour associated with

the change of states, from a source state to a target state. Each transition is

generated as an event. Figure 2-14 shows two events are created: �
 and ���.

Additional guards and actions can be attached to the transition in the Properties tab

Chapter 2 Technical Background 34

to describe the events’ behaviours. Note that, ������� is a �����
�� ��������

defined in Figure 2-11.

Each event uses a keyword <ClassNameSelf>, a class name in which a

transition is followed by Self, to identify the non-deterministic selection of an

instance of the class. For example, consider the event �
 created from the transition

�
 in Figure 2-14, as illustrated below.

Figure 2-15 An event On created from a transition

The word �
��� is automatically created as a non-deterministic variable with

a guard �
����∈��, where � represents a class in which this transition takes place.

A source state (��
���������
���
��� �!���) and a target state

(��
���������
���
��� �"��#) are automatically generated as a guard and an

action respectively.

2.5.5 Implementation of UML-B

UML-B is implemented with the EMF, which is an Eclipse project providing

code generation, model editor, and efficient Application Programming Interface

(API) utilities based on a metamodel (Snook and Butler, 2006). Graphical

Modelling Framework (GMF) is an Eclipse project used to automatically generate

code for the UML-B graphical modelling tool, based on the EMF model (detail of

EMF is given in section 2.8.2). UML-B provides drawing tools and a translator to

generate Event-B models, i.e. whenever an UML-B drawing model is saved, the

Chapter 2 Technical Background 35

U2B translator automatically generates the corresponding Event-B model. RODIN

automatically verifies the Event-B model and reports any errors.

Even though UML-B is similar to UML, it is designed on a separate

metamodel (Snook and Butler, 2008a). Figure 2-16 shows parts of the UML-B

metamodel in which classes represent abstract meta-classes. Class UMLBProject

defines the name of a project via UMLBname where name is defined as a string.

UMLBProject is composed of UMLBconstruct in which is subtyped into

UMLBMachine and UMLBContext. UMLBMachine contains UMLBEvent and

UMLBVariable, which are used to define machine events and machine variables

respectively. The class UMLBMachine contains a contexts association. This is the

way that machines are linked to contexts in a model.

Figure 2-16 Parts of UML-B Metamodel�

UMLBClass is a subtype of UMLBabstractClass. As shown in Figure 2-17,

the UMLBabstractClass contains UMLBEvent and UMLBabstractAttribute, which

are used to define classes’ events and classes’ attributes respectively.

Chapter 2 Technical Background 36

Figure 2-17 UMLBabstractClass, UMLBEvent and UMLBabstractAttribute Metamodel

In Figure 2-16, UMLBstatemachineCollection contains UMLBStatemachine

that is used to define Statemachines. The UMLBStatemachine contains

UMLBTransition and UMLBState. The UMLBTransition represents Statemachines’

transitions, in which each transition links a couple of states by target and source

associations to UMLBState. The UMLBTransition is a subtype of

UMLBguardedAction. The UMLBguardedAction contains UMLBAction,

UMLBPredicate and UMLBEventVariable, which are used to define actions, guards

and events’ variables (local variables for an event) respectively for a transition.

2.6 Linear Temporal Logic (LTL)

LTL is used to describe a sequence of events referring to time. It is defined

over discrete time points and has proved convenient for specification requirements

(Letier, 2001). LTL provides the temporal operators as follows.

� some time in the future � some time in the past

� always in the future � always in the past

U always in the future until S always in the past since

W always in the future unless B always in the past back to

� in the next state � in the previous state

Chapter 2 Technical Background 37

In LTL (Lamsweerde, 2009), time is declared as the set Nat of natural

numbers, and a history H is defined as a function, H: Nat � State(x), where x

represents the set of system variables and State(x) stands for the set of all possible

states for the corresponding variables in x. This function operates for every time

point i in H. To define the LTL semantics more precisely, the notion (H, i) |= P is

used to express the LTL assertion that P is satisfied by history H at time position i,

where i ∈ Nat. The semantic rules for the LTL temporal operators are divided into

two categories: future operators and past operators, as follows (taken from

(Lamsweerde, 2009)).

Future operators

(H, i) |= � P iff for some j � i : (H, j) |= P

(H, i) |= � P iff for every j � i : (H, j) |= P

(H, i) |= P U Q

iff there exists a j � i such that (H, j) |= Q

and for every k, i � k < j : (H, k) |= P

(H, i) |= P W Q iff (H, i) |= P U Q or (H, i) |= � P

(H, i) |= � P iff (H, i +1) |= P

P �Q “entails” Equivalent to � (P → Q)

P ⇔ Q “congruent” Equivalent to � (P ↔ Q)

Past operators

(H, i) |= � P iff for some j � i : (H, j) |= P

(H, i) |= � P iff for every j � i : (H, j) |= P

(H, i) |= P S Q

iff there exists a j � i such that (H, j) |= Q

and for every k, j < k � i : (H, k) |= P

(H, i) |= P B Q iff (H, i) |= P S Q or (H, i) |= � P

(H, i) |= � P iff (H, i -1) |= P with i > 0

@ P Equivalent to (� ¬ P) ∧ P

Relative Real-time Properties

In RE, some properties are need to be defined over real-time constraints.

Examples of such properties are:

“All borrowed books must be returned within a week”

Chapter 2 Technical Background 38

“Lift door must be opened between 1 and 5 minutes after the lift stops at that

floor”

Relative real-time properties are properties referring to real-time delays

between system states. In order to specify such properties, bounded versions of the

above temporal operators are used. Examples of those operators are

� �d (some time in the future within deadline d)

� �d (always in the future up to deadline d)

To define those operators, a temporal distance function is used, as defined in

the following:

dist: Nat × Nat → D where D = {d | there exists a natural n such that d = n × u}

where u denotes a chosen time unit such as second, minute and hour.

dist(i, j) = |j – i| × u

For example, the semantics of the real-time operators is then defined below

(the rest of the semantics is declared in (Lamsweerde, 2009)).

(H, i) |= � � d P iff for some j � i with dist(i, j) � d: : (H, j) |= P

(H, i) |= � � d P iff for every j � i such that dist(i, j) � d: : (H, j) |= P

2.7 Knowledge Acquisition in autOmated Specification (KAOS)

A system requirement is a statement of what the system has to perform to

accomplish the system’s goal. A requirement for a computer system specifies a

statement to be implemented by the proposed system. It always involves other

system components and is described in terms of environmental phenomena (e.g.

agents and system’s constraints). Examples of system requirements are

• All lift doors shall always remain closed while the lift is moving

• A book must be returned within a deadline

Chapter 2 Technical Background 39

A goal is a prescriptive statement and defines an objective the composite

system should meet through the cooperation of its agents in the environment. A

requirement is a goal under the responsibility of a single software agent. An agent

is an active object and performs a specific role/operation in a requirement. Agents

can be human, devices, software, etc. For example, the first requirement in the

above list is assigned to a DoorController agent, while the second is assigned to a

Library software agent.

KAOS stands for Knowledge Acquisition in autOmated Specification

(Dardenne, et al., 1993) or Keep All Objects Satisfied (Letier and Lamsweerde,

2002b). It is a goal-oriented RE that uses a Goal model to generate system

requirements. A Goal model is then used to generate one or more Operation

models. Each Operation model defines the state transitions in the application

domain by using pre- and post-conditions. The detail of Goal and Operation

models are described in the following sections.

2.7.1 Goal model

The first model generated in KAOS is a Goal model. A Goal model is created

by focusing on a part of the goal and then proceeding to the next part until

completing the whole Goal model (El-Maddah and Maibaum, 2003). This process

is called goal refinement. A Goal model is represented as a tree structure, which

can be called a Goal tree, as shown in Figure 2-20. Each goal is graphically

represented by a parallelogram labelled by the goal’s name and prefixed by its

type, as shown in Figure 2-18.

There are four types of goal (Darimont and Lamsweerde, 1996; Rubio-

Loyola, et al., 2005) :

• Achieve and Cease goals require some target properties to be eventually

satisfied or denied, respectively, in some future state. This goal category

is used for specification of liveness properties.

• Maintain and Avoid goals require some target properties to be

permanently satisfied or denied, respectively, in every future state.

Chapter 2 Technical Background 40

Maintain and Avoid goal categories are used to specify safety

properties.

To illustrate how a KAOS model is created, an example of a meeting

scheduling problem is used as an example from this point forward (Letier, 2001).

Parts of the meeting scheduling problem specification are provided below:

“… Each requested meeting will eventually be held with the presence of all

intended participants. Participants’ date constraints are eventually

accurately known by the scheduler …”

From the problem statement above, supposes a “participants’ constraints

known” is selected to be generated as a goal. This goal is created as shown in

Figure 2-18. The goal has identified Achieve as a goal type with a name

PrtcptsCstrKnow.

Figure 2-18 An example of a goal

2.7.2 Goal formal definition

Each goal is declared by a type (Achieve, Maintain, Cease and Avoid),

definition (Definition) and formal definition (FormalDef). A goal definition is

described by text. A formal definition is composed of optional inputs/outputs, pre-

conditions and post-conditions. Inputs/outputs declare objects’ attributes of an

operation. Pre- and post-conditions describe current conditions and target

conditions of an operation, respectively. A goal formal definition uses LTL to

define a goal description. Thus, a goal formal definition is written as a temporal

logic statement. An example of the definition of the

Goal Achieve[PrtcptsCstrKnown] from Figure 2-18 is illustrated below:

Chapter 2 Technical Background 41

�
�

∀

�

�
�

�

�

Figure 2-19 A definition of the goal Achieve[PrtcptsCstrKnown]

Goal types are keywords that allow one to specify a goal formal definition

pattern at the declaration level (Lamsweerde and Willemet, 1998). Each of these

goal patterns represents a particular shape of temporal logic formula. Examples of

those patterns are illustrated in

Table 2-1.

Goal Type Temporal logic formula Pattern

Achieve P � � Q Unbounded Achieve

 P � � � d Q Bounded Achieve

 P � � Q Immediate Achieve

Cease P � � ¬Q Unbounded Cease

 P � � � d ¬Q Bounded Cease

 P � � ¬Q Immediate Cease

Maintain P � Q
Permanent Maintain/

Immediately response

 P � � Q After Maintain

Avoid P � ¬ Q Permanent Avoid

 … …

Table 2-1 Goal types with temporal logic formulas

Chapter 2 Technical Background 42

For example from Figure 2-19, the Goal Achieve[PrtcptsCstrKnown] is

specified as a Unbounded Achieve P � � Q where P is Intended(p,m) and Q is

CstrKnown(p,m).

Another example is a Bounded Achieve P � � � d Q, it means whenever the

current condition P occurred, the target condition Q will eventually occur within

deadline d. The Permanent Maintain/Immediately response P�Q means whenever

the current condition P occurs, the target condition Q must be occurred at the same

time point. More goal patterns can be found in (Letier, 2001).

2.7.3 Goal refinement

A Goal model is created by an AND/OR graph called a goal refinement

graph. A goal refinement graph shows how a parent goal (at a higher-level) is

refined into subgoals, and how subgoals are grouped into the higher-level one

(Lamsweerde, 2001); this is called goal refinement. Asking WHY and HOW

questions are techniques used to generate a goal refinement graph. By asking

HOW questions, subgoals are identified from an already identified parent goal

(top-down processes). By asking WHY questions, a parent goal is generated from

already identified subgoals (bottom-up processes). The goal refinement is stopped

when every subgoal can be assigned to a single agent. Leaf node goals in a goal

refinement graph represent software requirements.

To explain how a goal refinement graph is created, consider the goal

Achieve[PrtcptsCstrKnown] as shown below (the same goal within Figure 2-18). The

goal Achieve[PrtcptsCstrKnown] is refined into two subgoals

Achieve[PrtcptsCstrRequested] and Achieve[RequestedCstrProvided] by asking a

HOW question. Similarly, other parts of the goal refinement graph are generated by

asking HOW and WHY questions. A process of goal refinement is brought about

by application of formal goal refinement patterns to expand the parent goal is

described later in section 2.7.4.

Chapter 2 Technical Background 43

Figure 2-20 KAOS goal refinement graph

AND and OR refinement combinations

A goal refinement process uses logic to decompose a parent goal into

subgoals, or compose subgoals to generate a parent goal. Decomposing and

composing use two kinds of goal refinements in combination: AND and OR. An

AND-refinement is represented by a black circle symbol while an OR-refinement is

represented by a white circle symbol, as shown below.

Figure 2-21 Symbols for AND and OR refinement

Using AND-refinement means a parent goal can be refined into subgoals that

are more detailed; for example, Subgoal1 and Subgoal2. This means that to achieve

a parent goal, all subgoals must be selected. OR-refinement is an alternative goal

refinement. In this case, more than one alternative subgoal can be selected.

Chapter 2 Technical Background 44

2.7.4 Formal goal refinement patterns

“Goal decompositions made by hand are usually incomplete and sometimes

inconsistent” (Lamsweerde and Massonet, 1995). Thus, Darimont provides formal

patterns for building goal refinement graphs that are proved correct (Darimont and

Lamsweerde, 1996). A formal refinement pattern is a one-level AND-tree of a

parent goal. That means there is no pattern for OR-refinement. There are a number

of goal refinement pattern defined in (Darimont, 1995). Here, we explain those are

used in the thesis.

A Milestone-driven goal refinement pattern

The Milestone-driven goal refinement pattern refines an Unbounded Achieve goal

of the form P � � Q by introducing an intermediate state M (milestone), see Figure

2-22. To reach a state satisfying the target condition Q from a state satisfying the

condition P, it must act via the intermediate state satisfying condition M.

�

� �

Figure 2-22 A Milestone-driven goal refinement pattern

(Darimont and Lamsweerde, 1996; Letier, 2001)

For example from Figure 2-19, the goal Achieve[PrtcptsCstrKnown] is refined

into two subgoals Achieve[PrtcptsCstrRequested] and Achieve[RequestedCstr

Provided] by using the Milestone-driven goal refinement pattern where

 P : Intended(p,m)

 Q: CstrKnown(p,m)

 M: CstrRequested(p,m)

The following subgoals are thereby obtained:

Chapter 2 Technical Background 45

Goal Achieve[PrtcptsCstrRequested]

FormalDef ∀ p: Participant, m: Meeting
Intended(p,m) � � CstrRequested(p,m)

Goal Achieve[RequestedCstrProvided]

FormalDef ∀ p: Participant, m: Meeting
 CstrRequested(p,m) � � CstrKnown(p,m)

A case-driven goal refinement pattern: split antecedent

The Case-driven: split antecedent goal refinement tactic refines a goal by

splitting it into cases as shown in Figure 2-23. This technique is used when

different cases can be identified in a goal.

�∨

� �

Figure 2-23 A case-driven goal refinement pattern: split antecedent

For example, a fire-safety monitoring problem is provided as “… If the room

temperature is overheated or the room is very humid, a room window will be

eventually opened …”

This specification above can be generate as a Goal Achieve[TheRoom

WindowOpenAfterTheRoomIsOverHeatedOrTheRoomIsHumid] as in the following:

Goal Achieve[TheRoomWindowOpenAfterTheRoomIsOverHeatedOrTheRoomIsHumid]

FormalDefinition: When the room temperature is overheated or the room is very humid, a

room window will be eventually opened.

FormalDef: ∀ r : Room

 r.temperatureLevel = ‘Overheated’ ∨ r.humidityLevel = ‘High’

 �

 � r.windowState = ‘Open’

Chapter 2 Technical Background 46

The Goal Achieve[TheRoomWindowOpenAfterTheRoomIsOverHeatedOrThe

RoomIsHumid] is refined into two subgoals Achieve[TheRoomWindowOpenAfterThe

RoomIsOverHeated] and Achieve[TheRoomWindowOpenAfterTheRoomHumidityIsHigh]

by using the Case-driven: split antecedent goal refinement where:

P1 : r.temperatureLevel = ‘Overheated’

 P2 : r.humidityLevel = ‘High’

 Q : � r.windowState = ‘Open’

The following subgoals are thereby obtained:

Goal Achieve[TheRoomWindowOpenAfterTheRoomIsOverHeated]

FormalDef ∀ r :Room
 r.temperatureLevel = ‘Overheated’ � � r.windowState = ‘Open’

Goal Achieve[TheRoomWindowOpenAfterTheRoomHumidityIsHigh]

FormalDef ∀ r :Room
 r.humidityLevel = ‘High’� � r.windowState = ‘Open’

2.7.5 Operation model

Once subgoal-agent allocation is complete, each leaf node goal is assigned to

an operation. The operations are defined by the following conditions (this section is

taken from (Lamsweerde, 2009)):

• A domain pre-condition (DomPre) characterizing the input states

when the operation is applied.

• A domain post-conditon (DomPost) characterizing the output states

when the operation has been applied.

• Required pre-condition (ReqPre) is a condition on the operation’s

input states for satisfaction of the goal. It captures a permission;

under this condition the operation may be applied when the domain

pre-condition holds.

• Required trigger condition (ReqTrig) is a condition on the

operation’s input states for satisfaction of the goal. It captures an

obligation; under this condition, the operation must be applied when

the domain pre-condition holds.

Chapter 2 Technical Background 47

• Required post-condition (ReqPost) is a condition on the operations’

output states for satisfaction of the goal. It captures an additional

effect that the operation must have specifically to ensure the goal.

Note that the operation is not applied if a trigger condition becomes true in a

state where the operation’s domain pre-condition is not true. If the domain pre-

condition becomes subsequently true and the trigger condition is still true, the

operation must be applied.

The operation is not applied if a required pre-condition becomes true in a

state where the operation’s domain pre-condition is not true. If the domain pre-

condition becomes subsequently true and the required pre-condition is still true,

then the operation may be applied – but not necessarily.

There are a number of operation model patterns as defined in (Letier, 2001).

Here, we explain those that are used in this thesis.

Operation model: Global Invariant

The goal Permanent Maintain/Immediately response of the form P � Q has an

operation model, which is called Global invariant, as illustrated in the following:

�

Figure 2-24 Operation model: Global invariant

Chapter 2 Technical Background 48

For example, suppose a simple fire alarm problem is identified as “… fire

alarm is set to switch on immediately after the carbon monoxide level inside that

room is critical …”.

The formal definition of the Goal Maintain[FireAlarmsOn] which corresponds to

this problem is shown below.

Goal Maintain[FireAlarmsOn]

FormalDef ∀ r :Room, f : FireAlarm
 r.CO2Level = ‘Critical’ � f.State = ‘On’

Thus, the two corresponding operations: FireAlarmOn and FireAlarmOff are

defined as in the following, where

P : r.CO2Level = ‘Critical’

Q : f.State = ‘On’

Operation FireAlarmOn Operation FireAlarmOff

 Input r : Room Input f : FireAlarm

 Output r : Room Output f : FireAlarm

 DomPre r.CO2Level ≠ ‘Critical’ DomPre f.State = ‘On’

 DomPost r.CO2Level = ‘Critical’ DomPost f.State = ‘Off’

 ReqPost f.State = ‘On’ ReqPost 	r.CO2Level ≠ ‘Critical’

Operation model: Bounded Achieve

The goal Bounded Achieve of the form P � ��d Q has an operation model as

illustrated in the following:

�

Figure 2-25 Operation model: Bounded achieve

Chapter 2 Technical Background 49

For example, suppose the fire alarm problem is modified to “… fire alarm is

set to switch on within time interval of 2-3 seconds after carbon monoxide level

inside that room is critical …”. The formal definition of the Goal

Achieve[FireAlarmsOn] is shown below:

Goal Achieve[FireAlarmsOn]

FormalDef ∀ r :Room, f : FireAlarm
r.CO2Level = ‘Critical’ � � [2,3] f.State = ‘On’

A corresponding goal model is generated by this goal is illustrated in the

following, where

P : r.CO2Level = ‘Critical’

Q: f.State = ‘On’

Operation FireAlarmOn

 Input f : FireAlarm

 Output r: Room, f : FireAlarm

 DomPre f.State = ‘Off’

 DomPost f.State = ‘On’

 ReqTrig � f.State = ‘Off’ S [1,2] r.CO2Level = ‘Critical’

2.8 Metamodelling

In software engineering, metamodelling comprises a means of construction,

identification rules, frames, and constraints that are useful for modelling software

problems. Similarly, it can be said that metamodelling provides a particular

model’s properties concept. Creating a model always conforms to its metamodel.

Metamodels can be defined in many ways. For example, the most well-known are

using Meta-Object Facility (OMG-MOF, 2007) and Ecore (EMFT-Eclipse, 2009).

The following sections discuss the literature on these examples.

2.8.1 Meta-Object Facility (MOF)

MOF (OMG-MOF, 2007) is one of standard technologies developed by the

Object Management Group (OMG). It is a language for describing other languages

(meta-metamodel). MOF 2.0 is the current standard and has been used as meta-

Chapter 2 Technical Background 50

metamodel for UML2.0 (OMG, 2008), and SysML (SysML, 2008). MOF and

UML share core modelling concepts, while MOF reuses UML notation for

visualizing metamodels. MOF is a four-layered architecture (numbered M0-M3).

Examples of models are defined in each layer shown in Figure 2-26.

Figure 2-26 Four-layer MOF Architecture

The M3 layer is the meta-metamodel. The meta-metamodel is a mechanism

for building metamodels. The well-known models defined in the M3 layer are

MOF itself and Ecore (Budinsky, et al., 2003b).

The M2 layer consists of metamodel descriptions. These metamodels are

used to define syntax and semantic of M1 elements. Examples of languages

described in the M2 layer are UML, XML, JAVA, Event-B languages, and our

TDs.

The M1 layer consists of model instances conforming to the M2 metamodel

layer. Examples of models in the M1 layer are model written using UML diagrams,

i.e. specific Class diagrams and state machines.

The M0 layer comprises real world objects. These might be actual data

values and model instances, e.g. object diagrams.

Chapter 2 Technical Background 51

2.8.2 Eclipse Modelling Framework

Eclipse Modelling Framework (EMF) (Budinsky, et al., 2003a; Eclipse,

2008) is one implementation of Meta Object Facility (MOF). EMF was started as a

MOF of the OMG implementation and is an enhancement of MOF2.0. It is open

source and is used for “modelling frameworks and a code generation facility for

building tools and other applications based on a structured data model” (Eclipse,

2008). EMF specifies a model by identifying its objects, attributes, relationships

between objects, object operations and object constraints, such as multiplicity.

Ecore, which is an EMF model and metamodel itself, is a model used to

represent models in EMF. An Ecore model can be generated in any of these forms:

Java interfaces, XML Schema or UML diagrams. That is, one can write a Java

program to declare a model, or define a model as an XML file. The last option is

using UML diagram to create and edit a model. These forms give the same

information, just different representations. In summary, one can choose any of

them that matches this perspective and EMF can generate the others.

EMF includes a graphical Ecore editor (EMFT-Eclipse, 2009) based on UML

notations. For example, Figure 2-27 shows part of a TD metamodel represented by

a UML diagram. This UML diagram defines relationships between classes Name,

TDClass, TDParameter, and TDTimeline for TD metamodel. A corresponding

generated Ecore model is shown in Figure 2-28.

Figure 2-27 Example of UML diagram of interfaces:

TD metamodel (parts of)

Chapter 2 Technical Background 52

Figure 2-28 Ecore model is generated from a UML diagram

An example of how the UML diagram above is re-represented in a Java

interface and an XML file shown below.

• A Java interface is created by EMF

 public interface TDClass extends Name {

 EList<TDParameter> getParameter();

 EList<TDTimeline> getTimeline();

 } // TDClass

 public interface TDParameter extends EObject {

 String getParam();

 void setParam(String value);

 String getParamType();

 void setParamType(String value);

 } // TDParameter

• An XML Schema is generated by EMF

<?xml version="1.0" encoding="UTF-8"?>

<ecore:EPackage xmi:version="2.0"

 xmlns:xmi="http://www.omg.org/XMI"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore"

 name="TDmetamodel"

 nsURI="ecs.soton.ac.uk" nsPrefix="TDmetamodel">

 <eClassifiers xsi:type="ecore:EClass" name="TDClass"

 eSuperTypes="#//Name">

 <eStructuralFeatures xsi:type="ecore:EReference"

Chapter 2 Technical Background 53

 name="parameter" upperBound="-1"

 eType="#//TDParameter" containment="true"/>

 </eClassifiers>

 <eClassifiers xsi:type="ecore:EClass" name="TDParameter">

 <eStructuralFeatures xsi:type="ecore:EAttribute"

 name="param"

 eType="ecore:EDataType"

 http://www.eclipse.org/emf/2002/Ecore#//EString"/>

 <eStructuralFeatures xsi:type="ecore:EAttribute"

 name="paramType"

 eType="ecore:EDataType

 http://www.eclipse.org/emf/2002/Ecore#//EString"/>

 </eClassifiers>

</ecore:EPackage>

The benefit of EMF is automatic Java code generation and plug-ins. In doing

that, an EMF generator generates a generator model from an Ecore model (in any

of the three forms above). This generator model is used to generate code and a

plug-in. This is the same process that we used to create a TD plug-in, as shown in

Figure 2-29, named TDmetamodel Model. The TD plug-in is then used to define a

TD instance for transforming TD into UML-B by the Atlas Transformation

Language (ATL), which is described in Chapter 6.

Figure 2-29 TDmetamodel Model Plug-in

2.9 Atlas Transformation Language (ATL)

UML-B is implemented by EMF, which is a metamodel based on an Eclipse

project. Similarly, ATL is developed on Eclipse platform and is used to generate a

Chapter 2 Technical Background 54

target model from a source model. Since UML-B and ATL are built on the same

platform, it is appropriate to use ATL to transform a TD model into a UML-B

model. In order to do that, a TD metamodel is provided and an existing UML-B

metamodel is used (detailed in Chapter 6). The explanation of ATL now follows.

ATL is a model transformation language and was developed by the ATLAS

INRIA & LINA research group (ATL, 2008). It was developed within the Eclipse

platform in which the ATL Integrated Development Environment (IDE) provides�a

number of development tools such as syntax highlighting and debugging (Allilaire

and Idrissi, 2004). An ATL transformation module is composed of rules that define

how source model elements are matched and navigated to create and initialize the

elements of the target model. The ATL transformation approach is summarised in

Figure 2-30 (ATLAS Group, 2008).

Figure 2-30 ATL transformation approach

A source model Ma conforms to a metamodel MMa and is transformed into a

target model Mb, which conforms to a metamodel MMb. The transformation

definition Mt is written in the ATL language. This transformation definition is a

model and conforms to a metamodel MMt. These metamodels conform to the

metamodel MMM (such as Meta-Object Facility (MOF) defined by OMG or Ecore,

within the Eclipse Modelling Framework (EMF)).

ATL is a mixture of declarative and imperative constructs. Note that there are

two common approaches to programming: imperative programming and

Chapter 2 Technical Background 55

declarative programming. Imperative programming provides a list of instructions,

or algorithm, to be executed in a particular order. An example of the imperative

approach is a Java program that counts the number of words in a sentence

beginning with a capital letter. Declarative programming describes a set of

conditions without giving its control flow, and lets the program figure out how to

accomplish them. The SQL statement SELECT * FROM Book WHERE Author =

‘Tony’ is an example for the declarative approach “In other words, ‘specifying

how’ describes imperative programming and ‘specifying what is to be done, not

how’ describes declarative programming.” (Jayaratchagan, 2004).

ATL transformations are unidirectional; they operate on read-only source

models and produce a output target model. That is, during the execution of the

transformations, the source model is navigated but is not allowed to change; the

target model cannot be navigated. An ATL module is composed of a header,

imports, helpers and transformation rules. The detail of each component is now

described.

2.9.1 Header

A header names the transformation model and declares the source and target

models. A scheme of a header section is shown below.

module module_name;

 create OUT : target_metamodel_name from

 IN : source_metamodel_name;

The header section starts with the keyword module followed by the name of

the module (module_name). The keyword create defines the target model while

the keyword from indicate the source model. The target and source models are

bound to variables OUT and IN to indicate the target metamodel’s name and the

source metamodel’s name respectively. Generally, more than one source and target

models can be declared in the header section.

Chapter 2 Technical Background 56

2.9.2 Transformation rules

Transformation rules express the transformation logic and provide the means

for ATL developers to specify the target model elements to be generated from the

source model elements. The transformation rules syntax definition is described

below.

 rule rule_name {

 from in_var : in_type [(condition)]?

 [using { var1 : var_type1= init_exp1;

 ...

 varn : var_typen= init_expn; }]?

 to out_var1 : out_type1

 (binding1),

 ...

 out_varn : out_typen

 (bindingn)

 [do { statements }]? }

Each rule is identified by a rule name (rule_name) which must be unique

within an ATL transformation model. An ATL rule is composed of two mandatory

parts (the from and the to) and two optional parts (the using and the do).

The from part is used to indicate the source model. It comprises a source

variable declaration (in_var) and its type (in_type). The in_type is declared in a

form of metamodel_name!metamodel_element. This is the way to identify with

which elements the rule is involved. For example

from c : GeometricElement!Circle

where c is a source variable used in the rule, the GeometricElement is a

source metamodel’s name and the Circle is a source model element. The variable

may contain an optional boolean expression (condition) to state a subset of the

source model elements.

The using part defines a number of local variables which are used in the to

and the do parts. An example of a using part is shown in Figure 2-31 (ATLAS

Group, 2008); it defines a pi and an area values as variables to use in the rule.

Chapter 2 Technical Background 57

from c : GeometricElement!Circle

using { pi : Real = 3.14;

area : Real = pi * c.radius.square(); }

to ...

Figure 2-31 An example of the using section

The to part contains a number of target pattern elements. It is a mandatory

section and has to contain at least one target pattern element. Each target pattern

element is declared by a name (out_var) and its type (out_type) in which each

element is separated by a comma.

A target element is identified by a set of bindings (binding) which is used to

define the way a source element is generated to be a target element. Each binding

has to be identifid by the syntax definition below. The name of a target element

(target_element_name) must be matched with the element’s name defined in the

target model.

target_element_name <- expression

The do part is optional and is used to specify some imperative codes that will

be executed after the initialization of the target elements generated by the rules.

An example of defining the to and the do parts are illustrated by a rule

Machine, Figure 2-32. This rule aims to create an UML-B machine

(umlbMetamodel!UMLBMachine) and a context (umlbMetamodel!UMLBContext)

from a source model element (TDMetamodel!TDMachine) where variable t is used

to represent a source model element, while variables m and ctx represent target

model elements.

rule Machine {

 from t : TDMetamodel!TDMachine

 to m : umlbMetamodel!UMLBMachine

 (name <- t.name,

 classes <- t.class),

 ...

 ctx : umlbMetamodel!UMLBContext

 (name <- t.name + '_ctx')

 do { m.contexts <- m.contexts.append(ctx);

 ...} }

Figure 2-32 An example of the do section

Chapter 2 Technical Background 58

For creating the UML-B machine, a machine’s name and a machine’s class

are created by source elements t.name and t.class respectively. For creating the

UML-B context, the context’s name is created from a source element t.name

appended by the string _ctx. The do section expresses the way to add the variable

ctx into the UML-B machine by using the keyword append, where contexts is an

association in the target model umlbMetamodel!UMLBMachine used to link

contexts to a machine.

Figure 2-33 Example of TDMetamodel (parts of)

Another example is shown in Figure 2-34. This figure shows the rule

Constraint which aims to generate a guard for a UML-B transition. This rule uses

a source model element TDMetamodel!TDConstraints, as shown in Figure 2-33,

to generate a target model element umlbMetamodel!UMLBPredicate. The rule calls

a helper getNodePredicate(t.timing), as detailed in Figure 2-35, to generate a

predicate string and then assign to a target model element predicate.

 rule Constraint{

 from t : TDMetamodel!TDConstraints

 to u : umlbMetamodel!UMLBPredicate (

 name <- 'TimingCnstrntGuard',

 predicate <- t.effectsource.getNodePredicate(t.timing))

 }

Figure 2-34 Example of a rule: Constraint

Chapter 2 Technical Background 59

2.9.3 Helpers

A helper is a technique to define ATL translation rules with specific

behaviours. An ATL helper makes it possible to define ATL code that can be called

from different points of an ATL transformation. Helpers can be defined only on

source models, since target models are not allowed to navigate. An ATL helper is

defined by the following:

• an optional context type : defines kind of element the helper applies to

• a helper name : each helper must have a name defined as a string

• an optional set of parameters; a parameter is identified by

parameter_name : parameter_type

• a return value type : each helper must have a return value

• an ATL expression that represents the ATL helper’s code

There are two kinds of helpers: Operation helpers and Attribute helpers as

follows.

Operation helpers: an operation helper can have input parameters, and a result of

the Operation helpers is created each time the helper is called. Operation helper

syntax is defined below.

helper [context context_type]? def : helper_name (parameter_name :

parameter_type) : return_type = expression;

An example of an Operation helper is illustrated in Figure 2-35. This helper is

named getNodePredicate and aims to generate a guard – a return value – which

is a string for an UML-B transition. The helper uses an input parameter t whose

type is defined by a source model element, TDMetamodel!TDTiming, as shown in

Figure 2-33.

Chapter 2 Technical Background 60

 helper context TDMetamodel!TDNodeType

 def : getNodePredicate(t:TDMetamodel!TDTiming) : String =

 if self.oclIsKindOf(TDMetamodel!Simple)

 then self.SimpleGuard(t) -> concat(self.SimpleCond())

 end if self.oclIsKindOf(TDMetamodel!AND_node)

 then ... ;

Figure 2-35 Example of an Operation helper: getNodePredicate

This helper checks whether the node type is Simple, AND_node, or OR_node.

In order to do that, a condition if self.oclIsKindOf(t:TDMetamodel!TDNode

Type)is used. The self is a keyword and used to define a context of an instance of

a specific type. Thus, in this helper, self is used to indicate an instance of

TDNodeType. The keyword oclIsKindOf() is an operation that returns a Boolean

value stating whether self is either an instance of what defined inside the

parentheses “(…)” or of one of its subtypes (ATL, 2008). This helper returns a

string which is generated from concatenation (concat) of strings created from the

other two helpers: SimpleGuard(t) and SimpleCond(). The helper

SimpleGuard(t) is also an Operation helper and uses t as an input parameter,

while the helper SimpleCond()is an Attribute helper, the detail of which is

explained in the following paragraph. Note that the TDMetamodel and the helper

getNodePredicate described in this section are different from that explained in

Chapter 6.

Attribute helpers: an attribute helper is used to associate read-only named values to

source model elements. An Attribute helper cannot have input parameters and its

return value is calculated only once when the value is required for the first time.

Attribute helper syntax is defined below.

helper [context context_type]? def : helper_name :

return_type = expression;

An example of an Attribute helper is illustrated in Figure 2-36. This helper is

named SimpleCond() and is called from the helper getNodePredicate as shown

in Figure 2-35.

Chapter 2 Technical Background 61

 helper context TDMetamodel!TDNodeType

 def : SimpleCond() : String =

 self.predicates -> iterate(e; ret : String = '' |

 if not e.oclIsUndefined() then

 ret -> concat(' & ' + e.predicate)

 else

 ret -> concat('')

 endif

);

Figure 2-36 Example of an Attribute helper: SimpleCond()

The helper aims to generate a string value as a part of a condition for an

UML-B transition, if there is any. From Figure 2-33, a string is created by an

iterative process to concatenate predicate values (predicate) defined in a

TDPredicate. In order to do that, we have to do iteration with an association

predicates attached to the Simple node type, which is represent by

self.predicates in ATL. The keyword self represents a source element Simple

since this helper is called by the helper getNodePredicate whose Simple is

inherited. The recursion is defined by the keyword iterate. The iterative syntax is

defined below.

source -> iterate(iterator; variable_declaration = init_exp | body)

This iterative expression comprises four parts: iterator, an accumulator

variable declaration (variable_declaration), a variable initial value, and a body.

The iterator is used to refer an instance of a source collection. In the case of

SimpleCond()helper, e is defined as an iterator representing a predicate value.

The accumulator variable declaration is used to define an accumulator variable and

its initial values (init_exp) are used inside the body, which is ret in this case.

The body expresses the use of the iterator and variable. The iterate()

operation returns a value in the accumulator variable once the last iteration has

been performed.

From Figure 2-36, the body of the SimpleCond() helper checks whether the

predicate value is empty by the keyword oclIsUndefined(). The

oclIsUndefined() returns a boolean value true if predicate is undefined. If there

Chapter 2 Technical Background 62

are predicate values, each of them is concatenated with each other with a symbol

“&”, if not the helper returns an empty string.

2.10 Summary

This chapter provides background knowledge used in this thesis. It starts

from broad RE techniques and then focuses on using FMs. Event-B modelling is

introduced; the detail of performing refinement and POs is given. The way RODIN

toolkits are used to create and verify a model is presented. We explain features of

an UML-B tool that is a graphical front-end for Event-B and used to create a model

from TD. KAOS framework descriptions are discussed as goal-oriented modelling.

The knowledge of metamodelling and Eclipse EMF is explained since they are

used to generate ATL translation rules for mapping a TD model to a UML-B

model.

Chapter 3 Other Relevant

Work

This chapter aims at giving background of the knowledge other related work

used in this research. These works are relevant to our research since one of them is

used as a part of our translation patterns. Some provide tools that may useful for

future work. Some show how their work is trying to expand KAOS, TD and Event-

B in other ways. This Chapter begins with describing SysML background; section

3.2 explains an Action/Reaction pattern; section 3.3 gives an explanation of

relevant research in KAOS and B. The next section describes research in KAOS

and UML, while section 3.5 explains work on CSP and B; section 3.6 gives an

explanation of other related research concerning TD, while section 3.7 describes

LTL properties, which are useful for RE.

3.1 SysML

UML has been used broadly but it does not have a digram to identify some

special needs such as modelling requirements and defining functions. Thus,

Systems Modelling Language (SysML, 2008), which is as an extension of UML

2.0, was developed. SysML is a “general-purpose graphical modelling language for

specifying, analyzing, designing, and verifying complex systems that may include

hardware, software, information, personnel, procedures, and facilities” (OMG,

2008;SysML,2008).

Chapter 3 Other Relevant Work 64

SysML 1.1 (SysML, 2008) reuses a subset of UML 2.0 and defines additional

extensions by using UML’s profile mechanism (Hause, et al., 2005; Vanderperren

and Dehaene, 2005). Figure 3-1 illustrates the reuse and extension of UML 2.0 by

SysML.

Figure 3-1 UML 2.0 and SysML 1.0

UML 2.0 Statemachine, Use Case, and Sequence diagrams are reused while

some existing UML diagrams are extended as follows:

- Block Definition diagram: the Block Definition diagram is based on the

UML Class diagram. It uses blocks, which are modular units of system

description, to describe the structure of a system or element of interest in

broad view.

- Internal Block diagram: the Internal Block diagram is based on the UML

Composite Structure diagram. It is used to show how the defined blocks are

used in detail.

- Activity diagram: the Activity diagram is based on the UML activity

diagram. It is used to show the control flow, flow of inputs and outputs

between actions.

SysML introduces two new diagrams, the Parametrics diagram and the

Requirements diagram. The Parametrics diagram is used to show relations between

parameters. The Requirements diagram provides a modelling construction for text-

based requirements, and the relationship between requirements and other model

Chapter 3 Other Relevant Work 65

elements that satisfy or verify them in a graphical manner. An example of a

Requirement diagram for a simple lift system is shown in Figure 3-2.

Figure 3-2 An example of Requirements diagram for a lift system

A Requirements diagram uses <<requirement>> stereotype to identify the

requirements in which, for example, there can be subcategories of

<<functionalRequirement>> and <<PerformanceRequirement>>. A

<<functionalRequirement>> is used for specifying an operation that a system must

perform while a <<PerformanceRequirement>> is used for identifying satisfaction

constraints of the system. Relationships between requirements are shown by using

stereotypes such as <<deriveReqt>>, <<satisfy>>, <<verify>> and <<copy>>. The

<<deriveReqt>> describes the derivation of multiple requirements that support a

source requirement while <<satisfy>> describes the satisfaction of requirements by

designing and implementation (Moore, 2006; SysML Partners, 2006). The

<<verify>> is used to specify the relationship between a requirement and a test case.

The <<copy>> is for reusing requirements; that is, the slave requirements property is

a read-only copy of the master requirements property. For example in Figure 3-2, a

part of a slave requirement LiftStartsMovingUp’s text property is copy from text

property of a master DoorClosed requirement.

Chapter 3 Other Relevant Work 66

The Requirements diagram has the idea of breaking a compound requirement

into multiple subrequirements as shown in the figure above. That is, a top-level

Requirement diagram illustrates whole requirements in general while the bottom-

level shows detailed requirements and relationships between them. The SysML

decomposition concept of requirement is similar to KAOS goal refinement.

3.2 Action/Reaction Pattern and B

An Action/Reaction pattern was introduced by Abrial to describe causes and

effects in reactive systems (Abrial, 2005b; Abrial, 2008b; Abrial and Hoang, 2008).

The actions are the causes which make the effects take place. As shown in Figure

3-3, the continuous line, dashed line and curved arrow represent action, reaction

and cause/effect between action and reaction respectively. The Action/Reaction

pattern is used to model a B machine while refinements are gradually created

corresponding to additional information in the Action/Reaction models (Abrial and

Hoang, 2008).

Figure 3-3 Examples of action and reaction pattern

Figure 3-4 illustrates an example of Action/Reaction patterns for the lift

system corresponding to <<requirement>> DoorClosed and <<requirement>>

liftStartsMovingUp in Figure 3-2. Note that this is only a straightforward example;

extra information is added to this Event-B for completeness later.

Chapter 3 Other Relevant Work 67

Figure 3-4 Action/Reaction patterns and corresponding B machines

The Action/Reaction pattern describes changing of states, which is similar to

changing states in TD. Translating TD to Event-B in this work uses this pattern as a

part of translation patterns and has some extra structures and information.

3.3 KAOS and B

One approach for diminishing the gap between KAOS requirement and

formal method specification is introduced by (Ponsard and Dieul, 2006). The idea

is to generate a B machine from a KAOS model and to create the connection

between FAUST toolbox (FAUST, 2008) and RODIN platform. The FAUST

toolset aims at achieving formal assurance, verification and validation (V & V), for

the KAOS model at an early stage (Ponsard, et al., 2007). The FAUST toolbox

composes tools such as Refinement checker, Compiler and Animator. The

Refinement checker can automatically verify and validate goals, and operations

on a given domain. The Compiler is used to generate a finite state machine from a

KAOS Operation model and represents it in a graphical domain-based visualisation

using Animator.

Matoussi has been investigating a technique how to create Event-B models

incrementally from KAOS goal models (Matoussi, et al., 2008). Currently, the

technique can generate Event-B models from two KAOS refinement patterns:

milestone-driving tactic and case-driven refinement tactic, in which the latter needs

Chapter 3 Other Relevant Work 68

to have additional constraints to complete an Event-B model. Those two KAOS

patterns are the same as we found in mapping TD to KAOS.

3.4 KAOS and UML

Heaven and Finkelstein introduced a technique to create a profile to allow the

KAOS model to be represented in UML (Heaven and Finkelstein, 2004). The UML

is extended by introducing new stereotypes and tags which allow one to model the

KAOS in UML. Since UML editors do not support temporal logic notation, the

formal definitions in KAOS have to be rewritten in ASCII. The following is an

example of how to represent a KAOS goal model by the UML stereotype.

(Example below has been taken from (Heaven and Finkelstein, 2004))

Goal Achieve[AmbulanceIntervention]

InformalDef For every urgent call reporting and incident, there should be an

ambulance at the scene of the incident within 14 mins

FormalDef ∀ c: UrgentCall, inc : Incident (@ Reporting (c, inc)) �

 � � 14 min ∃ amb: Ambulance (Intervention (amb,inc)))

UML which represents the same goal is:

{form = Achieve

informalDef = For every urgent call reporting and incident, there should be an

ambulance at the scene of the incident within 14 mins

formalDef = forall c: UrgentCall, inc : Incident (just Reporting(c,inc) -->

eventually [<= 14 min] exists amb: Ambulance (Intervention(amb, inc)))}

Though this technique explains how to combine KAOS with UML, there is

no clear use for this contribution of KAOS in UML. The users have to learn and

understand how to use KAOS-UML apart from only modelling. The benefit is

unclear. This approach merely describes how to model the KAOS by using UML

notation.

Chapter 3 Other Relevant Work 69

3.5 CSP and B

A B machine is good for modelling a reactive system, since the operations

thereby enabled can run in parallel. Thus, parallel activities are easily modelled in

B. However, B machines “can be less convenient at modelling sequential activity”

(Butler, et al., 2005a). It needs to have a program counter to order the actions’

execution. In contrast, Communication Sequential Process (CSP) – a process

algebra defined by (Hoare, 1985) – provides operators such as sequential

composition, choice and parallel composition of processes, as well as synchronous

communication between parallel processes (Butler, et al., 2005b). CSP was

designed for describing systems of interacting components, where each component

is called a process. The process communicates with others and its environment

using an alphabet of events. “An event describes a particular kind of atomic

indivisible action that can be performed or suffered by the process” (Schneider,

2000).

Butler introduces csp2B, which allows specifications to be written in a

combination of CSP and B (Butler, 2000). Then, the CSP can be compiled to a pure

B representation which can be analyzed by a standard B tool such as ProB. (Butler,

et al., 2005a) proposes a technique to represent an extension of ProB which

supports checking of specifications written in a combination of CSP and B. The

technique is to define events in the CSP specification to have the same name as B

operations. The combination of CSP and B enables ProB to do automated

consistency checking and refinement checking of specifications written in a

combination of CSP and B.

A case below provides an example of how to identify a lift is moving up

specification in CSP. The lift is moving up specification is composed of 4 states:

StopAtFloor, MovingDepartingUp, MovingUp and MovingArrivingUp. After the

lift is in a state of MovingDepartingUp, the corresponding floorsensor at that

floor is set to Off and then the lift changes to the state MovingUp. Whenever the

lift is in a state of MovingArrivingUp, the floorsensor for the upper floor is set

to On and then the lift can be in a state of MovingDepartingUp or StopAtFloor.

The symbols → , ?, � and ; are used for prefix operator, input, deterministic

choice and sequential composition respectively.

Chapter 3 Other Relevant Work 70

LIFT(f) = (StopAtFloor → MVDU(f)) � (StopAtFloor → MVDD(f))

MVDU(f) = MovingDepartingUp → FloorsensorOff?(f) → MovingUp

 → MVAU(f)

MVAU(f) = (MovingArrivingUp → FloorsensorOn?(f+1) → MVDU(f+1))

 �

 (MovingArrivingUp → FloorsensorOn?(f+1) → StopAtFloor)

MVDD(f) = …

3.6 Other concepts

PLS/Sugar 2.0 (IBM, 2008) is a formal specification language used to

describe hardware’s behaviour over time. PSL/Sugar 2.0 uses Sugar Extended

Regular Expressions (SERE) to describe a set of state sequences (Fisman and

Eisner, 2009) in which the sequence can be represented by a TD. An example of

SERE is {req;busy[*4];gnt} which can be illustrated in TD as shown in Figure

3-5 (taken from (Fisman and Eisner, 2009)).

Figure 3-5 Timing diagram representing {req;busy[*4];gnt}

Figure 3-5 shows that, first, the req is set true for 1 unit of time. Then,

whenever req is false, the busy is held true for 4 units of time. Finally, gnt is set

true after the busy is set false. PLS/Sugar 2.0 provides another way that is easy for

the user to understand and to read a sequence of system behaviour. However,

PLS/Sugar 2.0 does not identify notations that are used for sending message

between objects as in UML TD. The PLS/Sugar 2.0 diagram is used to describe the

sequence of events and does not describe causality.

Fisler proposes an event-sequence language for capturing TD’s transitions

into an event of a sequence and a temporal constraint (Fisler, 2006). An example of

Chapter 3 Other Relevant Work 71

TD is illustrated in figure 3-6. A transition in TD is indicated by a state value, such

as a, followed by an arrow direction such as a
 and a� to denote falling and rising

transitions of a respectively. An event e is a conjunction of transitions.

Figure 3-6 An example of a Timing diagram

In the figure above, two outlined areas indicate regions of the TD that occur

in sequence. A cluster C is used to specify shade regions in the TD. Timing

constraints T are specified by a set of tuples <e, l, u, Boolean value>, where e

are events covered, l and u are lower and upper bound timing constraints, and the

Boolean value is whether the timer is enabled. Below, we show the event-

sequence language which corresponds with the TD above:

C = {{a�, b�, c�, a�}; b�}

T = {<a�, c�, 2, 5, true>

 <c�, a�, 1, 2, true>

 <a�, b�, 3, 9, true>}

This technique is easily understood and offers notations that are readable for users.

Barland describes the meaning of temporal logic notations in a timeline

(Barland, et al., 2006). An example of a timeline which represents �(q → �¬p)

is illustrated in Figure 3-7.

p

q

Figure 3-7 Timeline

after (Barland, et al., 2006)

Chapter 3 Other Relevant Work 72

Even though transferring from LTL notations to TD is easy to understand, the

researchers do not propose a technique to express timing constraints. Moreover,

translating from a LTL formula to TD is implicit. That is because one LTL formula

can be translated to one or more TD. As shown in Figure 3-8, the notation p →

�q can be illustrated by more than one TD.

Figure 3-8 Timing diagram for p → � q notation

3.7 LTL properties and Requirements Engineering

This topic focuses on some LTL properties, i.e. traceability, safety, liveness

(progress) and fairness. These properties are importance and used for maintaining

the correctness of doing RE.

Traceability: in the RE context, traceability is understanding how high-level

requirements – objective, goals, aims, expectations, and needs – are transformed

into low-level requirements (Hull, et al., 2004). SysML Requirements diagram

(SysML Partners, 2006), which was described in section 3.1, provides requirements

traceability.

Safety: a safety property one that guarantees something bad never happens.

A temporal logic formula for the safety property can be written as �¬unsafe where

unsafe is a propositional formula. A system has the safety property whenever all

states of the system can be reached. The safety property can be declared as the

Avoid goal pattern in KAOS model and is the main objective of using FM in RE

processes. In Event-B, the safety properties are identified as invariants. For

example, “the lift door must be closed all the time while the lift is moving” is a

safety property and is defined as an Event-B invariant.

Chapter 3 Other Relevant Work 73

Liveness progress: a liveness progress property asserts that something good

eventually happens. A temporal logic formula for the liveness property can be

written as �G for some propositional formula G. In the same way, we can say that

it guarantees an action will eventually be executed (Friedental and Steiner, 2004).

The progress property is the opposite of starvation (deadlock) and can be declared

as the Achieve goal pattern in KAOS model.

Fairness: a fairness property indicates that, from time to time, a system must

pass through a state which satisfies some properties. A temporal logic formula for

the fairness property can be written as � � G which means G holds definitely often.

In this thesis, we do not model the fairness properties. However in the lift case

study, one can identify a fairness property as a performance requirement. For

example, a lift must be shut down for its annual check.

An example of a tool which can check the states’ correctness of a model is

ProB (Leuschel and Butler, 2005). ProB is a graphical animator and model checker

for B method. It provides a feature to verify the safety and progress property of the

system states. The model checker in ProB does this by automatically detecting

invariant violations and deadlocks in traceable state spaces. Apart from ProB, there

is a model checker which can verify program requirements such as deadlock

freedom and livelock freedom which is called “Timeline Editor” (Smith, et al.,

2001). The Timeline Editor is used to verify requirements which are implemented

in the form of events along a timeline. The timeline looks similar to UML TD.

However, it is represented in new notations and extra definitions such as events and

lines. To obtain the requirement to be checked, “the timeline specification is

mechanically converted into an equivalent test automaton for using in a logic

model checking process such as Spin” (Hozmann, 1997). The tool has an interface

that is easy for users and can fully verify requirement properties such as deadlock

freedom and liveness issues. However, the notations used in the timing-like

diagram for the identification of events along a timeline needs training, because

they are different from UML 2.0 TD.

Chapter 3 Other Relevant Work 74

3.8 Summary

The literature review in this chapter describes work related to this thesis.

SysML introduces some new diagrams to those defined in UML; one of them is a

Requirement diagram. The Requirement diagram represents system requirements in

a graphical way. The diagram has a concept of requirements decomposition, which

is similar to KAOS goal refinement. This is beneficial to software developers for

presenting sub-requirements and tracing them back to corresponding

documentation, test cases and design modules. Action/Reaction patterns provide a

method of creating an Event-B model from causal dependency relationships

between objects. This pattern is used as part of our techniques to generate Event-B

and KAOS models from a TD. Some relevant work that concerns the combination

of KAOS, B, CSP and UML, is described in this chapter. Some work has been

trying to generate formal languages from TD, such as PLS/Sugar and the event-

sequence language. LTL properties such as traceability, safety, liveness and

fairness, that are important for requirements engineering, are explained. Those

properties should be concerned whenever modelling explicit system requirements.

Chapter 4 Timing Diagrams

and Lift Specification

Recently, TD has been added to the UML 2.0 specification, but it has been

used in electronic engineering for a long time (Fowler and Scott, 2004). The TD is

a particular type of interaction diagram and is used for exploration and monitoring

of the behaviour of objects over any given period of time. However, using TD is

suitable for some kinds of specification behaviours. We clarify what kinds of

system specification are appropriately and inappropriately described by the TD.

- Appropriate requirements are those that can be declared as changing states

of hardware with time, or there are causal dependencies between the system’s

objects, or both; for example, embedded software components for a microwave

controller, vendor machine controllers, and ATM transaction processing.

- Inappropriate requirements are those concerns with human actions such as

modelling a person pressing a button, business requirements such as budget

controlling, and improving response time to customer inquiries.

The rest of this chapter starts by presenting lift specifications that are used in

this work. Section 4.2 explains UML 2.0 TD (OMG, 2008). Section 4.3 provides

the amended TD notations that are obtained by selecting UML 2.0 TD’s notations

and adding some new notations to make it suitable for translation; section 4.4

illustrates TD for the lift specifications. Section 4.5 provides a brief glossary for

TD; section 4.6 gives an example of a preliminary TD editor.

Chapter 4 Timing Diagrams and Lift Specification 72

4.1 Lift Specification

The original lift position display specification is taken from (Jackson, 2001)

where it is described as the following:

“A somewhat primitive lift in a small hotel has been installed and

successfully operated for many years. Now it is to be fitted with an

information panel in the lobby, to show waiting guests where the lift is

at any time, so that they will know how long they can expect to wait

until it arrives.

The panel has two lamps for each floor. There is a floor lamp (square

lamp) to show that the lift is at the floor, and a round lamp to show that

there is a request outstanding for the lift to visit the floor. In addition,

there are two arrow-shaped lamps to indicate the direction of travel.

There is a lobby, and there are eight other floors, so the panel looks like

this.”

Figure 4-1 Lift Position Display

“The job is to drive the panel display from a very minimal interface

with the existing request buttons and floor sensors of the lift. A floor

sensor is on when the lift is within 6 inches of the rest position of the

floor. Pressing a button is detected as a pulse. There is one button at

each floor to summon the lift, and a set of buttons inside the lift car –

one button to direct the lift to each floor.”

Chapter 4 Timing Diagrams and Lift Specification 73

The lift specification used in this thesis

The specification above shows causal dependencies between system objects

that can be specified in TD. To make it more suitable for modelling with TD,

Event-B and KAOS, the specifications are expanded to include timing constraints

and hardware, i.e. Door. In addition, it is assumed that there is one floor sensor for

each floor.

The amended lift system specifications are described in two parts: the lift

moves from the current floor to service a request at floor f, and the lift general

servicing.

1. The lift moves from the current floor to service a request at floor f

 1.1 The request lamp for floor f must be lit.

 1.2 Before the lift starts moving departing up/down from the current

floor, the lift’s door must be closed.

 1.3 If the lift door is open at the current floor and there is a request to

service some floor f, then the lift door at the current floor must be closed.

Next, within between 1-5 seconds after the door closed, the lift starts

moving departing up or moving departing down.

 1.4 The current floor sensor must be off within 2-5 seconds after lift

starts moving departing up or moving departing down.

 1.5 The floor lamp for floor f will be unlit within 2-4 seconds after the

current floor sensor is set off.

 1.6 Whenever the floor sensor status is off, it means the lift is moving

(possibly moving up or moving down, cannot be both).

 1.7 The floor sensor for floor f must be on within between 2-5 seconds

when the lift is moving nearly arriving up/down at the rest position of the

floor f.

 1.8 The lift will be stopped at floor f within between 1-5 seconds after

floor sensor at floor f is set on.

 1.9 The floor lamp for floor f will be lit within 2-4 seconds after the

current floor sensor is set on.

Chapter 4 Timing Diagrams and Lift Specification 74

 1.10 Whenever the lift stops at the requested floor f, the lift door will be

opened within between 1-5 seconds.

 1.11 Request lamp for floor f will be unlit within 2-4 seconds after the lift

stops at floor f.

2. Lift general servicing

 2.1 While the lift starts moving departing up, the up lamp must be

activated and the down lamp must be deactivated.

 2.2 While the lift starts moving departing down, the up lamp must be

deactivated and the down lamp must be activated.

 2.3 If the lift is stationary, both up and down lamps must be deactivated.

 2.4 If there is no request, the lift will stop at the last floor serviced.

The simple example below indicates the kind of requirements we believe can

be specified in TD. This example shows how a floorlamp and a floorsensor objects

– requirements 1.5 and 1.9 – are associated in TD.

Figure 4-2 A simple TD shows relationship between floorlamp and floorsensor

4.2 UML 2.0 Timing Diagram

There are two forms of TD: a compact notation and a robust/full notation.

The details of these notations are described below.

The compact TD uses a Lifeline to represent individual object in the

diagram. An object is identified on the left-hand side while its states are listed

along the right-hand side. A state is denoted by text and a state change represented

Chapter 4 Timing Diagrams and Lift Specification 75

by a crossing (OMG, 2007; Visual Paradigm, 2007). A DurationConstraint is used

to specify the period of time for each state. The compact TD is suitable for

exploring the general behaviour of one or more objects during a period of time,

while the robust TD is used whenever one would like to identify more detailed

information. An example of the compact TD is illustrated in Figure 4-3.

Figure 4-3 Compact Timing diagram (OMG, 2007)

The robust TD shows the states of each object on the left-hand side of the

diagram (Y-axis) while timing constraints are on the X-axis. A timeline is used to

display the change in state or value of one or more elements over time

(Sparx Systems, 2006).

Figure 4-4 Robust Timing diagram (Ambler, 2004)

Chapter 4 Timing Diagrams and Lift Specification 76

Event/Stimuli are optionally labelled at transition points to indicate the

reason for the change (Ambler, 2004). An example of a robust TD is illustrated in

Figure 4-4.

According to Figure 4-4, Code and OK are messages sent between objects.

Cardout is an event which makes an object user change its state from Waitcard

to WaitAccess. Time Constraint indicates when an event must occur, while

Duration Constraints indicate how long a state or value must be in effect; where d

and t represent a unit of duration and time respectively. A Time Observation

indicates the point of time a Lifeline’s state is observed.

4.3 UML Timing Diagram Amended

Though UML 2.0 TD uses simple notations to explain the changing of

object’s states through time, it is composed of many notations specifying properties

that are not dealt with in this work. Thus, a subset of notations is selected and some

notations are justified, which are easier for generating expressions to interface with

Event-B and KAOS. The TD notations used in this research are based on the

(OMG, 2007) Robust TD notations. The notations for graphic nodes and paths to

be included in the TD are described in

Table 4-1.

Node Type and Notation Reference

Object and State

A state notation on the horizontal axis indicates the

state of an object.

Timeline

A Timeline�is used to illustrate an object changing

states, where an object can have a Timeline. A

Timeline is composed of a chain of segments in

which segments represents an object’s state and the

position it appears on the Timeline. A segment is

connected with another by a Transition. Time is

Chapter 4 Timing Diagrams and Lift Specification 77

Node Type and Notation Reference

indicated on the horizontal axis.

CauseEffectArrow

An arrowed line indicates a cause and an effect

between objects’ segments. The beginning of line

represents a cause segment while the end of the line

(with arrow) represents an effect segment. A simple

form of a CauseEffectArrow is to link a cause

segment to an effect segment.�

AND

OR

“AND” and “OR” notations are used for specifying

combinations of cause segments within a

CauseEffectArrow. Currently, they are not used to

contribute one cause to many effect segments.

Using “AND” notation means the causes that make

an object changing its state are derived from a

combination of those cause segments, while “OR”

indicates or-inclusive relationship. Each

“AND/OR” notation comprises the minimum of

two cause segments (as represented by bold-lines,

while dashed-lines represent other specified

segments if there are any). Nested “AND” and

“OR” relationships for a CauseEffectArrow are

allowed.

Condition

Conditions are optional additional constraints that

cause a state change. A condition is represented by

plain text presented above the CauseEffectArrow.

Duration constraint

[t1, t2]

Duration indicates time constraints and is used to

describe how long a state or value must be in

effect. Time unit in the duration constraint can be

second or minute. The duration constraints can be

identified by using symbols, i.e. [t1, t2] indicates

the time constraint starts from t1 and ends at t2.

Chapter 4 Timing Diagrams and Lift Specification 78

Node Type and Notation Reference

SimultaneityArrow

Simultaneity� is represented by an arc dashed-line

and is used to synchronize objects that change their

states simultaneously. When the application is

eventually developed, one does not expect things to

be exactly simultaneous. It means one expects them

to happen very close to each other and no particular

constraint; that is two things are very close in time.

It is used in terms of “the level of abstraction.”

Table 4-1 Timing diagram notations

To be practical, we define a CauseEffectArrow to be drawn from the start

point of a cause segment to the start point of an effect segment as shown in Figure

4-5 (A). However, if an object has no state change, it can be drawn as shown in

Figure 4-5 (B).

Figure 4-5 Robust Timing

The amended TD is generally designed to fit with other systems that concern

timing constraints, changing an object’s state through time and within an object

itself. It provides sufficient notation to identify discrete timing constraints in the

system specification. Here, we clarify some points of similarity and difference

between amended TD and UML 2.0 TD.

Chapter 4 Timing Diagrams and Lift Specification 79

 Similarity:

1. Timelines

2. States

3. Duration constraints

4. Conditions can be seen as messages in standard UML TD notations

Difference:

• An arrowed line is used to indicate cause and effect between objects’

states rather than sending messages between the objects as in standard

UML TD.

• SimultaneityArrows are a new notation

• AND and OR nodes are new notations

So far, we have not found any cases in the lift system that need to be

modelled by Time Observation (defined in standard UML TD). Thus, we do not

deal with this symbol at this time.

4.4 Timing Diagram for the Lift specifications

To provide a simple example, we select requirements 1.4 and 2.1 that are

concerned with four objects: lift, floor sensor, up lamp and down lamp. TD which

is created from these objects represents specification number 1.4 (lines a and b) and

2.1 (lines c and d) is shown in Figure 4-6. Note that the symbols a and b are not TD

notations but used only for explanation in this section.

Figure 4-6 shows that the lift comprises seven states: MovingArrivingUp,

MovingUp, MovingDepartingUp, StopAtFloor, MovingDepartingDown,

MovingDown and MovingArrivingDown. A floor sensor has two states: On and Off.

Uplamp has two states: deActivated and acTivated, while downlamp has two states:

Deactivated and Activated. We have to use different names for Uplamp and

Downlamp states since Event-B and UML-B models do not allow duplicate names.

Chapter 4 Timing Diagrams and Lift Specification 80

Figure 4-6 Timing diagram from Floorsensor, Lift, Uplamp and Downlamp

In terms of RE, we can describe the relation between lift movement and the

floor sensors as: whenever a user presses a button to request a lift, the lift starts

moving departing up (a)/ departing down (b) from the current floor. Within

between 2-5 seconds after the lift starts moving departing up/down, the current

floor sensor will turn off, requirement 1.4. At the same point of time, if the lift

starts moving departing up say, the up lamp changes its status to activate (d) while

the down lamp changes its status to deactivate (c), requirement 2.1.

In term of TD notations, we say that there are four Timelines which

represent the state changes in time for the corresponding objects: floorsensor, lift,

uplamp, and downlamp, belonging to classes FLOORSENSOR, LIFT, UPLAMP

and DOWNLAMP respectively. The lines a and b show the combination of the

CauseEffectArrow�by using “OR” notation; it means the floorsensor�is set to Off

according to whether the lift is in the state of MovingDepartingUp or

MovingDepartingDown. Predicates such as f = currentFl & dir = Up are additional

conditions on the CauseEffectArrow where f represents a floor and is a dynamic

state parameter that can change in time. Here, f is also the object index for class

FLOORSENSOR. The currentFl represents the present floor for the lift, while dir

Chapter 4 Timing Diagrams and Lift Specification 81

represents direction of the lift. The curved dashed-lines (c and d) represent

SimultaneityArrow. They are used to synchronize the liftMovingDepartingUp

segment with the uplamp and downlamp objects to determine the occurrences

happen very close to each other with no particular constraint. The whole TD for the

lift specification is illustrated in Figure 4-7.

��		
��
�	
�$
������������

���������

�

���

�������������
��	�����		

� !�"

#		
�$�$����
���������

���

%�	��#

����
�&��!

��'�()

�
���

#	*
�+,����

$�-���./

$�+(��0+��#

�(��0+��#

�&)����+,��$
��12�����./

���������

���

2
���

�3!4"

��'�()

�
���

.	0�
52�

.	0�
5$��+
��
5$	*

.	0�
5$	*

�3!�"

��'�()

�
����6

#�
�'�$	*

��'�()

�
����6

#�
�'�2�

�3!�"

��'�()

�
���

��'�()

�
���

�����
�&���6

���'�()

�
���

� !�"

� !�"

� !�"

)��+,����

2/��./

#��(��0+��#

+(��0+��#

��		
�+,��$
�������./

���������

���

2
���

��'�()

�
����

��'�()

�
����

�3!4"

�3!4"

.	0�
5�

�0�
5$	*

.	0�
5�

�0�
52�

.	0�
5$��+
��
52�

�3!�"

�3!�"

��7�()

�
���

��8�()

�
���

����
�&���

����
�&���

Figure 4-7 Timing diagram for the lift specification

Chapter 4 Timing Diagrams and Lift Specification 82

4.5 A brief glossary for Timing Diagrams

Figure 4-8 Timing diagram and named parts

For translation rules we describe in the later chapters, we repeatedly refer to

parts of TD by using specific terms. We would like to describe those terms by

using Figure 4-8: the CauseEffectArrow a and b.

• Cause states: MovingDepartingUp and MovingDepartingDown are

causes that make a floor sensor change its state from On to Off. Thus,

we say
���������	
������ and

���������	
������
� are cause

states of this CauseEffectArrow.

• Cause segments: a segment represents an object’s state and the

positon it apperars on the Timeline. Thus, MovingDepartingUp2 and

MovingDepartingDown6 are segments that make a floor sensor

change its state from On to Off. Thus, we say
���������	
�������

and
���������	
������
�� are cause segments of this

CauseEffectArrow.

Chapter 4 Timing Diagrams and Lift Specification 83

• Previous states: A previous state is a state before the current state of

interest. A state before floor sensor changes to be Off is On. Thus, we

say On is a previous state.

• Previous segments: A previous segment is a segment before the

current segment of interest. A segment before floor sensor changes to

be Off is On. Thus, we say ��� is a previous segment.

4.6 Preliminary Timing diagram editor

Working with a group design project from the School of Electronics and

Computer Science, University of Southampton (Cobden, et al., 2007), a

preliminary TD editor plug-in was created. The interactive editor was created based

on our TD notations (at that time), and used the Eclipse EMF and GMF

frameworks. Figure 4-9 provides parts of a screenshot for the lift system from the

TD editor window.

Figure 4-9 Timing diagram editor window

Chapter 4 Timing Diagrams and Lift Specification 84

In its default configuration, the TD editor window displays the Navigator tab on the

left side of the window. The Editor’s tab is located in the top middle part of the

window, and the palette is positioned on the top right part of the window. The three

remaining tabs (Problems, Properties and Tasks) are located at the bottom of the

window.

A TD can be created by selecting elements in the palette that are Timeline,

State, Segment, Transition, SimultaneityArrow and CauseEffectArrow. A

Timeline is used to represent an object in which one Timeline can be identified

by many states. A Timeline comprises a number of segments that represent an

object’s state. A Transition is used to link individual segments in the same

Timeline. A CauseEffectArrow is used to connect different objects’ segments to

identify causal dependency between Timelines. Time constraints are identified by

Lower Bound and Upper Bound and are attributes of the CauseEffectArrow. A

SimultaneityArrow, shown as a blue dashed-line in Figure 4-9, links a

CauseEffectArrow and a segment. That is, the beginning of the

SimultaneityArrow is the CauseEffectArrow and the end (with arrow) is the

segment. This is different from the current TD in which a SimultaneityArrow

links segments.

In Figure 4-9, a Time synchronisation line is represented by a vertical

dashed-line and is used to synchronize duration constraints between objects.

However, this notation is no longer used in the current TD notations. That is

because the lines are not used for the translation. Moreover, it makes the diagram

rather untidy, especially whenever there are many objects in it.

Although, the editor can generate most TD notations, it was created on an

earlier TD metamodel version. Thus, it is not used to generate the TD as shown in

this work. Moreover, the editor cannot specify the combination of “AND/OR”

relationships for CauseEffectArrow, nor identify parameters for a model.

Parameters of each Timeline, for example l : LIFT as shown in Figure 4-10, are

simply created as textual descriptions.

Chapter 4 Timing Diagrams and Lift Specification 85

Figure 4-10 Timing diagram editor: Parameter

In this thesis, a TD is created from Microsoft Visio™ for the

representation/visualisation. For translating TD into UML-B, the TD description

was generated by EMF, whose detail is explained in Chapter 6.

4.7 Summary

This chapter shows the lift system specifications and TD notations used for

translation. Some TD notations are obtained from UML 2.0 TD while others are

introduced for the proper translation. The full detail of TD is generated from the

case study represented in this chapter. A glossary for TD normally used in the later

chapters is identified. A preliminary TD editor is discussed.

Chapter 5 Translating Timing

Diagrams into Event-B models

(direct translation)

This chapter describes translation rules used to transform a TD into an Event-

B model. The clarification for what kind of the systems’ specifications are suitable

for description by TD has been explained at the beginning of chapter 4. There are

two steps to create translation rules to transform TD into Event-B: defining TD

BNF and identifying translation rules. Research by (Essalmi and Ayed 2006)

proposed transformation rules of BNF and Extended BNF (ISO/IEC 2008)

grammars to UML Class diagrams, while we have approached this in a different

way. We identify TD BNF that describes features and relationships among the

TD’s notations. Then, translation rules are created by using a TD element as an

input parameter for the rules to generate an Event-B model.

Section 5.1 explains the TD BNF definitions. Section 5.2 shows the

corresponding Event-B parts are created from the top-level translation rules.

Section 5.3 gives the basic translation rules and gives detailed examples, which are

used to generate Event-B elements. The details of extra information required to

complete the model are discussed in section 5.4.

Chapter 5 Translating Timing Diagrams into Event-B models 87

5.1 TD BNF definition

This section introduces the TD BNF definitions in which are used to create

translations rules to transform TD into an Event-B model. The BNF symbols

(Métayer and Voisin 2007) are as follows.

• The symbol ��� means “is defined as”. The element on the left of the

symbol is defined by the expression on the right.

• The symbol � denotes alternative.

• Constructs within square brackets ��� are optional.

• Terminals are surrounded by quotes ��	

• The symbol �� represents n concatenated instances of �, where n � 0.

The symbol �
 represents n concatenated instances of �, where n � 1

• Parentheses ��� are used for grouping�

• The symbol �� ������� is for additional explanation; this symbol is

not a part of the translation rules.

Figure 5-1 shows an example of how the TD BNF definitions are

represented. Note that strings such as ���, ����, …,
���������	
������
��,

represent segment names that are generated by BNF definitions and are described

later.

Figure 5-1 Timing diagram for floorsensor, lift and uplamp

(Parts of Figure 5-2)

Chapter 5 Translating Timing Diagrams into Event-B models 88

A TD project (�������) is represented by a name and is composed of at least

one TD machine (�������). We decided to have many �������� in a �������� to

correspond with the UML-B metamodel (in chapter 6). A TD machine has a name

(must be unique) and comprises one class as a minimum. A class is defined by a

name (���������), at least one object and an object definition (!�"#�$).

������������������������
�

����������������������
�

���������%����&�

�������������������� !�
� !�"#�$�

��������������%����&�

In TD, we allow naming of an object and its class to indicate whether the

object occurs singly (:) or multiply (⊆) in the system. This naming is defined by

 !�"#�$.

 !�"#�$����� !�������⊆ 	������"���'����� !����������	������"���'���

 !����������%����&�

�����"���'�������������������

� �����������	���������	������()*�����+	���������	������()*������	�

��������������� ��
��
������ �	
	����
�� �	��
�����()*����������� ��
��
������ �	
	����
�� ������ �	��

For example in a lift case study (as shown in Figure 5-1), there is only one

lift in the system. Thus, an !�"#�$ for the lift is declared as lift : LIFT. In

contrast, there is a floor sensor in every floor, floorsensor ⊆ FLOORSENSOR is

defined.

A class may have parameters (�����) with parameter types (�����()*�) in

which both of them are defined by a string. A parameter is used to indicate the

specific object of interest from the set. For example, in the case of an object

floorsensor, a parameter f : FLOOR identifies which floorsensor it is where f is a

parameter with a type FLOOR. Thus, the complete identification for an object

Chapter 5 Translating Timing Diagrams into Event-B models 89

floorsensor is declared by floorsensor ⊆ FLOORSENSOR(f:FLOOR). The

parameter tells which object one is using in that case and that information is

required for the translation. This is the way one can introduce information for the

translation.

 !������� !������ !�%�
�(�������

An object is defined by a name (!�����). It is composed of at least one

object’s state (!�%�) and a�(�������. A (������� represents a chain of an object’s

states changing in a class. Since one object has one (�������, a�(�������’s name is

defined by the same name as its corresponding object’s name. A (������� is

composed of at least one segment. A segment is presented by a corresponding

object’s state’s name followed by a positive integer. For example, ���, ���� and

���, in Figure 5-1 represent segments for the object floorsensor.

(�����������������%�&����
�

%�&��������� !�%���'�!���%��'������'��,$$���-���.��

 !�%�����������

�'�!�������Ζ
�

%��'������%����%�&���,�/%�&���

%����%�&�������%�&�����

,�/%�&�������%�&�����

One segment is composed of zero or more SimultaneityArrows (%��'�). A

SimultaneityArrow links a segment (%����%�&��) and another segment

(,�/%�&��). For example, in Figure 5-1, there is one SimultaneityArrow in which

StopAtFloor1 and deActivated2� are %����%�&�� and ,�/%�&�� respectively.

Presently, we do not allow a SimultaneityArrow in the same segment, nor

combinations of SimultaneityArrow using “AND” or “OR” nodes. A segment

can have a ��'��,$$���-���. which is optional.

��'��,$$���-���.����������������

Chapter 5 Translating Timing Diagrams into Event-B models 90

�����������������/�()*��

��/�()*������%��*����� 0"��/����-�#"��/��

%��*���������'��%�&����(����&������/��������

��'��%�&�������%�&�����

���/����������%����&�

 0"��/��������/�()*������/�()*��

-�#"��/��������/�()*������/�()*��

(����&�������	���.���������+	�'**����������	�

��.������������Ζ
�

'**������������Ζ
�

A ��'��,$$���-���. is actually used to define a constraint (����������)

between segments. This constraint is defined by a type (��/�()*�) which can be a

simple (%��*��) or a grouping of either OR nodes (0"��/�) or AND nodes

(-�#"��/�). Those grouping nodes allow one to create combinations of cause

segments. A %��*�� consists of a cause segment (��'��%�&��), an optional timing

constraint ((����&) and an optional string condition (���/�����). A timing constraint

is declared as a pair of positive integer values: a lower bound (��.�������) and an

upper bound ('**�������).

For example, in Figure 5-1, a segment ���� has a ��'��,$$���-���. which is

declared by an 0"��/�. The BNF definitions of this ��'��,$$���-���. are

identified as in the following.

First, from the BNF definition ��'��,$$���-���.���������������, it�is applied

to ��'��,$$���-���.����� 0"��/�

Second, from the BNF definition 0"��/��������/�()*������/�()*�,

 each ��/�()*� is replaced with %��*�� that are segments

���������	
������� and
���������	
������
���

Third, from the BNF definition %��*���������'��%�&������(����&������/�������,

 each %��*�� is given (����& and ���/����� values thus:

� � %��*�������
���������	
������� �1+�2��$����'�����3��4�/�����5*�

� � %��*�������
���������	
������
����1+�2��$����'�����3��4�/�����#�.�

Chapter 5 Translating Timing Diagrams into Event-B models 91

Finally, the ��'��,$$���-���. for the segment ���� is defined as

���������	
������� �1+�2��$����'�����3��4�/�����5*��

���������	
������
����1+�2��$����'�����3��4�/�����#�.�

A TD used for transforming into an Event-B model is illustrated in Figure 5-2.

��		
��
�	
�$
������������

���������

�

���

�������������
��	�����		

� !�"

#		
�$�$����
���������

���

%�	��#

����
�&��!

��'�()

�
���

#	*
�+,����

$�-���./

$�+(��0+��#

�(��0+��#

�&)����+,��$
��12�����./

���������

���

2
���

�3!4"

��'�()

�
���

.	0�
52�

.	0�
5$��+
��
5$	*

.	0�
5$	*

�3!�"

��'�()

�
����6

#�
�'�$	*

��'�()

�
����6

#�
�'�2�

�3!�"

��'�()

�
���

��'�()

�
���

�����
�&���6

���'�()

�
���

� !�"

� !�"

� !�"

)��+,����

2/��./

#��(��0+��#

+(��0+��#

��		
�+,��$
�������./

���������

���

2
���

��'�()

�
����

��'�()

�
����

�3!4"

�3!4"

.	0�
5�

�0�
5$	*

.	0�
5�

�0�
52�

.	0�
5$��+
��
52�

�3!�"

�3!�"

��7�()

�
���

��8�()

�
���

����
�&���

����
�&���

Figure 5-2 Timing diagram for an Event-B model direct translation

Chapter 5 Translating Timing Diagrams into Event-B models 92

5.2 Event-B model parts vs. Top-level textual translation rules

This section gives the whole picture of how each Event-B model’s part is

generated from corresponding top-level textual rules as shown in Figure 5-3. In this

figure, the blue coloured boxes represent parts generated from the rules, and the

dotted boxes represent parts the extra information added for the model completion.

→ →

Figure 5-3 Event-B model’s parts correspond with top-level textual rules

The translation rules cover generating CONTEXT and MACHINE parts for

an Event-B model are now described.

For the Context part, the rules ���
, �����
	�
 and ������ use ������� as

an input parameter to create sets, constants, and axioms for the model respectively.

The details of those rules are described in section 5.3.1 below. TD notations, that

can be used to directly generate a CONTEXT part, are classes and objects’ states.

However, if one intended to identify extra information that cannot be identified by

TD, such as a specific member of a class, e.g. there are three floors for the lift

system, or extra sets provide supportive information for the system, e.g. the

directions (DIR) of a lift movement can be only
�� and ��
�, this information has

Chapter 5 Translating Timing Diagrams into Event-B models 93

to be manually added. For example, identifying a set DIR in a CONTEXT is

shown in Figure 5-4. The set’s name is declared in SETS, each element of a set is

defined as a constant in CONSTANTS, while a set’s name assigned to its element

values is identified in AXIOMS.

Figure 5-4 A set DIR

For a MACHINE part, rules ���	
���� and ���	
�
	
�� are used to

generate machine variables. Most of machine’s variables are generated by the rules.

However, it may have some variables that are manually added. Those variables are

actually used in a ��'��,$$���-���. predicate. For example, in case of the lift

system, reqFl and currentFl are variables that are added by hand and used to

represent a list of requested floors and a current lift position respectively.

Variables that can be generated by the translation rules have to define their

invariants in an INVARIANTS part. This can be done by using rules

���	
������� and ���	
�
	
����. Additional invariants may be appended in this

step. For example, a condition that defines that an up lamp and a down lamp must

not be activated at the same time, and the lift door must not open while the lift is

moving.

Events in a machine comprise two kinds: an INITIALISATION event and

other events. The INITIALISATION event is used to declare variables’ initial

states, which are created by rules ���	
�������
 and ���	
�
	
����
. The other

events are defined by a rule �����
. There are some events which cannot be

created by translation rules. For example, an event that changes the direction of the

lift, and events that represent the lift continue moving for many floors before

stopping. That is because in the first example, this information cannot be

Chapter 5 Translating Timing Diagrams into Event-B models 94

represented by TD notations; in the second example, this information is not

represented by %�&����� but states while the rules use %�&����� in generating an

event (as described in section 5.3.3 below).

5.3 Translation rules

This section demonstrates the translation rules that are used for transforming

TD into an Event-B model. In these translation rules, a component using bold

typewriter font demonstrates a name of the translation rule, e.g. �����
. A plain

string inside angle brackets, e.g. <IF> and <THEN>, is a keyword in the macro

translation language. TD language elements are defined in the same font as TD

BNF definitions, e.g. !���. The Event-B parts are shown using italic font written

in quotations, e.g. “Time” and “WHEN”.

The following table identifies the whole set of basic rules generally used for

translation. Note that this table does not contain compound translation rules that

appear in the following sections, but only those fundamental rules that are usually

used. The details of the complex rules are given in Appendix A.

�	�
((elem1, elem2, …, elemn)) → elemn; this rule produces the last element for

an input sequence of elements.

�������
	����(��/�()*�)� → (��/�()*�6,� ��/�()*�1,� �);� this rule produces a

sequence containing the instances which are sub-��/�()*��of an input ��/�()*�.

�����	
	�(�����) → (�����6,� �����1, �); this rule produces the sequence of

parameters for an input������.

�����	
	��!"�(�����) → (�����()*�6,� �����()*�1, �); this rule produces the

sequence of parameter types for an input������.

�����
������(%�&������ → (%�&����6,� %�&����1, �); this rule produces a

sequence containing all the previous segments for an input %�&����.

�����
	
�((�������) → (!���6,� !���1, �); this rule produces the sequence of

objects states for an input�(�������.

Chapter 5 Translating Timing Diagrams into Event-B models 95

������������(�������) → ((�������6+� (�������1+� �); this rule produces the

sequence of (�������s for an input��������.

���	��(!�) → �����; this rule produces the class for an input object.

���	���	��((�������) → ���������; this rule produces the class’s name for an

input (�������.�

�����(%��*��) → � (���/�����6+� ���/�����1+� �); this rule produces the sequence of

���/������ for an input %��*��.

�����

�
(%�&����) → ����������; this rule produces the ���������� for an input�

%�&����.

���"
!(���) → 7 8; this rule checks whether an input set is empty. If so, the rule

produces the Boolean value true.�

��������(%��'�) → ,�/%�&��; this rule produces the ,�/%�&�� for an input

SimultaneityArrow.�

���
������
#�
$����

�
(�������) → (%�&����6+� %�&����1+� �); this rule

produces a sequence containing all the segments defined with ����������s for an

input �������.

�%	��	
	�(�����) → 7 8; this rule checks whether an input ������ has

parameters. If so, the rule produces the Boolean value true.�

�%	�������(%��*��) → �7 8; this rule checks whether an input %��*�� node has

been defined with timing constraints. If so, the rule produces the Boolean value

true.

���&�
��
((����&) → � ��.�������; this rule produces the ��.������� value for an

input�(����&.

��	��((�������) → ����; this rule produces the (�������’s name for an input

(�������.�

������!"�(����������)�→ ���/�()*�; this rule produces the ��/�()*� for an input

����������.

�'�((!�%�) → !�; this rule produces the object for an input object state.

�'�(�	��(!�) → !�����; this rule produces the object name for an input

object.

Chapter 5 Translating Timing Diagrams into Event-B models 96

�'�(�
(%�&����) → !�%�� this rule produces the object state for an input�

%�&����.�

��	
	��!"�(�����) → �����()*�; this rule produces the parameter types for an

input parameter.

�������
(%��*��) → �%�&����; this rule produces the %�&���� value for an input

%��*��.

��������)(%�&����) → (%��'�6+� %��'�1+� �); this rule produces a sequence of

SimultaneityArrow for an input�%�&����.

�������������	��((�������) → � �����; this rule produces the ����� for an input

(�������.

�������(%��*��) → �(����&; this rule produces the (����& value for an input %��*��.

�*""�
��
((����&) → � '**�������; this rule produces the� '**�������� value for an

input�(����&.�

Table 5-1 Basic rules for TD to Event-B translation

5.3.1 Translation rules for creating a set in the Context part

The CONTEXT part is used to identify static values such as sets, constants

and axioms in an Event-B model. Here, we describe how translation rules create

the CONTEXT part. The rule ���
�(Figure 5-3) is used to create a set’s name in

which each element in a set is defined as a constant with the rule �����
	�
. The

rule �������genereated axioms which are declaration of sets’s names followed by

their elements. Below is an explanation of the rules for ������, while the detail of

the rules ���
 and �����
	�
 can be found in Appendix A.

The rule ������, Figure 5-5, uses a ������� as an input value and recursively

generates a list of states as elements for a set. Each axiom is created by a (�������

which is represented by an iterator �. This rule creates a set name followed by the

list of the set’s elements. Those elements are generated by a sub-rule

�#
�
�����
	
�� which uses (��������as an input parameter.

Chapter 5 Translating Timing Diagrams into Event-B models 97

������(�������) →

 <FOR> � <IN> ������������(�������)

 { ���	���	��(�)�+ “_STATES = ” + �#
�
�����
	
��(�)�}

�#
�
�����
	
��(�)�→ “{” + �����
	
���
(�����
	
�(�)) + “}”

�����
	
���
(9��/���%�:(���) → 9��/�+ “,” + �����
	
���
(%�:(���)

�����
	
���
(9��/�:�;�<�) → 9��/

Figure 5-5 Rule ������ : creating axioms in an Event-B Context

For example, the rule ������ generates an axiom for a Timeline floorsensor

as FLOORSENSOR_STATES = {On, Off}.

5.3.2 Translation rules for creating variables and their initial values

Variables are dynamic parts of a machine and are used to maintain local state

information. There are two kinds of variable that can be generated from a TD:

variables used to record timing constraints and variables used to record state

values.

Variables used to record timing constraints. Whenever a segment has a

CauseEffectArrow, that means it may have timing constraints between objects. If

so, this timing must be recorded and used as guards for synchronising

corresponding events. Thus, each event must record a current time in its related

machine variables whenever that event is performed. In doing that, the rules

���	
����, ���	
�������� and ���	
�������
 are used to identify variables,

their invariants and initial values respectively. Below is the detail of the rule

���	
����.

� � ���	
����(�������) →

 <FOR> � <IN> ������������(�������)

 {<FOR> ��<IN> �����
	
�(�)

 {��	��(�)�+ � + “Time” } }

Figure 5-6 Rule ���	
����: creating machine variables to record time�

Chapter 5 Translating Timing Diagrams into Event-B models 98

This rule uses a ������� as an input value. It collects Timeline from the

������� and then uses it to generate each variable. A variable is generated from a

Timeline’s name followed by each state of the Timeline and a string Time. For

example in a lift system, there are seven Timelines: floorlamp, floorsensor,

requestlamp, lift, door, uplamp and downlamp. The rule ���	
���� generates

variables from each timeline. For the Timeline floorsensor, it creates two

variables: floorsensorOnTime and floorsensorOffTime. The invariants of these

variables are defined by the rule ���	
������� as floorsensorOnTime ∈ % and

floorsensorOffTime ∈ %. Initial variables’ values are generated by the rule

���	
�������
 as floorsensorOnTime := 0 and floorsensorOffTime := 0. The

details of the rules ���	
������� and ���	
�������
 are shown in Appendix A.

Variables used to record state values. Since an object changes its state

based on the constraints it satisfies, it is necessary to have a variable to record the

object’s current state. These kinds of variable are used for synchronising events. As

shown in Figure 5-3, these variables are generated by the rule ���	
�
	
�, while

their invariants and initial values are created by rules ���	
�
	
����� and

���	
�
	
����
 respectively. Below is the detail of the rule ���	
�
	
����.

�

���	
�
	
����(�������) →

<LET> exp = ���	��(�������������	��(�)) .. (1)

<IN> <FOR> � <IN> ������������(�������) ... (2)

 {��	��(�)�+ “State ∈” + ... (3)

 <IF> �%	��	
	�(���	��(��	��(�))) ... (4)

 <THEN> ... (5)

 “(”+ �#
�
��	
	�+�
���(�����	
	��!"�(exp)) + “)” (6)

 “ → ” + ���	��(��	��(�)) + “_STATE” (7)

 <ELSE> ���	��(��	��(�)) + “_STATE” ... (8)

 <ENDIF> .. (9)

 } ... (10)

�#
�
��	
	�+�
���(9��/���%�:(���) → .. (11)

Chapter 5 Translating Timing Diagrams into Event-B models 99

 9��/�+ “× ” + �#
�
��	
	�+�
���(%�:(���) ... (12)

�#
�
��	
	�+�
���(9��/�:�;�<�) → 9��/ .. (13)

Figure 5-7 Rule ���	
�
	
����: creating machine variables to record states

This rule uses a ������� as an input value. It collects Timeline from the

������� and then uses it to generate each variable as shown at line (2). A variable

is generated from a Timeline’s name followed by a string “State ∈” at line (3). If a

corresponding class has parameter, the output string from line (3) is concatenated

with parameter type at line (6) followed by a class name and the string “_STATE”, at

line (7). If the corresponding class has no parameter, then line (8) is performed

instead.

Sub-rule �#
�
��	
	�+�
��� is called from line (6) whenever the

corresponding class has a parameter. This sub-rule is defined recursively to give

parameter types for that class. For example, an invariant is created from this

Timeline ������� ��� shown in the following:

���	
�
	
����(�������) →

<LET> exp = ���	��(�������������	��(�))

<IN>

<FOR> ��<IN> ������������(�������) .. ������� ���! ������"#$! ��%&��'�"#$! etc.

 {��	��(�)�+ “State ∈” + ...������� ���('"'� ∈

 <IF> �%	��	
	�(���	��(��	��(�))) ..
)*+,

 <THEN>

 “(”+ �#
�
��	
	�+�
���(�����	
	��!"�(exp)) + “)” -./00*1�
 + “ → ” + ���	���	��(�) + “_STATE” →

./00*(,2(0*3()4),

 <ELSE> ���	���	��(�) + “_STATE”

 <ENDIF>

 }

�#
�
��	
	�+�
���(
./00*

�:�;�<�) →
./00*

 ...
./00*

Output: floorsensorState ∈ (FLOOR) → FLOORSENSOR_STATE

Chapter 5 Translating Timing Diagrams into Event-B models 100

Suppose a class floorsensor has two parameters, f : FLOOR and a : AA, the sub-

rule �#
�
��	
	�+�
��� generates a relationship between those parameters as

(FLOOR × AA). Thus, an invariant in this case is:

floorsensorState ∈ (FLOOR × AA) →FLOORSENSOR_STATE

From Figure 5-2, one may expect that an object state’s initial value can be

generated from the first segment in the Timeline. For example, the first segment of

the object door is Closed, in which the corresponding variable generated by the

rule ���	
�
	
� is doorState. Thus, by the rule ���	
�
	
����, an invariant for

this variable is created as doorState ∈ FLOOR →DOOR_STATE. This variable has

its initial value defined as doorState := FLOOR × {Closed}. That means, at the

initial state, the door for every floor is closed. However, it is incorrect to use the

first segment as an initial state for every object. For example, an object floorsensor

has a first segment On, but one cannot identify its initial state directly as

floorsensorState := FLOOR × {On}. That is because the floorsensorState for that

floor is set On if an only if the lift is at that floor. Thus, it is not true that at the

initial state, the lift stations at every floor. In fact, in the beginning if the lift is

stationed at the first floor, then only the floorsensorState at the first floor is set On.

If there are three floors in a system, the initial value for the floorsensorState is

floorsensorState := {1 � On, 2 � Off, 3 � Off} where 1, 2 and 3 denotes the

number of the floors.

���	
�
	
����
(�������) →

 <FOR> � <IN> ������������(�������)

 {��	��(�)�+ “State := {xInitValuex}” }

Figure 5-8 Rule ���	
�
	
����
: creating initial values for those variables

used to record states

Chapter 5 Translating Timing Diagrams into Event-B models 101

Thus, the rule ���	
�
	
����
, which is used to define the initial states of

these variables need to be generated by hand, which is represented by a marking

xInitValuex.

Other examples of variables that have to be generated by hand are dir and

currentFl, which are used to indicate the lift direction and the current position for

the lift. Actually, these variables are already shown as a string as the

CauseEffectArrow’s predicates. However, one cannot generate variables from the

predicates as it is not a notation but a string of conditions.

5.3.3 Structure of Translation rules for creating an Event-B event

Each Event-B event is created by the rule �����
. This rule uses a �������

for an�input parameter and is defined recursively. The rule �����
 is composed of

sub-rules as shown below.

Figure 5-9 Structure of translation rules to create an Event-B event

→

Chapter 5 Translating Timing Diagrams into Event-B models 102

To generate events, first, the rule ���
������
#�
$����

�
(�������) is

used to collect only Segments defined with constraints – i.e. that segment has a

CauseEffectArrow – from a machine. Without CauseEffectArrow, a Segment is

an ordinary segment. It does not have a causal dependency between objects and

will not be considered to generate an event. Next, each Segment from the collection

is used to generate an individual event.

An Event-B event is basically composed of a name, guards and actions, thus

the rule� �����
 is designed to generate those parts. The rule� �����
 is sub-

divided into four groups.

1
st
 group: this group has a rule �����
�	�� (detailed in Figure 5-11) that is

used to create an event’s name.

2
nd

 group: this group comprises translation rules that are used to create

guards for an event. As described in chapter 2, an event can be defined into three

types: Simple, Guards and Non deterministic. The rules in the 2
nd

 group are used to

define Guards and Non deterministic types, not the Simple type. Since the Simple

type has only the action part but not guards, it is inappropriate to generate this type

from the TDs. TDs are designed to explain the changing of state according to

conditions, which are guards.

As shown in Figure 5-10, for the Non deterministic type, the rule ��	
	���
�

(detailed in Figure 5-13)�is used to create a string ANY and a list of local variables;

the rule ��	
	���	
��	���� (detailed in Appendix A)� is used� for identifying

those local variables with their corresponding types. For the Guard type, the rule

��	
	���
�is used to create a string WHEN.

3
rd

 group: this group comprises translation rules used to create event guards.

Those guards are created from four features that are associated with that Segment:

previous segments, cause segments, conditions, and timing constraints. A rule

��
��

�
�(detailed in Figure 5-14) is used to create guards from cause segments,

conditions, and timing constraints. A rule ��
�������(detailed in Appendix A) is

used to create a guard from previous segments. Most of the guards are generated

from those rules. However, some additional guards may be added. Most of them

Chapter 5 Translating Timing Diagrams into Event-B models 103

are associated with extra variables generated manually as covered earlier in

CONTEXT.

→

Figure 5-10 Structure of translation rules and Event-B model types

4
th

 group: this group comprises translation rules used to create events’

actions. There are three kinds of actions generated here. First, an action is

generated from a segment with constrints, by a rule �����
 (detailed in Figure 5-

20). Secondly, if a Segment has SimultaneityArrows, an action is created by

the rule ������ (detailed in Figure 5-22). Thirdly, actions are created to record the

current time of a corresponding machine variable whenever the event is activated,

by the rule ��������� (detailed in Figure 5-23). The rules generate mostly essential

actions. However, in some events, actions may need to be added. For example, in

the case of the lift system, it has to add actions to update current floor position

whenever the lift is moving up or moving down.

Chapter 5 Translating Timing Diagrams into Event-B models 104

5.3.4 Creating an event’s name

To create an event’s name, the �����
�	�� rule is used. This rule gives an

event’s name for an input %�&���� and uses basic rules, i.e. �'�(�and �'�(�
, as

described in Table 5-1.

� � �����
�	��(%�&����) →

 <LET> exp = �'�(�
(%�&����)

 <IN> �'�((exp) + exp + “=”

Figure 5-11 Rule �����
�	��: creating an event’s name

This rule creates an event’s name by concatenating an object’s name with an

object state’s name followed by the “=” symbol.

Figure 5-12 Timing diagram for floorsensor and lift (parts of Figure 5-2)

For example in Figure 5-12, %�&����������has a CauseAffectArrow in which

���������	
������� or
���������	
������
�� are cause segments that stimulate

the object floorsensor to change its state from On to Off. Generating an event’s

name from the Segment ���� is illustrated below:

Chapter 5 Translating Timing Diagrams into Event-B models 105

�����
�	��(����) →

 <LET> exp = �'�(�
(����)

 <IN> �'�((exp) ... ������� ���
 + exp + “=” ...

0�� 5

Output: floorsensorOff =

5.3.5 Creating non-deterministic local variables and their values

A rule ��	
	���
�is used to check whether an event is defined by Guards or

Non deterministic type. Each of these types identify the beginning of the guards

with a string WHEN or ANY corresponding to a type Guards or Non deterministic

respectively. This rule uses a %�&���� as input parameter.

��	
	���
(%�&����) →

 <LET> exp = �'�((�'�(�
(%�&����)) ... (1)

 <IN> .. (2)

 <IF> �%	��	
	�(���	�� (exp)) ... (3)

 <THEN> .. (4)

 “ANY” + .. (5)

 �#
�
�����	
	��(�����	
	�(���	��(exp)))(6)

 <ELSE> ... (7)

 “WHEN ” ... (8)

 <ENDIF> ... (9)

�#
�
�����	
	��(9��/ : �����%�:(���) →

� 9��/ + “,” + �#
�
�����	
	��(�����%�:(���)

�#
�
�����	
	��(9��/ :�;�<) → 9��/�

Figure 5-13 Rule ��	
	���
: creating a list of local variables for an event

Chapter 5 Translating Timing Diagrams into Event-B models 106

The rule ��	
	���
� checks whether a class corresponding to the input

%�&���� has a parameter at line (3). If so, this rule generates a string ANY, line (5),

followed by a list of parameters as shown in line (6); those parts are for creating

Non-deterministic type. Otherwise, it creates a string WHEN for Guarded type, as

shown in line (8). The list of parameters is generated by a sub-rule

�#
�
�����	
	��. This rule iteratively generates parameters, each of them being

separated by a “,” symbol. For example, a segment ���� in Figure 5-12, belongs to

an object floorsensor which resides in a class FLOORSENSOR whose parameter is

f. An example of creating a local variable from this segment is illustrated below.

�

��	
	���
(����) →

<LET> exp = �'�((�'�(�
(����))

<IN>

 <IF> �%	��	
	�(���	�� (exp)) ..
)�&�

 <THEN>

 “ANY” + ...
426

 �#
�
�����	
	��(�����	
	�(���	��(exp)))

 <ENDIF>

�#
�
�����	
	��($:�;�<) → $�

Output: ANY f

Each local variable needs to identify its types within WHERE clauses. Rule

��	
	���	
��	��� (Figure 5-10, detailed in Appendix A) is used to identify the

variables’ types. For example, within the same example above, this rule generates

WHERE f : FLOOR for output.

Suppose a class FLOORSENSOR has parameters f, a and b with a type

FLOOR, AA and BB respectively. Thus, the rule ��	
	���	
��	��� would

generate WHERE f : FLOOR & a : AA & b : BB. The detail of this rule is shown

in Appendix A.

Chapter 5 Translating Timing Diagrams into Event-B models 107

5.3.6 Creating an Event’s guards

As shown in Figure 5-10, event guards are created by the rule ��
��

�
 and

��
������. This section explains how to create guard from the rule ��
��

�
,

while the detail of the rule ��
������ can be found in Appendix A.

→

→

Figure 5-14 Rule ��
��

�
 and sub-rules

The detail of the rule ��
��

�
 is shown in Figure 5-14, a coloured box.

This rule gives an output NodeType for an input Segment. The NodeType then is

used as an input parameter for the sub-rule ���
�
��
���.

The rule ���
�
��
��� checks whether the input NodeType is a %��*��,

 0"��/� or� -�#"��/�. If NodeType is� %��*��, three other sub-rules,

���������	
�, ����"���	������
��� and ����"������, are called in order to

generate guards from timing constraints, cause segments and conditions

respectively. If the NodeType is 0"��/��or -�#"��/�, the rule ���
�
��
��� is

recursively called. The detail of the rules ���
�
��
��� is illustrated as follows.

Chapter 5 Translating Timing Diagrams into Event-B models 108

���
�
��
���(��/�()*�) →

<IF> ��/�()*� = %��*�� .. (1)

<THEN><IF> �%	�������(%��*��) ... (2)

 <THEN> ���������	
�(�������
(%��*��), �������(%��*��)) (3)

 + “&” + ����"���	������
��(�������
(%��*��)) (4)

 + ����"������(�����(%��*��)) ... (5)

 <ELSE> .. (6)

� � ����"���	������
��(�������
(%��*��)) (7)

 + ����"������(�����(%��*��)) ... (8)

<ENDIF> ... (9)

<ELSE><IF> ��/�()*� = 0"��/� ... (10)

<THEN><LET> Nodes = �������
	����(0"��/�) (11)

 <IN> Nodes → <ITERATE> (n; ret : String = “(” | (12)

 <IF> n =��	�
(Nodes) ... (13)

 <THEN> ret = ret + ���
�
��
���(n) + “)” (14)

 <ELSE> ret = ret + ���
�
��
���(n) + “) ∨ (” (15)

 <ENDIF>) ... (16)

 <ENDIF> .. (17)

<ELSE><IF> ��/�()*� = -�#"��/��

<THEN><LET> Nodes = �������
	����(-�#"��/�) (18)

 <IN>�Nodes → <ITERATE> (n; ret : String = “(” | (19)

 <IF> n =��	�
(Nodes) ... (20)

 <THEN> ret = ret + ���
�
��
���(n) + “)” (21)

 <ELSE> ret = ret + ���
�
��
���(n) + “) ∧ (” (22)

 <ENDIF>) .. (23)

 <ENDIF> .. (24)

<ENDIF> ... (25)

Figure 5-15 Rule����
�
��
���: creating event guards from

timing constraints, cause segments and conditions

1
st
 part: If NodeType is Simple

2
nd

 part: If NodeType is Or_node

3
rd

 part: If NodeType is And_node

Chapter 5 Translating Timing Diagrams into Event-B models 109

For example if a ��/�()*� is 0"��/�, a rule �������
	����(0"��/�) at

line (11) collects the elements underneath the 0"��/� as a sequence within a

variable �����. Line (12) is defined as iteration in which an iterative expression is

defined by the ATL-like syntax as in the following:

source → <ITERATE>(iterator; return_ var_declaration : return_var_type

 = init_expression | body)

That is, at line (12), the variable ����� is a source of iteration process when �

is an iterator. This iteration returns a variable ��� which is defined as a string

provided with an initial value equal to “(”. Line (13) checks whether � is the last

element in the sequence. If so at line (14), the return value ��� is concatenated with

string value from calling itself, ���
�
��
���(n), followed by the “)” symbol. If

not, line (15), the return value ��� is concatenated with string value from calling

itself followed by the string “) ∨ (”.

For example, from Figure 5-16, the Segment Off2 is used to generate guards

for the event floorsensorOff by the rule ���
�
��
���. The process of generating

guards can be done step by step as shown in Figure 5-17. Note that, we present

order numbers such as 1, 2 and 3 to show which parts of the CauseEffectArrow

are used in the rule ���
�
��
���; these numbers are not TD notations.

Step 1, the rule ��
��

�
� (from Figure 5-14) gives a ��/�()*� which is

equal to 0"��/��as an output.

Step 2, the rule �������
	���(0"��/�), at line (11) in Figure 5-15, collects

all ��/�()*�s beneath this 0"��/� and keeps them in a variable ����� as a

sequence. Remember that, since the %��*�� BNF definition is defined as %��*��������

��'��%�&��� �(����&�� � ����/�������, the variable ����� has two %��*�� elements as

shown in the following:

 ����� = (%��*��6, %��*��1)

where� %��*��6 = ��=��&#�*�����&5*1��1+2��$���'�����3��4�/�����5*�

� � %��*��1�=���=��&#�*�����&#�.�>��1+2��$���'�����3��4�/�����#�.��

Chapter 5 Translating Timing Diagrams into Event-B models 110

Figure 5-16 Timing diagram for floorsensor and lift (same as Figure 5-6)

∨

Figure 5-17 An example of a process for creating guards from Figure 5-16

Chapter 5 Translating Timing Diagrams into Event-B models 111

Step 3, each ��/�()*� is used to generate guards, where the initial return

value is equal to “(”. Thus, in this step, the %��*��6 is used first

Step 4, the %��*��6�is not the last node in the sequence.

Step 5, the %��*��6� is used as input parameter for the rule ���
�
��
���

itself. The output from the rule is concatenated “) ∨ (”

Step 6-9, since %��*��6 is a %��*�� ��/�()*�, it is used to create guards by

sub-rules in steps 7-9. At this point, suppose the steps 7-9 return a group of output

guards called guard_clauses1.

Step 10, %��*��1 is used.

Step 11, %��*��1�is the last node in the sequence.

Step 12, %��*��1�is used as input parameter for the rule ���
�
��
��� itself.

The output from the rule is concatenated with “)”.

Steps 13-16, Since %��*��1 is a simple ��/�()*�, it is used to create guards

by sub-rules in step 14-16. At this point, suppose the steps 14-16 return a group of

output guards called guard_clauses2.

Step 17, the return value is (guard_clauses1) ∨ (guard_clauses2)

Within the same process, if the ��/�()*� is -�#"��/�, the return value is in a

form of (guard_clauses1) ∧ (guard_clauses2).

5.3.7 Creating an Event’s guards from Timing constraints

The rule����������	
� uses %�&�����and (����& as input parameters. The

rule generates timing constraints as a guard by concatenating an object’s name, an

object’s state, additional strings, and timing constraints.

�

�

�

�

�

�

�

Chapter 5 Translating Timing Diagrams into Event-B models 112

� ���������	
�(%�&����, (����&) →

 “(gclock - ” 	��'�((�'�(�
(%�&����))

� � 	��'�(�
(%�&����))�	�“Time � ”

� � 	����&�
��
((����&)+“)”�	�“& (gclock - ”

� � 	��'�((�'�(�
(%�&����))�	��'�(�
(%�&����))�

� � 	�“Time � ”�	��*""�
��
((����&) + “)”�

Figure 5-18 Rule����������	
�: creating a timing constraint guard

From Figure 5-16, and step 7 in Figure 5-17, when %��*��6 is used as an input

parameter for the rule ���������	
�, the following output is generated.

���������	
�(�������
(%��*��6), �������(%��*��6)) = ���� 7

���������	
�(��=��&#�*�����&5*1, �1+�2�) →

 “(gclock - ” .. -89��9: ;

� 	��'�((�'�(�
(��=��&#�*�����&5*1) .. �<�'
� 	�'�(�
(��=��&#�*�����&5*1)

=�>< 8?�$"�'< 8+$
� 	�“Time � ” ...

)<#� �

� 	����&�
��
��1+�2�) +“)” ...
@1
�

� 	�“& (gclock - ” ...
A
� -89��9: ;

� 	��'�((�'�(�
(��=��&#�*�����&5*2)) ... �<�'
� 	��'�(�
(��=��&#�*�����&5*1))

=�>< 8?�$"�'< 8+$
� 	�“Time � ” ...

)<#� ��
� 	��*""�
��
(�1+�2�) + “)” ..

B1
�

Output: (gclock - liftMovingDepartingUpTime � 2)

 & (gclock - liftMovingDepartingUpTime � 5)

The output for a %��*��1 is generated within the same way,

 (gclock - liftMovingDepartingDownTime � 2)

 & (gclock - liftMovingDepartingDownTime � 5)

Chapter 5 Translating Timing Diagrams into Event-B models 113

The guards generated from timing constraints (by the rule ���������	
�)

are then concatenated with guards created from cause segments (by the rules

��������������������������������	
����

��	
����

��	
����

��	
����

��) and conditions (by the rule ��). The details of

rules ��������������������������������	
����

��	
����

��	
����

��	
����

�� and �� are shown in Appendix A.

Up to this point the Segment Off2 in Figure 5-16 is used to generate parts of

an event as illustrated below:

≥

≤

≥

≤

∨

Figure 5-19 Parts of an event floorsensorOff

5.3.8 Creating an Event’s actions from an effect segment

As shown in Figure 5-9, actions for an event are generated from three rules:

�����
, ������� and ����������which are placed in between THEN …. END

clause. The rules �����
� and ������� are used to generate actions from that

segment, and from SimultaneityArrows attached to that segment respectively.

The rule ��������� generates an action to record the current time whenever that

event is activated.

Chapter 5 Translating Timing Diagrams into Event-B models 114

The detail of the rule �����
 is shown in Figure 5-20, where %�&���� is used

as input parameter.

�����
(%�&����) →

<LET> exp = �'�((�'�(�
(%�&����)) .. (1)

<IN> <IF> �%	��	
	�(���	��(exp)) .. (2)

 <THEN> �'�(�	��(exp)... (3)

 + “State(” ... (4)

 + �#
�
��	
	���
(�����	
	�(���	��(exp))) (5)

 + “) := ” .. (6)

 + �'�(�
(%�&����) ... (7)

 <ELSE> exp .. (8)

 + “State : = ” ... (9)

 + �'�(�
(%�&����) .. (10)

 <ENDIF> ... (11)

�#
�
��	
	���
(9��/���%�:(���) →

� 9��/ + “�” + �#
�
��	
	���
(%�:(���) ... (12)

�#
�
��	
	���
(9��/�:�;�<�) → 9��/ .. (13)

Figure 5-20 Rule������
: creating an Event’s action from a Segment

The rule checks whether a class has a parameter, in line (2). If so, lines (3)-

(7) are used to generate an action by concatenating an object’s name with the string

“State(”, at lines (3)-(4), then followed by a list of parameters which is generated

by the sub-rule �#
�
��	
	���
. The result is concatenated with the “) := ”

symbol, at line (6), and object’s state at line (7). Where the class has no parameters,

lines (8)-(10) are used.

An example of generating an action where the Segment $$1,�as in Figure 5-

16, is used as an input parameter is illustrated below:

Chapter 5 Translating Timing Diagrams into Event-B models 115

�����
($$1) →

<LET> exp = �'�((�'�(�
($$1))

<IN> <IF> �%	��	
	�(���	��(exp)) ...
)*+,

 <THEN> �'�(�	��(exp) .. ������� ���
 + “State(” .. ('"'�-
 + �#
�
��	
	���
(�����	
	�(���	��(exp))) �
 + “) := ” ...

1 C5

 + �'�(�
($$1) ...
0��

<ENDIF>

�#
�
��	
	���
($:�;�<�) → �$.. �

Output: floorsensorState(f) := Off

Suppose a class floorsensor has two parameters, e.g. f : FLOOR and a : AA,

the sub-rule �#
�
��	
	���
 generates (f� a). Thus, an action in this case is

defined as floorsensorState (f � a) := Off.

5.3.9 Creating an Event’s action from a SimultaneityArrow

This section explains how a SimultaneityArrow is used to create an action

clause. That is, if a segment has SimultaneityArrows, each is used to create an

action.

In Figure 5-21, since the segment D���E�FG��
� has a CauseEffectArrow,

this segment is used to generate an event liftStopAtFloor (by the rules explained

above). The segment D���E�FG��
� has two SimultaneityArrows a and b.

Remember that, the TD BNF definition for a SimultaneityArrow is %��'�� ����

%����%�&���,�/%�&��. Thus, the %����%�&�� of a and b is the same segment; that is

D���E�FG��
�, while the ,�/%�&�� of a and b are ��	����	��H� and H�E����	��H�

respectively. With the translation rule ������, the event liftStopAtFloor has an

action generated by these SimultaneityArrows.

Chapter 5 Translating Timing Diagrams into Event-B models 116

Figure 5-21 Timing diagram shows Simultaneity between

lift, uplamp and downlamp (parts of Figure 5-2)

The rule ������ creates an action from an input�%�&����. The detail of the

rule is illustrated in Figure 5-22. Line (2), this rule checks whether there is

SimultaneityArrow for the segment. If so, the rule iteratively generates an action

as shown at line (4) – (19); otherwise it creates nothing as shown at line (21). The

detail of the rule is illustrated in the following.

������(%�&����) →

<LET> exp = ���	��(�'�((�'�(�
(��������(�)))) .. (1)

<IN> <IF> �%	������(%�&����) ... (2)

<THEN> <FOR> � <IN> ��������)(%�&����) ... (3)

 {<IF> �%	��	
	�(exp) ... (4)

 <THEN> ... (5)

 �'�((�'�(�
(��������(�))) ... (6)

 + “State(” .. (7)

 + �#
�
��	
	���
(�����	
	�(exp)) .. (8)

 + “) := ” ... (9)

Chapter 5 Translating Timing Diagrams into Event-B models 117

 + �'�(�
(��������(�)) .. (10)

 <ELSE> .. (11)

 �'�((�'�(�
(��������(�))) ... (12)

 + “State := ” ... (13)

 + �'�(�
(��������(�)) .. (14)

 <ENDIF> .. (15)

 <IF><NOT> ��= �	�
(��������)(%�&����)).. (16)

� <THEN> “&” .. (17)

 <ELSE> <SKIP>. .. (18)

 <ENDIF> .. (19)

 } ... (20)

<ELSE> <SKIP> .. (21)

<ENDIF> ... (22)

Figure 5-22 Rule�������: creating a substitution

Since there are two SimultaneityArrows a and b attached with the %�&�����

D���E�FG��
� in Figure 5-21, an action is generated by two iteration processes as

shown in the following.

������(D���E�FG��
�) →

<LET> exp = ���	��(�'�((�'�(�
(��������(�))))

<IN> <IF> �%	������(D���E�FG��
�) ... IJ�K

<THEN> <FOR> � <IN> ��������)(D���E�FG��
�) L	M NO
 {<IF> �%	��	
	�(exp) ..

FEPDKM
Q�� � R 	

 <ELSE>

 �'�((�'�(�
(��������(a)))..
S�T �"#$

 + “State := ” ... ('"'� C5

 + �'�(�
(��������(a)) .. ?�"9'< >"'�S
 <ENDIF>

 <IF><NOT> ��= �	�
(��������)(D���E�FG��
�))
� � <THEN> “&” ..

A

1
st
 iteration

Chapter 5 Translating Timing Diagrams into Event-B models 118

 <ENDIF>

 �'�((�'�(�
(��������(b))) .. &$�"#$
 + “State := “ ... ('"'� C5

 + �'�(�
(��������(b)) ..
S�49'< >"'�S

 }

Output : downlampState := Deactivated & uplampState := deActivated

5.3.10 Creating an action for recording current time whenever that event is

activated

To record the current time whenever that event is activated, the rule

��������� is used. This time is used for synchronisation of events. The rule uses a

%�&���� as an input. The detail of the rule is shown below:

� � � ���������(%�&����) →

� � � � �'�((�'�(�
(%�&����))

 + �'�(�
(%�&����)

 + “Time := gclock”

Figure 5-23 Rule����������: creating an action

Thus, an action is generated from the %�&���� ���� in Figure 5-16 by the rule

��������� is floorsensorOffTime := gclock.

5.3.11 Creating an event Ticktok

An event Ticktok is introduced in the model for generating time progression.

This event presents ticking of the clock that occurs independently, and the clock is

used for synchronisation of events. The Ticktok event uses a global variable gclock

which represents the current time and is advanced by the event. The gclock is

defined as an integer with initial value 0. We use a discrete time model rather than

2
nd

 iteration

Chapter 5 Translating Timing Diagrams into Event-B models 119

a continuous one since it is suitable for ensuring the time is held within fixed

limits. Using discrete time is similar to the approach of (Butler and Falampin

2002). The detail of the �����
�� rule is shown in the following.

� �����
���→ “Ticktok = BEGIN gclock := gclock + 1 END”

Figure 5-24 Rule �����
��: creating a Ticktok event

This rule generates an event Ticktok = BEGIN gclock := gclock + 1 END

The event Ticktok identifies a unit of time progress equal to 1. This unit can

broadly be millisecond, second, minute, etc. The lift system case study identifies

timing constraints in seconds. Thus, we use a second unit for our model.

To control the accuracy of system timing constraints, it is necessary to

“ensure the timing constraints are satisfied by preventing the clock variable (in our

case gclock) from progressing to a point at which the required properties would be

violated” (Butler and Falampin 2002). However, in a real system, time cannot be

prevented from progressing and we leave this for the implementation to ensure

timing properties are always satisfied in time.

Addition information add into a Ticktok event

To prevent the time from progressing, it is necessary to add stronger guards

for the Ticktok event. Those guards are derived from each timing constraint that is

attached to the CauseEffectArrows. For example from Figure 5-2, the

CauseEffectArrows in the TD involves ten timing constraints called '<#< 8 -U1,
'<#< 8 -@1, … for explanation here.

floorlamp Unlit within [2, 4] seconds after floorsensor Off '<#< 8 -U1
floorlamp Lit within [2, 4] seconds after floorsenseor On '<#< 8 -@1
floorsensor Off within [2, 5] seconds after lift MovingDepartingUp '<#< 8 -V1
floorsensor Off within [2, 5] seconds after lift MovingDepartingDown '<#< 8 -W1
lift StopAtFloor within [1, 5] seconds after floorsensor On '<#< 8 -B1
… etc.

Chapter 5 Translating Timing Diagrams into Event-B models 120

Thus, there are ten guards to be added into the Ticktok event. Each guard

comprises two parts: pre- and post-conditions in the form of <pre-condition &

post-condition>.

Ticktok =

 WHERE

 grd1: . . .

 grd2: . . .

 grd3: (liftState = MovingDepartingUp & .. (1)

 floorsensorState(currentFl) = On & .. (2)

 ((gclock − liftMovingDepartingUpTime) � 2) & (3)

 ((gclock − liftMovingDepartingUpTime) � 5) (4)

).. (5)

� � � & .. (6)

 gclock - liftMovingDepartingUpTime < 5 (7)

 grd4: (liftState = MovingDepartingDown & ... (8)

 floorsensorState(currentFl) = On & .. (9)

 ((gclock − liftMovingDepartingDownTime) � 2) & (10)

 ((gclock − liftMovingDepartingDownTime) � 5) (11)

).. (12)

� � � & .. (13)

� � � gclock - liftMovingDepartingDownTime < 5 (14)

 grd5: . . .

 . . .

 grd10: . . .

 THEN gclock := gclock + 1 END

Figure 5-25 Ticktok event’s guards (parts of)

Figure 5-25 gives an example to illustrate the detail of how grd3 and grd4 are

generated from '<#< 8 -V1 and '<#< 8 -W1 respectively. The full detail of other guards

can be found in Appendix B. The grd3 has pre-conditions as shown in line (1) to

Chapter 5 Translating Timing Diagrams into Event-B models 121

(4). The pre-conditions are similar to those defined by the rules

����"���	������
��,� ��
������� and� ���������	
� in Figure 5-19

respectively. However, in line (2), the local variable f is replaced by the machine

variable currentFl. Thus, there are no non-deterministic variables defined by the

Ticktok event. In grd4, lines (8)-(12), are also similar to those defined in Figure 5-

19. Thus, identifying the Ticktok event’s guards is a process of re-defining cause

segments, previous segments, and timing constraints. Notice that in other events,

those cause segments, previous segments, and timing constraints are combined

within the same guard, as in the example shown in Figure 5-19, while in the Ticktok

event they are separated, as seen in grd3 and grd4. This is the reason to simplify

POs and make it easier to identify Ticktok’s guards’ post-conditions.

A Ticktok guard post-condition is defined by the pattern below:

“gclock - ” + !� + ��'��%�&���+ “Time” + “ < ” + '**��������

For example, the post-condition for grd3 as defined at line (7) is

gclock - liftMovingDepartingUpTime < 5

This means the clock is allowed to progress between an upper and lower

bound until time expires. For example, from the grd3, a floorsensor is being set to

Off between 2 and 5 seconds after the lift is in the state of MovingDepartingUp.

5.4 User manual input on modelling

Since the translation rules create events from Segments that have constraints

(have a CauseEffectArrow), there are some events that have to be manually added

into the Event-B machine. That is because not every changing state in the TD is

identified by the CauseEffectArrows. For example, the changing states of the

door from Open to Close, and changing state of the lift from MovingArrivingUp to

MovingDepartingUp or MovingArrivingDown to MovingDepartingDown.

Chapter 5 Translating Timing Diagrams into Event-B models 122

Moreover, TD are not designed to keep the whole information of the system. Thus,

there is missing information which may not be identified in the specification (and

that is why it is not generated as a TD) from the beginning, or information that

cannot be identified as a TD because it is not supported by TD notations. For

example, the lift changing directions from up to down or from down to up needs to

be created manually since it is not identified in the specification, but it needs to be

included in the system.

Currently, a SimultaneityArrow is not designed to have a combination of

OR nodes. Thus, if there is a SimultaneityArrow that is used to indicate this kind

of relationship, the output model has to be altered manually. Thus, in Figure 5-26, a

and b are SimultaneityArrows that demonstrate whenever a floorsensor is set Off,

the lift is in a state of MovingUp or MovingDown instantly. The whole

floorsensorOff event is generated by translation rules shown in Figure 5-27.

Figure 5-26 SimultaneityArrow for the lift object

(Parts of Figure 5-2)

Chapter 5 Translating Timing Diagrams into Event-B models 123

≥

≤

≥

≤

∨

∨

Figure 5-27 A floorsensorOff event before revision

In Figure 5-27, the action generated by the rule ������ is not recognized by

Event-B complier. That is because Event-B does not deal with OR relationships in

an action part. Thus, we have to revise the floorsensorOff event by separating it

into two events: floorsensorOffUp and floorsensorOffDown as shown in Figure 5-

28. In order to do that, we also split the original floorsensorOff event’s guards and

actions into the corresponding events.

Chapter 5 Translating Timing Diagrams into Event-B models 124

≥

≤

≥

≤

Figure 5-28 Two new events are regenerated from floorsensorOff event

Chapter 5 Translating Timing Diagrams into Event-B models 125

5.5 Summary

This chapter explains how translation rules are used to transform a TD to an

Event-B model. First, we generate BNF definitions for describing a TD. Next,

translation rules are created in which TD BNF elements are used as input parameter

for the rules. The rule covers generating the Event-B CONTEXT and the

MACHINE parts.

For the CONTEXT part, we can generate sets, constants, and axioms.

Additional sets that cannot be identified by TD need to be added by hand; for

example, identifying a set of lift directions to up and down.

For the MACHINE part, the rules can generate machine variables,

invariants, variables’ initial values, and events. Normally, if an extra set is

generated by hand in the context part, the additional machine variables, invariants

and their initial values corresponding to that set are generated by hand in the

MACHINE part. Some other machine variables may also be identified. For

example, in the lift case study, the machine variable currentFl is manually added to

represent the current floor of the lift. In the MACHINE part, each event is

generated by a segment that has a CauseEffectArrow. The rules can generate an

event’s name and its body in one of two types: Guard or Non deterministic. The

first type does not have local variables, while the latter is declared with non-

deterministic local variables. An event’s guards are generated from timing

constraints, Cause segments, Previous segments, and conditions attached to the

CauseEffectArrow. An event’s actions are generated from a target state and

SimultaneityArrows. Each event is provided with an action to record the time it

is activated. This time is used to synchronise events. Currently, TD notation does

not support identifying SimultaneityArrow with OR nodes, thus any action

created by this kind of node needs to be split into corresponding events.

There are some events that need to be added by hand. That is because not

every event can be identifyied by a CauseEffectArrow. For example, changing

state in an object itself, such as an event to represent the state of a door changing

Chapter 5 Translating Timing Diagrams into Event-B models 126

from open to close, needs to be generated by hand. This alteration depends on the

characteristics of each system.

To control timing of events, we create the Ticktok event for time progression

and for preventing the clock variable progressing to a point at which system

properties will be violated.

Chapter 6 Translating Timing

diagrams into UML-B

The use of TD is suitable for identifying timing constraints in an object itself

and among other objects. However, a TD is not designed to add state-based

information nor gather whole system information. Thus, to create a complete

Event-B model from a TD, the missing information must be added, such as

variables, constants and some events. In order for that process to be accomplished,

either the information must be added by hand or an existing tool like UML-B must

be used. A UML-B is a plug-in for RODIN toolkits and is implemented by Eclipse

EMF. UML-B is an Event-B graphical front end, has a well-defined Metamodel of

Classes, and Statemachines, and can be automatically translated into an Event-B

model whenever the model is saved. The Event-B verification tools, i.e. syntax

checker and Prover, then run and immediately display any problems which are

shown in the relevant UML-B diagrams. Thus, we selected the UML-B plug-in as

it provides Event-B integration and its features – using Class and Statemachine –

are TD compatible. For example, it enables us to compare state changes in the TD

along a Timeline using the UML-B Statemachine. ATL, which is also developed

on the Eclipse platform and generates a target model from a source model, was

selected for translation rules. ATL like UML-B also has a well-defined Metamodel.

Section 6.1 identifies TD used for translation into UML-B. Section 6.2 gives an

overview of how a TD source model is transformed into a target UML-B model,

using ATL translation rules. The abstract syntax of a TD is identified by a TD

Chapter 6 Translating Timing Diagrams into UML-B 128

 metamodel in section 6.3, and is used to generate a TD input model as described in

section 6.4. ATL translation rules for creating each UML-B model component are

explained in section 6.5. TD cannot be used to create a complete UML-B output

model because a TD in itself only represents some parts of the whole specification.

Thus, some additional information is required for the model, as explained in

section 6.6.

Figure 6-1 Timing Diagram used for transforming into a UML-B model

Chapter 6 Translating Timing Diagrams into UML-B 129

6.1 Timing Diagram used for translation into UML-B

A TD used for generating UML-B is slightly different from the TD used for

the direct translation of an Event-B model shown in Chapter 5.

Unlike the TD for the direct translation, where a class name is represented by

capital letters, in TD translation to a UML-B model, a class name must begin with

a capital letter followed with small letters.

Thus, in chapter 5, floorsensor ⊆ FLOORSENSOR(f:FLOOR)

 in chapter 6, floorsensor ⊆ Floorsensor(f:FLOOR)

For the direct translation, class names are generated as a set in a CONTEXT

part. For the UML-B translation, class names are generated as a class in a

MACHINE part.

6.2 Overview of the TD to UML-B ATL transformation

We use ATL as a language to transform a TD model into a UML-B model.

Figure 6-2 shows a source model Timing diagram (TD), which conforms to a

metamodel TDMetamodel, transformed into a target model UML-B which conforms

to a metamodel umlbMetamodel. The transformation definition TDtoUMLB.atl is

written in ATL language and conforms to a metamodel ATL. The whole metamodel

conform to the Ecore metamodel.

Figure 6-2 Overview of the TD to UML-B ATL transformation

Chapter 6 Translating Timing Diagrams into UML-B 130

6.3 Timing diagram Metamodel

The TD metamodel created by EMF to describe abstract syntax of TD is

illustrated in Figure 6-3. The same colours within Figure 2-16 are used to identify

which parts of the TD metamodel are generated into UML-B metamodel parts. A

TD model is initially generated inside a project (TDProject) with a string name

(Name) provided. A project is made up of one or more TD machines

(TDMachine). A TDMachine contains at least a TD class (TDClass). Each

machine and class is given a name. A class may or may not have parameters. If

there is a parameter (TDParameter), the parameter is defined by a string name

(param) and type (paramType). A class has zero or many Timelines

(TDTimeline). Each Timeline has at least one state (TDState), and zero or many

transitions (TDTimelineTransition).

Each TD state may have zero or many segments (TDSegment), in which

each segment is identified by its incoming (incoming) and outgoing (outgoing)

transitions. Each transition connects to a couple of segments: a source (source) and

a target (target) segment. A segment may or may not have a SimultaneityArrow

(Simul). If so, it connects two segments. At present, the TD metamodel allows

developers to generate a SimultaneityArrow within the same segment. However,

we must assume that to correctly generate a TD model, one has to know that a

SimultaneityArrow links different object segments.

A segment has zero or more constraints (TDConstraints) in which each

constraint has one node type (TDNodeType). Why do we need a class

TDConstraints instead of having a direct association between TDSegment and

TDNodeType? The reason is to maintain the TDConstraints class. Without this

class ATL cannot generate a UML-B model correctly. We may need to explore the

reason in future work; however, we think that it could be a problem with ATL itself

or the ordering of translation rules.

Chapter 6 Translating Timing Diagrams into UML-B 131

Figure 6-3 Timing diagram Metamodel

 There are three kinds of node type: Simple node (Simple), And node

(AND_node), and Or node (OR_node). And and Or nodes require at least two

Chapter 6 Translating Timing Diagrams into UML-B 132

node types; they can be And or Or nodes themselves or Simple node types. A

Simple node type is actually a segment and is used to identify a cause segment

(causesource) for a CauseEffectArrow. Each Simple node could have zero or

more conditions (TDPredicate), with each condition identified by a string. In

addition, a Simple node may have at most one timing constraint (TDTiming). A

timing constraint is declared by lower bound (lowerlimit) and upper bound

(upperlimit) whose values are integers.

Figure 6-4 An example TD vs. TDMetamodel

For example in Figure 6-4, a segment Off2 has a constraint defined by a node

type OR. This node type comprises two simple node types pointing to segments

MovingDepartingUp2 and MovingDepartingDown6. The simple node type

MovingDepartingUp2 has predicates and a timing constraint defined by f =

currentFl & dir = up, and [2, 5] respectively. In the same manner, the simple node

type MovingDepartingDown6 has predicates and a timing constraint defined by f =

currentFl & dir = down, and [2, 5] respectively.

Chapter 6 Translating Timing Diagrams into UML-B 133

6.4 Generating a TD input model

A TD model is generated from TD metamodel using Eclipse EMF. Figure 6-

5 shows parts of a screenshot of an Eclipse EMF editor view for a lift system.

Figure 6-5 Timing diagram instance generated by Eclipse EMF

The editor view is located at the top of the window while the Properties tab is

positioned at the bottom. The figure shows a TD machine named lift located inside a

LiftSystem project. Each class is declared inside the machine, together with any

existing Parameters, Timelines, States, Segments, Nodetypes, Timing constranints,

Predicates and Transitions. For example the highlighted segment in Figure 6-5

indicates a segment Off2. This segment belongs to a class Floorsensor. This class has

Chapter 6 Translating Timing Diagrams into UML-B 134

a parameter f, a Timeline named floorsensor, and comprises two states: On and Off.

Each state is defined by its segment, for example, a segment Off2 belongs to the

state Off. This segment has a constraint defined by an OR node with a combination

of two Simple NodeTypes represented by line 3.1 and 3.2 in Figure 6-1. Each Simple

NodeType has Timing and Predicates as shown in Figure 6-5. Incoming, Outgoing and

Simul are defined by the Properties tab as shown at the bottom of the figure. In

Figure 6-1, the segment Off2 has two SimultaneityArrows: XYZ[\]^_ ̀ and

XYZ[\]aYb\c as shown in the Properties tab. Since the TD Timeline transitions do

not have name, we do not declare a name for Timeline Transitions in the

metamodel. Thus, we have to carefully select the corresponding transitions. Giving

Timeline Transitions names is considered as future work.

6.5 ATL Translation rules

This section describes details of ATL translation rules used to transform a TD

into a UML-B diagram. Figure 6-6 shows an ATL header section named TDtoUMLB

which use a target and a source model conforming to umlbMetamodel and

TDMetamodel respectively. They are some helpers defined at the beginning of the

ATL module such as umlbproject and nat1Type (the details of ATL helpers are

described in section 2.9.3). These helpers will be used in the rule Project as

shown in Figure 6-10 to append the corresponding values to a target UML-B

model. For example, the helper umlbproject is used to add a project that is created

from a TD to a UML-B Project. The helper nat1Type is used to add a positive

number to a UML-B TypeExpression. The details of using umlbproject and

nat1Type helpers are explained in section 6.5.2 below while the other helpers are

detailed in Appendix C.

Chapter 6 Translating Timing Diagrams into UML-B 135

module TDtoUMLB;

create OUT : umlbMetamodel from IN : TDMetamodel;

helper def : umlbproject : umlbMetamodel!UMLBProject =

 umlbMetamodel!UMLBProject;

helper def : nat1Type : umlbMetamodel!UMLBTypeExpression =

 umlbMetamodel!UMLBTypeExpression;

Figure 6-6 Header section of TDtoUMLB.atl

Figure 6-7 illustrates parts of a UML-B metamodel in which the same colours

used in Figure 6-3 are used to emphasize corresponding TD to UML-B parts used

during the conversion.

�

Figure 6-7 UML-B Metamodel (parts of)

There are a number of UML-B parts which can be directly generated from

TD components, e.g. Project, Machine and Class. However, some of UML-B

components cannot be directly created. For example, generating a guard for a

Chapter 6 Translating Timing Diagrams into UML-B 136

UML-B event, many of TD metamodel classes are involved, such as

TDConstraints, TDNodeType, Simple, AND_node, OR_node, TDPredicate and

TDTiming. The detail of creating a UML-B model is described next.

6.5.1 Top-Level ATL translation rules

This section explains the structure of the top-level ATL rules and the

corresponding UML-B model components created. As shown in Figure 6-8, an

UML-B project’s name is created from the rule Project, while a machine is

generated from the rule Machine. The rule Machine is also used for creating a

machine event Ticktok and a machine variable gclock, which are used to generate

time progress, and the global clock for the machine respectively. Extra machine

variables are added such as reqFl to keep the list of requested floors (this is the

same variable created by hand in Chapter 5). A SEES association and a context’s

name are created from the Machine rule. However, the context detail has to be

declared manually. This is because ATL has a limitation and cannot re-use

elements to generate other new elements across rules. ATL does not have the

flexibility to generate an element that has to be created from the combination of

used target elements. Thus, we cannot use TD class names to generate carrier sets

in a Context, since they are already used to create classes by the rule Class (as

described in section 6.5.4 below).

UML-B class names and attributes are created from the rule Class. Some

attributes need to be redefined since part of an attribute’s name is generated from

its corresponding state’s name. Statemachines belonging to corresponding classes

are generated by the rule Statemachine.

Chapter 6 Translating Timing Diagrams into UML-B 137

Figure 6-8 Top-level ATL rules

Our translation rules do not cover defining UML-B Machine Statemachines.

This is because a TD Timeline, which can be seen as a UML-B Class Statemachine

must belong to a class. According to our TD metamodel, one cannot generate a

Timeline without a class. Invariants have to be manually created since they can

not be declared by TD.

6.5.2 Creating UML-B Project

An UML-B project is generated by mapping a class TDProject to a class

UMLBProject (Figure 6-9) by the rule Project (Figure 6-10) as detailed in line (2)

and (3) where a variable u is used to represent a target model element, Project.

From Figure 6-10, the rule Project maps the source model element

TDMetamodel!TDProject represented by a variable t in line (2), to a target model

element umlbMetamodel!UMLBProject represented by a variable u in line (3).

UML-B project’s name is created from a TD project’s name as shown in line (4).

Chapter 6 Translating Timing Diagrams into UML-B 138

Figure 6-9 TDMetamodel and umlbMetamodel : Project and Machine

As shown in Figure 6-9 right, UMLBProject comprises UMLBconstruct

which is sub typed into UMLBMachine and UMLBContext. Thus, line (5) maps an

association construct of TDMetamodel to an association constructs of

umlbMetamodel. This association maps UMLBMachine and UMLBContext (which

are both created later by the rule Machine, Figure 6-12) into UMLBProject

automatically.

rule Project { .. (1)

 from t : TDMetamodel!TDProject ... (2)

 to u : umlbMetamodel!UMLBProject ... (3)

 (name <- t.name, ... (4)

 constructs <- t.construct), ... (5)

 pt1 : umlbMetamodel!UMLBTypeExpression (6)

 (name <- 'BOOL'), ... (7)

 pt2 : umlbMetamodel!UMLBTypeExpression (8)

 (name <- 'NAT'), ... (9)

 pt3 : umlbMetamodel!UMLBTypeExpression (10)

 (name <- 'NAT1'), ... (11)

 pt4 : umlbMetamodel!UMLBTypeExpression (12)

 (name <- 'INT') ... (13)

do { thisModule.umlbproject <- u; ... (14)

Chapter 6 Translating Timing Diagrams into UML-B 139

 thisModule.boolType <- pt1; ... (15)

 thisModule.natType <- pt2; ... (16)

 thisModule.nat1Type <- pt3; ... (17)

 thisModule.intType <- pt4; ... (18)

 u.typeExpressions <- u.typeExpressions.append(pt1); (19)

 u.typeExpressions <- u.typeExpressions.append(pt2); (20)

 u.typeExpressions <- u.typeExpressions.append(pt3); (21)

 u.typeExpressions <- u.typeExpressions.append(pt4);} ... (22)

}

Figure 6-10 ATL rules for creating UML-B Project

The texts, such as BOOL and NAT1, inside the ' ' symbol as shown above are

additional information. We use them to create variable types such as Boolean

(BOOL), positive integer (NAT1), etc., for use in the model. If we do not create those

types in advance, the user must define them manually later. Moreover, since our

model defines a timing constraint as an integer, generating a type INT also supports

this. This way one can introduce strings or variable types directly to the UML-B

model.

Lines (6)-(13) show assigning BOOL, NAT, NAT1 and INT to each target model

element UMLBTypeExpression which is represented by variables pt1, pt2, pt3

and pt4 respectively. Those variables are assigned to a corresponding helper in

lines (15)-(18), in a do part in which a command <thisModule.helperName>

is used for inferring a helper. Note that using to and do is described in section

2.9.2. Lines (19)-(22) are used to append those variables to the project.

6.5.3 Creating a UML-B Context’s name and Machine

A UML-B context’s name and machine are created by the rule Machine as

shown in Figure 6-12. This rule uses the source model element

TDMetamodel!TDMachine as shown in line (2). As shown in lines (4)-(5), a

context’s name, represented by the variable ctx, is created by the TD machine

name followed by the string _ctx. The texts such as _ctx, Ticktok and gclock :=

Chapter 6 Translating Timing Diagrams into UML-B 140

gclock + 1, as shown in Figure 6-12, are additional information which we use to

directly generate UML-B parts that cannot be obtained by the TD. In this case, they

are used to introduce a string, an event name, and an event action. Line (7) is the

generation of the UML-B machine name by the TD machine name. Line (8), an

association class in TDMetamodel is mapped to an association classes in

umlbMetamodel; this is for adding classes (that are created later in rule Class) to

the machine.

�
������
����������
����

Figure 6-11 TDMetamodel and umlbMetamodel : Machine and Class

rule Machine { ... (1)

 from t : TDMetamodel!TDMachine .. (2)

 to .. (3)

 ctx : umlbMetamodel!UMLBContext ... (4)

 (name <- t.name + '_ctx'), .. (5)

 m : umlbMetamodel!UMLBMachine ... (6)

 (name <- t.name, .. (7)

 classes <- t.class), .. (8)

 e : umlbMetamodel!UMLBEvent ... (9)

 (name <- 'Ticktok'), .. (10)

 a : umlbMetamodel!UMLBAction ... (11)

 (name <- 'Action1', .. (12)

 action <- 'gclock := gclock + 1'), (13)

 gclk : umlbMetamodel!UMLBVariable (14)

 (name <- 'gclock', ... (15)

 typeProvider <- thisModule.intType, (16)

Chapter 6 Translating Timing Diagrams into UML-B 141

 initialValue <- '0') ... (17)

do { .. (18)

 m.events <- m.events.append(e); .. (19)

 e.actions <- e.actions.append(a); (20)

 m.variables <- m.variables.append(gclk); (21)

 thisModule.umlbmachine <- m; ... (22)

 m.contexts <- m.contexts.append(ctx); (23)

 thisModule.umlbproject.constructs <- (24)

 thisModule.umlbproject.constructs.append(ctx);

 thisModule.umlbproject.constructs <- (25)

 thisModule.umlbproject.constructs.append(m); }

}

Figure 6-12 ATL rules for creating UML-B Machine

An event Ticktok, represented by the variable e of the target model element

umlbMetamodel!UMLBEvent, is created in lines (9)-(10). A Ticktok action is

assigned to gclock := gclock + 1 as shown in lines (11)-(13) while the machine

variable gclock whose type is assigned to an integer with an initial value of 0, is

generated as shown in lines (14)-(17). The variables ctx, m, e, a and gclk are

assigned to corresponding UML-B components by the do section.

In the do section, line (19) is used to add the event Ticktok to

UMLBMachine, line (20) appends the action to the event Ticktok. Line (21)

assigns the variable gclk as a machine variable, and then the machine is added to

UMLBMachine by calling the helper thisModule.umlbmachine, shown in line

(22). Line (23) links the context to the machine by adding this context to an

association, contexts. Line (24) appends this context to a project by calling the

helper thisModule.umlbproject.constructs. The helper

thisModule.umlbproject is defined earlier (Figure 6-6) and constructs is an

association name as illustrated in Figure 6-9. Line (25) appending the machine to

the project. The rule Machine generates a package diagram and the event Ticktok

in the machine part as illustrated below.

Chapter 6 Translating Timing Diagrams into UML-B 142

Figure 6-13 Package Diagrams and Event Ticktok in a Machine part

6.5.4 Creating UML-B Class and local attributes

Figure 6-14 shows part of the corresponding TD, TDMetamodel and

umlbMetamodel used for generating UML-B classes and attributes. UML-B

classes and attributes are created by the rule Class as shown in Figure 6-15. A

class name is generated by a TDClass name followed with a string Self as shown

in lines (4)-(5). The Self is used to identify a unique non-deterministic variable

name for the class. For example, FloorsensorSelf is a non-deterministic variable

used in the class Floorsensor. Line (6) shows the mapping of the TD timeline

association to the UMLB statemachines association. This is how we link

Statemachines to a class.

Chapter 6 Translating Timing Diagrams into UML-B 143

Figure 6-14 TDMetamodel and umlbMetamodel : Class and Attribute

A class attribute is generated by mapping the TDClass to the

UMLBAttribute, where the result is kept in variable att, as shown in line (7). An

attribute name is generated by the TDClass name which is changed to lower case

letters by the function toLower(), followed by the string xStatexTime, line (8).

We use a string xStatexTime to represent features that need to be completed by

hand. In this case, it is a part of a class attribute name. Every class attribute name is

generated from every corresponding state name of a class. For example, the class

Floorsensor must have attributes floorsensorOffTime and floorsensorOnTime. We

Chapter 6 Translating Timing Diagrams into UML-B 144

cannot generate whole attributes because this rule is working with UMLBClass,

line (2), not a UMLBState. The UMLBState is used for generating a Statemachine

in the rule StateMachine as shown in Figure 6-17 below. As ATL cannot reuse the

same elements to generate other components across the rules, we cannot generate

whole attributes for this class.

rule Class { .. (1)

 from t : TDMetamodel!TDClass ... (2)

 to u : umlbMetamodel!UMLBClass .. (3)

 (name <- t.name, .. (4)

 selfName <- t.name + 'Self', (5)

 statemachines <- t.timeline), (6)

 att : umlbMetamodel!UMLBAttribute .. (7)

 (name <- t.name.toLower()+ 'xStatexTime', (8)

 typeProvider <- thisModule.intType, (9)

 initialValue <- '0') .. (10)

do { u.attributes <- u.attributes.append(att); } (11)

}

Figure 6-15 ATL rules for creating UML-B Class�

Lines (9)-(10) show how to assign an attribute type and initial value which

are integer and 0 respectively. The attribute is appended to UMLBClass as shown

in line (11). Those attributes are used to record the current time whenever

corresponding events belonging to the class are activated. Figure 6-16 shows how

classes and their attributes are generated from the rule Class.

Chapter 6 Translating Timing Diagrams into UML-B 145

Figure 6-16 Lift system Class diagrams

Even though a TD has symbols “:” and “ ⊆ ” to indicate whether an object

appears singly or multiple in a class, those symbols are not defined in a TD

metamodel nor in a UML-B metamodel. That is because in UML-B, defining a

class with many objects inside can be done by using a Machine Class; defining an

object is done by a Machine Statemachine. This is not identified within a TD

metamodel but depends on the user’s choice. ATL translation rules create classes.

Thus, if an object occurs singly in a system, such as in our lift system case study,

the UML-B output model has to be modified as described in section 6.6.3 below.

6.5.5 Creating UML-B Statemachines

This section shows the StateMachine rule which is used to generate a UML-

B Statemachine as shown in Figure 6-17. An example of a Statemachine that is

generated by this rule is shown in Figure 6-18, and the corresponding parts of TD,

TDMetamodel and umlbMetamodel are shown in Figure 6-21. In Figure 6-17, a

TDTimeline is transformed into a UMLBStatemachine in which a Statemachine

name is generated by TDTimeline name followed by the string _state. This rule

also generates mappings of TD associations states and timelinetransitions to

UML-B associations, states, and transitions respectively. This mapping is

used to generate UML-B Statemachine states and transitions as shown later in the

rules State and Transition respectively.

Chapter 6 Translating Timing Diagrams into UML-B 146

 rule StateMachine {

 from t : TDMetamodel!TDTimeline

 to u : umlbMetamodel!UMLBStatemachine (

 name <- t.name + '_state',

 states <- t.states,

 transitions <- t.timelinetransitions)

 }

Figure 6-17 ATL rule for creating a UML-B Statemachine

For example, the result from this rule generates a Statemachine named

floorsensor_state for the class Floorsensor as shown in the following:

Figure 6-18 An example of a Statemachine generated from the rule Statemachine

6.5.6 ATL translation rules for creating UML-B Statemachine states, transitions

and actions

Statemachine states and transitions are generated by the rules State and

Transition as shown in Figure 6-19. Each transition is identified by a name which

represents an Event-B name. A transition may have parameters, guards, and

actions, which are created by rules Parameter, Constraint, and Transition

respectively. Additional information may need to be identified to complete the

model.

Chapter 6 Translating Timing Diagrams into UML-B 147

Figure 6-19 ATL rules for creating UML-B Statemachine State, Transition,

Parameters and Actions

6.5.7 Creating UML-B Statemachine states

Figure 6-21 shows corresponding parts of TD, TDMetamodel and

umlbMetamodel used to generate UML-B states and transitions.

Statemachine states are generated by the rule State. Each state has a name

that is generated from TDState name as shown in Figure 6-20 line (4).

rule State { ... (1)

 from t : TDMetamodel!TDState ... (2)

 to u : umlbMetamodel!UMLBState ... (3)

 (name <- t.name, .. (4)

 incoming <- t.segments -> collect(c|c.incoming), (5)

 outgoing <- t.segments -> collect(c|c.outgoing)) (6)

}

Figure 6-20 ATL rule for creating UML-B State

Since UML-B does not have segments, TD incoming and outgoing

associations cannot be directly mapped. Those associations are collected by a

keyword collect and then assigned to segments. Next, those segments are

Chapter 6 Translating Timing Diagrams into UML-B 148

assigned to the corresponding UMLBState incoming and outgoing associations

as shown in lines (5)-(6).

Figure 6-21 TDMetamodel and umlbMetamodel : Statemachine, State, Transition,

Action, Guard and Parameter

6.5.8 Creating UML-B Statemachine transitions and actions

UMLBTransition can be generated from TDTimelineTransition by the rule

Transition as shown in Figure 6-22. This rule is composed of two parts. The first

part from lines (3)-(8), is for generating transitions, and the second part, in lines

(9)-(15), is for creating actions.

Chapter 6 Translating Timing Diagrams into UML-B 149

rule Transition { ... (1)

from t : TDMetamodel!TDTimelineTransition (2)

to u : umlbMetamodel!UMLBTransition ... (3)

 (name <- t.target.getTransitionName(), (4)

 target <- t.target.eContainer(), .. (5)

 source <- t.source.eContainer(), .. (6)

 guards <- t.target.constraints, .. (7)

 variables <- t.eContainer().eContainer().parameter), (8)

actgclock : umlbMetamodel!UMLBAction ... (9)

 (name <- t.eContainer().name + '.gClockAction', (10)

 action <- t.target.eContainer().eContainer().name (11)

 + t.target.eContainer().name ... (12)

 + 'Time(' ... (13)

 + t.target.eContainer().eContainer().eContainer().name . (14)

 +'Self) := gclock') ... (15)

do {u.actions <- u.actions.append(actgclock); } (16)

}

Figure 6-22 ATL rule for creating UML-B Transition

First part, creating transitions: A transition has a name which represents an

event’s name and is created by the helper getTransitionName as shown in line

(4). Lines (5)-(6) is maps TD associations target and source to UML-B

associations target and source. Keyword eContainer() is used to refer to an

upper class level in an aggregation association. For example, from TDMetamodel

in Figure 6-21 and line (5) in Figure 6-22, the command target <-

t.target.eContainer() means traversal from the class TDTimelineTransition,

which is represented by t of the target association, to a class TDSegment. The

eContainer() of the class TDSegment is the class TDState. Line (7) maps the

TD association t.target.constraints to an UML-B association guards. This is

for creating a UML-B transition guard. Line (8) shows an association creating

transition parameters.

Chapter 6 Translating Timing Diagrams into UML-B 150

Second part, creating actions: Lines (9)-(15) generate an action for each

transition. An action label, .gClockAction, is created in line (10), while the body

of an action is created in lines (11)-(15). Line (16) appends the guard created

earlier from, lines (9)-(15), to UMLBTransition. For example, in the following

figure, floorsensor.gClockAction is a label while

floorsensorOnTime(FloorsensorSelf) := gclock is a guard. This guard is

used to record the current time whenever the corresponding event is activated.

Figure 6-23 A floorsensorOff transition action

6.5.9 Creating an Event name

An event name is generated using the helper getTransitionName(), as

illustrated in Figure 6-24.

helper context TDMetamodel!TDSegment ... (1)

def : getTransitionName() : String = ... (2)

let simuls : Set(TDMetamodel!TDSegment) = (3)

 TDMetamodel!TDSegment.allInstances()-> .. (4)

 select(c|c.simul ->includes(self)) ... (5)

 in ... (6)

 if simuls -> isEmpty() then ... (7)

 self.eContainer().eContainer().name (8)

 + self.eContainer().name ... (9)

 else ... (10)

 simuls.last().getTransitionName() ... (11)

 endif; ... (12)

Figure 6-24 ATL rule for creating an event name

Chapter 6 Translating Timing Diagrams into UML-B 151

The helper returns a string value which is a transition name and uses the

keyword self, as shown in line (5), which represents an instance segment

belonging to a TDMetamodel!TDSegment. At line (3), simuls is a variable defined

for use only in this helper. This variable is initiated as a set of segments by the

keyword Set. In line (4)-(5), the members of the simuls set are selected from

SimultaneityArrows (simul) that is related to the segment indicated by the

command includes(self). For example in Figure 6-25, consider the segment

MovingUp3, which is the self in this case. This segment has one simul a that is

pointed from segment Off2. Thus, the simuls set for the segment MovingUp3 is

simuls = {Off2}. The segment Off2 has no SimultaneityArrow. Thus, a set

simuls for the segment Off2 is defined as simuls = {}.

Figure 6-25 Timing diagram: floorsensor and Lift with SimultaneityArrows�

Line (7) checks whether simuls is empty by keyword isEmpty(), if so an

event name is generated from a Timeline name, in line (8), followed by a state

name, in line (9). For example the segment Off2, which is a target segment of a

transition t1, has simuls = {}. Thus, a transition name is generated from a

Timeline name, floorsensor, followed with a state name, Off; a transition name for

t1 is floorsensorOff�+���9	*
��
�Figure 6-26��	�. If simuls is not empty, it returns

the last elements in simuls to the helper getTransitionName() as shown in line

Chapter 6 Translating Timing Diagrams into UML-B 152

(11). For example in Figure 6-25, the segment MovingUp3, which is a target

segment of a transition t2, has simuls = {Off2}, �9����5,�
������������
���	��9��

9����
� getTransitionName(). The segment Off2 itself has no

SimultaneityArrow�� We then follow the �+,�� �
	(���� *hen� 5�
�
+��
5� +�

�
+
����	
�
+,��for�� ����
+��:!��9���
+
����	
�
+,���	
��3����floorsensorOff�*9�(9���

+
+,�� for� �9�� �
+
����	
� ��
;� <��*��
� �9�� ��+��� MovingDepartingUp� +
#�

MovingUp� +�� �9	*
� �
� Figure 6-26� <��	*�� �9�� �
+
����	
�
+,�� �	
� ��� ��� +��	�

floorsensorOff�*9�(9� ���5�
�
+��#� following� �9�� �+,���
	(����	�� �9�� �
+
����	
� �3

<: SimultaneityArrow <. T9�� �
+
����	
 ��
;� ��+��s�MovingDepartingDown�+
#�

MovingDown.

Figure 6-26 The floorsensorOff transitions are generated from SimultaneityArrows

Up to this point, the ATL translation rules generate Class, Statemachine

inside that class, Statemachine states and transitions, and actions for the

corresponding transitions, as shown by an example of class Floorsensor in Figure

6-27.

Chapter 6 Translating Timing Diagrams into UML-B 153

Figure 6-27 UML-B floorsensor Class diagram and its Statemachine�

6.5.10 Creating UML-B transition’s guards

The rule Constraint is used to generate guards of a transition. This rule uses

the helper GetNodePredicate() which is made up of three sub-helpers: a helper

for creating timing constraints (SimpleGuard), conditions (SimpleCond), and cause

segments (SimpleCause), as shown below:

The details of the rule Constraint are shown in Figure 6-28. This rule

creates a guard labelled TimingCnstrntGuard while the guard itself is generated

by the helper getNodePredicate().

rule Constraint{

 from t : TDMetamodel!TDConstraints

 to u : umlbMetamodel!UMLBPredicate (

 name <- 'TimingCnstrntGuard',

 predicate <- t.effectsource.getNodePredicate()) }

Figure 6-28 ATL main rule for creating UML-B Guards

Chapter 6 Translating Timing Diagrams into UML-B 154

Figure 6-29 TDMetamodel and umlbMetamodel:

TDConstraints and UMLBPredicate

Checking Node types

Figure 6-29 shows the parts of TDMetamodel and umlbMetamodel used to

generate the detail of a UML-B transition guard. The helper getNodePredicate(),

as shown in Figure 6-30, is used for checking whether a node type is Simple,

OR_node or AND_node as shown in lines (3), (13) and (20) respectively. If a node

type is Simple, it further checks whether that Simple node type has timing

constraints by an ATL function oclIsUndefined(), as shown in line (5). This

function returns a Boolean value true if there is no timing. If timing is defined, a

guard is generated by concatenating the output from the three helpers, i.e.

SimpleCause(), SimpleGuard(), and SimpleCond(), as shown in lines (6)-(8).

Otherwise, a guard is generated without timing constraints as shown in lines (10)-

(11).

helper context TDMetamodel!TDNodeType ... (1)

def : getNodePredicate() : String = ... (2)

 if self.oclIsKindOf(TDMetamodel!Simple) (3)

 then ... (4)

Chapter 6 Translating Timing Diagrams into UML-B 155

 if not self.timing.oclIsUndefined() (5)

 then self.SimpleCause() ... (6)

 -> concat(' & '+ self.SimpleGuard()) (7)

 -> concat(self.SimpleCond()) .. (8)

 else .. (9)

 self.SimpleCause() .. (10)

 -> concat(self.SimpleCond()) .. (11)

 endif .. (12)

 else if self.oclIsKindOf(TDMetamodel!OR_node) (13)

 then self.Or -> iterate(e; ret : String = '('| (14)

 if e=self.Or.last() .. (15)

 then ret -> concat(e.getNodePredicate()+')') (16)

 else ... (17)

 ret -> concat(e.getNodePredicate()+') or (') (18)

 endif) ... (19)

 else if self.oclIsKindOf(TDMetamodel!AND_node) (20)

 then self.And -> iterate(e; ret : String ='('| (21)

 if e=self.And.last() ... (22)

 then ret -> concat(e.getNodePredicate()+')') . (23)

 else .. (24)

 ret -> concat(e.getNodePredicate()+ ') & (') (25)

 endif) .. (26)

 else 'unrecognised nodeType' ... (27)

 endif

 endif

 endif;

Figure 6-30 A helper for checking node types and event’s guards

If a node type is OR_node, line (13), the sub-node type of the OR_node is

collected by an expression self.Or, line (14). This collection is iterated by means

of an iterate operation in which e represents an iterator, ret is a return value

with an initial value equal to the string ‘(’. Each element in the collection is

Chapter 6 Translating Timing Diagrams into UML-B 156

checked whether it is the last node, as shown in line (15). If so, this node type is

used in recursive call for the rule getNodePredicate(). The result generated from

the rule is added with a symbol ‘)’ at the end, line (16). Otherwise, this node type

is used in recursive call for the rule getNodePredicate() and ending with a string

‘) or (’ as shown in line (18). This is the way to generate guards with nested OR

node types. A guard for AND node types also uses the same process as shown in

lines (20)-(26). Note that whenever the string & and or are generated in a UML-B

model, they are automatically changed to the � and ∨ symbol.

Creating a guard from a Cause segment

The helper SimpleCause() is used to generate a guard from a cause segment,

as illustrated in Figure 6-31. This helper works with the source model element

TDMetamodel!TDNodeType. Thus, self in this case represents a node type. A

guard is generated from a Timeline name of a cause segment, line (3), then

concatenated with the string _state(xAssociationx) =, in line (4), followed by

the state name in line (5).

helper context TDMetamodel!TDNodeType ... (1)

def : SimpleCause() : String = ... (2)

 self.causesource.eContainer().eContainer().name (3)

 + '_state(xAssociationx) = ' ... (4)

 + self.causesource.eContainer().name; (5)

Figure 6-31 A helper for creating a UML-B guard from a cause segment

The string xAssociationx is a mark for additional information added by

hand. The reason is to have a complete UML-B model, one may have to declare

associations among class or/and other classes’ attributes, since TD notations do not

support identifying that kind of information. Thus, the string xAssociationx is

represented for the user to replace with the proper information later. Section 6.6.5

explains through examples the replacement of xAssociationx. Figure 6-32 shows

Chapter 6 Translating Timing Diagrams into UML-B 157

an example of a guard for the transition floorsensorOff. This example focuses on

the part of guard generated by the helper SimpleCause(), while the parameter f

with type FLOOR is generated by the rule Parameter, as shown in Appendix C.

The whole guards for this transition are illustrated in the next section.

Figure 6-32 Guards generated from a cause segment for the floorsensorOff event

Creating a guard from Timing constraints

The helper SimpleGuard() is used for creating a UML-B guard from a

timing constraint. The details of this helper are illustrated in Figure 6-33. This

helper works with a source model element TDMetamodel!TDNodeType. Thus, self

here represents a node type. The helper generates a guard by concatenating the

string (gclock - xAssociationx, with other corresponding TD elements such as

timing constraints.

 helper context TDMetamodel!TDNodeType

 def : SimpleGuard() : String =

 '(gclock - xAssociationx.'

 + self.causesource.eContainer().eContainer().name

 + self.causesource.eContainer().name

 + 'Time >= '

 + self.timing.lowerlimit.toString() + ') '

 + ' & (gclock - xAssociationx.'

 + self.causesource.eContainer().eContainer().name

 + self.causesource.eContainer().name

 + 'Time <= '

 + self.timing.upperlimit.toString() + ')';

Figure 6-33 The helper for creating a UML-B guard from a timing constraint

Chapter 6 Translating Timing Diagrams into UML-B 158

An illustration of how to generate a guard with the helper SimpleCond() is

not show here, but its detailed explanation can be found in Appendix C. This helper

simply takes predicates, if there are any defined within TDPredicate, see Figure 6-

29, and concatenates with those guards generated by the helpers SimpleCause()

and SimpleGuard(). An example of a guard for the transition floorsensorOff is

shown below:

Figure 6-34 Timing constraint guard for floorsensorOff event

The UML-B tool does not allow adding a carriage return in the property view

for a display arrangement. Thus, since the length of this guard is too long to be

captured in one screen, we copy the whole guard from Figure 6-34 and represent it

as the following:

Chapter 6 Translating Timing Diagrams into UML-B 159

6.6 UML-B Model alteration

As mentioned above, TD is not designed to add state-based information nor

gather whole system information. Thus, there are some UML-B model features that

cannot be created by TD itself. In addition, ATL has a limitation and cannot

generate multiple outputs from an input element if that element is used across the

rules, as explained in section 6.5.4. This section identifies what features need to be

added to an UML-B output model.

6.6.1 Adding UML-B Context diagram body

We can generate a UML-B context diagram name as shown in section 6.5.3.

However, there are no details inside the context diagram such as ClassTypes,

Constants, and Axioms. Thus, this part is generated by hand.

Figure 6-35 Context Diagram for the Lift system

In case of the lift system, ClassTypes, e.g. '(��), '(��)
�*
�), ���), �+),

etc., as shown in Figure 6-35, are generated as sets in Event-B unless it is assigned

a constant value. For example, the ClassType '(��) is defined as a set of integers

,�-#-./, representing a number of floors starting from 1. Thus, the ClassType

'(��) is generated as a constant, while its value is defined as AXIOMS in Event-B

Chapter 6 Translating Timing Diagrams into UML-B 160

as shown in Figure 6-36. �+) has its instances property set to Up and Down to

identify the direction of the lift. �+) is created as a set while its instance properties

are generated as CONSTANTS for an Event-B model, also shown in Figure 6-36.

Figure 6-36 Event-B Context part is generated from UML-B diagram for the Lift system

6.6.2 Modifying UML-B Classes

Modifying class attributes and defining classes to their corresponding sets

As described before, the string xStatex is used to illustrate missing

information that cannot be created by TD itself, or from the limitations of ATL. For

example, the class '�������� in Figure 6-37 left has an attribute defined by

���������0
����0�����1�+*�.

Chapter 6 Translating Timing Diagrams into UML-B 161

Figure 6-37 UML-B Class diagram for Floorlamp before and after modification

For it to be correct, attributes for this class are generated from every state

corresponding to the class. The class '�������� has two states: 	
����and (��.

Thus, attributes for the class '��������� are ���������(������� 1� +*� and

���������	
��������1�+*��as shown in Figure 6-37 right.

To identify classes representing subsets of the corresponding ClassTypes that

are introduced in the CONTEXT, an assignment <Class = ClassType> is used.

For example, '���������!�'(��)(��2 (as shown in Figure 6-37 right) allows a

'�������� class instance to get its values from ClassType '(��)(��2.

Adding associations between classes and machine invariants

Associations between classes are information that is not declared by a TD.

Which associations are added depend on each system specification. For example, in

the lift case study, there are some associations added such as 3�����������and�

�����4�
4��������� to declare a door and a floorsensor at a floor respectively, as

shown in Figure 6-38 (other associations are shown in Appendix D). Those

associations are created as variables with their invariants, as shown by an example

for �����4�
4����������below:

��������415������4�
4���������

+
�����
�415������4�
4������������'�����6�'����4�
4���

Chapter 6 Translating Timing Diagrams into UML-B 162

�

Figure 6-38 Association between classes

Figure 6-38 also shows how to declare invariants. Invariants can be defined

manually inside a corresponding class as shown in the class ����, or defined as

Machine Invariants. The invariant inside the class ���� is used to indicate

whenever the lift is not stationary at a floor, the lift door must be closed. The

Machine Invariant indicates that uplamp and downlamp must not be activated at the

same time. The rest of the invariants can be found in Appendix D.

6.6.3 Modifying to create a lift in a system

Since ATL translation rules generated a class (���, to create a lift in a

system, the class (���� is changed to a Statemachine �����4���� as shown in

Figure 6-39.

The class (���’s attributes, such as ��������
7������
7	����� and

����
��������������, must then change to machine variables. Other related

variables like �8���
�'� and 3��� are used to represent a current position and

directions of the lift are added by hand. There are extra events: 9��
7����	� and

9��
7������:
 are manually created for controlling the change in direction of the

lift.

Chapter 6 Translating Timing Diagrams into UML-B 163

Figure 6-39 A class lift is changed to a Statemachine lift_state

6.6.4 Modifying UML-B Statemachine

Modifying Statemachine initial state

Our rule can generate the Statemachine for each class. However, one needs to

identify an initial state for that Statemachine. For example, Figure 6-41 shows the

door�4���� Statemachine before and after adding an initial state. This initial state

generates an Event-B INITIALISATION as shown in Figure 6-40.

Figure 6-40 Parts of an Event-B model: generate door initialisation

Chapter 6 Translating Timing Diagrams into UML-B 164

Figure 6-41 UML-B Statemachine for Door before and after modification

Modifying Statemachine Transitions

Each UML-B Statemachine transition generates an Event-B event with the

corresponding transition name. Therefore, each transition name should to be

unique, as well as its action should do a specific task and not be in conflict. Two

problems occur with the UML-B Statemachine generated from ATL and U2B from

the example shown in Figure 6-42. Its corresponding Machine Statemachine

�����4���� and Statemachine (���� are� shown in Figure 6-39 and Figure 6-43

respectively.

Chapter 6 Translating Timing Diagrams into UML-B 165

Figure 6-42 TD for the Lift and Floorsensor

Figure 6-43 Statemachine for the Lift generated from ATL

The first problem concerns the condition that the lift can StopAtFloor�

whenever it is in a previous state of MovingArrivingUp�or MovingArrivingDown,

as shown in Figure 6-42. The Statemachine corresponding to the (��� is shown in

Figure 6-43 in which there are two state transitions assigned with the same name

(���
�����'����. The U2B translator converts a UML-B model to an Event-B

model as shown in Figure 6-44.

 . . .

Figure 6-44 An Event-B liftStopAtFloor event generated from

UML-B liftStopAtFloor transition

Chapter 6 Translating Timing Diagrams into UML-B 166

Consider the two highlighted guards; these guards are previous states before

the lift stops at the floor, and are automatically generated by U2B, not by ATL

rules. These guards made the event ����
���������� incorrect since the two

guards are in conflict. That is, the lift cannot be in a state of MovingArrivingUp and

MovingArrivingDown at the same time. This problem can be fixed by combining

these two guards with a conjunction ∨ (or) by hand. This combination may be

generated automatically if and only if the U2B translator is re-designed to do this.

However, we selected to solve this problem another way. In the solution, those

transitions ����
���������� are assigned to different names as shown in Figure

6-45, in order to have them generated separately in Event-B as shown in Figure 6-

46. This way, events are simpler and easier for proving than combining guards

together within an event.

Figure 6-45 UML-B transitions liftStopAtFloorUp and liftStopAtFloorDown

after modification

Chapter 6 Translating Timing Diagrams into UML-B 167

. . .

. . .

Figure 6-46 Event-B events: liftStopAtFloorUp�and liftStopAtFloorDown

The second problem happens because SimultaneityArrows. Figure 6-42

shows that there are two SimultaneityArrows from the segment Off2 to segments

MovingUp3 and MovingDown7. This causes UML-B to generate two state

transitions with the same name �����4�
4�����, as shown in Figure 6-43 (by the

helper getTransitionName() as shown in Figure 6-24). The problem is U2B

generates those two UML-B transitions to the same Event-B event,

�����4�
4�����-�as shown in Figure 6-47. This event is incorrect since guards

and actions themselves (highlighted) are in conflict. The lift cannot be in states of

MovingDepartingUp and MovingDepartingDown at the same time, nor can it be in

the states of MovingUp and MovingDown after performing the event. However,

changing transition names alone raises another problem. This is because not only is

the �����4�
4����� transition generated in the Lift Statemachine, but also in the

Floorsensor Statemachine, as shown in Figure 6-43 and Figure 6-48.

Chapter 6 Translating Timing Diagrams into UML-B 168

 . . .

 . . .

Figure 6-47 An Event-B floorsensorOff

Following this example, if we rename the transition �����4�
4������in the

Lift Statemachine, we have to rename it with the same name in the Floorsensor

Statemachine. Unfortunately, UML-B does not allow renaming elements already

existing with that name, even though they are generated with the same transition

name from the beginning.

Figure 6-48 A Statemachine for floorsensor

Thus, the solution to this problem is renaming �����4�
4������transitions in

the Lift Statemachine to ��������
7	� and ��������
7��:
�� and splitting the

�����4�
4������ transition in the Floorsensor Statemachine to

�����4�
4�����	� and �����4�
4�������:
�as shown in Figure 6-49.

Chapter 6 Translating Timing Diagrams into UML-B 169

Figure 6-49 A Statemachine for lift and floorsensor

Guards and actions for events �����4�
4�������:
 and �����4�
4�����	�

are split from the former �����4�
4����� transition.

6.6.5 Modifying UML-B event guards

As mentioned in section 6.5.10, a transition guard is generated with the

marking xAssociationx, which needs to be deleted or replaced. To explain how to

delete xAssociationx, consider the timing constraint guard for the transition

floorsensorOffUp (the corresponding Statemachine is shown in Figure 6-49) with

xAssociationx as illustrated below:

(gclock − xAssociationx.liftMovingDepartingUpTime � 2) d
(gclock − xAssociationx.liftMovingDepartingUpTime 	 5)

Since the Statemahine (��� has no association to other classes, this guard is

altered by deleting marking xAssociationx. Thus, the correct version of this

transition’s guard is shown below.

Chapter 6 Translating Timing Diagrams into UML-B 170

(gclock − liftMovingDepartingUpTime � 2) d
(gclock − liftMovingDepartingUpTime 	 5)

In some cases, the marking has to be replaced by corresponding associations

and attributes. Those associations and attributes are created earlier by hand in

CONTEXT and/or class diagram. For example, Figure 6-50 top illustrates an

association �����4�
4��������� between classes '���� and '����4�
4��, where

a Statemachine�����������4���� is shown at the bottom of the figure.

Figure 6-50 An association between classes Floorlamp, Floor and Floorsensor

The transition ���������	
���� in Figure 6-50 has part of the guard

generated by the ATL translation rules as shown below:

(gclock − xAssociationx.floorsensorOffTime � 2) e
(gclock − xAssociationx.floorsensorOffTime 	 4)

The marking in this guard is replaced by an association

�����4�
4����������and a variable �8���
�'�, from Figure 6-39, as illustrated

below:

(gclock – (floorsensorAtfloor(currentFl)).floorsensorOffTime � 2)

e
(gclock – (floorsensorAtfloor(currentFl)).floorsensorOffTime 	 4)

Chapter 6 Translating Timing Diagrams into UML-B 171

The symbol “.” represents referring to an attribute for the corresponding

class. This symbol is changed to “()” automatically by the U2B translator

whenever it is found in an expression. For the example above, it is changed to

(gclock – floorsensorOffTime((floorsensorAtfloor(currentFl))) � 2)

e
(gclock – floorsensorAtfloor((floorsensorAtfloor(currentFl))) 	 4)

This is the way one can correct the marking xAssociationx. Other

xAssociationx are replaced with a similar technique. Figure 6-51 shows the full

detail of the event ���������	
��� in Event-B.

Figure 6-51 An event ���������	
��� is generated in Event-B

6.6.6 Timing Constraints

As described earlier, the event Ticktok is generated by the rule Machine, as

shown in Figure 6-12. The rule also generates the event action, that is gclock :=

gclock + 1. The variable gclock, whose type is assigned to an integer and initial

value 0, is also created by this rule. The event guards are manually created, using

the same technique with the Event-B direct translation as described in section

Chapter 6 Translating Timing Diagrams into UML-B 172

5.3.11. The Ticktok event provides time progress as an output value. Below is a

part of the event Ticktok’s guards.

Figure 6-52 A Ticktok event

6.7 Summary

This chapter explains how to generate a UML-B model from a TD using

ATL rules. TD used for this translation is slightly different from the direct

translation (Chapter 5), as identifying a first letter for a class name by a capital

letter (as described in section 6.1). This is because the class names here are used to

generate class in Class diagram in the MACHINE part, while class names in

Chapter 5 are used to generate sets in the CONTEXT part. Since the UML-B

metamodel does not specify if there are single or multiple objects for a class, but

leaves it to user choice, ATL translation rules generate only TD classes and objects

in classes. Thus, one needs to alter the result model by hand to have it fit the

system specification. Here is the summary of generating an UML-B from TD.

First, TD metamodel is created and used to describe abstract syntax of TD. It

is an Ecore model itself.

Chapter 6 Translating Timing Diagrams into UML-B 173

Secondly, a TD model conforms to the TD metamodel generated by Eclipse

EMF. This model is used as a source model for the ATL translation rules.

Next, the ATL translation rules for creating a UML-B model are identified.

The rules can generate a UML-B Project, CONTEXT name, MACHINES and

Class diagrams. For a Class diagram, the rules can generate attributes and its

Statemachines. For a Statemachine, we create rules for generating states and state

transitions. Each state transition comprises parameters, guards and actions that are

created from our rules. We also have a rule for creating a Ticktok event for time

progressing.

Finally, since TD illustrates some parts of the whole specifications, an output

UML-B model generated from ATL rules has to be completed or modified. For

example, associations among classes need to be added since they cannot be

identified by TD notations. Some events, such as ChangeDirUp and

ChangeDirDown, and invariants, are invented. Moreover, ATL does not allow

generating UML-B components from TD elements already used in another rule.

Thus in ATL rules, a symbol xStatex and xAssociationx are used as marks where

the UML-B output model components require adjustment. The xStatex represents

states needing replacement, while xAssociationx needs to be replaced by

association among Classes. Additional parts of a UML-B model that have to be

modified are: CONTEXT diagram, class attributes, initial state for a Statemachine

and some Statemachine transition guards.

UML-B tool itself also does not fully support identifying multiple previous

states of the same target state, see section 6.6.4. The same problem occurs with

SimultaneityArrows. For example, where there are two SimultaneityArrows

originally starting from a same source segment but ending at different target

segments. Thus, the generated UML-B output model has some Statemachine

transitions providing the same name. U2B translator gathers those same transition

names to generate an event. As a result, this event comprises guards and actions

from many conflicting transitions. We need to split these kinds of event into many

events with corresponding guards and actions.

Chapter 7 Translating Timing

diagrams into KAOS

This chapter investigates the techniques for generating KAOS Goal and

Operation models from TD. KAOS is a semi-formal method in which each goal

definition is identified by linear temporal logic (LTL). TDs demonstrate system

specifications in some temporal logic shapes along a timeline, i.e. in the next state

(�), some time in the future (�), and entails (�). Thus, it is possible to generate

KAOS from TD. This transformation attempts to add a KAOS graphical capability

for expressing timing constraints and event dependency requirements.

Transforming TD into KAOS can help check the completeness of a system’s goals.

Additional information, that may need to be added to KAOS that is obtained from

the generating process, could identify what information is missing from the TDs.

This chapter starts with defining the scope of TD and LTL operators used for the

translation. Section 7.2 explains BNF TD definition used for transforming into

KAOS. Section 7.3 gives steps for generating KAOS Goal and Operation models

from TD. Section 7.4 provides textual translation rules. Sections 7.5 and 7.6

explain how to create a goal from a segment defined with CauseEffectArrows and

SimultaneityArrows. Section 7.7 describes a technique for splitting a goal into

subgoals whenever the goal’s pre-condition is defined with the OR relationship.

Section 7.8 explains techniques used to generate goal trees. Section 7.9 gives

examples of user manual input to modelling. Section 7.10 shows examples of

generating Operation model.

Chapter 7 Translating Timing Diagrams into KAOS 175

7.1 Scope of LTL operators and shape of Timing Diagrams

For KAOS, we are concerned with generating events that will occur in the

future under the timing constraints provided. We are not dealing with timing

constraints that have occurred in the past states. The example on the next page gives

a case where it would be useful to support past operators. However, LTL past

operators are not used for defining a KAOS goal model. In other words, we are not

modelling a KAOS goal that includes timing constraints as pre-conditions (because

it has to be defined as a past operator) but in a post-condition (see section 2.7.2 for

the KAOS goal structure).

Currently, we have found in the case study that there are two LTL future

operators which correspond to two KAOS Goal models: Maintain Global

invariant P � Q and Bounded achieve P � ��d Q (see section 2.7.2

and 2.7.5). Our work is generating translation rules to create these kinds of KAOS

goal models.

Aspects a timing constraint does allow

To clarify what TD is suitable for using KAOS translation, consider a room

heating and humidity control problem as defined below.

“…whenever the room temperature is overheated or the room is overhumid

with a condition that there is electricity in the system, a room window will be

eventually opened between 3 and 5 seconds…”

Figure 7-1 A timing diagram where KAOS translation is allowed

Chapter 7 Translating Timing Diagrams into KAOS 176

The specification above generates a TD as shown in Figure 7-1, where a

corresponding goal formal definition is defined by Bounded achieve P � ��d

Q as shown in the following:

pre-condition P: (Overheat ∨ Overhumid)) ∧ Have Electricity

 �

post-condition Q: �[3,5] Window Open

This kind of TD is allowed for the KAOS transformation since there are no

past operators in the pre-conditions.

Aspects a timing constraint does not allow

If the room heating and humidity control problem specification above is

modified to “...whenever the room temperature is overheated or the room is very

humid, for between 1 and 2 seconds with a condition there is electricity in the

system, a room window will be eventually opened between 3 and 5 seconds…”.

�������	

�����
��	����	�

��!�"

�����������

� !3"

���������

�����������

�������	

�����
��	����	�

�����������

� !3"

���������

� !3"

��!�"

�����������

	�
��

�����������

	�
��

�����������

Figure 7-2 Timing diagrams where KAOS translation is not allowed

A TD generated with this new specification above is illustrated in Figure 7-2

left. This kind of TD with nested timing constraints is not allowed for the KAOS

transformation. That is because nested timing constraints cause a pre-condition to

be included with a LTL past operator = (some time in the past), which we are not

dealing with at this moment as shown in the following.

Chapter 7 Translating Timing Diagrams into KAOS 177

pre-condition : =[1,2] (Overheat ∨ Overhumid)) ∧ Have Electricity

 �

post-condition : �[3,5] Window Open

Another example supposes timing constraints are defined by a %��*�� node

(see section 5.1 for the original TD BNF definitions) as shown in Figure 7-2 right.

This kind of TD is not allowed for the KAOS transformation. That is because, not

only nested timing constraints alone force one to define LTL past operators, but also

having timing constraints by a %��*�� node allows identifying multiple timing

constraints in a CauseEffectArrow. It is complicated and unclear how to generate a

KAOS goal formal definition from this kind of TD. This is the reason the TD BNF

definition for KAOS is slightly different from that defined in the direct translation

in chapter 5. The detail of TD BNF definitions for KAOS is described in the

following section.

7.2 BNF Timing Diagram for KAOS

Most TD BNF definitions used for KAOS translation is the same as that

defined by the Event-B direct translation (Chapter 5). However, for KAOS, there is

a difference in defining timing constraints. That is, a timing constraint ((����&) is

directly connected with ����������� instead of a %��*��� segment. The rest of TD

BNF definitions are the same. The TD BNF definitions for KAOS shown below

highlight the definitions for ����������� and %��*�� concerned with the

differentiation.

�

������������������������
�

����������������������
�

���������%����&�

�������������������� !�
� !�"#�$�

��������������%����&�

 !�"#�$����� !�������⊆ 	������"���'����� !����������	������"���'���

 !����������%����&�

Chapter 7 Translating Timing Diagrams into KAOS 178

�����"���'�������������������

���������������������	������()*�����+	���������	������()*�������	�

���������������

�����()*�����������

 !������� !������ !�%�
�(��������

(�����������������%�&����
�

%�&��������� !�%���'�!���%��'������'��,$$���-���.��

 !�%�����������

�'�!�������Ζ
�

%��'������%����%�&���,�/%�&���

%����%�&�������%�&�����

,�/%�&�������%�&�����

��'��,$$���-���.����������������

�����������������/�()*���(����&�� fg hijjklkmn jlop kqlrikl gf�
��/�()*������%��*����� 0"��/����-�#"��/��

%��*���������'��%�&�������/�������� fg hijjklkmn jlop kqlrikl gf�
��'��%�&�������%�&�����

���/����������%����&�

 0"��/��������/�()*������/�()*��

-�#"��/��������/�()*��?���/�()*��

(����&�������	���.���������+	�'**����������	�

��.������������Ζ
�

'**������������Ζ
�

Figure 7-3 illustrates TD used for transforming to KAOS Goal and Operation

models. Notice that there is a timing constraint for each CauseEffectArrow.

Numbers such as 1, 2, and 3 are not TD notations but are used for explanation in this

chapter.

Chapter 7 Translating Timing Diagrams into KAOS 179

Figure 7-3 Timing diagram used for KAOS Models

7.3 Steps in generating KAOS Goal and Operation models

Generating a KAOS Goal and Operation models comprises four steps.

Chapter 7 Translating Timing Diagrams into KAOS 180

1. A KAOS goal is created by two TD notations: segments which are declared

with CauseEffectArrows and SimultaneityArrows. This step uses our textual

transformation rules, as explained in sections 7.5 and 7.6.

2. Consider the goals obtained from step 1:

• If the goal pre-condition is declared with OR relationships, that goal

is split into sub-goals by a pattern below:

 Parent goal: P1 ∨ P2 � Q

 Subgoal1: P1 � Q

 Subgoal2: P2 � Q

• The goal reamins the same if its pre-condition is declared with AND

relationships.

This step breaks a complex goal into simple goals. Each simple goal is

then used as a leaf node goal for a goal tree in step 3. Explanations of

this process are described in section 7.7.

3. Generate goal trees from goals obtained from steps 1 and 2. Goal trees

generated correspond to KAOS goal refinement patterns, as described in detail in

section 7.8.

4. An operation is generated from individual leaf node of goal trees by KAOS

operation patterns as described in detail in section 7.10.

7.4 Textual translation rules for generating a goal

This section explains formal translation rules used to transform a TD into a

KAOS Goal model. There are extra basic translation rules apart from those defined

in the direct translation TD to Event-B, chapter 5. Top-level textual translation rules

for creating a goal from a segment that has a CauseEffectArrow is described in

section 7.5, while section 7.6 explains how to generate a goal from a

SimultaneityArrow.

Chapter 7 Translating Timing Diagrams into KAOS 181

Basic translation rules

To generate KAOS goal from a TD, some rules are reused from the direct

translation (Table 5-1), while others are introduced in this chapter as shown in the

table below.

� ��"
!((����&) → 7 8; this rule checks whether an input (����& exists. If so, the

rule gives the Boolean value true.

� ������(����������) → (����&; this rule gives a (����& for an input ����������.�

� ��������(�������) → (%��'�6, %��'�1, �); this rule gives a sequence of

SimultaneityArrows for an input �������.

� ��
	

����(%��'�) → %����%�&�; this rule gives the SimultaneityArrow start

segment for an input SimultaneityArrow.

Table 7-1 Additional basic rules for TD to KAOS transformation

7.5 Textual translation rules for creating a goal from segments

�

→

�

Figure 7-4 Top-level rules structure for creating a goal from a segment

Chapter 7 Translating Timing Diagrams into KAOS 182

An overview of top-level textual rules used to generate goal formal definitions

from segments that have CauseEffectArrows is shown in Figure 7-4. In this

figure, the coloured boxes represent parts generated from the rules, and hatched

boxes represent parts the extra information added for the model completion. See

section 7.9 for a discussion of manually added information.

A goal’s name and its type have to be generated by hand. A goal formal

definition is created by the rule � ������
� in which a �������� is used as a

parameter for the rule. This rule generates each goal by the sub-rule

���
������
#�
$����

�
,�which is reused from chapter 5, Table 5-1. This rule

collects only segments that are defined with CauseEffectArrows as a sequence.

Next, each %�&���� is used to generate other parts of the goal formal definition by

other sub-rules. A goal formal definition is composed of three parts: non-

deterministic inputs/outputs local variables, pre-conditions, and post-conditions.

Each is generated by the sub-rules as explained in the following:

• Non-deterministic inputs/outputs local variables are generated by a

goal � �	
	���	
��	���. These local variables are used inside a

goal. The detail of this rule is shown in Appendix E.

• Pre-conditions that are cause states and conditions are generated from

the sub-rule � �
��

�
. This rule uses a %�&���� as an input

parameter.

• A post-condition is generated by the sub-rule � �����

�
. This rule

uses a %�&���� as an input parameter to generate a post-condition and

defines LTL future operator �.

The detail of sub-rules and examples are explained in the following section.

7.5.1 Creating pre-conditions from cause states and conditions

This section describes the rule � �
��

�
 that is used to generate parts of

KAOS pre-condition: cause states and conditions. This rule calls a sub-rule

� ��
�
��
��� as shown in Figure 7-5. The rule � ��
�
��
��� creates pre-

conditions of a goal formal definition for an input ��/�()*�.

Chapter 7 Translating Timing Diagrams into KAOS 183

→

→

Figure 7-5 Rule: � �
��

�
 and sub-rules

The rule � ��
�
��
��� is similar to the rule ���
�
��
��� in section 5.3.6.

It checks whether the input ��/�()*� is %��*��, 0"��/� or� -�#"��/�. The

difference here is, if the ��/�()*� is� %��*��+� two other sub-rules

����"���	������
��� and ����"������ are called in order to generate guards

from cause states and conditions respectively. The rest of this rule is the same as the

rule ���
�
��
��� in section 5.3.6. That is, if a ��/�()*� is 0"��/�� or

-�#"��/�, the rule � ��
�
��
��� recursively calls itself. The detail of

� ��
�
��
��� is illustrated in the following, which shows only part of a %��*���

node that is different from section 5.3.6.

� ��
�
��
���(��/�()*�) ... (1)

<IF> ��/�()*� = %��*�� .. (2)

<THEN>����"���	������
��(�������
(%��*��)) (3)

 + ����"������(�����(%��*��)) .. (4)

<ELSE><IF> ��/�()*� = 0"��/�� .. (5)

…

<ELSE> <IF> ��/�()*� = -�#"��/�� .. �>�

…

<ENDIF>

Figure 7-6 Rule: � ��
�
��
����

Chapter 7 Translating Timing Diagrams into KAOS 184

The rules ����"���	������
�� and ����"������ are also reused from the

TD direct translation rules in chapter 5. For example, Figure 7-7 shows how the

segment Off2 is used to create a pre-condition by the rule � �
��

�
.

Figure 7-7 Timing diagram for floorsensor and lift (parts of Figure 7.3)�

Since the rule � ��
�
��
����is similar to the rule����
�
��
��� in section

5.3.6, we do not repeat how to generate it step by step. Instead, we explain how to

generate cause segments and conditions from the rule ����"���	������
�� and

����"������ (see Figure 7-8).

� ��
�
��
���� 0"��/��

��/�()*���'��%��*���

��/�()*���'�� 0"��/��

��/�()*���'��-�#"��/��

�

�

→

����"���	������
�����=��&#�*����&5*1�

8���7 �>��'����	����'�(��'�(�
���=��&#�*����&5*1���
8��78��7��%	��	
	���>��

���

8����7

8�?��7

�'�(��'�(�
���=��&#�*����&5*1��

@��A�	�	��� B�

@��'�(�
���=��&#�*����&5*1�
8��$��7

����"������
$��'�����3��4��/�����5*�
���

6

1

@���

A���

2 →

>

� �
��

�
� $$1��

A�A�@ � ��
�
��
����������!"�������

�
����1�����@�A�B�

→

�������

��	�

���
��������
���

���	������
��������������

�����

����"���	������
�����=��&#�*����&5*1�

,�����"�������$����'�����3��4�/�����5*�

Figure 7-8 Steps for generating pre-conditions for lines 3.1 and 3.2 in Figure 7-7

Chapter 7 Translating Timing Diagrams into KAOS 185

Note that Figure 7-8 shows only relevant parts of the rule

����"���	������
�� used for creating pre-condition for a segment Off2 in Figure

7-7. The detailed rules are given in Appendix A.

Steps for generating pre-conditions from cause states and conditions are

shown in Figure 7-8. First, the rule � �
��

�
 is used with the segment Off2 as

the input parameter. At this step, the basic rule ������!"� gives the ��/�()*� of

the segment Off2, which is an 0"��/�. Next, in step 1, the sub-rule

� ��
�
��
��� is called, where 0"��/� is used as an input parameter. Since the

��/�()*� is 0"��/�, then step 2 is actioned. Note that the details of steps 2-4 were

explained in detail in section 5.3.6.

In the 0"��/� section, each sub-��/�()*� underneath the 0"��/� is

collected as a sequence. In this case, there are two %��*�� nodes:

��=��&#�*�����&5*1� and ��=��&#�*�����&#�.�>� (see Figure 7-7). The

��=��&#�*�����&5*1� is first sent back to the rule � ��
�
��
��� as the input

parameter as shown in step 3, and then it is sent as %��*�� node to the %��*���node

section in step 4.

Step 5 shows the generation of pre-conditions from cause states by the rule

����"���	������
��, where a %��*�� node is used as the input parameter. The

detail of the cause state generated by the rules is shown in this figure. Step 6 shows

a condition, which is attached to the ��=��&#�*�����&5*1, is generated to be a part

of pre-condition by the rule ����"������. The rule ����"������ simply

concatenates each condition if there are many of them. The details of these rules are

given in Appendix A.

Next, steps 3-6 are repeated to generate a cause state and conditions for the

%��*�� node, ��=��&#�*�����&#�.�>. The pre-conditions generated from the

segment Off2 are shown below.

Chapter 7 Translating Timing Diagrams into KAOS 186

∨

�

7.5.2 Creating post-conditions

As shown in Figure 7-4, the rule � �����

�
 is used to create a goal post-

condition. The detail of the rule, in which %�&���� is used as an input parameter, is

illustrated in Figure 7-9. This rule calls a sub-rule ����������
�������
���, where

%�&���� and (����& are input parameters for the rule.

�

� �����

�
(%�&����) →�

{ � ��
�������
���(%�&����, � ������(�����

�
(%�&����))) }

�

� ��
�������
��� (%�&����, (����&) → .. (1)

<IF> !� ��"
!((����&) ... (2)

<THEN> “�” + (����&� .. (3)

<ELSE> <SKIP> .. (4)

<ENDIF> .. (5)

<LET> exp = ���	��(�'�((�'�(�
(%�&����))) .. (6)

<IN> .. (7)

<IF> �%	��	
	�(exp) ... (8)

<THEN> ... (9)

� �'�((�'�(�
(%�&����)) .. (10)

 + “State(” ... (11)

 + �#
�
��	
	���
(�����	
	�(exp)) ... (12)

 + “) = ” .. (13)

 + “ ‘ ” + �'�(�
(%�&����� + “ ’ ” ... (14)

<ELSE> .. (15)

Chapter 7 Translating Timing Diagrams into KAOS 187

 �'�((�'�(�
(%�&����)) .. (16)

 + “State = ” ... (17)

 + “ ‘ ” + �'�(�
(%�&����) + “ ’ ” ... (18)

<ENDIF> .. (19)

Figure 7-9 Rules: � �����

�
 and � ��
�������
����

The rule � ��
�������
��� checks whether there is a (����& parameter

value, at line (2). If so, it generates a timing constraint in the form of �[lowerlimit,

upperlimit] at line (3). At line (8), the rule checks whether a class corresponding to

that segment has a parameter. If so, the rest of a goal post-condition (which is an

effect of a CauseEffectArrow) is generated at lines (10)-(14); otherwise lines (16)-

(18) are exceuted. The sub-rule �#
�
��	
	���
 is reused, as detailed in section

5.3.8. This rule is used to identify the whole parameter for a class. An example of a

goal’s post-condition, generated from segment Off2 by the rule � �����

�
, is

shown below.

→

→

Figure 7-10 Example steps of generating post-conditions for a segment Off2

Chapter 7 Translating Timing Diagrams into KAOS 188

Figure 7-11 illustrates a summary of the segment Off2 used to generate a Goal

Achieve[FlsensorForTheCurrentFloorIsEventuallySetOffW/N2-5secsAfterLiftStartsMvgDpt-

UpOrStartsMvgDptDwn].

∨

�

∀

Figure 7-11 A goal 3.1 & 3.2 description

7.6 Top-level textual translation rules for creating a goal from a

SimultaneityArrow

As mentioned by (Letier, Kramer et al. 2008), in KAOS, a temporal logic

pattern +���3�����)�4��
4� property can be specified as a goal with the temporal

logic P�Q where the response Q occurs within the same time as the P triggering

condition. Since SimultaneityArrows are used to show two things happening very

close in time (at the level of abstraction), the SimultaneityArrow has the same

property as the +���3�����)�4��
4� property. Thus, each SimultaneityArrow is

created as an individual goal with this temporal logic pattern. The top-level rules

structure for creating a goal from a SimultaneityArrow is shown in Figure 7-12.

The structure is similar to the top-level rules for creating a goal from a segment.

The only difference is that the post-condition is defined without a timing constraint.

Chapter 7 Translating Timing Diagrams into KAOS 189

�

→

�

Figure 7-12 Top-level rules structure for creating a goal from SimultaneityArrows

A goal formal definition is created by the rule � ������in which ������� is

used as an input parameter. This rule is defined as an iteration process for

generating each SimultaneityArrow as a KAOS goal. The sub-rule � ���������

uses �������� as an input parameter. The � �������� rule comprises sub-rules

� ��	
	���	
��	���, � ��	���� and � ��--��
 for generating a list of non-

deterministic parameter using in a goal, goal pre-conditions, and goal post-

conditions respectively. There are some goals that are needed to add extra non-

deterministic local variables. See section 7.9 for discussion of manually added

information. The rule � ��	
	���	
��	��� is the same as the rule

� �	
	���	
��	��� (Appendix E), the only difference being their input

parameters; the � ��	
	���	
��	��� uses� %��'� while the � �	
	���	
��	���

uses %�&����. The rule � ��	��� is the same as the rule ��������	
����

����������	
����

����������	
����

����������	
����

��

(Chapter 5, and detailed in Appendix A); only the input parameters are different.

The post-condition of a goal is generated by the rule � ��--��
�as shown

below. This rule does not create timing constraints for a post-condition since a

SimultaneityArrow does not have timing constraints.

Chapter 7 Translating Timing Diagrams into KAOS 190

� ��--��
(%��'�) →�

<LET> exp = �'�((�'�(�
(��������(%��'�)))

<IN><IF> �%	��	
	�(���	��(exp))

<THEN> exp

 + “State(”

 + �#
�
��	
	���
(�����	
	�(���	��(exp���

 + “) = ”

 + “ ‘ ” + �'�(�
(��������(%��'�)) + “ ’ ”

<ELSE> exp

 + “State = ”

 + “ ‘ ” + �'�(�
(��������(%��'�)) + “ ’ ”

<ENDIF>

Figure 7-13 Rules for creating a KAOS goal from a SimultaneityArrow

For example, the post-condition generated from the SimultaneityArrow line

16 in Figure 7-2 is shown in the following:

� ��--��
(�����6>) → stuvtu
 <LET> exp = �'�((�'�(�
(��������(�����6>))) ……. wxv y z{|u
 <IN><IF> �%	��	
	�(���	��(exp)) ………….…….. }~���

 …

 <ELSE> exp ………………….………………………… z{|u
 + “State = ” ……………………………………...

�u�uw y
 + “ ‘ ” + �'�(�
(��������(�����6>)) + “ ’ ” …. ����{������ �
 <ENDIF>

The whole goal formal definition is created from the SimultaneityArrow

line 16 in Figure 7-2, is illustrated below

Chapter 7 Translating Timing Diagrams into KAOS 191

→

�
�

∀

�

Figure 7-14 The goal formal definition for the SimultaneityArrow line 16

7.7 Splitting OR relationships in a goal pre-condition into subgoals

As mentioned in section 7.3, if a goal pre-condition is declared with OR

relationships, that goal is split into subgoals. This is an attempt to generate simple

goals from a complex goal, in which each of them is used as a leaf node for a goal

tree that will be generated later. For example, from Figure 7-11, a Goal

Achieve[FlsensorForTheCurrentFloorIsEventuallySetOffW/N2-5secsAfterLiftStartsMvgDpt

UpOrStartsMvgDptDwn] has pre-condition defined by an OR relationship. Thus, this

goal is split into two subgoals: Line3.1 Goal Achieve[FlsensorForTheCurrentFloorIs

EventuallySetOffW/N2-5secsAfterLiftStartsMvgDptUp] and Line3.2 Goal Achieve[Flsensor

ForTheCurrentFloorIsEventuallySetOffW/N2-5secsAfterLiftStartsMvgDptDwn] by a

pattern: parent goal: P1 ∨ P2 � Q, subgoal1: P1 � Q, and subgoal2: P2 � Q as

shown in Figure 7-15.

where: P1 : liftState = ‘MovingDepartingUp’ & f = currentFl & dir = Up

 P2 : liftState = ‘MovingDepartingDown’ & f = currentFl & dir = Down

 Q : �[2,5] floorsensorState(f) = ‘Off’

Chapter 7 Translating Timing Diagrams into KAOS 192

∨

�

∀

�

∀ ∀

�

��

�

Figure 7-15 Splitting an OR relationship in a goal pre-condition into subgoals

By contrast, any goal that has AND relationships defined in its pre-condition

remains the same. An example of the goal generated from line 18 and line 7 in

Figure 7-3 by the textual translation rules is illustrated in the following.

�

∀

Figure 7-16 An example of AND relationship in a goal pre-condition

Chapter 7 Translating Timing Diagrams into KAOS 193

In the example in Figure 7-16, where the pre-condition of the goal is

combined with an AND relationship, this goal is left the same. However, this goal

shows two examples of adding extra information manually.

• First, in some cases, it is necessary to identify the previous states of the post-

condition as shown in Figure 7-16, liftState = ‘StopAtFloor’. That is, the lift

must be in a state of stop at floor before it can start moving departing up. In

the lift case study, there are four goals: Line 18&7 Goal, Line 19&8 Goal,

Line5(a) Goal, and Line5(b) Goal that need to be added with this kind of extra

information (as detailed in Appendix F).

• Secondly, the original pre-condition generated from line 7 by the translation

rules is doorState(f) = Closed & f : reqFl. The non-deterministic variable f in

this pre-condition has to be changed to currentFl. This is because we would

like to identify the current floor door’s state that must be closed, not any

other doors. Only two actions need to be altered in the lift case study which

are Line18&7 Goal and Line19&8 Goal (as detailed in Appendix F).

7.8 Generating goal trees

Goals obtained from the steps in sections 7.5 to 7.7 are used to generate goal

trees. A goal tree comprises a parent goal and its subgoals. Each sub-goal specifies

explicit tasks in which the combination of subgoals explains what to do in general

in the upper level, the parent goal. In this thesis, we propose two techniques that are

“guidelines” of goal trees generation. In the first technique, a goal tree is created

whose subgoals illustrate how changing an object’s state causes another object’s

state to be changed in the system (as detailed in section 7.8.1 below). In the second

technique, a goal tree is generated from a group of CauseEffectArrows and

SimultaneityArrows that share the same cause segment (as detailed in section

7.8.2 below).

Chapter 7 Translating Timing Diagrams into KAOS 194

7.8.1 A goal tree illustrates an object’s state change causes another object’s state

to be changed

To generate this kind of goal tree, the technique looks for continuity of

CauseEffectArrows and SimultaneityArrows that occurs from the left hand

side of the TD to the right hand side. For example, in Figure 7-17, the

CauseEffectArrow lines 18 and 7 have a ������������������ as an effect

segment. This ������������������ becomes a cause segment of the

CauseEffectArrow line 3.1. The CauseEffectArrow line 3.1 has a segment ���� as

an effect segment. This segment ���� becomes a %����%�&�� of the

SimultaneityArrow line 17. Note that at this point, the goal generated originally

by lines 3.1 and 3.2 is separated to individual Line3.1 Goal and Line3.2 Goal already

since there is an OR relationship in the pre-condition (as described in section 7.7,

Figure 7-15). Thus, Line3.1 Goal can be used for this goal tree while the Line3.2 Goal

is used in another goal tree.

Figure 7-17 The lift timing diagram (parts of Figure 7-3)

Chapter 7 Translating Timing Diagrams into KAOS 195

The occurrence of the continuity of CauseEffectArrows and

Simultaneity above generates a goal tree by the Milestone-driven goal refinement

pattern (detail in section 2.7.4) as shown below.

�

∀

�

∀

�

∀

�

� �

�

�

Figure 7-18 Parts of a goal tree

From Figure 7-18, few alterations need to be made in order to have correct

goal trees, as described below.

1. Non-deterministic variables’ definitions are moved on the top of the

tree after the symbol “ ∀ ”. The move does not change the meaning of

a goal, but the rearrangement. For example, moving f > currentFl and f

: reqFl of the Line18&7 Goal.

2. Extra information is added. This information is needed only in some

line such as Line17 Goal and Line18 Goal. For example, in Figure 7-18,

the Line17 Goal, which is generated by the SimultaneityArrow, has

the added condition f = currentFl. Because the notation of

SimultaneityArrow itself does not allow identifying predicates,

additional information is needed in this case.

The goal model after doing these alterations is shown in the following.

Chapter 7 Translating Timing Diagrams into KAOS 196

�

∀

�

∀

�

∀

�

� �

�

�

�

�

�

Figure 7-19 Parts of a goal tree after alteration

Line18&7 Goal is linked to the Line3.1 Goal by the Milestone-driven goal

refinement pattern where Q is used as intermediate state. However, if we use Q alone,

generating this goal tree is not correct. That is, a condition dir = Up does not exist for

Q in the Line18&7 Goal but it does exist for Q in the Line3.1 Goal as a pre-condition.

To resolve this problem, an invariant is introduced. Invariants are properties that

remain true for a specific sequence of operations in the system. In this case, the

Invariant 1: liftState = ‘MovingDepartingUp’ � dir = ‘Up’ is used to identify that

whenever the lift is in the state of MovingDepartingUp, the lift direction must be

always Up. With this invariant, the goal tree is correctly generated.

� ∧∧

�

∧ ∧ �∧

�

�

�

Figure 7-20 A pattern for generating KAOS goal tree

Chapter 7 Translating Timing Diagrams into KAOS 197

A summary of the Milestone-driven goal refinement pattern used for creating a

goal tree, where Inv denotes Invariant is shown in Figure 7-20. An invariant for a

goal is an option, which is defined inside the “[…]” symbol. Q is an intermediate

state. Q may have invariants defined by Inv1, and Inv2 (and others if there are any)

which provides predicates A and B respectively. A and B then are used as a part of

pre-condition for the corresponding goal. Not every goal requires an invariant. The

invariant is used only when the next goal’s pre-condition(s) has extra information

that is not identified earlier in the previous goal’s post-condition, as in the example

shown in Figure 7-19.

7.8.2 A goal tree is generated from a group of CauseEffectArrows and

SimultaneityArrows that share the same cause segment

This kind of goal tree is generated by looking for a common segment which is

used as a cause segment for relevant CauseEffectArrows and

SimultaneityArrows. A common segment is generated as a parent goal while the

relevant CauseEffectArrows and SimultaneityArrows are created as sub-goals.

Figure 7-21 Parts of a goal tree representing requestlamp, lift, door, uplamp and downlamp

Chapter 7 Translating Timing Diagrams into KAOS 198

For example in Figure 7-21, the segment ���� �¡¢���£ is a common cause

segment for the lines 6, 9, 10, and 11. The segment ���� �¡¢���£ is generated as a

parent goal, while each of those lines becomes a sub-goal of the parent goal.

Remember, each sub-goal is actually generated earlier by textual translations, as

described in sections 7.5 and 7.6. Thus, only the parent goal has to be generated in

this step.

This kind of goal tree is generated by the Case-driven : Split consequent pattern

(Letier 2001).

 Parent goal: P � Q ∧ R ∧ S

 Subgoal1: P � Q

 Subgoal2: P � R

 Subgoal3: P � S

Figure 7-22 shows the goal tree generated by those lines and the Split

consequent pattern, where

P: ∀ f : FLOOR, f : reqFl, f = currentFl, liftState = ‘StopAtFloor’

Q: �[2, 4] requestlampState(f) = ‘rUnlit’

R: �[1, 5] doorState(f) = ‘Open’

S: uplampState = ‘deActivated’

T: downlampState = ‘Deactivated’

Chapter 7 Translating Timing Diagrams into KAOS 199

�

∀

� ∧ ∧ ∧

�

�
� �

�

∀

�

∀

�

∀

�

∀

Figure 7-22 A goal tree representing lines 6, 9, 10 and 11 in Figure 7-21

Currently, we have not found it necessary to use invariants in these kinds of

the goal tree. The Goal trees generated by TD in Figure 7-3 are shown in Appendix

F.

7.9 Manual input to modelling

For each goal, the translation rules can automatically generate a goal’s formal

definition that is composed of non-deterministic local variables, pre-conditions, and

post-conditions, where the latter is defined by an LTL operator and timing

constraints. The goal’s name, goal’s type, and goal’s textual definition need to be

created by hand, because how these parts are described depends on a user’s choice.

Extra information needs to be added to some goals for two reasons.

Chapter 7 Translating Timing Diagrams into KAOS 200

1. To complete the information on the individual goal

In a few goals, it is necessary to declare the previous state(s) to the pre-

condition of the goal. The previous states make some goals explicit and more

correct. However, most goals do not need previous state(s). That is because it is

unnecessary to declare previous states, which raises problems when generating

Goal trees that require more invariants, and creates duplicate information in the

Operation model, making the Operation model complicated. Thus, our design

does not create the previous state automatically using the translation rules. An

example of adding the previous state is described in Figure 7-16.

2. To complete goal trees

There are two reasons to add extra information. First, SimultaneityArrows will

not explain the conditions on the line like CauseEffectArrows. When a Goal

tree includes any goals that are created from SimultaneityArrows, some extra

information may need to be added to the goal to make the Goal tree correct. An

example of adding extra information for this kind of problem is shown by Goal

Line17 in Figure 7-18. Secondly, to have a complete Goal tree, some goals are

manually generated. These goals are actually obtained from changing states

(transitions) in the TDs, such as the lift is changing state from moving up to

moving arriving up. However, these goals are not created by the translation

rules, since the rules do not generate a goal from a transition but segments and

SimultaneityArrows. These goals are needed since they are used to bridge the

gap between the goals inside a Goal tree, and make a Goal tree complete. An

example of introducing a new goal into a Goal tree is described below.

Figure 7-23 shows the bigger figure of the goal tree from Figure 7-18. This

figure illustrates a GoalA1 Achieve[LiftStateIsEventuallyMvgArgUpAfterMvgUp] that is

generated by hand. This goal is necessary since it is used to bridge the gap between

the Line17 Goal and the Line4.1 Goal. Note that we used “A” after the word “Goal” as

an abbreviation for the additional goal; for example, GoalA1 is the additional goal

no. 1.

Chapter 7 Translating Timing Diagrams into KAOS 201

�

� � �

�

�

∀

�

�

∀

�

�

�

��

Figure 7-23 The MainG1

In the lift system case study, only two goals are newly generated, GoalA1 and

GoalA2, in which the latter describes the lift state as eventually changing its state

from MovingDown to MovingArrivingDown. The detail of this goal can be found in

Appendix F.

7.10 Operation model

An Operation model defines state transitions of a goal by using DomPre and

DomPost conditions. The DomPre is used to describe the state before an operation,

while DomPost defines a relation between states before and after application of the

operation. In addition, further requirements of operations can be defined by using

ReqPre, ReqPost, and ReqTrig, as mentioned in section 2.7.5.

An operation is created from a leaf node of goal trees. Thus, an Operation

model is a collection of operations created from whole leaf nodes. Each goal pattern

has a unique operation pattern. For example, goals with a pattern Bounded

Achieve P��	d Q and a pattern Global Invariant P � Q have operation

patterns defined as shown in Figure 7-24. Those operation patterns are well defined

Chapter 7 Translating Timing Diagrams into KAOS 202

by (Lamsweerde, Dardenne et al. 1991; Letier 2001), here we generate the

Operation model that follows these patterns.

�
�

Figure 7-24 Operation patterns: Bounded Achieve and Global Invariant

For example, consider the Line9 Goal below:

Line9 Goal Achieve [TheDoorAtTheCurrentFloorIsEventuallyOpenBetween1-5secsAfter

LiftStopsAtThatFloor]

Definition: The door at the current floor is eventually open between 1 and 5 seconds after

the lift is stopped at that floor.

FormalDef ∀ f : FLOOR, f : reqFl, f = currentFl

 liftState = ‘StopAtFloor’

 �

 � [1, 5] doorState(f) = ‘Open’

The Line9 Goal is declared by the Bounded Achieve pattern where

P: liftState = ‘StopAtFloor’ and Q: doorState(f) = ‘Open’. Thus, its operation is defined as

 Operation DoorOpen

 Input door{arg f : FLOOR, f : reqFl, f = currentFl }state

 Output door{arg f : FLOOR, f : reqFl, f = currentFl}state

 DomPre doorState(f) = ‘Close’

 DomPost doorState(f) = ‘Open’

 ReqTrig doorState(f) = ‘Close’ S[0.99, 4] (liftState = ‘StopAtFloor’)

Chapter 7 Translating Timing Diagrams into KAOS 203

Another example is the Line10 Goal. This goal is defined by the Global

Invariant pattern. The operation model generated from this goal is illustrated

below.

Line10 Goal Maintain[DownlampIsDeactivatedSimultaneouslyWhenLiftStopsAtFloor]

Definition: The downlamp is set to deactivate at once whenever the lift stops at that floor

FormalDef:

 liftState = ‘StopAtFloor’

 �

 downlampState = ‘Deactivated’

The�Line10 Goal is defined as a Maintain and corresponds to the Global

Invariant pattern as shown in Figure 7-24, where P: liftState = ‘StopAtFloor’ and

Q: downlampState = ‘Deactivated’. The operations for the Line10 Goal are defined as

follows.

Operation downlampDeactivated

 Input liftState

 Output liftState

 DomPre liftState ≠ ‘StopAtFloor’

 DomPost liftState = ‘StopAtFloor’

 ReqPost downlampState = ‘Deactivated’

 Operation downlampActivated

 Input downlampState

 Output downlampState

 DomPre downlampState = ‘Deactivated’

 DomPost downlampState = ‘Activated’

 ReqPost liftState ≠ ‘StopAtFloor’

Other operation models can be found in Appendix F.

7.11 Summary

This chapter explains the textual translation rules used to generate KAOS

goals from segments defined with CauseEffectArrows and from

SimultaneityArrows. The translation rules use TD BNF definitions as input

parameters to generate individual goals. The TD BNF definitions for KAOS

transformation differs from what was declared in Event-B translation. Here, one

timing constraint for each CauseEffectArrow is allowed. Creating a goal from

nested timing constraints is not supported. Currently, an individual goal is created

Chapter 7 Translating Timing Diagrams into KAOS 204

by the rules either in a pattern of Achieve: Bounded Achieve P � �	d Q or

Maintain: Global Invariant P � Q. Next, those goals are used to create

Goal trees.

A Goal tree can be generated by two techniques. First, the Goal tree is

generated in which its subgoals illustrate how changing of an object’s state causes

another object’s state to be changed in the system. Secondly, the Goal tree is

generated from a group of CauseEffectArrows and SimultaneityArrows that

share the same cause segment.

For the first technique, some goals need to be declared with invariants. Using

invariants, which is an option, enable the creation of a correct goal tree (as

described in section 7.8.1). That is because invariants give supportive information

that is not directly shown by the goals. The invariants are not used in the second

technique.

Some additional goals are added by hand. These goals are introduced into

corresponding goal trees in order to complete the goal model (as described in

section 7.9). Operation models are generated from the leaf node of the goal trees

which use well-defined operation patterns, provided by (Lamsweerde, Dardenne et

al. 1991; Letier 2001).

Chapter 8 Comparison and

Evaluation

This chapter explains the differences and similarities of each technique used

to transform TD into Event-B, UML-B and KAOS models. Section 8.1 describes

the comparison between Event-B, UML-B and KAOS models. Section 8.2 gives

the comparison for the other related works. Section 8.3 provides the evaluation of

our model. Section 8.4 gives quantification manual editing while an example of PO

is explained in section 8.5.

8.1 Comparison between Event-B, UML-B and KAOS models

Transforming TD into Event-B, UML-B and KAOS models have some

things in common and differences in detail.

8.1.1 Timing diagram notations

• The same TD notations can be used both for creating an Event-B model

from the direct translation rules, and for generating KAOS Goal and

Operation models. That is, the whole of a class’s name are defined as

uppercase letters. For example, FLOORSENSOR.

Chapter 8 Comparison and Evaluation 206

• The TD used for transforming into UML-B model is a bit different. That

is, the first character of a class’s name is an uppercase letter and the rest

are lowercase letters. For example, Floorsensor.

• Each TD class for translating an Event-B model is created as a set in the

Event-B CONTEXT part, while each TD class for translating an UML-

B model is generated as a class in the Event-B MACHINE part.

8.1.2 Identify TD Timing constraints

• In transforming TD into Event-B and UML-B, defining TD timing

constraints is the same. That is, a timing constraint is attached with the

%��*�����/�()*�. Then, one can define nested timing constraints for a

CauseEffectArrow.

• In transforming TD into KAOS, defining TD timing constraints is

different. That is, at most one timing constraint for a

CauseEffectArrow (section 7-1 and 7-2) is allowed. That is because

we are not identifying past LTL operators as goal pre-conditions. Using

nested timing constraints has to use past operators.

8.1.3 How models are generated

• Metamodel:

� In Event-B and KAOS: TD metamodel is defined by BNF definitions

� In UML-B: TD metamodel is created by EMF

• Defining timing constraint in a model

� In Event-B and UML-B: timing constraints are defining in a pre-

condition (guard)

� In KAOS: timing constraints are defining in a post-condition (action).

Chapter 8 Comparison and Evaluation 207

8.1.4 TD components used for the translation

• In transforming TD into an Event-B model: each segment that is

declared with constraints is used to create an Event-B event. If that

segment has SimultaneityArrows defined, the SimultaneityArrows

are also generated as a part of that event.

• In transforming TD into UML-B: each TD state transition is used to

generate an Event-B event.

• In transforming TD into KAOS: each segment that is declared with

constraints and SimultaneityArrows are used separately to create a

goal.

8.1.5 Ease of production and amendment

• To generate an Event-B model: the difficult part is generating TD BNF

definitions that should represent TD correctly and can be used as closely

as possible for the rest of the translation techniques. Textual translation

rules use BNF elements as input parameters. Most Event-B components

can be generated from the rules and altering a model is easy to do.

• To generate a UML-B model: it takes a lot of effort to generate a model

starting from creating the TD metamodel and source model using

Eclipse, and using the UML-B toolkit since it needs a high specification

computer. Using ATL has problems as it does not support creating an

output element by combination of source elements across the rules.

Moreover, the UML-B itself does not fully support generating

SimultaneityArrows nor identifying multiple previous states to the

same target state. The output model needs to be altered such as adding

associations to classes since TD notation does not support this.

• To generate KAOS Goal and Operation models: the TD BNF from the

direct translation of an Event-B model can be reused with some

modifications, as well as the textual translation rules. The hardest part

Chapter 8 Comparison and Evaluation 208

for the KAOS translation is generating goal trees since they need to be

created with the KAOS refinement patterns. Generating a KAOS

Operation model uses the pattern provided at the leaf nodes of goal

trees.

8.1.6 Manual additional information

• Context:

� In Event-B: most of the context elements are generated from TD by

the textual translation rules, only a few have to be created manually.

Those manual creation elements are actually defined as predicates

on the CauseEffectArrows but they cannot be used to generate

context since TD notations do not support this.

� In UML-B: since the limitations of ATL, the ATL rules can

generate the context’s name while the body of the context must be

generated by hand.

� In KAOS: there is no concept of context.

• Events/Goal

� In Event-B: some events are necessary added manually. That is

because TD expresses only a part of the whole system

specifications. Moreover, each event is generated by two TD

notations: segments with constraints (CauseEffectArrows) and

SimultaneityArrows attached to the segment. However, not every

event can be represented by CauseEffectArrows and

SimultaneityArrows. Thus, some events need to be added. For

example, in the lift case study, we have to add events:

ChangeDirUp, ChangeDirDown and doorClosed.

� In UML-B: there are fewer events manually appended since every

transition is generated to be an event. However, there is more

alteration in the UML-B model than in the Event-B model generated

Chapter 8 Comparison and Evaluation 209

by the direct translation. That is for two reasons: first, the limitation

of ATL itself. Secondly, to generate some variables used in the

model, associations among classes need to be generated, which

cannot be done directly from TD notations, but must be by hand.

� In KAOS: a number of goals need to be added manually. That is

because each goal is generated by two TD notations: segment with

constraints and SimultaneityArrows. However, not every system

specification can be represented by these notations. Thus, some

goals need to be appended. We find what goal is missing and needs

to be added, while generating a goal tree. For example, the goal that

describes changing the state of the lift from moving up to moving

arriving up.

• Variables

� In Event-B and UML-B model: variables are added manually for the

same reasons described above. Some of these variables are actually

defined as a part of predicate, some are not. However, since none of

the TD notations can be used to identify these kinds of variables,

they have to be defined by hand. For example, in the lift case study,

we have to add variables currentFl and dir to represent the current

position of the lift and lift direction respectively. These variables are

defined as machine variables.

� In KAOS: there are no variables to be added.

8.1.7 Invariants

• In Event-B and UML-B: invariants are used to maintain some properties

that remain true for a specific sequence of operations of the system.

� In Event-B: invariants are defined by hand within the MACHINE

part INVARIANTS.

Chapter 8 Comparison and Evaluation 210

� In UML-B: invariants are defined within the MACHINE part by

hand. They can be defined as machine invariants or class invariants.

• In KAOS: invariants are used with the same propose and identified at

some points of a goal tree by hand. Using invariants in a goal tree is

useful because they provide the supportive information that is needed

for generating a correct goal tree.

8.1.8 Controlling time progress: Ticktok event

• In Event-B and UML-B: a Ticktok event is generated for the purpose of

controlling time progress.

• There is no Ticktok event created in KAOS.

8.1.9 Easy to Understand

• For an Event-B model: the Event-B model output is simple to

understand for someone who has knowledge of Event-B.

• For UML-B model: UML-B has specific keywords such as Self and uses

special symbols such as “.” to refer to attributes of a class. Thus, time

may be needed for developers/users at the beginning to understand these

symbols before generating a model. The advantage of using UML-B is

its graphical user interface; thus it is easy for users to figure out where

to add the missing information to the model.

• For KAOS model: since defining KAOS looks similar to declaring an

event in Event-B, creating a KAOS goal is adapted from what is done in

Event-B. The KAOS output goals are not difficult to understand since

there is a textual definition for each goal to explain what the goal aims

for. The formal definition for the goal elaborates the goal by using

temporal logic operators, which currently is only the operator �

(eventually).

Chapter 8 Comparison and Evaluation 211

8.1.10 Capturing all requirements

TDs are best used to describe the behaviour of functional requirements with

causal dependencies between objects and timing constraints. However, TDs are not

suitable for use with some kinds of requirements, for example, non-functional

requirements. Even though TDs can capture the functional requirements as

described above, in generating Event-B, UML-B and KAOS models there needs to

be some extra information added, as described in section 8.1.6.

8.2 Comparison with other related works

Some groups have investigated cause/effect relationships and timing

constraints. For example, (Abrial, 2008b) introduces patterns for state-based

specifications in Event-B. The patterns are useful for our research. They can,

however, illustrate only cause/effect relationships, not timing constraints. (Cansell,

et al., 2007) introduces timing constraints pattern for distributed applications. A

number of groups combined UML and B such as (Ledang and Souquierès, 2002a),

who investigated a combination of B-Method with Class diagram and State

diagram, while (Jiufu, 2007) has proposed translating statechart diagrams into B;

(Younes and Ayed, 2007) focuses on the translation of Activity diagrams into

Event-B; (Idani and Ledru, 2007) propose systematic transformation rules to

generate a Class diagram from a B specification. Our work is unique in providing

techniques to create timing constraints from a TD to an Event-B model.

There is a work by (Bicarregui, et al., 2008) to extend Event-B notations to

three LTL operators: Next (�), Eventually (�) and Bounded eventually (≤ n) where

n denotes time units. The work proposes using three new constructs that are to

replace the standard Event-B structure, WHEN…THEN…END, that are

WHEN…NEXT…END, WHEN…EVENTUALLY…END and

WHEN…WITHIN...NEXT…END to represent the three LTL operators Next,

Eventually and Bounded eventually respectively. We have approached this in a

Chapter 8 Comparison and Evaluation 212

different way, as we are generating timing constraints in Event-B model by using

the standard Event-B notations provided.

 (Aziz, et al., 2009) captures three KAOS Goal model patterns: Immediate

achieve, Eventually/Unbound achieve, and Bounded achieve to represent three new

constructs as proposed by (Bicarregui, et al., 2008) above.

Apart from our early work in (Joochim and Poppleton, 2007) that investigates

how to generate KAOS goal trees from TD, there are a number of investigations

that explore possible techniques for translating KAOS framework to other models.

For example, (Letier, et al., 2008) proposes a technique to translate KAOS

Operation models to Labelled Transition Systems (LTS). The LTS is Statemachine-

like diagram; it is a group of components in which each component is defined by a

set of states and transitions, where each transition is labelled by an event.

(Landtsheer, et al., 2004) investigates translating KAOS Operation models into

event-based tabular specifications, which describe system requirements through a

set of tables. Some attempts to combine KAOS with B are introduced by (Ponsard

and Dieul, 2006) who try to generate B operations from KAOS operations.

However, this work only focuses on traceability links. Other work has been done

by (Hassan, et al., 2009) to transform KAOS Operation model to B specification

language in security requirements, unlike our work, which attempts to generate

KAOS Goal model and Operation model from TD.

A variety of versions of the lift case study are used in many papers such as

(Dardenne, et al., 1991), who explain how to generate KAOS goals, agents and

operations for a simple lift case study. Some of those lift specifications are

functional requirements, as ours is, but no timing constraints are involved. A

number of the specifications identify human activities such as “passenger out of

elevator when at destination floor”, which we do not deal with in our research.

Research by (Choppy and Reggio, 2005) represents a combination of Problem

frames and UML diagrams (Use case, Class, and State diagrams) by using a lift

system case study. This paper shows how to define a lift system in a class diagram

and a state diagram with a fewer number of components than our work, and with

no timing constraints involved. The classical B machine which represents a lift

Chapter 8 Comparison and Evaluation 213

control system found in (Abrial, 1996) is the most similar model to ours that shows

how to represent the lift specifications by B method. However, this case study also

has a fewer number of objects than within our case study and has no timing

constraints.

There exist TD editors such as TimeGen (Intel), TimingTool (MOHC, 2009),

and SynaptiCAD (SynaptiCAD, 2009). However, these editors do not fit with our

research since they are defined with different types from our TD, and are not

written on the Eclipse framework. Thus, they could not easily fit with RODIN and

UML-B.

8.3 Evaluation

8.3.1 Tool validation

The output of our translation can be automatically validated by the RODIN

tools. B prover is an automatic proof of correctness of implementation relative to

high level specifications. It also does syntax checking for a model. ProB performs

consistency checking (finding deadlocks and invariant violations) and animation.

The validation detail for each model is shown below:

For an Event-B model from the direct translation: We used RODIN

Platform 0.9.1 for creating an Event-B model obtained from the direct translation

rule. The Event-B model is verified by RODIN toolkit for proof obligations (POs)

and syntax checking while a RODIN plugin, ProB 1.1.0, is used for consistency

checking (find deadlocks and invariant violations) and animation. We also used

ProB 1.2.6 (which is a separated tool from the RODIN toolkit) for model re-

checking and verifying deadlock freeness. The result of validation is: Total POs:

135, Auto discharged: 122, Manual discharged: 11, Reviewed: 2 and

Undischarged: 0.

Chapter 8 Comparison and Evaluation 214

For an Event-B model generated from a UML-B model: The UML-B

0.4.3 is used for generating a model obtained from ATL, RODIN Platform 0.9.1 is

used for POs. A RODIN plugin, ProB 1.1.0, is used for consistency checking and

animation. The result of validation is: Total POs: 142, Auto discharged: 54, Manual

discharged: 84, Reviewed: 4 and Undischarged: 0. The number of POs auto

discharged in the UML-B model is fewer than in the Event-B model and manual

discharged is more because the UML-B model comprises a large number of

transitions and classes. Moreover, the way to define guards and invariants by

combining many associations among classes makes it harder to prove than in the

direct translation.

During the process of improving the translation tools, we have had to rework

proofs many times. As the work progressed, the number of automatically proved

obligations slightly increases while the number of manually proved obligations

increases a lot.

KAOS: there is a tool for Goal model verification (Rifaut, et al., 2003).

However, to use it one needs to be trained abroad.

8.3.2 Validation of the correctness of the transformations defined

Currently, we use a lift as only one case study. The lift case study has many

objects and shows various kinds of timing constraints, and simultaneous and causal

dependecies in a reactive requirements system. However, it is needed to have other

case studies to ensure the correctness of the transformation defined. The purpose is

to check whether our TD notaions cover other kinds of requirements. The other

case studies should have different kinds of casual dependencies and timing

constraints from the lift system. Morover, it is necessary to validate the

transformation rules are correct and complete. To do so, we should to provide

incorrect/incomplete input models to inspect whether the translation rules generate

an incorrect output model. This task is considered as further work.

Chapter 8 Comparison and Evaluation 215

8.4 Quantification manual editing

The Event-B, UML-B and KAOS output models are needed to be manually

modified in order to make the models complete. The quantification of how much

manual editing is needed for each model shown in the following.

Event-B : 108 modified to 450 lines generated (24%)

UML-B : 162 modified to 557 lines generated (29.08%)

KAOS: 8 modified to 32 leaf node goals generated (2.50%)

How to make the tools fully automated is explained in the following.

8.4.1 Event-B

For the additional information that cannot be identified by the TD notations

itself (e.g. identifying the number of floors), we have nothing to do with the rules

in such this case.

For the information that already have in the model -e.g. variables currentFl

and dir- but we cannot generate to Event-B, we may create a new TD notation to

support identifying variables at the CauseEffectArrows’ conditions. Thus, model

variables can be directly generated from those CauseEffectArrows’ conditions.

Moreover, the SimultaneityArrows should be identified by a combination of OR

nodes (see the example problem in section 5.4).

For some extra events added, we may alter the rules to generate an Event-B

model from the TD state transitions instead of using TD segments as what we have

done.

Currently, the Event-B output model is generated as text. Users have to copy

the text to RODIN tool again. Thus, to make the tool more efficiently, the Event-B

output model should automatically be generated in the RODIN tool.

8.4.2 UML-B

The ways to correct the UML-B model is the same as those described for the

Event-B model above. However, the limitations of ATL and UML-B cause some

Chapter 8 Comparison and Evaluation 216

parts of UML-B output models have to be manually generated. The further step of

fulfilling the TD to UML-B translation rules is to revise UML-B tool to support

identifying TD multiple previous states of the same target state and

SimultaneityArrows.

8.4.3 KAOS

The same ways used in the Event-B model are also used to have complete

KAOS Goal models. The problem only found in KAOS is, in some goals, it is

needed to declare conditions on the SimultaneityArrows. Thus, a new notation

for the SimultaneityArrows to identify conditions is introduced. The conditions

are optional and used as guards for the goals.

8.5 Example of proof obligations

This section shows an example of how the invariant preservation statement

(INV), as described in section 2.3.2, is used for the PO. Consider an event

floorsensorOffUp which is obtained from the UML-B model as shown in the

following:

MACHINE L

…

INVARIANTS

 Invariant1: ¤¥
·((d¦Door)§(lift_state
 StopAtFloor §

 door_state(d) = Closed))

…

EVENTS floorsensorOffUp

 ANY FloorsensorSelf

 f

 WHERE

 Guard1: f ¦ FLOOR
 Guard2: FloorsensorSelf ¦ Floorsensor
 Guard3: floorsensor_state(FloorsensorSelf) = On

 Guard4: lift_state = MovingDepartingUp

Chapter 8 Comparison and Evaluation 217

 Guard5: (gclock − liftMovingDepartingUpTime � 2)

 (̈gclock − liftMovingDepartingUpTime 	 5)

 ¨ f = currentFl ̈dir = Up

 THEN

 Action1: lift_state © MovingUp
 …

 END

According to the consistency proofs as described in section 2.3.2, the

corresponding parts of the machine are used in the INV proof obligation for the

event floorsensorOffUp as shown in the following. This PO is named

automatically by the RODIN prover as floorsensorOffUp/Inv1/INV. Notice that

Guard5 is separated into individual guards for the proof as shown below:

 Axioms -

Invariant1

¤¥
·((d¦Door)§(lift_state
 StopAtFloor

§ door_state(d) = Closed))

 Guard1 f ¦ FLOOR

 Guard2 FloorsensorSelf ¦ Floorsensor

 Guard3 floorsensor_state(FloorsensorSelf) = On

Hypothesis Guard4 lift_state = MovingDepartingUp

 Guard5 gclock − liftMovingDepartingUpTime � 2

 Guard6 gclock − liftMovingDepartingUpTime 	 5

 Guard7 f = currentFl

 Guard8 dir = Up

 Before-after

predicate

of the event

(BA)

lift_state = MovingUp

 �

Goal

Modified

Specific

Invariant (Im)

¤¥
·((d¦Door)§(MovingUp
 StopAtFloor

§

door_state(d) = Closed))

Chapter 8 Comparison and Evaluation 218

As shown above, a proof obligation comprises two parts: a hypothesis, and a

goal; shown by the elements before and after the � symbol respectively. In this

case, this goal is to prove that after the action: lift_state = MovingUp (which is

represented by BA) is performed, the Invariant1 is still preserved. That is, a goal is

generated by assigning a state MovingUp in BA to the lift_state in Invariant1

(as highlighted). This goal is proved interactively by the Predicate Prover (PP) in

the Proof Control panel as shown in Figure 2-7.

Chapter 9 Contribution and

Limitations

The contribution of the thesis is showing how to formalise specification of

systems that contain causal dependencies with timing constraints, in Event-B and

KAOS by using TDs. As a result, we propose systematic translation rules to

transform TD into Event-B, UML-B and KAOS Goal models.

This chapter declares benefits and contributions to research we have done in

section 9.1 and section 9.2 respectively. The limitation of the work is demonstrated

in section 9.3, and future directions are stated in section 9.4.

9.1 Benefits

According to the research goals in section 1.3, the first two goals to generate

translation techniques to transform a TD to Event-B, UML-B and KAOS were

accomplished. The benefit of our contribution is providing another option to

generate timing constraints and causal dependencies requirements of a reactive

system to Event-B, UML-B and KAOS Goals by using graphical visualisation, TD.

Thus, instead of manually generating these targets model (Event-B, UML-B and

KAOS Goal model) in a textual form, users can use the TD as a graphical front-

end, and these target models are created automatically. Moreover, in Event-B and

UML-B, we provided a pattern to generate events’ pre- and post-conditions

Chapter 9 Contribution and Limitations 220

that concern with timing constraints, and an event (Ticktok) to control time

progression. Having the timing constraints guard and the time progress patterns

decrease the time required in considering how to model the time from the

beginning.

For KAOS, apart from having the translation rules to automatically generate

KAOS goals from TD, we also provided guidelines to generate KAOS Goal trees

from TD. These guidelines assist users to generate KAOS parent goals from sub-

goals. Along the parent goal/sub-goal creating process, some goals may be

introduced. Thus, it helps users to find incomplete information that may be left

since from the requirements elicitation processes.

The third goal in section 1.3, evaluating the use of TD to specify timing

constraints and casual dependencies requirements in Event-B compare with using

textual one has not been done due to limited time.

9.2 Contribution

We produced a model - in four different forms - on a real time case study: a

lift system.

1. TD based TD UML 2.0 diagram notations

2. Event-B

3. UML-B

4. KAOS Goal and Operation models

Our contribution can be identified as the following:

1. We propose bridging the gap between graphical requirements notations (TD)

and declarative FM (Event-B). We provide a technique to generate Event-B

from an existing tool UML-B from TD. This is another contribution of

generating Event-B models from graphical notation TD. Both model

generated from 1 and 2 can be proved correct by RODIN tools.

2. Since KAOS Goal models explain timing constraints by linear temporal

logics (LTLs) which are in textual forms, we present a technique to generate

Chapter 9 Contribution and Limitations 221

KAOS goals’ formal definition by TD which it represents as graphical

requirements.

3. We provide multiple views of one system’s requirements by expressing them

in TD, Event-B, UML-B and KAOS models.

The detail of each contribution is described in the following sections.

9.2.1 Requirements to TD

We used TD which is based on the (OMG, 2007) Robust TD notations for

capturing the requirements of a system. A subset of TD notations was selected and

some notations were justified to make it easy to generate Event-B, UML-B and

KAOS Goal models. Those TD notations are essential to identify causal

dependencies between objects and their combinations. TD classes were generated

from objects in requirements that have causal dependency between them. One can

define timing constraints, conditions that make states of objects change, and

simultaneous events, by TD notations. The selected TD notations have abilities to

model other systems that can be described with time constraints.

9.2.2 TD to Event-B Translation

We produced rules for translating systematically. We created an Event-B

model from TD. In doing this, first, we identified TD BNF definitions to describe

individual TD notations. Next, we created formal translation rules to transform TD

into a textual Event-B model, where the TD BNF definitions are used as input

parameters for the translation.

• The translation rules create sets, constants and axioms in a CONTEXT

part. For a MACHINE part, the rules can create variables and their initial

values, invariants, events and a Ticktok event, of which the latter is used

for time progress. For each event, the translation rules can create an event’s

name, non-deterministic local variables (if there are any), events’ guards

and actions.

Chapter 9 Contribution and Limitations 222

• Other parts that cannot be identified by TD such as additional variables,

events and invariants, need to be created by hand. For example, lift

changing direction and guards for ticking the clock. The detail of generating

Event-B to TD is explained in Chapter 5.

9.2.3 TD to UML-B Translation

Since TD represents partial system requirements, to generate a complete

Event-B model, one needs to use other non-timing requirements. In doing that, one

may add those requirements directly to an Event-B model as in the previous

translation or use another model, e.g. Class diagram and Statecharts. To make it

convenient for users and to integrate TD with an existing tool, we have

implemented systematic translation to provide part of an automatic translation

system from TD using UML-B.

We generated transition rules to transform TD to UML-B by using ATL. In

doing that, the TD metamodel is created on Eclipse and used to create a case study

as example for a source model; an existing UML-B metamodel is used as a target

model.

• The rules can generate a CONTEXT (without detail inside due to the

limitation of ATL) and a MACHINE part. In the MACHINE part, the

rules generate classes, class attributes and their types, Statemachines,

some machine variables and a Ticktok event. In a Statemachines, the

rules generate states, state transitions with names, parameters with their

types, guards and actions.

• Other parts, such as detail inside the CONTEXT, invariants, additional

variables and events, are created by hand since they cannot be identified

by TD notations.

9.2.4 TD to KAOS Translation

The third approach was adopted because other relevant research tries to

combine KAOS and B, but does not deal with integrating requirements in which

Chapter 9 Contribution and Limitations 223

there are timing constraints and causal dependencies between objects to KAOS.

Our research has been done in a different way, in which we use TD information to

generate KAOS Goal model.

• We generate translation rules that use TD BNF definitions as input

parameters for creating an individual KAOS goal, focusing on goal’s

formal definition. The rules create each goal’s formal definition, a

goal’s name, and type, while its textual definition is created manually.

Next, those goals are formalised and grouped by KAOS goal refinement

patterns to generate a goal tree by our proposed techniques. Invariants

are used in some points of the goal tree in order to fulfil the goal tree

refinement pattern and additional goals are added by hand in this step.

• An operation is generated from each leaf node goal of goal trees by

KAOS goal refinement patterns provided by (Letier, 2001).

9.3 Limitations

9.3.1 General limitations

At the moment, the TD can generate partial Event-B machines both from the

direct translation rules and UML-B as well as partial KAOS Goal and Operation

models. However, the TD has not been designed to collect whole system

requirements. Therefore, some information needs to be added in these models.

Another constraint is the original UML TD 2.0 and our TD notations still

cannot be used to demonstrate human actions. There are many requirements

concerned with human activities, for example in the lift system that needs human

intervention to request the lift by pressing buttons. In this case, we can demonstrate

the pressing activity by representing it as an event in Event-B, but cannot control

human pressing activity time. For a clearer example, there is the case study of the

Ambulance Service system in (Letier, 2001), which is used to generate a KAOS

model. The Ambulance Service system has many timing constraints; one of them is

responding to emergency calls requiring the rapid intervention of an ambulance.

Chapter 9 Contribution and Limitations 224

That requirement has to deal with calling by operators. It is a good case study for

KAOS, but not for TD, since we cannot guarantee the correctness of a model

depending on human activities.

9.3.2 Timing diagram notations and tool limitations

For the limitation of the TD itself, one cannot identify a SimultaneityArrow

with a combination OR node. For example, Figure 7-3, lines 16 and 17, are used to

identity whenever a floor sensor is set off, once the lift is in a state of moving up or

moving down. Those lines are represented by SimultaneityArrows since there is

no timing constraint concerned. Not having a combination node causes a problem

whenever generated by an Event-B model (as describe in section 5.4). That is, an

event action is generated in which there are two conflicting actions within the same

event. This has to be resolved by separating them into different events manually.

The UML-B tool also has the limitation that cannot fully support generating

SimultaneityArrows (as shown in Figure 6-43). Another weakness is, currently,

there is no TD editor. Thus, sometime it takes a lot effort to create and to alter TD

manually while using EMF.

9.3.3 KAOS translation limitation

At present, KAOS translation has a limitation of not dealing with timing

constraints that have occurred in the past states. This issue is considered to be a

future work.

9.4 Future directions

Some future directions are suggested as follows.

1. We found that from the lift case study, sometimes, it is necessary to

identify combination of OR nodes and constraints for the

Chapter 9 Contribution and Limitations 225

SimultaneityArrows. Thus, TD SimultaneityArrows should be

appended by these properties.

2. In UML-B translation, Timeline Transitions names may be

identified. Defining Timeline Transitions names would help creating

events’ name easier. Instead of the events’ name being generated by a

combination of many elements, it is defined directly from the Timeline

Transitions.

3. Eliminate the manual addition of information which can be generated

from the TD.

4. Include past operators in the KAOS goal models to cover other

applications that may have to use them.

5. At the moment TD is created by using EMF. Thus, having a graphical

front end for TD is a way for creating and modifying a TD model easily.

6. In a case where enormous system requirements with timing constraints

are concerned, it is better to generate a TD for each subsystem and

integrate the TDs to form a whole system. The future work is to find

techniques to combine those TD subsystems.

7. Identify refinement steps in the Event-B model. For example, in the lift

case study, the abstract model has basic lift behaviour while the timing

constraints are introduced in the refinement steps.

8. Investigate a technique to transfer KAOS Goal and Operational models

to an Event-B model.

9. More case studies to ensure the toolset techniques are sufficiently general

and robust.

References 226

References

Abrial, J.-R. (1996). The B-book : Assigning Programs to Meanings, Cambridge

University Press.

Abrial, J.-R. (2005a). Formal Method Course. Retrieved 26 April 2005.

Abrial, J.-R. (2005b). Using Design Patterns in Formal Developments. In

Proceedings of the Refinement Workshop (REFINE 2005), University of

Manchester, UK, Elsevier.

Abrial, J.-R. (2006). Formal Methods in Industry: Achievements, Problems,

Future. In Proceedings of the 28th International Conference on Software

Engineering (ICSE’06), Shanghai, China, ACM.

Abrial, J.-R. (2007). Formal Methods : Theory Becoming Practice, Journal of

Universal Computer Science 13(5): 619-628.

Abrial, J.-R. (2008a). Summary of Event-B Proof Obligations. Retrieved 29 April

2009, Available from

http://www.cs.man.ac.uk/~banach/COMP60110.Info/CourseSlides/Slides.6

up.0903ProofObs.pdf.

Abrial, J.-R. (2008b). Tutorial - Case study of a complete reactive system in Event-

B: A mechanical press controller. In Proceedings of the 5th International

Symposium on Formal Methods (FM’2008), Turku, Finland, Springer,

LNCS 5014.

Abrial, J.-R., Arief, B., Butler, M., Coleman, J., Iliasov, A., Johnson, I., Jones, C.,

Khomenko, V., Koutny, M., Laibinis, L., Leppanen, S., Lecomte, T.,

Leuschel, M., Oliver, I., Razali, R., Rezazadesh, A., Romanaovsky, A.,

Snook, C., Troubitsyna, E., Voisin, L., and Warwick, J. (2007). RODIN

Assessment Report 3, Deliverable D34 (D7.4), RODIN.

Abrial, J.-R., Butler, M., Hallerstede, S., and Voisin, L. (2008). A Roadmap for the

Rodin Toolset. In Proceedings of the 1st International Conference on

Abstract State Machines, B and Z, London, UK, Springer-Verlag, LNCS

5238.

References 227

Abrial, J.-R., and Hallerstede, S. (2006). Refinement, Decomposition and

Instantiation of Discrete Models: Application to Event-B, Fundamenta

Informaticae 77(1-2): 1-28.

Abrial, J.-R., Hallerstede, S., Metha, F., Metayer, C., and Voisin, L. (2005).

Specification of Basic Tools and Platform. RODIN Deliverable D10.

Abrial, J.-R., and Hoang, T. S. (2008). Using Design Patterns in Formal Methods:

an Event-B Approach. In Proceedings of the 5th International Colloquium :

Theoretical Aspects of Computing (ICTAC 2008), Istanbul, Turkey,

Springer-Verlag.

Agerholm, S., and Larsen, P. G. (1998). A Lightweight Approach to Formal

Methods. In Proceedings of the International Workshop on Current Trends

in Applied Formal Methods, Boppard, Germany, Springer-Verlag.

Allemand, M., C. Attiogbé, et al. (2002). SHE'S Project. A report of join

workshops on the 2nd International Workshop on Integration of

Specification Techniques for Applications in Engineering (INT'02),

Grenoble, France.

Allilaire, F., and Idrissi, T. (2004). ADT : Eclipse development tools for ATL. In

Proceedings of the 2nd European Workshop on Model Driven Architecture

(MDA) with an emphasis on Methodologies and Transformations

(EWMDA-2), Canterbury, UK, Computing Laboratory, University of Kent.

Ambler, S. W. (2004). The Object Primer: Agile Model Driven Development with

UML 2, Cambridge University Press.

Anwer, S., and Ikram, N. (2006). Goal Oriented Requirement Engineering: A

Critical Study of Techniques. In Proceedings of the 13th Asia Pacific

Software Engineering Conference (APSEC’06), Bangalore, India, IEEE

Xplore.

Attiogbé, C., P. Poizat, et al. (2003). Integration of Formal Datatypes within State

Diagrams. In Proceeding of the European Joint Conferences on Theory and

Practice of Software, Warsaw, Poland, LNCS.

ATL (2008). ATLAS Transformation Language. Retrieved 20 April 2008,

Available from http://www.eclipse.org/m2m/atl/.

ATLAS Group, L. a. I. (2008). ATL : Atlas Transformation Language ATL User

Manual - Version 0.7. Retrieved 11 Febuary 2008, Available from

http://www.eclipse.org/m2m/atl/doc/ATL_User_Manual[v0.7].pdf.

Aziz, B., Arenas, A. E., Bicarregui, J., Ponsard, C., and Massonet, P. (2009). From

Goal-Oriented Requirements to Event-B Specifications. In Proceedings of

the 1st NASA Formal Methods Symposium, Moffett Field, California,

USA, Deploy-Project ePrint.

Barland, I., Greiner, J., and Vardi, M. (2006). Using Temporal Logic to Specify

Properties. Retrieved 3 July 2006, Available from

http://cnx.org/content/m1231/latest.

Bashar, N., and Easterbrook, S. (2000). Requirement Engineering: A Roadmap. In

Proceedings of the Conference on the The Future of Software Engineering,

Limerick, Ireland, ACM.

Becker-Kornstaedt, U., H. Neu, et al. (2001). Software Process Technology

Transfer: Using a Formal Process Notation to Capture a Software Process

References 228

in Industry. In Proceeding of the 8th European Workshop:software Process

Technology, Germany, Springer Berlin.

Berthomieu, B. and M. Diaz (1991). "Modeling and Verification of Time

Dependent Systems Using Timed Petri Nets." IEEE Transactions on

Software Engineering 17(3): 259-273.

Bicarregui, J., Arenas, A., Aziz, B., Massonet, P., and Ponsard, C. (2008). Towards

Modelling Obligations in Event-B. In Proceedings of the International

Conference of ASM, B and Z Users, London, UK, Springer, LNCS 5238.

Bicarregui, J. C., Clutterbuck, D. L., Finnie, G., Haughton, H., Lano, K., Lesan, H.,

Marsh, D. W. R. M., Matthews, B. M., Moulding, M. R., Newton, A. R.,

Ritchie, B., Rushton, T. G. A., and Scharbach, P. N. (1997). Formal

methods into practice: case studies in the application of the B method,

Software Engineering 144(2): 119-133.

Bolognesi, T., and Brinksma, E. (1987). Introduction to the ISO specification

language LOTOS, Computer Networks and ISDN Systems 14(1): 25-59.

Booch, G., Rumbaugh, J., and Jacobson, I. (2003). The Unified Modeling

Language User Guide, Pearson Education.

Bowen, J. P., and Hinchey, M. G. (2006). Ten Commandments of Formal Methods

…Ten Years Later, Computer 39(1): 40-48.

Brisolara, L. B. d., M. E. Kreutz, et al. (2009). UML as Front-End Language for

Embedded Systems Design, IGI Global.

Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., and Grose, T. J. (2003a).

Eclipse Modeling Framework, Addison-Wesley Professional.

Budinsky, F., Steinberg, D., Merks, E., Raymond, Ellersick, and Grose., T.

(2003b). EclipseModeling Framework, Addison Wesley Professional.

Butler, M. (2000). csp2B : A Practical Approach to Combining CSP and B, Formal

Aspects of Computing 12(3): 182-196.

Butler, M., Abrial, J.-R., Damchoom, K., and Edmunds, A. (2008). Applying

Event-B and Rodin to the filestore (Invited paper). In Proceedings of the

ABZ 2008, London, UK, ASRNet.

Butler, M., and Hallerstede, S. (2007). The Rodin Formal Modelling Tool. In

Proceedings of the BCS-FACS Christmas 2007 Workshop - Formal

Methods In Industry, London, United Kingdom, BCS.

Butler, M., Leuschel, M., and Snook, C. (2005a). Combining CSP and B for

Specificaiton and Property Verification. In Proceedings of the Formal

Methods 2005, Newcastle Upon Tyne, England, Springer, LNCS 3582.

Butler, M., Leuschel, M., and Snook, C. (2005b). Tools for system validation with

B abstract machines (Invited papers). In Proceedings of the 12th

International Workshop on Abstract State Machines (ASM 2005), Paris,

France, Laboratory of Algorithm, Complexity and Logic.

Cansell, D., Méry, D., and Rehm, J. (2007). Time Constraint Patterns for Event B

Development. In Proceedings of the Formal Specification and Development

in B, 7th International Conference of B (B 2007), Besancon, France,

Springer, LCNS 4355.

Cassez, F. and O.-H. Roux (2005). "Structural Translation from Time Petri Nets to

Timed Automata." Electronic Notes in Theoretical Computer Science

128(6): 145-160.

References 229

Cerone, A. and A. Maggiolo-Schettini (1999). "Time-based expressivity of time

Petri nets for system specification." Theoretical Computer Science 216(1-

2): 1-53.

Chen, P. P.-S. (1976). The Entity-Relationship Model - Toward a Unified View of

Data, ACM Transactions on Database Systems (TODS) 1(1): 9-36.

Choppy, C., and Reggio, G. (2005). A UML-based approach for problem frame

oriented software development, Information and Software Technology

47(14): 929-954.

Chung, L. (1993). Representing and Using Non-Functional Requirements: A

Process-Oriented Approach. PhD from Department of Computer Science,

University of Toronto.

ClearSy (2009). Atelier-B. Retrieved 19 October 2008, Available from

http://www.atelierb.eu/index_en.html.

Cobden, M., Humphreys, B., Macarthur, K., and O'Neill, B. (2007). Timing

Diagram Plugin Support for RODIN/UML-B, A group design project

report, Department of Electronics and Computer Science, University of

Southampton.

Cox, K., J. G. Hall, et al. (2005). "Editorial: A roadmap of problem frames

research." Information and Software Technology 47(14): 891-902.

Dardenne, A., Fickas, S., and Lamsweerde, A. v. (1991). Goal-directed Concept

Acquisition in Requirements Elicitation. In Proceedings of the 6th

International Workshop on Software Specification and Design, Como, Italy,

IEEE.

Dardenne, A., Lamsweerde, A. v., and Fickas, S. (1993). Goal-Directed

Requirements Acquisition, Science of Computer Programming 20(1-2): 3-

50.

Darimont, R. (1995). Process Support for Requirments Elaboration. PhD from

Dépt. Ingénierie Informatique, Université Catholique de Louvain.

Darimont, R., and Lamsweerde, A. v. (1996). Formal Refinement Patterns for

Goal-Driven Requirements Elaboration, ACM SIGSOFT Software

Engineering Notes 21(6): 179-190.

Dehbonei, B., and Mejia, F. (1995). Formal development of safety-critical software

systems in railway signalling. Applications of Formal Methods. M. G.

Hinchey and J. P. Bowen, Prentice-Hall: 227–252.

Eclipse (2008). Eclipse Modeling Framework Project (EMF). Retrieved 2

September 2008, Available from http://www.eclipse.org/modeling/emf/.

El-Maddah, I., and Maibaum, T. (2003). Goal-Oriented Requirements Analysis for

Process Control Systems Design. In Proceedings of the Formal Methods

and Models for Co-Design (MEMOCODE’03), Mont Saint-Michel, France,

IEEE Computer Society.

EMFT-Eclipse (2009). Eclipse Modeling Framework Technology (EMFT).

Retrieved 9 March 2009, Available from

http://www.eclipse.org/modeling/emft/?project=ecoretools.

Event-B.org (2008). B2Latex. Retrieved 17 November 2008, Available from

http://www.event-b.org/plugins.html.

References 230

Event-B.org (2009). Rodin Platform Installation. Retrieved 15 Febuary 2009,

Available from http://www.event-b.org/platform.html.

FAUST (2008). An Overview of the FAUST Toolbox. Retrieved 20 November

2008, Available from http://faust.cetic.be.

Fisler, K. (2006). Towards Diagrammability and Efficiency in Event Sequence

Language, International Journal on Software Tools for Technology (STTT)

8(4): 431-447.

Fisman, D., and Eisner, C. (2009). Sugar 2.0 Formal Specification Language.

Retrieved 17 April 2009, Available from

www.haifa.ibm.com/projects/verification/sugar/images/sugar2_sv-ac.ppt.

Fitzgerald, J., Larsen, P. G., Mukherjee, P., Plat, N., and Verhoef, M. (2004).

Validated Designs for Object-oriented Systems, Springer.

Fowler, M., and Scott, K. (2004). UML Distilled: A Brief Guide to The Standard

Object Modelling Language, Addison-Wesley Professional.

Friedental, S., and Steiner, R. (2004). System Modeling Language (SysML)

Overview. In Proceedings of the NDIA System Engineering.

Gavras, A. (2003). "Considerations on telecom modelling languages." Retrieved 7

October, 2009, Available from

http://www.modatel.org/~Modatel/pub/deliverables/D3.add2-final.pdf.

George, V. and R. Vaughn (2003). "Application of Lightweight Formal Methods in

Requirement Engineering1." CrossTalk-The Journal of Defense Software

Engineering(Jan).

Guttag, J. V., Horning, J. J., Garland, S. J., Jones, K. D., Modet, A., and Wing, J.

M. (1993). Larch : Language and Tools for Formal Specification, Springer-

Verlag.

Hall, A. (2007). Realising the Benefits of Formal Methods, Formal Methods and

Software Engineering: 1-4.

Hallerstede, S. (2006). Justifications for the Event-B Modelling Notation. In

Proceedings of the Formal Specification and Development in B (B 2007),

Besancon, France, Springer, LNCS 4533.

Hassan, R., Bohner, S., El-Kassas, S., and Hinchey, M. (2009). Integrating formal

analysis and design to preserve security properties. In Proceedings of the

42nd Hawaii International Conference on System Sciences (HICSS-42),

Waikoloa, Hawaii, USA, IEEE Computer Society.

Hause, M., Thom, F., and Moore, A. (2005). Inside SysML, Computing & Control

Engineering 16(4): 10-15.

Heaven, W., and Finkelstein, A. (2004). A UML profile to support requirements

engineering with KAOS, Software Engineering 151(1): 10-27.

Hoare, C. A. R. (1985). Communicating Sequential Processes, Prentice-Hall

International Series In Computer Science.

Hoare, J., Dick, J., Neilson, D., and Sørensen, I. (1996). Applying the B

technologies on CICS. In Proceedings of the 3rd International Symposium

of Formal Methods Europe (FME’96), Oxford, United Kingdom, Springer-

Verlag.

Hozmann, G. J. (1997). The model checker SPIN, IEEE Transactions on Software

Engineering 23(5): 275-295.

Hull, E., Jackson, K., and Dick, J. (2004). Requirements Engineering, Springer.

References 231

IBM (2008). Sugar 2.0, Available from

http://www.eetimes.com/news/design/showArticle.jhtml?articleID=165049

43.

Idani, A., and Ledru, Y. (2007). Object oriented concepts identification from

formal B specifications Formal Methods in System Design 3: 233-247.

Intel. Retrieved 2 June 2009, Available from "NEW"

http://www.xfusionsoftware.com/.

Jackson, M. (1995). Software Requirements and Specifications : A Lexicon of

Practice, Principles and Prejudices, Addison-Wesley.

Jackson, M. (2001). Problem Frames Analysis and Structuring Software

Development Problems, Addison-Wesley.

Jackson, M. (2005). "Problem Frames and Software Engineering." Information &

Software Technology 47(14): 903-912.

Jayaratchagan, N. (2004). Declarative Programming in Java, Available from

http://www.onjava.com/pub/a/onjava/2004/04/21/declarative.html.

Jiufu, L. (2007). Integration of statechart and B method based analysis and

verification for flight control software of unmanned aerial vehicle, ACM

SIGSOFT Software Engineering Notes 32(2): 1-4.

Jones, C. B. (1986). Systematic Software Development Using VDM, Prentice Hall.

Joochim, T., and Poppleton, M. R. (2007). Transforming Timing Diagrams into

Knowledge Acquisition in Automated Specification. In Proceedings of the

2nd International Conference on Advance in Information Technology

(IAIT2007), Bangkok, Thailand, King Mongkut's University of

Technology.

Joochim, T. at. el. (2010). Timing Diagrams Requirements Modeling using Event-B

Formal Methods. In Proceedings of the Software Engineering (SE 2010),

Innsbruck, Austria, Actapress.

Jureta, I. (2006). Engineering Requirement for Information Systems using KASO

and Request frameworks. Retrieved 22 JaNaury 2009, Available from

http://www.isys.ucl.ac.be/staff/stephane/GETI2100Slide/KAOS.pdf.

Khan, M. U., Geihs, K., Gutbordt, F., Gohner, P., and Trauter, R. (2006). Model-

Driven Development of Real-Time Systems with UML 2.0 and C. In

Proceedings of the Joint Meeting of the Fourth on Model-Based

Development Computer-Based Systems and The Third International

Workshop on Model-Based Methodologies for Pervasive and Embedded

Software, Postdam, Germany, IEEE Computer Society.

King, S., Hammond, J., Chapman, R., and Pryor, A. (2000). Is Proof More Cost-

Effective Than Testing?, IEEE Transactions on Software Engineering

26(8): 675-686.

Langari, Z. and A. B. Pidduck (2005). Quality, Cleanroom and Formal Methods.

International Conference on Software Engineering, the third workshop on

Software quality St Louis, Missouri, USA, ACM.

Lamsweerde, A. v. (2000). Formal Specification : a Roadmap. In Proceedings of

the Future of Software Engineering Track (ICSE' 00), Limerick, Ireland,

ACM.

Lamsweerde, A. v. (2001). Goal-Oriented Requirements Engineering: A Guide

Tour. In Proceedings of the 5th IEEE International Symposium on

References 232

Requirements Engineering (RE’01), Toronto, Canada, IEEE Computer

Society.

Lamsweerde, A. v. (2004). Goal-Oriented Requirement Engineering : A Roundtrip

from Research to Practice. In Proceedings of the 12th IEEE Joint

International Requirements Engineering Conference (RE’04), Kyoto, Japan,

IEEE Xplore.

Lamsweerde, A. v. (2009). Requirements Engineering : From System Goals to

UML Models to Software Specifications, John Wiley & Son.

Lamsweerde, A. v., Dardenne, A., Delcourt, B., and Dubisy, F. (1991). The KAOS

Project: Knowledge acquisition in automated specifications of software. In

Proceedings of the AAAI Spring Symposium series, Symposium: Design of

Composite Systems, Stanford University, California, USA, AI Magazine.

Lamsweerde, A. v., and Massonet, R. D. P. (1995). Goal-Directed Elaboration of

Requirements for a Meeting Scheduler: Problems and Lessons Learnt. In

Proceedings of the 2nd IEEE International Symposium on Requirements

Engineering, York, England, IEEE Computer Society.

Lamsweerde, A. v., and Willemet, L. (1998). Inferring Declarative Requirements

Specifications from Operational Scenarios, IEEE Transactions on Software

Engineering 24(12): 1089-1114.

Landtsheer, R. D., Letier, E., and Lamsweerde, A. v. (2004). Deriving tabular

event-based specifications from goal-oriented requirements models,

Requirements Engineering 9(2): 104-120.

Ledang, H., and Souquierès, J. (2002a). Contributions for Modelling UML State-

Charts in B. In Proceedings of the 3rd International Conference on

Integrated Formal Methods, Turku, Finland, Springer, LNCS 2335.

Ledang, H., and Souquierès, J. (2002b). Integration of UML Views using B

Notations. In Proceedings of the Workshop on Integration and

Transformation of UML models (WITUML’02), Malaga, Spain.

LeMieux, D. H. (2003). On-Line Termal Barrier coating Monitoring for Real-time

Failure Protection and Life Maximization, U.S. Department of Energy,

National Enery Technology Laboratory: 1-15.

Letier, E. (2001). Reasoning about Agents in Goal-Oriented Requirement

Engineering. PhD Thesis from Dépt. Ingénierie Informatique, Universite

Catholique de Louvain Belgium.

Letier, E., Kramer, J., Magee, J., and Uchitel, S. (2008). Deriving Event-Based

Transition Systems from Goal-Oriented Requirements Models, Automated

Software Engineering 15(2): 175-206.

Letier, E., and Lamsweerde, A. v. (2002a). Agent-Based Tactics for Goal-Oriented

Requirements Elaboration. In Proceedings of the 24th International

Conference on Software Engineering (ICSE’02), Orlando, Florida, USA,

ACM.

Letier, E., and Lamsweerde, A. v. (2002b). Deriving Operational Software

Specifications from System Goals. In Proceedings of the 10th International

Symposium on the Foundation of Software Engineering (FSE 2002), USA,

ACM, Vol. 27.

Leuschel, M. (2007). ProB. In Proceedings of the RODIN Industry Day, Paris,

France, CLEARSY.

References 233

Leuschel, M., and Butler, M. (2005). Automatic Refinement Checking for B. In

Proceedings of the 7th International Conference on Formal Engineering

Methods (ICFEM’05), Manchester, UK, Springer, LNCS 3785.

Liu, J., P. H. Chou, et al. (2001). Power-Aware Scheduling under Timing

Constraints and Slack Analysis for Mission-Critical Embedded Systems.

38th Design Automation Conference, Las Vegas, NV, USA.

Matoussi, A., Gervais, F., and Laleau, R. (2008). A First Attempt to Express KAOS

Refinement Patterns with Event B. In Proceedings of the 1st International

Conference on Abstract State MAchine, B and Z (ABZ 2008), London, UK,

Springer-Verlag, LNCS 5238.

Métayer, C., Abrial, J.-R., and Voisin, L. (2005). Event-B language. Retrieved 15

March 2009, Available from http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf.

Métayer, C., and Voisin, L. (2007). The Event-B Mathematical Language.

Retrieved 2 October 2008, Available from

http://www.labri.fr/perso/casteran/FM/Rodin/mathLanguage-2007-10-

26.pdf.

MOHC (2009). TimingTool. Retrieved 10 June 2009, Available from "NEW"

http://www.timingtool.com/.

Moore, A. (2006, 1 May 2006). SysML Effort About to Bear Fruit. Retrieved 7

March 2009, Available from

http://www.sdtimes.com/content/article.aspx?ArticleID=29301.

Nakagawa, H., Taguchi, K., and Honiden, S. (2007). Formal specification

generator for KAOS: model transformation approach to generate formal

specifications from KAOS requirements models. In Proceedings of the 22nd

IEEE/ACM international conference on Automated software engineering,

Atlanta, Georgia, USA, ACM.

OMG-MOF (2007). Meta Object Facility (MOF) specification, 12 May 2009,

Available from http://www.omg.org/mof/.

OMG (2007). UML Superstructure Specification, v2.0. Retrieved 22 Janury 2009,

Available from http://www.omg.org/cgi-bin/doc?formal/05-07-04. .

OMG (2008). UML 2.0. Retrieved 5 August 2008, Available from

http://www.uml.org/#UML2.0.

Oshiro, K., Watahiki, K., and Saeki, M. (2003). Goal-Oriented Idea Generation

Method for Requirements Elicitation. In Proceedings of the 11th IEEE

International Conference on Requirements Engineering, California, USA,

IEEE Computer Society.

Peterson, J. L. (1981). Petri Net Theory and the Modeling of Systems, Prentice

Hall.

Petre, M. (1995). Why Looking Isn’t Always Seeing: Readership Skills and

Graphical Programming, Communications of the ACM 38(6): 33-44.

Pfleeger, S. L. (1998). Software Engineering Theory and Practice, POrentice Hall.

Ponsard, C., and Dieul, E. (2006). From Requirements Models to Formal

Specifications in B. In Proceedings of the International Workshop on

Regulations Modelling and their Validation and Verification

(REMO2V’06), Luxemburg, Presses Universitaires de Namur.

References 234

Ponsard, C., Massonet, P., Molderez, J. F., Rifaut, A., Lamsweerde, A. v., and Van,

H. T. (2007). Early Verification and Validation of Mission Critical

Systems, Formal Methods in System Design 30(3): 133-247.

Popandreeva, A. (2007). Object-Oriented Analysis and Design Using UML of a

Test "Rotation with Sample". International Conference on Computer

Systems and Technologies (CompSysTech' 07), University of Rousse,

Bulgaria, ACM.

Praxis High Integrity Systems (2008). Correctness by Construction. Retrieved 22

December 2008, Available from http://www.praxis-his.com.

ProB (2009). ProB 1.2. Retrieved 15 March 2009, Available from

http://www.stups.uni-duesseldorf.de/ProB/overview.php.

Ramchandani, C. (1974). Analysis of asynchronous concurrent systems by timed

Petri nets. Massachusetts Institute of Technology. MA, Cambridge. PhD

Thesis.

Razili, R., Snook, C., Poppleton, M., Garratt, P., and Walters, R. (2007).

Experimental Comparison of the Comprehensibility of a UML-based

Formal Specification versus a Textual One. In Proceedings of the 11th

International Conference on Evaluation and Assessment in Software

Engineering (EASE’07), Keele University, UK, ACM.

Reisig, W. (1985). Petri nets: an introduction, Springer-Verlag New York, Inc.

Requet, A. (2007). BRAMA. In Proceedings of the RODIN Industry Day, Paris,

France, CLEARSY.

Requet, A. (2008, 16 July 2008). The B formal Method: from Research to

Teaching, 19 April 2009, Available from

http://www.atelierb.eu/pdf/nantes_2008_atelier_b_v4.pdf.

Rifaut, A., Massonet, P., Molderez, J.-F., Ponsard, C., Stadnik, P., Lamsweerde, A.

v., and Hung, T. V. (2003). FAUST : Formal Analysis of Goal-Oriented

Requirements Using Specification Tools. In Proceedings of the 11th IEEE

International Requirements Engineering Conference (RE’03), Monterey

Bay, California, USA, IEEE.

RODIN (2009). Development Environment for Complex Systems (Rodin).

Retrieved 10 Febuary 2009, Available from http://rodin.cs.ncl.ac.uk/.

Rubio-Loyola, J., Serrat, J., Charalambides, M., Flegkas, P., Pavlou, G., and

Lafuente, A. L. (2005). Using linear temporal model checking for goal-

oriented policy refinement frameworks. In Proceedings of the 6th IEEE

International Workshop on Policies for Distributed Systems and Networks,

Stockholm, Sweden, IEEE Computer Society, Vol. 4347.

Schneider, S. (2000). Concurrent and Real-time Systems: The CSP Approach, John

Wiley & Son, Ltd.

Schneider, S. (2001). The B-method : An introduction, Palgrave Macmillan.

Smith, M. H., Hozmann, G. J., and Etessami, K. (2001). Event and Constraints: A

Graphical Editor for Capturing Logic Requirement of Programs. In

Proceedings of the 5th IEEE International Symposium on Requirements

Engineering, Toronto, Canada, IEEE Computer Society.

Snook, C., and Butler, M. (2006). UML-B: Formal modelling and design aided by

UML, ACM Transactions on Software Engineering and Methodology 15(1):

92-122.

References 235

Snook, C., and Butler, M. (2008a). UML-B and Event-B: an integration of

languages and tools. In Proceedings of the IASTED International

Conference on Software Engineering (SE2008), Innsbruck, Austria, ACTA

Press.

Snook, C., and Butler, M. (2008b). UML-B: A plug-in for the Event-B tool set In

Proceedings of the 1st International Conference on Abstract State

Machines, B and Z, London, UK, Springer-Verlag.

Snook, C., and Butler., M. (2001). Using a Graphical Design Tool for Formal

Specification. In Proceedings of the 13th Workshop of the Psychology of

Programming Interest Group, Bournemouth, United Kingdom, PPIG.

Sommerville, I. (2004). "Critical Systems Specifications 3 Formal Specification."

Retrieved 5 October, 2009, Available from

www.cs.st-andrews.ac.uk/~ifs/Books/SE8/Syllabuses/CRIT-SYS-

SLIDES/CritSysSpec-3.ppt.

Sørensen, I. H. (1994). The B-Toolkit demonstration. In Proceedings of the 6th

Nordic Workshop on Programming Theory, Aarhus, Denmark, Springer,

LNCS 915.

Sparx Systems (2006). UML 2 Timing Diagram. Retrieved 26 May 2009, Available

from

http://sparxsystems.com.au/resources/uml2_tutorial/uml2_timingdiagram.ht

ml

Spivey, J. M. (1992). The Z Notation. A Reference Manual, Prentice Hall.

SynaptiCAD (2009). Retrieved 25 May 2009, Available from

http://www.syncad.com/.

SysML (2008). OMG System Modelling Language. Retrieved 3 Febuary 2009,

Available from http://www.omgsysml.org/.

SysML Partners (2006). SysML v.1.0a Specification (revised OMG Submission).

Retrieved 22 JaNaury 2009, 2006, Available from http://www.sysml.org.

Vanderperren, Y., and Dehaene, W. (2005). UML 2 and SysML: an Approach to

Deal with Complexity in SoC/NoC Design. In Proceedings of the

Conference on Design, Automation and Test in Europe (DATE’05),

Munich, Germany, IEEE Computer Society.

Visual Paradigm (2007). UML 2 Diagrams : Timing Diagram. Retrieved

September, 2007, Available from http://www.visual-

paradigm.com/VPGallery/diagrams/TimingDiagram.html.

Yoder, M. A. and B. A. Black (2006). A Study of Graphical vs. Textual

Programming for Teaching DSP. In Prodeeding of the 36
th

 annula Frontiers

in Education Conference, San Diego, CA, IEEE Xploer.

Younes, A. B., and Ayed, L. J. B. (2007). Using UML Activity Diagrams and Event

B for Distributed and Parallel Applications. In Proceedings of the 31st

Annual International Computer Software and Applications Conference

(COMPSAC 2007), Beijing, China, IEEE Computer Society, Vol. 1.

You, S. K E.(1993). Towards Modeling and Reasoing Support for Early-Phase

Requiremetns Engineering. In Proceeding of the 1
st
 International

Symposium on Requirements Engineering (RE'93), Bonn, Germany, IEEE

Xplore.

References 236

Wing, J. M. (1990). "A Specifier's Introduction to Formal Methods." IEEE

Computer 23(9): 8-26.

Zimmerman, M. K., Lundqvist, K., and Leveson, N. (2002). Investigating the

Readability of State-Based Formal Requirements Specification Languages.

In Proceedings of the 22nd International Conference on Software

Engineering (ICSE’02), Orlando, Florida, USA, ACM.

Appendix A. Event-B Textual

Translation rules

A.1 Event-B systematic textual direct translation rules

1. Rule : ����
��
�

�

����
��
(���������→

 “SETS”

� � ���
(���������

 “CONSTANTS”

� � �����
	�
(���������

 “AXIOMS” �

� � ������(��������

2. Rule : �.	�$����

�.	�$���(���������→

 “VARIABLES”

� � �����	
����(����������

� � �����	
�
	
�(���������

 “INVARIANTS”

� � �����	
�������(���������

� � �����	
�
	
����(���������

 “EVENTS” �

� � �����	
�������
(���������

� � �����	
�
	
����
(���������

� � � � �������
(��������

Appendix A. Event-B Textual Translation rules 238

3. Rule : ���
�

�

����
(�������)�→�

 <FOR> t <IN> ������������(��������

 { ���	���	��(t)��+ “_STATES ” }

4. Rule : �����
	�
�

��

������
	�
(���������→

 <FOR> t <IN> ������������(���������

� � � { �#
�
������
�
�
	
��(��� }

�

��#
�
������
�
�
	
��(���→ �#
�
��������
�(�����
	
�(�))

��#
�
��������
�(9��/���%�:(�����→ 9��/� + “ ”

 + �#
�
��������
�(%�:(���)

��#
�
��������
�(9��/�:�;�<�) → 9��/

�

5. Rule : �������

�

�������(�������) →�

 <FOR> t <IN> �����������
(��������

 { ��	��(t���+ “_STATES = ” + �#
�
�����
	
��(��� }

���#
�
�����
	
��(����→ “{” + �����
	
���
(�����
	
�(�)) + “}”

�������
	
���
(9��/���%�:(���) → 9��/� + “,” + �����
	
���
(%�:(���)

�������
	
���
(9��/�:�;�<�) → 9��/�

�

�

�

Appendix A. Event-B Textual Translation rules 239

6. Rule : ���	
�����

���	
����(�������) →

 <FOR> � <IN> ������������(�������)

 { <FOR> �� <IN> �����
	
�(��

 {���	��(�)��+ � + “Time” } }

7. Rule : ���	
��������

���	
�������(�������) →

 <FOR> � <IN> ������������(�������)

 { <FOR> �� <IN> �����
	
�(��

 {���	��(�)��+ � + “Time ∈ % ” } }

8. Rule : ���	
�������
�

���	
�������
(�������) →

 <FOR> � <IN> ������������(�������)

 { <FOR> �� <IN> �����
	
�(��

 {���	��(�)��+ � + “Time := 0” } }

9. Rule : ���	
�
	
��

�

���	
�
	
�(�������) →

 <FOR> � <IN> ������������(�������)

 {��	��(�)��+ “State” }

10. Rule : ���	
�
	
�����

�

���	
�
	
����(�������) →

<LET> exp = ���	��(�������������	��(�))

<IN>

Appendix A. Event-B Textual Translation rules 240

<FOR> �� <IN> ������������(�������)

 { ��	��(�)��+ “State ∈” +

 <IF> �%	��	
	�(���	��(��	��(�)))

 <THEN>

 “(”+ �#
�
��	
	�+�
���(�����	
	��!"�(exp)) + “)”�

 + “ → ” + ���	���	��(�) + “_STATE”

 <ELSE> ���	���	��(�) + “_STATE”

 <ENDIF>

 }

�#
�
��	
	�+�
���(9��/���%�:(���) →

 9��/� + “× ” + �#
�
��	
	�+�
���(%�:(���)

�#
�
��	
	�+�
���(9��/�:�;�<�) → 9��/

11. Rule : ���	
�
	
����
�

�

���	
�
	
����
(�������) →

 <FOR> � <IN> ������������(�������)

 { ��	��(�)��+ “State := {xInitValuex}” }

12. Rule : �����
���

�

� � �����
���→ “Ticktok = BEGIN gclock := gclock + 1 END ”

A.2 Translation rules for creating an event

13. Rule : �����
�	���

�

�����
�	��(%�&����) →

 <LET> exp = �'�(�
(%�&����)

 <IN> �'�((exp) + exp + “=”

Appendix A. Event-B Textual Translation rules 241

14. Rule : ��	
	���
�

�

��	
	���
(%�&����) →

<LET> exp = �'�((�'�(�
(%�&����))

<IN>

 <IF> �%	��	
	�(���	��(exp))

 <THEN>

 “ANY” +

 �#
�
�����	
	��(�����	
	�(���	��(exp)))

 <ELSE>

 “WHEN ”

 <ENDIF>

��#
�
�����	
	��(9��/ : �����%�:(���) →

 9��/� + “,” + �#
�
�����	
	��(�����%�:(���)

��#
�
�����	
	��(9��/ :�;�<) → 9��/�

15. Rule : ��	
	���	
��	����

�

��	
	���	
��	���(%�&����) →

<LET> exp = ���	��(�'�((�'�(�
(%�&����)))

<IN>

 <IF>�%	��	
	�(exp)

 <THEN>

 “WHERE” +

 �#
�
�����	
	����
(�����	
	�(exp))

 <ELSE> <SKIP>

 <ENDIF>

��#
�
�����	
	����
(9��/ : �����%�:(���) →

 9��/� + “:” + ��	
	��!"�(9��/) + “&” +

�� � � � �#
�
�����	
	����
(�����%�:(���)

Appendix A. Event-B Textual Translation rules 242

��#
�
�����	
	����
(9��/ : ;�<) → 9��/� + “:” + ��	
	��!"�(9��/)

16.�Rule : ��
��

�

��
��

�
(%�&����) →

 {���“(“ +����
�
��
���(������!"�(�����

�
(%�&����)))�+�“)” }

17. Rule : ���
�
��
���

���
�
��
���(��/�()*�) →

<IF> ��/�()*� = %��*���

<THEN><IF> �%	�������(%��*��)

 <THEN> ���������	
�(�������
(%��*��), �������(%��*��))

 + “&” + ����"���	������
��(�������
(%��*��))

 + ����"������(�����(%��*��))

 <ELSE>

 ����"���	������
��(�������
(%��*��))

 + ����"������(�����(%��*��))

 <ENDIF>

<ELSE><IF> ��/�()*� = 0"��/��

<THEN><LET> Nodes = �������
	����(0"��/�)

 <IN> Nodes → <ITERATE>(n; ret : String = “(” |

 <IF> n =��	�
(Nodes)

 <THEN> ret = ret + ���
�
��
���(n) + “)”

 <ELSE> ret = ret + ���
�
��
���(n) + “) ∨ (”

 <ENDIF>)

 <ENDIF>

<ELSE> <IF> ��/�()*� = -�#"��/��

<THEN><LET> Nodes = �������
	����(-�#"��/�)

 <IN> Nodes → <ITERATE>(n; ret : String = “(” |

 <IF> n =��	�
(Nodes)

 <THEN> ret = ret + ���
�
��
���(n) + “)”

Appendix A. Event-B Textual Translation rules 243

 <ELSE> ret = ret + ���
�
��
���(n) + “) ∧ (”

 <ENDIF>)

 <ENDIF>

<ENDIF>

18. Rule : ���������	
��

���������	
�(%�&����, (����&) → “(gclock - ”

�����������������������,����((���(�
(%�&����))

�����������������������,����(�
(%�&����))

�����������������������,�“Time ≥ ”

�����������������������,����&�
��
((����&) + “)”

�����������������������,�“& (gclock – ”

�����������������������,����((���(�
(%�&����))

�����������������������,����(�
(%�&����))

�����������������������,�“Time ≤ ”

�����������������������,���""�
��
((����&) + “)”

19. Rule : ����"���	������
���

����"���	������
��(%�&����) →

<LET> exp = ���	��(�'�((�'�(�
(%�&����)))

<IN>

 <IF> �%	��	
	�(exp)

 <THEN>

 �'�((�'�(�
(%�&����))

 + “State(”

�� � �#
�
��	
	���
(�����	
	�(exp))

 + “) = ”

 + �'�(�
(%�&����)

 <ELSE>

�� � �'�((�'�(�
(%�&����))

 + “State = ”

Appendix A. Event-B Textual Translation rules 244

 + �'�(�
(%�&����)

 <ENDIF>

�

�#
�
��	
	���
(9��/���%�:(���) → 9��/� +

“� ” + �#
�
��	
	���
(%�:(���)

�#
�
��	
	���
(9��/�:�;�<�) → 9��/

20. Rule : ����"������

 ����"������(���/�����) →

 <IF> ���"
!(���/�����)

 <THEN> <SKIP>

 <ELSE> �������
	���� (���/�����) → <ITERATE>(p; ret : String = “ ” | →

 ret ← “&” + p)

<ENDIF>

21. Rule : ��
������

�

��
������(%�&����) →

 “&” + “(” + �#
�
��
���
	
���
(%�&����,�����
������(%�&����)) + “)”

�#
�
��
���
	
���
(%�&����,�9��/�: %�&�%�:(���) →

 ����"���
������(%�&����,�9��/)

 + “ ∨ ”

+ �#
�
��
��
	
���
(%�&����,�%�&�%�:(���)

�#
�
��
���
	
���
(%�&����, 9��/�: ;�<) →

 ����"���
������(%�&����,�9��/)

22.�Rule : ����"���
������

����"���
������(%�&����,�9��/) →

<LET> exp = ���	��(�'�((�'�(�
(%�&����)))

Appendix A. Event-B Textual Translation rules 245

<IN>

 <IF> �%	��	
	�(exp)

 <THEN> �'�((�'�(�
(%�&����)) + “State(”

 + �#
�
��	
	���
(�����	
	�(exp))�

 + “) = ”

 + �'�(�
(9��/)

 <ELSE>

 �'�((�'�(�
(%�&����)) + “State =”

 + �'�(�
(9��/)

 <ENDIF>

23. Rule : �����
(%�&����)

�����
(%�&����) →

<LET> exp = �'�((�'�(�
(%�&����)

<IN>

<IF> �%	��	
	�(���	��(exp))

<THEN> �'�(�	��(exp)

 + “State(”

 + �#
�
��	
	���
(�����	
	�(���	��(exp)))

 + “) := ”

 + �'�(�
(%�&����)

<ELSE> exp

 + “State : = ”

 + �'�(�
(%�&����)

<ENDIF>

24. Rule : ������

 ������(%�&����) →

<LET> exp = ���	��(�'�((�'�(�
(��������(�))))

<IN>

<IF> �%	������(%�&����)

Appendix A. Event-B Textual Translation rules 246

<THEN> <FOR> �� <IN> ��������)(%�&����)

 {<IF> �%	��	
	�(exp)

 <THEN>

 �'�((�'�(�
(��������(�)))

 + “State(”

 + �#
�
��	
	���
(�����	
	�(exp))

 + “) := ”

 + �'�(�
(��������(�))

 <ELSE>

 �'�((�'�(�
(��������(s)))

 + “State := ”

 + �'�(�
(��������(�))

 <ENDIF>

 <IF> <NOT> ��= �	�
(��������)(%�&����))

����������������<THEN> “&”

 <ELSE> <SKIP>

 <ENDIF>

 }

<ELSE> <SKIP>

<ENDIF>

25. Rule : ���������

����������(%�&����) →

�� �'�((�'�(�
(%�&����))

 + �'�(�
(%�&����)�

 + “Time := gclock”

Appendix B. An Event-B model

created from the Direct

translation rules

An Event-B model is generated from systematic textual translation rules is

illustrated below. This Event-B model composes of two parts: a context named

LiftSystem_EventB_ctx and a machine named LiftSystem.

B.1 Context : LiftSystem_EventB_ctx

context LiftSystem_EventB_ctx

constants Lit Unlit On Off rLit rUnlit MovingArrivingUp

MovingUp MovingDepartingUp StopAtFloor MovingDepartingDown

MovingDown MovingArrivingDown Open Closed acTivated deActivated

Activated Deactivated FLOOR TOP BOTTOM Up Down

sets FLOORLAMP_STATES FLOORSENSOR_STATES REQUESTLAMP_STATES

LIFT_STATES DOOR_STATES UPLAMP_STATES DOWNLAMP_STATES DIR

axioms

 @axm39 DIR = {Up, Down}

 @axm1 FLOORLAMP_STATES = {Lit, Unlit}

 @axm2 Lit
 Unlit

 @axm3 FLOORSENSOR_STATES = {On, Off}

 @axm4 On
 Off

 @axm5 REQUESTLAMP_STATES = {rLit, rUnlit}

 @axm6 rLit
 rUnlit

Appendix B. An Event-B model created from the Direct translation rules 248

 @axm7 LIFT_STATES =

{MovingArrivingUp, MovingUp, MovingDepartingUp,

 StopAtFloor, MovingDepartingDown, MovingDown,

 MovingArrivingDown}

 @axm8 MovingArrivingUp
 MovingUp

 @axm9 MovingArrivingUp
 MovingDepartingUp

 @axm10 MovingArrivingUp
 StopAtFloor

 @axm11 MovingArrivingUp
 MovingDepartingDown

 @axm12 MovingArrivingUp
 MovingDown

 @axm13 MovingArrivingUp
 MovingArrivingDown

 @axm14 MovingUp
 MovingDepartingUp

 @axm15 MovingUp
 StopAtFloor

 @axm16 MovingUp
 MovingDepartingDown

 @axm17 MovingUp
 MovingDown

 @axm18 MovingUp
 MovingArrivingDown

 @axm19 MovingDepartingUp
 StopAtFloor

 @axm20 MovingDepartingUp
 MovingDepartingDown

 @axm21 MovingDepartingUp
 MovingDown

 @axm22 MovingDepartingUp
 MovingArrivingDown

 @axm23 StopAtFloor
 MovingDepartingDown

 @axm24 StopAtFloor
 MovingDown

 @axm25 StopAtFloor
 MovingArrivingDown

 @axm26 MovingDepartingDown
 MovingDown

 @axm27 MovingDepartingDown
 MovingArrivingDown

 @axm28 MovingDown
 MovingArrivingDown

 @axm29 DOOR_STATES = {Open, Closed}

 @axm30 Open
 Closed

 @axm31 UPLAMP_STATES = {acTivated, deActivated}

 @axm32 acTivated
 deActivated

 @axm33 DOWNLAMP_STATES = {Activated, Deactivated}

 @axm34 Activated
 Deactivated

 @axm35 FLOOR = (BOTTOMªTOP)
 @axm38 BOTTOM = 1

 @axm37 TOP = 3

 @axm36 Up
 Down

end

Appendix B. An Event-B model created from the Direct translation rules 249

B.2 Machine : LiftSystem_EventB

machine LiftSystem_EventB sees LiftSystem_EventB_ctx

variables reqFl currentFl floorlampState floorsensorState

requestlampState doorState liftState uplampState downlampState dir

gclock floorlampLittime floorlampUnlitTime floorsensorOnTime

floorsensorOffTime requestlampRequestedTime

requestlampUnrequestedTime liftMovingArrivingUpTime

liftMovingUpTime liftMovingDepartingUpTime liftStopAtFloorTime

liftMovingDepartingDownTime liftMovingDownTime

liftMovingArrivingDownTime doorOpenTime doorClosedTime

uplampDeactivatedTime uplampActivatedTime downlampDeactivatedTime

downlampActivatedTime floorlampLitTime

invariants

 @inv1 requestlampState « FLOOR � REQUESTLAMP_STATES
 @inv2 reqFl ¬ FLOOR
 @inv3 floorlampState « FLOOR � FLOORLAMP_STATES
 @inv4 floorsensorState « FLOOR � FLOORSENSOR_STATES
 @inv5 doorState « FLOOR � DOOR_STATES
 @inv6 liftState « LIFT_STATES
 @inv7 uplampState « UPLAMP_STATES
 @inv8 downlampState « DOWNLAMP_STATES
 @inv9 currentFl « FLOOR
 @inv10 dir « DIR
 @inv11 gclock « ­
 @inv12 floorlampLittime « ­
 @inv13 floorlampUnlitTime « ­
 @inv14 floorsensorOnTime « ­
 @inv15 floorsensorOffTime « ­
 @inv16 requestlampRequestedTime « ­
 @inv17 requestlampUnrequestedTime « ­
 @inv18 liftMovingArrivingUpTime « ­

Appendix B. An Event-B model created from the Direct translation rules 250

 @inv19 liftMovingUpTime « ­
 @inv20 liftMovingDepartingUpTime « ­
 @inv21 liftStopAtFloorTime « ­
 @inv22 liftMovingDepartingDownTime « ­
 @inv23 liftMovingDownTime « ­
 @inv24 liftMovingArrivingDownTime « ­
 @inv25 doorOpenTime « ­
 @inv26 doorClosedTime « ­
 @inv27 uplampDeactivatedTime « ­
 @inv28 uplampActivatedTime « ­
 @inv29 downlampDeactivatedTime « ­
 @inv30 downlampDeactivatedTime « ­
 @inv31 downlampActivatedTime « ­
 @inv32 floorlampLitTime « ­
 @inv33 ¬(uplampState = acTivated

®
 downlampState = Activated)

 @inv34 doorState(currentFl) = Open ¯

liftState = StopAtFloor

 @inv35 liftState
 StopAtFloor ¯

doorState(currentFl) = Closed

 @inv36 currentFl
 (currentFl + 1) // For POs

 @inv37 currentFl
 (currentFl − 1) // For POs

events

 event INITIALISATION

 then

 @act1 requestlampState ° FLOOR × {rUnlit}
 @act2 reqFl ° ±
 @act3 floorlampState ° {1²Lit, 2²Unlit, 3²Unlit}
 // if changes to floorlampState ³ {}, PO is discharged
 @act4 floorsensorState ° {1 ² On, 2 ² Off, 3 ² Off}
 // if changes to floorsensorState ³ {}, PO is discharged
 @act5 doorState ° FLOOR × {Closed}
 @act6 liftState ° StopAtFloor

Appendix B. An Event-B model created from the Direct translation rules 251

 @act7 uplampState ° deActivated
 @act8 downlampState ° Deactivated
 @act9 currentFl ° BOTTOM
 @act10 dir ° Up
 @act11 gclock ° 0
 @act12 floorlampLittime ° 0
 @act13 floorlampUnlitTime ° 0
 @act14 floorsensorOnTime ° 0
 @act15 floorsensorOffTime ° 0
 @act16 requestlampRequestedTime ° 0
 @act17 requestlampUnrequestedTime ° 0
 @act18 liftMovingArrivingUpTime ° 0
 @act19 liftMovingUpTime ° 0
 @act20 liftMovingDepartingUpTime ° 0
 @act21 liftStopAtFloorTime ° 0
 @act22 liftMovingDepartingDownTime ° 0
 @act23 liftMovingDownTime ° 0
 @act24 liftMovingArrivingDownTime ° 0
 @act25 doorOpenTime ° 0
 @act26 doorClosedTime ° 0
 @act27 uplampDeactivatedTime ° 0
 @act28 uplampActivatedTime ° 0
 @act30 downlampDeactivatedTime ° 0
 @act31 downlampActivatedTime ° 0
 @act29 floorlampLitTime ° 0
 end

 event UserRequestlamprLit

 // The original name got from the rule is requestlamprLit

 any f

 where

 @grd1 f « FLOOR
 then

 @act1 reqFl ° reqFl ́{f}

Appendix B. An Event-B model created from the Direct translation rules 252

 @act2 requestlampState(f) ° rLit
 @act3 requestlampRequestedTime ° gclock
 end

 event SetRequestlamprUnlit

// line 6; the original name got from the rule

is requestlamprUnLit

 any f

 where

 @grd1 f « FLOOR
 @grd2 liftState = StopAtFloor

®
 ((gclock − liftStopAtFloorTime � 2)

®
 (gclock − liftStopAtFloorTime 	 4))

®
 f = currentFl

 @grd3 requestlampState(f) = rLit

 then

 @act1 requestlampState(f) ° rUnlit
 @act2 requestlampUnrequestedTime ° gclock
 end

 event doorOpen // line 9

 any f

 where

 @grd1 liftState = StopAtFloor

®
 ((gclock − liftStopAtFloorTime � 1)

®
 (gclock − liftStopAtFloorTime 	 5))

®
 f « reqFl ® f = currentFl

 @grd3 doorState(f) = Closed

 then

 @act1 doorState(f) ° Open
 @act2 doorOpenTime ° gclock
 end

 event doorClosed

 where

 @grd1 doorState(currentFl) = Open

Appendix B. An Event-B model created from the Direct translation rules 253

 @grd2 liftState = StopAtFloor // from POs

 then

 @act1 doorState(currentFl) ° Closed
 @act2 reqFl ° reqFl µ {currentFl}
 @act3 doorClosedTime ° gclock
 end

 event liftMovingDepartingUp // line 18 and 7

 any f

 where

 @grd6 f « FLOOR
 @grd1 (requestlampState(f) = rLit

®
 f > currentFl)

®

(doorState(currentFl) = Closed

®
 ((gclock − doorClosedTime � 1)

®
 (gclock − doorClosedTime 	 5))

®
 f « reqFl)

 @grd5 currentFl ¶ reqFl
 // The lift much serve the currentFl first if there is

 a request for the currentFl. Otherwise, the lift will

move to other floors and in the same time service

the currentFl.

 @grd3 liftState = StopAtFloor

 @grd7 dir = Up

 then

 @act1 liftState ° MovingDepartingUp
 @act2 uplampState ° acTivated
 @act3 downlampState ° Deactivated
 @act4 liftMovingDepartingUpTime ° gclock
 end

event liftMovingDepartingUp2

 // Used whenever there is no continuously request between

connected floors; The lift will change its state from

MovingArrivingUp to MovingDepartingUp.

 any f

Appendix B. An Event-B model created from the Direct translation rules 254

 where

 @grd1 f « FLOOR
 @grd2 f « reqFl ® f > currentFl
 @grd3 currentFl ¶ reqFl
 @grd4 liftState = MovingArrivingUp

 @grd5 dir = Up

 then

 @act1 liftState ° MovingDepartingUp
 @act2 uplampState ° acTivated
 @act3 downlampState ° Deactivated
 @act4 liftMovingDepartingUpTime ° gclock
 end

 event liftMovingUp

 any f

 where

 @grd1 f « FLOOR
 @grd2 f « reqFl ® f > currentFl
 @grd3 currentFl ¶ reqFl
 @grd4 liftState = MovingDepartingUp

 @grd5 dir = Up

 @grd6 floorsensorState(currentFl) = Off

 // addition guard from Simultaneity -- future work

 then

 @act1 liftState ° MovingUp
 @act2 uplampState ° acTivated
 @act3 downlampState ° Deactivated
 @act4 liftMovingUpTime ° gclock
 end

 event liftMovingDepartingDown // line 19 and 8

 any f

 where

 @grd1 f « FLOOR
 @grd2 (requestlampState(f) = rLit

®
 f < currentFl)

®

(doorState(currentFl) = Closed

Appendix B. An Event-B model created from the Direct translation rules 255

®
 ((gclock − doorClosedTime � 1)

®
 (gclock − doorClosedTime 	 5))

®
 f « reqFl)

 @grd3 currentFl ¶ reqFl
 @grd6 liftState = StopAtFloor

 @grd5 dir = Down

 then

 @act1 liftState ° MovingDepartingDown
 @act2 uplampState ° deActivated
 @act3 downlampState ° Activated
 @act4 liftMovingDepartingDownTime ° gclock
 end

event liftMovingDepartingDown2

 // Used whenever there is no continuously request between

connected floors;The lift will change its state from

MovingArrivingDown to MovingDepartingDown.

 any f

 where

 @grd1 f « FLOOR
 @grd2 f « reqFl ® f < currentFl
 @grd3 currentFl ¶ reqFl
 @grd4 liftState = MovingArrivingDown

 @grd5 dir = Down

 then

 @act1 liftState ° MovingDepartingDown
 @act2 uplampState ° deActivated
 @act3 downlampState ° Activated
 @act4 liftMovingDepartingDownTime ° gclock
 end

 event liftMovingDown

 any f

 where

 @grd1 f « FLOOR
 @grd2 f « reqFl ® f < currentFl

Appendix B. An Event-B model created from the Direct translation rules 256

 @grd3 currentFl ¶ reqFl
 @grd4 liftState = MovingDepartingDown

 @grd5 dir = Down

 @grd6 floorsensorState(currentFl) = Off

 // addition guards from SimultaneityArrow -- future work

 then

 @act1 liftState ° MovingDown
 @act2 uplampState ° deActivated
 @act3 downlampState ° Activated
 @act4 liftMovingDownTime ° gclock
 end

 event floorsensorOn // line 4.1 and 4.2

 any f

 where

 @grd1 f « FLOOR
 @grd2 (liftState = MovingArrivingUp

®
 ((gclock − liftMovingArrivingUpTime � 2)

®
 (gclock − liftMovingArrivingUpTime 	 5))

®
 f = currentFl)

 ·
 (liftState = MovingArrivingDown

®
((gclock − liftMovingArrivingDownTime � 2)

®
 (gclock − liftMovingArrivingDownTime 	 5))

®
 f = currentFl)

 @grd4 floorsensorState(f) = Off

 then

 @act1 floorsensorState(f) ° On
 @act2 floorsensorOnTime ° gclock
 end

 event floorsensorOffUp

 // Line 3.1; the floorsensorOff has to be spited into 2

events: floorsensorOffUp and floorsensorOffDown. That is because

the Simultaneity arrows: MovingUp and MovingDown. Without the

Appendix B. An Event-B model created from the Direct translation rules 257

SimultanetiyArrow, those floorsensorOffUp and floorsensorOffDown

can be combined.

 any f

 where

 @grd1 f « FLOOR
 @grd2 liftState = MovingDepartingUp

®
 ((gclock − liftMovingDepartingUpTime � 2)

®
 (gclock − liftMovingDepartingUpTime 	 5))

®
 f = currentFl

®
 dir = Up

 @grd4 floorsensorState(f) = On

 then

 @act1 floorsensorState(f) ° Off
 @act2 liftState ° MovingUp
 @act3 floorsensorOffTime ° gclock
 end

 event floorsensorOffDown

 any f

 where

 @grd1 f « FLOOR
 @grd2 liftState = MovingDepartingDown

®
 ((gclock − liftMovingDepartingDownTime � 2)

®
 (gclock − liftMovingDepartingDownTime 	 5))

®
 f = currentFl

®
 dir = Down

 @grd3 floorsensorState(f) = On

 then

 @act1 floorsensorState(f) ° Off
 @act2 liftState ° MovingDown
 @act3 floorsensorOffTime ° gclock
 end

 event floorlampUnlit // line 1

 any f

 where

 @grd1 f « FLOOR
 @grd2 floorsensorState(f) = Off

Appendix B. An Event-B model created from the Direct translation rules 258

®
 ((gclock − floorsensorOffTime � 2)

®
 (gclock − floorsensorOffTime) 	 4)

®
 f = currentFl

 @grd3 floorlampState(f) = Lit

 then

 @act1 floorlampState(f) ° Unlit
 @act2 floorlampUnlitTime ° gclock
 end

 event floorlampLit // line 2

 any f

 where

 @grd1 f « FLOOR
 @grd2 floorsensorState(f) = On

®
 ((gclock − floorsensorOnTime � 2)

®
 (gclock − floorsensorOnTime 	 4))

®
 f = currentFl

 @grd3 floorlampState(f) = Unlit

 then

 @act1 floorlampState(f) ° Lit
 @act2 floorlampLitTime ° gclock
 end

 event liftMovingArrivingUp

 any f

 where

 @grd1 f « FLOOR
 @grd2 f « reqFl ® f > currentFl
 @grd4 currentFl ¶ reqFl
 @grd3 liftState = MovingUp

 @grd5 doorState(currentFl) = Closed // from POs

 @grd6 floorlampState(currentFl) = Unlit

// manually additional guards

 then

 @act1 liftState ° MovingArrivingUp
 @act2 currentFl ° currentFl + 1

Appendix B. An Event-B model created from the Direct translation rules 259

 @act3 liftMovingArrivingUpTime ° gclock
 @act4 doorState(currentFl+1) ° Closed // From PO
 end

 event liftMovingArrivingDown

 any f

 where

 @grd1 f « FLOOR
 @grd2 f « reqFl ® f < currentFl
 @grd3 currentFl ¶ reqFl
 @grd4 liftState = MovingDown

 @grd5 doorState(currentFl) = Closed // from POs

 @grd6 floorlampState(currentFl) = Unlit

// manually additionalguards

 then

 @act1 liftState ° MovingArrivingDown
 @act2 currentFl ° currentFl − 1
 @act3 liftMovingArrivingDownTime ° gclock
 @act4 doorState(currentFl − 1) ° Closed // From PO
 end

 event liftStopAtFloor // line 5

 any f

 where

 @grd1 f « FLOOR
 @grd2 floorsensorState(f) = On

®
 ((gclock − floorsensorOnTime � 1)

®
 (gclock − floorsensorOnTime 	 5))

®
 f « reqFl ® f = currentFl

 @grd3 liftState = MovingArrivingUp

· liftState = MovingArrivingDown
 then

 @act1 liftState ° StopAtFloor
 @act2 uplampState ° deActivated
 @act3 downlampState ° Deactivated

Appendix B. An Event-B model created from the Direct translation rules 260

 @act4 liftStopAtFloorTime ° gclock
 end

 event ChangeDirUp

 any f

 where

 @grd1 f « FLOOR
 @grd2 f « reqFl ® f > currentFl
 @grd3 currentFl ¶ reqFl
 @grd6 reqFl
 ±
 @grd4 liftState = StopAtFloor

 @grd5 dir = Down

 then

 @act1 dir ° Up
 end

 event ChangeDirDown

 any f

 where

 @grd1 f « FLOOR
 @grd2 f « reqFl ® f < currentFl
 @grd3 currentFl ¶ reqFl
 @grd4 reqFl
 ±
 @grd5 liftState = StopAtFloor

 @grd6 dir = Up

 then

 @act1 dir ° Down
 end

 event Ticktok

 where

 // Requestlamp Unlit

 @grd1 liftState = StopAtFloor

®
 requestlampState(currentFl) = rLit

®

(((gclock − liftStopAtFloorTime)� 2)

®
 ((gclock − liftStopAtFloorTime) 	 4))

Appendix B. An Event-B model created from the Direct translation rules 261

 ¯

 gclock - liftStopAtFloorTime < 4

 // Floorsensor On (when lift Moving Arriving Up).

 It has to be spited into two floorsensorOn guards.

 Because it cannot be written as

 => 5 + (liftMovingArrivingUpTime or

 LiftMovingArrivingDownTime) - gclock > 1

 @grd2 (liftState = MovingArrivingUp

®
floorsensorState (currentFl) = Off

®
 ((gclock − liftMovingArrivingUpTime) � 2)

®

((gclock − liftMovingArrivingUpTime) 	 5))

 ¯

 gclock -liftMovingArrivingUpTime < 5

 // Floorsensor On (when lift Moving Arriving Down)

 @grd3 (liftState = MovingArrivingDown

®

floorsensorState(currentFl) = Off

®
((gclock − liftMovingArrivingDownTime) � 2)

®
((gclock − liftMovingArrivingDownTime) 	 5))

 ¯

 gclock - liftMovingArrivingDownTime < 5

 // Floorlamp Lit

 @grd4 (floorlampState(currentFl) = Unlit

®
floorsensorState(currentFl) = On

®
((gclock − floorsensorOnTime) � 2)

®
((gclock − floorsensorOnTime) 	 4))

 ¯

 gclock - floorsensorOnTime < 4

 // Lift stops at floor

 @grd5 (floorsensorState(currentFl) = On

®
(liftState = MovingArrivingUp ·

 liftState = MovingArrivingDown)

®

currentFl « reqFl

Appendix B. An Event-B model created from the Direct translation rules 262

®
((gclock − floorsensorOnTime) � 1)

®
((gclock − floorsensorOnTime) 	 5))

 ¯

 gclock - floorsensorOnTime < 5

 // Floorsensor Off (when lift Moving Departing Up).

 It has to be spited into two floorsensorOff guards.

 Because it cannot be written as

 => 5 + (liftMovingDepartingUpTime or

 liftMovingDepartingDownTime) - gclock > 1

 @grd6 (liftState = MovingDepartingUp

®
floorsensorState(currentFl) = On

®
((gclock − liftMovingDepartingUpTime) � 2)

®
((gclock − liftMovingDepartingUpTime) 	 5))

 ¯

 gclock - liftMovingDepartingUpTime < 5

 // Floorsensor Off (when lift Moving Departing Down)

 @grd7 (liftState = MovingDepartingDown

®
floorsensorState(currentFl) = On

®
((gclock − liftMovingDepartingDownTime) � 2)

®
((gclock − liftMovingDepartingDownTime) 	 5))

 ¯

 gclock - liftMovingDepartingDownTime < 5

 // Lift Moving Departing Up and Down

 The guards for liftMovingDeparingUp and

 liftMovingDepartinDown are the same.

 @grd8 (doorState(currentFl) = Closed

®

liftState = StopAtFloor

®
((gclock − doorClosedTime) � 1)

®
((gclock − doorClosedTime) 	 5))

 ¯

 gclock - doorClosedTime < 5

Appendix B. An Event-B model created from the Direct translation rules 263

 // Door open

 @grd9 (liftState = StopAtFloor

®

doorState(currentFl) = Closed

®

currentFl « reqFl

®
((gclock − liftStopAtFloorTime) � 1)

®
((gclock − liftStopAtFloorTime) 	 5))

 ¯

 gclock - liftStopAtFloorTime < 5

 // Floorlamp Unlit

 @grd10 (floorlampState(currentFl) = Lit

®
floorsensorState(currentFl) = Off

®
((gclock − floorsensorOffTime) � 2)

®
((gclock − floorsensorOffTime) 	 4))

 ¯

 gclock - floorsensorOffTime < 4

 then

 @act1 gclock ° gclock + 1
 end

end

Appendix C. ATL Translation

rules

module TDtoUMLB; -- Module Template

create OUT : umlbMetamodel from IN : TDMetamodel;

helper def : umlbproject : umlbMetamodel!UMLBProject =

 umlbMetamodel!UMLBProject;

helper def : umlbclass : umlbMetamodel!UMLBClass =

 umlbMetamodel!UMLBClass;

helper def : umlbmachine : umlbMetamodel!UMLBMachine =

 umlbMetamodel!UMLBMachine;

helper def : nat1Type : umlbMetamodel!UMLBTypeExpression =

 umlbMetamodel!UMLBTypeExpression;

helper def : prmType : umlbMetamodel!UMLBTypeExpression =

 umlbMetamodel!UMLBTypeExpression;

helper def : intType : umlbMetamodel!UMLBTypeExpression =

 umlbMetamodel!UMLBTypeExpression;

helper def : umlbcontext : umlbMetamodel!UMLBContext =

 umlbMetamodel!UMLBContext; --- for creating Context

rule Project {

 from t : TDMetamodel!TDProject

 to u : umlbMetamodel!UMLBProject

 (name <- t.name,

 constructs <- t.construct),

 pt1 : umlbMetamodel!UMLBTypeExpression

 (name <- 'BOOL'),

 pt2 : umlbMetamodel!UMLBTypeExpression

 (name <- 'NAT'),

 pt3 : umlbMetamodel!UMLBTypeExpression

Appendix C. ATL Translation rules 265

 (name <- 'NAT1'),

 pt4 : umlbMetamodel!UMLBTypeExpression

 (name <- 'INT')

 do {thisModule.umlbproject <- u;

 thisModule.boolType <- pt1;

 thisModule.natType <- pt2;

 thisModule.nat1Type <- pt3;

 thisModule.intType <- pt4;

 u.typeExpressions <- u.typeExpressions.append(pt1);

 u.typeExpressions <- u.typeExpressions.append(pt2);

 u.typeExpressions <- u.typeExpressions.append(pt3);

 u.typeExpressions <- u.typeExpressions.append(pt4);}

}

rule Machine {

 from t : TDMetamodel!TDMachine

 to ctx : umlbMetamodel!UMLBContext

 (name <- t.name + '_ctx'),

 m : umlbMetamodel!UMLBMachine

 (name <- t.name,

 classes <- t.class),

 e : umlbMetamodel!UMLBEvent

 (name <- 'Ticktok'),

 a : umlbMetamodel!UMLBAction

 (name <- 'Action1',

 action <- 'gclock := gclock + 1'),

 gclk : umlbMetamodel!UMLBVariable

 (name <- 'gclock',

 typeProvider <- thisModule.intType,

 initialValue <- '0')

 -- initialValue is defined in UMLBvariableElement

 do {

 m.events <- m.events.append(e);

 e.actions <- e.actions.append(a);

 m.variables <- m.variables.append(gclk);

 thisModule.umlbmachine <- m;

 m.contexts <- m.contexts.append(ctx);

Appendix C. ATL Translation rules 266

 thisModule.umlbproject.constructs <-

thisModule.umlbproject.constructs.append(ctx);

 thisModule.umlbproject.constructs <-

thisModule.umlbproject.constructs.append(m); }

}

rule Class {

 from t : TDMetamodel!TDClass

 to u : umlbMetamodel!UMLBClass

 (name <- t.name,

 selfName <- t.name + 'Self',

 statemachines <- t.timeline),

 att : umlbMetamodel!UMLBAttribute

 (name <- t.name.toLower()+ 'xStatexTime',

 typeProvider <- thisModule.intType,

 initialValue <- '0')

 do { u.attributes <- u.attributes.append(att); }

}

rule StateMachine {

 from t : TDMetamodel!TDTimeline

 to u : umlbMetamodel!UMLBStatemachine

 (name <- t.name + '_state',

 transitions <- t.timelinetransitions,

 states <- t.states)

 }

rule State {

 from t : TDMetamodel!TDState

 to u : umlbMetamodel!UMLBState

 (name <- t.name,

 incoming <- t.segments -> collect(c|c.incoming),

 outgoing <- t.segments -> collect(c|c.outgoing))

}

Appendix C. ATL Translation rules 267

rule Transition {

 from t : TDMetamodel!TDTimelineTransition

 to u : umlbMetamodel!UMLBTransition

 (name <- t.target.getTransitionName(),

 target <- t.target.eContainer(),

 source <- t.source.eContainer(),

 guards <- t.target.constraints,

variables <-t.eContainer().eContainer().parameter

)

,actgclock : umlbMetamodel!UMLBAction

(name <- t.eContainer().name + '.gClockAction',

 action <- t.target.eContainer().eContainer().name

 + t.target.eContainer().name

 + 'Time('

+

t.target.eContainer().eContainer().eContainer().name

+'Self) := gclock')

-- creates variables to keep the current time (gclock) for

 each event

do {u.actions <- u.actions.append(actgclock); }

}

helper context TDMetamodel!TDSegment

 def : getTransitionName() : String =

 let simuls : Set(TDMetamodel!TDSegment) =

 TDMetamodel!TDSegment.allInstances()-> select(c|c.simul ->

 includes(self))

 in

 if simuls -> isEmpty() then

 self.eContainer().eContainer().name

 + self.eContainer().name

 else

 simuls.last().getTransitionName()

 endif;

Appendix C. ATL Translation rules 268

rule Parameter {

 from t : TDMetamodel!TDParameter (not

 umlbMetamodel!UMLBTypeExpression ->

allInstances() -> exists(e|e.name = t.paramType))

 to u : umlbMetamodel!UMLBEventVariable

 (name <- t.param),

 e : umlbMetamodel!UMLBTypeExpression

 (name <- t.paramType)

 do {thisModule.umlbproject.typeExpressions <-

 thisModule.umlbproject.typeExpressions.append(e);

 u.typeProvider <- e; }

}

rule Constraint{

 from t : TDMetamodel!TDConstraints

 to u : umlbMetamodel!UMLBPredicate

 (name <- 'TimingCnstrntGuard',

 predicate <-

 t.effectsource.getNodePredicate()) }

helper context TDMetamodel!TDNodeType

def : getNodePredicate() : String =

 if self.oclIsKindOf(TDMetamodel!Simple)

 then

 if not self.timing.oclIsUndefined() then

 self.SimpleCause()

-> concat(' & '+ self.SimpleGuard())

-> concat(self.SimpleCond())

 else

 self.SimpleCause() ->

 concat(self.SimpleCond())

 endif

 else if self.oclIsKindOf(TDMetamodel!OR_node)

 then self.Or -> iterate(e; ret : String = '('|

 if e=self.Or.last() then

 ret -> concat(e.getNodePredicate()+')')

Appendix C. ATL Translation rules 269

 else

 ret -> concat(e.getNodePredicate()+') or (')

 endif)

 else if self.oclIsKindOf(TDMetamodel!AND_node)

 then self.And -> iterate(e; ret : String ='('|

 if e=self.And.last() then

 ret -> concat(e.getNodePredicate()+')')

 else

 ret -> concat(e.getNodePredicate()+ ') & (')

 endif)

 else 'unrecognised nodeType'

 endif endif endif;

helper context TDMetamodel!TDNodeType

def : SimpleGuard() : String =

'(gclock - xAssociationx.'

 + self.causesource.eContainer().eContainer().name

 + self.causesource.eContainer().name

 + 'Time >= '

 + self.timing.lowerlimit.toString() + ') '

 + ' & (gclock - xAssociationx.'

 + self.causesource.eContainer().eContainer().name

 + self.causesource.eContainer().name

 + 'Time <= '

 + self.timing.upperlimit.toString() + ')';

helper context TDMetamodel!TDNodeType

def : SimpleCond() : String =

 self.predicates -> iterate(e; ret : String = '' |

 ret -> concat(' & ' +e.predicate));

-- Add a cause as a guard with timing constraints

helper context TDMetamodel!TDNodeType

def : SimpleCause() : String =

 self.causesource.eContainer().eContainer().name

Appendix C. ATL Translation rules 270

 + '_state(xAssociationx) = '

 + self.causesource.eContainer().name;

Appendix D. UML-B and

Event-B models from ATL

Translation rules

D.1 An UML-B model for the lift system: Package diagram

D.2 An UML-B model for the lift system: Context diagram

Appendix D. UML-B and Event-B models from ATL Translation rules 272

D.3 An UML-B model for the lift system: Class diagram

Appendix D. UML-B and Event-B models from ATL Translation rules 273

D.4 An UML-B model for the lift system: State diagram

Appendix D. UML-B and Event-B models from ATL Translation rules 274

D.5 An Event-B model is generated from an UML-B model

An Event-B model is generated from an UML-B model with additional

information is illustrated below. The Event-B model composes of two contexts:

L_ctx and L_mch_implicitContext, and one machine L_mch.

Appendix D. UML-B and Event-B models from ATL Translation rules 275

D.5.1 Context : L_ctx

context L_ctx

constants FLOOR // classType instances

 BOTTOM // utility constant

 TOP // utility constant

 s1 // enumeration constant

 s2 // enumeration constant

 s3 // enumeration constant

 r1 // enumeration constant

 r2 // enumeration constant

 r3 // enumeration constant

 d1 // enumeration constant

 d2 // enumeration constant

 d3 // enumeration constant

 Up // enumeration constant

 Down // enumeration constant

 acTivated // enumeration constant

 deActivated // enumeration constant

 Activated // enumeration constant

 Deactivated // enumeration constant

 fl1 // enumeration constant

 fl2 // enumeration constant

 fl3 // enumeration constant

sets FLOORSENSOR // ClassType

 REQUESTLAMP // ClassType

 DOOR // ClassType

 DIR // ClassType

 UPLAMPSTATE // ClassType

 DOWNLAMPSTATE // ClassType

 FLOORLAMP // ClassType

axioms

 @FLOORSENSOR.value FLOORSENSOR = {s1,s2,s3}

Appendix D. UML-B and Event-B models from ATL Translation rules 276

 @REQUESTLAMP.value REQUESTLAMP = {r1, r2, r3}

 @DOOR.value DOOR = {d1, d2, d3}

 @DIR.value DIR = {Up,Down}

 @UPLAMPSTATE.value UPLAMPSTATE = {acTivated, deActivated}

 @DOWNLAMPSTATE.value

DOWNLAMPSTATE = {Activated, Deactivated}

 @FLOORLAMP.value FLOORLAMP = {fl1, fl2, fl3}

 @BOTTOM.type BOTTOM « ¸
 @TOP.type TOP « ¸
 @s1.type s1 « FLOORSENSOR
 @s2.type s2 « FLOORSENSOR
 @s3.type s3 « FLOORSENSOR
 @r1.type r1 « REQUESTLAMP
 @r2.type r2 « REQUESTLAMP
 @r3.type r3 « REQUESTLAMP
 @d1.type d1 « DOOR
 @d2.type d2 « DOOR
 @d3.type d3 « DOOR
 @Up.type Up « DIR
 @Down.type Down « DIR
 @acTivated.type acTivated « UPLAMPSTATE
 @deActivated.type deActivated « UPLAMPSTATE
 @Activated.type Activated « DOWNLAMPSTATE
 @Deactivated.type Deactivated « DOWNLAMPSTATE
 @fl1.type fl1 « FLOORLAMP
 @fl2.type fl2 « FLOORLAMP
 @fl3.type fl3 « FLOORLAMP
 @FLOOR.value FLOOR = (BOTTOM_TOP)

 @Axiom1 BOTTOM = 1

 @Axiom TOP = 3

 @s2.distinctFrom_s1 s2
 s1

 @s3.distinctFrom_s1 s3
 s1

 @s3.distinctFrom_s2 s3
 s2

 @r2.distinctFrom_r1 r2
 r1

 @r3.distinctFrom_r1 r3
 r1

Appendix D. UML-B and Event-B models from ATL Translation rules 277

 @r3.distinctFrom_r2 r3
 r2

 @d2.distinctFrom_d1 d2
 d1

 @d3.distinctFrom_d1 d3
 d1

 @d3.distinctFrom_d2 d3
 d2

 @Down.distinctFrom_Up Down
 Up

 @deActivated.distinctFrom_acTivated deActivated
 acTivated

 @Deactivated.distinctFrom_Activated Deactivated
 Activated

 @fl2.distinctFrom_fl1 fl2
 fl1

 @fl3.distinctFrom_fl1 fl3
 fl1

 @fl3.distinctFrom_fl2 fl3
 fl2

end

D.5.2 Context : L_mch_implicitContext

Context L_mch_implicitContext extends L_ctx

constants StopAtFloor // lift_state-state

 MovingDepartingUp // lift_state-state

 MovingDepartingDown // lift_state-state

 MovingUp // lift_state-state

 MovingArrivingUp // lift_state-state

 MovingDown // lift_state-state

 MovingArrivingDown // lift_state-state

 Door // class instances

 Closed // door_state-state

 Open // door_state-state

 Floor // class instances

 Floorlamp // class instances

 Lit // floorlamp_state-state

 Unlit // floorlamp_state-state

 Floorsensor // class instances

 Off // floorsensor_state-state

 On // floorsensor_state-state

 Requestlamp // class instances

 rLit // requestlamp_state-state

 rUnlit // requestlamp_state-state

Appendix D. UML-B and Event-B models from ATL Translation rules 278

sets lift_state_STATES // statemachine

 door_state_STATES // Door-statemachine

 floorlamp_state_STATES // Floorlamp-statemachine

 floorsensor_state_STATES // Floorsensor-statemachine

 requestlamp_state_STATES // Requestlamp-statemachine

axioms

 @lift_state_STATES.value lift_state_STATES =

{StopAtFloor,MovingDepartingUp,MovingDepartingDown,MovingUp,

 MovingArrivingUp,MovingDown,MovingArrivingDown}

 @door_state_STATES.value door_state_STATES = {Closed,Open}

 @floorlamp_state_STATES.value

floorlamp_state_STATES = {Lit,Unlit}

 @floorsensor_state_STATES.value

floorsensor_state_STATES = {Off,On}

 @requestlamp_state_STATES.value

 requestlamp_state_STATES = {rLit,rUnlit}

 @StopAtFloor.type StopAtFloor « lift_state_STATES
 @MovingDepartingUp.type

 MovingDepartingUp « lift_state_STATES
 @MovingDepartingDown.type

 MovingDepartingDown « lift_state_STATES
 @MovingUp.type MovingUp « lift_state_STATES
 @MovingArrivingUp.type MovingArrivingUp « lift_state_STATES
 @MovingDown.type MovingDown « lift_state_STATES
 @MovingArrivingDown.type

 MovingArrivingDown « lift_state_STATES
 @Door.value Door = DOOR

 @Closed.type Closed « door_state_STATES
 @Open.type Open « door_state_STATES
 @Floor.value Floor = FLOOR

 @Floorlamp.value Floorlamp = FLOORLAMP

 @Lit.type Lit « floorlamp_state_STATES
 @Unlit.type Unlit « floorlamp_state_STATES

Appendix D. UML-B and Event-B models from ATL Translation rules 279

 @Floorsensor.value Floorsensor = FLOORSENSOR

 @Off.type Off « floorsensor_state_STATES
 @On.type On « floorsensor_state_STATES
 @Requestlamp.value Requestlamp = REQUESTLAMP

 @rLit.type rLit « requestlamp_state_STATES
 @rUnlit.type rUnlit « requestlamp_state_STATES
 @distinctStates MovingDepartingUp,StopAtFloor :

 MovingDepartingUp
 StopAtFloor

 @distinctStates MovingDepartingDown,StopAtFloor:

 MovingDepartingDown
 StopAtFloor

 @distinctStates MovingDepartingDown,MovingDepartingUp:

 MovingDepartingDown
 MovingDepartingUp

 @distinctStates MovingUp,StopAtFloor: MovingUp
 StopAtFloor

 @distinctStates MovingUp,MovingDepartingUp:

 MovingUp
 MovingDepartingUp

 @distinctStates MovingUp,MovingDepartingDown:

 MovingUp
 MovingDepartingDown

 @distinctStates MovingArrivingUp,StopAtFloor:

 MovingArrivingUp
 StopAtFloor

 @distinctStates MovingArrivingUp,MovingDepartingUp:

 MovingArrivingUp
 MovingDepartingUp

 @distinctStates MovingArrivingUp,MovingDepartingDown:

 MovingArrivingUp
 MovingDepartingDown

 @distinctStates MovingArrivingUp,MovingUp:

 MovingArrivingUp
 MovingUp

 @distinctStates MovingDown,StopAtFloor:

 MovingDown
 StopAtFloor

 @distinctStates MovingDown,MovingDepartingUp:

 MovingDown
 MovingDepartingUp

 @distinctStates MovingDown,MovingDepartingDown:

 MovingDown
 MovingDepartingDown

 @distinctStates MovingDown,MovingUp:

 MovingDown
 MovingUp

 @distinctStates MovingDown,MovingArrivingUp:

 MovingDown
 MovingArrivingUp

 @distinctStates MovingArrivingDown,StopAtFloor:

 MovingArrivingDown
 StopAtFloor

Appendix D. UML-B and Event-B models from ATL Translation rules 280

 @distinctStates MovingArrivingDown,MovingDepartingUp:

MovingArrivingDown
 MovingDepartingUp

 @distinctStates MovingArrivingDown,MovingDepartingDown:

 MovingArrivingDown
 MovingDepartingDown

 @distinctStates MovingArrivingDown,MovingUp:

 MovingArrivingDown
 MovingUp

 @distinctStates MovingArrivingDown,MovingArrivingUp:

 MovingArrivingDown
 MovingArrivingUp

 @distinctStates MovingArrivingDown,MovingDown:

 MovingArrivingDown
 MovingDown

 @distinctStates Open,Closed: Open
 Closed

 @distinctStates Unlit,Lit: Unlit
 Lit

 @distinctStates On,Off: On
 Off

 @distinctStates rUnlit,rLit: rUnlit
 rLit

end

D.5.3 Machine : L_mch

machine L_mch sees L_mch_implicitContext

variables reqFl // utility variable

 dir // utility variable

 currentFl // utility variable

 uplampState // utility variable

 downlampState // utility variable

 liftStopAtFloorTime // utility variable

 liftMovingUpTime // utility variable

 liftMovingDownTime // utility variable

 liftMovingDepartingUpTime // utility variable

 liftMovingDepartingDownTime // utility variable

 liftMovingArrivingUpTime // utility variable

 liftMovingArrivingDownTime // utility variable

 gclock // utility variable

 lift_state // statemachine belonging to the machine

 doorClosedTime // attribute of Door

Appendix D. UML-B and Event-B models from ATL Translation rules 281

 doorOpenTime // attribute of Door

 door_state // statemachine belonging to class, Door

 doorAtfloor // attribute of Floor

 floorlampAtfloor // attribute of Floor

 floorsensorAtfloor // attribute of Floor

 requestlampAtfloor // attribute of Floor

 floorlamp_state // statemachine belonging to class,

 Floorlamp

 floorsensorOffTime // attribute of Floorsensor

 floorsensorOnTime // attribute of Floorsensor

 floorsensor_state

 // statemachine belonging to class, Floorsensor

 requestlamp_state

 // statemachine belonging to class, Requestlamp

 requestlamprUnlitTime

 requestlamprLitTime

 floorlampUnlitTime

 floorlampLitTime

invariants

 @reqFl.type reqFl « ¹(FLOOR)
 @dir.type dir « DIR
 @currentFl.type currentFl « FLOOR
 @uplampState.type uplampState « UPLAMPSTATE
 @downlampState.type downlampState « DOWNLAMPSTATE
 @liftStopAtFloorTime.type liftStopAtFloorTime « ¸
 @liftMovingUpTime.type liftMovingUpTime « ¸
 @liftMovingDownTime.type liftMovingDownTime « ¸
 @liftMovingDepartingUpTime.type

liftMovingDepartingUpTime « ¸
 @liftMovingDepartingDownTime.type

liftMovingDepartingDownTime « ¸
 @liftMovingArrivingUpTime.type liftMovingArrivingUpTime « ¸
 @liftMovingArrivingDownTime.type

liftMovingArrivingDownTime « ¸

Appendix D. UML-B and Event-B models from ATL Translation rules 282

 @gclock.type gclock « ¸
 @lift_state.type lift_state « lift_state_STATES
 @doorClosedTime.type doorClosedTime « Door � ¸
 @doorOpenTime.type doorOpenTime « Door � ¸
 @door_state.type door_state « Door � door_state_STATES
 @doorAtfloor.type doorAtfloor « Floor 6 Door

 @floorlampAtfloor.type

floorlampAtfloor « Floor 6 Floorlamp

 @floorsensorAtfloor.type

floorsensorAtfloor « Floor 6 Floorsensor

 @requestlampAtfloor.type

requestlampAtfloor « Floor 6 Requestlamp

 @floorlamp_state.type

 floorlamp_state « Floorlamp � floorlamp_state_STATES
 @floorsensorOffTime.type

floorsensorOffTime « Floorsensor � ¸
 @floorsensorOnTime.type floorsensorOnTime « Floorsensor � ¸
 @requestlamprUnlitTime.type requestlamprUnlitTime «

Requestlamp � ¸
 @requestlamprLitTime.type requestlamprLitTime «

Requestlamp � ¸
 @floorsensor_state.type floorsensor_state

« Floorsensor � floorsensor_state_STATES
 @requestlamp_state.type requestlamp_state

« Requestlamp � requestlamp_state_STATES
@Invariant2 (lift_state = StopAtFloor) ¯

(floorsensor_state(floorsensorAtfloor(currentFl)) = On)

 @Invariant3 door_state(doorAtfloor(currentFl)) = Open

®
 currentFl« reqFl

®

doorAtfloor(currentFl)«
dom(door_state) ¯ (lift_state = StopAtFloor)

 @Invariant1 º»
·((d«Door)¯(lift_state
 StopAtFloor ¯

 door_state(d) = Closed))

 @inv1 floorlampUnlitTime « Floorlamp � ¸

Appendix D. UML-B and Event-B models from ATL Translation rules 283

 @inv5 floorlampLitTime « Floorlamp � ¸
 @Invariant4 ¬(uplampState = acTivated

®

 downlampState = Activated)

events

 event INITIALISATION

 then

 @reqFl.init reqFl :« ¹(FLOOR)
 @dir.init dir :« DIR
 @currentFl.init currentFl ° BOTTOM
 @uplampState.init uplampState ° deActivated
 @downlampState.init downlampState ° Deactivated
 @liftStopAtFloorTime.init liftStopAtFloorTime ° 0
 @liftMovingDepartingUpTime.init

liftMovingDepartingUpTime ° 0
 @liftMovingDepartingDownTime.init

liftMovingDepartingDownTime ° 0
 @liftMovingArrivingUpTime.init

liftMovingArrivingUpTime ° 0
 @liftMovingArrivingDownTime.init

liftMovingArrivingDownTime ° 0
 @gclock.init gclock ° 0
 @lift_state.init lift_state ° StopAtFloor
 @doorClosedTime.init doorClosedTime ° Door × {0}
 @doorOpenTime.init doorOpenTime ° Door × {0}
 @door_state.init door_state ° Door × {Closed}
 @doorAtfloor.init doorAtfloor ° {1 ² d1, 2 ² d2, 3 ² d3}

// doorAtfloor :« Floor 6 Door

 @floorlampAtfloor.init floorlampAtfloor °
{1 ² fl1, 2 ² fl2, 3 ² fl3}

// floorlampAtfloor :« Floor 6 Floorlamp

 @floorsensorAtfloor.init floorsensorAtfloor °
{1 ² s1, 2 ² s2, 3 ² s3}

Appendix D. UML-B and Event-B models from ATL Translation rules 284

// floorsensorAtfloor :« Floor 6 Floorsensor

 @requestlampAtfloor.init requestlampAtfloor °
 {1 ² r1, 2 ² r2, 3 ² r3}
 // requestlampAtfloor :¼ Floor 6 Requestlamp

 @floorlamp_state.init floorlamp_state °
{fl1 ² Lit, fl2 ² Unlit, fl3 ² Unlit}

 // floorlamp_state :¼
Floorlamp � floorlamp_state_STATES

 @floorsensorOffTime.init floorsensorOffTime °
Floorsensor × {0}

 @floorsensorOnTime.init floorsensorOnTime °
Floorsensor × {0}

 @floorsensor_state.init floorsensor_state °
 {s1 ² On, s2 ² Off, s3 ² Off}
 // floorsensor_state :¼

Floorsensor � floorsensor_state_STATES

 @requestlamp_state.init requestlamp_state °
 {r1 ² rUnlit, r2 ² rUnlit, r3 ² rUnlit}
 // requestlamp_state ³ Requestlamp × {rUnlit}
 @act1 requestlamprUnlitTime ° Requestlamp × {0}
 @act2 requestlamprLitTime ° Requestlamp × {0}
 @act3 floorlampUnlitTime ° Floorlamp × {0}
 end

 event UserRequestlamprLit

 any RequestlampSelf // contextual instance of

class Requestlamp

 f

 where

 @f.type f « FLOOR
 @RequestSelf.type RequestlampSelf « Requestlamp
 @grd1 requestlamp_state(RequestlampSelf) = rUnlit

 then

 @requestlamprLit.Action1 reqFl ° reqFl ́{f}

Appendix D. UML-B and Event-B models from ATL Translation rules 285

@requestlamp_state_enterState_rLit

requestlamp_state(requestlampAtfloor(f)) ° rLit
 end

 event SetRequestlamprUnlit

 any RequestlampSelf // contextual instance of

class Requestlamp

 f

 where

 @f.type f « FLOOR
 @grd1 f = currentFl

 @RequestSelf.type RequestlampSelf « Requestlamp
 @requestlamprUnlit.Guard1 lift_state = StopAtFloor

 @requestlamprUnlit.TimingCnstrntGuard

 (gclock − liftStopAtFloorTime � 2)
®

 (gclock − liftStopAtFloorTime 	 4)

 @grd2 requestlampAtfloor(f) = RequestlampSelf

 @requestlamp_state_isin_rLit

 requestlamp_state(RequestlampSelf) = rLit

 then

@requestlamprUnlit.Action2

requestlamprUnlitTime(RequestlampSelf) ° gclock
 @requestlamp_state_enterState_rUnlit

 requestlamp_state(requestlampAtfloor(currentFl)) ° rUnlit
 end

event doorOpen

 any DoorSelf // contextual instance of class Door

 f

 where

 @f.type f « FLOOR
 @DoorSelf.type DoorSelf « Door
 @doorOpen.TimingCnstrntGuard lift_state = StopAtFloor

®
 currentFl « reqFl

®
(gclock − liftStopAtFloorTime � 1)

Appendix D. UML-B and Event-B models from ATL Translation rules 286

®
(gclock − liftStopAtFloorTime 	 5)

 @doorOpen.Guard4 doorAtfloor(f) = DoorSelf

 @doorOpen.Guard3 f « reqFl ® f = currentFl
 @door_state_isin_Closed door_state(DoorSelf) = Closed

 then

@doorOpen.Action2 doorOpenTime(DoorSelf) ° gclock
 @door_state_enterState_Open door_state(DoorSelf) ° Open
 end

event doorClosed

 any DoorSelf // contextual instance of class Door

 where

 @DoorSelf.type DoorSelf « Door
 @door_state_isin_Open door_state(DoorSelf) = Open

 @grd1 lift_state = StopAtFloor

 then

 @doorClosed.Action2 doorClosedTime(DoorSelf) ° gclock
 @door_state_enterState_Closed

door_state(DoorSelf) ° Closed
 @doorClosed.Action1 reqFl ° reqFl µ {currentFl}
 end

event liftMovingDepartingUp

 any f

 where

 @f.type f « FLOOR
 @lift_state_isin_StopAtFloor lift_state = StopAtFloor

 @liftMovingDepartingUp.Guard5

 requestlamp_state(requestlampAtfloor(f)) = rLit

®
 f > currentFl

 @liftMovingDepartingUp.Guard2 currentFl ¶ reqFl
 @liftMovingDepartingUp.Guard1 f « reqFl
 @grd1 ;d·d�Door & door_state(d) = Closed

 @liftMovingDepartingUp.TimingCnstrntGuard

 door_state(doorAtfloor(currentFl)) = Closed

Appendix D. UML-B and Event-B models from ATL Translation rules 287

®
 (gclock −doorClosedTime((doorAtfloor(currentFl))) � 1)

®
 (gclock −doorClosedTime((doorAtfloor(currentFl))) 	 5)

 @liftMovingDepartingUp.Guard3 dir = Up

 then

 @lift_state_enterState_StopAtFloor

lift_state ° MovingDepartingUp

 @liftMovingDepartingUp.Action3

liftMovingDepartingUpTime ° gclock
 @liftMovingDepartingUp.Action2

downlampState ° Deactivated
 @liftMovingDepartingUp.Action1 uplampState ° acTivated
 end

event liftMovingArgToDptgUp

 any f

 where

 @f.type f « FLOOR
 @liftMovingArgToDptgUp.Guard1 f « FLOOR
 @liftMovingArgToDptgUp.Guard2 f « reqFl ® f > currentFl
 @liftMovingArgToDptgUp.Guard3 currentFl ¶ reqFl
 @lift_state_isin_MovingArrivingUp

lift_state = MovingArrivingUp

 @liftMovingArgToDptgUp.Guard4 dir = Up

 then

 @lift_state_enterState_MovingArrivingUp

 lift_state ° MovingDepartingUp
 @liftMovingArgToDptgUp.Action1

liftMovingDepartingUpTime ° gclock
 @act1 downlampState ° Deactivated
 @act2 uplampState ° acTivated
 end

event liftMovingUp

 any f

Appendix D. UML-B and Event-B models from ATL Translation rules 288

 where

 @f.type f « FLOOR
 @liftMovingUp.Guard1 f « reqFl ® f > currentFl
 @liftMovingUp.Guard2 currentFl ¶ reqFl
 @lift_state_isin_MovingDepartingUp

lift_state = MovingDepartingUp

 @liftMovingUp.Guard3

 floorsensor_state(floorsensorAtfloor(currentFl)) = Off

 @liftMovingUp.Guard4 dir = Up

 then

@liftMovingUp.Action1 liftMovingUpTime ° gclock
 @lift_state_enterState_MovingDepartingUp

lift_state ° MovingUp
 end

event liftMovingDepartingDown

 any f

 where

 @f.type f « FLOOR
 @liftMovingDepartingDown.Guard1 f « reqFl
 @liftMovingDepartingDown.Guard2 currentFl ¶ reqFl
 @liftMovingDepartingDown.Guard3 dir = Down

 @grd1 ;d·d�Door & door_state(d) = Closed

 @liftMovingDepartingDown.Guard4

 requestlamp_state(requestlampAtfloor(f)) = rLit

®

f < currentFl

 @liftMovingDepartingDown.TimingCnstrntGuard

door_state(doorAtfloor(currentFl)) = Closed

®
(gclock −doorClosedTime((doorAtfloor(currentFl))) � 1)

®
(gclock −doorClosedTime((doorAtfloor(currentFl))) 	 5)

 @lift_state_isin_StopAtFloor lift_state = StopAtFloor

 then

 @liftMovingDepartingDown.Action1

uplampState ° deActivated
 @lift_state_enterState_StopAtFloor

Appendix D. UML-B and Event-B models from ATL Translation rules 289

 lift_state ° MovingDepartingDown
 @liftMovingDepartingDown.Action2

downlampState ° Activated
 @liftMovingDepartingDown.Action3

liftMovingDepartingDownTime ° gclock
 end

event liftMovingArgToDptgDown

 any f

 where

 @f.type f « FLOOR
 @liftMovingArgToDptgDown.Guard1 f « FLOOR
 @liftMovingArgToDptgDown.Guard3 currentFl ¶ reqFl
 @liftMovingArgToDptgDown.Guard2 f « reqFl ®

 f < currentFl

 @liftMovingArgToDptgDown.Guard4 dir = Down

 @lift_state_isin_MovingArrivingDown

 lift_state = MovingArrivingDown

 then

 @lift_state_enterState_MovingArrivingDown

 lift_state ° MovingDepartingDown
 @liftMovingArgToDptgDown.Action1

 liftMovingDepartingDownTime ° gclock
 @act1 downlampState ° Activated
 @act2 uplampState ° deActivated
 end

event liftMovingDown

 any f

 where

 @f.type f « FLOOR
 @liftMovingDown.Guard1 f « reqFl ® f > currentFl
 @liftMovingDown.Guard2 currentFl ¶ reqFl
 @lift_state_isin_MovingDepartingDown

Appendix D. UML-B and Event-B models from ATL Translation rules 290

 lift_state = MovingDepartingDown

 @liftMovingDown.Guard3

 floorsensor_state(floorsensorAtfloor(currentFl)) = Off

 @liftMovingDown.Guard4 dir = Down

 then

@liftMovingDown.Action1 liftMovingDownTime ° gclock
 @lift_state_enterState_MovingDepartingDown

lift_state ° MovingDown
 end

event floorsensorOn

 any FloorsensorSelf // contextual instance of

class Floorsensor

 f

 where

 @grd1 f « FLOOR
 @FloorsensorSelf.type FloorsensorSelf « Floorsensor
 @floorsensor_state_isin_Off

 floorsensor_state(FloorsensorSelf) = Off

 @floorsensorOn.Guard1

 floorsensorAtfloor½(FloorsensorSelf) = currentFl
 @floorsensorOn.TimingCnstrntGuard

 (lift_state = MovingArrivingUp

®
dir = Up

®
 f = currentFl

®
(gclock − liftMovingArrivingUpTime � 2)

®
(gclock − liftMovingArrivingUpTime 	 5))

 ·
 (lift_state = MovingArrivingDown

®
dir = Down

®
 f = currentFl

®
(gclock − liftMovingArrivingDownTime � 2)

®
(gclock − liftMovingArrivingDownTime 	 5))

 then

 @floorsensorOn.Action1

floorsensorOnTime(FloorsensorSelf) ° gclock
 @floorsensor_state_enterState_On

Appendix D. UML-B and Event-B models from ATL Translation rules 291

 floorsensor_state(FloorsensorSelf) ° On
 end

event floorsensorOffUp

 any FloorsensorSelf // contextual instance of class

 Floorsensor

 f

 where

 @l.type f « FLOOR
 @FloorsensorSelf.type FloorsensorSelf « Floorsensor
 @floorsensor_state_isin_On

 floorsensor_state(FloorsensorSelf) = On

 @floorsensorOffUp.TimingCnstrntGuard

 lift_state = MovingDepartingUp

®
(gclock − liftMovingDepartingUpTime � 2)

®
(gclock − liftMovingDepartingUpTime 	 5)

®

f = currentFl
®
 dir = Up

 then

 @floorsensorOffUp.Action1

 floorsensorOffTime(FloorsensorSelf) ° gclock
 @floorsensor_state_enterState_Off

 floorsensor_state(FloorsensorSelf) ° Off
 @floorsensorOffUp.Action2

lift_state ° MovingUp
 end

event floorsensorOffDown

 any FloorsensorSelf // contextual instance of

class Floorsensor

 f

 where

 @l.type f « FLOOR
 @FloorsensorSelf.type FloorsensorSelf « Floorsensor
 @floorsensor_state_isin_On

Appendix D. UML-B and Event-B models from ATL Translation rules 292

 floorsensor_state(FloorsensorSelf) = On

 @floorsensorOffDown.TimingCnstrntGuard

 lift_state = MovingDepartingDown

®
(gclock − liftMovingDepartingDownTime � 2)

®
(gclock − liftMovingDepartingDownTime 	 5)

®

f = currentFl
®
 dir = Down

 then

 @floorsensor_state_enterState_Off

 floorsensor_state(FloorsensorSelf) ° Off
 @floorsensorOffDown.Action2 lift_state ° MovingDown
 @floorsensorOffDown.Action1

floorsensorOffTime(FloorsensorSelf) ° gclock
 end

event floorlampUnlit

 any FloorlampSelf // contextual instance of

class Floorlamp

 f

 where

 @f.type f « FLOOR
 @FloorlampSelf.type FloorlampSelf « Floorlamp
 @floorlamp_state_isin_Lit

 floorlamp_state(floorlampAtfloor(currentFl)) = Lit

 // floorlamp_state(FloorlampSelf) = Lit

 @floorlampUnlit.Guard3

 floorsensor_state(floorsensorAtfloor(currentFl)) = Off

 @floorlampUnlit.TimingCnstrntGuard f = currentFl
®

(gclock − floorsensorOffTime((floorsensorAtfloor(currentFl))) � 2)

®

(gclock − floorsensorOffTime((floorsensorAtfloor(currentFl))) 	 4)

 @floorlampUnlit.Guard1

floorlampAtfloor½(FloorlampSelf) = currentFl
 then

@floorlampUnlit.Action2

 floorlampUnlitTime(FloorlampSelf) ° gclock

Appendix D. UML-B and Event-B models from ATL Translation rules 293

 @floorlamp_state_enterState_Unlit

 floorlamp_state(floorlampAtfloor(currentFl)) ° Unlit
 end

event floorlampLit

 any FloorlampSelf // contextual instance of

class Floorlamp

 f

 where

 @f.type f « FLOOR
 @FloorlampSelf.type FloorlampSelf « Floorlamp
 @floorlampLit.Guard1

floorlampAtfloor½(FloorlampSelf) = currentFl
 @floorlampLit.TimingCnstrntGuard f = currentFl

®

(gclock − floorsensorOnTime((floorsensorAtfloor(currentFl))) � 2)

®

(gclock − floorsensorOnTime((floorsensorAtfloor(currentFl))) 	 4)

 @floorlampLit.Guard2

 floorsensor_state(floorsensorAtfloor(currentFl)) = On

 @floorlamp_state_isin_Unlit

 floorlamp_state(FloorlampSelf) = Unlit

 then

@floorlampLit.Action2

floorlampLitTime(FloorlampSelf) ° gclock

 @floorlamp_state_enterState_Lit

 floorlamp_state(FloorlampSelf) ° Lit
 end

event liftMovingArrivingUp

 any f

 where

 @f.type f « FLOOR
 @liftMovingArrivingUp.Guard4 dir = Up

 @liftMovingArrivingUp.Guard3 currentFl ¶ reqFl

Appendix D. UML-B and Event-B models from ATL Translation rules 294

 @liftMovingArrivingUp.Guard2 f « reqFl ® f > currentFl
 @liftMovingArrivingUp.Guard1 f « FLOOR
 @lift_state_isin_MovingUp lift_state = MovingUp

 @grd1

floorlamp_state(floorlampAtfloor(currentFl)) = Unlit

 // manually additional guards

 then

 @lift_state_enterState_MovingUp

lift_state ° MovingArrivingUp
 @liftMovingArrivingUp.Action2

liftMovingArrivingUpTime ° gclock
 @liftMovingArrivingUp.Action1 currentFl ° currentFl + 1
 end

event liftMovingArringDown

 any f

 where

 @f.type f « FLOOR
 @lift_state_isin_MovingDown lift_state = MovingDown

 @liftMovingArringDown.Guard4 dir = Down

 @liftMovingArringDown.Guard3 currentFl ¶ reqFl
 @liftMovingArringDown.Guard1 f « FLOOR
 @liftMovingArringDown.Guard2 f « reqFl ® f < currentFl
 @grd2

floorlamp_state(floorlampAtfloor(currentFl)) = Unlit

 // manually added

 then

 @liftMovingArringDown.Action1 currentFl ° currentFl − 1
 @liftMovingArringDown.Action2

liftMovingArrivingDownTime ° gclock
 @lift_state_enterState_MovingDown

lift_state ° MovingArrivingDown
 end

Appendix D. UML-B and Event-B models from ATL Translation rules 295

event liftStopAtFloorUp

 any f

 where

 @f.type f « FLOOR
 @liftStopAtFloorUp.Guard1 f « reqFl
 @liftStopAtFloorUp.TimingCnstrntGuard

(gclock −floorsensorOnTime((floorsensorAtfloor(currentFl))) � 2)

®

(gclock −floorsensorOnTime((floorsensorAtfloor(currentFl))) 	 5)

 @liftStopAtFloorUp.Guard3

floorsensor_state(floorsensorAtfloor(currentFl))= On
®

f = currentFl
®
 f « reqFl

 @lift_state_isin_MovingArrivingUp

 lift_state = MovingArrivingUp

 @liftStopAtFloorUp.Guard2 f = currentFl

 then

 @lift_state_enterState_MovingArrivingUp

lift_state ° StopAtFloor
 @liftStopAtFloorUp.Action3 downlampState ° Deactivated
 @liftStopAtFloorUp.Action1 liftStopAtFloorTime ° gclock
 @liftStopAtFloorUp.Action2 uplampState ° deActivated
 end

event liftStopAtFloorDown

 any f

 where

 @f.type f « FLOOR
 @liftStopAtFloorDown.Guard2 f = currentFl

 @liftStopAtFloorDown.Guard1 f « reqFl
 @liftStopAtFloorDown.TimingCnstrntGuard (gclock−

floorsensorOnTime((floorsensorAtfloor(currentFl)))� 2)
®

(gclock − floorsensorOnTime((floorsensorAtfloor(currentFl))) 	 5)

@liftStopAtFloorDown.Guard3

floorsensor_state(floorsensorAtfloor(currentFl)) = On
®

 f = currentFl
®
 f « reqFl

Appendix D. UML-B and Event-B models from ATL Translation rules 296

 @lift_state_isin_MovingArrivingDown

 lift_state = MovingArrivingDown

 then

 @liftStopAtFloorDown.Action1

liftStopAtFloorTime ° gclock
 @lift_state_enterState_MovingArrivingDown

lift_state ° StopAtFloor
 @liftStopAtFloorDown.Action2 uplampState ° deActivated
 @liftStopAtFloorDown.Action3 downlampState ° Deactivated
 end

event ChangDirUp

 any f

 where

 @f.type f « FLOOR
 @ChangDirUp.Guard1 f « reqFl ® f > currentFl
 @ChangDirUp.Guard5 dir = Down

 @ChangDirUp.Guard4 lift_state = StopAtFloor

 @ChangDirUp.Guard3 reqFl
 ±
 @ChangDirUp.Guard2 currentFl ¶ reqFl
 then

 @ChangDirUp.Action1 dir ° Up
 end

event ChangDirDown

 any f

 where

 @f.type f « FLOOR
 @ChangDirDown.Guard5 dir = Up

 @ChangDirDown.Guard3 reqFl
 ±
 @ChangDirDown.Guard4 lift_state = StopAtFloor

 @ChangDirDown.Guard1 f « reqFl ® f < currentFl
 @ChangDirDown.Guard2 currentFl ¶ reqFl
 then

Appendix D. UML-B and Event-B models from ATL Translation rules 297

 @ChangDirDown.Action1 dir ° Down
 end

event Ticktok

 where

 @Ticktok.Guard1 // Requestlamp Unlit

 lift_state = StopAtFloor

®
 requestlamp_state(requestlampAtfloor(currentFl)) = rLit

®
 (((gclock − liftStopAtFloorTime) � 2)

®
 ((gclock − liftStopAtFloorTime) 	 4))

 ¯

 gclock - liftStopAtFloorTime < 4

 @Ticktok.Guard10 // Floorlamp Unlit

 (floorlamp_state(floorlampAtfloor(currentFl)) = Lit

®
 floorsensor_state(floorsensorAtfloor(currentFl)) = Off

®

(gclock − floorsensorOffTime(floorsensorAtfloor(currentFl))� 2)

®

(gclock − floorsensorOffTime(floorsensorAtfloor(currentFl))	 4))

¯

gclock - floorsensorOffTime(floorsensorAtfloor(currentFl)) <

 @Ticktok.Guard9 // Door open

 (lift_state = StopAtFloor

®

door_state(doorAtfloor(currentFl)) = Closed

®
 currentFl « reqFl

®
(gclock − liftStopAtFloorTime � 1)

®
(gclock − liftStopAtFloorTime 	 5))

 ¯

 gclock - liftStopAtFloorTime < 5

 @Ticktok.Guard8 // Lift Moving Departing Up and Down

 (door_state(doorAtfloor(currentFl)) = Closed

®
 lift_state = StopAtFloor

Appendix D. UML-B and Event-B models from ATL Translation rules 298

®
(gclock − doorClosedTime(doorAtfloor(currentFl)) � 1)

®
(gclock − doorClosedTime(doorAtfloor(currentFl)) 	 5))

 ¯

 gclock - doorClosedTime(doorAtfloor(currentFl)) < 5

 @Ticktok.Guard7 // Floorsensor Off (when lift

Moving Departing Down)

 (lift_state = MovingDepartingDown

®
 floorsensor_state(floorsensorAtfloor(currentFl)) = On

®
 ((gclock − liftMovingDepartingDownTime) � 2)

®
 ((gclock − liftMovingDepartingDownTime) 	 5))

 ¯

 gclock - liftMovingDepartingDownTime < 5

 @Ticktok.Guard6 // Floor sensor Off (when lift

Moving Departing Up)

 (lift_state = MovingDepartingUp
®

 floorsensor_state(floorsensorAtfloor(currentFl)) = On

®
 ((gclock − liftMovingDepartingUpTime) � 2)

®
((gclock − liftMovingDepartingUpTime) 	 5))

 ¯

 gclock - liftMovingDepartingUpTime < 5

 @Ticktok.Guard5 // Lift Stop At Floor

 (floorsensor_state(floorsensorAtfloor(currentFl)) = On

®

 (lift_state = MovingArrivingUp ·
lift_state = MovingArrivingDown)

®

(currentFl « reqFl)®
(gclock − floorsensorOnTime(floorsensorAtfloor(currentFl)) � 1)

®
(gclock − floorsensorOnTime(floorsensorAtfloor(currentFl)) 	 5))

¯

gclock - floorsensorOnTime(floorsensorAtfloor(currentFl)) < 5

 @Ticktok.Guard4 // Floorlamp Lit

Appendix D. UML-B and Event-B models from ATL Translation rules 299

 (floorlamp_state(floorlampAtfloor(currentFl)) = Unlit

®
floorsensor_state(floorsensorAtfloor(currentFl)) = On

®
(gclock − floorsensorOnTime(floorsensorAtfloor(currentFl)) � 2)

®
(gclock − floorsensorOnTime(floorsensorAtfloor(currentFl)) 	 4))

¯

gclock - floorsensorOnTime(floorsensorAtfloor(currentFl)) < 4

 @Ticktok.Guard3 // Floorsensor On (when lift Moving Arriving

 Down)

 (lift_state = MovingArrivingDown

®
floorsensor_state(floorsensorAtfloor(currentFl)) = Off

®
((gclock − liftMovingArrivingDownTime) � 2)

®
 ((gclock − liftMovingArrivingDownTime) 	 5))

 ¯

 gclock - liftMovingArrivingDownTime < 5

 @Ticktok.Guard2 // Floorsensor On (when lift Moving

Arriving Up)

 (lift_state = MovingArrivingUp

®
floorsensor_state(floorsensorAtfloor(currentFl)) = Off

®
((gclock − liftMovingArrivingUpTime) � 2)

®
((gclock − liftMovingArrivingUpTime) 	 5))

 ¯

 gclock - liftMovingArrivingUpTime < 5

 then

 @Ticktok.Action1 gclock ° gclock + 1
 end

end

Appendix E. KAOS Textual

Translation rules

E.1 Translation rules for creating a KAOS goal from segments defined

with CauseEffectArrow

1. Rule : � �	
	���	
��	���

�

��	
	���	
��	���(%�&����) →

<LET> exp = ���	��(�'�((�'�(�
(%�&����)))

<IF>�%	��	
	�(exp)

<THEN>

“ ∀ ” +

�#
�
�����	
	����
(�����	
	�(exp))

<ELSE><SKIP>

<ENDIF>

��#
�
�����	
	����
(9��/ : �����%�:(���) →

 9��/� + “:” + ��	
	��!"�(9��/) + “,” +

 �#
�
�����	
	����
(�����%�:(���)

�

��#
�
�����	
	����
(9��/ : ;�<) → 9��/� + “:” + ��	
	��!"�(9��/)

Appendix E. KAOS Textual Translation rules 301

2. Rule : � �
��

�

� �
��

�
(%�&����) → �

{ “(” +���� ��
�
��
���(������!"�(�����

�
(%�&����))) + “)” }��

3. Rule : � ��
�
��
���

� ��
�
��
���(��/�()*�) →

<IF> NodeType = %��*���

<THEN> ����"���	������
��(�������
(%��*��))

 + ����"������(�����(%��*��))

<ELSE><IF> ��/�()*� = 0"��/��

 <THEN><LET> Nodes = �������
	����(0"��/�)

 <IN>Nodes → <ITERATE>(n; ret : String = “(” |

 <IF> n =��	�
(Nodes)

 <THEN> ret = ret + � ��
�
��
���(n) + “)”

 <ELSE> ret = ret + � ��
�
��
���(n) + “) ∨ (”

 <ENDIF>)

 <ENDIF>

<ELSE><IF> ��/�()*� = -�#"��/��

��������������<THEN><LET> Nodes = �������
	����(-�#"��/�)

 <IN> Nodes → <ITERATE>(n; ret : String = “(” |

 <IF> n =��	�
(Nodes)

 <THEN> ret = ret + � ��
�
��
���(n) + “)”

 <ELSE> ret = ret + � ��
�
��
���(n) + “) ∧ (”

 <ENDIF>)

 <ENDIF>

<ENDIF>

Appendix E. KAOS Textual Translation rules 302

4. Rule : � �����

�
�

�

� �����

�
(%�&����) →

 { � ��
�������
���(%�&����, � ������(�����

�
(%�&����))) }

5. Rule : � ��
�������
���

� ��
�������
��� (%�&����, (����&) →

 <IF> !� ��"
!((����&)

 <THEN> “�” + (����&�

 <ELSE> <SKIP>

 <ENDIF>

 <LET> exp = ���	��(�'�((�'�(�
(%�&�������

 <IN>

 <IF> �%	��	
	�(exp�

 <THEN>

 �'�((�'�(�
(%�&������

 + “State(”

 + �#
�
��	
	���
(�����	
	�(exp��

 + “) = ”

 + “ ‘ ” + �'�(�
(%�&����� + “ ’ ”

 <ELSE>

�� � �'�((�'�(�
(%�&������

 + “State = ”

 + “ ‘ ” + �'�(�
(%�&����) + “ ’ ”

 <ENDIF>

Appendix E. KAOS Textual Translation rules 303

E.2 Translation rules for creating a KAOS goal from

SimultaneityArrow

6. Rule : � ��	
	���	
��	���

� ��	
	���	
��	���(%��'�) →

<LET> exp = ���	��(�'�((�'�(�
(� ��
	

����(%��'�))))

<IF>�%	��	
	�(exp)

<THEN>

 “ ∀ ” +

 �#
�
�����	
	����
(�����	
	�(exp))

<ELSE><SKIP>

<ENDIF>

��#
�
�����	
	����
(9��/ : �����%�:(���) →

 9��/� + “:” + ��	
	��!"�(9��/) + “,” +

�� � � � �#
�
�����	
	����
(�����%�:(���)

��#
�
�����	
	����
(9��/ : ;�<) → 9��/� + “:” + ��	
	��!"�(9��/)

7. Rule : � ��	���(%��'�)

� ��	���(%��'�) →

<LET> exp = �'�((�'�(�
(� ��
	

����(%��'�)))

<IN>

<IF> �%	��	
	�(���	��(exp))

<THEN>

 exp

 + “State(”

 + �#
�
��	
	���
(�����	
	�(���	��(exp)))

 + “) = ”

Appendix E. KAOS Textual Translation rules 304

 + “ ‘ ” + �'�(�
(� �
	

����(%��'�)) + “ ’ ”

 <ELSE>

 exp

 + “State = ”

 + “ ‘ ” + �'�(�
(� �
	

����(%��'�)) + “ ’ ”

<ENDIF>

8. Rule : � ��--��

�

� ��--��
(%��'�) →

 <LET> exp = �'�((�'�(�
(��������(%��'�)))

 <IN>

 <IF> �%	��	
	�(���	��(exp))

 <THEN>

 exp

 + “State(”

 + �#
�
��	
	���
(�����	
	�(���	��(exp)))�

 + “) = ”

 + “ ‘ ” + �'�(�
(��������(%��'�)) + “ ’ ”

 <ELSE>

 exp

 + “State = ”

 + “ ‘ ” + �'�(�
(��������(%��'�)) + “ ’ ”

<ENDIF>

�

Appendix F. KAOS Goals and Operation models

F.1 Goal Model

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

� �

Appendix F. KAOS Goals and Operation Models 306

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Appendix F. KAOS Goals and Operation Models 307

� ∧ ∧ ∧

�

�
�

�

Appendix F. KAOS Goals and Operation Models 308

� ∧

� �

Appendix F. KAOS Goals and Operation Models 309

� ∧

� �

� ∧

� �

Appendix F. KAOS Goals and Operation Models 310

Appendix F. KAOS Goals and Operation Models 311

� �

� ∧

� �

� ∧

� �

�∨

Appendix F. KAOS Goals and Operation Models 312

F.2 The Detail of Goal and Operation Models:

MainG1 Goal Achieve[DoorAtTheRequestedFloorIsEventuallyOpenedBetween7-25secs

AfterThereIsARequestFortheLiftToServiceTheFloor]

Definition : Door at the requested floor is eventually opened between 7 and 25 seconds

after there is a request for the lift to service that floor

FormalDef ∀ f : FLOOR, f : reqFl, (f > currentFl ∨ f < currentFl)

 requestlampState(f) = ‘rLit’

 doorState(currentFl) = ‘Closed’

 liftState = ‘StopAtFloor’

 �

 � [7, 25] doorState(f) = ‘Open’

MainG1.1 Goal Achieve[DoorAtTheRequestedFloorIsEventuallyOpenedBetween7-25secs

AfterThereIsaRequestFortheLiftAboveTheCurrentFloor]

Definition : Door at the requested floor is eventually opened between 7 and 25 seconds

after there is a request for the lift above the current floor

FormalDef ∀ f : FLOOR, f : reqFl, f > currentFl

 requestlampState(f) = ‘rLit’

 doorState(currentFl) = ‘Closed’

 liftState = ‘StopAtFloor’

 �

 � [7, 25] doorState(f) = ‘Open’

MainG1.2 Goal Achieve[DoorAtTheRequestedFloorIsEventuallyOpenedBetween7-25secs

AfterThereIsaRequestFortheLiftBelowTheCurrentFloor]

Definition : Door at the requested floor is eventually opened between 7 and 25 seconds

after there is a request for the lift below the current floor

FormalDef ∀ f : FLOOR, f : reqFl, f < currentFl

 requestlampState(f) = ‘rLit’

 doorState(currentFl) = ‘Closed’

 liftState = ‘StopAtFloor’

 �

 � [7, 25] doorState(f) = ‘Open’

Appendix F. KAOS Goals and Operation Models 313

MainG2 Goal Achieve[WheneverLiftStopsAtTheRequestedFloorTheRequestlampAtThat

FloorIsEventuallyUnlitBetween2-4secsDoorAtThatFloorIsEventuallyOpenedBetween1-5

secsUplampAndDownlampAreSimultaneouslyDeactivated]

Definition : Whenever lift stops at the requested floor, the request lamp at that floor is

eventually unit between 2 and 4 seconds, door at that floor is eventually opened between 1

and 5 seconds, and up lamp and down lamp are simultaneously deactivated

FormalDef ∀ f : FLOOR, f : reqFl, f = currentFl

 liftState = ‘StopAtFloor’

 �

 � [2, 4] reqestlampState(f) = ‘rUnlit’

 � [1, 5] doorState(f) = ‘Open’

 uplampState = ‘deActivated’

 downlampState = ‘Deactivated’

MainG3 Goal Achieve[WheneverfloorsensorAtTheCurrentFloorIsSetOffFloorLampIsEven

tuallySetUnlitBetween2-4secsAndLiftIsSimultaneouslyInAStateOfMovingUpOrMovingDow

n]

Definition : Whenever floor sensor at the current floor is set off, floor lamp is eventually set

unlit between 2 and 4 seconds and lift is simultaneously in a state of moving up or moving

down

FormalDef ∀ f : FLOOR, f : reqFl, f = currentFl

 floorsensorState(f) = ‘Off’

 �

 � [2, 4] floorlampState(f) = ‘Unlit’

 (liftState = ‘MovingUp’ ∨ liftState = ‘MovingDown’

MainG4 Goal Maintain[UplampSimultaneouslySetToDeactivatedWhileDownlampSimultan

eouslySetToActivatedWheneverLiftIsInAStateOfMvgDptDown]

Definition : Up lamp is simultaneously set to deactivated while down lamp is

simultaneously set to activated whenever lift is in a state of moving departing down

FormalDef liftState = ‘MovingDepartingDown’

 �

 uplampState = ‘deActivated’

 downlampState = ‘Activated’

Appendix F. KAOS Goals and Operation Models 314

MainG5 Goal Maintain[UplampSimultaneouslySetToActivatedWhileDownlampSimultan

eouslySetToDeativatedWheneverLiftIsInAStateOfMvgDptup]

Definition : Up lamp is simultaneously set to activated while down lamp is simultaneously

set to deactivated whenever lift is in a state of moving departingup

FormalDef liftState = ‘MovingDepartingup’

 �

 uplampState = ‘acTivated’

 downlampState = ‘Deactivated’

MainG6 Goal Achieve[LiftIsEventuallyChangesItsStateFromMvgArgUpToMvgDptUpOr

MvgArgDownToMgvDptdownWheneverThereAreRequestsForOtherFloorsAndNoRequestF

orTheCurrentFloor]

Definition : Lift is eventually changes its state from moving arriving up to moving departing

up or moving arriving down to moving departing down whenever there are requests for

other floors and no request for the current floor

FormalDef ∀ f : FLOOR, f : reqFl, (f > currentFl ∨ f < currentFl)

 currentFl ∉reqFl

 liftState = ‘MovingArrivingUp’ ∨

liftState = ‘MovingArrivingDown’

 �

 � liftState = ‘MovingDepartingUp’ ∨

liftState = ‘MovingDepartingDown’

MainG7 Goal Achieve[FloorlampAtTheCurrentFloorIsEventuallyLitBetween2-4secsAndLift

IsEventuallyStopsAtTheCurrentFloorBetween1-5secsAfterFloorsensorStateAtTheCurrent

FloorIsOnAndLiftIsInTheStateOfMvgArgUpOrMvgArgDwn]

Definition : Floor lamp at the current floor is eventually lit between 2 and 4 seconds and lift

is eventually stops at the current floor between 1 and 5 seconds after floor sensor state at

the current floor is on and lift is in the state of moving arriving up or moving arriving down

FormalDef ∀ f : FLOOR, f : reqFl, f = currentFl

 floorsensorState(f) = ‘On’ &

 (liftState = ‘MovingArrivingUp’ ∨

liftState = ‘MovingArrivingDown’)

 �

 � [2, 4] floorlampState(f) = ‘Lit’

Appendix F. KAOS Goals and Operation Models 315

 � [1, 5] liftState(f) = ‘StopAtFloor’

MainG7.1 Goal Achieve[FloorlampAtTheCurrentFloorIsEventuallyLitBetween2-4secsAnd

LiftIsEventuallyStopsAtTheCurrentFloorBetween1-5secsAfterFloorsensorStateAtTheCurr

entFloorIsOnAndLiftIsInTheStateOfMvgArgUp]

Definition : Floor lamp at the current floor is eventually lit between 2 and 4 seconds and lift

is eventually stops at the current floor between 1 and 5 seconds after floor sensor state at

the current floor is on and lift is in the state of moving arriving up

FormalDef ∀ f : FLOOR, f : reqFl, f = currentFl

 floorsensorState(f) = ‘On’ &

 liftState = ‘MovingArrivingUp’)

 �

 � [2, 4] floorlampState(f) = ‘Lit’

 � [1, 5] liftState(f) = ‘StopAtFloor’

MainG7.2 Goal Achieve[FloorlampAtTheCurrentFloorIsEventuallyLitBetween2-4secs

AndLiftEventuallyStopsAtTheCurrentFloorBetween1-5secsAfterFloorsensorStateAtTheCur

rentFloorIsOnAndLiftIsInTheStateOfMvgArgDwn]

Definition : Floor lamp at the current floor is eventually lit between 2 and 4 seconds and lift

is eventually stops at the current floor between 1 and 5 seconds after floor sensor state at

the current floor is on and lift is in the state of moving arriving down

FormalDef ∀ f : FLOOR, f : reqFl, f = currentFl

 floorsensorState(f) = ‘On’ &

 liftState = ‘MovingArrivingDown’)

 �

 � [2, 4] floorlampState(f) = ‘Lit’

 � [1, 5] liftState(f) = ‘StopAtFloor’

Line1 Goal Achieve[WheneverFloorsensorAtTheCurrentFloorIsSetOffFloorlampIsEventua

llySetUnlitBetween��2-4secs]

Definition : Floor lamp at the current floor is eventually set to unlit between 2 and 4

seconds after floor sensor at the current floor is set off

FormalDef ∀ f : FLOOR, f = currentFl

 floorsensorState(f) = ‘Off’

Appendix F. KAOS Goals and Operation Models 316

 �

 � [2, 4] floorlampState(f) = ‘Unlit’

Operation FloorlampUnlit

Input floorlamp{arg f : FlOOR, f = currentFl}state

Output floorlamp{arg f : FlOOR, f = currentFl}state

DomPre floorlampState(f) = ‘Lit’

DomPost floorlampState(f) = ‘Unlit’

ReqTrig floorlampState(f) = ‘Lit’ S[1, 3] (floorsensorState(f) = ‘Off’)

Line2(a) Goal Achieve[FloorlampAtTheCurrentFloorIsEventuallyLitBetween2-4secsAfter

FloorsensorStateAtTheCurrentFloorIsOnAndLiftIsInTheStateOfMvgArgUp]

Definition : Floor lamp at the current floor is eventually lit between 2 and 4 seconds after

floor sensor state at the current floor is on and lift is in the state of moving arriving up

FormalDef: ∀ f : FLOOR, f: reqFl, f = currentFl

 floorsensorState(f) = ‘On’

 liftState = ‘MovingArrivingUp’

 �

 � [2, 4] floorlampState(f) = ‘Lit’

Operation FloorlampLit

Input floorlamp{arg f : FlOOR, f: reqFl, f = currentFl }State

Output floorlamp{arg f : FlOOR, f: reqFl, f = currentFl }State

DomPre floorlampState(f) = ‘Unlit’

DomPost floorlampState(f) = ‘Lit’

ReqTrig floorlampState(f) = ‘Unlit’

 S[1, 3] (floorsensorState(f) = ‘On’ & liftState = ‘MovingArringUp’)

Line2(b) Goal Achieve[FloorlampAtTheCurrentFloorIsEventuallyLitBetween2-4secsAfter

FloorSensorStateAtTheCurrentFloorIsOnAndLiftIsInTheStateOfMvgArgDwn]

Definition : Floor lamp at the current floor is eventually lit between 2 and 4 seconds after

floor sensor state at the current floor is on and lift is in the state of moving arriving down

FormalDef: ∀ f : FLOOR, f: reqFl, f = currentFl

 floorsensorState(f) = ‘On’

 liftState = ‘MovingArrivingDown’

Appendix F. KAOS Goals and Operation Models 317

 �

 � [2, 4] floorlampState(f) = ‘Lit’

Operation FloorlampLit

Input floorlamp{arg f : FlOOR, f = currentFl}state

Output floorlamp{arg f : FlOOR, f: reqFl, f = currentFl }State

DomPre floorlampState(f) = ‘Unlit’

DomPost floorlampState(f) = ‘Lit’

ReqTrig floorlampState(f) = ‘Unlit’

 S[1, 3] (floorsensorState(f) = ‘On’ & liftState = ‘MovingArringDown’)

Line3.1 Goal Achieve[FloorsensorForTheCurrentFloorIsEventuallySetOffBetween2-5secs

AfterLiftStartsMvgDptUp]

Definition: The floor sensor at the current floor is eventually set off between 2 and 5

seconds after lift is in the state of moving departing up providing the direction of lift is up

FormalDef ∀ f : FLOOR, f = currentFl

 liftState = ‘MovingDepartingUp’ & dir = Up

 �

 � [2,5] floorsensorState(f) = ‘Off’

Operation FloorsensorOff

Input floorsensor{arg f : FlOOR, f = currentFl}State

Output floorsensor{arg f : FlOOR, f = currentFl}State

DomPre floorsensorState(f) = ‘On’

DomPost floorsensorState(f) = ‘Off’

ReqTrig floorsensorState(f) = ‘On’ S[1,4] (liftState = ‘MovingDepartingUp’

 & dir = Up)

Line3.2 Goal Achieve[FloorsensorForTheCurrentFloorIsEventuallySetOffBetween2-5secs

AfterLiftStartsMvgDptDwn]

Definition: The floor sensor at the current floor is eventually set off between 2 and 5

seconds after lift is in the state of moving departing down providing the direction of lift is

down

FormalDef: ∀ f : FLOOR, f = currentFl

 (liftState = ‘MovingDepartingDown’ & dir = Down)

Appendix F. KAOS Goals and Operation Models 318

 �

 � [2,5] floorsensorState(f) = ‘Off’

Operation FloorsensorOff

Input floorsensor{arg f : FlOOR, f = currentFl}State

Output floorsensor{arg f : FlOOR, f = currentFl}State

DomPre floorsensorState(f) = ‘On’

DomPost floorsensorState(f) = ‘Off’

ReqTrig floorsensorState(f) = ‘On’

 S[1,4] (liftState = ‘MovingDepartingDown’ & dir = Down)

Line4.1 Goal Achieve[FloorsensorForTheCurrentFloorIsEventuallySetOnBetween2-5secs

AfterLiftMvgArgUp]

Definition: Floor sensor for the current floor is eventually set on between 2 and 5 seconds

after lift is moving arriving up

FormalDef ∀ f : FLOOR, f = currentFl

 liftState = ‘MovingArrivingUp’

 �

 � [2,5] floorsensorState(f) = ‘On’

Operation FloorsensorOn

Input floorsensor{arg f : FlOOR, f = currentFl}State

Output floorsensor{arg f : FlOOR, f = currentFl}State

DomPre floorsensorState(f) = ‘Off’

DomPost floorsensorState(f) = ‘On’

ReqTrig floorsensorState(f) = ‘Off’ S[1, 4] (liftState = ‘MovingArrivingUp’)

Line4.2 Goal Achieve[FloorsensorForTheCurrentFloorIsEventuallySetOnBetween2-5secs

AfterLiftMvgArgDwn]

Definition: Floor sensor for the current floor is eventually set on between 2 and 5 seconds

after lift is moving arriving down

FormalDef ∀ f : FLOOR, f = currentFl

 liftState = ‘MovingArrivingDown’

 �

 � [2,5] floorsensorState(f) = ‘On’

Appendix F. KAOS Goals and Operation Models 319

Operation FloorsensorOn

Input floorsensor{arg f : FlOOR, f = currentFl}State

Output floorsensor{arg f : FlOOR, f = currentFl}State

DomPre floorsensorState(f) = ‘Off’

DomPost floorsensorState(f) = ‘On’

ReqTrig floorsensorState(f) = ‘Off’ S[1, 4] (liftState = ‘MovingArrivingDown’)

Line5(a) Goal Achieve[LiftIsEventuallyStopAtTheCurrentFloorBetween1-5secsAfterFloor

sensorStateAtTheCurrentFloorIsOnAndLiftIsInTheStateOfMvgArgUp]

Definition : A lift is eventually stopped at the current floor between 1 and 5 seconds after a

floor sensor at that floor is set on and lift is in the state of moving arriving up.

FormalDef ∀ f : FLOOR, f : reqFl, f = currentFl

 floorsensorState(f) = ‘On’ &

 liftState = ‘MovingArrivingUp’

 �

 � [1,5] liftState = ‘StopAtFloor’

Operation LiftStopAtFloor

Input liftState

Output liftState

DomPre liftState ≠ ‘StopAtFloor’

DomPost liftState = ‘StopAtFloor’

ReqTrig liftState ≠ ‘StopAtFloor’

 S[0.99, 4] (floorsensorState(f) = ‘On’ & liftState = ‘MovingArrivingUp’)

Line5(b) Goal Achieve[LiftIsEventuallyStopAtTheCurrentFloorBetween1-5secsAfterFloor

sensonrsensorStateAtTheCurrentFloorIsOnAndLiftIsInTheStateOfMvgArgDwn]

Definition : A lift is eventually stopped at the current floor between 1 and 5 seconds after a

floor sensor at that floor is set on and lift is in the state of moving arriving down.

FormalDef ∀ f : FLOOR, f : reqFl, f = currentFl

 floorsensorState(f) = ‘On’ &

 liftState = ‘MovingArrivingDown’

 �

 � [1,5] liftState = ‘StopAtFloor’

Appendix F. KAOS Goals and Operation Models 320

Operation LiftStopAtFloor

Input liftState

Output liftState

DomPre liftState ≠ ‘StopAtFloor’

DomPost liftState = ‘StopAtFloor’

ReqTrig liftState ≠ ‘StopAtFloor’

 S[0.99, 4] (floorsensorState(f) = ‘On’ & liftState = ‘MovingArrivingDown’)

Line6 Goal Achieve[TheRequestlampAtTheRequestedFloorIsEventuallyUnlitBetween2-4

secs AfterLiftStopsAtThatFloor]

Definition: The request lamp at the current floor is eventually set to unlit between 2 and 4

seconds after lift is in the state of stop at floor

FormalDef ∀ f : FLOOR, f = currentFl

 liftState = ‘StopAtFloor’

 �

 � [2, 4] requestlampState(f) = ‘rUnlit’

Operation RequestlamprUnlit

Input requestlamp{arg f : FLOOR, f = currentFl}State

Output requestlamp{arg f : FLOOR, f = currentFl}State

DomPre requestlampState(f) = ‘rLit’

DomPost requestlampState(f) = ‘rUnlit’

ReqTrig requestlampState(f) = ‘rLit’ S[1, 3] (liftState = ‘StopAtFloor’)

Line9 Goal Achieve[TheDoorAtTheCurrentFloorIsEventuallyOpenBetween1-5secsAfterLift

StopsAtThatFloor]

Definition : Door at the current floor is eventfully opened between 1 and 5 seconds after

the lift stops at the current floor

FormalDef ∀ f : FLOOR, f : reqFl, f = currentFl

 liftState = ‘StopAtFloor’

 �

 � [1,5] doorState(f) = ‘Open’

Operation DoorOpen

Input door{arg f : FLOOR, f : reqFl, f = currentFl}State

Appendix F. KAOS Goals and Operation Models 321

Output door{arg f : FLOOR, f : reqFl, f = currentFl}State

DomPre doorState(f) = ‘Closed’

DomPost doorState(f) = ‘Open’

ReqTrig doorState(f) = ‘Closed’ S[0.99, 4] (liftState = ‘StopAtFloor’)

Line10 Goal Maintain[DownlampIsDeactivatedSimultaneouslyWhenLiftStopsAtFloor]

Definition : Down lamp is set to deactivate at once after lift stops at floor

FormalDef liftState = ‘StopAtFloor’

 �

 downlampState = ‘Deactivated’

Operation DownlampDeactivated

Input liftState

Output liftState

DomPre liftState ≠ ‘StopAtFloor’

DomPost liftState = ‘StopAtFloor’

ReqPost downlampState = ‘Deactivated’

Operation DownlampActivated

Input downlampState

Output downlampState

DomPre downlampState = ‘Deactivated’

DomPost downlampState = ‘Activated’

ReqPost liftState ≠ ‘StopAtFloor’

Line11 Goal Maintain[UplampIsDeactivatedSimultaneouslyWhenLiftStopsAtFloor]

Definition: Up lamp is set to deactivate at once whenever the lift stops at floor

FormalDef: liftState = ‘StopAtFloor’

 �

 uplampState = ‘deActivated’

Operation UplampdeActivated

Input liftState

Output liftState

DomPre liftState ≠ ‘StopAtFloor’

Appendix F. KAOS Goals and Operation Models 322

DomPost liftState = ‘StopAtFloor’

ReqPost uplampState = ‘deActivated’

Operation UplampacTivated

Input uplampState

Output uplampState

DomPre uplampState = ‘deActivated’

DomPost uplampState = ‘acTivated’

ReqPost liftState ≠ ‘StopAtFloor’

Line12 Goal Maintain[UplampSimultaneouslySetToDeactivatedWheneverLiftIsInAStateOf

MvgDptDwn]

Definition: Up lamp is set to deactivate at once whenever the lift starts moving departing

down

FormalDef liftState = ‘MovingDepartingDown’

 �

 uplampState = ‘deActivated’

Operation Uplampdeactivated

Input liftState

Output liftState

DomPre liftState ≠ ‘MovingDepartingDown’

DomPost liftState = ‘MovingDepartingDown’

ReqPost uplampState = ‘deActivated’

Operation Uplampactivated

Input uplampState

Output uplampState

DomPre uplampState = ‘deActivated’

DomPost uplampState = ‘acTivated’

ReqPost liftState ≠ ‘MovingDepartingDown’

Line13 Goal Maintain[DownlampSimultaneouslySetToActivatedWheneverLiftIsInAStateOf

MvgDptDwn]

Appendix F. KAOS Goals and Operation Models 323

Definition : Down lamp is set to activate at once whenever the lift starts moving departing

down

FormalDef liftState = ‘MovingDepartingDown’

 �

 downlampState = ‘Activated’

Operation DownlampActivated

Input liftState

Output liftState

DomPre liftState ≠ ‘MovingDepartingDown’

DomPost liftState = ‘MovingDepartingDown’

ReqPost downlampState = ‘Activated’

Operation DownlampDeactivated

Input downlampState

Output downlampState

DomPre downlampState = ‘Activated’

DomPost downlampState = ‘Deactivated’

ReqPost liftState ≠ ‘MovingDepartingDown’

Line14 Goal Maintain[UplampSimultaneouslySetToActivatedWheneverLiftIsInAStateOf

MvgDptUp]

Definition : Uplamp is set to activate at once whenever the lift starts moving departing up

FormalDef: liftState = ‘MovingDepartingUp’

 �

 uplampState = ‘Activated’

Operation UplampActivated

Input liftState

Output liftState

DomPre liftState ≠ ‘MovingDepartingUp’

DomPost liftState = ‘MovingDepartingUp’

ReqPost uplampState = ‘Activated’

Operation UplampDeactivated

Appendix F. KAOS Goals and Operation Models 324

Input uplampState

Output uplampState

DomPre uplampState = ‘Activated’

DomPost uplampState = ‘Deactivated’

ReqPost liftState ≠ ‘MovingDepartingUp’

Line15 Goal Maintain[DownlampSimultaneouslySetToDeactivatedWheneverLiftIsInAState

OfMvgDptUp]

Definition : Downlamp is set to deactivate at once whenever the lift starts moving deapring

up

FormalDef: liftState = ‘MovingDepartingUp’

 �

 downlampState = ‘Deactivated’

Operation DownlampActivated

Input liftState

Output liftState

DomPre liftState ≠ ‘MovingDepartingUp’

DomPost liftState = ‘MovingDepartingUp’

ReqPost downlampState = ‘Deactivated’

Operation DownlampDeactivated

Input downlampState

Output downlampState

DomPre downlampState = ‘Deactivated’

DomPost downlampState = ‘Activated’

ReqPost liftState ≠ ‘MovingDepartingUp’

Line16&17 Goal Maintain[WheneverFloorsensorAtTheCurrentFloorsIsSetOffLiftIsSimutan

eouslyInAStateOfMovingUpOrMovingDown]

Definition : Whenever floorsensor at the current floor is set off, lift is simultaneously in a

state of moving up or moving down

FormalDef: ∀ f : FLOOR, f = currentFl

 floorsensorState(f) = ‘Off’

 �

Appendix F. KAOS Goals and Operation Models 325

 liftState = ‘MovingUp’ ∨ liftState = ‘MovingDown’

Line16 Goal Maintain[WheneverFloorsensorAtTheCurrentFloorsIsSetOffLiftIsSimutaneous

lyInAStateOfMovingDown]

Definition : Whenever floorsensor at the current floor is set off, lift is simultaneously in a

state of moving down

FormalDef: ∀ f : FLOOR, f = currentFl

 floorsensorState(f) = ‘Off’

 �

 liftState = ‘MovingDown’

Operation FloorsensorOff

Input floorsensor{arg f : FLOOR, f = currentFl}State

Output floorsensor{arg f : FLOOR, f = currentFl}State

DomPre floorsensorState(f) = ‘On’

DomPost floorsensorState(f) = ‘Off’

ReqPost liftState = ‘MovingDown’

Operation FloorsensorOn

Input liftState

Output liftState

DomPre liftState = ‘MovingDown’

DomPost ¬ (liftState = ‘MovingDown’)

ReqPost floorsensorState(f) = ‘On’

Line17 Goal Maintain[WheneverFloorsensorAtTheCurrentFloorsIsSetOffLiftIsSimutaneous

lyInAStateOfMovingUp]

Definition : Whenever floorsensor at the current floor is set off, lift is simultaneously in a

state of moving up

FormalDef: ∀ f : FLOOR, f = currentFl

 floorsensorState(f) = ‘Off’

 �

 liftState = ‘MovingUp’

Operation FloorsensorOff

Appendix F. KAOS Goals and Operation Models 326

Input floorsensor{arg f : FLOOR, f = currentFl}State

Output floorsensor{arg f : FLOOR, f = currentFl}State

DomPre floorsensorState(f) = ‘On’

DomPost floorsensorState(f) = ‘Off’

ReqPost liftState = ‘MovingUp’

Operation FloorsensorOn

Input liftState

Output liftState

DomPre liftState = ‘MovingUp’

DomPost ¬ (liftState = ‘MovingUp’)

ReqPost floorsensorState(f) = ‘On’

Line18&7 Goal Achieve[LiftisEventuallyMvgDptUpFromTheCurrentFloorBetween1-5secs

AfterThereIsARequestForTheLiftAboveTheCurrentFloorAndTheDoorAtTheCurrentFloorIs

Closed]

Definition: Lift is eventually moving departing up from the current floor between 1 and 5

seconds after there is a request for the lift above the current floor and the door at the

current floor is closed.

FormalDef ∀ f : FLOOR, f : reqFl, f > currentFl

 requestlampState(f) = ‘rLit’ &

 doorState(currentFl) = ‘Closed’ &

 liftState = ‘StopAtFloor’

 �

 � [1, 5] liftState = ‘MovingDepartingUp’

Operation LiftMovingDepartingUp

Input liftState

Output liftState

DomPre liftState = ‘StopAtFloor’

DomPost liftState = ‘MovingDepartingUp’

ReqTrig liftState = ‘StopAtFloor’

 S[0.99, 4] (requestlampState(f) = ‘rLit’ & doorState(currentFl) = ‘Closed’ &

 liftState = ‘StopAtFloor’)

Appendix F. KAOS Goals and Operation Models 327

Line19&8 Goal Achieve[LiftisEventuallyMvgDptDwnFromTheCurrentFloorBetween1-5secs

AfterThereIsARequestForTheLiftBelowTheCurrentFloorAndTheDoorAtTheCurrentFloorIsCl

osed]

Definition: Lift is eventually moving departing down from the current floor between 1 and 5

seconds after there is a request for the lift below the current floor and the door at the

current floor is closed.

FormalDef ∀ f : FLOOR, f : reqFl, f < currentFl

 requestlampState(f) = ‘rLit’ &

 doorState(currentFl) = ‘Closed’ &

 liftState = ‘StopAtFloor’

 �

 � [1, 5] liftState = ‘MovingDepartingDown’

Operation RequestlamprUnlit

Input liftState

Output liftState

DomPre liftState = ‘StopAtFloor’

DomPost liftState = ‘MovingDepartingDown’

ReqTrig liftState = ‘StopAtFloor’

 S[0.99, 4] (requestlampState(f) = ‘rLit’ & doorState(currentFl) = ‘Closed’ &

 liftState = ‘StopAtFloor’)

Line2(a) Goal Achieve[FloorlampAtTheCurrentFloorIsEventuallyLitBetween2-4secsAfter

FloorsensorStateAtTheCurrentFloorIsOnAndLiftIsInTheStateOfMvgArgUp]

Definition: Floor lamp at the current floor is eventually lit between 2 and 4 seconds after

floor sensor state at the current floor is set on and lift is in the state of moving arriving up

FormalDef ∀ f : FLOOR, f : reqFl, f = currentFl

 floorsensorState(f) = ‘On’ &

 liftState = ‘MovingArrivingUp’

 �

 � [2, 4] floorlampState(f) = ‘Lit’

Operation floorlampLit

Input floorlamp{arg f : FLOOR, f : reqFl, f = currentFl}State

Output floorlamp{arg f : FLOOR, f : reqFl, f = currentFl}State

DomPre floorlampState(f) = ‘Unlit’

Appendix F. KAOS Goals and Operation Models 328

DomPost floorlampState(f) = ‘Lit’

ReqTrig floorlampState(f) = ‘Unlit’

 S[1, 3] (floorsensorState(f) = ‘On’ & liftState = ‘MovingArrivingUp’)

Line2(b) Goal Achieve[FloorlampAtTheCurrentFloorIsEventuallyLitBetween2-4secsAfter

Fl oorsensorStateAtTheCurrentFloorIsOnAndLiftIsInTheStateOfMvgArgDwn]

Definition: Floor lamp at the current floor is eventually lit between 2 and 4 seconds after

floor sensor state at the current floor is set on and lift is in the state of moving arriving

down

FormalDef ∀ f : FLOOR, f : reqFl, f = currentFl

 floorsensorState(f) = ‘On’ &

 liftState = ‘MovingArrivingDown’

 �

 � [2, 4] floorlampState(f) = ‘Lit’

Operation floorlampLit

Input floorlamp{arg f : FLOOR, f : reqFl, f = currentFl}State

Output floorlamp{arg f : FLOOR, f : reqFl, f = currentFl}State

DomPre floorlampState(f) = ‘Unlit’

DomPost floorlampState(f) = ‘Lit’

ReqTrig floorlampState(f) = ‘Unlit’

 S[1, 3] (floorsensorState(f) = ‘On’ & liftState = ‘MovingArrivingDown’)

Goal A1 Achieve[LiftIsEventuallyChangedToStateMvgUpAfterMvgUp]

Definition: Lift is eventually changed to state moving arriving up after moving up

FormalDef liftState = ‘MovingUp’

 �

 � liftState = ‘MovingArrivingUp’

Goal A2 Achieve[LiftIsEventuallyChangedToStateMvgDwnAfterMvgDwn]

Definition: Lift is eventually changed to state moving arriving down after moving down

FormalDef liftState = ‘MovingDown’

 �

 � liftState = ‘MovingArrivingDown’

Appendix F. KAOS Goals and Operation Models 329

GoalA3 Achieve[LiftIsIsEventuallyChangedItsStateFromMvgArgUpToMvgDeptUpWhen

ever ThereAreRequestsAboveThatCurrentFloorAndNoRequestForTheCurrentFloor]

Definition: Lift is eventually changed its state form moving arriving up to moving departing

up whenever there are requests above the current floor and no request for

the current floor

FormalDef ∀ f : FLOOR, f : reqFl, f > currentFl

 currentfl ∉ reqFl &

 liftState = ‘MovingArrivingUp’

 �

 � liftState = ‘MovingDepartingUp’

GoalA4 Achieve[LiftIsIsEventuallyChangedItsStateFromMvgArgDownToMvgDeptDown

WheneverThereAreRequestsBelowThatCurrentFloorAndNoRequestForTheCurrentFloor]

Definition: Lift is eventually changed its state form moving arriving down to moving

departing down whenever there are requests below the current floor and no request for the

current floor

FormalDef ∀ f : FLOOR, f : reqFl, f < currentFl

 currentfl ∉ reqFl &

 liftState = ‘MovingArrivingDown’

 �

 � liftState = ‘MovingDepartingDown’

