HJNIVERSITY OF

Southampton

University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON
FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

School of Electronics and Computer Science

Bringing Requirements Engineering to Formal Methods:

Timing diagrams for Event-B and KAOS

by

Tossaporn Joochim

Thesis for the degree of Doctor of Philosophy

February, 2010

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

BRINGING REQUIREMENTS ENGINEERING TO FORMAL METHODS:
TIMING DIAGRAMS FOR EVENT-B AND KAOS

by Tossaporn Joochim

Event-B is a language for the formal development of reactive systems. At
present the RODIN toolkit (RODIN, 2009) for Event-B is used for modelling
requirements, specifying refinements and verification. In order to extend the
ability to model graphically requirements for the real-time domain, where timing
constraints are essential, we use Timing diagrams for Event-B, UML-B and
Knowledge Acquisition in autOmated Specification (KAOS). The Timing
diagrams, based on UML 2.0 Timing diagram notation (OMG, 2007), provide an
intuitive graphical specification capability for timing constraints and causal
dependencies between system events. Translation schemes to Event-B, UML-B
and KAOS are proposed and presented.

The benefit of our contribution is providing a graphical option to generate
timing constraints and causal dependencies of a reactive system to Event-B,
UML-B and KAOS Goals. Thus, instead of manually generating these Event-B,
UML-B and KAOS Goal models in a textual form, users can use the TD as a
graphical front-end, and these target models are created automatically.

We compare the three applications of the Timing diagrams in terms of their
contribution to formal requirements engineering. A partial case study of a Lift
System is used to demonstrate the translation in practice.

Contents

Chapter 1 INtroductionccceeeecsseecsssnicssnccsssncssssscsssssssssssssssssssssssssssssssasssssns 1
L1 OVEIVIEW ettt ettt et 1
1.2 MOTIVALION .ttt ettt st et s enees 9
1.3 GOAL et 10
1.4 Contribution OVEIVIEW.......cooueiriiiriiiiieeniieeieente et 12
1.5 DoCUMENt SIIUCTUTE.eeiuiiiiiieiieiieeieenite ettt ettt 14

Chapter 2 Technical Backgroundcecccceeccisenccsnrcssnncsssnscsssnssssssssssaseses 17
2.1 Requirements ENgINEEIINGccccueervvieriiiiiiiieniieeeiieeeiteeeieeeeieeeas 18
2.2 Formal Methodscccciviiiiiiiiiiiiiieccceeeececee e 19
2.3 Event-B Modelling.........ccceeeiuiieiiieeiieeiieeieeeeeeeee e 20

2.3.1 Contexts and Machinesccccceevuerriinieeneenienneenieeieee 21
2.3.2 Before-After predicates associated with an assignment........ 23
2.3.3 RefINemEentcc.cooiieiiiiiiiiieiiececeee e 25
2.4 RODIN TOOIS ...coiieiiiiieiieieeieeie ettt 27
2.5 UML-B .ot 29
2.5.1 Package diagramcccocceeeviieiiiieiniieeieeeeeeeee e 29
2.5.2 Context dIagramcoocueeerieeeriieeiieeeitee et et et e e 30
2.5.3 Class diagrams.........ceccveeerureerueeenieeerieeenreeesneesnreesseeesseens 31
2.5.4 StatemacChines........ccceerueeiiieiiieniienieeieeete et 33
2.5.5 Implementation of UML-Bccccccoiiiiiiiiiiiiiiiieieen 34
2.6 Linear Temporal Logic (LTL).....cooviiiiiiiiiiiiiieeeeeeeeeeeeees 36
2.7 Knowledge Acquisition in autOmated Specification (KAOS) 38
2.7.1 Goal MOdElooviiiiiiiiiiiiiie e 39
2.7.2 Goal formal definition.........c.ccceeeeveiiiiiniieeiieniceecreeeee 40
2.7.3 Goal refInement......c..eeeeiriieriieiiiieeeeneceee e 42
2.7.4 Formal goal refinement patternsccceceeeevveeecrveercreeennnnnn. 44
2.7.5 Operation MOdEl........cceeeviiieriiiieriie e 46
2.8 MetamOdellingccccueieriiiiiiieiiiieeitee e 49

il

2.8.1 Meta-Object Facility (MOF)ccccccovviiiiiiiiiiiiiniecieeen 49

2.8.2 Eclipse Modelling Frameworkc.ccooceevviiencieencieennen. 51

2.9 Atlas Transformation Language (ATL)cccoovieriiiiiiniiiniinieceee 53
2.9.1 Headerooouiiiiiiiiieiieeee e 55

2.9.2 Transformation Tulesccoceeveeriiineenieenienieeecreceeeee 56

2.9.3 HEIPLTS ..ot 59

2.10 SUMMATY ..eieiiiiieiiieeciieeeieeeeteeetee et e e steeeseeeeeeeeesseeessneesnseeessseeenns 62
Chapter 3 Other Relevant Work.......cc.cicieeicnvnicnsncsssencssnncssanscssascessasssssascne 63
3.1 SYSML e 63
3.2 Action/Reaction Pattern and B............cccccoooiiiiiiiiiice 66
3.3 KAOS and Bu....ooiioiiiieeeeeee e 67
3.4 KAOS and UMLooiiiiiiiiiieeicnteeeeteeeeseee et 68
3.5 CSPand B ..o 69
3.6 Other CONMCEPLS....viieeiieeiieeeiieeeiieeeieeeereeesereeeseaeeesreeeaaeeesneesnseeennnes 70
3.7 LTL properties and Requirements Engineering...........c.cccccveevveennee. 72
3.8 SUMIMATY .eouiiiiiiiieiiiee ettt st s 74
Chapter 4 Timing Diagrams and Lift Specification..........ccecceecurescercsurcssaneans 75
4.1 Lift SPecifiCation......ccueeeviieeiiieeiiee ettt e eae e 72
4.2 UML 2.0 Timing Diagramcccceevueeeiiieeriiieeriieenveeesireeeieeesieeenns 74
4.3 UML Timing Diagram Amended.............ccoocuieriiiiinieennieeniieenieeens 76
4.4 Timing Diagram for the Lift specifications..........cccccccevvveeriieeniueenns 79
4.5 A brief glossary for Timing Diagramsccccceeevveeerveeeineercnnennns 82
4.6 Preliminary Timing diagram editor...........ccccveeriieerieeerieeeireeeieeenns 83
47T SUMIMATY ceeniiiieeieiiiieeeeieee e et e e e ettt e e e st e e e sabteeeesstaeeessanteeeesasaeeens 85

Chapter 5 Translating Timing Diagrams into Event-B models (direct

ELANSIALION) «.cvuvveeeeeeereeeeecrrrrssneeeeeceecssssssesseeeecssssssssssssssesesssssssssssassssssssssorsnnssssasens 86
5.1 TD BNF definitioncccccoiiiiiiiiiiiiiiiiieeeeceeeeeee e 87

5.2 Event-B model parts vs. Top-level textual translation rules............. 92

5.3 Translation TUlEScoocuieoiiiiiiriiieiceeeeee e 94

5.3.1 Translation rules for creating a set in the Context part......... 96

il

5.3.2 Translation rules for creating variables and their initialvalues

... 97
5.3.3 Structure of Translation rules for creating an Event-B event
... 101
5.3.4 Creating an €Vent’s NAMEcceeveerrureerrireeriureennieeenireeennnes 104

5.3.5 Creating non-deterministic local variables and their values 105

5.3.6 Creating an Event’s guardsc.ccceevveeiiveeeiieenieeeeeeee 107
5.3.7 Creating an Event’s guards from Timing constraints.......... 111
5.3.8 Creating an Event’s actions from an effect segment........... 113

5.3.9 Creating an Event’s action from a SimultaneityArrow.

... 115

5.3.10 Creating an action for recording current time whenever that
event iS aCtivatedocceeviiiiiiiiieieeeeee e 118

5.3.11 Creating an event TicktoKcccvveviieriieeniiieeieeeeeeee 118

5.4 User manual input on modelling...........cccceevveeriiiiniiinniienniiennneen. 121
5.5 SUMMATY ..oiiiiiiiiiiiiiiie et 125
Chapter 6 Translating Timing diagrams into UML-Bcccccccevvicrcnnccnnnnes 127
6.1 Timing Diagram used for translation into UML-B 129
6.2 Overview of the TD to UML-B ATL transformation 129
6.3 Timing diagram Metamodel..........cccceevviiiniiiiniiiiniiieiieeeeeen 130
6.4 Generating a TD input model............ccoooveeriiiiiiiiiniiiinieeeeeen 133
6.5 ATL Translation rulesccceevierieiniiiieinieiieeeeeeseeeee e 134
6.5.1 Top-Level ATL translation rules..........cccccceeevveereieercneeennne. 136

6.5.2 Creating UML-B Project........cccceevueervieeniieenieenieeeeeee 137
6.5.3 Creating a UML-B Context’s name and Machine 139
6.5.4 Creating UML-B Class and local attributes......................... 142
6.5.5 Creating UML-B Statemachinescccccceeevveeeeieenineeennne. 145
6.5.6 ATL translation rules for creating UML-B Statemachine
states, transitions and ACIONSccevvveueereeeeererviiieieeeeeeeens 146

6.5.7 Creating UML-B Statemachine states............ccccecveeeveeenee. 147
6.5.8 Creating UML-B Statemachine transitions and actions...... 148

v

6.5.9 Creating an Event nameccocceeevvieeniieeniieeniieeneeeee 150

6.5.10 Creating UML-B transition’s guards..........ccccceeveuveercneeennne. 153

6.6 UML-B Model alterationc.ccceeoeervieenieniieenieniienieeiceseeeeen 159
6.6.1 Adding UML-B Context diagram bodyccccceeevuernne. 159

6.6.2 Modifying UML-B Classes.......ccccceevveeriieeniieeniieenieeene 160

6.6.3 Modifying to create a lift in a System.........cccccveereuveerneennee. 162
6.6.4 Modifying UML-B Statemachinecccceecveereveennnennee. 163
6.6.5 Modifying UML-B event guardscccccceeveveeriieenieennnne. 169
6.6.6 Timing CONSraINtS.......eeevviieriieeiieeeiiee et 171

6.7 SUMIMATY ..eeeeiviieiiieeeiieecieeeeieeesree et e eireeeaaeeeaaeesareesssaeeensaeennseeas 172
Chapter 7 Translating Timing diagrams into KAOSuuueeueennen. 174
7.1 Scope of LTL operators and shape of Timing Diagrams................ 175
7.2 BNF Timing Diagram for KAOS.......cccccciiiiiiiiieeen 177
7.3 Steps in generating KAOS Goal and Operation models.................. 179
7.4 Textual translation rules for generating a goal...........cccccveevvveennenn. 180
7.5 Textual translation rules for creating a goal from segments........... 181
7.5.1 Creating pre-conditions from cause states and conditions.. 182

7.5.2 Creating post-CONAItIONScccveeerieeeriieeireeeiieeeieeeeiee e 186

7.6 Top-level textual translation rules for creating a goal from a
SIMUIEANEIE VAT T OW cirrriririeeeeeeeeiiirrreeeeeeeeeeirereeeeeseeseennssseenes 188

7.7 Splitting OR relationships in a goal pre-condition into subgoals ... 191
7.8 Generating Oal trEES....cccvviervieeriieerieeeree e ereeere e eaee e 193
7.8.1 A goal tree illustrates an object’s state change causes another
object’s state to be changed..........ccccevvvieriiiiniiiiniiiinie, 194

782 A goal tree is generated from a group of
CauseEffectArrows and SimultaneityArrows that

share the same cause SEZMeNtcceevveeereeeriveeriieeenneen. 197

7.9 Manual input to mOdellingc.coovveiriiiiniiieniiiieieeieeeeeeen 199
7.10 Operation MOEl..........cocviieriieeriieeriee et 201
T 11 SUMIMATY «.oeiviieiiiiiieeeeitee ettt e ettt e s e e e s e e e ssabteeeesaneeeeas 203
Chapter 8 Comparison and Evaluation............ceeceinecsicsecsecsaccsesssecnnens 205

8.1

8.2
8.3

Comparison between Event-B, UML-B and KAOS models........... 205
8.1.1 Timing diagram NOtationsccceereveeercveeerveeesreeninneenneens 205
8.1.2 Identify TD Timing cONStraints...........ccoccveerveeerveersuveennnennn 206
8.1.3 How models are generated...........coooveeenieennieeniieeniieennen. 206
8.1.4 TD components used for the translationcceceeennee. 207
8.1.5 Ease of production and amendmentccceeeuveernreennnenn. 207
8.1.6 Manual additional information.............cccceevvueeveenierneennen. 208
8.1.7 INVAMIANTSeeiniiiiiiiiieeiecec et 209
8.1.8 Controlling time progress: Ticktok event.............ccecueeenneen. 210
8.1.9 Easy to Understand...........ccceovieriieeniieeniieeieeeiee e 210
8.1.10 Capturing all reqUIrementscccceeevveerveeerveeesreesrneenneenn 211
Comparison with other related WOrksccocceeviiiiniiiiniiiiniienn, 211
EValuation.....ccccooiiiiiiiiieiieieecctee e 213
8.3.1 Tool validationcccccevieeiiiiniiniiiiiceeeeceeeee e 213

... 214

8.4 Quantification manual editing..........cccccueerriierniieniieenieenieeeieeene 215
8.4.1 Event-B....ooooiiiiiie e 215

8.4.2 UML-B ... 215

843 KAOS ... 216

8.5 Example of proof obligations...........cccecueeeviieriiieniiieniieeiicenieeene 216
Chapter 9 Contribution and Limitationsccceecceeecsssercssescsssnecssasessannes 219
0.1 BeNETILS...eeiiiiiieiieetee e 219
0.2 CONTIDULION ...ttt 220
9.2.1 Requirements t0 TDccccceeviiiiiiiiiiiiiiieceeeeeeeeeee 221

9.2.2 TD to Event-B Translation..........cccccceceenienieenecniennecnnene 221

9.2.3 TD to UML-B Translationcccccceceenieniieenecnienneennene 222

9.2.4 TD to KAOS Translationc.ccceeceerieenieniieeneeniennienieene 222

0.3 LIMILATIONS ..eouvieiiieiiiniiieieeete ettt et sre e s e eanees 223
0.3.1 General IMItationscocueerierieenierieeneenieeeeeee e 223

9.3.2 Timing diagram notations and tool limitations.................... 224

vi

9.3.3 KAOS translation Hmitationceuveeeeeeeeeeeirmeeiiieneeeeeeens 224

0.4 FUture dir€CtiONS.eeeutiiiuiiiiieiieeieete ettt 224
REfEIeNCES ...cuveiueiiniiniiiniiniiniicntisnissnisssisssesssnsssisssnssssssssessssssssssssssssssessse 226
Appendix A. Event-B Textual Translation rules..........cccccceeureruecscvrccnecsanes 237

A.1 Event-B systematic textual direct translation rulescccccccceee.eee. 237

A.2 Translation rules for creating an event..........ccceeeveeeeveeecnveenceeeennnnnn 240

Appendix B. An Event-B model created from the Direct translation rules .

... 247

B.1 Context : LiftSystem_EventB_ctX........ccoceeviiiiiiiiiniiiiiieieee, 247

B.2 Machine : LiftSystem_EventBccccooviiiiiiiiiiiieeeeeeeeeeen 249
Appendix C. ATL Translation rulesceeiceicnnnicssnicssssecsssnssssasssnns 264

Appendix D. UML-B and Event-B models from ATL Translation rules271

D.1 An UML-B model for the lift system: Package diagram 271

D.2 An UML-B model for the lift system: Context diagram................... 271

D.3 An UML-B model for the lift system: Class diagram....................... 272

D.4 An UML-B model for the lift system: State diagram........................ 273

D.5 An Event-B model is generated from an UML-B model.................. 274
D.5.1 CONEXE & L ClX terennieeeeeeeeeeeeeeee et e e e e e eeeeeeeeeeeeaeeeees 275

D.5.2 Context : L_mch_implicitConteXt........ccceevveerrureercreeercreeennne 277

D.5.3 Machine : L_mchcoccoooiiiiiiiiiiiiieecceceeen 280
Appendix E. KAOS Textual Translation rulesceeeecccsecseecncnnes 300

E.1 Translation rules for creating a KAOS goal from segments defined with
CAUSEE fLECTATTOW tttiiiiieeiiee ettt ettt ettt et st 300

E.2 Translation rules for creating a KAOS goal from

SIMULEANE I L Y AT T OW ceeeiciiiiieeeeeeeeeerrreeeeeeeeeeseerrrreereeeeeesenanrrareeeaesaans 303
Appendix F. KAOS Goals and Operation modelsc.cccccevueecccanccsarecnns 305
F.1 Goal MOdEl ..o 305
F.2 The Detail of Goal and Operation Models:.............ccoeueeriieenniennnnen. 312

vii

List of Figures

Figure 1-1 Example of Statecharts for Door, Lift and Floorsensor 5
Figure 1-2 Example of Timing diagram for Door, Lift and Floorsensor 6
Figure 1-3 Problem diagramcooueiiiiiiiiiiiiiiccieeeeeeee e 8
Figure 1-4 Research aimccoooueiiiiiiiiiiiiiiceieteee e 13
Figure 2-1 Event-B Static structure: CONteXt.........ceevueeerueeerueenniieeniieeniieenneenn 21
Figure 2-2 Event-B Dynamic structure: Machine...........cccceeevvvevvvieecieeecnieeenn. 22
Figure 2-3 Event-B StrucCtureccoocueiiiiieeiiiecieeeite et 22
Figure 2-4 Examples of each Event-B Structure...........cccccoeviiiiiiiniiiiniiennneen. 23
Figure 2-5 Refinement model Structurecoecveeeviiiiniieenieeiiceceeeeeeeeen 26
Figure 2-6 RODIN Modelling Perspectivecccceevveerieeenieeenieeeieeeeeeeeenn 28
Figure 2-7 RODIN Proving Perspectiveccccoecvveeviiieniieeniie e 28
Figure 2-8 UML-B Package diagram perspective.........coceeevueernireerriveeniueeenneenn 29
Figure 2-9 UML-B Context diagram perspectiveccocueeevuveernveersieeeriueeenneenn 30
Figure 2-10 EVENt-B.......coociiiiiiiiie ettt 31
Figure 2-11 UML-B Context diagram perspectiveccceevveeerveeeruveessvveennnns 31
Figure 2-12 An Event-B variable is generated from an UML-B non-fixed

PTOPEILY CLASS.cnitiiiiiieiitie ettt ettt st 32
Figure 2-13 An Event-B class is generated from an UML-B fixed property class

... 32
Figure 2-14 An example Statemachineccoeeveeeviiiiniieeniieiicecieeeieeeenn 33
Figure 2-15 An event On created from a transSitioncceeceeeevveerveeenieeenneen. 34
Figure 2-16 Parts of UML-B Metamodel.............ccccooeviiriiieniieeiieeieeeeeeen 35
Figure 2-17 UMLBabstractClass, UMLBEvent and UMLBabstractAttribute

MeEtamOdel........coouiiriiiiiiiie e 36
Figure 2-18 An example of @ g0al.........ccoovieiiiiiiiiiiiiiicceeeeeen 40
Figure 2-19 A definition of the goal Achieve[PrtcptsCstrKnown].................. 41
Figure 2-20 KAOS goal refinement graph...........cccoeeviiiviieiniiieiniienieeiieeeen 43
Figure 2-21 Symbols for AND and OR refinement...........ccccceevveeviieniinniennene 43

viii

Figure 2-22 A Milestone-driven goal refinement patternccceeeeveeenueennenne 44

Figure 2-23 A case-driven goal refinement pattern: split antecedent 45
Figure 2-24 Operation model: Global invariant............ccccceevvvieerieeenieencireeennen. 47
Figure 2-25 Operation model: Bounded achieveccocccoveeniiiiiniiincennnenns 48
Figure 2-26 Four-layer MOF ArchiteCturecccoceevueenierieenieeieenieeeennenne 50
Figure 2-27 Example of UML diagram of interfaces:..........c.ccceeeveeerveercuveennnnn. 51
Figure 2-28 Ecore model is generated from a UML diagram...............cccuoeun..... 52
Figure 2-29 TDmetamodel Model Plug-in.........ccccooiiiiiiiniiiiiiniiiiiienicceenee 53
Figure 2-30 ATL transformation approachcceeceeeviieenieennicenieenieeeenn 54
Figure 2-31 An example of the using SECtionccceevvveeriieeniieeieeeiieeeeen 57
Figure 2-32 An example of the do SECtiONccceevieriiieniinieenieciieieeeenee 57
Figure 2-33 Example of TDMetamodel (parts Of)ccccoevvervvenieiiieniieiniennene 58
Figure 2-34 Example of arule: Constraint .o 58
Figure 2-35 Example of an Operation helper: getNodePredicate. 60
Figure 2-36 Example of an Attribute helper: SimpleCond () ..ccccevveeveennene 61
Figure 3-1 UML 2.0 and SySML 1.0....coouiiiiiiiiiiieieeeeeeeneceee e 64
Figure 3-2 An example of Requirements diagram for a lift system................... 65
Figure 3-3 Examples of action and reaction patternccoceeevveeereveescuveennneenn 66
Figure 3-4 Action/Reaction patterns and corresponding B machines................. 67
Figure 3-5 Timing diagram representing { req; busy [*4];gnt} ccceeeveeeeeen. 70
Figure 3-6 An example of a Timing diagram.........ccccccecvevieeiieniiencieniienneennenne 71
Figure 3-7 TIMEIINE........ccocuiiiiiiiieiie et 71
Figure 3-8 Timing diagram for p — ¢ g nOtation........cccceevveveenereeneenienienene 72
Figure 4-1 Lift Position Display..........cccovieiriiiiiiiiiniiieiicceeeeeeeeeeen 72
Figure 4-2 A simple TD shows relationship between floorlamp and floorsensor

... 74
Figure 4-3 Compact Timing diagram (OMG, 2007)......ccccceervrreerreeerrreerreennnennn 75
Figure 4-4 Robust Timing diagram (Ambler, 2004)ccccccovveniiiiiiniiinienene 75
Figure 4-5 Robust TIMINGooouiiiiiiiiiiiiiiieeieeeeeceeee e 78

Figure 4-6 Timing diagram from Floorsensor, Lift, Uplamp and Downlamp.... 80

Figure 4-7 Timing diagram for the lift specification...........cccccceevvieevieercneennnenn. 81

X

Figure 4-8 Timing diagram and named partsccocceeevueeenieennieeniiieeniieenenn 82
Figure 4-9 Timing diagram editor WindOwccecueeviienienieenieeieenieeceneene 83
Figure 4-10 Timing diagram editor: Parameter..............cccceeevuveerieeenieennreennnnnn 85

Figure 5-1 Timing diagram for floorsensor, lift and uplamp (Parts of Figure 5-2)

... 87
Figure 5-2 Timing diagram for an Event-B model direct translation 91
Figure 5-3 Event-B model’s parts correspond with top-level textual rules 92
Figure 5-4 A Set DIRcoooiiiiiie e 93
Figure 5-5 Rule TAXiom : creating axioms in an Event-B Context................... 97
Figure 5-6 Rule TGVarTime: creating machine variables to record time 97

Figure 5-7 Rule TGVarStateInv: creating machine variables to record states

USEA t0 TECOTA SLALESveenveiiiieiieeieeie ettt 100
Figure 5-9 Structure of translation rules to create an Event-B event................ 101
Figure 5-10 Structure of translation rules and Event-B model types................ 103
Figure 5-11 Rule TEventName: creating an event’s nameccco....... 104

Figure 5-12 Timing diagram for floorsensor and lift (parts of Figure 5-2)....... 104

Figure 5-13 Rule TParamLst: creating a list of local variables for an event 105

Figure 5-14 Rule TGrdCtrnt and sub-rulesccccoevveveiireiriieeee, 107
Figure 5-15 Rule TGetGrdPredc: creating event guards from timing

constraints, cause segments and cONditionsccceeeeveeeciveeriieeercreeennnen. 108
Figure 5-16 Timing diagram for floorsensor and lift (same as Figure 5-6) 110

Figure 5-17 An example of a process for creating guards from Figure 5-16.... 110
Figure 5-18 Rule TTimingGuard: creating a timing constraint guard........ 112
Figure 5-19 Parts of an event floorsensorOffccccoevveeeveiniieenieeeniieennne, 113
Figure 5-20 Rule TSubst: creating an Event’s action from a Segment 114

Figure 5-21 Timing diagram shows Simultaneity between lift, uplamp and

downlamp (parts of Figure 5-2)ccceevveveiiieeiiieeiieeeeeceeeee e 116
Figure 5-22 Rule TSimul: creating a subStitutioncceeveveveevereerennnne. 117
Figure 5-23 Rule TRecdTime: creating an action...............cccccceeveveeevenennenen. 118

Figure 5-24 Rule TTicktok: creating a Ticktok event..............cocvevevevenrnnnnee. 119

Figure 5-25 Ticktok event’s guards (parts Of)ccevvueeeniiieinieennieenieeeeeene 120
Figure 5-26 SimultaneityArrow for the lift object......c.ccccvveeecviennnennne. 122
Figure 5-27 A floorsensorOff event before revisioncceecveeeeveeerveesiueeenne 123
Figure 5-28 Two new events are regenerated from floorsensorOff event......... 124

Figure 6-1 Timing Diagram used for transforming into a UML-B model........ 128

Figure 6-2 Overview of the TD to UML-B ATL transformation 129
Figure 6-3 Timing diagram Metamodelcccccvveriiiieniieeniieeieeeieeeeeeee 131
Figure 6-4 An example TD vs. TDMetamodelcccccvveeriieeniieniiienieeene, 132
Figure 6-5 Timing diagram instance generated by Eclipse EMF..................... 133
Figure 6-6 Header section of TDtOUMLB.atl............cccooeieiiiiiieiee, 135
Figure 6-7 UML-B Metamodel (parts Of)ccceeevieriiieniiieeniieeiee e 135
Figure 6-8 Top-level ATL 1ulesccooueeiiiiiiiiiiiiiieeeeeeeeeeeeee e 137
Figure 6-9 TDMetamodel and umlbMetamodel : Project and Machine............ 138
Figure 6-10 ATL rules for creating UML-B Project........cccccocuevviinieincnnennnen. 139
Figure 6-11 TDMetamodel and umlbMetamodel : Machine and Class............ 140
Figure 6-12 ATL rules for creating UML-B Machine..........c.ccoecueeviiiinienne. 141
Figure 6-13 Package Diagrams and Event Ticktok in a Machine part.............. 142
Figure 6-14 TDMetamodel and umlbMetamodel : Class and Attribute 143
Figure 6-15 ATL rules for creating UML-B Classccccceevevveervieerieenieeenne, 144
Figure 6-16 Lift system Class diagrams...........ccceceeeviieeniieenieennieeneeeeieeeee 145
Figure 6-17 ATL rule for creating a UML-B Statemachinecccccocece.e. 146
Figure 6-18 An example of a Statemachine generated from the rule Statemachine

... 146
Figure 6-19 ATL rules for creating UML-B Statemachine State, Transition,

Parameters and ACHONSc.coviiriiirierieerieeeeee e 147
Figure 6-20 ATL rule for creating UML-B State..........ccccceevvveeviieniieeeieeene, 147
Figure 6-21 TDMetamodel and umlbMetamodel : Statemachine, State,

Transition, Action, Guard and Parameter............coouvvueeeeeeiiiiiiiiiiiiieneeeeeeens 148
Figure 6-22 ATL rule for creating UML-B Transitionccccceevvveevieeneennen. 149
Figure 6-23 A floorsensorOff transition aCtionccceveveeerveeerveeerveensueeenenes 150
Figure 6-24 ATL rule for creating an event NAMEcceeevveeerveeerereensueeennne 150

X1

Figure 6-25 Timing diagram: floorsensor and Lift with
SIMULTANEIE VAT T OWS corurrreeieeeeeieiirrrreeeeeeeeeiiirrreeeseeeessesirrrrseeseesennones 151

Figure 6-26 The floorsensorOff transitions are generated from

SIMUIEANEIEYATTOWS tiiiiiiiieeeeeiieeeeeirreeeeeireeeeesareeeeessreeeeenaraeeeeannes 152
Figure 6-27 UML-B floorsensor Class diagram and its Statemachine 153
Figure 6-28 ATL main rule for creating UML-B Guardsc.c.ccoceeveennennen. 153
Figure 6-29 TDMetamodel and umlbMetamodel:ccooceeviiieniiiiniiennne. 154
Figure 6-30 A helper for checking node types and event’s guards................... 155

Figure 6-31 A helper for creating a UML-B guard from a cause segment....... 156

Figure 6-32 Guards generated from a cause segment for the floorsensorOff event

... 157
Figure 6-33 The helper for creating a UML-B guard from a timing constraint 157
Figure 6-34 Timing constraint guard for floorsensorOff event......................... 158
Figure 6-35 Context Diagram for the Lift system..........ccccccevviiiiiniiincnnennen. 159
Figure 6-36 Event-B Context part is generated from UML-B diagram for the Lift

SYSTRIML. e eutteeiiteeitte ettt e ettt e ettt e et eesabt e e st eesab e e e eabeesabeeebbeeenbbeesabeeeeabeeenanes 160
Figure 6-37 UML-B Class diagram for Floorlamp before and after modification

... 161
Figure 6-38 Association between Classes..........eevvvieeriieeniieenieeniiee e 162
Figure 6-39 A class lift is changed to a Statemachine lift_state 163
Figure 6-40 Parts of an Event-B model: generate door initialisation 163

Figure 6-41 UML-B Statemachine for Door before and after modification..... 164

Figure 6-42 TD for the Lift and FloOrsensorccccceevvuieinieennieeniieenieeeee, 165
Figure 6-43 Statemachine for the Lift generated from ATL.............cc.ccceee. 165
Figure 6-44 An Event-B liftStopAtFloor event generated from UML-B

LiftStopALFIOOT tTANSIEION.cccuvveeeiiieeeiiieeeieeeiteeeiteeeaeeesaeeeetreeeaaeesaseaens 165
Figure 6-45 UML-B transitions liftStopAtFloorUp and liftStopAtFloorDown after

MOAIFICATION ..ttt 166
Figure 6-46 Event-B events: liftStopAtFloorUp and liftStopAtFloorDown 167
Figure 6-47 An Event-B floorsensorOff........ccouoveecveencieeniieesieeecieeeceeeeenes 168
Figure 6-48 A Statemachine for floorsensor............ccccovveeevveeinieeniieiniieene, 168
Figure 6-49 A Statemachine for /ift and floorsensor.............c.ccecceeveeeenveeannne. 169

Xii

Figure 6-50 An association between classes Floorlamp, Floor and Floorsensor

... 170
Figure 6-51 An event fLoorlampUnlit is generated in Event-B 171
Figure 6-52 A TiCKtOk @VENTccc..oovvuiiiiiiiiiiiiiiieeeeeeteeee e 172
Figure 7-1 A timing diagram where KAOS translation is allowed................... 175
Figure 7-2 Timing diagrams where KAOS translation is not allowed.............. 176
Figure 7-3 Timing diagram used for KAOS Modelsccocerviiniinncnnennen. 179
Figure 7-4 Top-level rules structure for creating a goal from a segment.......... 181
Figure 7-5 Rule: TKGrdCtrnt and sub-rules.............ccoovevveieveveiieeceeeee 183
Figure 7-6 Rule: TKGetGrdPredc ... 183
Figure 7-7 Timing diagram for floorsensor and lift (parts of Figure 7.3)......... 184
Figure 7-8 Steps for generating pre-conditions for lines 3.1 and 3.2 in Figure 7-7

... 184
Figure 7-9 Rules: TKTimeCtrnt and TKGetTimingPredc..................... 187

Figure 7-10 Example steps of generating post-conditions for a segment Off2. 187
Figure 7-11 A goal 3.1 & 3.2 deSCIiptioncoevueeerieeeniieeniiieeiieeeieeeeieeeee 188
Figure 7-12 Top-level rules structure for creating a goal from

SIMULTANEIE VAT T OWS tirurrreereeeeieeiiirrrreeeeeeeeeieirrreeeseeeeesesirrrreeeseesennnnes 189
Figure 7-13 Rules for creating a KAOS goal from a SimultaneityArrowl90

Figure 7-14 The goal formal definition for the SimultaneityArrow line 16

... 191
Figure 7-15 Splitting an OR relationship in a goal pre-condition into subgoals192
Figure 7-16 An example of AND relationship in a goal pre-condition 192
Figure 7-17 The lift timing diagram (parts of Figure 7-3)ccccevveincnncnnnen. 194
Figure 7-18 Parts of @ g0al tre€ccovviiriiiiiiiiiiiieeeeeeeeeeeeee e 195
Figure 7-19 Parts of a goal tree after alteration............ccoeceeeveeeiiieeniieenieeenne. 196
Figure 7-20 A pattern for generating KAOS goal tree........ccccceeveevieencennennen. 196
Figure 7-21 Parts of a goal tree representing requestlamp, lift, door, uplamp and

AOWNIAMP ..ttt et 197
Figure 7-22 A goal tree representing lines 6, 9, 10 and 11 in Figure 7-21 199
Figure 7-23 The MainGl.......cccoeiiiiiiiiiieiieeeeee et 201

Xiii

Figure 7-24 Operation patterns: Bounded Achieve and Global

Invariant

X1v

List of Tables

Table 2-1 Goal types with temporal logic formulas.........c.cceeevveeviieirieeriieennnn. 41
Table 4-1 Timing diagram NOtAtIONS.........c.eeeruveeeriieeriiieeeiieerieeereeeiveeeareeeneees 78
Table 5-1 Basic rules for TD to Event-B translationc.ccccoeceeviiiinniennneen. 96
Table 7-1 Additional basic rules for TD to KAOS transformation................... 181

XV

Declaration of Authorships

I, Tossaporn Joochim, declare that the thesis entitled “Bringing

requirements engineering to formal methods: timing diagrams for Event-B and

KAOS” and the work presented in the thesis are both my own, and have been

generated by me as the result of my own original research. I confirm that:

this work was done wholly or mainly while in candidature for a
research degree at this university:

where any part of this thesis has previously been submitted for a
degree or any other qualification at this university or any other
institution, this has been clearly stated;

where I have consulted the published work of others, this is always
clearly attributed;

where I have quoted for the work of others, the source is always
given. With the exception of such quotations, this thesis is entirely
my own work;

I have acknowledged all main sources of help;

where the thesis is based on work done by myself jointly with
others, I have made clear exactly what was done by others and
what I have contributed myself.

parts of this work have been published as :

Joochim, T. and Poppleton, M. (2007) Transforming
Timing Diagrams into Knowledge Acquisition in Automated
Specification. In: IAIT2007: The 2nd International Conference on
Advances in Information Technology 2007, Bangkok, Thailand.

XVvi

Joochim, T. et. al. (2010) Timing Diagrams Requirements
Modeling using Event-B Formal Methods. In: SE 2010: Software
Engineering 2010, Innsbruck, Austria: Actapress.

Signed:
Date:

Xvil

Acknowledgements

I would like to thank and extend my heartfelt gratitude to the following
persons who have made the completion of this thesis possible:

My supervisors, Dr. Mike R. Poppleton and Dr. Andrew M. Gravell, for
providing assistance in numerous ways. For supervision and continuous
guidance enabled me to complete my work. Thank you for their expertise,
patience, and kindness.

My parents, grandparents, my brothers and their family, for their vital
encouragement; for their ultimate supporting and loving, for they have never
hesitate to help if I needed and for all their sacrificing;

Antonin Hrdlicka for always being here to provide physical and mental
support, very concerning of my safety and giving a great help in all matters;

Dr. Colin Snook who had done a wonderful job and I really appreciate his
incredible advices on UML-B, and the willingness to help;

Dr. Emmanuel Letier for his expertise and great advice on KAOS;

Prof. Peter Henderson who gave me an opportunity to join the group; for
his kindliness and his grateful advices during my exams;

Dr. Quintin Gee, Stuart McIntosh, Andy Edmund, and Alain J. Alherbe for
proofreading my thesis;

My Thai friends, Mar Y. Said, Nurlida Basir, and DSSE secretaries;

The Royal Thai government, for the full funding during my PhD;

I would like to give very special thanks to Dr. Andrew M. Gravell. This

thesis would not have been possible without him.

XViil

To my beloved grandfather, Mr. Boonchom Prasertsri

X1X

Definitions and Abbreviations Used

API
ATL
BNF
EMF
FM
GMF
GORE
IDE
KAOS
MOF
OMG
POs
RE
TD
UML

Application programming interface
Atlas Transformation Language
Backus-Naur Form

Eclipse Modelling Framework

Formal Method

Graphical Modelling Framework
Goal-Oriented requirements engineering
Integrated Development Environment
Knowledge Acquisition in automated Specification
Meta-Object Facility

Object Management Group

Proof Obligations

Requirements engineering

Timing Diagram

Unified Modelling Language

XX

Chapter 1 Introduction

1.1 Overview

A requirement is “a feature of the system or a description of something the
system is capable of doing in order to fulfil the system’s purpose” (Pfleeger, 1998).
Requirements engineering (RE) is a part of the software development life cycle that
is important for acquiring explicit system requirements. The RE is used to explore
problems and potential solutions. It is also used for comparing alternative solutions
and deciding which solution should be adopted for that system (Jureta, 2006). To
specify requirements, one can use many different techniques, such as rich text,
dataflow diagram, prototyping, Unified Modelling Language (UML) (OMG, 2008),
Goal-Oriented Requirements Engineering (GORE), Knowledge Acquisition in
autOmated Specification (KAOS) (Lamsweerde, Dardenne et al., 1991), and
Formal Methods (FMs).

Critical systems are systems whose failure may have serious consequences to
human beings, systems or businesses. Examples are: fire alarms, medical systems,
traffic control, chemical plant control, and automotive control systems. Thus, to
develop critical systems, one has to ensure that, as far as possible, the processes
used are rigorous. Using mathematical notations — which describe the system in
terms of predicates, booleans, sets, relations, and functions, as in Formal Methods
(FMs) — i1s a way to improve the conformance of design to specifications, and to
help eliminate errors early in the design process (Abrial, 1996; Bowen and

Hinchey, 2006).

Chapter 1 Introduction 2

Since FMs has the concept of proving correctness, which supports the
accuracy of software development, FMs have a major benefit in defining the precise
specification and processing its verification (Abrial, 2005; Hall, 2007). The benefits
of FMs can be summarized as follows:

e Developers are forced to consider more error behaviours arising from
requirements, which can be eliminated by well-defined mathematical
notations (Abrial, 2007; Langari and Pidduck, 2005). Developers are
guided towards creating reliable and secure software systems. This aspect
is always omitted from informal descriptions (Hall, 2007).

e Formal modelling is a way of improving the system analysis phase
(Agerholm and Larsen, 1998). It can help developers achieve a better
understanding of requirements and discover errors early in the lifecycle
(Langari and Pidduck, 2005). This reduces the overall cost of the project
(Agerholm and Larsen, 1998; Hall, 2007). King (King, Hammond et al.,
2000) has shown that performing proof of correctness in FMs can detect
more errors early in the development lifecycle; which is expedient from the
economic point of view.

e Formal specifications of design and refinements can be proved consistent
by model checking and by proof (Abrial, 2008a). It is also possible to use
animation to help validate. Examples of tool support are in RODIN
(RODIN, 2009), Atelier B (Requet, 2008; ClearSy, 2009) and ProB (ProB,
2009).

e Reasoning about derived system properties by stating theorems and other
properties about the system makes the models more precise (George and
Vaughn, 2003; Lamsweerde, 2009).

¢ In the formal development, the first model is called the abstract model. The
abstract model is transformed through a formal sequence to obtain the
refinement/concrete model. The concept of refinement in formal methods
allows more detail, and the expression of some design decisions, to be
added, in a stepwise manner, into the model. The advantage of refinement

is allowing the model to be analysed at an abstract level, resulting in

Chapter 1 Introduction 3

reduced complexity/ambiguities (Abrial and Hallerstede, 2006). Absence
of ambiguities is a benefit brought about by using formal specifications.

e FMs have been shown to provide more valuable documentation (Bowen

and Hinchey, 2006).

The Event-B (Abrial and Hallerstede, 2006) method is an FM developed by
Jean-Raymond Abrial. It is a formal language for state-based modelling and
verification for reactive systems, developed in the context of RODIN (RODIN,
2009), a European IST project. Event-B itself is composed of static and dynamic
parts. The static part is called a CONTEXT and is used to declare constants, carrier
sets and axioms. The dynamic part is called a MACHINE, which contains state
variables, variable properties described by invariants and units of behaviour, which
are called EVENTS. Event-B is good for identifying precise system requirements
(due to its use of mathematical notation, and well-defined semantics), but it is not
yet clear how best to model various complex requirements patterns in Event-B, such
as timing constraints and causal dependencies on system events. Moreover, Event-B
can be difficult to uses and it requires trained professionals (Bashar and
Easterbrook, 2000; Lamsweerde, 2000; Bowen and Hinchey, 2006).

UML (OMG, 2008) is a language for specifying, visualizing, and
documenting the artifacts of software systems using graphical diagrams. UML is
suitable for using in object-oriented analysis and design (Popandreeva, 2007) and is
best used to describe functional requirements (defining what the system has to do in
its environment). For example, the lift must stop at the requested floors, and the
lift’s door must be opened only when the lift is stopped are functional requirements
for the lift system. Other examples of systems that can use UML to identify their
specfications are handling control of technical equipment (e.g. uses Sequence
diagram and Statechart), embedded systems such as mobile phones (e.g. uses
Component diagram), and giving a clear description of what the system should do
(e.g. uses Use-case diagram). Currently, the official version is UML 2.0 (OMG,
2008).

Even though UML is a popular object-oriented modelling approach and has
been using widely, it lacks mappings to formal models. Presently, many groups of

people are trying to bridge the gap between B-Method and UML diagrams (Ledang

Chapter 1 Introduction 4

and Souquieres, 2002a; Ledang and Souquieres, 2002b; Jiufu, 2007; Younes and
Ayed, 2007); the U2B and UML-B (Snook and Butler, 2008a) projects.

UML-B tool is a graphical front end for Event-B; UML-B language defines
abstract syntax with the Eclipse Meta-Object Facility (MOF) (OMG-MOF, 2007).
MOF is one of the OMG standards and a meta-metamodel. It is a mechanism for
building metamodels, which is used to define types of model structures and
architecture. MOF is designed as a four-layered structure:

MO: this level is used to describe real-world objects.

M1: this level is used to define models such as UML and UML-B diagrams.

M2: this level is used to define metamodel description —syntax and semantic-

of elements in the M1 layer. For instance, the UML-B metamodel and our

Timing Diagram (TDs) metamodel are defined at this level.

M3: this level is a meta-metamodel; it is used to define MOF itself.

UML-B uses UML-like diagrams, i.e. Class diagrams and Statecharts, to
generate system specifications models. UML-B models can then be translated into
Event-B by using a U2B translator. Users can update/add/modify information
directly using the tool.

Timing constraints and causal dependencies among objects play an essential
role in the different varieties of systems. Timing constraints are one of the control
issues in reactive and critical systems that are particularly critical to systems and
must be controlled (Liu, Chou et al., 2001; Ng and Patel, 1994). A system which
fails to meet the timing constraints deadline may not only be able to make an
emergency control but can have also other inconvenient consequences (Groom,
Maciejewski et al., 1999). Some failures may cost a great deal of money and even
human lives (LeMieux, 2003). Thus, it is important to correctly model timing and
causal constraints system.

Timing diagrams (TDs) (OMG, 2008) are one of the new artefacts introduced
to UML 2.0 and are used to explain the behaviours of objects throughout a given
period of time (Ambler, 2004; Khan, Geihs et al., 2006). TDs are best used to depict
functional requirements with causal dependencies between objects and timing
constraints (Gavras, 2003; Brisolara, Kreutz et al., 2009). For example, parts of a

3

lift system: “...The lift will be stopped at the current floor between 1-5 seconds

Chapter 1 Introduction b)

after the current floor sensor is set on. A lift door does not open until the lift
stops...”

Even though the information on the TD, such as the lift system, can be
expressed in other diagrams, for example using Statecharts in UML-B, it is not a
helpful way for the users to operate. For instance, one can put timing or state
constraints into Statecharts, but, in general, one Statemachine refers to other
Statecharts for the dependency.

If we have three different classes, and each object of these classes has state
changes, then we need three Statecharts. Each such Statechart may have guards that
refer to other Statecharts which means, in using UML-B, we have guards on the
state transitions here which refer to some activities going on somewhere else. For
(Sommerville, 2004) example, Figure 1-1, there are three different Statecharts:
Door, Lift and Floorsensor. There are guards from the Lift to the Floorsensor, from

the Door to the Lift, and from the Floorsensor to the Lift.

" Door doorOpen)
Statechart [f: reqFl, f = currentFl,
liftState = StopAtFloor, ...]/...
Open Closed
- J
4 N\
Lift Statechart
StopAtFloor { MovingDepartingUp]
. MovingUp
liftStopAtFloor
[f : reqFl, f = currentFl,
floorsensorState(f) = On, (MovingArrivingUp J
(gclock — floorsensorOnTime = 1), \.
L (gclock — floorsensorOnTime < 5), ...]/ ...)
(Floorsensor h
Statechart floorsensorOn
[f : reqFl, f = currentFl,
liftState = MovingArrivingUp, ...]/ ...
On Offf
- J

Figure 1-1 Example of Statecharts for Door, Lift and Floorsensor

Chapter 1 Introduction 6

If a guard is concerned with timing constraints, it must be declared with a
long condition on the state transition (as shown in Figure 1-1 by the guard between
MovingArringUp and StopAtFloor states of the Lift Statechart). In UML-B, the
causal interaction between these objects cannot be contained in a single diagram.
Thus, we have many charts to display at the same time which makes it difficult to
read on a computer screen, and is not helpful for the users in terms of modelling.

In TDs, as shown in Figure 1-2, we can describe the causality explicitly with
arrows between the Door, the Lift and the Floor sensor, and have them all on the
same screen.

On
Off

Floorsensor

f: reqFl1 &
f = currentF|

MovingArrivingUp
MovingUp [1.5]
Lift MovingDepartingUp

StopAtFloor

MovingDepartingDown f: reqFl,
f = currentF1
Open
Door
Closed

Figure 1-2 Example of Timing diagram for Door, Lift and Floorsensor

The TD notations include graphically described extra conditions (as shown by
f: reqFl & f = currentFl) and timing constraints (as shown by [1,5]). It is very
natural to form expressions in timing constraints using a TD timing constraints
notation. Therefore, combining TD and UML-B would be beneficial for the user.

There are other two mathematical modelling languages concerned with time:
Timed Petri Nets (Berthomieu and Diaz, 1991; Ramchandani, 1974) and Time Petri
Nets (TPNs) (Cerone and Maggiolo-Schettini, 1999). Both are graphic
representation for concurrent formalisms approaches for specifiying real-time
formal systems and extend Petri Net (Reisig, 1985). Timed Petri Nets and TPNs
consist of places, transitons, time, and directed arcs which represent conditions,
events, timing constraints of the transtitions, and relationships between places and

transtions in the system respectively. For Timed Petri Net, a transition can fire as

Chapter 1 Introduction 7

soon as possible whilst for TPNs it fires within a time interval (Cassez and Roux,
2005).

In this research we selected TDs over Timed Petri Nets/TPNS since adding
new notations (with the purpose of generating expressions to interface with Event-B
and KAOS, as described in Chapter 4) is more flexible with TDs than Timed Petri
Nets/TPNs. Moreover, TDs use simple graphical notations and are not difficult to
understand.

Requirements are often unclear when first elicited from stakeholders. Goal-
Oriented requirements engineering (GORE) allows the requirements to be clarified
throughout an incremental process. It concerns the use of goals for eliciting,
elaborating and refining, specifying and modelling of requirements (Lamsweerde
2004; Anwer and Ikram 2006). Examples of the goal-oriented approach are Non-
Functional Requirements (NFRs) (Chung, 1993), i diagrams (Yu, 1993), Goal-
Oriented Idea Generation Method (GOIG) (Oshiro, Watahiki et al., 2003) and
Knowledge Acquisition in autOmated Specification (KAOS) (Dardenne,
Lamsweerde et al., 1993) frameworks. NFRs are used to represent and analyze non-
functional requirements and guides the design processes. i diagrams show how
actors in a system depend on each others for a specific goal in a system. GOIG is
focused on idea-generation, that is, stakeholders’ ideas are elicited as sub-goals. The
ideas are grouped, and associations between those ideas are used to generate a goal
graph.

KAOS is a goal-oriented modelling requirements specification technique, in
which a goal defines an objective of the composite system. KAOS has concepts of
refining goals, identifying agents, and exploring alternative responsibilities (Letier
and Lamsweerde 2002a); it uses the Goal model to declare the system requirements.
The Goal model is composed of a goal name, definition, and formal definition,
where the latter is written as a temporal logic statement using linear temporal logic
(LTL). Since the LTL can explain the specification of some properties - for
example, next (o) and eventually (O) - those properties are similar with what can be
expressed by TD. This is the reason KAOS is selected over the other GOREs.
KAOS is a semi-FM and does not have the capability of generating and discharging
proof obligations as in full FMs. Thus, an attempt to generate a FM model from a

KAOS model is founded in (Nakagawa, Taguchi et al., 2007) to transform KAOS

Chapter 1 Introduction 8

into VDM++ (Fitzgerald, Larsen et al. 2004), a formal object-oriented specification
language. There are a number of tools supports that generation of KAOS models
such as Objectiver (Delor, farimont et al., 2003; Ponsard, Balych et al., 2006) and
FAUST tool (Rifaut, Massonet et al., 2003). The Objectiver is a tool for generating
KAOS models and documents while the FAUST tool is used to verify KAOS
models. Heaven and Finkelstein attempted to combine UML and KAOS; the
researchers created a tool to allow KAOS to be represented in UML by using a
profile (Heaven and Finkelstein, 2004).

Problem Frames (Jackson, 1995) is a technique to demonstrate problem
requirements in a diagrammatic form, which the diagram is called Problem
diagrams. As shown in Figure 1-3, a Problem diagram comprises a software
Machine, real world which is called Problem World, and the system requirements
are represented by a dotted oval (Jackson, 2001). The Problem diagrams identify
how these system components relevant with each others. The machine interacts with
the Problem World by shared control phenomena (e.g. shared events and/or shared
states), called specification phenomena. The links between the Problem World and
the requirements are called requirement phenomena which are “the phenomena that
the customer for the system would observe to determine whether the requirement is

satisfied” (Jackson, 2005).

Specification The requirement -
The .) \
Machine Problem |« ———————Requirement)
phenomena World phenomena *

Figure 1-3 Problem diagram

Problem Frames has a concept of decomposition in which a large problem can
be separated into subproblems. Each subproblem is a complete system which has its
own Problem diagram, a Machine, a requirement and Problem World (Jackson,
2005; Cox, Hall et al., 2005).

Even though the concept of Problem Frames to refine a large problem into
subproblem is similar with KAOS, the Problem Frames is not aiming at using

formal descriptions such as temporal logics nor mathematic notations. Thus, the

Chapter 1 Introduction 9

Problem Frames is not selected in this research as we aim at generating tool

supported formal method models.

1.2 Motivation

The key contributions of this work are indicated by three motivating

assumptions we make:

1. When FMs are used early in the system development process, they help to
remove ambiguity, incompleteness, and inconsistencies in system
specifications (Sommerville, 2004; Wing, 1990). This decreases
requirements’ errors because it forces the developers to do a detailed
analysis of the requirements (Abrial, 2005; Hall, 2007). Thus,
implementation and validation costs should be reduced, as there are fewer
errors in the specifications; that is useful in term of requirement
engineering. However, FMs demand costly trainings of engineers because
of their mathematical and logical basis (Bashar and Easterbrook, 2000;
Lamsweerde, 2000; Bowen and Hinchey, 2006). This leads to the second
assumption.

2. It is useful to enable more requirements to be expressed graphically when
working with FMs. That is, we wish to enhance the graphical aspects of
FMs with graphical elements (such as is done in UML-B and KAOS).
Using graphical methods has some benefits over FMs as in the following:

e Presenting requirements in graphical form is an easier way
and more readable for software developers/students to define
their requirement specifications than by difficult using of
formal notations (Yoder and Black, 2006). As (Razili, Snook
et al., 2007) has suggested that model comprehensibility can
be improved by using UML-based graphical specifications
rather than the formal notation alone.

e [t reduces the training for the formalism if developers are able
to model graphically rather than using FMs (Becker-
Kornstaedt, Neu et al., 2001). Modelling may become

Chapter 1 Introduction 10

accessible to more staff and it does not require a high level of
professional training.
e Using simple symbols helps teaching FM courses (Snook and
Butler., 2001; Razili, Snook et al., 2007).
There are other papers to support those ideas, such as Zimmerman who
states that tabular and diagrammatic notations are more readable than
textual ones in a complex system (Zimmerman, Lundqvist et al., 2002).
This is confirmed by a number of related studies in (Petre, 1995).
3. The integration of different specification modelling frameworks for
specifying and reasoning about requirements is beneficial (Allemand,
Attiogbé et al., 2002; Attiogbé, Poizat et al., 2003). Moreover, it is also

useful to describe one system in multiple views.

1.3 Goal

The goals for the research are identified as in the following

1. To provide an option to help users/developers generate timing constraints
and casual dependecies requirements in a reactive system in forms of
Event-B and UML-B formal models.

2. To generate a translation technique to transform a TD into KAOS Goal
models. The TD graphical front-end is beneficial in an engineering context
since the original KAOS Goals’ formal definitions is defined by linear
temporal logics (LTLs) textual declarations. It is inconvenient for a user
who is unfamiliar with using temporal logics. Thus, a TD is used as
graphical front-end to represent a KAOS Goal model. With the translation
rules, KAOS goals are automatically generated from TD.

3. To confirm that using graphical TD to specify timing constraints and
casual dependencies requirements in Event-B is easier than using textual

methods.

According to the goals above, we select some modelling frameworks as the

basis for our contribution:

Chapter 1 Introduction 11

1. Extended Timing diagrams (TDs): OMG UML2.0 TD notations are clearly
defined and widely used to describe behaviours of objects in many critical
systems and even within electronics engineering for a long time (Fowler
and Scott 2004). Thus, we select to extend UML TD notations for timing
constraints graphical modelling and causal event dependencies. The reason
to extend UML TDs is they do not support adequate notations to explain
certain kinds of specification. For example, identifying combination of
causes that make something to happen, and showing synchronisation of
objects that change their states simultaneously. Thus, AND and OR node
notations are created as well as simultaneity arrows (more detail in Chapter
4). Here, a TD is used as a source model in generating target models:
Event-B, UML-B and KAOS models.

2. Event-B is selected as it is well used in Electronics and Computer Science
school, University of Southampton. There are many partners through the
RODIN project and is used in industries (Europe). Moreover, it is
integrated well with Eclipse and has good tools support such as Event-B
RODIN toolkits, B prover and animators. Although, Event-B is good for
identifying precise system requirements by using set-theoretic notation, it
is not yet clear how to model timing constraints and causal dependencies
on system requirements in Event-B. Thus, we selected to add TDs as the
front-end for Event-B. Event-B then can be described by visualisation
graphics for the time.

3. UML-B is selected as it is plug-in for RODIN and is developed on Eclipse.
UML-B is graphical Event-B modelling in which Class diagrams and
Statecharts are used to express formal specifications. An Event-B model is
generated automatically when the model is saved. Thus, it is suitable as an
alternative way to generate an Event-B model.

4. KAOS has been widely applied in many critical systems, according to
(Lamsweerde 2004), it is used in Air Traffic Control (conflict handling
between ground and on board collision avoidance systems) and Aerospace
(design of test suites for rocket launch). KAOS explains timing constraints
by LTLs, and cause-effect relationships in pre- and post-conditons which

are in textual form. In contrast, TDs timing constraints can be clearly

Chapter 1 Introduction 12

explained using notations that are time bounds and causal dependencies
arrows. TDs use more natural visualisation graphical to declare the time
than in the KAOS LTL operators. Thus, TD is selected as a front-end for
KAOS. Moreover, both KAOS and Event-B use first-order predicate logics
to describe system behaviour and have a concept of refinement to explain
more system detail in the further steps. Thus, it is interesting to integrate
TD to KAOS which aims to generate Event-B models later.

5. Atlas Transformation Language (ATL) (ATL 2008) is developed on
Eclipse and a language to generate a target model from source models
based on metamodel. We select ATL as a language for generation an
UML-B model from a TD since UML-B is also developed on Eclipse.
Moreover, there are many ATL examples on-lines.

6. Backus-Nuar Form (BNF): BNF is used to describe TD notations which
are used to generate an Event-B model and KAOS Goal model. BNF is
widely used for explaining syntax of a language and provides standard
symbols to do that. Thus, it is suitable to use BNF for creating formally
systematic translation rules in our work.

7. A lift case study is used in the transformations. Even though, the lift is a
single example, it is appropriate to validate my work as follows. It has real
time properties; represents causal dependencies among objects in the
system; and some parts of the specification cannot be modelled by timing
diagram (see section 5.2, 6.5.1 and 8.1.6 for detail) which is useful as an
example of fulfilling models by hand. Moreover, a specification of lift is
well-known, not hard to understand and is widely used in many works, as

details describe in section 8.2.

1.4 Contribution Overview

Our contribution focuses on how parts of system’s requirements, concerned
with timing constraints and causal dependencies between a system’s objects, are
transformed into FM models. The aim of this contribution is to enable users to

easily model critical system requirements using graphical notations e.g. TD; by

Chapter 1 Introduction 13

adding UML-B and KAOS graphical capability to express timing constraints and

event dependencies requirements.

' N\
System Requirements
Other
Requirements
\) Formal Method
(\ Create h Rules) create Y
Timing & Graphical 1 —>
Causal model {V
dependency o L. ATL create > UML-
requirements Tlmmg K J Class diagrams
& Statecharts
Diagram Y
: Generate
Rules) create '
2 KAOS
~~ (Goal & Operation &
i models)
Fix
Model
Revise Models
Revise Requirements RODIN

Analyse/Verify

Toolkit

Figure 1-4 Research aim

Figure 1-4 presents the whole thesis scenario. Requirements are partitioned
into other requirements (non-timing), and timing and causal dependency
requirements. The requirements which can be described by causal dependency and
timing constraints are modelled by TD. Formal translation rules 1 and rule 2 are
built based on TD BNF definitions to create Event-B and KAOS models from TD
respectively. Other requirements are used to generate the remainder of the Event-B
and KAOS models for completion. Atlas Transformation Language (ATL) (ATL
2008) transformation rules are generated to create UML-B Class diagrams and
Statecharts from TD. The remainder of the UML-B models are also generated from
the rest of the requirements. Next, Event-B and UML-B models are
analysed/verified by the RODIN Toolkit. If there are any errors, ambiguities or
incompleteness, which are indicated by the RODIN (model checking and proof
obligations), the Event-B and UML-B models are revised; the TD can be fixed as

well as system requirements may be revised. This step is repeated until the models

Chapter 1 Introduction 14

are correct by means of proof. This process has a beneficial effect on system
requirements as it increases the degree of confidence that the output system has few
errors, is unambiguous and consistent. It enables the gaining of a clear

understanding of the task at an early stage.

1.5 Document Structure

The remainder of this thesis is structured as follows:

Chapter 2 reviews the literature on the technical approaches that are directly
involved in the research. The chapter starts with describing the general idea of RE
techniques and FMs. The Event-B notations and methods used to develop Event-B
are described. The use of refinement in Event-B, that takes a model of abstract level
to one with more concrete detail, is explained. The RODIN tool set that can be used
in Event-B development is also explained. The UML-B toolkit, a graphical front-
end for Event-B, and its implementation, are demonstrated. The KAOS framework,
that is a technique for goal-oriented modelling of requirements specification, and its
notation, are described. There is an explanation of MOF and Eclipse
metamodelling, which are used to generate UML-B and TD metamodel. The
chapter finishes with an explanation of the ATL language, which is used to generate
formal rules to transform TD to UML-B model, illustrated by examples of ATL

rules.

Chapter 3 describes other relevant techniques which are elaborated in this thesis.
The chapter starts with giving explanation of OMG System Modelling Language
(SysML), which is a graphical modelling language for specifying, analyzing, and
designing systems. Requirements diagram, which is a new diagram for SysML is
discussed, illustrated with an example of modelling a lift system. An
Action/Reaction pattern, which is used as a guideline for translating TD to Event-B,
is described. Relevant researches on combining KAOS, B, UML and CSP, is
discussed; likewise works on transforming TD to LTL formulas. The chapter
finished with an explanation of properties that are significant for maintaining the

correctness of doing RE, i.e. traceability, safety, liveness and fairness.

Chapter 1 Introduction 15

Chapter 4 describes a case study, lift System, which provides examples of
requirements focusing on timing constraints and causal dependencies among
objects. It is used for exploring translations from TD to Event-B, UML-B and
KAOS. UML TD 2.0 is described; this is the standard notation used for defining the
behaviour of different objects within a time-scale. Selected and amended TD
notations are explained. A preliminary TD editor is introduced at the end of the
chapter, but it was based on outdated TD notations, and so was not used for creating
TD here. Instead, we created TD from Microsoft Visio for the
representation/visualisation. For translating TD into UML-B, the TD description is

generated by EMF.

Chapter 5 describes how to generate direct translation rules that are used to
transform TD into Event-B model. TD BNF definitions are provided and used as
input parameters for formal translation rules. The rule definitions are explained,
followed by illustrations of generating Event-B models from the rules. The chapter
finishes with a description of how non-timing requirements are added to complete

the Event-B model.

Chapter 6 describes the translation rules for generating UML-B models from TD.
The chapter starts with explanation of TD Metamodel created by EMF. TD used for
the translation is introduced. ATL translation rules which, are used to create UML-
B components, are described through examples. The chapter finishes with an

explanation of how additional information are added to the model.

Chapter 7 describes the translation techniques that are used for generating KAOS
Goal models from TD. The chapter starts by explaining a scope of TD and LTL
operators which can be used for the translation. Next, explanation of TD BNF, and
formal translation rules are provided, together with examples. Steps of goal trees
creation and manual information addition are illustrated. The chapter finishes with a

description of how Operation models are created.

Chapter 1 Introduction 16

Chapter 8 gives a comparative evaluation of the three direct translation
methodologies; that is from TD to Event-B, UML-B and KAOS models. The
comparisons explain what the differences and similarities in techniques and
notations used to generate those models, as well as what additional information and
where it is needed for each. We address how straightforward or complicated it is to
generate and alter the models. This chapter provides the comparison with other
related works. The comparison of a number of proof obligations in Event-B and

UML-B models is provided. Finally, an example of proof obligations is explained.

Chapter 9 explains the contributions of this research. Limitations of the work are

examined. Possible directions for future work are described.

Chapter 2 Technical
Background

This chapter aims at giving background to the knowledge used in the thesis.
Many fields of knowledge are used vary from FMs: specifically Event-B and
UML-B techniques, Goal-oriented requirement engineering, Eclipse modelling
framework and metamodel. The knowledge explanations are provided along with
examples.

The structure of this chapter is as follows. Section 2.1 introduces background
knowledge of RE methodologies, along with FMs. Section 2.2 explains FM
methodologies and their categories. Section 2.3 gives the detail of Event-B
modelling by describing the philosophy, followed by an introduction to the
constructs used for modelling systems in Event-B. More detail is given on the
refinement method used to develop Event-B models and proof obligations. Section
2.4 explains the RODIN tools used for creating and verifying the models generated
in the thesis. Section 2.5 explains an UML-B tool that is used to develop a UML-B
model. Section 2.6 discusses Linear Temporal Logic (LTL) operators that are used
to describe KAOS Goal and Operation models. Section 2.7 explains KAOS
frameworks, with corresponding examples. Section 2.8 introduces metamodelling:
creating types and model structures for the models. Section 2.9 describes ATL and

its components.

Chapter 2 Technical Background 18

2.1 Requirements Engineering

Requirements engineering (RE) is the first step of the system development
process. It is concerned with activities for eliciting, evaluating, specifying,
analysing, documenting, and revising, the objectives, functionalities, and
constraints to be obtained for a proposed system within a particular environment.
Requirements can be grouped into two categories: functional and non-functional.
Functional requirements associate with specific functions, tasks or behaviours the
proposed system must support. For example, “lift doors must be closed when the
lift is moving”, and “the lift must be eventually stop at requested floors” are
functional requirements. Non-functional requirements provide constraints that are
not explicitly functional but do satisfy functional requirements. They include
availability, reliability, performance, convenience, installation, and maintainability
requirements. For example, “the lift should move smoothly between floors”, “the
lift position must be clearly seen at any time by users”, and “the lift has to be tested
every year’, are non-functional requirements. This thesis focuses on functional
requirements.

Requirements are elicited (by using techniques such as data collection,
questionnaires, prototyping, knowledge reuse) and evaluated (e.g. by inconsistency
management and risk analysis). More detail of elicitation and evaluation can be
found in (Lamsweerde, 2009). Later, the results of elicitation and evaluation need
to be specified and documented. There are many techniques for identifying
requirements specification. For example, describing in natural language, using
decision tables, entity-relationship diagrams (ERD) (Chen, 1976), dataflow
diagrams (DFD), UML diagrams (OMG, 2008), e.g. TD, UML-like diagrams, e.g.
UML-B (Snook and Butler, 2008a), semi-formal specifications, e.g. KAOS
(Lamsweerde, et al., 1991), and formal specifications, e.g. Z (Spivey, 1992) and
Event-B (RODIN, 2009).

This thesis examines a combination of requirements specification techniques:
TDs, Event-B, UML-B, and KAOS (as described in Chapter 1). TD was selected
because we emphasise modelling a system’s timing requirements where there are
causal dependencies between system objects. Moreover, OMG UML provides TD

standard notations, some of which are appropriate for our translation. Event-B and

Chapter 2 Technical Background 19

UML-B were chosen as they are techniques for FM modelling and have effective
tools support. KAOS is a semi-formal method, which uses timing constraints by

discrete time points. Thus, it was selected to combine with TD.

2.2 Formal Methods

FMs are a set of techniques used to create a formal specification, develop a
new specification (for example: refinements), and verify a specification by using
mathematical notations for software engineering. The benefit expected from
formalization is a higher degree of precision in specification, as it forces one to
write an unambiguous detailed description and consider all the cases that may
cause erroneous behaviour. As a result, the specification gains a high-level of
correctness of requirements and benefits the design process. Using a FM helps
reduce defect rates in software development and saves money in fixing errors in
requirements, as shown by (Praxis High Integrity Systems, 2008) and (Hall, 2005).
FMs can be broadly classified into two categories.

e State-based notations: this kind of FM supports creating system
specifications by construction of a set-theoretic model. The model is
described by invariants, state variables, and operations over the states.
Invariants define condition constraints that the system’s states must be
always hold. Variables are used to indicate system state information. An
operation is defined by pre- and post-conditions over system variables. A
pre-condition contains necessary input variables that are constraints for an
operation to be applied. A post-condition contains output variables after an
operation is applied; it updates the system states. Examples of this kind of
FM are VDM (Jones, 1986), Z (Spivey, 1992) and B (Abrial, 1996).

e Process algebras notations: this kind of FM supports creating system
specifications by using methods derived from algebraic operators. It
specifies a system as collections of concurrent and communication
processes. These processes can be executed by many abstract machines
according to specific rules of interaction. In particular, this FM requires

interactions between components of software architectures and protocols.

Chapter 2 Technical Background 20

Examples of this kind of FM are LOTOS (Bolognesi and Brinksma, 1987)
and Communicating Sequential Process (CSP) (Hoare, 1985).

There are some other FM methodologies, whose features are defined in
between those categories above. Two examples are: Petri Nets (Peterson, 1981)
which is state-based, defined as a graphical language, and suitable for modelling
concurrent behaviour of distributed systems; and Larch (Guttag, et al., 1993) which
is a state-based and algebraic specification method, specialized in the specification

of abstract data types and their properties.

2.3 Event-B Modelling

The classical B-Method (Abrial, 1996; Schneider, 2001) is a mathematical
method for formal system specification, design and implementation of software
based on refinement. The classical B-Method defines a machine with variables,
invariants, and operations. It has a concept of refinement that allows one to
gradually build a model more and more precise in detail. The benefit of refinement
helps to reduce degree of model’s complexity. Moreover, if the model is massive, it
is impossible to represent everything. To verify the correctness of a B model, proof
obligations and model checking are used. Examples of tools supporting verification
in B are Atelier B (ClearSy, 2009), B-toolkit (Sgrensen, 1994) and ProB (ProB,
2009).

Event-B is derived from classical B. It keeps the concepts of classical B-
Method but adds the concept of event. Event-B has simplified language syntax,
stronger refinement notion and more powerful tool support (RODIN, 2009). Since
Event-B models have well-defined syntax and semantics, it is possible to test them
by proving that transitions made during the software process are correct. The
Event-B provides proof obligations (POs) to ensure the correctness of a model. The
POs are generated according to the correctness criteria, which are required within
the models. Those POs have to be discharged by users and can be supported by
automated proof tools, the RODIN tool (Butler and Hallerstede, 2007). Other plug-
ins for RODIN are UML-B (Snook and Butler, 2008b) for adding class-oriented
and Statemachine Event-B modelling capabilities, ProB (Leuschel, 2007) for

Chapter 2 Technical Background 21

animating, systematically checking and assisting proving a B model, and BRAMA
(Requet, 2007) for animating B models.

The B-Method has been successfully employed in the development of safety-
critical systems such as signalling on Line 14 of the Paris Metro (Dehbonei and
Mejia, 1995), and the Roissy Airport Shuttle (Abrial, 2006; Abrial, 2007).
Bicarregui reports using B in six case studies, such as a short-term conflict alert air
traffic control application, and clinical biochemistry (Bicarregui, et al., 1997). The
B-Method also contributed to the development of IBM’s CICS product (Hoare, et
al., 1996).

2.3.1 Contexts and Machines

Event-B’s kernel mathematical language is defined and explained in
(Métayer and Voisin, 2007). An Event-B model comprises static and dynamic
parts, which are called CONTEXT and MACHINE respectively. A machine SEES at
least one context.

The CONTEXT may contain carrier sets, constants, axioms and theorems.
Carrier SETS (s) define sets and are represented by their name. Different carrier sets
are independent. CONSTANTS (c) are defined by a number of AXIOMS A(s,c).
AXIOMS gives properties about constraints and are dependent on the carrier sets s
(Abrial and Hallerstede, 2006). THEOREMS are required assertions for proving.
They are derived properties that should be provable from axioms (Hallerstede,

2006). The structure of an Event-B context is illustrated in the following:

CONTEXT context_name
SETS s

CONSTANTS ¢

AXIOMS A(s,c)
THEOREMS

Figure 2-1 Event-B Static structure: Context

The MACHINE defines the behaviour of the Event-B model. It includes
VARIABLES v, INVARIANTS /(s, c, v), INITIALISATION T and EVENTS E. VARIABLES

Chapter 2 Technical Background 22

define machine variables, which are used to maintain state information while
performing events. INVARIANTS are used to define a property over the states and
context of the system that must be satisfied by all events. INITIALISATION is used to
specify the initial values of variables, while EVENTS define the units of behaviour
that include possible state changes. The structure of an Event-B machine is

illustrated in the following:

MACHINE machine_name

SEES context_name
VARIABLES v
INVARIANTS /(s, ¢, v)
INITIALISATION T
EVENTS
E1 =WHEN G(s, ¢, v) THEN S;(s, ¢, v) END
E2 = ANY /WHERE G/(/, s, ¢, v) THEN S4(/, s, c, v) END

END

Figure 2-2 Event-B Dynamic structure: Machine

An event has a name and is composed of guards G(s, ¢, v) and actions S(s, c,
v). Guards identify lists of conditions for the event to occur, while actions identify
how the state variables evolve when the event occurs. Alternatively, an event can
be defined without a guard or possibly with a non-deterministic clause, as shown in
Figure 2-3. From this figure, three possible structure types of an event are shown:

Simple, Guarded and Non deterministic.

name = name =
WHEN ANY local variables /
name = guards G(s,c,v) WHERE guards G(/, s, ¢, v)
BEGIN THEN THEN
actions S(s, ¢, v) actions S(s, ¢, v) actions S(/, s, ¢, v)
END END END
Simple Guarded Non deterministic

Figure 2-3 Event-B Structure

Chapter 2 Technical Background 23

A Simple structure declares an event that does not have a guard but actions
S(s, ¢, v). A Guarded structure is used to identify an event with guards G¢s, ¢, v) and
actions S(s, ¢, v) but omitting local variables /. A Non deterministic structure is the
general form of an event and used when the event has local variables / with guards

G(l, s, ¢, v) and actions G(l, s, ¢, v). Examples of each Event-B structure are given

below:
Ticktok = doorClosed = floorlampOn =
BEGIN WHEN ANY f
gclock := gclock + 1 doorState(currentFl) = Open WHERE
END THEN f: FLOOR &
doorState(currentFl) := Closed f = currentFl &
END floorlampState(f) = Off
THEN
floorlampState(f) := On
END
Simple Guarded Non deterministic

Figure 2-4 Examples of each Event-B Structure

From Figure 2-4, an event Ticktok is defined as a Simple structure and gclock
as a machine variable. An event doorClosed is defined as a Guard structure, where
doorState and currentFl are machine variables. Note that currentFl will be defined as
an element of a class FLOOR, while doorState is defined as a surjective function
from a class FLOOR to a set of door’s states in INVARIANT. An event floorlampOn is
defined as a Non deterministic structure with a non-deterministic local variable f
under ANY clause. The guards, f: FLOOR & f = currentFl & floorlampState(f) = Off, are
defined in a WHERE clause, where currentFl and floorlampState are machine

variables. The action clause is defined by floorlampState(f) := On.

2.3.2 Before-After predicates associated with an assignment

A before-after predicate (BA) is used to express a relationship between the
machine’s state variable before an assignment takes place (denoted by v), and after
an assignment takes place (denoted by v'). The before-after predicates are defined

within three kinds of assignment: Deterministic, Non-deterministic and Empty.

Chapter 2 Technical Background 24

Deterministic: a deterministic assignment is in a form <variable identifier list> :=
<expression list>. That is, if v is a list of variables and E a list of expressions, an
action is declared by v := E(v) in which its before-after predicate is defined by
v' = E(v). For example, an action v :=v + 1 is written in the form of a before-after

asv =v+1.

Non-deterministic: a non-deterministic assignment is in a form of
<variable identifier list> :| <before-after predicate>.

For example, v,y :lv'=v+1 A y'=y+ 1 which is equivalent to v,y :=v+ 1,y + 1.

Empty: the substitution does nothing and is assigned to skip. The before-after state

for this kind of substitution is v' = v.

Consistency Proofs

An Event-B model has to perform consistency proofs to ensure the
correctness of the model. In the RODIN tool, the POs are automatically generated
by the Proof obligation generator and the outcomes are transmitted to the Prover
(Abrial, 2008b). The Prover performs automatic or interactive proofs and provides
the outcomes. The detail of the tool is described in section 2.4 below. There are a
number of POs that have to be generated, as described in (Métayer, et al., 2005;
Abrial and Hallerstede, 2006; Abrial, et al., 2007). Here, we give examples of two

proof obligations: Invariance Preservation and Feasibility.

The invariant preservation statement (INV) is the PO that each invariant is
maintained whenever variables’ values are changed by each event. The formal

definition of INYV is illustrated below (Abrial, 2008b).

Axioms A(s,c)

Invariants I(s, ¢, v)

Guards of the event G(s, ¢, V) (1)
Before-after predicate of the event BA(s, ¢, v, V)

= =

Modified Specific Invariant Im(s, ¢, v)

Chapter 2 Technical Background 25

A feasibility statement (FIS) is the PO that under the axiom A(s,c), the
invariants /(s, ¢, v), and the guard Gs, ¢, v), the action gives at least an after value v'".

The formal definition of FIS is illustrated below (Abrial, 2008a).

Axioms A(s,c)

Invariants I(s, c, v))
Guards of the event G(s, ¢, v)

= =

v’ Before-after predicate dv BA(s, ¢, v, V)

2.3.3 Refinement

The concept of refinement in Event-B allows more detail, and the expression
of some design decisions, to be added, in a stepwise manner, into the model. The
advantage of refinement is allowing the model to be analysed at an abstract level,
resulting in reduced complexity (Abrial and Hallerstede, 2006). In the formal
development, the first Event-B model is called the abstract model. The abstract
model is transformed through a formal sequence to obtain the refinement/concrete
model. Performing refinements can be done in many ways, such as adding new
variables and constants, introducing new events, decomposition of events,
changing/adding algorithms detail, and replacing existing variables.

Refinement is sub-categorized into feature augmentation and structural
refinement (Butler, et al., 2008).

e Feature augmentation: a feature augmentation is a refinement in which
existing model features are maintained and additional features are added,
such as variables, invariant, events, additional guards and actions. This kind
of refinement defines new properties for a model. It can be called a
superposition or a horizontal refinement.

e Structural refinement: this refinement is adding detailed design to the
implementation. Examples of structural refinements are refining the
algorithm of an event’s operators, event decomposition, and replacing an
existing event’s variable with new variables. This refinement can be called

a procedural refinement or a vertical refinement.

Chapter 2 Technical Background 26

When a Structural refinement is applied to a model, gluing invariants must
be introduced. A gluing invariant links the state of the concrete model to the states
of its abstract model. For example, one performs a refinement when a variable v in
the abstract model is replaced by a variable w in the concrete model. In this case, a
gluing invariant J(v, w) is used to glue variable v to the variable w mathematically.
Thus, the states of abstract machines are related to the states of refinement
machines. An example of defining a gluing invariant is now given.

Model A(v) has a variable v defined by v < T, where T is a set of integers;
model B(w) has a variable w that represents a sequence of integers and is defined
by w € seq(T). A possible refinement of model A by model B has gluing invariant
J(v, w) = v =ran(w). This gluing invariant includes the abstract variable v and is
called a gluing invariant because it glues the two models together. It is used to
relate new variables to those in the abstract models.

The general form of a refinement model is shown in Figure 2-5 where w
represents concrete variables, J(s, ¢, v, w) gluing invariants, and N concrete
initialisation. H(s, ¢, w) and R(s, ¢, w) are guards and actions for concrete event Er1

respectively.

MACHINE refinement_model_name
REFINES abstract_model_name

SEES context_name

VARIABLES w

INVARIANT J(s, ¢, v, w)

INITIALISATION N

EVENTS
Er1 REFINES E71 = WHEN H(s, c, w) THEN R(s, c, w) END
Er2 REFINES E2 = ANY ... WHERE...THEN ... END

END

Figure 2-5 Refinement model structure

Chapter 2 Technical Background 27

Consistency Proofs for Refinement

Since new events can be introduced in the refinement, the new events also
have to be proved. For example, it is necessary to prove that the new events will
not run forever, or, when a concrete event in the new event is enabled, the
corresponding abstract one is enabled. The latter is called Guard strengthening
(GRD) and is an example of a PO illustrated in the following formula (Abrial,
2008b). Other numbers of POs can be found in (Métayer, et al., 2005).

Axioms A(s,c)

Abstract invariants and theorems (s, c, v)

Concrete invariants and J(s, ¢, v, w) 3)
Concrete event guards H(s, c, w)

= =

Abstract event specific guard a(s, ¢, v)

2.4 RODIN Tools

The RODIN toolkit version 0.9.1 (Event-B.org, 2009), used in this thesis, is
an Eclipse environment for modelling and proof in Event-B. RODIN is built on the
Eclipse platform and comprises many features, for example, refinement, PO
generation and some plug-in tools. Some of the latter are: Atelier B (ClearSy,
2009), ProB (ProB, 2009), UML-B (Snook and Butler, 2008b), and B2Latex
(Event-B.org, 2008). The RODIN tool has two default perspectives as shown in
Figure 2-6 and Figure 2-7.

In RODIN, Event-B CONTEXTS, MACHINES and their refinements, are
created within the same project as shown in the Project Explorer tab in Figure 2-6.
The Editor tab (in the centre) is for editing a model whose elements’ properties are
shown in the Properties tab beneath. The Outline tab displays the list of model

elements.

Chapter 2 Technical Background

28

[i§Event-B - LiftSystem_EventB_0.91/LiftSystem_EventB.bum - Rodin Platform

File Edit Mavigate Search Project Run Refactor

-Eo@ Q-]

Event-B Window Help
Fout et ||] -

[MBPoE ¢ Proving ([Resou

k! Project Explorer 23 = Aa

GE 2T

@ *LiftSystem_Evertd L

& Lift.eventB

=8 LiftSystem EventB 0.91
5@ LiftSystem Events_ctx
2@

o-&

S Liftsystem Events
variables

Invariants

Theorems

Events

INITIALISATION
UserRequestlampriit
SetRequestlamprunli
dooropen

doorClosed

11 ftMovingDeparting
11ftMovingDeparting
1iftMovingUp
1iftMovingDeparting
11 ftMovingDeparting
11 f tMovingDown
floorsenseron
floorsensoroffup
floorlampUnlit
floorlampLit

o f

grdl

grdz2

-

o-E-E-E B w80

Project

<

<% @ Floorlamplit [notextended [v] [ordnary [=] jy [Tine 2 2]
= REFINES
L IR
= ANY
L IR
e® Fal .
P Editor
< WHERE
® 7o
o @ [grdl : [= FLooR 4]
oorsensorState(f] = on
o = F e o P —
v f = currentFl
o @ [grds : [loorlampstateli] = tnlit i
L IRt
< WITH

o
o
Explorer

Pretty Print |Edit| Synthesis | Dependencies |

L 6 660060000060006060600086000000060Q

LiftSystem EventB _ctx
regFl

currentFL

floorlampState
floorsensorState
requestlampState
doorState

liftState

uplampState
downlampState

dir

aclock

floorLampLittime
floorLampLinli tTime
floarsensoronTime
floorsensoroffTime
requestlampRequestedTime
requestlampUnrequestedTime
Lif tMowd nnderi wi nnllpTime
Lif1

Lift Qutline upTime
1if1 H

11 {ARERm_——— +JDowWnT1me
11 f tMovingDownTime

11 f tMovingAr rivingDownTime
dooropenTime

doorClosedTime
uplampDeactivatedTime

; actl
& actz

% 1iftMovingArrivingU

1iftMovinghrrivingD

liftstopatFloor

ChangeDirup

ChangeDirDown

4 Ticktok

[Rodin Problems | = Properties 53

The RODIN tool contains a proof obligation generator, automated and
interactive provers (Abrial, et al., 2008). The automated and interactive proof is
shown in the Obligations Explorer tab, Figure 2-7. To perform interactive proof,
one can select hypotheses from the Selected Hypotheses tab (in the upper centre).
The Proof Tree and Goal tabs display the sequence of proving, and the goal of

proving, respectively. The proved result and a number of provers (provided by the

Lz Taskﬂ

Label: lord3

i floorlampState (f] = Unlit Property
Predicate: View
Comment:

Figure 2-6 RODIN Modelling Perspective

tool) are in the Proof Control panel.

ftSystem_EventB_0.91/LiftSystem_EventB.bps - Rodin Platform

Fle Edit Navigate Search Project Run EditorMenu Window Help

[i [a2 e [P oo 79 malpred | @ Provng L Resource
I# Proof Tree 52 = O\ @ Lirtsystem_Everts 52 = O|| e obligation Explorer £2 i \
=
6| iy = liftMovingDepartingUp /inv34 /INV 9 [
= ¥ simplification rewrites oy =
B4 eh (Lif tState=StopAtFloor) lewe | @ doorclosed/grdl/vD
E-& simplification rewrites @ doorState [currentFl)=0pen = &6, doorCLossd /1 el
5@ auto ImpE o o aA doorclosed/im Proof
B4 = goal liftState=StopaAtFloor Select @ doorclosed/iny e
8@ auto TmpE @ doorclosedsim Obligations
B slyds Oa fepEoR Hypotheses G: doorClosed/inyaor i
@ predicate Prd] @ @ (requestlampState(f)=rLit @ Lif thovingDepartinglp/grd1/wD
= f>currentFlla ‘ﬂa 1iftMovingDepartingUp/inv2o/INY
a {doorstate(currentFl]=Closed A @ 1if tMovingD
{gclock — deorClosedTime=l » gclock — doorClo— a3 oV
fereqrl) --EQ: 11 f tMovingDepartingl
oe currentFleregFl __aA 1iftMovingDepartingUp2/inv20/ TNV
. _'ﬂ -~ @" LiftMovingDepartingUp2/inv33/ TNV
il v @" 1if tMovingDepartingLp2/invaa/INV
State @ 11 tMovingDepartinglp2/1inv35/THV
Proof & cod 3 =0 ;a: i f tMovinglip/grd6/wD
Tree --ﬂA 1iftMovingUp/inv1G Ty
a8 doorstate{currentFl)=0pen @ LiftMovingUp/inv3s/INV
. = <@ 11 tMovinglp/inv3d/THY
MovingDepartinglp=StopAtFloor @ Vi thovi ngUp /invas/ TNV
Proof a: Lif tMovingDepartingDown/grd2/nD
Goal aA 1if tMovingDepartingDown/inw22/ TNV
~@" 11f tMovingDepartingDown/inw33/ TNy
@ liftMovingDepartingDown/inv34/IRNY
--iﬁ: 1if tMevingDepar tingDown/inw3s TNV
B Proct Cortrol 22 2 Rodn rebers)] ® - =0 @ 1if tMovingDepar tingDown2/inv22/ TNV
- @" LiftMovingDepartingDown2/1nv33/INV
|- @ w0 ety |@ RO '&: 11 f tMovingDepar tingDown2/1invad TNV
@" liftMovingDepartingDown2/1ny3S/INY
Proof @" 11 tMovingDown/grd6/wD
Control @ 1iftMovingDown/1nv23/INV
— @ liftMovingDown/inva3/INY

Figure 2-7 RODIN Proving Perspective

Chapter 2 Technical Background 29

2.5 UML-B

UML-B (Snook and Butler, 2008b) has been developed as a plug-in for
RODIN toolkits and implemented by the Eclipse Modelling Framework (EMF). It
is a graphical formal modelling notation based on UML (Booch, et al., 2003), and
relies on Event-B (Abrial, ef al., 2007) and its verification tool (Abrial, et al.,
2005). UML-B is a tool that supports the construction of a graphical model, using
UML-like diagrams, i.e. Class diagram and Statemachines, and an Event-B like
annotation language. UML-B models can then be automatically translated to Event-
B using the U2B translator for further analysis. In this thesis, the UML-B version
0.4.3 is used.

2.5.1 Package diagram

The UML-B top-level Package diagram is first opened with an empty

canvas. This is the default perspective for representing a UML-B project.

[EJUML-B - testTEST /testTEST.packageDiag - Rodin Platform

File Edit Diagram Mawigste Search Project Run ‘Window Help

IG-Balm - e | -0l G- -

[itons S B I A~®-se | Bt m] o x D o
TS Navigator @ *testTEST .packagelbiag &3
- o] & =g ¥ ;I — Palette —
| e | - [Select

-2 bestTEST] . . &, 2aam
X o _ sl

|¥| .project Sees

@ testTEST.My_Context.contextDiag = - - | Nodes

S testTEST.My_Machine A.AStatemachir @ Machine

@ testTEST.My_Machine. classDiag (3 Context
@ testTEST. packageDiag

= Links
(&) testTEST.umib Edit £ Refines
[#-1=F testTEST.eventd ioy
- || sems Palette
LI _’l—l Extends

B2 Properties \Z—’, Tasksw @ Prngresq

Machine : My_Machine

. A— r -
Navigator Overview Mame: [ity_Machine
View Errars R !_'
Model
property
| Make a refinement of this Machine. ., View

Figure 2-8 UML-B Package diagram perspective

Chapter 2 Technical Background 30

A Package diagram is used to describe the association between machines and
contexts in a UML-B project. UML-B provides drawing tools as illustrated in the
Palette panel, on the right. This is used to create machines and contexts with a
graphical representation as shown in the Editor panel in the centre. For example, in
Figure 2-8, My_Machine is a machine while My_Context is a context. A
machine sees a context via the relationship Sees. The Properties tab represents
properties of the selected component in the Editor view, while the Navigator tab is

for displaying the list of diagrams within a project.

2.5.2 Context diagram

Static data in Event-B, such as sets, constants, axioms and theorems, are
modelled in the CONTEXT part. UML-B provides this in a separate package
called a Context diagram. The Context diagram is drawn as a Class diagram but

has constant data represented by ClassType, Attributes, Constants and Association.

9 *Example.My_Context.contextDiag 23

~||=palette —
4 1 ey h Select
L] +, Zoom
Attributes cltoc2 Attributes N
o cltoc2: C2 1..1 1..1 : = Note
Axioms

Axioms L~ Context Features

Theorems Thearems < ClassType

< ExtendedClassType

[e=3F 1, 2, &
+ [{b > 2, 3] [~ Cannections
= Atkribut
ributes < Association
= Axioms 2 Supertype
il Thearems [~ Class Type Features
< Attribuke
| | < CT Axiom
LI o[] B CT Theorem
=I Properties) Tasks) C_‘ Progress}
Class Type : C3
S
Properties Mame: c3
Attributes
Supertype I-\:nu'L'L:- j
Axioms
Theorems Instances: [TypeExpression - {1, 2, 3} = | Add new Type
Errars
Cormment:

Figure 2-9 UML-B Context diagram perspective

Whenever a UML-B model generates an Event-B model, ClassTypes are

defined as carrier sets or constants. In Figure 2-9, ClassType C1 and C2 are defined

Chapter 2 Technical Background

31

as sets, while ClassType C3 1is defined as a constant as shown in Figure 2-10. C3

is generated as a constant since it is assigned to constant values {1,

2, 3}.An

association between ClassType, for example cltoc2, is also generated as a

constant with a corresponding axiom as shown below.

CONTEXT

My_Context
SETS

Ccl /7 ClassType

c2 1/ ClassType
CONSTANTS

Cc3 // classType instances

cltoc2 /7 attribute of C1
AXIOMS

C3.value c3 = {1, 2, 3}

cltoc2.type cltoc?2 € C1 = (2
END

Figure 2-10 Event-B

2.5.3 Class diagrams

The dynamic part is generated in a Class diagram and used to describe a

machine. In a machine, one can define classes, variables, events, Statemachines

and invariants.

) *Example.My_Machine. classDiag 52

oA

oD

[~ Attributes

Events

' Statemachines

[= Invariants

[~ Theorems

o B
Attributes Attributes
@ atoB: B © AtoB Events =
Beont Statemachines
Statemachines 9..n
S &_Statemartie EEEE)
% n Theorems
3 of f
#init_A S Maching Statemachine
3 delete A B_Staternachine
¥ Lit
Irveariants % nlit
Thearems ¥ Init_B

@ Machine variable
My_wvarl: BOOL

Machine Event
My Event

i

— Palette ——

==

+,, Zoom
[=) Naote

== Machine Features
@ Class

<4 Refined Class

© Mariable

% Ewvent

|-~ Connections

@ Association

=~ Superkype

|-~ Class Features

@ Attribute

@ Inhetited Attribuke
% CEvent

_';I 5 C Statemachine
5 i =

=) Propetties \Z-: Tasks] C Prngress]

Class: D

Properties Mame: D

ditibies Self Marne: self

Events

Statemachines Fixed

Inwariants

Thearems Supertype |<nu1.1.> -

Errors Instances: I-\:nullb j | Add new Type

Figure 2-11 UML-B Context diagram perspective

Chapter 2 Technical Background 32

“Classes represent subsets (variable or fixed) of the ClassType that were
introduced in the context” (Snook and Butler, 2008b). That means a class’s Fixed
property can be set to false (default value) or true. If it is set to false, that
class is generated as a variable unless it is a SET. For example, in Figure 2-11, class
D is generated as a variable for a machine with its invariants D € P (D_SET) as

shown in Figure 2-12.

VARIABLES

A ff class instances

B /Y class instances

D!

My varl /I utility variable

AtoB /Y attribute of A

A Statemachine /Y statemachine belonging to class, A

B Statemachine /I statemachine belonging to the machine
INVARIANTS

A.type : A eP (A SET)

B.type : B eP (B _SET)

D.type : D eP (D SET)

My varl.type : My varl e BOOL

AtoB.type : AtoB € A — B

A Statemachine.type : A Statemachine € A — A Statemachine STATES

B Statemachine.type : B Statemachine € B Statemachine STATES

Figure 2-12 An Event-B variable is generated from an UML-B non-fixed property class

If the Fixed property for class D is set to true, the Event-B generated from

class D is shown in Figure 2-13.

SETS
A SET // Class
B_SET // Class
D
A Statemachine STATES // A-statemachine
B _Statemachine STATES // statemachine

CONSTANTS
al // A_Statemachine-state
az // A Statemachine-state
bl // B_Statemachine-state
b2 // B_Statemachine-state

AXIOMS

A Statemachine_ STATES.value : A_Statemachine STATES = {al,a2}
B_Statemachine STATES.value : B_Statemachine STATES = {bl,b2}
al.type : al € A Statemachine STATES

a2.type : a2 € A Statemachine STATES

bl.type : bl € B _Statemachine STATES

b2.type : b2 € B _Statemachine STATES

distinctStates a2,al : a2 = al

distinctStates b2,bl : b2 = bl

Figure 2-13 An Event-B class is generated from an UML-B fixed property class

Chapter 2 Technical Background 33

Associations between classes, for example an association AtoB in Figure 2-
11 and Figure 2-12, define machine variables (global variables). Attributes and
events that are attached to a class are generated as events’ local variables and

machine events respectively.

2.5.4 Statemachines

A Statemachine is used to model the behaviours of a system. It can be
identified in two ways: within a corresponding class, and as a Machine
Statemachine. A Statemachine is defined within a class in order to explain the
behaviour of a class’s states changing and modifying a class’s variables. In
contrast, if an object has to be represented by a Statemachine, a Machine
Statemachine is utilized. For example, from Figure 2-11, the A_Statemachine is
defined within class A while B_Statemachine is a Machine Statemachine. Below is

an example of the A_Statemachine.

. % 0N & a2
®ANLL_A M T | #% delete_A
Statemachines Etaternachings .
Inveariants % of f Ireeariants
Theorems

Theorems

E Properties . v& Tasks} & Prngress}

Transition : On = al - a2

S

Properties Marne: on

Refines
Parameters:

Parameters

Wiktnesses

(zuards Witness:

Ackions

Errors Guards: My_varl = TRUE

My warl = FALSE

Ackions: ¥

Figure 2-14 An example Statemachine

A Statemachine transition represents an event with behaviour associated with
the change of states, from a source state to a target state. Each transition is
generated as an event. Figure 2-14 shows two events are created: On and Off.

Additional guards and actions can be attached to the transition in the Properties tab

Chapter 2 Technical Background 34

to describe the events’ behaviours. Note that, My varl is a Machine Variable
defined in Figure 2-11.

Each event uses a keyword <ClassNameSelf>, a class name in which a
transition is followed by Self, to identify the non-deterministic selection of an
instance of the class. For example, consider the event On created from the transition

On in Figure 2-14, as illustrated below.

On =
STATUS
ordinary
ANY
ASelf // contextual instance of class A
WHERE
Aself.type : ASelf € A
A Statemachine isin al : A Statemachine(ASelf) = al
On.Guardl : My varl = TRUE
THEN
A Statemachine enterState a2 : A Statemachine(ASelf) = a2
On.Actionl : My varl = FALSE
END

Figure 2-15 An event On created from a transition

The word ASelf is automatically created as a non-deterministic variable with
a guard ASelf € A, where A represents a class in which this transition takes place.
A source state (A Statemachine(ASelf) = al) and a target state
(A Statemachine(ASelf) = a2) are automatically generated as a guard and an

action respectively.

2.5.5 Implementation of UML-B

UML-B is implemented with the EMF, which is an Eclipse project providing
code generation, model editor, and efficient Application Programming Interface
(API) utilities based on a metamodel (Snook and Butler, 2006). Graphical
Modelling Framework (GMF) is an Eclipse project used to automatically generate
code for the UML-B graphical modelling tool, based on the EMF model (detail of
EMF is given in section 2.8.2). UML-B provides drawing tools and a translator to

generate Event-B models, i.e. whenever an UML-B drawing model is saved, the

Chapter 2 Technical Background 35

U2B translator automatically generates the corresponding Event-B model. RODIN
automatically verifies the Event-B model and reports any errors.

Even though UML-B is similar to UML, it is designed on a separate
metamodel (Snook and Butler, 2008a). Figure 2-16 shows parts of the UML-B
metamodel in which classes represent abstract meta-classes. Class UMLBProject
defines the name of a project via UMLBname where name is defined as a string.
UMLBProject is composed of UMLBconstruct in which is subtyped into
UMLBMachine and UMLBContext. UMLBMachine contains UMLBEvent and
UMLBVariable, which are used to define machine events and machine variables
respectively. The class UMLBMachine contains a contexts association. This is the

way that machines are linked to contexts in a model.

E UMLBClass H UMLBabstractClass| H UMLBstatemachineCollection
o= fixed
= selfMame
0.*
refines
classes g statemachines

H UMLBMachine
H UMLBvariableElement:

ot
H UMLBclassifier = initialValue
extends contexts ovents variables 5 UMLBStatemachine
o = translation
B 0.* . o
instances "
E UMLBContext H UMLBEvent E UMLBVariable
= eventkind transitions states
0.1 0. -
H UMLBTypeExpression H UMLBTransition | 0,,* incoming H UMLBState
0.* outgoing| = _ﬁngl
H umLBguardedAction = initial
0.* = convergence target 1.1 ## notransitionsfromfinal
source 1.1 & noincomerstoinitial

noregionsoninitialor final

typeExpressions 5 bl
i varables
actiors QUAdS | yitness

02 L
0. 0.* a.*
H UMLBconstruct
E UMLBProject 0.* H UMLBAction |H UMLBPredicate. | H UMLBEvent\ariable
constructs = action = predicate = local

E UMLBnamedElement

H UMLBname
= name =
unigueElementhamess

Figure 2-16 Parts of UML-B Metamodel

UMLBClass is a subtype of UMLBabstractClass. As shown in Figure 2-17,
the UMLBabstractClass contains UMLBEvent and UMLBabstractAttribute, which

are used to define classes’ events and classes’ attributes respectively.

Chapter 2 Technical Background 36

H UMLBabstractClass

attribues
events
0. * 0-*
H UMLEEvent H UMLBabstractAttribute
= eventkind
inherits
1.1 H UMLBInheritedAttribute
H UMLBRame = label
= name

i unigueElementiMames

Figure 2-17 UMLBabstractClass, UMLBEvent and UMLBabstractAttribute Metamodel

In Figure 2-16, UMLBstatemachineCollection contains UMLBStatemachine
that is used to define Statemachines. The UMLBStatemachine contains
UMLBTransition and UMLBState. The UMLBTransition represents Statemachines’
transitions, in which each transition links a couple of states by target and source
associations to UMLBState. The UMLBTransition is a subtype of
UMLBguardedAction. The UMLBguardedAction contains UMLBACction,
UMLBPredicate and UMLBEventVariable, which are used to define actions, guards

and events’ variables (local variables for an event) respectively for a transition.

2.6 Linear Temporal Logic (LTL)

LTL is used to describe a sequence of events referring to time. It is defined
over discrete time points and has proved convenient for specification requirements

(Letier, 2001). LTL provides the temporal operators as follows.

O some time in the future ¢ some time in the past

0 always in the future n always in the past

U always in the future until S always in the past since
W always in the future unless B always in the past back to
o in the next state ° in the previous state

Chapter 2 Technical Background 37

In LTL (Lamsweerde, 2009), time is declared as the set Nat of natural
numbers, and a history H is defined as a function, H: Nat > State(x), where x
represents the set of system variables and State(x) stands for the set of all possible
states for the corresponding variables in x. This function operates for every time
point /i in H. To define the LTL semantics more precisely, the notion (H, /) I= P is
used to express the LTL assertion that P is satisfied by history H at time position /,
where j € Nat. The semantic rules for the LTL temporal operators are divided into
two categories: future operators and past operators, as follows (taken from

(Lamsweerde, 2009)).

Future operators
(H,)|=0P iff for some j=i: (H,) |= P
(H)l=oP iff for every j=i: (H, j) |= P
Hiy=PUQ iff there exists a j2 jsuch that (H, j) |= Q
and forevery k, iS k< j:(H, k) |= P

Hiy=PWaq iff(H)l=PUQor(Hi)|=o P

(H,)|=0 P iff (H,i+1)|=P
P=Q “entails” Equivalentto o (P — Q)
P& Q “congruent” Equivalentto O (P <> Q)

Past operators
(Hy)|=¢P iff for some j<i:(H,j)|= P
(Hy)|=m P iff forevery j<i:(H,j)|= P
Hi)=PSQ iff there exists a j< isuch that (H,) |= Q

and forevery k, j< k<i:(H, k) |= P

(H)|=PBQ iff (H,)) |=PS Qor (H, i) |=m P
(Hil=e P iff (H,i-1) |= Pwithi>0
@P Equivalentto (e = P) A P

Relative Real-time Properties
In RE, some properties are need to be defined over real-time constraints.
Examples of such properties are:

“All borrowed books must be returned within a week”

Chapter 2 Technical Background 38

“Lift door must be opened between 1 and 5 minutes after the lift stops at that

floor”

Relative real-time properties are properties referring to real-time delays
between system states. In order to specify such properties, bounded versions of the

above temporal operators are used. Examples of those operators are

0 <g (some time in the future within deadline d)

0 <q (always in the future up to deadline d)

To define those operators, a temporal distance function is used, as defined in

the following:

dist: Nat x Nat — D where D = {d | there exists a natural n such thatd = n x u}

where u denotes a chosen time unit such as second, minute and hour.

distG, j)=lj—il X u

For example, the semantics of the real-time operators is then defined below

(the rest of the semantics is declared in (Lamsweerde, 2009)).

(H, i) |= 0 < 4 Piff for some j= i with dist(/,) < d: : (H, j) |= P
(H, i) |= O <4 Piff for every j= isuch that dist(i,) £ d:: (H,) |= P

2.7 Knowledge Acquisition in autOmated Specification (KAOS)

A system requirement is a statement of what the system has to perform to
accomplish the system’s goal. A requirement for a computer system specifies a
statement to be implemented by the proposed system. It always involves other
system components and is described in terms of environmental phenomena (e.g.
agents and system’s constraints). Examples of system requirements are

e All lift doors shall always remain closed while the lift is moving

e A book must be returned within a deadline

Chapter 2 Technical Background 39

A goal is a prescriptive statement and defines an objective the composite
system should meet through the cooperation of its agents in the environment. A
requirement is a goal under the responsibility of a single software agent. An agent
is an active object and performs a specific role/operation in a requirement. Agents
can be human, devices, software, etc. For example, the first requirement in the
above list is assigned to a DoorController agent, while the second is assigned to a
Library software agent.

KAOS stands for Knowledge Acquisition in autOmated Specification
(Dardenne, et al., 1993) or Keep All Objects Satisfied (Letier and Lamsweerde,
2002b). It is a goal-oriented RE that uses a Goal model to generate system
requirements. A Goal model is then used to generate one or more Operation
models. Each Operation model defines the state transitions in the application
domain by using pre- and post-conditions. The detail of Goal and Operation

models are described in the following sections.

2.7.1 Goal model

The first model generated in KAOS is a Goal model. A Goal model is created
by focusing on a part of the goal and then proceeding to the next part until
completing the whole Goal model (El-Maddah and Maibaum, 2003). This process
is called goal refinement. A Goal model is represented as a tree structure, which
can be called a Goal tree, as shown in Figure 2-20. Each goal is graphically
represented by a parallelogram labelled by the goal’s name and prefixed by its
type, as shown in Figure 2-18.

There are four types of goal (Darimont and Lamsweerde, 1996; Rubio-
Loyola, et al., 2005) :

® Achieve and Cease goals require some target properties to be eventually
satisfied or denied, respectively, in some future state. This goal category
is used for specification of liveness properties.

® Maintain and Avoid goals require some target properties to be

permanently satisfied or denied, respectively, in every future state.

Chapter 2 Technical Background 40

Maintain and Avoid goal categories are used to specify safety

properties.

To illustrate how a KAOS model is created, an example of a meeting
scheduling problem is used as an example from this point forward (Letier, 2001).

Parts of the meeting scheduling problem specification are provided below:

“... Each requested meeting will eventually be held with the presence of all
intended participants. Participants’ date constraints are eventually

accurately known by the scheduler ...”

From the problem statement above, supposes a “participants’ constraints
known” is selected to be generated as a goal. This goal is created as shown in
Figure 2-18. The goal has identified Achieve as a goal type with a name

PrtcptsCstrkKnow.

Achieve[Prtcpts
Cstrknow]

Figure 2-18 An example of a goal

2.7.2 Goal formal definition

Each goal is declared by a type (Achieve, Maintain, Cease and Avoid),
definition (Definition) and formal definition (FormalDef). A goal definition is
described by text. A formal definition is composed of optional inputs/outputs, pre-
conditions and post-conditions. Inputs/outputs declare objects’ attributes of an
operation. Pre- and post-conditions describe current conditions and target
conditions of an operation, respectively. A goal formal definition uses LTL to
define a goal description. Thus, a goal formal definition is written as a temporal
logic statement. An example of the definition of the

Goal Achieve[PrtcptsCstrknown] from Figure 2-18 is illustrated below:

Chapter 2 Technical Background

41

Goal
type

Goal Achieve[PrtcptsCstrknown]

Definition Information about participants’ date constraints
are eventually accurately known by the scheduler

FormalDef Y/ p: Participant, m: Meeting Tnputs/

Intended(p,m)
-
conditions conditions
Figure 2-19 A definition of the goal Achieve[PrtcptsCstrKnown]

O Cstrknown(p,m)

Goal types are keywords that allow one to specify a goal formal definition

pattern at the declaration level (Lamsweerde and Willemet, 1998). Each of these

goal patterns represents a particular shape of temporal logic formula. Examples of

those patterns are illustrated in

Table 2-1.
Goal Type Temporal logic formula Pattern
Achieve P=0Q Unbounded Achieve
P= 0<4Q Bounded Achieve
P=>oQ Immediate Achieve
Cease P= 0-Q Unbounded Cease
P=0<47Q Bounded Cease
P = o0-Q Immediate Cease
Maintain P= Q Permanent Maintain/
Immediately response
P=>0Q After Maintain
Avoid P=-Q Permanent Avoid

Table 2-1 Goal types with temporal logic formulas

Chapter 2 Technical Background 42

For example from Figure 2-19, the Goal Achieve[PrtcptsCstrknown] is
specified as a Unbounded Achieve P = ¢ Q where P is Intended(p,m) and Q is
CstrKnown(p,m).

Another example is a Bounded Achieve P = 0 < g Q, it means whenever the
current condition P occurred, the target condition Q will eventually occur within
deadline d. The Permanent Maintain/Immediately response P=> Q means whenever
the current condition P occurs, the target condition Q must be occurred at the same

time point. More goal patterns can be found in (Letier, 2001).

2.7.3 Goal refinement

A Goal model is created by an AND/OR graph called a goal refinement
graph. A goal refinement graph shows how a parent goal (at a higher-level) is
refined into subgoals, and how subgoals are grouped into the higher-level one
(Lamsweerde, 2001); this is called goal refinement. Asking WHY and HOW
questions are techniques used to generate a goal refinement graph. By asking
HOW questions, subgoals are identified from an already identified parent goal
(top-down processes). By asking WHY questions, a parent goal is generated from
already identified subgoals (bottom-up processes). The goal refinement is stopped
when every subgoal can be assigned to a single agent. Leaf node goals in a goal
refinement graph represent software requirements.

To explain how a goal refinement graph is created, consider the goal
Achieve[PrtcptsCstrknown] as shown below (the same goal within Figure 2-18). The
goal Achieve[PrtcptsCstrknown] is refined into two subgoals
Achieve[PrtcptsCstrRequested] and Achieve[RequestedCstrProvided] by asking a
HOW question. Similarly, other parts of the goal refinement graph are generated by
asking HOW and WHY questions. A process of goal refinement is brought about
by application of formal goal refinement patterns to expand the parent goal is

described later in section 2.7.4.

Chapter 2 Technical Background 43

Achieve[Convenien

tMeetingHeld]
lHOW
Achieve[Prtcpts Achieve[Convenient Achieve[Prtcpts
CstrkKnown] MeetingPlanned] Informed]
l HOW
Achieve[PrtcptsCstr Achieve[Regeste
Requested] dCstrProvided]

Figure 2-20 KAOS goal refinement graph

AND and OR refinement combinations

A goal refinement process uses logic to decompose a parent goal into
subgoals, or compose subgoals to generate a parent goal. Decomposing and
composing use two kinds of goal refinements in combination: AND and OR. An
AND-refinement is represented by a black circle symbol while an OR-refinement is

represented by a white circle symbol, as shown below.

Parent Goal Parent Goal
Subgoal1l Subgoal2 Subgoal1l Subgoal2
AND refinement OR refinement

Figure 2-21 Symbols for AND and OR refinement

Using AND-refinement means a parent goal can be refined into subgoals that
are more detailed; for example, Subgoall and Subgoal2. This means that to achieve

a parent goal, all subgoals must be selected. OR-refinement is an alternative goal

refinement. In this case, more than one alternative subgoal can be selected.

Chapter 2 Technical Background 44

2.7.4 Formal goal refinement patterns

“Goal decompositions made by hand are usually incomplete and sometimes
inconsistent” (Lamsweerde and Massonet, 1995). Thus, Darimont provides formal
patterns for building goal refinement graphs that are proved correct (Darimont and
Lamsweerde, 1996). A formal refinement pattern is a one-level AND-tree of a
parent goal. That means there is no pattern for OR-refinement. There are a number
of goal refinement pattern defined in (Darimont, 1995). Here, we explain those are

used in the thesis.

A Milestone-driven goal refinement pattern

The Milestone-driven goal refinement pattern refines an Unbounded Achieve goal
of the form P = ¢ Q@ by introducing an intermediate state M (milestone), see Figure
2-22. To reach a state satisfying the target condition Q from a state satisfying the

condition P, it must act via the intermediate state satisfying condition M.

Parent goal

P=9¢Q

A

P=0M M= 0Q

Subgoal1 Subgoal2

Figure 2-22 A Milestone-driven goal refinement pattern
(Darimont and Lamsweerde, 1996; Letier, 2001)

For example from Figure 2-19, the goal Achieve[PrtcptsCstrKnown] is refined
into two subgoals Achieve[PrtcptsCstrRequested] and Achieve[RequestedCstr

Provided] by using the Milestone-driven goal refinement pattern where

P : Intended(p,m)
Q: CstrKnown(p,m)
M: CstrRequested(p,m)

The following subgoals are thereby obtained:

Chapter 2 Technical Background 45

Goal Achieve[PricptsCstrRequested]

FormalDef N/ p: Participant, m: Meeting
Intended(p,m) = ¢ CstrRequested(p,m)

Goal Achieve[RequestedCstrProvided]

FormalDef N/ p: Participant, m: Meeting
CstrRequested(p,m) = ¢ CstrKnown(p,m)

A case-driven goal refinement pattern: split antecedent

The Case-driven: split antecedent goal refinement tactic refines a goal by
splitting it into cases as shown in Figure 2-23. This technique is used when

different cases can be identified in a goal.

Parent goal

PivP,=Q

AN

Pi=Q P, = Q

Subgoal1 Subgoal2

Figure 2-23 A case-driven goal refinement pattern: split antecedent

For example, a fire-safety monitoring problem is provided as “... If the room
temperature is overheated or the room is very humid, a room window will be
eventually opened ...”

This specification above can be generate as a Goal Achieve[TheRoom

WindowOpenAfterTheRoomlsOverHeatedOrTheRoomIsHumid] as in the following:

Goal Achieve[TheRoomWindowQOpenAfterTheRoomlsOverHeatedOrTheRoomisHumid]
FormalDefinition: When the room temperature is overheated or the room is very humid, a
room window will be eventually opened.
FormalDef: /' r : Room

r.temperatureLevel = ‘Overheated’ v r.humidityLevel = ‘High’

=

O r.windowState = ‘Open’

Chapter 2 Technical Background 46

The Goal Achieve[TheRoomWindowOpenAfterTheRoomlsOverHeatedOrThe
RoomlisHumid] is refined into two subgoals Achieve[TheRoomWindowOpenAfterThe
RoomlIsOverHeated] and Achieve[TheRoomWindowOpenAfterTheRoomHumiditylsHigh]

by using the Case-driven: split antecedent goal refinement where:

P; : r.temperatureLevel = ‘Overheated’
P, : r.humidityLevel = ‘High’
Q : 0 r.windowState = ‘Open’

The following subgoals are thereby obtained:

Goal Achieve[TheRoomWindowQOpenAfterTheRoomlsOverHeated]

FormalDef N r :Room
r.temperatureLevel = ‘Overheated’ = ¢ r.windowState = ‘Open’

Goal Achieve[TheRoomWindowOpenAfterTheRoomHumiditylsHigh]

FormalDef N r :Room
r.humidityLevel = ‘High’=> ¢ r.windowState = ‘Open’

2.7.5 Operation model

Once subgoal-agent allocation is complete, each leaf node goal is assigned to
an operation. The operations are defined by the following conditions (this section is
taken from (Lamsweerde, 2009)):

¢ A domain pre-condition (DomPre) characterizing the input states
when the operation is applied.

¢ A domain post-conditon (DomPost) characterizing the output states
when the operation has been applied.

e Required pre-condition (ReqgPre) is a condition on the operation’s
input states for satisfaction of the goal. It captures a permission;
under this condition the operation may be applied when the domain
pre-condition holds.

® Required trigger condition (ReqTrig) is a condition on the
operation’s input states for satisfaction of the goal. It captures an
obligation; under this condition, the operation must be applied when

the domain pre-condition holds.

Chapter 2 Technical Background

e Required post-condition (ReqPost) is a condition on the operations’
output states for satisfaction of the goal. It captures an additional
effect that the operation must have specifically to ensure the goal.

Note that the operation is not applied if a trigger condition becomes true in a
state where the operation’s domain pre-condition is not true. If the domain pre-

condition becomes subsequently true and the trigger condition is still true, the

operation must be applied.

The operation is not applied if a required pre-condition becomes true in a
state where the operation’s domain pre-condition is not true. If the domain pre-

condition becomes subsequently true and the required pre-condition is still true,

then the operation may be applied — but not necessarily.

There are a number of operation model patterns as defined in (Letier, 2001).

Here, we explain those that are used in this thesis.

Operation model: Global Invariant

The goal Permanent Maintain/Immediately response of the form P = Q has an

operation model, which is called Global invariant, as illustrated in the following:

Goal Model

Global
Invariant

Operation name1
Input list of arugments
Output list of arugments
DomPre =P
DomPost P
ReqgPost Q

Operation name2

Input list of arugments
Output list of arugments
DomPre Q

DomPost =Q
ReqPost -P

Operation model

Figure 2-24 Operation model: Global invariant

Chapter 2 Technical Background 48

For example, suppose a simple fire alarm problem is identified as “... fire
alarm is set to switch on immediately after the carbon monoxide level inside that
room is critical ...”.

The formal definition of the Goal Maintain[FireAlarmsOn] which corresponds to
this problem is shown below.

Goal Maintain[FireAlarmsOn]
FormalDef Y r :Room, f : FireAlarm
r.COsLevel = ‘Critical’ = f.State = ‘On’

Thus, the two corresponding operations: FireAlarmOn and FireAlarmOff are
defined as in the following, where
P :r.COslLevel = ‘Critical’

Q: f.State = ‘On’
Operation FireAlarmOn Operation FireAlarmOff
Input r : Room Input f : FireAlarm
Output r : Room Output f : FireAlarm
DomPre r.CO,Level # ‘Critical’ DomPre f.State = ‘On’
DomPost r.CO,Level = ‘Critical’ DomPost f.State = ‘Off’
RegPost f.State = ‘On’ ReqgPost r.CO,Level # ‘Critical

Operation model: Bounded Achieve

The goal Bounded Achieve of the form P = 0<4 Q has an operation model as

illustrated in the following:

Goal Model

P = Osd Q
Bounded
Achieve

Operation name
Input list of arugments
Output list of arugments
DomPre = Q
DomPost Q

ReqTrig 7Q S<g-1 P

Operation model

Figure 2-25 Operation model: Bounded achieve

Chapter 2 Technical Background 49

For example, suppose the fire alarm problem is modified to ... fire alarm is
set to switch on within time interval of 2-3 seconds after carbon monoxide level

2

inside that room is critical The formal definition of the Goal

Achieve[FireAlarmsOn] is shown below:

Goal Achieve[FireAlarmsOn]

FormalDef Y r :Room, f : FireAlarm
r.COsLevel = ‘Critical’ = ¢ ;o 5 f.State = ‘On’

A corresponding goal model is generated by this goal is illustrated in the

following, where
P :r.COsLevel = ‘Critical’
Q: f.State = ‘On’

Operation FireAlarmOn
Input f : FireAlarm
Output r: Room, f : FireAlarm
DompPre f.State = ‘Off’
DomPost f.State = ‘On’
ReqTrig f.State = ‘Off’ S ;; 5r.CO.Level = ‘Critical’

2.8 Metamodelling

In software engineering, metamodelling comprises a means of construction,
identification rules, frames, and constraints that are useful for modelling software
problems. Similarly, it can be said that metamodelling provides a particular
model’s properties concept. Creating a model always conforms to its metamodel.
Metamodels can be defined in many ways. For example, the most well-known are
using Meta-Object Facility (OMG-MOF, 2007) and Ecore (EMFT-Eclipse, 2009).

The following sections discuss the literature on these examples.

2.8.1 Meta-Object Facility (MOF)

MOF (OMG-MOF, 2007) is one of standard technologies developed by the
Object Management Group (OMG). It is a language for describing other languages

(meta-metamodel). MOF 2.0 is the current standard and has been used as meta-

Chapter 2 Technical Background 50

metamodel for UML2.0 (OMG, 2008), and SysML (SysML, 2008). MOF and
UML share core modelling concepts, while MOF reuses UML notation for
visualizing metamodels. MOF is a four-layered architecture (numbered M0-M3).

Examples of models are defined in each layer shown in Figure 2-26.

M3
meta-metamodel Class Meta-Object Facility (MOF)
_____ I:/l;_ o <<ir \”O < ~i;.hs;l:m(:(3()l> T
7 attribute | The UML metamodel and
metamodel Attribute | #—-——— Class other Metamodels

. <<instanceOf>> <<instanceOf>>"

eOf>>

M1 Book .- - author ‘ . Author ™ UML model and
+itle - Stri 1.5 | +name: Sti other Models
model +title : String +name : String
__________ <<|*sté*:eO‘>> R
MO : Various usages of these
} models
real world

Figure 2-26 Four-layer MOF Architecture

The M3 layer is the meta-metamodel. The meta-metamodel is a mechanism
for building metamodels. The well-known models defined in the M3 layer are
MOF itself and Ecore (Budinsky, et al., 2003b).

The M2 layer consists of metamodel descriptions. These metamodels are
used to define syntax and semantic of M1 elements. Examples of languages
described in the M2 layer are UML, XML, JAVA, Event-B languages, and our
TDs.

The M1 layer consists of model instances conforming to the M2 metamodel
layer. Examples of models in the M1 layer are model written using UML diagrams,
1.e. specific Class diagrams and state machines.

The MO layer comprises real world objects. These might be actual data

values and model instances, e.g. object diagrams.

Chapter 2 Technical Background 51

2.8.2 Eclipse Modelling Framework

Eclipse Modelling Framework (EMF) (Budinsky, et al., 2003a; Eclipse,
2008) is one implementation of Meta Object Facility (MOF). EMF was started as a
MOF of the OMG implementation and is an enhancement of MOF2.0. It is open
source and is used for “modelling frameworks and a code generation facility for
building tools and other applications based on a structured data model” (Eclipse,
2008). EMF specifies a model by identifying its objects, attributes, relationships
between objects, object operations and object constraints, such as multiplicity.

Ecore, which is an EMF model and metamodel itself, is a model used to
represent models in EMF. An Ecore model can be generated in any of these forms:
Java interfaces, XML Schema or UML diagrams. That is, one can write a Java
program to declare a model, or define a model as an XML file. The last option is
using UML diagram to create and edit a model. These forms give the same
information, just different representations. In summary, one can choose any of
them that matches this perspective and EMF can generate the others.

EMF includes a graphical Ecore editor (EMFT-Eclipse, 2009) based on UML
notations. For example, Figure 2-27 shows part of a TD metamodel represented by
a UML diagram. This UML diagram defines relationships between classes Name,
TDClass, TDParameter, and TDTimeline for TD metamodel. A corresponding

generated Ecore model is shown in Figure 2-28.

H Name H TDClass _ . H TDParameter
— parameter 0., = param
= paramType
tirmeline
D..*
H TOTimeline

Figure 2-27 Example of UML diagram of interfaces:

TD metamodel (parts of)

Chapter 2 Technical Background 52

-
] ThMetamodel.ecare 2

[#] platform:resource/ TOtaUMLE/ TDMetamaodel ecare
= # TDmetamodel
E TDProject - = Mame
H TDMachine - Mame
=RERT
N b4 parameter : TOParameter
Hmfiﬁmﬂhe:TDﬂmﬂhe
- E ToTimeling -3 Mame
M=l TDFar ameter
Emm
-

55 -= Mame

pararn : EString

pararnT

Figure 2-28 Ecore model is generated from a UML diagram

An example of how the UML diagram above is re-represented in a Java

interface and an XML file shown below.

e A Java interface is created by EMF

public interface TDClass extends Name {
EList<TDParameter> getParameter () ;
EList<TDTimeline> getTimeline();

} // TDClass

public interface TDParameter extends EObject ({
String getParam();

void setParam(String value);
String getParamType () ;
void setParamType (String value);

} // TDParameter

¢ An XML Schema is generated by EMF

<?xml version="1.0" encoding="UTF-8"?>
<ecore:EPackage xmi:version="2.0"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore"
name="TDmetamodel"
nsURI="ecs.soton.ac.uk" nsPrefix="TDmetamodel">
<eClassifiers xsi:type="ecore:EClass" name="TDClass"
eSuperTypes="4#//Name">
<eStructuralFeatures xsi:type="ecore:EReference"

Chapter 2 Technical Background

53

name="parameter" upperBound="-1"

eType="4#//TDParameter" containment="true"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="TDParameter">
<eStructuralFeatures xsi:type="ecore:EAttribute"

name="param"
eType="ecore:EDataType"

http://www.eclipse.org/emf/2002/Ecore#//EString"/>
<eStructuralFeatures xsi:type="ecore:EAttribute"

name="paramType"
eType="ecore:EDataType

http://www.eclipse.org/emf/2002/Ecore#//EString" />

</eClassifiers>
</ecore:EPackage>

The benefit of EMF is automatic Java code generation and plug-ins. In doing

that, an EMF generator generates a generator model from an Ecore model (in any

of the three forms above). This generator model is used to generate code and a

plug-in. This is the same process that we used to create a TD plug-in, as shown in

Figure 2-29, named TDmetamodel Model. The TD plug-in is then used to define a

TD instance for transforming TD into UML-B by the Atlas Transformation

Language (ATL), which is described in Chapter 6.

Select a wizard

Create a new TDmetamodel model

=10l x|

Wizards:

ko Filker ket

== Example EMF Model Creation Wizards
© L@ Ecore Model

8 Ecore to Ecore Model

4 Ecore bo ¥ML Model

LQ TOretanmodel Model

- ML Model

[Eb Graphical Modeling Framework,

%

(7) = Back | Mext = | Fimish

Zancel |

Figure 2-29 TDmetamodel Model Plug-in

2.9 Atlas Transformation Language (ATL)

UML-B is implemented by EMF, which is a metamodel based on an Eclipse

project. Similarly, ATL is developed on Eclipse platform and is used to generate a

Chapter 2 Technical Background 54

target model from a source model. Since UML-B and ATL are built on the same
platform, it is appropriate to use ATL to transform a TD model into a UML-B
model. In order to do that, a TD metamodel is provided and an existing UML-B
metamodel is used (detailed in Chapter 6). The explanation of ATL now follows.
ATL is a model transformation language and was developed by the ATLAS
INRIA & LINA research group (ATL, 2008). It was developed within the Eclipse
platform in which the ATL Integrated Development Environment (IDE) provides a
number of development tools such as syntax highlighting and debugging (Allilaire
and Idrissi, 2004). An ATL transformation module is composed of rules that define
how source model elements are matched and navigated to create and initialize the
elements of the target model. The ATL transformation approach is summarised in

Figure 2-30 (ATLAS Group, 2008).

conforms to conforms to

conforims to

MMa MMb

A A
confogrms to
conf¢rms to confgrms to
Mt
Ma | L—— 1 J Mb
Transformation
source target

Figure 2-30 ATL transformation approach

A source model Ma conforms to a metamodel MMa and is transformed into a
target model Mb, which conforms to a metamodel MMb. The transformation
definition Mt is written in the ATL language. This transformation definition is a
model and conforms to a metamodel MMt. These metamodels conform to the
metamodel MMM (such as Meta-Object Facility (MOF) defined by OMG or Ecore,
within the Eclipse Modelling Framework (EMF)).

ATL is a mixture of declarative and imperative constructs. Note that there are

two common approaches to programming: imperative programming and

Chapter 2 Technical Background 55

declarative programming. Imperative programming provides a list of instructions,
or algorithm, to be executed in a particular order. An example of the imperative
approach is a Java program that counts the number of words in a sentence
beginning with a capital letter. Declarative programming describes a set of
conditions without giving its control flow, and lets the program figure out how to
accomplish them. The SQL statement SELECT * FROM Book WHERE Author =
‘Tony’ 1s an example for the declarative approach “In other words, ‘specifying
how’ describes imperative programming and ‘specifying what is to be done, not
how’ describes declarative programming.” (Jayaratchagan, 2004).

ATL transformations are unidirectional; they operate on read-only source
models and produce a output target model. That is, during the execution of the
transformations, the source model is navigated but is not allowed to change; the
target model cannot be navigated. An ATL module is composed of a header,
imports, helpers and transformation rules. The detail of each component is now

described.

2.9.1 Header

A header names the transformation model and declares the source and target

models. A scheme of a header section is shown below.

module module_name;
create OUT : target_metamodel_ name from
IN : source_metamodel_name;

The header section starts with the keyword module followed by the name of
the module (module_name). The keyword create defines the target model while
the keyword from indicate the source model. The target and source models are
bound to variables ouT and 1IN to indicate the target metamodel’s name and the
source metamodel’s name respectively. Generally, more than one source and target

models can be declared in the header section.

Chapter 2 Technical Background 56

2.9.2 Transformation rules

Transformation rules express the transformation logic and provide the means
for ATL developers to specify the target model elements to be generated from the
source model elements. The transformation rules syntax definition is described

below.

rule rule_name {
from in_var : in_type [(condition)]?
[using { var; : var_type;= init_exp;;

var, : var_type,= init_exp,; } 1°?
to out_var; : out_type;
(bindingy),

out_var, : out_type,
(bindingy,)
[do { statements } 17 }

Each rule is identified by a rule name (rule_name) which must be unique
within an ATL transformation model. An ATL rule is composed of two mandatory
parts (the £rom and the to) and two optional parts (the using and the do).

The from part is used to indicate the source model. It comprises a source
variable declaration (in_var) and its type (in_type). The in_type is declared in a
form of metamodel name!metamodel_element. This is the way to identify with

which elements the rule is involved. For example

from ¢ : GeometricElement!Circle

where c is a source variable used in the rule, the GeometricElement is a
source metamodel’s name and the circle is a source model element. The variable
may contain an optional boolean expression (condition) to state a subset of the
source model elements.

The using part defines a number of local variables which are used in the to
and the do parts. An example of a using part is shown in Figure 2-31 (ATLAS

Group, 2008); it defines a pi and an area values as variables to use in the rule.

Chapter 2 Technical Background 57

from ¢ : GeometricElement!Circle

using { pi : Real = 3.14;

area : Real = pi * c.radius.square(); }
to ...

Figure 2-31 An example of the using section

The to part contains a number of target pattern elements. It is a mandatory
section and has to contain at least one target pattern element. Each target pattern
element is declared by a name (out_var) and its type (out_type) in which each
element is separated by a comma.

A target element is identified by a set of bindings (binding) which is used to
define the way a source element is generated to be a target element. Each binding
has to be identifid by the syntax definition below. The name of a target element
(target_element_name) must be matched with the element’s name defined in the

target model.

target_element_name <- expression

The do part is optional and is used to specify some imperative codes that will
be executed after the initialization of the target elements generated by the rules.

An example of defining the to and the do parts are illustrated by a rule
Machine, Figure 2-32. This rule aims to create an UML-B machine
(umlbMetamodel ! UMLBMachine) and a context (umlbMetamodel!UMLBContext)
from a source model element (TDMetamodel ! TDMachine) where variable t is used
to represent a source model element, while variables m and ctx represent target

model elements.

rule Machine {
from t : TDMetamodel!TDMachine
to m : umlbMetamodel!UMLBMachine
(name <- t.name,
classes <- t.class),

ctx : umlbMetamodel!UMLBContext
(name <- t.name + '_ctx')
do { m.contexts <- m.contexts.append(ctx);

S
Figure 2-32 An example of the do section

Chapter 2 Technical Background 58

For creating the UML-B machine, a machine’s name and a machine’s class
are created by source elements t.name and t.class respectively. For creating the
UML-B context, the context’s name is created from a source element t.name
appended by the string _ctx. The do section expresses the way to add the variable
ctx into the UML-B machine by using the keyword append, where contexts is an
association in the target model umlbMetamodel!UMLBMachine used to link

contexts to a machine.

: H TDTiming
H TDConstraints timing 01 | o jowerlimit
= upperlimit
effectsource
1.1

H TONodeType

H TDPredicate

o predicate 2.* 5
o.* -
predicates And Qr
H simple H AND_node H oR_node

Figure 2-33 Example of TDMetamodel (parts of)

Another example is shown in Figure 2-34. This figure shows the rule
Constraint which aims to generate a guard for a UML-B transition. This rule uses
a source model element TDMetamodel ! TDConstraints, as shown in Figure 2-33,
to generate a target model element umlbMetamodel ! UMLBPredicate. The rule calls
a helper getNodePredicate (t.timing), as detailed in Figure 2-35, to generate a

predicate string and then assign to a target model element predicate.

rule Constraint{
from t : TDMetamodel!TDConstraints
to u : umlbMetamodel!UMLBPredicate (
name <- 'TimingCnstrntGuard',
predicate <- t.effectsource.getNodePredicate (t.timing))

}
Figure 2-34 Example of a rule: Constraint

Chapter 2 Technical Background 59

2.9.3 Helpers

A helper is a technique to define ATL translation rules with specific
behaviours. An ATL helper makes it possible to define ATL code that can be called
from different points of an ATL transformation. Helpers can be defined only on
source models, since target models are not allowed to navigate. An ATL helper is
defined by the following:

e an optional context type : defines kind of element the helper applies to

¢ ahelper name : each helper must have a name defined as a string

e an optional set of parameters; a parameter is identified by
parameter_name : parameter_type

e areturn value type : each helper must have a return value

e an ATL expression that represents the ATL helper’s code

There are two kinds of helpers: Operation helpers and Attribute helpers as

follows.

Operation helpers: an operation helper can have input parameters, and a result of
the Operation helpers is created each time the helper is called. Operation helper

syntax is defined below.

helper [context context_type]? def : helper name (parameter_name
parameter_type) : return_type = expression;

An example of an Operation helper is illustrated in Figure 2-35. This helper is
named getNodePredicate and aims to generate a guard — a return value — which
is a string for an UML-B transition. The helper uses an input parameter t whose

type is defined by a source model element, TDMetamodel ! TDTiming, as shown in

Figure 2-33.

Chapter 2 Technical Background 60

helper context TDMetamodel !TDNodeType

def : getNodePredicate (t:TDMetamodel!TDTiming) : String =
if self.oclIsKindOf (TDMetamodel!Simple)
then self.SimpleGuard(t) —-> concat (self.SimpleCond())
end if self.oclIsKindOf (TDMetamodel !AND_node)
then ... ;

Figure 2-35 Example of an Operation helper: getNodePredicate

This helper checks whether the node type is simple, AND_node, Or OR_node.
In order to do that, a condition if self.oclIsKindOf (t:TDMetamodel!TDNode
Type)is used. The self is a keyword and used to define a context of an instance of
a specific type. Thus, in this helper, se1f is used to indicate an instance of
TDNodeType. The keyword oclIskindof () is an operation that returns a Boolean
value stating whether self is either an instance of what defined inside the
parentheses “(...)” or of one of its subtypes (ATL, 2008). This helper returns a
string which is generated from concatenation (concat) of strings created from the
other two helpers: simpleGuard(t) and SimpleCond(). The helper
SimpleGuard (t) is also an Operation helper and uses t as an input parameter,
while the helper simplecond()is an Attribute helper, the detail of which is
explained in the following paragraph. Note that the TbMetamodel and the helper
getNodePredicate described in this section are different from that explained in

Chapter 6.

Attribute helpers: an attribute helper is used to associate read-only named values to
source model elements. An Attribute helper cannot have input parameters and its
return value is calculated only once when the value is required for the first time.

Attribute helper syntax is defined below.

helper [context context_type]? def : helper_name
return_type = expression;

An example of an Artribute helper is illustrated in Figure 2-36. This helper is
named simpleCond () and is called from the helper getNodePredicate as shown

in Figure 2-35.

Chapter 2 Technical Background 61

helper context TDMetamodel !TDNodeType

def : SimpleCond() : String =
self.predicates —-> iterate(e; ret : String = '' |
if not e.oclIsUndefined() then
ret —-> concat(' & ' + e.predicate)
else

ret -> concat('"'")
endif

Figure 2-36 Example of an Attribute helper: SimpleCond ()

The helper aims to generate a string value as a part of a condition for an
UML-B transition, if there is any. From Figure 2-33, a string is created by an
iterative process to concatenate predicate values (predicate) defined in a
TDPredicate. In order to do that, we have to do iteration with an association
predicates attached to the simple node type, which is represent by
self.predicates in ATL. The keyword self represents a source element simple
since this helper is called by the helper getNodePredicate whose Simple is
inherited. The recursion is defined by the keyword iterate. The iterative syntax is

defined below.

source —-> iterate(iterator; variable_declaration = init_exp | body)

This iterative expression comprises four parts: iterator, an accumulator
variable declaration (variable_declaration), a variable initial value, and a body.
The iterator is used to refer an instance of a source collection. In the case of
SimpleCond () helper, e is defined as an iterator representing a predicate value.
The accumulator variable declaration is used to define an accumulator variable and
its initial values (init_exp) are used inside the body, which is ret in this case.
The body expresses the use of the iterator and variable. The iterate ()
operation returns a value in the accumulator variable once the last iteration has
been performed.

From Figure 2-36, the body of the simplecond() helper checks whether the
predicate value is empty by the keyword oclIsUndefined(). The

oclIsUndefined () returns a boolean value true if predicate is undefined. If there

Chapter 2 Technical Background 62

are predicate values, each of them is concatenated with each other with a symbol

“s”, if not the helper returns an empty string.

2.10 Summary

This chapter provides background knowledge used in this thesis. It starts
from broad RE techniques and then focuses on using FMs. Event-B modelling is
introduced; the detail of performing refinement and POs is given. The way RODIN
toolkits are used to create and verify a model is presented. We explain features of
an UML-B tool that is a graphical front-end for Event-B and used to create a model
from TD. KAOS framework descriptions are discussed as goal-oriented modelling.
The knowledge of metamodelling and Eclipse EMF is explained since they are
used to generate ATL translation rules for mapping a TD model to a UML-B

model.

Chapter 3 Other Relevant
Work

This chapter aims at giving background of the knowledge other related work
used in this research. These works are relevant to our research since one of them is
used as a part of our translation patterns. Some provide tools that may useful for
future work. Some show how their work is trying to expand KAOS, TD and Event-
B in other ways. This Chapter begins with describing SysML background; section
3.2 explains an Action/Reaction pattern; section 3.3 gives an explanation of
relevant research in KAOS and B. The next section describes research in KAOS
and UML, while section 3.5 explains work on CSP and B; section 3.6 gives an
explanation of other related research concerning TD, while section 3.7 describes

LTL properties, which are useful for RE.

3.1 SysML

UML has been used broadly but it does not have a digram to identify some
special needs such as modelling requirements and defining functions. Thus,
Systems Modelling Language (SysML, 2008), which is as an extension of UML
2.0, was developed. SysML is a “general-purpose graphical modelling language for
specifying, analyzing, designing, and verifying complex systems that may include
hardware, software, information, personnel, procedures, and facilities” (OMG,

2008;SysML,2008).

Chapter 3 Other Relevant Work 64

SysML 1.1 (SysML, 2008) reuses a subset of UML 2.0 and defines additional
extensions by using UML’s profile mechanism (Hause, et al., 2005; Vanderperren
and Dehaene, 2005). Figure 3-1 illustrates the reuse and extension of UML 2.0 by
SysML.

Statemachine

| Use Case - Reused

/ ’
! /
paa Sequence
A

Parametric
- New

Requirements

Activities

Block Internal
Definition Block

: Extension

Figure 3-1 UML 2.0 and SysML 1.0

UML 2.0 Statemachine, Use Case, and Sequence diagrams are reused while
some existing UML diagrams are extended as follows:

- Block Definition diagram: the Block Definition diagram is based on the
UML Class diagram. It uses blocks, which are modular units of system
description, to describe the structure of a system or element of interest in
broad view.

- Internal Block diagram: the Internal Block diagram is based on the UML
Composite Structure diagram. It is used to show how the defined blocks are
used in detail.

- Activity diagram: the Activity diagram is based on the UML activity
diagram. It is used to show the control flow, flow of inputs and outputs

between actions.

SysML introduces two new diagrams, the Parametrics diagram and the
Requirements diagram. The Parametrics diagram is used to show relations between
parameters. The Requirements diagram provides a modelling construction for text-

based requirements, and the relationship between requirements and other model

Chapter 3 Other Relevant Work 65

elements that satisfy or verify them in a graphical manner. An example of a

Requirement diagram for a simple lift system is shown in Figure 3-2.

Requirements Diagram Top Level <<requirement>>

Text = “Before the lift
starts moving

>departing up from the
current floor, the lift's
door must be closed”

LiftSystem
<<functionalRequirement>> <<functionalRequirement>> <<performanceRequirement>>
Door Lift Performance
<<requirement>> <<requirement>> <<requirement>> <<requirement>>| |<<requirement>> <<requirement>>
DoorClosed DoorOpen LiftMoving LiftStop Braking Convenience
T T T
| AN A
| N N h AN
| . N
| <<requirement>>| | <<requirement>> «VQ"\W» <<satisfy>>
! LiftMovingUp LiftMovingDown N AN
[TS <<testcase>> <<design>>
: <<der|\//eReqt>> <<dem(e5eqt>> Floor= 3 Brake
| <<requirement>> <<requirement>>
I RequestLift LiftStartsMovingUp
|
| — g a»
| Id="1.1 Id=41.2"
|
I
L

Figure 3-2 An example of Requirements diagram for a lift system

A Requirements diagram uses <<requirement>> stereotype to identify the
requirements in which, for example, there can be subcategories of
<<functionalRequirement>> and <<PerformanceRequirement>>. A
<<functionalRequirement>> is used for specifying an operation that a system must
perform while a <<PerformanceRequirement>> is used for identifying satisfaction
constraints of the system. Relationships between requirements are shown by using
stereotypes such as <<deriveReqt>>, <<satisfy>>, <<verify>> and <<copy>>. The
<<deriveReqt>> describes the derivation of multiple requirements that support a
source requirement while <<satisfy>> describes the satisfaction of requirements by
designing and implementation (Moore, 2006; SysML Partners, 2006). The
<<verify>> is used to specify the relationship between a requirement and a test case.
The <<copy>> is for reusing requirements; that is, the slave requirements property is
a read-only copy of the master requirements property. For example in Figure 3-2, a
part of a slave requirement LiftStartsMovingUp’s text property is copy from text

property of a master DoorClosed requirement.

Chapter 3 Other Relevant Work 66

The Requirements diagram has the idea of breaking a compound requirement
into multiple subrequirements as shown in the figure above. That is, a top-level
Requirement diagram illustrates whole requirements in general while the bottom-
level shows detailed requirements and relationships between them. The SysML

decomposition concept of requirement is similar to KAOS goal refinement.

3.2 Action/Reaction Pattern and B

An Action/Reaction pattern was introduced by Abrial to describe causes and
effects in reactive systems (Abrial, 2005b; Abrial, 2008b; Abrial and Hoang, 2008).
The actions are the causes which make the effects take place. As shown in Figure
3-3, the continuous line, dashed line and curved arrow represent action, reaction
and cause/effect between action and reaction respectively. The Action/Reaction
pattern is used to model a B machine while refinements are gradually created
corresponding to additional information in the Action/Reaction models (Abrial and

Hoang, 2008).

Action

4/ Reaction
cause ‘/

Figure 3-3 Examples of action and reaction pattern

Figure 3-4 illustrates an example of Action/Reaction patterns for the lift
system corresponding to <<requirement>> DoorClosed and <<requirement>>
liftStartsMovingUp in Figure 3-2. Note that this is only a straightforward example;

extra information is added to this Event-B for completeness later.

Chapter 3 Other Relevant Work 67

doorClosed =
WHEN doorState(currentFl) = Open
THEN doorState(currentFl) := Closed
END

doorState(currentFl) = Closed

doorState(currentFl) = Open liftState = MovingDepartingUp

liftState = StopAtFloor litMovingDepartingUp =
————————————————————————— WHEN liftState = StopAtFloor &
doorState(currentFl) = Closed
THEN liftState := MovingDepartingUp
END

Figure 3-4 Action/Reaction patterns and corresponding B machines

The Action/Reaction pattern describes changing of states, which is similar to
changing states in TD. Translating TD to Event-B in this work uses this pattern as a

part of translation patterns and has some extra structures and information.

3.3 KAOS and B

One approach for diminishing the gap between KAOS requirement and
formal method specification is introduced by (Ponsard and Dieul, 2006). The idea
is to generate a B machine from a KAOS model and to create the connection
between FAUST toolbox (FAUST, 2008) and RODIN platform. The FAUST
toolset aims at achieving formal assurance, verification and validation (V & V), for
the KAOS model at an early stage (Ponsard, et al., 2007). The FAUST toolbox
composes tools such as Refinement checker, Compiler and Animator. The
Refinement checker can automatically verify and validate goals, and operations
on a given domain. The compiler is used to generate a finite state machine from a
KAQOS Operation model and represents it in a graphical domain-based visualisation
using Animator.

Matoussi has been investigating a technique how to create Event-B models
incrementally from KAOS goal models (Matoussi, et al., 2008). Currently, the
technique can generate Event-B models from two KAOS refinement patterns:

milestone-driving tactic and case-driven refinement tactic, in which the latter needs

Chapter 3 Other Relevant Work 68

to have additional constraints to complete an Event-B model. Those two KAOS

patterns are the same as we found in mapping TD to KAOS.

3.4 KAOS and UML

Heaven and Finkelstein introduced a technique to create a profile to allow the
KAOS model to be represented in UML (Heaven and Finkelstein, 2004). The UML
is extended by introducing new stereotypes and tags which allow one to model the
KAOS in UML. Since UML editors do not support temporal logic notation, the
formal definitions in KAOS have to be rewritten in ASCII. The following is an
example of how to represent a KAOS goal model by the UML stereotype.

(Example below has been taken from (Heaven and Finkelstein, 2004))

Goal Achieve[Ambulancelntervention]
InformalDef For every urgent call reporting and incident, there should be an

ambulance at the scene of the incident within 14 mins
FormalDef V c: UrgentCall, inc : Incident (@ Reporting (c, inc)) =

O <14min 3amb: Ambulance (Intervention (amb,inc)))

UML which represents the same goal is:

<<goal>>
Ambulancelntervention

{form = Achieve

informalDef = For every urgent call reporting and incident, there should be an
ambulance at the scene of the incident within 14 mins

formalDef = forall ¢: UrgentCall, inc : Incident (just Reporting(c,inc) -->

eventually [<= 14 min] exists amb: Ambulance (Intervention(amb, inc)))}

Though this technique explains how to combine KAOS with UML, there is
no clear use for this contribution of KAOS in UML. The users have to learn and
understand how to use KAOS-UML apart from only modelling. The benefit is
unclear. This approach merely describes how to model the KAOS by using UML

notation.

Chapter 3 Other Relevant Work 69

3.5 CSPandB

A B machine is good for modelling a reactive system, since the operations
thereby enabled can run in parallel. Thus, parallel activities are easily modelled in
B. However, B machines “can be less convenient at modelling sequential activity”
(Butler, et al., 2005a). It needs to have a program counter to order the actions’
execution. In contrast, Communication Sequential Process (CSP) — a process
algebra defined by (Hoare, 1985) — provides operators such as sequential
composition, choice and parallel composition of processes, as well as synchronous
communication between parallel processes (Butler, er al., 2005b). CSP was
designed for describing systems of interacting components, where each component
is called a process. The process communicates with others and its environment
using an alphabet of events. “An event describes a particular kind of atomic
indivisible action that can be performed or suffered by the process” (Schneider,
2000).

Butler introduces csp2B, which allows specifications to be written in a
combination of CSP and B (Butler, 2000). Then, the CSP can be compiled to a pure
B representation which can be analyzed by a standard B tool such as ProB. (Butler,
et al., 2005a) proposes a technique to represent an extension of ProB which
supports checking of specifications written in a combination of CSP and B. The
technique is to define events in the CSP specification to have the same name as B
operations. The combination of CSP and B enables ProB to do automated
consistency checking and refinement checking of specifications written in a
combination of CSP and B.

A case below provides an example of how to identify a lift is moving up
specification in CSP. The lift is moving up specification is composed of 4 states:
StopAtFloor, MovingDepartingUp, MovingUp and MovingArrivingUp. After the
lift is in a state of MovingDepartingUp, the corresponding floorsensor at that
floor is set to off and then the 1ift changes to the state MovingUp. Whenever the
1ift is in a state of MovingArrivingUp, the floorsensor for the upper floor is set
to on and then the lift can be in a state of MovingDepartingUp Or StopAtFloor.
The symbols—, ?, O and ; are used for prefix operator, input, deterministic

choice and sequential composition respectively.

Chapter 3 Other Relevant Work 70

LIFT(f) = (StopAtFloor — MVDU(f)) [(StopAtFloor —> MVDD (f))
MVDU (f£) = MovingDepartingUp — FloorsensorOff?(f) — MovingUp
—> MVAU (f)
MVAU (f) = (MovingArrivingUp — FloorsensorOn? (f+1) —> MVDU(f+1))
U
(MovingArrivingUp — FloorsensorOn? (f+1) —> StopAtFloor)
MVDD (f) = ..

3.6 Other concepts

PLS/Sugar 2.0 (IBM, 2008) is a formal specification language used to
describe hardware’s behaviour over time. PSL/Sugar 2.0 uses Sugar Extended
Regular Expressions (SERE) to describe a set of state sequences (Fisman and
Eisner, 2009) in which the sequence can be represented by a TD. An example of
SERE is {req;busy[*4];gnt} which can be illustrated in TD as shown in Figure

3-5 (taken from (Fisman and Eisner, 2009)).
req —|
busy
gnt —l_l_

Figure 3-5 Timing diagram representing { req; busy [*4]; gnt}

Figure 3-5 shows that, first, the req is set true for 1 unit of time. Then,
whenever req is false, the busy is held true for 4 units of time. Finally, gnt is set
true after the busy is set false. PLS/Sugar 2.0 provides another way that is easy for
the user to understand and to read a sequence of system behaviour. However,
PLS/Sugar 2.0 does not identify notations that are used for sending message
between objects as in UML TD. The PLS/Sugar 2.0 diagram is used to describe the
sequence of events and does not describe causality.

Fisler proposes an event-sequence language for capturing TD’s transitions

into an event of a sequence and a temporal constraint (Fisler, 2006). An example of

Chapter 3 Other Relevant Work 71

TD is illustrated in figure 3-6. A transition in TD is indicated by a state value, such
as a, followed by an arrow direction such as at and a| to denote falling and rising

transitions of a respectively. An event e is a conjunction of transitions.

(3.9]

(1.2]

Figure 3-6 An example of a Timing diagram

In the figure above, two outlined areas indicate regions of the TD that occur
in sequence. A cluster ¢ is used to specify shade regions in the TD. Timing
constraints T are specified by a set of tuples <e, 1, u, Boolean value>, where e
are events covered, 1 and u are lower and upper bound timing constraints, and the
Boolean value 1s whether the timer is enabled. Below, we show the event-

sequence language which corresponds with the TD above:

c = {{at, br, cr, ar}l; by}
T = {<at, ct, 2, 5, true>
<ct, al, 1, 2, true>

<ay, by, 3, 9, true>}

This technique is easily understood and offers notations that are readable for users.

Barland describes the meaning of temporal logic notations in a timeline
(Barland, er al., 2006). An example of a timeline which represents (g — O™p)

is illustrated in Figure 3-7.

Figure 3-7 Timeline
after (Barland, et al., 2006)

Chapter 3 Other Relevant Work 72

Even though transferring from LTL notations to TD is easy to understand, the
researchers do not propose a technique to express timing constraints. Moreover,
translating from a LTL formula to TD is implicit. That is because one LTL formula
can be translated to one or more TD. As shown in Figure 3-8, the notation p —

Qg can be illustrated by more than one TD.

q /SN

Figure 3-8 Timing diagram for p — ¢ q notation

3.7 LTL properties and Requirements Engineering

This topic focuses on some LTL properties, i.e. traceability, safety, liveness
(progress) and fairness. These properties are importance and used for maintaining
the correctness of doing RE.

Traceability: in the RE context, traceability is understanding how high-level
requirements — objective, goals, aims, expectations, and needs — are transformed
into low-level requirements (Hull, et al., 2004). SysML Requirements diagram
(SysML Partners, 2006), which was described in section 3.1, provides requirements
traceability.

Safety: a safety property one that guarantees something bad never happens.
A temporal logic formula for the safety property can be written as C~unsafe where
unsafe is a propositional formula. A system has the safety property whenever all
states of the system can be reached. The safety property can be declared as the
Avoid goal pattern in KAOS model and is the main objective of using FM in RE
processes. In Event-B, the safety properties are identified as invariants. For
example, “the lift door must be closed all the time while the lift is moving” is a

safety property and is defined as an Event-B invariant.

Chapter 3 Other Relevant Work 73

Liveness progress: a liveness progress property asserts that something good
eventually happens. A temporal logic formula for the liveness property can be
written as OG for some propositional formula G. In the same way, we can say that
it guarantees an action will eventually be executed (Friedental and Steiner, 2004).
The progress property is the opposite of starvation (deadlock) and can be declared
as the Achieve goal pattern in KAOS model.

Fairness: a fairness property indicates that, from time to time, a system must
pass through a state which satisfies some properties. A temporal logic formula for
the fairness property can be written as O ¢ G which means G holds definitely often.
In this thesis, we do not model the fairness properties. However in the lift case
study, one can identify a fairness property as a performance requirement. For

example, a lift must be shut down for its annual check.

An example of a tool which can check the states’ correctness of a model is
ProB (Leuschel and Butler, 2005). ProB is a graphical animator and model checker
for B method. It provides a feature to verify the safety and progress property of the
system states. The model checker in ProB does this by automatically detecting
invariant violations and deadlocks in traceable state spaces. Apart from ProB, there
is a model checker which can verify program requirements such as deadlock
freedom and livelock freedom which is called “Timeline Editor” (Smith, et al.,
2001). The Timeline Editor is used to verify requirements which are implemented
in the form of events along a timeline. The timeline looks similar to UML TD.
However, it is represented in new notations and extra definitions such as events and
lines. To obtain the requirement to be checked, “the timeline specification is
mechanically converted into an equivalent test automaton for using in a logic
model checking process such as Spin” (Hozmann, 1997). The tool has an interface
that is easy for users and can fully verify requirement properties such as deadlock
freedom and liveness issues. However, the notations used in the timing-like
diagram for the identification of events along a timeline needs training, because

they are different from UML 2.0 TD.

Chapter 3 Other Relevant Work 74

3.8 Summary

The literature review in this chapter describes work related to this thesis.
SysML introduces some new diagrams to those defined in UML; one of them is a
Requirement diagram. The Requirement diagram represents system requirements in
a graphical way. The diagram has a concept of requirements decomposition, which
is similar to KAOS goal refinement. This is beneficial to software developers for
presenting sub-requirements and tracing them back to corresponding
documentation, test cases and design modules. Action/Reaction patterns provide a
method of creating an Event-B model from causal dependency relationships
between objects. This pattern is used as part of our techniques to generate Event-B
and KAOS models from a TD. Some relevant work that concerns the combination
of KAOS, B, CSP and UML, is described in this chapter. Some work has been
trying to generate formal languages from TD, such as PLS/Sugar and the event-
sequence language. LTL properties such as traceability, safety, liveness and
fairness, that are important for requirements engineering, are explained. Those

properties should be concerned whenever modelling explicit system requirements.

Chapter 4 Timing Diagrams
and Lift Specification

Recently, TD has been added to the UML 2.0 specification, but it has been
used in electronic engineering for a long time (Fowler and Scott, 2004). The TD is
a particular type of interaction diagram and is used for exploration and monitoring
of the behaviour of objects over any given period of time. However, using TD is
suitable for some kinds of specification behaviours. We clarify what kinds of
system specification are appropriately and inappropriately described by the TD.

- Appropriate requirements are those that can be declared as changing states
of hardware with time, or there are causal dependencies between the system’s
objects, or both; for example, embedded software components for a microwave
controller, vendor machine controllers, and ATM transaction processing.

- Inappropriate requirements are those concerns with human actions such as
modelling a person pressing a button, business requirements such as budget

controlling, and improving response time to customer inquiries.

The rest of this chapter starts by presenting lift specifications that are used in
this work. Section 4.2 explains UML 2.0 TD (OMG, 2008). Section 4.3 provides
the amended TD notations that are obtained by selecting UML 2.0 TD’s notations
and adding some new notations to make it suitable for translation; section 4.4
illustrates TD for the lift specifications. Section 4.5 provides a brief glossary for

TD; section 4.6 gives an example of a preliminary TD editor.

Chapter 4 Timing Diagrams and Lift Specification 72

4.1 Lift Specification

The original lift position display specification is taken from (Jackson, 2001)
where it is described as the following:

“A somewhat primitive lift in a small hotel has been installed and
successfully operated for many years. Now it is to be fitted with an
information panel in the lobby, to show waiting guests where the lift is
at any time, so that they will know how long they can expect to wait
until it arrives.

The panel has two lamps for each floor. There is a floor lamp (square
lamp) to show that the lift is at the floor, and a round lamp to show that
there is a request outstanding for the lift to visit the floor. In addition,
there are two arrow-shaped lamps to indicate the direction of travel.
There is a lobby, and there are eight other floors, so the panel looks like

this.”

00000000 O
B = =) =

Down < > Up

Figure 4-1 Lift Position Display

“The job is to drive the panel display from a very minimal interface
with the existing request buttons and floor sensors of the lift. A floor
sensor is on when the lift is within 6 inches of the rest position of the
floor. Pressing a button is detected as a pulse. There is one button at
each floor to summon the lift, and a set of buttons inside the lift car —

one button to direct the lift to each floor.”

Chapter 4 Timing Diagrams and Lift Specification 73

The lift specification used in this thesis

The specification above shows causal dependencies between system objects
that can be specified in TD. To make it more suitable for modelling with TD,
Event-B and KAOS, the specifications are expanded to include timing constraints
and hardware, i.e. Door. In addition, it is assumed that there is one floor sensor for
each floor.

The amended lift system specifications are described in two parts: the lift
moves from the current floor to service a request at floor f, and the lift general

servicing.

1. The lift moves from the current floor to service a request at floor f
1.1 The request lamp for floor f must be lit.
1.2 Before the lift starts moving departing up/down from the current
floor, the lift’s door must be closed.
1.3 If the lift door is open at the current floor and there is a request to
service some floor f, then the lift door at the current floor must be closed.
Next, within between 1-5 seconds after the door closed, the lift starts
moving departing up or moving departing down.
1.4 The current floor sensor must be off within 2-5 seconds after lift
starts moving departing up or moving departing down.
1.5 The floor lamp for floor f will be unlit within 2-4 seconds after the
current floor sensor is set off.
1.6 Whenever the floor sensor status is off, it means the lift is moving
(possibly moving up or moving down, cannot be both).
1.7 The floor sensor for floor f must be on within between 2-5 seconds
when the lift is moving nearly arriving up/down at the rest position of the
floor f.
1.8 The lift will be stopped at floor f within between 1-5 seconds after
floor sensor at floor f is set on.
1.9 The floor lamp for floor f will be lit within 2-4 seconds after the

current floor sensor is set on.

Chapter 4 Timing Diagrams and Lift Specification 74

1.10 Whenever the lift stops at the requested floor f, the lift door will be
opened within between 1-5 seconds.
1.11 Request lamp for floor f will be unlit within 2-4 seconds after the lift

stops at floor f.

2. Lift general servicing
2.1 While the lift starts moving departing up, the up lamp must be
activated and the down lamp must be deactivated.
2.2 While the lift starts moving departing down, the up lamp must be
deactivated and the down lamp must be activated.
2.3 If the lift is stationary, both up and down lamps must be deactivated.

2.4 If there is no request, the lift will stop at the last floor serviced.

The simple example below indicates the kind of requirements we believe can
be specified in TD. This example shows how a floorlamp and a floorsensor objects

—requirements 1.5 and 1.9 — are associated in TD.

Lit — _
floorlam
P Unlit [2, 4] 7
On ——— —
floorsensor [2, 4]
Off

Figure 4-2 A simple TD shows relationship between floorlamp and floorsensor

4.2 UML 2.0 Timing Diagram

There are two forms of TD: a compact notation and a robust/full notation.

The details of these notations are described below.

The compact TD uses a Lifeline to represent individual object in the
diagram. An object is identified on the left-hand side while its states are listed

along the right-hand side. A state is denoted by text and a state change represented

Chapter 4 Timing Diagrams and Lift Specification 75

by a crossing (OMG, 2007; Visual Paradigm, 2007). A DurationConstraint is used
to specify the period of time for each state. The compact TD is suitable for
exploring the general behaviour of one or more objects during a period of time,
while the robust TD is used whenever one would like to identify more detailed

information. An example of the compact TD is illustrated in Figure 4-3.

Lifeline State or condition DurationConstraint

sd UserAcc_User) %
\\ Fm..a*d};)‘

:User Idle WaltCard>(W a|tAccess Idle

Figure 4-3 Compact Timing diagram (OMG, 2007)

The robust TD shows the states of each object on the left-hand side of the
diagram (Y-axis) while timing constraints are on the X-axis. A timeline is used to

display the change in state or value of one or more elements over time

(Sparx Systems, 2006).

Lifelines State or condition Durafum C nno*f aints

\

sd UseTAccepted

d

WaitAccess
A 7

3 WaitCard A Time Constraint

B {t t+3}
ardOut
0.13

Idle .13
Code OK <}———— \Message

NoCard

Duration Observation

— HasCard

tACSystem

1 H‘“‘Fﬁme Observation

Figure 4-4 Robust Timing diagram (Ambler, 2004)

Chapter 4 Timing Diagrams and Lift Specification 76

Event/Stimuli are optionally labelled at transition points to indicate the
reason for the change (Ambler, 2004). An example of a robust TD is illustrated in
Figure 4-4.

According to Figure 4-4, Code and OK are messages sent between objects.
Cardout is an event which makes an object user change its state from Waitcard
to WaitAccess. Time Constraint indicates when an event must occur, while
Duration Constraints indicate how long a state or value must be in effect; where d
and t represent a unit of duration and time respectively. A Time Observation

indicates the point of time a Lifeline’s state is observed.

4.3 UML Timing Diagram Amended

Though UML 2.0 TD uses simple notations to explain the changing of
object’s states through time, it is composed of many notations specifying properties
that are not dealt with in this work. Thus, a subset of notations is selected and some
notations are justified, which are easier for generating expressions to interface with
Event-B and KAOS. The TD notations used in this research are based on the
(OMG, 2007) Robust TD notations. The notations for graphic nodes and paths to

be included in the TD are described in

Table 4-1.
Node Type and Notation Reference
Object and State A state notation on the horizontal axis indicates the
stated state of an object.
Object state2 4,—,—‘
statet
Timeline A Timeline is used to illustrate an object changing

states, where an object can have a Timeline. A
tates Timeline is composed of a chain of segments in
Object state2 4,—,—‘ which segments represents an object’s state and the
e position it appears on the Timeline. A segment is

connected with another by a Transition. Time is

Chapter 4 Timing Diagrams and Lift Specification 77

Node Type and Notation

Reference

indicated on the horizontal axis.

CauseEffectArrow

An arrowed line indicates a cause and an effect
between objects’ segments. The beginning of line
represents a cause segment while the end of the line
(with arrow) represents an effect segment. A simple
form of a CauseEffectArrow is to link a cause

segment to an effect segment.

AND

OR

“AND” and “OR” notations are used for specifying
combinations of cause segments within a
CauseEffectArrow. Currently, they are not used to
contribute one cause to many effect segments.
Using “AND” notation means the causes that make
an object changing its state are derived from a
combination of those cause segments, while “OR”
indicates or-inclusive relationship. Each
“AND/OR” notation comprises the minimum of
two cause segments (as represented by bold-lines,
while dashed-lines represent other specified
segments if there are any). Nested “AND” and
“OR” relationships for a CauseEffectArrow are

allowed.

Condition

text

Conditions are optional additional constraints that
cause a state change. A condition is represented by

plain text presented above the CauseEffectArrow.

Duration constraint

[t], 2]

Duration indicates time constraints and is used to
describe how long a state or value must be in
effect. Time unit in the duration constraint can be
second or minute. The duration constraints can be
identified by using symbols, i.e. [tl, t2] indicates

the time constraint starts from t1 and ends at t2.

Chapter 4 Timing Diagrams and Lift Specification 78

Node Type and Notation Reference

SimultaneityArrow Simultaneity is represented by an arc dashed-line
and is used to synchronize objects that change their
—_ states simultaneously. When the application is
W eventually developed, one does not expect things to
be exactly simultaneous. It means one expects them
to happen very close to each other and no particular
constraint; that is two things are very close in time.

It is used in terms of “the level of abstraction.”

Table 4-1 Timing diagram notations

To be practical, we define a CauseEffectaArrow to be drawn from the start
point of a cause segment to the start point of an effect segment as shown in Figure
4-5 (A). However, if an object has no state change, it can be drawn as shown in

Figure 4-5 (B).

(A) (B)

Figure 4-5 Robust Timing

The amended TD is generally designed to fit with other systems that concern
timing constraints, changing an object’s state through time and within an object
itself. It provides sufficient notation to identify discrete timing constraints in the
system specification. Here, we clarify some points of similarity and difference

between amended TD and UML 2.0 TD.

Chapter 4 Timing Diagrams and Lift Specification 79

Similarity:

1. Timelines

2. States

3. Duration constraints

4. Conditions can be seen as messages in standard UML TD notations

Difference:

e An arrowed line is used to indicate cause and effect between objects’
states rather than sending messages between the objects as in standard
UML TD.

® SimultaneityArrows are a new notation

e AND and OR nodes are new notations

So far, we have not found any cases in the lift system that need to be
modelled by Time Observation (defined in standard UML TD). Thus, we do not
deal with this symbol at this time.

4.4 Timing Diagram for the Lift specifications

To provide a simple example, we select requirements 1.4 and 2.1 that are
concerned with four objects: lift, floor sensor, up lamp and down lamp. TD which
is created from these objects represents specification number 1.4 (lines a and b) and
2.1 (lines ¢ and d) is shown in Figure 4-6. Note that the symbols a and b are not TD
notations but used only for explanation in this section.

Figure 4-6 shows that the lift comprises seven states: MovingArrivingUp,
MovingUp, MovingDepartingUp, StopAtFloor, MovingDepartingDown,
MovingDown and MovingArrivingDown. A floor sensor has two states: On and Off.
Uplamp has two states: deActivated and acTivated, while downlamp has two states:
Deactivated and Activated. We have to use different names for Uplamp and

Downlamp states since Event-B and UML-B models do not allow duplicate names.

Chapter 4 Timing Diagrams and Lift Specification 80

floorsensor € On
FLOORSENSOR —L ,7
(fFLOOR) off

MovingArrivingUp

MovingUp f = currentFI
.) dir =Up
MovingDepartingUp / 7

) StopAtFloor ~— 7/ |
lift : LIFT 7/

MovingDepartingDown ////

f'= currentFl &
dir = Down
[2.5]

MovingDown c/

MovingArrivingDown |

uplamp : deActivated

i \ N
UPLAMP acTivated \ >

downlamp : Deactivated
DOWNLAMP Activated J

Figure 4-6 Timing diagram from Floorsensor, Lift, Uplamp and Downlamp

In terms of RE, we can describe the relation between lift movement and the
floor sensors as: whenever a user presses a button to request a lift, the lift starts
moving departing up (a)/ departing down (b) from the current floor. Within
between 2-5 seconds after the lift starts moving departing up/down, the current
floor sensor will turn off, requirement 1.4. At the same point of time, if the lift
starts moving departing up say, the up lamp changes its status to activate (d) while
the down lamp changes its status to deactivate (¢), requirement 2.1.

In term of TD notations, we say that there are four Timelines which
represent the state changes in time for the corresponding objects: floorsensor, lift,
uplamp, and downlamp, belonging to classes FLOORSENSOR, LIFT, UPLAMP
and DOWNLAMP respectively. The lines a and b show the combination of the
CauseEffectArrow by using “OR” notation; it means the floorsensor is set to Off
according to whether the Ilift is in the state of MovingDepartingUp or
MovingDepartingDown. Predicates such as f = currentFl & dir = Up are additional
conditions on the causeEffectArrow where f represents a floor and is a dynamic
state parameter that can change in time. Here, f is also the object index for class

FLOORSENSOR. The currentFl represents the present floor for the lift, while dir

Chapter 4 Timing Diagrams and Lift Specification 81

represents direction of the lift. The curved dashed-lines (¢ and d) represent

SimultaneityArrow. They are used to synchronize the liftMovingDepartingUp

segment with the uplamp and downlamp objects to determine the occurrences

happen very close to each other with no particular constraint. The whole TD for the

lift specification is illustrated in Figure 4-7.

Lit
floorlamp ¢ [2.4]
FLOORLAMP = curr
= currentFl
(fFLOOR) Unlit
[2.4]
f= currentFl1
floorsensor € On
FLOORSENSOR
(fFFLOOR) Off
7
7
Lit /// // f'= currentF1
R]gﬁ(g{ljﬁ];tgl?{lil\g/lp // I/ f= currentFl & 12,51
, | dir = Down
3 . > currentF1 /
(f:FLOOR) rUnlit . - [2,5]
/ | f= currentFl
f < curtentF1 / !‘ dir=Up ; -
. i = currentr
MovingArrivipgUp ,/ ¢ Cm.l.m\l | [2.5]
. / 24 M
MovingUp /
I
I
MovingDepartingUp ,’ N
: // ~ o
\ / N
lift - LIFT StopAtFloor / \ ; AN
/ \ / N
MovingDepartingDowli N - \
1 N NN \
] ~ NN
MovingDown / ,’ ,/ TANCOOR ‘1
S % "
MovingArrivingDo/v’vr} - :‘:‘;n /]’ frregfl | \\\ /’
S/ .
/ ! ! (1,51 \ AF reqFl /
Open ,’ : ! \\ /
| | RTE B
door ¢ DOOR [|) /
f:FLOOR P L
(FFLOOR) Closed | | { S
| \ | e [/
| ‘\ \ e /I s
\, \ \\ -=7 - 2 g
deActivated He—— /7
uplamp : I \ e
UPLAMP \ R O
acTivated\ ___ | S~ z !
\\ 7 /
\ -7 - /
\ -7 //
N -
Deactivated ™ 3= ,/
/
downlamp : /
/
DOWNLAMP Activated -

Figure 4-7 Timing diagram for the lift specification

Chapter 4 Timing Diagrams and Lift Specification 82

4.5 A brie

FLOORSENSOR

f glossary for Timing Diagrams

Previous
states Previous

segment

Onl current Onl
floorsensor € segment

Off2
(fFLOOR) Off
MovingArrivingUp - currentFl &
i dir=U
Cause states MovingUp 112,5] P
; : TovingDepartingUp:
’ MovingDepartingUp ‘ Mmngt]p rtingUp2
/ a f= currentFl &
. StopAtFloor I/ dir = Down
lift : LIFT /] [2.5]
’MovingDepartingDown ‘ M</)4’i/VIgD< partingDown6 b
/
MovingDown / I’
/
MovingArrivingDown | { N
Cause
'I \ segments
uplamp : deActivated |
UPLAMP) \ \ N
acTivated N
. \
downlamp : Deactivated ~_
DOWNLAMP Activated

Figure 4-8 Timing diagram and named parts

For translation rules we describe in the later chapters, we repeatedly refer to

parts of TD

by using specific terms. We would like to describe those terms by

using Figure 4-8: the causeEffectarrow a and b.

Cause states: MovingDepartingUp and MovingDepartingDown are
causes that make a floor sensor change its state from On to Off. Thus,
we say MovingDepartingUp and MovingDepartingDown are cause
states of this CauseEffectArrow.

Cause segments: a segment represents an object’s state and the
positon it apperars on the Timeline. Thus, MovingDepartingUp2 and
MovingDepartingDown6 are segments that make a floor sensor
change its state from On to Off. Thus, we say MovingDepartingUp2
and MovingDepartingDown6 are cause segments of this

CauseEffectArrow.

Chapter 4 Timing Diagrams and Lift Specification 83

e Previous states: A previous state is a state before the current state of
interest. A state before floor sensor changes to be Off is On. Thus, we
say On is a previous state.

¢ Previous segments: A previous segment is a segment before the
current segment of interest. A segment before floor sensor changes to

be Off is On. Thus, we say Onl is a previous segment.

4.6 Preliminary Timing diagram editor

Working with a group design project from the School of Electronics and

2007), a

preliminary TD editor plug-in was created. The interactive editor was created based

Computer Science, University of Southampton (Cobden, et al.,
on our TD notations (at that time), and used the Eclipse EMF and GMF

frameworks. Figure 4-9 provides parts of a screenshot for the lift system from the

TD editor window.

ift {currentFl : FLOGR, dir : DIR) StopatFiocr
MovingDepartingDown
MovingDown

MavingArrivingDown

dedctivaterd
uplamp {1 LIFT)
arTivated

4

I
5 4 currentrl
I .‘"

—/
f'= et & dh=U
v |

|

5. Navigator 5% = O/ 4] uift_cop.umib-td-diag &3
= i i i i || —Palette —
- on | [[gelect
==
L 1 R, +, Zoom
= e floorsensor (f: FLOOR, |: LIFT) B e
E - I |
|- settings Off p Zal = |
1 T | T4 A 4 Timeline
project r A = gt
) Lift_GDF,umlb-td TN 1FF 4 State
:) Lift_6OP.umlb-td-disg MovingArrivingUp F = cLmepitFl & dir =Yp = 1 4 Segment
BT it A [?,5! L " - Transiion
i .]
L MinePumpGDP MovingUp R 4 1 1 | 4 Simultanetty
{21 MinePUMpGDP Event-6 (Gen - e 1 i | 4 CauseEffect
1= sampleTD ‘ o~ / [2J51 —_—
MovingDepartingLp o = {
,

k.,

E properties 53 ~_[2 th\emq & rasks)

=l
!{L!

4 Timeline Cause Effect

Figure 4-9 Timing diagram editor window

ey Propert | ¥alue [
Cause 4 Timeline Seqment Movingérrivinalpd
Appearance Effect < Timeline Segment On3
Guard °= F = curentFl
s Cause O
Label H
Lower Bound =¥
Upper Bound s

Chapter 4 Timing Diagrams and Lift Specification 84

In its default configuration, the TD editor window displays the Navigator tab on the
left side of the window. The Editor’s tab is located in the top middle part of the
window, and the palette is positioned on the top right part of the window. The three
remaining tabs (Problems, Properties and Tasks) are located at the bottom of the
window.

A TD can be created by selecting elements in the palette that are Timeline,
State, Segment, Transition, SimultaneityArrow and causeEffectArrow. A
Timeline is used to represent an object in which one Timeline can be identified
by many states. A Timeline comprises a number of segments that represent an
object’s state. A Transition is used to link individual segments in the same
Timeline. A CauseEffectArrow is used to connect different objects’ segments to
identify causal dependency between Timelines. Time constraints are identified by
Lower Bound and Upper Bound and are attributes of the causeEffectArrow. A
SimultaneityArrow, shown as a blue dashed-line in Figure 4-9, links a
CauseEffectArrow and a segment. That is, the beginning of the
SimultaneityArrow 1S the CauseEffectArrow and the end (with arrow) is the
segment. This is different from the current TD in which a SimultaneityArrow
links segments.

In Figure 4-9, a Time synchronisation line is represented by a vertical
dashed-line and is used to synchronize duration constraints between objects.
However, this notation is no longer used in the current TD notations. That is
because the lines are not used for the translation. Moreover, it makes the diagram
rather untidy, especially whenever there are many objects in it.

Although, the editor can generate most TD notations, it was created on an
earlier TD metamodel version. Thus, it is not used to generate the TD as shown in
this work. Moreover, the editor cannot specify the combination of “AND/OR”
relationships for causeEffectArrow, nor identify parameters for a model.
Parameters of each Timeline, for example [: LIFT as shown in Figure 4-10, are

simply created as textual descriptions.

Chapter 4 Timing Diagrams and Lift Specification 85

\

0y

1
\ |
desctivated 1
plarnp {1 ¢ LIFT) I e
4
acTivated |
T
|
|
|

4

= Properties 52 [3_ Problemsw p Tasksw

4 Timeline uplamp (] : LIFT)

Propett | alue

Core

Mame '= uplamp {1 : LIFT)
Appeatance

Figure 4-10 Timing diagram editor: Parameter

In this thesis, a TD 1is created from Microsoft Visio™ for the
representation/visualisation. For translating TD into UML-B, the TD description
was generated by EMF, whose detail is explained in Chapter 6.

47 Summary

This chapter shows the lift system specifications and TD notations used for
translation. Some TD notations are obtained from UML 2.0 TD while others are
introduced for the proper translation. The full detail of TD is generated from the
case study represented in this chapter. A glossary for TD normally used in the later

chapters is identified. A preliminary TD editor is discussed.

Chapter 5 Translating Timing
Diagrams into Event-B models

(direct translation)

This chapter describes translation rules used to transform a TD into an Event-
B model. The clarification for what kind of the systems’ specifications are suitable
for description by TD has been explained at the beginning of chapter 4. There are
two steps to create translation rules to transform TD into Event-B: defining TD
BNF and identifying translation rules. Research by (Essalmi and Ayed 20006)
proposed transformation rules of BNF and Extended BNF (ISO/IEC 2008)
grammars to UML Class diagrams, while we have approached this in a different
way. We identify TD BNF that describes features and relationships among the
TD’s notations. Then, translation rules are created by using a TD element as an
input parameter for the rules to generate an Event-B model.

Section 5.1 explains the TD BNF definitions. Section 5.2 shows the
corresponding Event-B parts are created from the top-level translation rules.
Section 5.3 gives the basic translation rules and gives detailed examples, which are
used to generate Event-B elements. The details of extra information required to

complete the model are discussed in section 5.4.

Chapter 5 Translating Timing Diagrams into Event-B models 87

5.1 TD BNF definition

This section introduces the TD BNF definitions in which are used to create
translations rules to transform TD into an Event-B model. The BNF symbols
(Métayer and Voisin 2007) are as follows.

® The symbol ::= means “is defined as”. The element on the left of the
symbol is defined by the expression on the right.

¢ The symbol | denotes alternative.

¢ Constructs within square brackets [...] are optional.

e Terminals are surrounded by quotes " “.

® The symbol a* represents n concatenated instances of a, where n > 0.

The symbol a" represents n concatenated instances of a, where n > 1

e Parentheses (...) are used for grouping.

e The symbol /+* comment is for additional explanation; this symbol is

not a part of the translation rules.
Figure 5-1 shows an example of how the TD BNF definitions are
represented. Note that strings such as Onl, Off2, ..., MovingDepartingDown6,

represent segment names that are generated by BNF definitions and are described

later.
Onl
floorsensor C On
FLOORSENSOR off:
(FFLOOR) Off —
MovingArrivingUp f= currentFl &
dir=Up

MovingUp

) : MovingDepartii

MovingDepartingUp f = currentFl &
StopAtFloor] dir = Down

lift : LIFT StopAtFloor —_—

[2.5]

/
MovingDepartingDowi MovingDepsatigDow(G
MovingDown /
i
MovingArrivingDowh

\

\
<

uplamp : deActivated
UPLAMP acTivated Tivatpc

Figure 5-1 Timing diagram for floorsensor, lift and uplamp

(Parts of Figure 5-2)

Chapter 5 Translating Timing Diagrams into Event-B models 88

A TD project (Project) is represented by a name and is composed of at least
one TD machine (Machine). We decided to have many Machines in a Project to
correspond with the UML-B metamodel (in chapter 6). A TD machine has a name
(must be unique) and comprises one class as a minimum. A class is defined by a

name (ClassName), at least one object and an object definition (Obj_Def).

Project ::= name Machine’
Machine ::= name Class”

name ::= String

Class ::= ClassName Obj" Obj_Def

ClassName ::= String

In TD, we allow naming of an object and its class to indicate whether the
object occurs singly (:) or multiply (<) in the system. This naming is defined by

Obj_Def.

Obj_Def ::= ObjName " =" Class_Clause | ObjName " : " Class_Clause
ObjName ::= String
Class_Clause ::= ClassName |

ClassName" (" Param "“:" ParamType (*," Param “:" ParamType)” ")"
Param ::= name /* represents parameter’'s name

ParamType ::= name /* represents parameter’s type’s name

For example in a lift case study (as shown in Figure 5-1), there is only one
lift in the system. Thus, an Obj_Def for the lift is declared as [lift : LIFT. In
contrast, there is a floor sensor in every floor, floorsensor < FLOORSENSOR is
defined.

A class may have parameters (Param) with parameter types (ParamType) in
which both of them are defined by a string. A parameter is used to indicate the
specific object of interest from the set. For example, in the case of an object
floorsensor, a parameter f : FLOOR identifies which floorsensor it is where fis a

parameter with a type FLOOR. Thus, the complete identification for an object

Chapter 5 Translating Timing Diagrams into Event-B models 89

floorsensor is declared by floorsensor < FLOORSENSOR(f:FLOOR). The
parameter tells which object one is using in that case and that information is
required for the translation. This is the way one can introduce information for the

translation.

Obj :: = ObjName ObjSt" Timeline

An object is defined by a name (ObjName). It is composed of at least one
object’s state (ObjSt) and a Timeline. A Timeline represents a chain of an object’s
states changing in a class. Since one object has one Timeline, a Timeline’s name is
defined by the same name as its corresponding object’s name. A Timeline is
composed of at least one segment. A segment is presented by a corresponding
object’s state’s name followed by a positive integer. For example, Onl, Off2 and

Onl, in Figure 5-1 represent segments for the object floorsensor.

Timeline ::= name Segment”

Segment ::= ObjSt number Simul* [CauseEffectArrow]
ObjSt ::= name

number = Z*

Simul ::= StartSegmt EndSegmt

StartSegmt :i= Segment

EndSegmt ::= Segment

One segment is composed of zero or more SimultaneityArrows (Simul). A
SimultaneityArrow links a segment (StartSegmt) and another segment
(EndSegmt). For example, in Figure 5-1, there is one SimultaneityArrow in which
StopAtFloor] and deActivated2 are StartSegmt and EndSegmt respectively.
Presently, we do not allow a simultaneityArrow in the same segment, nor
combinations of simultaneityArrow using “AND” or “OR” nodes. A segment

can have a CauseEffectArrow which is optional.

CauseEffectArrow ::= Constraint

Chapter 5 Translating Timing Diagrams into Event-B models 90

Constraint ::= NodeType

NodeType ::= Simple | OR_node | AND_node
Simple ::= CauseSegmt [Timing] [Predicafe*]
CauseSegmt ::= Segment

Predicate ::= String

OR_node ::= NodeType © NodeType
AND_node ::= NodeType ® NodeType
Timing ::= “[" lowerlimit *," upperlimit “]"
lowerlimit ::= Z*

upperlimit = Z°

A CauseEffectArrow is actually used to define a constraint (Constraint)
between segments. This constraint is defined by a type (NodeType) which can be a
simple (Simple) or a grouping of either OR nodes (OR_node) or AND nodes
(AND_node). Those grouping nodes allow one to create combinations of cause
segments. A Simple consists of a cause segment (CauseSegmt), an optional timing
constraint (Timing) and an optional string condition (Predicate). A timing constraint
is declared as a pair of positive integer values: a lower bound (lowerlimit) and an
upper bound (upperlimit).

For example, in Figure 5-1, a segment Off2 has a CauseEffectArrow which is
declared by an OR_node. The BNF definitions of this CauseEffectArrow are
identified as in the following.

First, from the BNF definition CauseEffectArrow ::= Constraint, it is applied

to CauseEffectArrow ::= OR_node
Second, from the BNF definition OR_node ::= NodeType © NodeType,
each NodeType is replaced with Simple that are segments
MovingDepartingUp2 and MovingDepartingDown6

Third, from the BNF definition Simple ::= CauseSegment [Timing] [Predica‘re*],
each Simple is given Timing and Predicate values thus:
Simple ::= MovingDepartingUp2 [2, 5] f = currentF| & dir = Up

Simple ::= MovingDepartingDown6 [2, 5] f = currentF| & dir = Down

Chapter 5 Translating Timing Diagrams into Event-B models

91

Finally, the CauseEffectArrow for the segment Off2 is defined as
MovingDepartingUp2 [2, 5] f = currentF| & dir = Up ©

MovingDepartingDown6 [2, 5] f = currentFl & dir = Down

A TD used for transforming into an Event-B model is illustrated in Figure 5-2.

Lit
floorlamp €
FLOORLAMP
(f'/FLOOR) Unlit
[2.4]
£= currentFl
floorsensor € On o
FLOORSENSOR
(f:FLOOR) Off
v
///
/
rLit /// // = currentFl
R]rzegéeﬁg;?gﬁp S f-curenlg (2]
/ | dir = Down
3 . f> currentFl /
(fIFLOOR) rUnlit - - 2.5]
/ | f=currentFl &) .
f < curtentF1 / l\ dir=Up ; N
. . = curreft
MovingArrivipgUp /o currerpl 23] e
. 241 N
MovingUp //
/
I
MovingDepartingUp ,/ === =<
I / O
| / \
lift - LIFT StopAtFloor / \ ; N
/ \ / \
MovingDepartingDode/ N - .
/ N ANEN \
| N NN
MovingDown / ,/ ,’ TANC AT \\
// | f:reqFl) / AN ’J
. . f= curre \
MovmgArrlvngoIV/vnlt [Llur:;m I]’ fireqfl | \\\ /,’
| - ! 15 \ oy
/l 11 I/ [1.5] \ \\ f: reqFl ///
Open | | [/
door ¢ DOOR | " 1" / | el /)
3 | | / | /
(FLOOR) Closed | | ! S
| \ \ P 7 ‘l 7
| \ | 7 1
| \ _——" - L
deActivated = /]
uplamp : | \ 7
UPLAMP \ RN R
acTivated \ Se_ < !
N e /
\ g //
N -
N _-7 /
Deactivated =)/
/
downlamp : /
/
DOWNLAMP Activated L

Figure 5-2 Timing diagram for an Event-B model direct translation

Chapter 5 Translating Timing Diagrams into Event-B models 92

5.2 Event-B model parts vs. Top-level textual translation rules

This section gives the whole picture of how each Event-B model’s part is
generated from corresponding top-level textual rules as shown in Figure 5-3. In this
figure, the blue coloured boxes represent parts generated from the rules, and the

dotted boxes represent parts the extra information added for the model completion.

CONTEXT MACHINE
e Y 'd
TContext (Machine) —> TMachine(Machine) —
“VARIABLES”
“SETS” . VARIABLES
SETS TGVarTi me(Machine)
TSet (Machine) TGVarState(Machine) OIS
......... SEES) ’
INVARIANTS
“CONSTANTS” >
TGVarTimeInv(Machine) INVARIANTS
CONSTANTS TGVarStateInv(Machine) — F———————
TConstant (Machine)
------------------ . .)
EVENTS EVENTS
“AXIOMS”
“INITIALISATION =" INITIALISATION
q . AXIOMS TGVarTimeInit(Machine)
TAx1om(Machine)
e SEARAELT TGVarStateInit(Machine)
~ / TEvent (Machine) Other EVENTS
TTicktok
[Generated from rules

Extra information

Figure 5-3 Event-B model’s parts correspond with top-level textual rules

The translation rules cover generating CONTEXT and MACHINE parts for
an Event-B model are now described.

For the Context part, the rules TSet, TConstant and TAxiom use Machine as
an input parameter to create sets, constants, and axioms for the model respectively.
The details of those rules are described in section 5.3.1 below. TD notations, that
can be used to directly generate a CONTEXT part, are classes and objects’ states.
However, if one intended to identify extra information that cannot be identified by
TD, such as a specific member of a class, e.g. there are three floors for the lift
system, or extra sets provide supportive information for the system, e.g. the

directions (DIR) of a lift movement can be only Up and Down, this information has

Chapter 5 Translating Timing Diagrams into Event-B models 93

to be manually added. For example, identifying a set DIR in a CONTEXT is
shown in Figure 5-4. The set’s name is declared in SETS, each element of a set is
defined as a constant in CONSTANTS, while a set’s name assigned to its element

values is identified in AXIOMS.

SETS
DIR

AXIOMS
DIR = {Up, Down}

Figure 5-4 A set DIR

For a MACHINE part, rules TGvarTime and TGVarState are used to
generate machine variables. Most of machine’s variables are generated by the rules.
However, it may have some variables that are manually added. Those variables are
actually used in a CauseEffectArrow predicate. For example, in case of the lift
system, reqFl and currentFl are variables that are added by hand and used to
represent a list of requested floors and a current lift position respectively.

Variables that can be generated by the translation rules have to define their
invariants in an INVARIANTS part. This can be done by using rules
TGVarTimeInv and TGVarStateInv. Additional invariants may be appended in this
step. For example, a condition that defines that an up lamp and a down lamp must
not be activated at the same time, and the lift door must not open while the lift is
moving.

Events in a machine comprise two kinds: an INITIALISATION event and
other events. The INITIALISATION event is used to declare variables’ initial
states, which are created by rules TGVarTimeInit and TGVarStateInit. The other
events are defined by a rule TEvent. There are some events which cannot be
created by translation rules. For example, an event that changes the direction of the
lift, and events that represent the lift continue moving for many floors before

stopping. That is because in the first example, this information cannot be

Chapter 5 Translating Timing Diagrams into Event-B models 94

represented by TD notations; in the second example, this information is not
represented by Segments but states while the rules use Segments in generating an

event (as described in section 5.3.3 below).

5.3 Translation rules

This section demonstrates the translation rules that are used for transforming
TD into an Event-B model. In these translation rules, a component using bold
typewriter font demonstrates a name of the translation rule, e.g. TEvent. A plain
string inside angle brackets, e.g. <IF> and <THEN>, is a keyword in the macro
translation language. TD language elements are defined in the same font as TD
BNF definitions, e.g. Objst. The Event-B parts are shown using italic font written
in quotations, e.g. “Time” and “WHEN"".

The following table identifies the whole set of basic rules generally used for
translation. Note that this table does not contain compound translation rules that
appear in the following sections, but only those fundamental rules that are usually

used. The details of the complex rules are given in Appendix A.

Tast((eleml, elem?2, ..., elemn)) — elemn; this rule produces the last element for
an input sequence of elements.

TA11Instances(NodeType) — (NodeTypel, NodeType2, ..); this rule produces a
sequence containing the instances which are sub-NodeType of an input NodeType.
TA11Param(Class) — (Paraml, Param2, ..); this rule produces the sequence of
parameters for an input Class.

TA11ParamType(Class) — (ParamTypel, ParamType2, ..); this rule produces the
sequence of parameter types for an input Class.

TA11PrevSegm(Segment) — (Segmentl, Segment2, .); this rule produces a
sequence containing all the previous segments for an input Segment.
TA11State(Timeline) — (Objstl, Objst2, ..); this rule produces the sequence of

objects states for an input Timeline.

Chapter 5 Translating Timing Diagrams into Event-B models 95

TA11Timeline(Machine) — (Timelinel, Timeline2, ..); this rule produces the
sequence of Timelines for an input Machine.

TClass(Obj) — Class; this rule produces the class for an input object.
TClassName(Timeline) — ClassName; this rule produces the class’s name for an
input Timeline.

TCond(Simple) — (Predicatel, Predicate2, ..); this rule produces the sequence of
Predicates for an input Simple.

TConstrnt(Segment) — Constraint; this rule produces the Constraint for an input
Segment.

TEmpty(set) — BOOL,; this rule checks whether an input set is empty. If so, the rule
produces the Boolean value true.

TEndSegm(Simul) — EndSegmt; this rule produces the EndSegmt for an input
SimultaneityArrow.

TGetSegmentWithConstrnt(Machine) — (Segmentl, Segment2, ..); this rule
produces a sequence containing all the segments defined with Constraints for an
input Machine.

THasParam(Class) — BOOL; this rule checks whether an input Class has
parameters. If so, the rule produces the Boolean value true.

THasTiming(Simple) — BOOL; this rule checks whether an input Simple node has
been defined with timing constraints. If so, the rule produces the Boolean value
true.

TLowerLmt(Timing) — lowerlimit; this rule produces the lowerlimit value for an
input Timing.

TName(Timeline) — name; this rule produces the Timeline’s name for an input
Timeline.

TNodeType(Constraint) — NodeType; this rule produces the NodeType for an input
Constraint.

TObj(ObjSt) — Obj; this rule produces the object for an input object state.
TObjName(Obj) — ObjName; this rule produces the object name for an input
object.

Chapter 5 Translating Timing Diagrams into Event-B models 96

TObjSt(Segment) — ObjSt; this rule produces the object state for an input

Segment.

TParamType(Param) — ParamType; this rule produces the parameter types for an
input parameter.

TSegment(Simple) — Segment; this rule produces the Segment value for an input
Simple.

TSimulSeq(Segment) — (Simull, Simul2, ..); this rule produces a sequence of
SimultaneityArrow for an input Segment.

TTimelineInClass(Timeline) — Class; this rule produces the Class for an input
Timeline.

TTiming(Simple) — Timing; this rule produces the Timing value for an input Simple.
TUpperLmt(Timing) — upperlimit; this rule produces the upperlimit value for an

input Timing.

Table 5-1 Basic rules for TD to Event-B translation

5.3.1 Translation rules for creating a set in the Context part

The CONTEXT part is used to identify static values such as sets, constants
and axioms in an Event-B model. Here, we describe how translation rules create
the CONTEXT part. The rule TSet (Figure 5-3) is used to create a set’s name in
which each element in a set is defined as a constant with the rule TConstant. The
rule TAxiom genereated axioms which are declaration of sets’s names followed by
their elements. Below is an explanation of the rules for TAxiom, while the detail of
the rules TSet and TConstant can be found in Appendix A.

The rule TAxiom, Figure 5-5, uses a Machine as an input value and recursively
generates a list of states as elements for a set. Each axiom is created by a Timeline
which is represented by an iterator t. This rule creates a set name followed by the
list of the set’s elements. Those elements are generated by a sub-rule

TWriteAl1States which uses Timeline as an input parameter.

Chapter 5 Translating Timing Diagrams into Event-B models 97

TAxiom(Machine) —
<FOR> t <IN> TA11T1imel1ine(Machine)

{ TClassName(t) + “_STATES =" + TWriteAl1States(t) }
TWriteAllStates(t) — “/” + TA11StateLst(TAl1State(t)) + “}”
TAl1StateLst(Head : SeqTail) = Head + “,” + TA11StateLst(SeqTail)
TAT1StatelLst(Head : < >) — Head

Figure 5-5 Rule TAxiom : creating axioms in an Event-B Context

For example, the rule TAxiom generates an axiom for a Timeline floorsensor

as FLOORSENSOR_STATES = {On, Off}.

5.3.2 Translation rules for creating variables and their initial values

Variables are dynamic parts of a machine and are used to maintain local state
information. There are two kinds of variable that can be generated from a TD:
variables used to record timing constraints and variables used to record state
values.

Variables used to record timing constraints. Whenever a segment has a
CauseEffectArrow, that means it may have timing constraints between objects. If
so, this timing must be recorded and used as guards for synchronising
corresponding events. Thus, each event must record a current time in its related
machine variables whenever that event is performed. In doing that, the rules
TGvarTime, TGVarTimeInv and TGVarTimeInit are used to identify variables,
their invariants and initial values respectively. Below is the detail of the rule
TGVarTime.

TGVarTime(Machine) —
<FOR> t <IN> TAT1T1imeline(Machine)
{<FOR> s <IN> TAT1State(t)
{TName(t) + s + “Time” } }

Figure 5-6 Rule TGVarTime: creating machine variables to record time

Chapter 5 Translating Timing Diagrams into Event-B models 98

This rule uses a Machine as an input value. It collects Timeline from the
Machine and then uses it to generate each variable. A variable is generated from a
Timeline’s name followed by each state of the Timeline and a string Time. For
example in a lift system, there are seven Timelines: floorlamp, floorsensor,
requestlamp, lift, door, uplamp and downlamp. The rule TGVarTime generates
variables from each timeline. For the Timeline floorsensor, it creates two

variables: floorsensorOnTime and floorsensorOffTime. The invariants of these
variables are defined by the rule TGvVarTimeInv as floorsensorOnTime € N and

floorsensorOffTime € N. Initial variables’ values are generated by the rule
TGVarTimeInit as floorsensorOnTime := 0 and floorsensorOffTime := 0. The

details of the rules TGVarTimeInv and TGVarTimeInit are shown in Appendix A.

Variables used to record state values. Since an object changes its state
based on the constraints it satisfies, it is necessary to have a variable to record the
object’s current state. These kinds of variable are used for synchronising events. As
shown in Figure 5-3, these variables are generated by the rule TGvarState, while
their invariants and initial values are created by rules TGVarStateInv and

TGvarStatelnit respectively. Below is the detail of the rule TGVarStateInv.

TGVarStateInv(Machine) —

<LET>exp = TClass(TTimelineInClass(t))...ccccccoumiiiiiiireriiinniiiiiiiieeeeeenne (D
<IN> <FOR> t <IN> TATT1Timeline(Machine)ccccceeeeuummmemmmennnnnnnnnnnnnnnnnnnns 2)
{TNamMe(t) + “Stare €7 4 cooveeeeeeeeeeeeeeeee e, 3)

<IF> THasParam(TCTass(TName(1)))ccoevvvviviiiiiiiiiiiiiiiiiie “4)
STHENS ...ttt et e e e e et e e e e e e e ttraeeeeaaeeeas (5)

“(’+ TWriteParamForInv(TAT1ParamType(exp)) +)" (6)

“ = 7+ TClass(TName(t)) + «“_STATE”cccovevvveeeeeeeaaeennnnn. @)

<ELSE> TClass(TName(1)) + “_STATE”ccooeooeeiieieeeeeeeeeeeeee e, (8)
SENDIF> ..., 9)

d ettt et et es (10)

Chapter 5 Translating Timing Diagrams into Event-B models 99

Head + “X” + TWriteParamForInv(SeqTail)ccocceeniiiiniieinieennieens (12)

TWriteParamForInv(Head : < >) — Head.....ccoooooioiiiiiiiiiiiineee (13)

Figure 5-7 Rule TGVarStateInv: creating machine variables to record states

This rule uses a Machine as an input value. It collects Timeline from the
Machine and then uses it to generate each variable as shown at line (2). A variable
is generated from a Timeline’s name followed by a string “State € ” at line (3). If a
corresponding class has parameter, the output string from line (3) is concatenated
with parameter type at line (6) followed by a class name and the string “_STATE”, at
line (7). If the corresponding class has no parameter, then line (8) is performed
instead.

Sub-rule TWriteParamForInv is called from line (6) whenever the
corresponding class has a parameter. This sub-rule is defined recursively to give
parameter types for that class. For example, an invariant is created from this

Timeline floorsensor shown in the following:

TGVarStateInv(Machine) —
<LET> exp = TClass(TTimelineInClass(t))
<IN>

<FOR> t <IN> TAT1Timeline(Machine)..floorsensor, floorlamp, requestiamp, etc.

{TName(t) + “State € 7 + .ccovvueeieiiieeieeiiee e floorsensorState €
<IF> THasParam(TC1assS(TNAmMe(1))) ..cceeeevrreeeeririieeeeeiiieeeeereeeeeeeeeeeeennen. TRUE
<THEN>

“(’+ TWriteParamForInv(TAT1ParamType(exp)) +)" (FLOOR)

+“ = ” + TClassName(t) + “_STATE” — FLOORSENSOR_STATE
<ELSE> TClassName(t) + “_STATE”
<ENDIF>

}
TWriteParamForInV(FLOOR 1< >) —> FLOORccouveeeeeeeeieeeeeeiieeeeeiiieeeanan, FLOOR

Output: floorsensorState € (FLOOR) — FLOORSENSOR_STATE

Chapter 5 Translating Timing Diagrams into Event-B models 100

Suppose a class floorsensor has two parameters, f - FLOOR and a : AA, the sub-
rule TWriteParamForInv generates a relationship between those parameters as

(FLOOR x AA). Thus, an invariant in this case is:

floorsensorState € (FLOOR x AA)— FLOORSENSOR_STATE

From Figure 5-2, one may expect that an object state’s initial value can be
generated from the first segment in the Timeline. For example, the first segment of
the object door is Closed, in which the corresponding variable generated by the
rule TGVarState is doorState. Thus, by the rule TGVarStateInv, an invariant for
this variable is created as doorState € FLOOR — DOOR_STATE. This variable has
its initial value defined as doorState := FLOOR x {Closed}. That means, at the
initial state, the door for every floor is closed. However, it is incorrect to use the
first segment as an initial state for every object. For example, an object floorsensor
has a first segment On, but one cannot identify its initial state directly as
floorsensorState := FLOOR x {On}. That is because the floorsensorState for that
floor is set On if an only if the lift is at that floor. Thus, it is not true that at the
initial state, the lift stations at every floor. In fact, in the beginning if the lift is
stationed at the first floor, then only the floorsensorState at the first floor is set On.
If there are three floors in a system, the initial value for the floorsensorState is
floorsensorState := {1 +— On, 2 — Off, 3 — Off} where 1, 2 and 3 denotes the

number of the floors.

TGVarStateInit(Machine) —
<FOR> t <IN> TAT1T1imel1ine(Machine)

{TName(t) + “State := {xInitValuex}” }

Figure 5-8 Rule TGVarStateInit: creating initial values for those variables

used to record states

Chapter 5 Translating Timing Diagrams into Event-B models 101

Thus, the rule TGVarStateInit, which is used to define the initial states of
these variables need to be generated by hand, which is represented by a marking
xInitValuex.

Other examples of variables that have to be generated by hand are dir and
currentFl, which are used to indicate the lift direction and the current position for
the lift. Actually, these variables are already shown as a string as the
CauseEffectArrow’s predicates. However, one cannot generate variables from the

predicates as it is not a notation but a string of conditions.

5.3.3 Structure of Translation rules for creating an Event-B event

Each Event-B event is created by the rule TEvent. This rule uses a Machine
for an input parameter and is defined recursively. The rule TEvent is composed of

sub-rules as shown below.

TEvent (Machine) —

<FOR> Segment <IN> TGetSegmentWithConstrntMachine)

{

TEventName (Segment) 1%

TParamLst (Segment) ond_|

TGetGrdPredc(...)
TParamGuardValue(Segment) ——p - .. TTimingGuardc. ..)

TGrdCtrnt(Segment) - TSimpleCauseSource(...
r
TPrevSegm(Segment) 3 TSimpleCond(...)
13 THE b
TSubst (Segment)

4th TWritePrevStatelLst(...)
TSimul (Segment) |_>
. TSimplePrevSegm(...)
TRecdTime(Segment)
“END”

Figure 5-9 Structure of translation rules to create an Event-B event

Chapter 5 Translating Timing Diagrams into Event-B models 102

To generate events, first, the rule TGetSegmentWithConstrnt(Machine) is
used to collect only segments defined with constraints — i.e. that segment has a
CauseEffectArrow — from a machine. Without causeEffectArrow, a Segment 1S
an ordinary segment. It does not have a causal dependency between objects and
will not be considered to generate an event. Next, each segment from the collection
is used to generate an individual event.

An Event-B event is basically composed of a name, guards and actions, thus
the rule TEvent is designed to generate those parts. The rule TEvent is sub-
divided into four groups.

1* group: this group has a rule TEventName (detailed in Figure 5-11) that is
used to create an event’s name.

2" group: this group comprises translation rules that are used to create
guards for an event. As described in chapter 2, an event can be defined into three
types: Simple, Guards and Non deterministic. The rules in the o group are used to
define Guards and Non deterministic types, not the Simple type. Since the Simple
type has only the action part but not guards, it is inappropriate to generate this type
from the TDs. TDs are designed to explain the changing of state according to
conditions, which are guards.

As shown in Figure 5-10, for the Non deterministic type, the rule TParamLst
(detailed in Figure 5-13) is used to create a string ANY and a list of local variables;
the rule TParamGuardvalue (detailed in Appendix A) is used for identifying
those local variables with their corresponding types. For the Guard type, the rule
TParamLst is used to create a string WHEN.

3" group: this group comprises translation rules used to create event guards.
Those guards are created from four features that are associated with that segment:
previous segments, cause segments, conditions, and timing constraints. A rule
TGrdCtrnt (detailed in Figure 5-14) is used to create guards from cause segments,
conditions, and timing constraints. A rule TPrevSegm (detailed in Appendix A) is
used to create a guard from previous segments. Most of the guards are generated

from those rules. However, some additional guards may be added. Most of them

Chapter 5 Translating Timing Diagrams into Event-B models 103

are associated with extra variables generated manually as covered earlier in

CONTEXT.

TEvent (Machine) —s Non deterministic
<FOR> Segment <IN> 1 -
vent name =
Guards TGetSegmentWithConstrntMachine) -
(h { ANY
Event name = TEventName (Segment) 1%t Local
- variables
WHEN TParamLst(Segment) gnd WHERE
TParamGuardValue(Segment)
Guards
TGrdCtrnt (Segment) ; Guards
3I’
RARRRRARE TPrevSegm(Segment)
THEN “THEN” THEN
TSubst (Segment)
Actions] 4t Actions
TSimul (Segment)
.......... TRecdT1ime (Segment) —
END “END” END
- J } L

[Generated from rules
Extra information

Figure 5-10 Structure of translation rules and Event-B model types

4™ group: this group comprises translation rules used to create events’
actions. There are three kinds of actions generated here. First, an action is
generated from a segment with constrints, by a rule TSubst (detailed in Figure 5-
20). Secondly, if a segment has SimultaneityArrows, an action is created by
the rule TSimul (detailed in Figure 5-22). Thirdly, actions are created to record the
current time of a corresponding machine variable whenever the event is activated,
by the rule TRecdTime (detailed in Figure 5-23). The rules generate mostly essential
actions. However, in some events, actions may need to be added. For example, in
the case of the lift system, it has to add actions to update current floor position

whenever the lift is moving up or moving down.

Chapter 5 Translating Timing Diagrams into Event-B models 104

5.3.4 Creating an event’s name

To create an event’s name, the TEventName rule is used. This rule gives an
event’s name for an input Segment and uses basic rules, i.e. TObj and TObjSt, as

described in Table 5-1.

TEventName(Segment) —
<LET> exp = TObjSt(Segment)
<IN> TObj(exp) + exp + “="

Figure 5-11 Rule TEventName: creating an event’s name

This rule creates an event’s name by concatenating an object’s name with an

“__9

object state’s name followed by the “=" symbol.

Onl Onl

floorsensor € On 4" /7
FLOORSENSOR Off2
Off .

(fFLOOR)
MovingArrivingUp f'= currentFl & {

dir=Up

MovingUp [2.5]

. . MovingDeparting

MovingDepartingUp f= currentFl &
lift : LIFT SlOpAtFIOOI’ StopAtFloorl dir = Down
[2.5]

MovingDepartingDown MovingDeparting 6
MovingDown ‘_\;

MovingArrivingDown

Figure 5-12 Timing diagram for floorsensor and lift (parts of Figure 5-2)

For example in Figure 5-12, Segment Off2 has a causeaffectArrow in which
MovingDepartingUp2 or MovingDepartingDown6 are cause segments that stimulate
the object floorsensor to change its state from On to Off. Generating an event’s

name from the segment Off2 is illustrated below:

Chapter 5 Translating Timing Diagrams into Event-B models 105

TEventName(Off2) —
<LET> exp = TObjSt(Off2)
S I\ D 103 1054 o) O USROS UR PSR floorsensor
a4 I Off =

Output: floorsensorOff =

5.3.5 Creating non-deterministic local variables and their values

A rule TParamLst is used to check whether an event is defined by Guards or
Non deterministic type. Each of these types identify the beginning of the guards
with a string WHEN or ANY corresponding to a type Guards or Non deterministic

respectively. This rule uses a Segment as input parameter.

TParamLst(Segment) —

<LET> exp = TObj(TObSt(Segment))cccovuierniiiriiieniiieniieenieeeeieeee (D)
<IN)
<IF> THasParam(TCTASS (EXP)) «.ecvveeeerrurreeersirreeessniireeeaninreeessseeeessnssneessnnns 3)
STHENS ...ttt ettt e e ee et ar e e e e e e e eeeeasarreeeeeeeeeanes 4
CANY” A et 5)
TWriteAl1Params(TAT1TParam(TC1ass(exp))) ..cccoverereereereerennens (6)

D 2] D) S @)
SWHEN ™ ...ttt 8)

SENDIE> ...ttt eeeeccee e e e e eesetar e e e e e e e eeeeeaarereeeaeeeeeanes 9

TWriteAl1Params(Head : ParamSeqTail) —
Head + " + TWriteAl1Params(ParamSeqTail)

TWriteAllParams(Head : < >) — Head

Figure 5-13 Rule TParamLst: creating a list of local variables for an event

Chapter 5 Translating Timing Diagrams into Event-B models 106

The rule TParamLst checks whether a class corresponding to the input
Segment has a parameter at line (3). If so, this rule generates a string ANY, line (5),
followed by a list of parameters as shown in line (6); those parts are for creating
Non-deterministic type. Otherwise, it creates a string WHEN for Guarded type, as
shown in line (8). The list of parameters is generated by a sub-rule
TWriteAl1Params. This rule iteratively generates parameters, each of them being
separated by a “,” symbol. For example, a segment Off2 in Figure 5-12, belongs to

an object floorsensor which resides in a class FLOORSENSOR whose parameter is

/- An example of creating a local variable from this segment is illustrated below.

TParamLst(Off2) —
<LET> exp = TObj(TObjSt(Off2))

<IN>
<IF> THasParam(TCTass (EXP)) ..ccceevverrriiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeee e True
<THEN>
CANY” A ettt ettt e e e et e e e e e ANY
TWriteAl1Params(TA11Param(TClass(exp)))
<ENDIF>

TWriteAllParams(f: <> — f

Output: ANY f

Each local variable needs to identify its types within WHERE clauses. Rule
TParamGuardValue (Figure 5-10, detailed in Appendix A) is used to identify the
variables’ types. For example, within the same example above, this rule generates
WHERE f: FLOOR for output.

Suppose a class FLOORSENSOR has parameters f, a and b with a type
FLOOR, AA and BB respectively. Thus, the rule TParamGuardvalue would
generate WHERE f: FLOOR & a:AA & b : BB. The detail of this rule is shown
in Appendix A.

Chapter 5 Translating Timing Diagrams into Event-B models 107

5.3.6 Creating an Event’s guards

As shown in Figure 5-10, event guards are created by the rule TGrdCtrnt and
TPrevSegm. This section explains how to create guard from the rule TGrdCtrnt,

while the detail of the rule TPrevSegm can be found in Appendix A.

TGrdCtrnt(Segment) —

“(’ + TGetGrdPredc(TNodeType(TConstrnt(Segment))) +)

()

L | TGetGrdPredc(NodeType) —

NodeType = Simple TTimingGuard(Segment, Timing)

...... » TSimpleCauseSource(Segment)

NodeType = OR_node L TSimp1eCond (Predicate)

NodeType = AND_node

Figure 5-14 Rule TGrdCtrnt and sub-rules

The detail of the rule TGrdCtrnt is shown in Figure 5-14, a coloured box.
This rule gives an output NodeType for an input Segment. The NodeType then is
used as an input parameter for the sub-rule TGetGrdPredc.

The rule TGetGrdPredc checks whether the input NodeType is a Simple,
OR_node or AND_node. If NodeType 1is Simple, three other sub-rules,
TTimingGuard, TSimpleCauseSource and TSimpleCond, are called in order to
generate guards from timing constraints, cause segments and conditions
respectively. If the NodeType is OR_node or AND_node, the rule TGetGrdPredc is

recursively called. The detail of the rules TGetGrdPredc is illustrated as follows.

Chapter 5 Translating Timing Diagrams into Event-B models 108

TGetGrdPredc(NodeType) —

1" part: If NodeType is Simple

<IF> NodeType = Simple.......ccccoiiiiiiiiiiiiiiiiiii (1)
<THEN><IF> THasTiming(Simple)ccccccoociiiiiiiiiiiiniiiiniccniecsieeceeee)
<THEN> TTimingGuard(TSegment(Simple), TTiming(Simple))................ 3)
+ “&” + TSimpleCauseSource(TSegment(Simple))cccecuveenneen. 4)
+ TSimp1eCond(TCond(Simple))cccocouveiiriiiiiiniiiieiiiiieceriieeees ®))
D 2] D] =TT (6)
TSimpleCauseSource(TSegment(Simple))ccccveeriiiincrieinnnennnne. (7
+ TSimp1eCond(TCoNd(Simple))ccoocueiiimiiiiiiiiiiiieiiiiieceriieeees ®)
SENDIF> ..ottt e e e et ebe e e e e e e e eenesn s)
<ELSE><IF> NodeType = OR_node.......... 2" part: If NodeType is Or_node m
<THEN><LET> Nodes = TATTInstances(OR_node).........cccccerrrrrrueeerrvrunnnnn. (11
<IN> Nodes — <ITERATE> (n; ret : String = “(" | ..ccooeiiiiiiiiiiiiiiini. (12)
<IF> N = TASTNOES) ...ovuuueieiiiiiiieiiieee ettt eeeees (13)
<THEN> ret = ret + TGetGrdPredc(n) + “)”oveeeiiirieeeiiiieeeeeennn. (14)
<ELSE> ret =ret + TGetGrdPredc(n) + “)V (7 coveeeeeerieeeeeiieeeeeennn. (15)
SENDIFS).ttt ettt e e et e eeeees (16)
SENDIFS ...ttt ettt e e e e teen s 17)
<ELSE><IF> NodeType = AND_node 3" part: If NodeType is And_node .~
<THEN><LET> Nodes = TAlT1Instances(AND_node)......cc.ccccccvieeeerrrrnnnnnn. (18)
<IN> Nodes — <ITERATE> (n; ret : String = “(" | ... (19)
<IF> 0= TASTE(NOAES) .uuniiiiiieiiiieeeeeee e (20)
<THEN> ret = ret + TGetGrdPredc(n) +)"ccccecvreerrniieeeenniennn (21)
<ELSE> ret = ret + TGetGrdPredc(n) + “) A(” ceeeeeeeeeeecccirreeeeeennn. (22)
SENDIF>) ..ottt (23)
SENDIF> ...ttt e e (24)
SENDIF> ...ttt e ettt teer e s e e e e eeaennnas (25)

Figure 5-15 Rule TGetGrdPredc: creating event guards from

timing constraints, cause segments and conditions

Chapter 5 Translating Timing Diagrams into Event-B models 109

For example if a NodeType is OR_node, a rule TA11Instances(OR_node) at
line (11) collects the elements underneath the OR_node as a sequence within a
variable Nodes. Line (12) is defined as iteration in which an iterative expression is

defined by the ATL-like syntax as in the following:

source — <ITERATE>(iterator; return_var_declaration : return_var_type

= init_expression | body)

That is, at line (12), the variable Nodes is a source of iteration process when n
is an iterator. This iteration returns a variable ret which is defined as a string
provided with an initial value equal to “(”. Line (13) checks whether n is the last
element in the sequence. If so at line (14), the return value ret is concatenated with
string value from calling itself, TGetGrdPredc(n), followed by the “)” symbol. If
not, line (15), the return value ret is concatenated with string value from calling
itself followed by the string) v (.

For example, from Figure 5-16, the segment 0f£2 is used to generate guards
for the event floorsensorOff by the rule TGetGrdPredc. The process of generating
guards can be done step by step as shown in Figure 5-17. Note that, we present
order numbers such as 1, 2 and 3 to show which parts of the causeEffectArrow
are used in the rule TGetGrdPredc; these numbers are not TD notations.

Step 1, the rule TGrdCtrnt (from Figure 5-14) gives a NodeType which is
equal to OR_node as an output.

Step 2, the rule TA11Instance(OR_node), at line (11) in Figure 5-15, collects
all NodeTypes beneath this OR_node and keeps them in a variable Nodes as a
sequence. Remember that, since the Simple BNF definition is defined as Simple ::=
CauseSegmt [Timing] [Predicate’], the variable Nodes has two Simple elements as

shown in the following:

Nodes = (Simplel, Simple2)
where Simplel = MovingDepartingUp2 [2,5] f= currentF| & dir = Up
Simple2 = MovingDepartingDowné [2,5] f= currentFl| & dir = Down

Chapter 5 Translating Timing Diagrams into Event-B models

110

Onl

floorsensor € On

Off2

Onl

FLOORSENSOR
(f:FLOOR) Off

MovingArrivingUp £ (Fl
= curren
315 dir=Up

MovingUp

MovingDeparting Uy

MovingDepartingUp

StopAtFloor
lift : LIFT StopAtFloor Stopnoor]

MovingDepartingDown6

MovingDepartingDown

MovingDown

MovingArrivingDown

Figure 5-16 Timing diagram for floorsensor and lift (same as Figure 5-6)

TGetGrdPredc(NodeType) —

<IF> NodeType = Simple ' @
<THEN> <IF> THasTIiming(Simple)

+“&” + TSimpleCauseSource(.\
+ TSimpleCond(...)
<ELSE> ..

<ELSE> <IF> NodeType = OR_node 1 w
<THEN><LET> Nodes = TA11Instances(OR_node) 2

<IN> Nodes — <ITERATE> (n; ret : String = “(”|
<IF> n = Tast(Nodes)

s

—~

<THEN> ret = ret + TGetGrdPredc(n) + *)” } 12
<ELSE> ret= ret + TGetGrdPredc(n) +) \ (* 5
<ENDIF>)

<ENDIF>

10 12

f= currentFl &

dir = Down
[2,5]

<ELSE> <IF> NodeType = AND_node

Figure 5-17 An example of a process for creating guards from Figure 5-16

Chapter 5 Translating Timing Diagrams into Event-B models 111

Step 3, each NodeType is used to generate guards, where the initial return
value is equal to “(”. Thus, in this step, the Simplel is used first

Step 4, the Simplel is not the last node in the sequence.

Step 5, the Simplel is used as input parameter for the rule TGetGrdPredc
itself. The output from the rule is concatenated “)v (”

Step 6-9, since Simplel is a Simple NodeType, it is used to create guards by
sub-rules in steps 7-9. At this point, suppose the steps 7-9 return a group of output
guards called guard_clausesl.

Step 10, Simple2 is used.

Step 11, Simple2 is the last node in the sequence.

Step 12, Simple2 is used as input parameter for the rule TGetGrdPredc itself.
The output from the rule is concatenated with “)”.

Steps 13-16, Since Simple2 is a simple NodeType, it is used to create guards
by sub-rules in step 14-16. At this point, suppose the steps 14-16 return a group of
output guards called guard_clauses?2.

Step 17, the return value is (guard_clausesl) v (guard_clauses2)

Within the same process, if the NodeType is AND_node, the return value is in a

form of (guard_clausesl) A (guard_clauses2).

5.3.7 Creating an Event’s guards from Timing constraints

The rule TTimingGuard uses Segment and Timing as input parameters. The
rule generates timing constraints as a guard by concatenating an object’s name, an

object’s state, additional strings, and timing constraints.

Chapter 5 Translating Timing Diagrams into Event-B models 112

TTimingGuard(Segment, Timing) —
“(gclock -’ + TOb3j(TObjSt(Segment))
+ TObjSt(Segment)) + “Time>"
+ TLowerLmt(Timing)+“)” + “& (gclock -”
+ TObj(TObjSt(Segment)) + TObjSt(Segment))

+ “Time <” + TUpperLmt(Timing) +)"

Figure 5-18 Rule TTimingGuard: creating a timing constraint guard

From Figure 5-16, and step 7 in Figure 5-17, when Simplel is used as an input

parameter for the rule TTimingGuard, the following output is generated.

TTimingGuard(TSegment(Simplel), TTiming(Simplel)) =.........ccccceeeeeccustep 7
TTimingGuard(MovingDepartingUp2, [2, 5]) —

(BCLOCK =7 ettt s e e e e e e s e e aeaees (gclock -
+ TObj(TObjSt(MovingDepartingUp2)cccccovviiiiiiiiiiiiiiiiiiiicciieeee, 1ift
+ 0bjSt(MovingDepartingUp2)ccccoecuviiviiiiinininnnn. ViovingDeparting Up
F TUME 27 i Time >
+ TLOWEPrLME([2, 5]) 45) coeeeieieieieieieieicieec e neannes 2)
F & (GCLOCK =77 e (gclock —
+ TObj(TObjSt(MovingDepartingUp2))cccceovviiiiiiiiiiiiiiiiiiiicciieeeee 1ift
+ TObjSt(MovingDepartingUp2))ccoecuvviviiiiniieinnnn. ViovingDeparting Up
F T <7 i Time <
+ TUPPErLMt([2, B]) 4) irriieeiieeeeetiiiiee ettt e e e e e e eeraiase e e e e e eeeaaaaaaans € 5)

Output: (gclock - liftMovingDepartingUpTime > 2)
& (gclock - liftMovingDepartingUpTime < 5)

The output for a Simple2 is generated within the same way,
(gclock - liftMovingDepartingDownTime > 2)
& (gclock - liftMovingDepartingDownTime < 5)

Chapter 5 Translating Timing Diagrams into Event-B models 113

The guards generated from timing constraints (by the rule TTimingGuard)
are then concatenated with guards created from cause segments (by the rules
TSimpleCauseSource) and conditions (by the rule TSimpleCond). The details of
rules TSimpleCauseSource and TSimpleCond are shown in Appendix A.

Up to this point the segment 0ff£2 in Figure 5-16 is used to generate parts of

an event as illustrated below:

FlOOFSensOFOff =ttt TEventName
ANY [e TParamLst
WHERE [: FLOOR - -vveeeeeeseesmmmiiiteiasa i TParamGuardvValue

((gclock - liftMovingDepartingUpTime >2) & L.
............... TTimingGuard
(gclock - liftMovingDepartingUpTime < 5)) &
lifiState = MovingDepartingUpTSimpleCauseSource
& f=currentFl & dir=Up e TSimpleCond
Y
((gclock - lifiMovingDepartingDownTime > 2) & L.
vivireeren ITTimingGuard
(gclock - lifiMovingDepartingDownTime <5)) &
liftState = MovingDepartingDownTSimpleCauseSource
& f= currentFl & dir = Down feviireneeree. ISimpleCond
& (floorsensorState(f) = On) L TPrevSegm

THEN ...

Figure 5-19 Parts of an event floorsensorOff

5.3.8 Creating an Event’s actions from an effect segment

As shown in Figure 5-9, actions for an event are generated from three rules:
TSubst, TSimul and TRecdTime which are placed in between THEN END
clause. The rules TSubst and TSimul are used to generate actions from that
segment, and from SimultaneityArrows attached to that segment respectively.
The rule TRecdTime generates an action to record the current time whenever that

event is activated.

Chapter 5 Translating Timing Diagrams into Event-B models 114

The detail of the rule TSubst is shown in Figure 5-20, where Segment is used

as input parameter.

TSubst(Segment) —

<LET> exp = TObJ(TObFSt(Segment))....ccccuureiernuiireeniiieeeeiieeeeeieeeeeeireeeens (D)
<IN> <IF> THasParam(TCTAaSS(EXP))..uuueeerrurreeerirereerirrreeeserreeeeessseeeessseeeenns 2)
<THEN> TODFNAME(EXP)..-vveeeuvreeriieeniiieeniiieenieeenteeesiteeesiteesireesireesneeens 3)
Y771 = (U (@)

+ TWriteParamLst(TATTParam(TCTasS(EXP)))....ccvceerrrureeeernureeanns ®))

) T ettt et (6)

+ TODFST(SEGMENT) it (7)

KELSEDS XD teeuttttiiiteiiieeeite e ettt e stte e st e e st e e sibee s it e e sateessbeesbbeesateesbeeens (8)

T SIALE - =7 oo 9)

+ TOBFST(SEgMENT) . ccueeiiiiiiiiiiiiiie e (10)
SENDIE> ...ttt e e e e e et r e e e e e e e eesebaareeeaeeeeenennnes (11)

TWriteParamLst(Head : SeqTail) —
Head + “F>” + TWriteParamLst(SeqTail)ccoooeeeviieiniiiiniieiicccicee (12)

TWriteParamLst(Head : < >) — Head....ccooooiiiiiiiiiiiiiccees (13)

Figure 5-20 Rule TSubst: creating an Event’s action from a Segment

The rule checks whether a class has a parameter, in line (2). If so, lines (3)-
(7) are used to generate an action by concatenating an object’s name with the string
“State(”, at lines (3)-(4), then followed by a list of parameters which is generated
by the sub-rule TWriteParamLst. The result is concatenated with the) :=
symbol, at line (6), and object’s state at line (7). Where the class has no parameters,
lines (8)-(10) are used.

An example of generating an action where the segment Off2, as in Figure 5-

16, is used as an input parameter is illustrated below:

Chapter 5 Translating Timing Diagrams into Event-B models 115

TSubst(Off2) —
<LET> exp = TObj(TObjSt(Off2))

<IN> <IF> THasParam(TCTaSS(EXP))....uuuuuurrrerrrrrrrrrrrrrrrerererererneesnreneneseenees TRUE

<THEN> TObFNAME(EXP) ... vveeeeeeeeriaiiiiiiieeeeeieeiiieiteeeeeeeeeeiiieeeees floorsensor

Y 77 7 (N State(

+ TWriteParamLst(TATT1Param(TC1ass(eXp))).....cccceeeereerereeeeeenneennnn. f

) T ettt ettt e e e s)=

F TOBFST(OFF2) ceeiiiieiiiieeeeeee ettt e Off
<ENDIF>

TWriteParamLst(f : <>) —> o f

Output: floorsensorState(f) := Off

Suppose a class floorsensor has two parameters, e.g. f - FLOOR and a : AA,
the sub-rule TWriteParamlst generates (f> a). Thus, an action in this case is

defined as floorsensorState (f — a) := Off.

5.3.9 Creating an Event’s action from a SimultaneityArrow

This section explains how a simultaneityArrow is used to create an action
clause. That is, if a segment has simultaneityArrows, each is used to create an
action.

In Figure 5-21, since the segment StopAtFloorl has a CauseEffectArrow,
this segment is used to generate an event liftStopAtFloor (by the rules explained
above). The segment StopAtFloorl has two SimultaneityArrows a and b.
Remember that, the TD BNF definition for a SimultaneityArrow i8S Simul ::=
StartSegmt EndSegmt. Thus, the StartSegmt of a and b is the same segment; that is
StopAtFloor1, while the EndSegmt of a and b are Deactivated2 and deActivated2
respectively. With the translation rule TSimul, the event liftStopAtFloor has an

action generated by these simultaneityArrows.

Chapter 5 Translating Timing Diagrams into Event-B models 116

floorsensor € On —
FLOORSENSOR Off Off2

(f:FLOOR)

f: reqFl &
= currentFl

MovingArrivingUp [1,5]
MovingUp

MovingDepartingUp
StopAtFloor|l

lift : LIFT StopAtFloor ,———
MovingDepartingD(}\/'/n

MovingDow# | 1L|__L
MovingArrivingl;{oan
b
deActiva{ed \ y defctivated2
uplamp :
UPLAMP acTivateéi\
a .
Deactivated?2

downlamp : Deactivated \:l—\
DOWNLAMP Activated

Figure 5-21 Timing diagram shows Simultaneity between

lift, uplamp and downlamp (parts of Figure 5-2)

The rule TSimul creates an action from an input Segment. The detail of the
rule is illustrated in Figure 5-22. Line (2), this rule checks whether there is
SimultaneityArrow for the segment. If so, the rule iteratively generates an action
as shown at line (4) — (19); otherwise it creates nothing as shown at line (21). The

detail of the rule is illustrated in the following.

TSimul(Segment) —

<LET> exp = TC1ass(TObj(TObjSt(TENASegGM(S))))......uuvrerrrerererrrrrrrrrerererrvnnenns (1)
<IN> <IF> THasSTmuT (Segment)........ccoouiiiriiiiiiiiiieeiiieeeieeeeiee e 2)
<THEN> <FOR> s <IN> TSimu1Seq(Segment)ccccourieeeieieriiiiiiiiieeeeeeeeeee 3)
{<IF> THASPAr@M(EXP) .eeeuuuuueeeeeeerriiiiuiaaeeeeeetttreniiaeeeeeeeeetennanesseeeeseeessnnnnnnns 4)
STHENS L.t ®)
TOb(TODFSETENASEGIM(S)))..v.vevvereeeeeeeeeerereeeeeeeeeereseeeeeeeereseeeeeeenes (6)

e N 771 2 (OO @)

+ TWriteParamLst(TATTParam(exp))cooeeveeerieeeeeeenniiiiieeeeeeeeeee (8)

Chapter 5 Translating Timing Diagrams into Event-B models 117

+ TObFSE(TENASEYM(S)) «..evveenrieeiiieeiiie ettt (10)

SELSES ...ttt ettt sttt e (11)
TOb3j(TObFSt(TENASEYM(S)))..c..uvveririieiiiiiiiieiiieeniieeeieenee e (12)

F SIATE 1= 7 e (13)

+ TObFSE(TENASEYM(S)) cevvvrrnieeeieeeiiiiiiee e e et e e e e evreee e e e eeeens (14)
SENDIF> ...ttt ettt e st e e e (15)
<IF><NOT>s =Tast(TSimulSeq(Segment))......cccccerrremmrrerreeeerrnnnnrneneen. (16)
STHEND “&” ittt ettt et st e (17)
SELSE> <SKIP>.....oiiiiiiiiiiiciieeeeeeeetee et (18)
SENDIF> ...ttt (19)

d ettt (20)
SELSE> <SKIP> ..ottt 21
SENDIF> ..ottt e (22)

Figure 5-22 Rule TSimul: creating a substitution

Since there are two simultaneityArrows @ and b attached with the Segment
StopAtFloor1 in Figure 5-21, an action is generated by two iteration processes as

shown in the following.

TSimul(StopAtFloorl) —
<LET> exp = TClass(TOb3j(TObjSt(TEndSegm(s))))

<IN> <IF> THasSimu1 (StopAtFIo0rT) covecciiiieieee e eeeireeee e e
<THEN> <FOR> s <IN> TSimu1Seq(StopAtFIoorl)..veeeeieiieeeiiiiieeeeennnnn.
{<IF> THasParam(exp)........ccceeeeerererere
<ELSE>
TObj(TObjSt(TENASEgM(Q)))...ceveeeereaniiiiieeeeeeeeiieeen.
I iteration F SIATE 1= 7 e aaes
‘ + TObjSt(TENASegm(a))cceeeeeeereiiiiiieeeeeeeeeeeein.

<ENDIF>

<IF><NOT>s = Tast(TSimulSeq(StopAtFloorl))
STHEND “ . iiuuiiiiiiniiiiiiieuuirieierrererrrrrrreereerrraee.—.—.———————————.——————.

Chapter 5 Translating Timing Diagrams into Event-B models 118

<ENDIF>

TOb3(TObFSt(TENASEGM(D))) v..vevveveeeeeeeeereeeeeeeerseeseeeeen

2 jteration R Y 721 £ RPN ite =

Output : downlampState := Deactivated & uplampState := deActivated

5.3.10 Creating an action for recording current time whenever that event is

activated

To record the current time whenever that event is activated, the rule
TRecdT1ime is used. This time is used for synchronisation of events. The rule uses a

Segment as an input. The detail of the rule is shown below:

TRecdTime(Segment) —
TObj(TObjSt(Segment))
+ TObjSt(Segment)

+ “Time := gclock”

Figure 5-23 Rule TRecdT1ime: creating an action

Thus, an action is generated from the Segment Off2 in Figure 5-16 by the rule

TRecdTime is floorsensorOffTime := gclock.

5.3.11 Creating an event Ticktok

An event Ticktok is introduced in the model for generating time progression.
This event presents ticking of the clock that occurs independently, and the clock is
used for synchronisation of events. The Ticktok event uses a global variable gclock
which represents the current time and is advanced by the event. The gclock is

defined as an integer with initial value 0. We use a discrete time model rather than

Chapter 5 Translating Timing Diagrams into Event-B models 119

a continuous one since it is suitable for ensuring the time is held within fixed
limits. Using discrete time is similar to the approach of (Butler and Falampin

2002). The detail of the TTicktok rule is shown in the following.

TTicktok — “Ticktok = BEGIN gclock := gclock + 1 END”

Figure 5-24 Rule TTicktok: creating a Ticktok event

This rule generates an event Ticktok = BEGIN gclock := gclock + 1 END

The event Ticktok identifies a unit of time progress equal to 1. This unit can
broadly be millisecond, second, minute, etc. The lift system case study identifies
timing constraints in seconds. Thus, we use a second unit for our model.

To control the accuracy of system timing constraints, it iS necessary to
“ensure the timing constraints are satisfied by preventing the clock variable (in our
case gclock) from progressing to a point at which the required properties would be
violated” (Butler and Falampin 2002). However, in a real system, time cannot be
prevented from progressing and we leave this for the implementation to ensure

timing properties are always satisfied in time.

Addition information add into a Ticktok event

To prevent the time from progressing, it is necessary to add stronger guards
for the Ticktok event. Those guards are derived from each timing constraint that is
attached to the causeEffectArrows. For example from Figure 5-2, the
CauseEffectArrows in the TD involves ten timing constraints called t/ming(1),

timing(2), ... for explanation here.

floorlamp Unlit within [2, 4] seconds after floorsensor Off timing(1)
floorlamp Lit within [2, 4] seconds after floorsenseor On timing(2)

floorsensor Off within [2, 5] seconds after lift MovingDepartingUp timing(3)
floorsensor Off within [2, 5] seconds after lift MovingDepartingDown timing(4)
lift StopAtFloor within [1, 5] seconds after floorsensor On.................... timing(5)

.. etc.

Chapter 5 Translating Timing Diagrams into Event-B models 120

Thus, there are ten guards to be added into the Ticktok event. Each guard

comprises two parts: pre- and post-conditions in the form of <pre-condition =

post-condition>.

Ticktok =
WHERE

grdl:...

grd2: ...

grd3: (liftState = MovingDepartingUp &eceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenennn (1)
floorsensorState(currentFl) = On &.......uceeeeeeveveeeiiiiiieenneeneeennnnnn. 2)
((gclock — liftMovingDepartingUpTime) > 2) & ..c.cuvueeeeeeeeeeennnnnn. 3)
((gclock — liftMovingDepartingUpTime) <5) ...cccuueueueeeereeeeeennnnnn. 4)
ettt e e e ettt e e e e ettt e et e e s e bbbttt e e e e e e rareees (5)
D ettt ettt ettt e e e e ettt et e e e e e e e a——te e e e e e e e e e babtteeeeeeeeaaanas (6)
gclock - liftMovingDepartingUpTime < 5.........ceeeeeeeeeeeeevneenannnn @)

grd4: (liftState = MovingDepartingDOWR &cceeeeeeeeeeeeeeeieieieieeeseennn (8)
floorsensorState(currentFl) = On &.......eeeeeviveeeiviinienenieeenennnnnnn. 9
((gclock — liftMovingDepartingDownTime) >2) &cceeeeeeeeen. (10)
((gclock — liftMovingDepartingDownTime) <5)........ceeeeeeeeennnns (11)
ettt ettt e e e e e ettt e e e e e e e e e babttaeaeeeeeenanes (12)
D ettt ettt e ettt et e e e ettt e e e e e e bttt et e e e e e bbb rateeeeeeeeannes (13)
gclock - liftMovingDepartingDownTime < 5........ccocceeeveeeevceeennne. (14)

grd5: . ..

grdlo0: . ..

THEN gclock := gclock + 1 END

Figure 5-25 Ticktok event’s guards (parts of)

Figure 5-25 gives an example to illustrate the detail of how grd3 and grd4 are
generated from timing(3) and timing(4) respectively. The full detail of other guards

can be found in Appendix B. The grd3 has pre-conditions as shown in line (1) to

Chapter 5 Translating Timing Diagrams into Event-B models 121

(4). The pre-conditions are similar to those defined by the rules
TSimpleCauseSource, TPrevSegm and TTimingGuard in Figure 5-19
respectively. However, in line (2), the local variable f is replaced by the machine
variable currentFl. Thus, there are no non-deterministic variables defined by the
Ticktok event. In grd4, lines (8)-(12), are also similar to those defined in Figure 5-
19. Thus, identifying the Ticktok event’s guards is a process of re-defining cause
segments, previous segments, and timing constraints. Notice that in other events,
those cause segments, previous segments, and timing constraints are combined
within the same guard, as in the example shown in Figure 5-19, while in the Ticktok
event they are separated, as seen in grd3 and grd4. This is the reason to simplify
POs and make it easier to identify Ticktok’s guards’ post-conditions.

A Ticktok guard post-condition is defined by the pattern below:

E3]

“gclock - + Obj + CauseSegmt + “Time” + *“ < ” + upperlimit

For example, the post-condition for grd3 as defined at line (7) is

gclock - liftMovingDepartingUpTime < 5

This means the clock is allowed to progress between an upper and lower
bound until time expires. For example, from the grd3, a floorsensor is being set to

Off between 2 and 5 seconds after the /ift is in the state of MovingDepartingUp.

5.4 User manual input on modelling

Since the translation rules create events from Segments that have constraints
(have a causeEffectArrow), there are some events that have to be manually added
into the Event-B machine. That is because not every changing state in the TD is
identified by the causeEffectArrows. For example, the changing states of the
door from Open to Close, and changing state of the lift from MovingArrivingUp to

MovingDepartingUp or MovingArrivingDown to MovingDepartingDown.

Chapter 5 Translating Timing Diagrams into Event-B models 122

Moreover, TD are not designed to keep the whole information of the system. Thus,
there is missing information which may not be identified in the specification (and
that is why it is not generated as a TD) from the beginning, or information that
cannot be identified as a TD because it is not supported by TD notations. For
example, the lift changing directions from up to down or from down to up needs to
be created manually since it is not identified in the specification, but it needs to be
included in the system.

Currently, a simultaneityArrow is not designed to have a combination of
OR nodes. Thus, if there is a SimultaneityArrow that is used to indicate this kind
of relationship, the output model has to be altered manually. Thus, in Figure 5-26, a
and b are simultaneityArrows that demonstrate whenever a floorsensor is set Off,
the lift is in a state of MovingUp or MovingDown instantly. The whole

floorsensorOff event is generated by translation rules shown in Figure 5-27.

On
floorsensor €
FLOORSENSOR
(FFLOOR) Off ,
/
MovingArrivingUp /// b
/ \
MovingU / ~ =
OVIngtp , T= currentFl|&
. . dir=Up
MovingDepartingUp a
l’ o] f= currentFl &
5 .
59 dir = Dow
. StopAtFloor —4— o
lift : LIFT \ [2.5]
MovingDepartingDown \
N o _
MovingDown - =

MovingArrivingDown

Figure 5-26 SimultaneityArrow for the lift object

(Parts of Figure 5-2)

Chapter 5 Translating Timing Diagrams into Event-B models 123

FlOOFSEnSOPOff =~ *+eressessses s TEventName
ANY [et TParamLst
WHERE [: FLOOR «--w--ssseeeessnuuuiniiiteeeeaaee i TParamGuardValue

((gclock - lifiMovingDepartingUpTime >2) & L.
............... TTimingGuard
(gclock - liftMovingDepartingUpTime <35)) &
lifiState= MovingDepartingUpTSimpleCauseSource
& = currentFl & dir = Up teveeeeerene....TSimpleCond
v
((gclock - liftMovingDepartingDownTime > 2) & L.
vievveere. TTimingGuard
(gclock - liftMovingDepartingDownTime <J5)) &
lifiState= MovingDepartingDownTSimpleCauseSource
& f= currentFl & dir = Down Levieieienennn. TSimpleCond
& (floorsensorState(f) = On) TPrevSegm
THEN
floorsensorState(f) := Off e TSubst
([lﬁ‘Sta[e = MOVlngUp\/ [lﬁState = MovingDown) TS'imu1
ﬂoorsensorOﬁ‘Time = gclock TRecdTime
END

Figure 5-27 A floorsensorOff event before revision

In Figure 5-27, the action generated by the rule TSimul is not recognized by
Event-B complier. That is because Event-B does not deal with OR relationships in
an action part. Thus, we have to revise the floorsensorOff event by separating it
into two events: floorsensorOffUp and floorsensorOffDown as shown in Figure 5-
28. In order to do that, we also split the original floorsensorOff event’s guards and

actions into the corresponding events.

124

Chapter 5 Translating Timing Diagrams into Event-B models

floorsensorOff Up =
ANY f
WHERE f: FLOOR
((gclock - liftMovingDepartingUpTime > 2) &
(gclock - liftiMovingDepartingUpTime < 5)) &
liftState = MovingDepartingUp
& f= currentFl & dir = Up

& (floorsensorState(f) = On)

THEN
floorsensorState(f) := Off

(lifiState := MovingUp)

floorsensorOffTime := gclock
END

floorsensorOff Down =
ANY f
WHERE f: FLOOR
((gclock - liftMovingDepartingDownTime > 2) &
(gclock - liftiMovingDepartingDownTime < 5)) &

lifiState = MovingDepartingDown
& f'= currentFl & dir = Down

& (floorsensorState(f) = On)

THEN
SfloorsensorState(f) := Off

(lifiState := MovingDown)

floorsensorOffTime := gclock
END

Figure 5-28 Two new events are regenerated from floorsensorOff event

Chapter 5 Translating Timing Diagrams into Event-B models 125

5.5 Summary

This chapter explains how translation rules are used to transform a TD to an
Event-B model. First, we generate BNF definitions for describing a TD. Next,
translation rules are created in which TD BNF elements are used as input parameter
for the rules. The rule covers generating the Event-B CONTEXT and the
MACHINE parts.

For the CONTEXT part, we can generate sets, constants, and axioms.
Additional sets that cannot be identified by TD need to be added by hand; for
example, identifying a set of lift directions to up and down.

For the MACHINE part, the rules can generate machine variables,
invariants, variables’ initial values, and events. Normally, if an extra set is
generated by hand in the context part, the additional machine variables, invariants
and their initial values corresponding to that set are generated by hand in the
MACHINE part. Some other machine variables may also be identified. For
example, in the lift case study, the machine variable currentFI is manually added to
represent the current floor of the lift. In the MACHINE part, each event is
generated by a segment that has a causeEffectaArrow. The rules can generate an
event’s name and its body in one of two types: Guard or Non deterministic. The
first type does not have local variables, while the latter is declared with non-
deterministic local variables. An event’s guards are generated from timing
constraints, Cause segments, Previous segments, and conditions attached to the
CauseEffectArrow. An event’s actions are generated from a target state and
SimultaneityArrows. Each event is provided with an action to record the time it
is activated. This time is used to synchronise events. Currently, TD notation does
not support identifying SimultaneityArrow with OR nodes, thus any action
created by this kind of node needs to be split into corresponding events.

There are some events that need to be added by hand. That is because not
every event can be identifyied by a causeEffectArrow. For example, changing

state in an object itself, such as an event to represent the state of a door changing

Chapter 5 Translating Timing Diagrams into Event-B models 126

from open to close, needs to be generated by hand. This alteration depends on the
characteristics of each system.

To control timing of events, we create the Ticktok event for time progression
and for preventing the clock variable progressing to a point at which system

properties will be violated.

Chapter 6 Translating Timing
diagrams into UML-B

The use of TD is suitable for identifying timing constraints in an object itself
and among other objects. However, a TD is not designed to add state-based
information nor gather whole system information. Thus, to create a complete
Event-B model from a TD, the missing information must be added, such as
variables, constants and some events. In order for that process to be accomplished,
either the information must be added by hand or an existing tool like UML-B must
be used. A UML-B is a plug-in for RODIN toolkits and is implemented by Eclipse
EMEF. UML-B is an Event-B graphical front end, has a well-defined Metamodel of
Classes, and Statemachines, and can be automatically translated into an Event-B
model whenever the model is saved. The Event-B verification tools, i.e. syntax
checker and Prover, then run and immediately display any problems which are
shown in the relevant UML-B diagrams. Thus, we selected the UML-B plug-in as
it provides Event-B integration and its features — using Class and Statemachine —
are TD compatible. For example, it enables us to compare state changes in the TD
along a Timeline using the UML-B Statemachine. ATL, which is also developed
on the Eclipse platform and generates a target model from a source model, was
selected for translation rules. ATL like UML-B also has a well-defined Metamodel.
Section 6.1 identifies TD used for translation into UML-B. Section 6.2 gives an
overview of how a TD source model is transformed into a target UML-B model,

using ATL translation rules. The abstract syntax of a TD is identified by a TD

Chapter 6 Translating Timing Diagrams into UML-B 128

metamodel in section 6.3, and is used to generate a TD input model as described in
section 6.4. ATL translation rules for creating each UML-B model component are
explained in section 6.5. TD cannot be used to create a complete UML-B output
model because a TD in itself only represents some parts of the whole specification.

Thus, some additional information is required for the model, as explained in

section 6.6.

. Litl :
Lit Lit]
floorlamp €
Floorlamp
(f:-FLOOR) Unlit Unlit2
2\ ¢ - currentFl
1 ¢= currentFl
2,4]
Onl [
floorsensor € On
Floorsensor
(:FLOOR) Off orz
i 5
; // f= currentFl . Fl&
Lit] /1 & dir=U ~ currenthl &
requestlamp € rLit o~ // 17 f= currenFl &) dir = Down
Requestlamp 1/6 / dir = Down
. 2,5
(fFLOOR) Unlit 18 /| rtmiiez 23]
I
19 > currentF)\ : f= currentF1
/ \ & dir= UP] N o A rereiiri 7 VovingArrivingUp4
MovingArrivipgUp £ cyrrentFly 5] m 1avikgArrivinGUpd * -
\
[2,4] N P
. / 1 uns
MovingUp / e
f curremFl/ /1
. . | 3. {ovingD¢partingUp5
MovingDepartingUp | ==a =<
: Mo)// haDepartingUp2 G- -
/ StopAtFloorl
lift - Lift StopAtFloor Storathioor] \\ e
\ / .
) eDep: 9
MovingDepartingDowlf// . \MoyngDepartingDowrt ovigDepartinglo fn
\
19 h \,/\ ANNY ' B !
MovingDown // ifrreqFl\ /> 23 l\]own Down?7 |
If/E currentfl ; \\ \ I
/ \ I F NP i
/ [1.5] \\ \ MovinglirritingDowh8 MpvingArrivingDown&

/

/

f: reqFl A /

[

MovingArrivingDoy\//rli [1.5]
!

!

1 \
VA1) /

|
T /?/6112 \
Open ! ; 8 I\ f:reqFl /
/] |
door ¢ Door [: I ! 1\ /1/ 5
. / | / /
(fFLOOR) Closed | Clhsed1 | Closedr /| 7
| \ 1 /
A 12 %
I -
) I AN (](r/j\a\;zizaﬂwf 1,/
uplamp : deActlvate]U . / //,
7
Uplamp Vo AN) .
acTivated \(IUTIV[II(d1 So_ _ / acTivatedl]
\ g /
\O\ Pid /
-7 /
. 1 N D/e,;efﬁzted? //
Deactivated /
downlamp : /
/
Downlamp Activaed] / Activated]

Activated

Figure 6-1 Timing Diagram used for transforming into a UML-B model

Chapter 6 Translating Timing Diagrams into UML-B 129

6.1 Timing Diagram used for translation into UML-B

A TD used for generating UML-B is slightly different from the TD used for
the direct translation of an Event-B model shown in Chapter 5.

Unlike the TD for the direct translation, where a class name is represented by
capital letters, in TD translation to a UML-B model, a class name must begin with

a capital letter followed with small letters.

Thus, in chapter 5, floorsensor € FLOORSENSOR(f:FLOOR)

in chapter 6, floorsensor < Floorsensor(f:FLOOR)

For the direct translation, class names are generated as a set in a CONTEXT

part. For the UML-B translation, class names are generated as a class in a
MACHINE part.

6.2 Overview of the TD to UML-B ATL transformation

We use ATL as a language to transform a TD model into a UML-B model.
Figure 6-2 shows a source model Timing diagram (TD), which conforms to a
metamodel TDMetamodel, transformed into a target model UML-B which conforms
to a metamodel umlbMetamodel. The transformation definition TDtoUMLB.atl is
written in ATL language and conforms to a metamodel ATL. The whole metamodel

conform to the Ecore metamodel.

conforms to conforms to
TDMetamodel umlbMetamodel
A A
confprms to confofms to
Timing diagram TDtoUMLB atl
(TD) | UMLB
TDtoUMLB.atl

source target

Figure 6-2 Overview of the TD to UML-B ATL transformation

Chapter 6 Translating Timing Diagrams into UML-B 130

6.3 Timing diagram Metamodel

The TD metamodel created by EMF to describe abstract syntax of TD is
illustrated in Figure 6-3. The same colours within Figure 2-16 are used to identify
which parts of the TD metamodel are generated into UML-B metamodel parts. A
TD model is initially generated inside a project (TDProject) with a string name
(Name) provided. A project is made up of one or more TD machines
(TDMachine). A TDMachine contains at least a TD class (TDClass). Each
machine and class is given a name. A class may or may not have parameters. If
there is a parameter (TDParameter), the parameter is defined by a string name
(param) and type (paramType). A class has zero or many Timelines
(TDTimeline). Each Timeline has at least one state (TDState), and zero or many
transitions (TDTimelineTransition).

Each TD state may have zero or many segments (TDSegment), in which
each segment is identified by its incoming (incoming) and outgoing (outgoing)
transitions. Each transition connects to a couple of segments: a source (source) and
a target (target) segment. A segment may or may not have a SimultaneityArrow
(Simul). If so, it connects two segments. At present, the TD metamodel allows
developers to generate a simultaneityArrow within the same segment. However,
we must assume that to correctly generate a TD model, one has to know that a
SimultaneityArrow links different object segments.

A segment has zero or more constraints (TDConstraints) in which each
constraint has one node type (TDNodeType). Why do we need a class
TDConstraints instead of having a direct association between TDSegment and
TDNodeType? The reason is to maintain the TDConstraints class. Without this
class ATL cannot generate a UML-B model correctly. We may need to explore the
reason in future work; however, we think that it could be a problem with ATL itself

or the ordering of translation rules.

Chapter 6 Translating Timing Diagrams into UML-B 131

H ToProject
construct
1“*
= TDMachine
class
1“*
H Name g I g
TDClass TDParameter
S parameter O0..* param
o paramType
timeline
0”*
H TDTimeline
timelinetransitions
states
s 0..*
H TDState g 1.1 source H TDTimeline Transition
TDSegment
= _ﬁr_“”?' o segments 0..* 1.1 target
= initial #]
incoming _ 0..*
outgoing 0%
constraints
5w g simil
H TDConstraints
1.:1
effectsource
causesource
1.1
H TDModeType
2“*
[TDPredicate 250
o predicate 0.+ . And or
predicates
H simple H AND_node | OR_node
H TOTiming =
o timing
= lowerlimit 1
= upperlimit !

Figure 6-3 Timing diagram Metamodel

There are three kinds of node type: Simple node (Simple), And node
(AND_node), and Or node (OR_node). And and Or nodes require at least two

Chapter 6 Translating Timing Diagrams into UML-B 132

node types; they can be And or Or nodes themselves or Simple node types. A
Simple node type is actually a segment and is used to identify a cause segment
(causesource) for a causeEffectArrow. Each Simple node could have zero or
more conditions (TDPredicate), with each condition identified by a string. In
addition, a Simple node may have at most one timing constraint (TDTiming). A
timing constraint is declared by lower bound (lowerlimit) and upper bound

(upperlimit) whose values are integers.
H TDSegment

-
Onl e - onl

floorsensor © On 7

Floorsensor

constramts iy
~

(FFLOOR) Off L - ~o
e " ~
Q "4,»—“' 1.1 H TDConstrairts AN
f= currentFl & F:ctﬂxgul'l,&—"' \\
) o dir=Up - ~dir = Df“_“__ e ——— T T T T T TP CAUSESOUR | offerteniee \\
MovingArrivingUp [2.5] Y - \

Mov l.ngUp Movingiéy [TONodeType \
MovingDepartingUp =

lift : Lift ~ StopAtFloor
MovingDepartingDown

\
S.
A [H TDPredicate
o predicate P

predicates V And Qar

I
I
I
I
I
I

- I 1.1 \
I
I
I
I
I
I

MovingDown *

\

|

|

|

|
MovingArrivingDown | 4
. H Simple H AND_node H CR_node
\ ~ < E TOTiming

\ = lowerlimit 8
= upperiimit ;5 4 timing

Timing diagram \ \ TDMetamodel

Figure 6-4 An example TD vs. TDMetamodel

For example in Figure 6-4, a segment Off2 has a constraint defined by a node
type OR. This node type comprises two simple node types pointing to segments
MovingDepartingUp2 and MovingDepartingDown6. The simple node type
MovingDepartingUp2 has predicates and a timing constraint defined by f =
currentFl & dir = up, and [2, 5] respectively. In the same manner, the simple node
type MovingDepartingDown6 has predicates and a timing constraint defined by f =
currentFl & dir = down, and [2, 5] respectively.

Chapter 6 Translating Timing Diagrams into UML-B 133

6.4 Generating a TD input model

A TD model is generated from TD metamodel using Eclipse EMF. Figure 6-

5 shows parts of a screenshot of an Eclipse EMF editor view for a lift system.

[2) sampleTD tdmetamodel &3 . <e——— Source model’s name

I'—‘ Resource Set

=] @ platform: fresourcef TDEOUMLE _with_TDConstraints_ClasssampleTD.tdmetamodel

B4 TD Project LiftSystem .———————— Project

B4 TD Machine ift ~~&—————— Machine
El- 4 TD Class Flaorlamp

“3" TD Parameter f
- <4 TO Timeline Floorlamp Editor
El- 4 TD Class Floorsensor <——— Class View
+ TD Parameter | <——— Parameter
=< TD Timeline floorsensor ~<——— Timeline

B4 TD State On

=4 TD State OF
B4 I deie] <« Segments

El-4 TD Constraints <&——— Constraints

El-4 ORnode <—— Node Type
£ 4 Simpls Timing
< TO Timing 2 ~&———— constraints

-4 TD Predicate f = currentFl & dir = Up <€—— Predicates
-4 Simple
w4 TD Timing 2
-4 TD Predicate F = currentFl & dir = Down
< TD Timeline Transition
-4 TD Timeling Transition
-4 TD Class Requestamp
Selection | Parent | List | Tree | Table | Tree with Columns |

-4——— States

-4—— Transition

E Properties &2

Propert | Value
Incoming < TD Timeline Transition Property
Mame 1= Offz Vi
Qukgaoing < TD Timeline Transition &5
Sirmul

<4 TD Segment MovingUp3, TD Segment MovingDown 7

SimutaneityArrow

Figure 6-5 Timing diagram instance generated by Eclipse EMF

The editor view is located at the top of the window while the Properties tab is
positioned at the bottom. The figure shows a TD machine named lift located inside a
LiftSystem project. Each class is declared inside the machine, together with any
existing Parameters, Timelines, States, Segments, Nodetypes, Timing constranints,
Predicates and Transitions. For example the highlighted segment in Figure 6-5

indicates a segment Off2. This segment belongs to a class Floorsensor. This class has

Chapter 6 Translating Timing Diagrams into UML-B 134

a parameter f, a Timeline named floorsensor, and comprises two states: On and Off.
Each state is defined by its segment, for example, a segment Off2 belongs to the
state Off. This segment has a constraint defined by an OR node with a combination
of two Simple NodeTypes represented by line 3.1 and 3.2 in Figure 6-1. Each Simple
NodeType has Timing and Predicates as shown in Figure 6-5. Incoming, Outgoing and
Simul are defined by the Properties tab as shown at the bottom of the figure. In
Figure 6-1, the segment Off2 has two SimultaneityArrows: MovingUp3 and
MovingDown7 as shown in the Properties tab. Since the TD Timeline transitions do
not have name, we do not declare a name for Timeline Transitions in the
metamodel. Thus, we have to carefully select the corresponding transitions. Giving

Timeline Transitions names is considered as future work.

6.5 ATL Translation rules

This section describes details of ATL translation rules used to transform a TD
into a UML-B diagram. Figure 6-6 shows an ATL header section named TDtoUMLB
which use a target and a source model conforming to umlbMetamodel and
TDMetamodel respectively. They are some helpers defined at the beginning of the
ATL module such as umlbproject and nat1Type (the details of ATL helpers are
described in section 2.9.3). These helpers will be used in the rule Project as
shown in Figure 6-10 to append the corresponding values to a target UML-B
model. For example, the helper umlbpro-ect is used to add a project that is created
from a TD to a UML-B Project. The helper nat1Type is used to add a positive
number to a UML-B TypeExpression. The details of using umlbproject and
nat1Type helpers are explained in section 6.5.2 below while the other helpers are

detailed in Appendix C.

Chapter 6 Translating Timing Diagrams into UML-B 135

module TDtoUMLB;

create OUT : umlbMetamodel from IN : TDMetamodel;

helper def : umlbproject : umlbMetamodel!UMLBProject =
umlbMetamodel !UMLBProject;

helper def : natlType : umlbMetamodel!UMLBTypeExpression =

umlbMetamodel ! UMLBTypeExpression;

Figure 6-6 Header section of TDtoUMLB.atl

Figure 6-7 illustrates parts of a UML-B metamodel in which the same colours
used in Figure 6-3 are used to emphasize corresponding TD to UML-B parts used

during the conversion.

H UMLECIass

o fixed H UMLBabstractClass] UMLBstatemachineCollection

= selfiame

events
0%
q.*
H UMLEClassifier refines
H UMLBnamedConstrainedElement classes
0.1 statemachines

nstances H UMLBMachine

0.1

I UWLETypeE . {5 UMLBvariableElement, [
YPEEXpression = initialValue
tend! contexts variables
xtends ¥ts 5 UMLBStatemachine
* *
0. b = translation
a.* [
0% H UMLBContext
" H UMLBEvent H UMLBVariable
= eventkind transitions states
0.* o.*
H UMLBTransition | 0..* incoming H UMLBState
typeExpressions 0.* outgoing| = final
H UMLBguardedAction = initial
= convergence target 1.1 # notransitionsfromfinal
source 1.1 # noincomerstoinitial

noregionsoninitialorfing

actions QUAIS | itress variables
0.* 0.F e o.*
H UMLBProject 0..* B UMLBconstruct i
H UMLBAction H UMLBPredicate |H UMLBEventVariable
constructs = i = EEdEE = typeProvider | UMLBtypeProvider
1.1
H UMLBnamedElement type
H UMLBname 1.1
=~ name E
% unigueElementiamess | UMLBtype

Figure 6-7 UML-B Metamodel (parts of)

There are a number of UML-B parts which can be directly generated from
TD components, e.g. Project, Machine and Class. However, some of UML-B

components cannot be directly created. For example, generating a guard for a

Chapter 6 Translating Timing Diagrams into UML-B 136

UML-B event, many of TD metamodel classes are involved, such as
TDConstraints, TDNodeType, Simple, AND_node, OR_node, TDPredicate and
TDTiming. The detail of creating a UML-B model is described next.

6.5.1 Top-Level ATL translation rules

This section explains the structure of the top-level ATL rules and the
corresponding UML-B model components created. As shown in Figure 6-8, an
UML-B project’s name is created from the rule project, while a machine is
generated from the rule Machine. The rule Machine is also used for creating a
machine event Ticktok and a machine variable gclock, which are used to generate
time progress, and the global clock for the machine respectively. Extra machine
variables are added such as regFl to keep the list of requested floors (this is the
same variable created by hand in Chapter 5). A SEES association and a context’s
name are created from the Machine rule. However, the context detail has to be
declared manually. This is because ATL has a limitation and cannot re-use
elements to generate other new elements across rules. ATL does not have the
flexibility to generate an element that has to be created from the combination of
used target elements. Thus, we cannot use TD class names to generate carrier sets
in a Context, since they are already used to create classes by the rule class (as
described in section 6.5.4 below).

UML-B class names and attributes are created from the rule class. Some
attributes need to be redefined since part of an attribute’s name is generated from
its corresponding state’s name. Statemachines belonging to corresponding classes

are generated by the rule statemachine.

Chapter 6 Translating Timing Diagrams into UML-B 137

— Project .
Rule: '
Project —Machine ~
Rule: Machine Event
Machine Ticktok

SEES Machine Variable

gclock : INT
Rule: I ClassName1 ClassName2
Class— .. : Altribute | [. Aftribute. .
Rule: . Statemachines Statemachines
Statemachine

L] Generated from rules
Extra information

Figure 6-8 Top-level ATL rules

Our translation rules do not cover defining UML-B Machine Statemachines.
This is because a TD Timeline, which can be seen as a UML-B Class Statemachine
must belong to a class. According to our TD metamodel, one cannot generate a
Timeline without a class. Invariants have to be manually created since they can

not be declared by TD.

6.5.2 Creating UML-B Project

An UML-B project is generated by mapping a class TDProject to a class
UMLBProject (Figure 6-9) by the rule project (Figure 6-10) as detailed in line (2)
and (3) where a variable u is used to represent a target model element, Project.
From Figure 6-10, the rule Project maps the source model element
TDMetamodel ! TDProject represented by a variable t in line (2), to a target model
element umlbMetamodel!UMLBProject represented by a variable u in line (3).

UML-B project’s name is created from a TD project’s name as shown in line (4).

Chapter 6 Translating Timing Diagrams into UML-B 138

H UMLBMachine contexts £ UMLEContext

0”*
H TDProject | construct | E TDMachine H UMLBProject 0..* H UMLBronstruct
constructs
1”*
H Name H UMLBnamedElement H UMLEname
= name = name E
unigueElementiNames
TDMetamodel umlbMetamodel

Figure 6-9 TDMetamodel and umlbMetamodel : Project and Machine

As shown in Figure 6-9 right, UMLBProject comprises UMLBconstruct
which is sub typed into UMLBMachine and UMLBContext. Thus, line (5) maps an
association construct of TDMetamodel to an association constructs of
umlbMetamodel. This association maps UMLBMachine and UMLBContext (which

are both created later by the rule Machine, Figure 6-12) into UMLBProject

automatically.

FULE PTOTECE { ttrtiiteiiiieiieeiieetieeteerteeteeeteesteesnestnesterteerteesneesneesnessaesseesneesnaees (D)
from t : TDMetamodel ! TDP IO JECE ciitierrrieerrieerrieerrieeereresneersneessnnessnnnns 2)
to u : umlbMetamodel ! UMLBPIOJECT virerrreerrrerrrneerrunerrunersneessneessnnessens 3)

(NAME <= £ .TIAIME, teuerruerrunerrierrreerteerneereeersieerereeerrneesraeeres (@)
CONSETUCES <— £ .CONSETUCL) , terrrrerrrieerreerrrerrnnerrnneessnnenns (&)
ptl : umlbMetamodel ! UMLBTYPEEXPIresSSion ivvineiieeereeereneennnnns (6)
(name <= "BOOL"), toreeereernerrnerreerseerseesneesesseesseesneesnessersnessnns (7
pt2 : umlbMetamodel ! UMLBTYPEEXPIresSSion civvinerieeeerieeerenennnnnns (8)
(NAME <= "NAT ") tteerrueereneeerieerrieeerueerseerseessieersreeerrneessaeeres 9
pt3 : umlbMetamodel ! UMLBTYPEEXPreSSion civiieeieeeneeenereneennes (10)
(NAME <= "NATL "), teeerrieerreerrieerrteersneeesrieeesieersneessseessnessnns (11D
ptd : umlbMetamodel ! UMLBTYPEEXPreSSion civvieeieereeenerennennns (12)
(NAME <= "INT ") tertueerrneeruneerrieerrieerrieerreerrieersineerseerseerenns (13)

do { thisModule.UmlbPIroJeCh <= U; .ierererrieerrueerrueeesrieessieessnnessnnessnnnns (14)

Chapter 6 Translating Timing Diagrams into UML-B 139

thisModule .boolTyPe <= PLL; tiiiiiiiiiiiiieeeeeeeeiiiireeeeeeeeeeeiarreeeeeeees (15)
thisModule .nNatTyPe <= DPLE2; ierrieeriiiiireeeeeeeeeeiiirreeeeeeeeeeeeinreeeaeeeens (16)
thisModule.natlType <— PE3; e (17)
thisModule.intTyPe <= DPLA; iiiiiiiiiiiieieeeeeeeeiciireeeeeeeeeeeearrreeeeeees (18)
u.typeExpressions <- u.typeExpressions.append(ptl); (19)
u.typeExpressions <- u.typeExpressions.append (pt2); (20)
u.typeExpressions <- u.typeExpressions.append (pt3); 21D

u.typeExpressions <- u.typeExpressions.append(ptd);} ... (22)

Figure 6-10 ATL rules for creating UML-B Project

The texts, such as Boor. and NAT1, inside the * ' symbol as shown above are
additional information. We use them to create variable types such as Boolean
(BooL), positive integer (NAT1), etc., for use in the model. If we do not create those
types in advance, the user must define them manually later. Moreover, since our
model defines a timing constraint as an integer, generating a type INT also supports
this. This way one can introduce strings or variable types directly to the UML-B
model.

Lines (6)-(13) show assigning BooL, NAT, NAT1 and INT to each target model
element UMLBTypeExpression which is represented by variables pt1, pt2, pt3
and pt4 respectively. Those variables are assigned to a corresponding helper in
lines (15)-(18), in a do part in which a command <thisModule.helperName>
is used for inferring a helper. Note that using to and do is described in section

2.9.2. Lines (19)-(22) are used to append those variables to the project.

6.5.3 Creating a UML-B Context’s name and Machine

A UML-B context’s name and machine are created by the rule Machine as
shown in Figure 6-12. This rule wuses the source model -element
TDMetamodel ! TDMachine as shown in line (2). As shown in lines (4)-(5), a
context’s name, represented by the variable ctx, is created by the TD machine

name followed by the string _ctx. The texts such as _ctx, Ticktok and gclock :=

Chapter 6 Translating Timing Diagrams into UML-B 140

gclock + 1, as shown in Figure 6-12, are additional information which we use to
directly generate UML-B parts that cannot be obtained by the TD. In this case, they
are used to introduce a string, an event name, and an event action. Line (7) is the
generation of the UML-B machine name by the TD machine name. Line (8), an
association class in TDMetamodel is mapped to an association classes in
umlbMetamodel; this is for adding classes (that are created later in rule class) to

the machine.

[l UMLBclassifier [UMLBnamedConstrainedElement il UMLBname
= name -
uniqueElementhames:
| TDMachine
H UMLBClass H UMLBabstractClass
= fixed
class = selffilame
1.* 0.
H Name g : Classas
ToC
5. [AlTE = [} UMLEMachine
TDMetamodel umlbMetamodel
Figure 6-11 TDMetamodel and umlbMetamodel : Machine and Class
TULE MACRINE { titiiiiiiiiiiiieiiiieeiiieetiieeeiieeetteeetteeeeteeesteesstnesstneesrneesrneessnnessnnnns (D)
from t : TDMetamodel!TDMaChine .ivveeiriiiirieiriiieiiieeeeieeerieeraneernnns 2)
< SR 3)
ctx : umlbMetamodel!UMLBCONTEXE .irverrrirerrueerrnnererneeesneeesnneenens 4)
(NAamMe <= £ .NAME + " CEX)) ettt eeeeeeeeeeeeeaenns ®))
m : umlbMetamodel !UMLBMACRHING ivvireiriiiiiriierenerinerierneerneennenns (6)
(NAME <= £ .DAIME, trerrueerruerrinerrreeerreerseessneessneessnnesssaeessneses (7
ClassSes <= L .CLASS), tereeerreeerrieerrieerrieeeriieerreeerseersneesnnneeres (8)
e : umlbMetamodel ! UMLBEVENL .ivirereeerrieerreereunerrnneessneessneessnnessens 9
(NAame <= "TECKEOK"), tireeerrieerrirerrtieerrieeerieersineesseessneessnns (10)
a : umlbMetamodel !UMLBACLT 10N .iieirrrirrnerreerneeeneeenersersnernennnnns (11)
(name <— "ACLIONL", iiiiieiirieerriiertiieerrieeerieerrieeesreesreeeaens (12)
action <- 'gclock := gclock + 1'), crrrrrrieerrinernnnens (13)
gclk : umlbMetamodel!UMLBVATriable .ovcviviieeiireeierrieenernnennnnns (14)
(NAME <= "GCLOCK ", tettteetreerrieerrieereneeerieeerieersieeesseesrneessens (15)

typeProvider <— thisModule.intType, .ccoccveeerrererernnnnn (16)

Chapter 6 Translating Timing Diagrams into UML-B 141

iNitialValue <= "0') ciiieeeeiieerrieerrieeeereeerieereneeesrieesneessnns (17

< 1T PSP PR UUPPPPPPPRRIIN (18)
m.events <— m.events.apPend (€); «iecrreerreerreerneeeeerierseerneeennens (19)
e.actions <— e.actions.appPend (@) ; wecereeerrieerrinereeieereneeennnenns (20)
m.variables <- m.variables.append (gclk); .cveeerirerrnernnnnns 21
thisModule.umlbmachine <— T .veeerrieerrieeeriieeriieereeeerinerrnneenes (22)
m.contexts <— m.contexts.append (CLX) ; «civrverereeerreeerrenereennns (23)
thisModule.umlbproject .CONSETUCES <= .iiverrrrirerinererenreneennnns (24)

thisModule.umlbproject.constructs.append(ctx);
thisModule.umlbproject.ConsStructs <= .ceeerciieeersieeeennns (25)

thisModule.umlbproject.constructs.append(m); }

Figure 6-12 ATL rules for creating UML-B Machine

An event Ticktok, represented by the variable e of the target model element
umlbMetamodel ! UMLBEvent, 1S created in lines (9)-(10). A Ticktok action is
assigned to gclock := gclock + 1 asshown in lines (11)-(13) while the machine
variable gclock whose type is assigned to an integer with an initial value of 0, is
generated as shown in lines (14)-(17). The variables ctx, m, e, a and gclk are
assigned to corresponding UML-B components by the do section.

In the do section, line (19) is used to add the event Ticktok to
UMLBMachine, line (20) appends the action to the event Ticktok. Line (21)
assigns the variable gc1k as a machine variable, and then the machine is added to
UMLBMachine by calling the helper thisModule.umlbmachine, shown in line
(22). Line (23) links the context to the machine by adding this context to an
association, contexts. Line (24) appends this context to a project by calling the
helper thisModule.umlbproject.constructs. The helper
thisModule.umlbproject 1is defined earlier (Figure 6-6) and constructs is an
association name as illustrated in Figure 6-9. Line (25) appending the machine to
the project. The rule Machine generates a package diagram and the event Ticktok

in the machine part as illustrated below.

Chapter 6 Translating Timing Diagrams into UML-B 142

+ Machine Event
Ticktok

K

=} Properties E Tasks] C. Progressw

“ _ Machine Event : Ticktok
S| -
Sees Mame: Ticktaok

Properties
Refines
Eventkind InO rmal
Parameters
 Winess | Convergence Io rdinary
Guards
-"‘CUL Parameters:
Package Ertars Ticktok
Diagram]
g Witness: Event

Guards:

gclock := golock + 1

Actions:

Figure 6-13 Package Diagrams and Event Ticktok in a Machine part

6.5.4 Creating UML-B Class and local attributes

Figure 6-14 shows part of the corresponding TD, TDMetamodel and
umlbMetamodel used for generating UML-B classes and attributes. UML-B
classes and attributes are created by the rule Class as shown in Figure 6-15. A
class name is generated by a TDClass name followed with a string se1f as shown
in lines (4)-(5). The se1f is used to identify a unique non-deterministic variable
name for the class. For example, FloorsensorSelf is a non-deterministic variable
used in the class Floorsensor. Line (6) shows the mapping of the TD timeline
association to the UMLB statemachines association. This is how we link

Statemachines to a class.

Chapter 6 Translating Timing Diagrams into UML-B 143

floorlamp € Lit
Floorlam :
(EFLOOR) [2.4]
floorsensor € On [2.4]
Floorsensor Off
(fFLOOR) [1.5] H MName H TDClass
requestlamp C rLit ‘ Ldir=1Jp = name
Requestlamp Unlit Lidir 7\Down /s £ reqFl &
(f:FLOOR) I\jir = Up| \2,5] [2.5] f=cufrentFl
MovingArrivingUp.\[2.5] timeline
MovingUp #
lift : Lift 210\ i”i—‘Fr])Cl)U"mK—‘l—]P [.dir =/Down 0.
StopAtFloor 75 —
\Imuml)cp;mwul)m\nf‘ 3 23] H TDTimeline
- c - regFl
MovingDown
MovingArriviagDown L
- f1.5] 1.1
door € Door Open
(TFLOOR) Closed TDMetamodel
uplamp : deActivated
Uplamp acTivated
downlamp : Deactivated
Downlamp Activated
- - H UMLBClass
| UMLBstatemachineCollection = g
H UMLEabstractClass = selftlame
0“*
staternachines attrbutes | 0, * B uMLBAttribute H UMLBproperty H UMLBtypedElernent
H UMLBStatemachine = surjective
= translation H UMLBabstractAttribute = injective
= fotd typeProvider
H UMLBvariableElement| | = functional
= initialvalue 11

H UMLBtypeProvider

umlbMetamodel

Figure 6-14 TDMetamodel and umlbMetamodel : Class and Attribute

A class attribute is generated by mapping the TDClass to the
UMLBAttribute, where the result is kept in variable att, as shown in line (7). An
attribute name is generated by the TDClass name which is changed to lower case
letters by the function toLower (), followed by the string xStatexTime, line (8).
We use a string xstatexTime to represent features that need to be completed by
hand. In this case, it is a part of a class attribute name. Every class attribute name is
generated from every corresponding state name of a class. For example, the class

Floorsensor must have attributes floorsensorOffTime and floorsensorOnTime. We

Chapter 6 Translating Timing Diagrams into UML-B 144

cannot generate whole attributes because this rule is working with UMLBClass,
line (2), not a UMLBState. The UMLBState is used for generating a Statemachine
in the rule stateMachine as shown in Figure 6-17 below. As ATL cannot reuse the
same elements to generate other components across the rules, we cannot generate

whole attributes for this class.

FULE CLESS { teruerunerueerteerueerneesneetersaesteesneesnessnessnessessessseesnessneesesseesseesseesnnees (D)
from t : TDMetamodel ! TDCLASS .ivreerrrieerreerruneernnersseeessneessnnessens 2)

to u : umlbMetamodel ! UMLBCLASS «iiveeeerrrrerruerrrnerrrneerrneersunernnnnns 3)

(MAME < T eTIAME, teuttneneeneeneeneeeeneeneeeeeeeeeeeeeeneensenaens @))

selfName <— t.name + 'Self', iiiiiiiriiieerrieeerneeennnns (&)

statemachines <— t.LiMELliNe), wovvereeieieeeieeeeennenns (6)

att : umlbMetamodel!UMLBAttribute iiiiiiiiiiiiiiiiieiiiieeiiieeerinennnn. (7

(name <- t.name.toLower ()+ 'xStatexTime', (8)

typeProvider <- thisModule.intTypPe, .icceeerrrrrrnernnns 9

initialValue <= "0") tiiiiireeiireriieeeeiieeere e eererananas (10)

do { u.attributes <- u.attributes.append(att); } ceecrererrieerrennns (11)

}

Figure 6-15 ATL rules for creating UML-B Class

Lines (9)-(10) show how to assign an attribute type and initial value which
are integer and O respectively. The attribute is appended to UMLBClass as shown
in line (11). Those attributes are used to record the current time whenever
corresponding events belonging to the class are activated. Figure 6-16 shows how

classes and their attributes are generated from the rule c1ass.

Chapter 6 Translating Timing Diagrams into UML-B 145

© Floorlamp © Floorsensor “ Reguestlamp
Attributes Attributes Attributes
2 floorlampxStatexTime: IMI @ floorsensorxStatexTime: INI @ reguestlampxStatexTime: INT
Events Events Events
Statemachines Statemachines Statemachines
Invariants Invariants Invariants
Theorems Theorems Theorems
o Lift @ Door @ UpLlamp @ Downlamp
Attributes Attributes Attributes Attributes
@ liftxStatexTime: INT @ doorxStatexTime: INT @ uplampxStatexTime: INT © downlampxStatexTime: INT
Events Events Events Events

Statemachines Statemachines Statemachines Statemachines

Invariants Invariants Invariants Invariants

Theorems Theorems Theorems Theorems

Figure 6-16 Lift system Class diagrams

Even though a TD has symbols “:” and “c” to indicate whether an object
appears singly or multiple in a class, those symbols are not defined in a TD
metamodel nor in a UML-B metamodel. That is because in UML-B, defining a
class with many objects inside can be done by using a Machine Class; defining an
object is done by a Machine Statemachine. This is not identified within a TD
metamodel but depends on the user’s choice. ATL translation rules create classes.
Thus, if an object occurs singly in a system, such as in our lift system case study,

the UML-B output model has to be modified as described in section 6.6.3 below.

6.5.5 Creating UML-B Statemachines

This section shows the stateMachine rule which is used to generate a UML-
B Statemachine as shown in Figure 6-17. An example of a Statemachine that is
generated by this rule is shown in Figure 6-18, and the corresponding parts of TD,
TDMetamodel and umlbMetamodel are shown in Figure 6-21. In Figure 6-17, a
TDTimeline is transformed into a UMLBStatemachine in which a Statemachine
name is generated by TDTimeline name followed by the string _state. This rule
also generates mappings of TD associations states and timelinetransitions to
UML-B associations, states, and transitions respectively. This mapping is
used to generate UML-B Statemachine states and transitions as shown later in the

rules state and Transition respectively.

Chapter 6 Translating Timing Diagrams into UML-B 146

rule StateMachine {
from t : TDMetamodel!TDTimeline
to u : umlbMetamodel!UMLBStatemachine (
name <- t.name + '_state',
states <- t.states,
transitions <- t.timelinetransitions)

}
Figure 6-17 ATL rule for creating a UML-B Statemachine

For example, the result from this rule generates a Statemachine named

floorsensor_state for the class Floorsensor as shown in the following:

@ Floorsensor
Attributes
@ floorsensorxStatexTime: INI
Events
Statemachines
Rule: § floorsensor_state
Statemachine

Invariants

Theorems

Figure 6-18 An example of a Statemachine generated from the rule Statemachine

6.5.6 ATL translation rules for creating UML-B Statemachine states, transitions

and actions

Statemachine states and transitions are generated by the rules state and
Transition as shown in Figure 6-19. Each transition is identified by a name which
represents an Event-B name. A transition may have parameters, guards, and
actions, which are created by rules Parameter, Constraint, and Transition
respectively. Additional information may need to be identified to complete the

model.

Chapter 6 Translating Timing Diagrams into UML-B 147

transition1

Rule:
transition2
Rule:
Transition
. ——— [Generated from rules
Rule: Parameter
Parameter Extra information
Rule:
Constraint SLPLILFLELHILI.
A Action

Figure 6-19 ATL rules for creating UML-B Statemachine State, Transition,

Parameters and Actions

6.5.7 Creating UML-B Statemachine states

Figure 6-21 shows corresponding parts of TD, TDMetamodel and
umlbMetamodel used to generate UML-B states and transitions.
Statemachine states are generated by the rule state. Each state has a name

that is generated from TDState name as shown in Figure 6-20 line (4).

FULE STALTE { ttrtitiiiieiiiieiieeteeteeterteerteeeteesneesnestnertertesseesneesneesnesseesseesneesnnees (D)
from t : TDMetamodel !TDSEAte .iviieriiiererieeeiiierrierrieeereersnennens 2)

to u : umlbMetamodel!UMLBSLTALE .ivvviirrrrerreeirierrieerrieereieernnnens 3)

(NAME <= £ .TIAIME, trerruerrueerieerrreerrneerseereeersieersieeerrneersaeeres (@)

incoming <- t.segments —> collect (c|c.incoming), (5)

outgoing <- t.segments -> collect (c|c.outgoing)) (6)

Figure 6-20 ATL rule for creating UML-B State

Since UML-B does not have segments, TD incoming and outgoing
associations cannot be directly mapped. Those associations are collected by a

keyword collect and then assigned to segments. Next, those segments are

Chapter 6 Translating Timing Diagrams into UML-B 148

assigned to the corresponding UMLBState incoming and outgoing associations
as shown in lines (5)-(6).
H TDParameter

= param
= paramType

H TDClass parameter 0..*
floorlamp € Lit
Floorlamp Unlit

floo timeline
Flo o On 0*
(EFLOOR) Off
TOTimeli
requestlamp € rLit d melne
]?;;\I\A;L‘(t)l(;)llwlw;‘ Unlit states timelinetransitions
R) , 0.*
ingArriving] 0.*
Mgzm;ﬁgw‘m” 1.1 source [TDTimelineTransition
MovingDepattin E TDState . H TDSegment -
& - Lif o fingl 7] Segments O.. 1.1 target
o MovingDepart = initial #] incoming 0..*
MovingDowr '/
MovingArrivingDp outgoing 0..*
door € Door Open / 1
(FFLOOR) Closed‘{ constraints
uplamp deActivatéd ') 0.*
Uplamp acTivated: - i
L H TDConstraints
downlamp Deactivated ™ T TDMetamodel
Downlamp Activated
= UMLBstatemachineCollection
statemachines
H UMLBEvent 0.*
H UMLBStatemachine
H UMLBguardedAction
transitions state
0..* 0.*
UMLBTransition target Tl UMLEState
actions guards variables = e f llg Fl
0. * i 0. source 1.1 D'T’I -
o jnitial
H UMLBAction H UMLBPredicate |E UMLBEventVariable . | g notransitionsfromfinal [
= action o predicate = local 2 i # noincomerstoinitial

0..* outgoing & norecionsoninitialorfing’]

umibMetamodel

Figure 6-21 TDMetamodel and umlbMetamodel : Statemachine, State, Transition,

Action, Guard and Parameter

6.5.8 Creating UML-B Statemachine transitions and actions

UMLBTransition can be generated from TDTimelineTransition by the rule
Transition as shown in Figure 6-22. This rule is composed of two parts. The first
part from lines (3)-(8), is for generating transitions, and the second part, in lines

(9)-(15), is for creating actions.

Chapter 6 Translating Timing Diagrams into UML-B 149

TULE TTranNSITIiON { tieiiiiriiiiieiiiieeiiieeeiieeeteertteeeeteessteessteessteesteesrneessnnessnnnns (D)
from t : TDMetamodel!TDTimelineTransition .cecveeeeeieeeeiieeenenennnn 2)
to u : umlbMetamodel!UMLBTIranSition .viiieeiioeeeieerieeieeeneeenerenereesnnes 3)
(name <- t.target.getTransitionName (), .ccveeereerriereereeeeeeeeeenanaens 4)
target <— t.target.eContainer (), wivecccreeeeieeeeiieeerieereneeesseeessnneens (&)
SOUrCe <— t.SOULCE.CCONTALINET (), ttrtreeriuieenreneneereneneenensenensenenees (6)
guards <— t.target.cConsStraints, .iiieciieeeeieeeriieeerieerrinerreerennes (7
variables <- t.eContainer () .eContainer () .parameter), (8)
actgclock : umlbMetamodel ! UMLBACEION .iiiiirerreereeeeneeeneerneeserserneennnns 9)
(name <- t.eContainer().name + '.gClockAction',ccceeee. (10)
action <- t.target.eContainer().eContainer () .name (11)
+ t.target.eContainer () .NAME .iiveieerieerneererrerneerneeeneernereersaessnns (12)
I 1 1= (LN (13)

F18ELE) 1= GCLOCK ") tteiititiiiieeeeiieeeiiee et ee e eereeeraeeraeer e eeraeerreanes (15)

do {u.actions <- u.actions.append(actgclock); } .eeeeerieerrinernnnnns (16)

}

Figure 6-22 ATL rule for creating UML-B Transition

First part, creating transitions: A transition has a name which represents an
event’s name and is created by the helper getTransitionName as shown in line
(4). Lines (5)-(6) is maps TD associations target and source to UML-B
associations target and source. Keyword econtainer () is used to refer to an
upper class level in an aggregation association. For example, from TDMetamodel
in Figure 6-21 and line (5) in Figure 6-22, the command target <-
t.target.eContainer () means traversal from the class TDTimelineTransition,
which is represented by t of the target association, to a class TDSegment. The
eContainer () of the class TDSegment is the class TDState. Line (7) maps the
TD association t.target.constraints to an UML-B association guards. This is
for creating a UML-B transition guard. Line (8) shows an association creating

transition parameters.

Chapter 6 Translating Timing Diagrams into UML-B 150

Second part, creating actions: Lines (9)-(15) generate an action for each
transition. An action label, .gClockaction, is created in line (10), while the body
of an action is created in lines (11)-(15). Line (16) appends the guard created
earlier from, lines (9)-(15), to UMLBTransition. For example, in the following
figure, floorsensor.gClockAction is a label while
floorsensorOnTime (FloorsensorSelf) := gclock is a guard. This guard is

used to record the current time whenever the corresponding event is activated.

Mame | action
floorsensor.gClockaction floorsensarOnTime(FloorsensarSelf] := gelock

Figure 6-23 A floorsensorOff transition action

6.5.9 Creating an Event name

An event name is generated using the helper getTransitionName (), as

illustrated in Figure 6-24.

helper context TDMetamodel!TDSEGMENL .iieeeerieerrieerruierreereinererneersenesenns (D)
def : getTransitionName () : STTING = tirrieieerireeieerierriereeereeerneereeseenns 2)
let simuls : Set (TDMetamodel!TDSEgmMENt) = .iiiiieeerrreerrieerreneernnereennns 3)
TDMetamodel ! TDSegment .al1INStANCES () => wirrrreerrreeerreerrneersnnersnnessnnnns 4)
select (clc.simul —>includes (SEL1E)) rviiriieerieeeieerierneerneeeeeeerraeranes 5)
S RO PSP P U UPPPPPPPPRRIN (6)
if simuls —> IiSEMPLY () EREM ittt e e e e (7
self.eContainer () .eContainer () .NAME .icveereeerrerenreneneeeeneerenensens (8)

+ 5e1lf.eContainer () .NAME .iiiiieeerrieerreerrieerrieerrieerrteersreeesseesseessnns 9

© LS ittt ettt e e et et e rteera—eraaearteeraeerteeraneraaas (10)
simuls.last () .getTransitionName () weeeceeerreerreereereerieeseerneeennnns (11)

LY Ve 2 ROt (12)

Figure 6-24 ATL rule for creating an event name

Chapter 6 Translating Timing Diagrams into UML-B 151

The helper returns a string value which is a transition name and uses the
keyword self, as shown in line (5), which represents an instance segment
belonging to a TDMetamodel ! TDSegment. At line (3), simuls is a variable defined
for use only in this helper. This variable is initiated as a set of segments by the
keyword set. In line (4)-(5), the members of the simuls set are selected from
SimultaneityArrows (simul) that is related to the segment indicated by the
command includes (self). For example in Figure 6-25, consider the segment
MovingUp3, which is the self in this case. This segment has one simul a that is
pointed from segment off2. Thus, the simuls set for the segment MovingUp3 is
simuls = {off2}. The segment 0ff2 has no simultaneityArrow. Thus, a set

simuls for the segment of £2 is defined as simuls = {}.

floorsensor € On —
Floorsensor t1
(FFLOOR) Off A
7
/.
MovingArrivingUp 7/ la
/
. /
MovingUp /
b Mo E own
MovingDepartingUp / lovingDeparting
/
lift - Lift StopAtFloor —lﬁ [2,5] I
Movi . \ Movingl}epartingDOwnt
ovingDepartingDown N\
S - 3
MovingDown - >|\[‘ yvingDown7

MovingArrivingDown

Figure 6-25 Timing diagram: floorsensor and Lift with SimultaneityArrows

Line (7) checks whether simuls is empty by keyword isEmpty (), if so an
event name is generated from a Timeline name, in line (8), followed by a state
name, in line (9). For example the segment of£2, which is a target segment of a
transition tl, has simuls = {}. Thus, a transition name is generated from a
Timeline name, floorsensor, followed with a state name, Off; a transition name for
tl is floorsensorOff as shown in Figure 6-26 top. If simuls is not empty, it returns

the last elements in simuls to the helper getTransitionName () as shown in line

Chapter 6 Translating Timing Diagrams into UML-B 152

(11). For example in Figure 6-25, the segment MovingUp3, which is a target
segment of a transition t2, has simuls = {0ff2}, the segment O0ff2 is sent to the
helper getTransitionName(). The segment off2 itself has no
SimultaneityArrow. We then follow the same process when generating a
transition name for tl. Finally, the transition name for t2 is floorsensorOff which is
a name for the transition link between the state MovingDepartingUp and
MovingUp as shown in Figure 6-26 below. The transition name for t3 is also
floorsensorOff which is generated following the same process of the transition t2
by simultaneityArrow b. This transition links states MovingDepartingDown and

MovingDown.

2 Floorsensor
Attributes
@ floorsensorxStatexTime: INI

Events
% floorsensoroff

Statemachines + off +0n
S floorsensor_state Statemachines Statemachines
% floorsensoroff Invariants % floorsensoron Invariants
floorsensoron Theorems Theorems
Invariants
Theorems
o LB <4 MovingArrivinglp <4 MovinghrrivingDown
1
Attributes Statemachines Statemachines
@ liftxStatexTime: INT Invariants Invariants
Events Theorems Theorems

Statemachines % TiftMovingarrivinglp 4 liftStopatFloor

% liftMovingarrivingDown

S lift_state # liftStopatFloor
§ Hftl"lovmqDe??rtquD + Movinglp 4 StopatFloor 4 MovingDown
oorsensorQ
11 ftMovingArrivingUp Statemachiness 11 f tMowingDepartinglp Statemachines % 11ftMovingDepartingDown Statemachines
% 11ftMovingDepartinglp Inwariants Irwvariants Invariants

% 1iftStopAtFloor

4 11ftMovingDepartingDown Thearems Theorems Theorems
#% floorsensoroff o o | % liftMovingDepartinglp . .
& o ndootar Hacgemn i Femovirqpamrirgpo | [T 5P eRnoTort]
¥ liftStopAtFloor 4 MovingDepartinglp <4 MovingDepartingDown
Invariants Statemachines Statemachines
Theorems Invariants Invariants
Thearems Theorems

Figure 6-26 The floorsensorOff transitions are generated from SimultaneityArrows

Up to this point, the ATL translation rules generate Class, Statemachine
inside that class, Statemachine states and transitions, and actions for the

corresponding transitions, as shown by an example of class Floorsensor in Figure

6-27.

Chapter 6 Translating Timing Diagrams into UML-B 153

@ Floorsensor
Attributes
© floorsensorxStatexTime: IN]
Events + off # floorsensoroff
Statemachines
S floorsensor_state

4 on

Statemachines

floorsensoron. | [Mvaiants
Theorems

Statemachines

Invariants
{loorsensoroff

Theorems
% floorsensoron

Invariants

Theorems

E Properties [‘_ Pruhlems]] Tasks]

Transition : floorsensor0ff = On - Off

Properties Mame: floorsensoroff

Refines

Parameters:
Paramaters

Witnesses

Guards ‘Witness:

Actions

Errars Guards:

) floorsensorof fTime (FloorsensorSelf] := gelock
Actians:

Figure 6-27 UML-B floorsensor Class diagram and its Statemachine

6.5.10 Creating UML-B transition’s guards

The rule constraint is used to generate guards of a transition. This rule uses
the helper GetNodePredicate () which is made up of three sub-helpers: a helper

for creating timing constraints (SimpleGuard), conditions (SimpleCond), and cause

segments (SimpleCause), as shown below:

Egliér‘aint — p» helper: getNodePredicate()

— helper: SimpleGuard(Q)
— helper: SimpleCond()

- helper: SimpleCause()

The details of the rule constraint are shown in Figure 6-28. This rule

creates a guard labelled TimingCnstrntGuard while the guard itself is generated

by the helper getNodePredicate ().

rule Constraint/{

from t : TDMetamodel!TDConstraints
to u : umlbMetamodel!UMLBPredicate (

name <- 'TimingCnstrntGuard',
predicate <- t.effectsource.getNodePredicate()) }

Figure 6-28 ATL main rule for creating UML-B Guards

Chapter 6 Translating Timing Diagrams into UML-B 154

E TDSegment

TDMetamodel umlbMetamodel
constraints
o.*
1.1 E TDConstraints E UMLBPredicate
= predicate
CAUSESOUICe Lffeterice
1.1
E TOMNodeType H UMLEname
H UMLEnamedElement =
E TDPredicate 4 uniqueElementhames
o predicate P o
0.* o o
predicates And Qr
H Simple H AND_node H ©R_node
H TDTiming
= lowerlimit

= upperlimit | 1 timing

Figure 6-29 TDMetamodel and umlbMetamodel:
TDConstraints and UMLBPredicate

Checking Node types

Figure 6-29 shows the parts of TDMetamodel and umlbMetamodel used to
generate the detail of a UML-B transition guard. The helper getNodePredicate (),
as shown in Figure 6-30, is used for checking whether a node type is simple,
OR_node Or AND_node as shown in lines (3), (13) and (20) respectively. If a node
type is Simple, it further checks whether that simple node type has timing
constraints by an ATL function oclIsUndefined(), as shown in line (5). This
function returns a Boolean value true if there is no timing. If timing is defined, a
guard is generated by concatenating the output from the three helpers, i.e.
SimpleCause (), SimpleGuard(), and SimpleCond (), as shown in lines (6)-(8).

Otherwise, a guard is generated without timing constraints as shown in lines (10)-

(11).

helper context TDMetamodel ! TDNOAETYPE .ieerrreerreerruierreneereneersnnersnnesenns (D)
def getNodePredicate () SELING = trrerreeerreersrersenerssnerssneersoeerseneres 2)
if self.oclIsKindOf (TDMetamodel!SimpPle) .ivvicvverieeeieeeieerieereeenneennnns 3)

Chapter 6 Translating Timing Diagrams into UML-B 155

if not self.timing.oclIsUndefined () .ccoveeeerieeerirerruieeerieeesnnennnns (&)
then self.SimPleCauUSe () .ivieeeerieeerieerreeerueersueeessieeesieessieesssnessseneses (6)
-> concat (' & '+ 5elf.SimpleGuUard ()) .iccceecereeieerieeriereierneennnns @)
—> concat (5elf.SimpPleCond ()) .irecreeerrieerereeerrieeerieerrneeessieesseeessnns (8)
LN =TT URRRE 9)
SELE.SIMPLECAUSE () trrreerrreerrrrerrieerreereneersinerrueeerseeerseeerseersnnessnnees (10)
—> concat (5elf.SimpPleCond ()) .ivccreeeerieerreeeerieerrieerseersnnersneeeens (11D
LY oVe I PR (12)
else if self.oclIsKindOf (ITDMetamodel!OR_Node) .ovveevereererenreneneen (13)
then self.Or —> iterate(e; ret : String = " ('] ccverereeens (14)
AE E= S L E 0T . LAST () ettt ettt eeeeee e eeeeeeeaenas (15)
then ret -> concat (e.getNodePredicate ()+"') ") .eeeunenn (16)

LN =T TN (17)

ret -> concat (e.getNodePredicate()+') or (') ... (18)

LY oYe £ 2 T USRS (19)

else if self.oclIsKindOf (TDMetamodel!AND_node) (20)
then self.And -> iterate(e; ret : String ='('] 21D

if ©=5elf.ANd.1ASE () corerrrrreriieerrierieerrieerrineerineeraneenes (22)

L% =T (24)
ret —-> concat (e.getNodePredicate()+ ') & (') (25)
1=y Ve 2 b T (26)
else 'unrecognised NOdeTYPE " ieereerreerreeeriereeeeeeiersaennnns 27
endif
endif
endif;

Figure 6-30 A helper for checking node types and event’s guards

If a node type is OR_node, line (13), the sub-node type of the OR_node is
collected by an expression self.or, line (14). This collection is iterated by means
of an iterate operation in which e represents an iterator, ret is a return value

with an initial value equal to the string ‘(’. Each element in the collection is

Chapter 6 Translating Timing Diagrams into UML-B 156

checked whether it is the last node, as shown in line (15). If so, this node type is
used in recursive call for the rule getNodePredicate (). The result generated from
the rule is added with a symbol ‘)’ at the end, line (16). Otherwise, this node type
is used in recursive call for the rule getNodePredicate () and ending with a string
‘) or (’ as shown in line (18). This is the way to generate guards with nested OR
node types. A guard for AND node types also uses the same process as shown in

lines (20)-(26). Note that whenever the string &« and or are generated in a UML-B

model, they are automatically changed to the A and v symbol.

Creating a guard from a Cause segment

The helper simplecause () is used to generate a guard from a cause segment,
as illustrated in Figure 6-31. This helper works with the source model element
TDMetamodel ! TDNodeType. Thus, self in this case represents a node type. A
guard is generated from a Timeline name of a cause segment, line (3), then
concatenated with the string _state (xAssociationx) =, in line (4), followed by

the state name in line (5).

helper context TDMetamodel ! TDNOAETYPE .cieereeerrrerruererrrersaeersnersnneennns (D)
def : SIimpleCause () : SEIING = iiiiiiirieeriieeeiiieereeeriieerieerreeerteeerneeenes 2)
self.causesource.eContainer () .eContainer () .name 3)
+ ' _state (XASS0CIationX) = ' iieriiiieiiiieerieee e (@)
+ self.causesource.eContainer () .NAmME; .oveerveerrrieerrnererenennnns &)

Figure 6-31 A helper for creating a UML-B guard from a cause segment

The string xAssociationx is a mark for additional information added by
hand. The reason is to have a complete UML-B model, one may have to declare
associations among class or/and other classes’ attributes, since TD notations do not
support identifying that kind of information. Thus, the string xAssociationx is
represented for the user to replace with the proper information later. Section 6.6.5

explains through examples the replacement of xAssociationx. Figure 6-32 shows

Chapter 6 Translating Timing Diagrams into UML-B 157

an example of a guard for the transition floorsensorOff. This example focuses on
the part of guard generated by the helper simplecause (), while the parameter f
with type FLOOR is generated by the rule Parameter, as shown in Appendix C.

The whole guards for this transition are illustrated in the next section.

1 Properties [3_ Problems} o Tasksw

Transition : floorsensorDff = On -> Off

Properties Mame: floorsensoroff

Refines Name | Type | Locall

Parameters Parameters: i FLOOR. false

Witnesses

Guards

Actions Witness:

Erraors]]] . .
Guards: [lift_statelxAssociationx] = MovingDepartinglp ~
Actions: floorsensoroffTime(Floorsensorself] := gelock

Figure 6-32 Guards generated from a cause segment for the floorsensorOff event

Creating a guard from Timing constraints

The helper simpleGuard() is used for creating a UML-B guard from a
timing constraint. The details of this helper are illustrated in Figure 6-33. This
helper works with a source model element TDMetamodel ! TDNodeType. Thus, self
here represents a node type. The helper generates a guard by concatenating the
string (gclock - xAssociationx, with other corresponding TD elements such as

timing constraints.

helper context TDMetamodel!TDNodeType

def : SimpleGuard() : String =
' (gclock - xAssociationx.'
+ self.causesource.eContainer () .eContainer () .name
+ self.causesource.eContainer () .name
+ '"Time >= '
+ self.timing.lowerlimit.toString() + ') '
+ ' & (gclock - xAssociationx.'
+ self.causesource.eContainer () .eContainer () .name
+ self.causesource.eContainer () .name
+ 'Time <= '
+ self.timing.upperlimit.toString() + ') ';

Figure 6-33 The helper for creating a UML-B guard from a timing constraint

Chapter 6 Translating Timing Diagrams into UML-B 158

An illustration of how to generate a guard with the helper simplecond() is
not show here, but its detailed explanation can be found in Appendix C. This helper
simply takes predicates, if there are any defined within TDPredicate, see Figure 6-
29, and concatenates with those guards generated by the helpers simpleCause ()

and simpleGuard(). An example of a guard for the transition floorsensorOff is

shown below:

E Properties [?L Prnhlemsw & Taslsw

Transition : floorsensor0Off = On - Off

Properties Name: floorsensoroff

Refines Name| Type | Local|

Parameters Patameters: f FLOOR talse
Witnesses

Guards

actions Witness:

Errars

Suards: (lift_state(xAssociationx] = MevingDepartinglp ~ (gclock — xAsseciationx- LiftMovingDepartingUpTime = 2)

tloorsensoroffTime (FloorsensorSelt) := gclock

Actions:

Figure 6-34 Timing constraint guard for floorsensorOff event

The UML-B tool does not allow adding a carriage return in the property view
for a display arrangement. Thus, since the length of this guard is too long to be

captured in one screen, we copy the whole guard from Figure 6-34 and represent it

as the following:

(1ift_state(xAssociationx) = MovingDepartingUp /A <— SimpleCause()
clock - xAssociationx.liftMovingDepartingUpTime = 2) A .

(9 grep Ehts) SimpleGuard ()

(gclock - xAssociationx.liftMovingDepartingUpTime < 5)

A f = currentFl A dir = Up)-e— SimpleCond(Q

\

(1ift_state (xAssociationx) = MovingDepartingDown /\

(gclock - xAssociationx.liftMovingDepartingDownTime

N
D
>

(gclock — xAssociationx.liftMovingDepartingDownTime < 5)

/A f = currentFl /\ dir = Down)

Chapter 6 Translating Timing Diagrams into UML-B 159

6.6 UML-B Model alteration

As mentioned above, TD is not designed to add state-based information nor
gather whole system information. Thus, there are some UML-B model features that
cannot be created by TD itself. In addition, ATL has a limitation and cannot
generate multiple outputs from an input element if that element is used across the
rules, as explained in section 6.5.4. This section identifies what features need to be

added to an UML-B output model.

6.6.1 Adding UML-B Context diagram body

We can generate a UML-B context diagram name as shown in section 6.5.3.
However, there are no details inside the context diagram such as ClassTypes,

Constants, and Axioms. Thus, this part is generated by hand.

© Constant © Constant % Context Axiom| % Context Axiom
TOP: INT BOTTOM: INT TOP = 3 BOTTOM = 1

< FLOOR: [(BOTTOM.TOP)] % FLOORSENSOR: [{s1,s2,s3}] % DIR: [{Up,Downl}]

Attributes Attributes Attributes
Axioms Axioms Axioms
Theorems Theorems Theorems

<+ DOOR: [{d1, d2, d3}] < REQUESTLAMP: [{rl, r2, r3}] & FLOORLAMP: [{fl1i, flz, fl:

Attributes Attributes Attributes
Axioms Axioms Axioms
Theorems Theorems Theorems

< UPLAMPSTATE: [{acTivated, deActivated}] |+ DOWNLAMPSTATE: [{Activated, Deactivated}]

Attributes Attributes
Axioms Axioms
Theorems Theorems

Figure 6-35 Context Diagram for the Lift system

In case of the lift system, ClassTypes, e.g. FLOOR, FLOORSENSOR, DOOR, DIR,
etc., as shown in Figure 6-35, are generated as sets in Event-B unless it is assigned
a constant value. For example, the ClassType FLOOR is defined as a set of integers
{1,2,3}, representing a number of floors starting from 1. Thus, the ClassType
FLOOR is generated as a constant, while its value is defined as AXIOMS in Event-B

Chapter 6 Translating Timing Diagrams into UML-B 160

as shown in Figure 6-36. DIR has its instances property set to Up and Down to
identify the direction of the lift. DIR is created as a set while its instance properties

are generated as CONSTANTS for an Event-B model, also shown in Figure 6-36.

CONTEXT
L_ctx
SETS
FLOORSENSOR /7 ClassType
REQUESTLAMP // ClassType
DOOR /I ClassType
DIR I/ ClassType
UPLAMPSTATE // ClassType
DOWNLAMPSTATE // ClassType
FLOORLAMP 174 ClassType
CONSTANTS
FLOOR /r classType instances
BOTTOM rf utility constant
TOP I utility constant
Up 12 enumeration constant
Down // enumeration constant
sl !/ enumeration constant
s2 /! enumeration constant
s3 17 enumeration constant
AXIOMS
FLOOR.value : FLOOR = (BOTTOM--TOP)
Axiom : TOP = 3
Axioml : BOTTOM = 1
DIR.value : DIR = {Up,Down}
FLOORSENSOR.value : FLOORSENSOR = {sl1,s2,s3}
REQUESTLAMP . value : REQUESTLAMP = {rl, r2, r3}
DOOR.value : DOOR = {d1, d2, d3}
UPLAMPSTATE .value : UPLAMPSTATE = {acTivated, deActivated}
DOWNLAMPSTATE .value : DOWNLAMPSTATE = {Activated, Deactivated}
FLOORLAMP .value : FLOORLAMP = {f11, fl12, f13}
BOTTOM. type : BOTTOM € Z
TOP.type : TOP € T
sl.type : s1 € FLOORSENSOR
s2.type : 52 € FLOORSENSOR

Figure 6-36 Event-B Context part is generated from UML-B diagram for the Lift system

6.6.2 Modifying UML-B Classes

Modifying class attributes and defining classes to their corresponding sets

As described before, the string xStatex is used to illustrate missing
information that cannot be created by TD itself, or from the limitations of ATL. For
example, the class Floorlamp in Figure 6-37 left has an attribute defined by

floorlampxStatexTime : INT.

Chapter 6 Translating Timing Diagrams into UML-B 161

o Floorlamp= FLOORLAMP

o Floorlamp Attributes
ATEtes o floorlampLitTime : INT
© floorlampxStatexTime: INT @ FloorlanpUnldEno: 3 UM
Events Events
Statemachines Seeleei nes
S floorlamp_state S floorlamp_state
floorlampUnlit # floorlampUnlit
floorlamplLit # floorlamplit
Invariants Irreatiants
Theorems Theorems
Before After

Figure 6-37 UML-B Class diagram for Floorlamp before and after modification

For it to be correct, attributes for this class are generated from every state
corresponding to the class. The class Floorlamp has two states: Unlit and Lit.
Thus, attributes for the class Floorlamp are floorlampLitTime : INT and
floorlampUnlitTime : INT as shown in Figure 6-37 right.

To identify classes representing subsets of the corresponding ClassTypes that
are introduced in the CONTEXT, an assignment <Class = ClassType> is used.
For example, Floorlamp = FLOORLAMP (as shown in Figure 6-37 right) allows a
Floorlamp class instance to get its values from ClassType FLOORLAMP.

Adding associations between classes and machine invariants

Associations between classes are information that is not declared by a TD.
Which associations are added depend on each system specification. For example, in
the lift case study, there are some associations added such as doorAtfloor and
floorsensorAtfloor to declare a door and a floorsensor at a floor respectively, as
shown in Figure 6-38 (other associations are shown in Appendix D). Those
associations are created as variables with their invariants, as shown by an example
for floorsensorAtfloor below:

Variables:- floorsensorAtfloor

Invariants:- floorsensorAtfloor € Floor >» Floorsensor

Chapter 6 Translating Timing Diagrams into UML-B 162

© Floorsensor= FLOORSENSOR
Attributes
@ floorsensoroffTime: INMI
@ floorsensoronTime: INI
Events
Statemachines
§ floorsensor_state 7]
floorsensoroffup
#* floorsensoroffDown

o =
Floor= FLOCR # floorsensoron

Attributes ¢ floorsensoratfloor s
@ dooratfloor: Door [oyarias
@ floorsensoratfloor : Floorsensc 1..1 1..1 Theorems

@ requestlampAtfloor: Reguestlamp
@ floorlampAtfloor : Floorlar

Event:
L < Door= DOOR
Statemachines Attributes

2 doorClosedTime: INT

Hpsienie ¢ dooratfloor @ doorOpenTime: INT
Theorems
1..1 ol Events
Statemachines
§ door_state =]
% 1nit door
< Machine Invariant i 332;5?225(‘ =

—(uplampState = acTivated a downlampState = Activated)
Invariants

“+ 1lift state = StopAtFloor = door state(DoorSelf) = Closed
Theorems

Figure 6-38 Association between classes

Figure 6-38 also shows how to declare invariants. Invariants can be defined
manually inside a corresponding class as shown in the class Door, or defined as
Machine Invariants. The invariant inside the class Door is used to indicate
whenever the lift is not stationary at a floor, the lift door must be closed. The
Machine Invariant indicates that uplamp and downlamp must not be activated at the

same time. The rest of the invariants can be found in Appendix D.

6.6.3 Modifying to create a lift in a system

Since ATL translation rules generated a class Lift, to create a lift in a
system, the class Lift is changed to a Statemachine 1ift state as shown in
Figure 6-39.

The class Lift’s attributes, such as 1iftMovingArrivingUpTime and
liftStopAtfloorTime, must then change to machine variables. Other related
variables like currentFl and dir are used to represent a current position and
directions of the lift are added by hand. There are extra events: ChangeDirUp and
ChangeDirDown are manually created for controlling the change in direction of the

lift.

Chapter 6 Translating Timing Diagrams into UML-B

163

O Lift= LIFT
Attributes
@ liftMovingArrivingUpTime: INT
@ liftMovingDepartingUpTime: INT
@ liftStopAtFloorTime: INT
@ liftMovingDepartingDownTime: INT
@ liftMovingArrivingDownTime: INT

Events
Statemachines
S lift_state

k3 LiftMovingUp
LiftMovingarrivingUp

S’ Machine Statemachine
lift_state

% 1iftMovingDepartingUp
11iftMovingDepartingDown
*init lift

1iftMovingUp

1iftMovingArrivingUp

liftStopatFloorUp

11iftMovingDown

1iftMovingArringDown

liftstopatFloorDown

1iftMovingArgToDptglp
% liftMovingArgToDptgDown

Machine Event
ChangDi rUp
Machine Event
ChangD1 rDown

1iftMovingDepartingUp
liftStopAtFloorUp

% LiftMovingargToDptDown
11ftMovingDown

LiftMovingarrivingDown
11iftMovingDepartingDown
liftStopAtFloorDown

LiftMovingargToDptglp

@ Machine Variable @ Machine Variable

liftMovingArrivingUpTime: INT | [liftStopAtFloorTime: INT

@ Machine Variable @ Machine Variable
liftMovingArrivingDownTime: INT| [liftMovingDepartingUpTime: INT

#init lift
Tnvariants @ Machine Variable @ Machine Variable @ Machine Variable
Theorems liftMovingDepartingDownTime: INT currentFl: FLOOR dir: DIR
Before After

Figure 6-39 A class lift is changed to a Statemachine lift_state

6.6.4 Modifying UML-B Statemachine

Modifying Statemachine initial state

Our rule can generate the Statemachine for each class. However, one needs to
identify an initial state for that Statemachine. For example, Figure 6-41 shows the
door_state Statemachine before and after adding an initial state. This initial state

generates an Event-B INITIALISATION as shown in Figure 6-40.

INITIALISATION

STATUS
ordinary
BEGIN

door_state.init door_state = Door x {Closed}

Figure 6-40 Parts of an Event-B model: generate door initialisation

Chapter 6 Translating Timing Diagrams into UML-B

164

< Door= DOOR

3 doorClosed

Attributes
Before @ doorClosedTime: INT 4 Closed + Open
© doorOpenTime: INT Statemachines Statemachines
Events Invariants # doo rOpen Invariants
Statemachines Theorems Theorems
S door_state =]
doorOpen
doorClosed | [
Invariants
After Theorems
© Door= DOOR
Attributes
@ doorClosedTime: INT
% doorOpenTime: INT
Events
Statemachines # init door
§ door_state El # doorClosed
init door 4 Closed Open
doo rOpen Statemachines Statemachines
doorClosed] - .
. Invariants # doo rOpen Invariants
] Invariants Theorems Theorems
<+ 1ift state # StopAtFloor = door state(DoorSelf) = Closed
Theorems

Figure 6-41 UML-B Statemachine for Door before and after modification

Modifying Statemachine Transitions

Each UML-B Statemachine transition generates an Event-B event with the
corresponding transition name. Therefore, each transition name should to be
unique, as well as its action should do a specific task and not be in conflict. Two
problems occur with the UML-B Statemachine generated from ATL and U2B from
the example shown in Figure 6-42. Its corresponding Machine Statemachine
lift state and Statemachine Lift are shown in Figure 6-39 and Figure 6-43

respectively.

floorsensor € On
Floorsensor Off2
(fFFLOOR) Off .
. . // MovingArrivingUp.
MovingArrivingUp / \
. "
MovingUp //
. . MovingDepprtingUpR
MovingDepartingUp I/ T Up l.dir = Down
lift - Lift StopAtFloor ————— |2 5] [2.5]
\ vineDeparting wn6
MovingDepartingDown \\lm ingDeparting/fown __
~ -
MovingDown = ‘

MovingArrivingDown

Chapter 6 Translating Timing Diagrams into UML-B 165

Figure 6-42 TD for the Lift and Floorsensor

4 MovinghirrivingUp 4 MowinghrrivingDown
Statemachines Statemachines
Invariants Invarianks
Theorems Theorems
Lifthovingarrivingp mﬁ- LiftstopAtFloor J# liftMovingArrivingDown
4 MowingUp + StopAtFloor 4 MowingDown
Statemachines Statemachines . . . Statemachines
Ivariants 4+ 1iftMovingDepartingUp Invariants # 11ftMovingDepartingDown Invatiants
Thearems Theorems Thearems
_ _ % liftrovingDepartinglp
11ftMovingDepartingDown
4 MovingDepartinglp 4 MovingDepartingDown
Statemachines Skatemachines
Irvvatiants Invvatiants
Thearems Theorems

Figure 6-43 Statemachine for the Lift generated from ATL

The first problem concerns the condition that the lift can StopAtFloor
whenever it is in a previous state of MovingArrivingUp or MovingArrivingDown,
as shown in Figure 6-42. The Statemachine corresponding to the Lift is shown in
Figure 6-43 in which there are two state transitions assigned with the same name
LiftStopAtFloor. The U2B translator converts a UML-B model to an Event-B

model as shown in Figure 6-44.

liftStopAtFloor =
STATUS
ordinary
ANY
f
WHERE
f.type : f € FLOOR

LiftStopAtFloor.TimingCnstrntGuard floorsensor_state

(xAssociationx) = On A (gclock — xAssociationx
Lift state isin MovingArrivingUp : Lift state = MovingArrivingUp

Lift state isin MovingArrivingDown : 1lift state = MovingArrivingDown
THEN

Figure 6-44 An Event-B [iftStopAtFloor event generated from
UML-B liftStopAtFloor transition

Chapter 6 Translating Timing Diagrams into UML-B 166

Consider the two highlighted guards; these guards are previous states before
the lift stops at the floor, and are automatically generated by U2B, not by ATL
rules. These guards made the event liftStopAtfloor incorrect since the two
guards are in conflict. That is, the lift cannot be in a state of MovingArrivingUp and
MovingArrivingDown at the same time. This problem can be fixed by combining
these two guards with a conjunction v (or) by hand. This combination may be
generated automatically if and only if the U2B translator is re-designed to do this.
However, we selected to solve this problem another way. In the solution, those
transitions 1iftStopAtfloor are assigned to different names as shown in Figure
6-45, in order to have them generated separately in Event-B as shown in Figure 6-
46. This way, events are simpler and easier for proving than combining guards

together within an event.

4 MowingArrivinglp 4 MowingArrivingDown
Statemachines Statemachines
Irveariants Ireeariants
Thearems Thearems

#% liftMovingArrivingUp

¥ TiftstopatFloorip I _ . .
" &+ 11ftMovingArrivingDown
1% 11ftStopAtFloorDown |

4 MovingUp 4 StopAtFloor 4 MovingDown

Statemachinessyy 13 f tMovingDepartinglp Statemachines # liftMovingDepartingDown Stakemachines
Invariants Invariants Invariants
Thearems Thearems Thearems

liftMovingDepartinglp

floorsensoroff % liftMovingDepartingDown # floorsensoroff

<4 MovingDepartingUp 4 MovingDepartingDown
Statemachines Statemachines
Imvarianks Invariants
Theorems Thearems

Figure 6-45 UML-B transitions liftStopAtFloorUp and liftStopAtFloorDown

after modification

Chapter 6 Translating Timing Diagrams into UML-B 167

1iftStopAtFloorUp &
STATUS
ordinary
ANY
f
WHERE
f.type = f € FLOOR

1iftStopAtFloorUp.TimingCnstrntGuard floorsenson. state

(xAssociationx) = On A (gclock - xAssociationx-floorsens

lift state isin MovingArrivingUp g lift state = MovingArrivingUp
THEN

liftStopAtFloorDown =
STATUS
ordinary
ANY
f
WHERE
f.type : f e FLOOR

liftStopAtFloorDown.TimingCnstrntGuard floorsensor_state

(xAssociationx) = On a (gclock - xAssociationx-floor

Lift state isin MovingArrivingDown : 1ift state = MovingArrivingDown
THEN

Figure 6-46 Event-B events: liftStopAtFloorUp and liftStopAtFloorDown

The second problem happens because SimultaneityArrows. Figure 6-42
shows that there are two SimultaneityArrows from the segment Off2 to segments
MovingUp3 and MovingDown7. This causes UML-B to generate two state
transitions with the same name floorsensor0ff, as shown in Figure 6-43 (by the
helper getTransitionName () as shown in Figure 6-24). The problem is U2B
generates those two UML-B transitions to the same Event-B event,
floorsensor0ff, as shown in Figure 6-47. This event is incorrect since guards
and actions themselves (highlighted) are in conflict. The lift cannot be in states of
MovingDepartingUp and MovingDepartingDown at the same time, nor can it be in
the states of MovingUp and MovingDown after performing the event. However,
changing transition names alone raises another problem. This is because not only is
the floorsensorOff transition generated in the Lift Statemachine, but also in the

Floorsensor Statemachine, as shown in Figure 6-43 and Figure 6-48.

Chapter 6 Translating Timing Diagrams into UML-B 168

floorsensorOff =

STATUS
ordinary

ANY
FloorsensorSelf !/ contextual instance of class Floorsensor
f

WHERE
Lift state isin MovingDepartingDown : Lift state = MovingDepartingDown

1lift state isin MovingDepartinglUp : 1lift state = MovingDepartinglp

THEN
Lift state enterState MovingDepartingDown : lift state = MovingDown

lift state enterState MovingDepartingUp : lift state = MovingUp

Figure 6-47 An Event-B floorsensorOff

Following this example, if we rename the transition floorsensor0ff in the
Lift Statemachine, we have to rename it with the same name in the Floorsensor
Statemachine. Unfortunately, UML-B does not allow renaming elements already
existing with that name, even though they are generated with the same transition

name from the beginning.

floorsensoroff

4+ Off 4 On
Statemachines Statemachines
Invariants # floorsensoron Invariants
Theorems Theorems

Figure 6-48 A Statemachine for floorsensor

Thus, the solution to this problem is renaming floorsensor0ff transitions in
the Lift Statemachine to liftMovingUp and liftMovingDown, and splitting the
floorsensorQff transition in the Floorsensor Statemachine to

floorsensorOffUp and floorsensorOffDown as shown in Figure 6-49.

Chapter 6 Translating Timing Diagrams into UML-B 169

4 MovingArrivingUp 4 MowingArrivingDown
Lift Statemachines . Statemachines
Statemachine Irvariants .. . Invariants
1nit|lift
Theorems T Theorems

liftMovingarrivinglp # LiftStopatFloorUp # 1iftStopAtFloorDown 4 1i FtMovingArrivingDown

4 Movingp 4 StopAtFloor 4 Mow1ngDown
Statemachines | 11 ftMovingDepartinglpl| 3tatemachines % 1iftMovingDepartingDownl Statemachines
Irvariants Invariants Invariants
Theorems Theorems Theorems
T T3 fthovinglp] 4 liftMovingDepartingUp2 _ _ _ I# LiftMovingDown]
O o # liftMovingDepartingDown2
4 MovingDepartingUp 4 MowingDepartingDown
Statemachines Statemnachines
Invariants Invariants
Thearems Theorems
F/OOFSSHSQF 0f4 % floorsensoroffup
Statemachine % on
Statemachines % floorsensoroffDown Statemachings
Invariants n
floorsensoron Invariants
Theorems Theorems

Figure 6-49 A Statemachine for /ift and floorsensor

Guards and actions for events floorsensor0ffDown and floorsensor0ffUp

are split from the former floorsensorOff transition.

6.6.5 Modifying UML-B event guards

As mentioned in section 6.5.10, a transition guard is generated with the
marking xAssociationx, which needs to be deleted or replaced. To explain how to
delete xAssociationx, consider the timing constraint guard for the transition
floorsensorOffUp (the corresponding Statemachine is shown in Figure 6-49) with

xAssociationx as illustrated below:

(gclock - xAssociationx.liftMovingDepartingUpTime > 2) A

(gclock - xAssociationx.liftMovingDepartingUpTime < 5)

Since the Statemahine Lift has no association to other classes, this guard is
altered by deleting marking xAssociationx. Thus, the correct version of this

transition’s guard is shown below.

Chapter 6 Translating Timing Diagrams into UML-B 170

v
[\
>

(gclock - liftMovingDepartingUpTime

IN
(€]

(gclock - liftMovingDepartingUpTime

In some cases, the marking has to be replaced by corresponding associations
and attributes. Those associations and attributes are created earlier by hand in
CONTEXT and/or class diagram. For example, Figure 6-50 top illustrates an
association floorsensorAtfloor between classes Floor and Floorsensor, where

a Statemachine floorlamp state is shown at the bottom of the figure.

© Floorsensor= FLOORSENSOR
Attributes

© floorsensorOffTime: INI

@ tloorsensorOnTime: IN

© Floorlamp= FLOORLAMP © Floor= FLOOR

Attribut Attributs
LAE @ floorlampAtfloor Toe,

@ floorlampLitTime : INI < dooraAtfloor: Door @ floorsensoratfloor
@ floorlampunlitTime : TN @ floorsensorAtflocr : Floorsensc Events
Events 1..1 1..1 | @ requestlampAtfloor: Requestlamg 1..1 1..1 Statemachines
@ floorl, il : Floorl
oorlampAtfloor : Floorlar 8 foorsensor_state B

Statemachines Events
floorsensoroffup

§ floorlamp_state Statemachines % floorsensoroffDown

floorlampUnlit ——— % floorsensoron

floorlampLit AT e
Theorems
Invariants Theorems

Theorems

floorlampUnlit

4 Lit 4 Unlit
Skatemachines Skatemachines
Invariants Invariants
Thearems Thearems

% floorlampLit

Figure 6-50 An association between classes Floorlamp, Floor and Floorsensor

The transition floorlampUnlit in Figure 6-50 has part of the guard

generated by the ATL translation rules as shown below:

(gclock - xAssociationx.floorsensorOffTime 2 2) A

IN

(gclock - xAssociationx.floorsensorOffTime < 4)

The marking in this guard 1is replaced by an association
floorsensorAtfloor and a variable currentF1l, from Figure 6-39, as illustrated

below:

(gclock - (floorsensorAtfloor (currentFl)).floorsensorOffTime 2 2)

A

(gclock - (floorsensorAtfloor (currentFl)).floorsensorOffTime < 4)

Chapter 6 Translating Timing Diagrams into UML-B 171

The symbol *“.” represents referring to an attribute for the corresponding
class. This symbol is changed to “()” automatically by the U2B translator

whenever it is found in an expression. For the example above, it is changed to

(gclock - floorsensorOffTime ((floorsensorAtfloor (currentFl))) 2 2)
A
(gclock - floorsensorAtfloor ((floorsensorAtfloor (currentFl))) < 4)

This is the way one can correct the marking xAssociationx. Other
xAssociationx are replaced with a similar technique. Figure 6-51 shows the full

detail of the event floorlampUnlit in Event-B.

floorlampUnlit =
STATUS
ordinary
ANY
FloorlampSelf /7 contextual instance of class Floorlamp
£
WHERE
T.type : T € FLOOR
FloorlampSelf. type : FloorlampSelf € Floorlamp
floorlamp_state_isin_Lit : floorlamp_state(floorlampAtfloor(currentFl)) = Lit
floorlampUnlit.Guard3 : floorsensor state(floorsensorAtfloor(currentFl)) = Off

f = currentFl A
(gclock — floorsensorOffTime((floorsensorAtfloor

floorlampUnlit.TimingCnstrtGuard (currentFl))) = 2) & (gclock - floorsensorOffTime
((floorsensorAtfloor(currentFl}))) = 4)
floorlamplUnlit.Guardl : floorlampAtfloor~(FloorlampSelf) = currentFl
THEN
floorlamp_state_enterState_Unlit : floorlamp_state(floorlampAtfloor(currentFl)) = Unlit
END

Figure 6-51 An event floorlampUnlit is generated in Event-B

6.6.6 Timing Constraints

As described earlier, the event Ticktok is generated by the rule Machine, as
shown in Figure 6-12. The rule also generates the event action, that is gclock :=
gclock + 1. The variable gclock, whose type is assigned to an integer and initial
value 0, is also created by this rule. The event guards are manually created, using

the same technique with the Event-B direct translation as described in section

Chapter 6 Translating Timing Diagrams into UML-B 172

5.3.11. The Ticktok event provides time progress as an output value. Below is a

part of the event Ticktok’s guards.

4

= Properties & Prublems] é Tasksw

Machine Event : Ticktok

Properties Mame: rTl cltok
Refines
Eventkind I normal
Parameters
WitnL Convergence I ordina ry
Guards
otions Parameters:

Etrars

‘Witness:

Guards:

{ floorlamp_state(floorlampatfloor{currentFl}] = Lit » floorsensor_state(floorsensoratfloor(cu
{ lift_state = MovingArrivingDown » floorsensor_state(floorsensorAtfloor({currentFl])) = off &
[lift_state = MovingarrivingUp a floorsensor_stateifloorsensoratflooricurrentrFl)] = off & ((gc
{ lift_state = MovingDepartingDown n floorsensor_state(floorsensoritfloor(currentFL}) = on a ([
[lift_state = MovingDepartingUp « floorsensor_state(floorsensoratfloor(currentFl]] = on ~ ((gc
i
f
i
[

door_statel{dooratfloor{currentFl]) = Closed » lift_state = StopAtFloor a (gclock - deorClosedT
floorlamp_state(floorlampAtfloor (currentFL}) = Unlit » floorsensor_state(floorsensoratflooricu
floorsensor_state(floorsensoratfloor (currentFL}) = on a (lift_state = Movingarrivinglp v lift_
lift_state = StopAtFloor » door_state(doorAtfloor{currentFl)) = Closed A currentFL & regfFl a
lift_state = StopatFloor a requestlamp_state(requestlampatfloor{currentFl}) = rLit o { ({gcloc

Actions! gclock = gclock + 1

Figure 6-52 A Ticktok event

6.7 Summary

This chapter explains how to generate a UML-B model from a TD using
ATL rules. TD used for this translation is slightly different from the direct
translation (Chapter 5), as identifying a first letter for a class name by a capital
letter (as described in section 6.1). This is because the class names here are used to
generate class in Class diagram in the MACHINE part, while class names in
Chapter 5 are used to generate sets in the CONTEXT part. Since the UML-B
metamodel does not specify if there are single or multiple objects for a class, but
leaves it to user choice, ATL translation rules generate only TD classes and objects
in classes. Thus, one needs to alter the result model by hand to have it fit the
system specification. Here is the summary of generating an UML-B from TD.

First, TD metamodel is created and used to describe abstract syntax of TD. It

is an Ecore model itself.

Chapter 6 Translating Timing Diagrams into UML-B 173

Secondly, a TD model conforms to the TD metamodel generated by Eclipse
EMF. This model is used as a source model for the ATL translation rules.

Next, the ATL translation rules for creating a UML-B model are identified.
The rules can generate a UML-B Project, CONTEXT name, MACHINES and
Class diagrams. For a Class diagram, the rules can generate attributes and its
Statemachines. For a Statemachine, we create rules for generating states and state
transitions. Each state transition comprises parameters, guards and actions that are
created from our rules. We also have a rule for creating a Ticktok event for time
progressing.

Finally, since TD illustrates some parts of the whole specifications, an output
UML-B model generated from ATL rules has to be completed or modified. For
example, associations among classes need to be added since they cannot be
identified by TD notations. Some events, such as ChangeDirUp and
ChangeDirDown, and invariants, are invented. Moreover, ATL does not allow
generating UML-B components from TD elements already used in another rule.
Thus in ATL rules, a symbol xStatex and xAssociationx are used as marks where
the UML-B output model components require adjustment. The xStatex represents
states needing replacement, while xAssociationx needs to be replaced by
association among Classes. Additional parts of a UML-B model that have to be
modified are: CONTEXT diagram, class attributes, initial state for a Statemachine
and some Statemachine transition guards.

UML-B tool itself also does not fully support identifying multiple previous
states of the same target state, see section 6.6.4. The same problem occurs with
SimultaneityArrows. For example, where there are two SimultaneityArrows
originally starting from a same source segment but ending at different target
segments. Thus, the generated UML-B output model has some Statemachine
transitions providing the same name. U2B translator gathers those same transition
names to generate an event. As a result, this event comprises guards and actions
from many conflicting transitions. We need to split these kinds of event into many

events with corresponding guards and actions.

Chapter 7 Translating Timing
diagrams into KAOS

This chapter investigates the techniques for generating KAOS Goal and
Operation models from TD. KAOS is a semi-formal method in which each goal
definition is identified by linear temporal logic (LTL). TDs demonstrate system
specifications in some temporal logic shapes along a timeline, i.e. in the next state
(0), some time in the future (¢), and entails (=). Thus, it is possible to generate
KAOS from TD. This transformation attempts to add a KAOS graphical capability
for expressing timing constraints and event dependency requirements.
Transforming TD into KAOS can help check the completeness of a system’s goals.
Additional information, that may need to be added to KAOS that is obtained from
the generating process, could identify what information is missing from the TDs.
This chapter starts with defining the scope of TD and LTL operators used for the
translation. Section 7.2 explains BNF TD definition used for transforming into
KAOS. Section 7.3 gives steps for generating KAOS Goal and Operation models
from TD. Section 7.4 provides textual translation rules. Sections 7.5 and 7.6
explain how to create a goal from a segment defined with causeEffectArrows and
SimultaneityArrows. Section 7.7 describes a technique for splitting a goal into
subgoals whenever the goal’s pre-condition is defined with the OR relationship.
Section 7.8 explains techniques used to generate goal trees. Section 7.9 gives
examples of user manual input to modelling. Section 7.10 shows examples of

generating Operation model.

Chapter 7 Translating Timing Diagrams into KAOS 175

7.1 Scope of LTL operators and shape of Timing Diagrams

For KAOS, we are concerned with generating events that will occur in the
future under the timing constraints provided. We are not dealing with timing
constraints that have occurred in the past states. The example on the next page gives
a case where it would be useful to support past operators. However, LTL past
operators are not used for defining a KAOS goal model. In other words, we are not
modelling a KAOS goal that includes timing constraints as pre-conditions (because
it has to be defined as a past operator) but in a post-condition (see section 2.7.2 for
the KAOS goal structure).

Currently, we have found in the case study that there are two LTL future
operators which correspond to two KAOS Goal models: Maintain Global
invariant P = Q and Bounded achieve P = 0. Q (see section 2.7.2
and 2.7.5). Our work is generating translation rules to create these kinds of KAOS

goal models.

Aspects a timing constraint does allow

To clarify what TD is suitable for using KAOS translation, consider a room
heating and humidity control problem as defined below.

“...whenever the room temperature is overheated or the room is overhumid
with a condition that there is electricity in the system, a room window will be

eventually opened between 3 and 5 seconds...”

Window Open

Constraints

351 A

Have Electricity
Overheat

Overhumid

Allowed

Figure 7-1 A timing diagram where KAOS translation is allowed

Chapter 7 Translating Timing Diagrams into KAOS 176

The specification above generates a TD as shown in Figure 7-1, where a
corresponding goal formal definition is defined by Bounded achieve P = O«

Q as shown in the following:

pre-condition P: (Overheat v Overhumid)) A Have Electricity
=

post-condition Q: O3 5; Window Open

This kind of TD is allowed for the KAOS transformation since there are no

past operators in the pre-conditions.

Aspects a timing constraint does not allow

If the room heating and humidity control problem specification above is
modified to “...whenever the room temperature is overheated or the room is very
humid, for between I and 2 seconds with a condition there is electricity in the

system, a room window will be eventually opened between 3 and 5 seconds...”.

Window Open Window Open

Constraints

Constraints

Simple [355]
Simple
. [1,2] .
Have Electricity Have Electricity
Overheat Overheat [1,2]
Overhumid Overhumid
Not Allowed Not Allowed

Figure 7-2 Timing diagrams where KAOS translation is not allowed

A TD generated with this new specification above is illustrated in Figure 7-2
left. This kind of TD with nested timing constraints is not allowed for the KAOS

transformation. That is because nested timing constraints cause a pre-condition to
be included with a LTL past operator 4 (some time in the past), which we are not

dealing with at this moment as shown in the following.

Chapter 7 Translating Timing Diagrams into KAOS 177

pre-condition : ¢, ; (Overheat v Overhumid)) A Have Electricity
=

post-condition : O35 Window Open

Another example supposes timing constraints are defined by a Simple node
(see section 5.1 for the original TD BNF definitions) as shown in Figure 7-2 right.
This kind of TD is not allowed for the KAOS transformation. That is because, not
only nested timing constraints alone force one to define LTL past operators, but also
having timing constraints by a Simple node allows identifying multiple timing
constraints in a CauseEffectArrow. It is complicated and unclear how to generate a
KAOS goal formal definition from this kind of TD. This is the reason the TD BNF
definition for KAOS is slightly different from that defined in the direct translation
in chapter 5. The detail of TD BNF definitions for KAOS is described in the

following section.

7.2 BNF Timing Diagram for KAOS

Most TD BNF definitions used for KAOS translation is the same as that
defined by the Event-B direct translation (Chapter 5). However, for KAOS, there is
a difference in defining timing constraints. That is, a timing constraint (Timing) is
directly connected with Constraints instead of a Simple segment. The rest of TD
BNF definitions are the same. The TD BNF definitions for KAOS shown below
highlight the definitions for Constraints and Simple concerned with the

differentiation.

Project :i= name Machine’

Machine ::= name Class’

name ::= String

Class ::= ClassName Obj" Obj_Def

ClassName ::= String

Obj_Def ::= ObjName " <" Class_Clause | ObjName " : * Class_Clause
ObjName ::= String

Chapter 7 Translating Timing Diagrams into KAOS 178

Class_Clause ::= ClassName |

ClassName"(" Param “:" ParamType (“," Param “:" ParamType) ™ ")"
Param ::= name

ParamType ::= name

Obj :: = ObjName ObjSt" Timeline

Timeline ::= name Segment”

Segment ::= ObjSt number Simul* [CauseEffectArrow]

ObjSt ::= name

number = Z°

Simul ::= StartSegmt EndSegmt

StartSegmt :i= Segment

EndSegmt ::= Segment

CauseEffectArrow ::= Constraint

Constraint ::= NodeType [Timing] /* different from earlier */
NodeType ::= Simple | OR_node | AND_node

Simple ::= CauseSegmt [Predicate*] /* different from earlier */
CauseSegmt ::= Segment

Predicate ::= String

OR_node ::= NodeType o NodeType

AND_node ::= NodeType « NodeType

Timing ::= "[* lowerlimit *," upperlimit *]1"

lowerlimit i:= Z°

upperlimit = Z*

Figure 7-3 illustrates TD used for transforming to KAOS Goal and Operation
models. Notice that there is a timing constraint for each CauseEffectArrow.
Numbers such as 1, 2, and 3 are not TD notations but are used for explanation in this

chapter.

Chapter 7 Translating Timing Diagrams into KAOS 179

Lit
floorlamp ¢
FLOORLAMP [2.4]
(:FLOOR) Unlit
f = currentF1
1 [2.4]
floorsensor On f = currentFl
FLOORSENSOR
(:FLOOR) Off
/7
/
: //1/7 (2.5 f = currentF1
requestlamp € rLit 16/
REQUESTLAMP ,/ I/ = currentFl & f = currentF1
> currentF1 / | dir = Down
/
f: reqFl &

f= currenfFl

f:FLOOR
() rUnlit ”
19 8 / I f=currentFl &
/ '\ dir=Up

MovingArriviRgUp / 6 \
\
/ \
MovingUp ! a4 Yo y
f<curkntFl) ECH
I = current
MovingDepartingUp ll o1 feqr =12
&1 feqFl, A
/
| / \
lift - LIFT StopAtFloor - y \
I/ \ / \
MovingDepartingDoWl}f/ N B
/II A \\/’ ?\\\ f: reqFl \
. S~ N |
MovingDown //’l // s \x\ N :
rloonst AN N I
MovingArrivingDoy(/rjl b ,’ AN \ :
j ftreqFl [f:reqFl) '\ /
Ilt‘ :" currentF II VA /
Open ! | o /
door ¢ P Do ! 7 ‘| /
DOOR ’I '| | / : 15
(FFLOOR) Closed 1 | | /s /
,' i 1{4 s S
: \ \ e /l /
- %
deActivated K==t /7
uplamp : | \ ,
UPLAMP \ N O
acTivated\ ____ | S~ </
\ P /
\1\0 _- - //
\ -7
N - /
Deactivated ™= /
downlamp : /
DOWNLAMP J/

Activated ——

Figure 7-3 Timing diagram used for KAOS Models

7.3 Steps in generating KAOS Goal and Operation models

Generating a KAOS Goal and Operation models comprises four steps.

Chapter 7 Translating Timing Diagrams into KAOS 180

1. A KAOS goal is created by two TD notations: segments which are declared
with causeEffectArrows and SimultaneityArrows. This step uses our textual
transformation rules, as explained in sections 7.5 and 7.6.

2. Consider the goals obtained from step 1:

e If the goal pre-condition is declared with OR relationships, that goal
is split into sub-goals by a pattern below:
Parent goal: P1 v P2 = Q
Subgoall: P1 = Q
Subgoal2: P2 = Q
e The goal reamins the same if its pre-condition is declared with AND
relationships.
This step breaks a complex goal into simple goals. Each simple goal is
then used as a leaf node goal for a goal tree in step 3. Explanations of
this process are described in section 7.7.

3. Generate goal trees from goals obtained from steps 1 and 2. Goal trees
generated correspond to KAOS goal refinement patterns, as described in detail in
section 7.8.

4. An operation is generated from individual leaf node of goal trees by KAOS

operation patterns as described in detail in section 7.10.

7.4 Textual translation rules for generating a goal

This section explains formal translation rules used to transform a TD into a
KAQOS Goal model. There are extra basic translation rules apart from those defined
in the direct translation TD to Event-B, chapter 5. Top-level textual translation rules
for creating a goal from a segment that has a CauseEffectArrow is described in
section 7.5, while section 7.6 explains how to generate a goal from a

SimultaneityArrow.

Chapter 7 Translating Timing Diagrams into KAOS 181

Basic translation rules

To generate KAOS goal from a TD, some rules are reused from the direct
translation (Table 5-1), while others are introduced in this chapter as shown in the

table below.

TKEmpty(Timing) — BOOL; this rule checks whether an input Timing exists. If so, the
rule gives the Boolean value true.

TKTiming(Constraint) — Timing; this rule gives a Timing for an input Constraint.
TKA11Simul(Machine) — (Simull, Simul2, .); this rule gives a sequence of
SimultaneityArrows for an input Machine.

TKSStartSegm(Simul) — StartSegm; this rule gives the SimultaneityArrow start

segment for an input simultaneityArrow.

Table 7-1 Additional basic rules for TD to KAOS transformation

7.5 Textual translation rules for creating a goal from segments

Top-level rules structure A KAOS Goal
(e | P
Definition:ccoveviiiiiiii
FormalDef: FormalDef :
TKSegmentMachine) —) ()
<FOR> Segment
<IN> TGetSegmentWithConstrntMachine)
{ [Non-deterministic inputs/output;
| Non-deterministic inputs/outputs
TKParamGuardValue(Segment) > local variables |
Pre-conditions (TKGrdCtrnt(Segmenf) } >! _ Cause states & Conditions !
= =
Post-conditions (TKT-i meCtrnt(Segment)) >I Timing constraints |
} J A\ J

[] Generated from rules
Extra information

Figure 7-4 Top-level rules structure for creating a goal from a segment

Chapter 7 Translating Timing Diagrams into KAOS 182

An overview of top-level textual rules used to generate goal formal definitions
from segments that have CauseEffectArrows 1s shown in Figure 7-4. In this
figure, the coloured boxes represent parts generated from the rules, and hatched
boxes represent parts the extra information added for the model completion. See
section 7.9 for a discussion of manually added information.

A goal’s name and its type have to be generated by hand. A goal formal
definition is created by the rule TKSegment in which a Machine is used as a
parameter for the rule. This rule generates each goal by the sub-rule
TGetSegmentWithConstrnt, which is reused from chapter 5, Table 5-1. This rule
collects only segments that are defined with causeEffectArrows as a sequence.
Next, each Segment is used to generate other parts of the goal formal definition by
other sub-rules. A goal formal definition is composed of three parts: non-
deterministic inputs/outputs local variables, pre-conditions, and post-conditions.
Each is generated by the sub-rules as explained in the following:

¢ Non-deterministic inputs/outputs local variables are generated by a
goal TKParamGuardvValue. These local variables are used inside a
goal. The detail of this rule is shown in Appendix E.

e Pre-conditions that are cause states and conditions are generated from
the sub-rule TKGrdCtrnt. This rule uses a Segment as an input
parameter.

e A post-condition is generated by the sub-rule TKTimeCtrnt. This rule
uses a Segment as an input parameter to generate a post-condition and
defines LTL future operator 9.

The detail of sub-rules and examples are explained in the following section.

7.5.1 Creating pre-conditions from cause states and conditions

This section describes the rule TKGrdCtrnt that is used to generate parts of
KAQOS pre-condition: cause states and conditions. This rule calls a sub-rule
TKGetGrdPredc as shown in Figure 7-5. The rule TKGetGrdPredc creates pre-

conditions of a goal formal definition for an input NodeType.

Chapter 7 Translating Timing Diagrams into KAOS 183

TKGrdCtrnt (Segment) —

“(” + TKGetGrdPredc(TNodeType(TConstrnt(Segment))) +)7

4 A

L—p» | TKGetGrdPredc(NodeType) —

NodeType = Simple .
|-> TSimpleCauseSource(Segment)

I-P TSimp1eCond(Predicate)

NodeType = OR_node

NodeType = AND_node

- J

Figure 7-5 Rule: TKGrdCtrnt and sub-rules

The rule TKGetGrdPredc is similar to the rule TGetGrdPredc in section 5.3.6.
It checks whether the input NodeType is Simple, OR_node or AND_node. The
difference here 1is, if the NodeType 1is Simple, two other sub-rules
TSimpleCauseSource and TSimpleCond are called in order to generate guards
from cause states and conditions respectively. The rest of this rule is the same as the
rule TGetGrdPredc in section 5.3.6. That is, if a NodeType is OR_node or
AND_node, the rule TKGetGrdPredc recursively calls itself. The detail of
TKGetGrdPredc is illustrated in the following, which shows only part of a Simple

node that is different from section 5.3.6.

TKGetGrdPredc(NodeType)cocueeeiiiiieeeeeeiitttee e e ettt e e e eieeee e e e e (D)
<IF> NodeType = Simpleccccooiiiiiiiiiiiiiiiiiiiii s (2)
<THEN>TSimpleCauseSource(TSegment(Simple))ccccueercuviercueennunen. 3)

+ TSimp1eCond(TCond(Simple))coccoveiiriiiiiiiiiiiieiiiiiieceniieeees 4)
<ELSE><IF> NodeType = OR_NOEccocuriiiuiiiiiiiiiiiieeiieeeiieeeiie e (5)
<ELSE> <IF> NodeType = AND_NOdEccccccuviiiimiiiiiiiiiiieiieiieeeeeieeeeee 6)
<ENDIF>

Figure 7-6 Rule: TKGetGrdPredc

Chapter 7 Translating Timing Diagrams into KAOS 184

The rules TSimpleCauseSource and TSimpleCond are also reused from the
TD direct translation rules in chapter 5. For example, Figure 7-7 shows how the

segment Off2 is used to create a pre-condition by the rule TKGrdCtrnt.

Onl Onl
floorsensor € On

FLOORSENSOR off off2
(£FLOOR)

MovingArrivingUp £= currentFl &

ir=u
MovingUp dir=TUp

. . MovingDepartingUp2
MovingDepartingUp
31 f=currentFl &
lift : LIFT StopAtFloor — . i dir = Down —_

i i MovingD¢partingDown6
MovingDepartingDown 3.2

MovingDown

MovingArrivingDown

Figure 7-7 Timing diagram for floorsensor and lift (parts of Figure 7.3)

Since the rule TKGetGrdPredc is similar to the rule TGetGrdPredc in section
5.3.6, we do not repeat how to generate it step by step. Instead, we explain how to
generate cause segments and conditions from the rule TSimpleCauseSource and

TSimpleCond (see Figure 7-8).

TKGrdCtrnt(Off2) —

“(* + TKGetGrdPredc(TNodeType(TConstrnt(Off2))) +)”

1

|—> TKGetGrdPredc(OR_node) — — 7 —
—
4 : MovingDepartingUp2
NodeType = Simple -« g
3: TSimpleCauseSource(MovingDeparingUp2—t 5 » TSimpleCauseSource(MovingDeparingUp2) —
MovingDepartingUp2 1 - i =
ingPepartingups | + TSimpleCond(f = currentFl & dir = Up) <LET> exp = TClass(TObj(TObjSt(MovingDeparingUp2)))
NodeType = OR_node) <IN><IF> THasParam(exp) FALSE
- <ELSE>
— THEN>
NodeType = AND_nod <
odelype D_node TOb3j(TObjSt(MovingDeparingUp2)) 1ift
+ “State =~ State =
+ TObjSt(MovingDeparingUp2) MovingDepaf€ingUp
<ENDIF>
6 TSimpleCond(f=currentFl & dir = Up)

& f=currentFl & d = Up

Figure 7-8 Steps for generating pre-conditions for lines 3.1 and 3.2 in Figure 7-7

Chapter 7 Translating Timing Diagrams into KAOS 185

Note that Figure 7-8 shows only relevant parts of the rule
TSimpleCauseSource used for creating pre-condition for a segment Off2 in Figure
7-7. The detailed rules are given in Appendix A.

Steps for generating pre-conditions from cause states and conditions are
shown in Figure 7-8. First, the rule TKGrdCtrnt is used with the segment Off2 as
the input parameter. At this step, the basic rule TNodeType gives the NodeType of
the segment Off2, which is an OR_node. Next, in step 1, the sub-rule
TKGetGrdPredc is called, where OR_node is used as an input parameter. Since the
NodeType is OR_node, then step 2 is actioned. Note that the details of steps 2-4 were
explained in detail in section 5.3.6.

In the OR_node section, each sub-NodeType underneath the OR_node is
collected as a sequence. In this case, there are two Simple nodes:
MovingDepartingUp2 and MovingDepartingDowné (see Figure 7-7). The
MovingDepartingUp2 is first sent back to the rule TKGetGrdPredc as the input
parameter as shown in step 3, and then it is sent as Simple node to the Simple node
section in step 4.

Step 5 shows the generation of pre-conditions from cause states by the rule
TSimpleCauseSource, where a Simple node is used as the input parameter. The
detail of the cause state generated by the rules is shown in this figure. Step 6 shows
a condition, which is attached to the MovingDepartingUp2, is generated to be a part
of pre-condition by the rule TSimpleCond. The rule TSimpleCond simply
concatenates each condition if there are many of them. The details of these rules are
given in Appendix A.

Next, steps 3-6 are repeated to generate a cause state and conditions for the
Simple node, MovingDepartingDown6é. The pre-conditions generated from the

segment Off2 are shown below.

Chapter 7 Translating Timing Diagrams into KAOS 186

Goal Achieve[FIsensorForTheCurrentFloorIsEventuallySetOffW/N2-5secsAfterLift
StartsMvgDptUpQOrStartsMvgDptDwn]

Definition:
FormalDef: From
...... Line
(liftState = ‘MovingDepartingUp’ & f = currentFl & dir = Up) v 3.1
(liftState = ‘MovingDepartingDown’ & f = currentFI & dir = Down) 3.2

7.5.2 Creating post-conditions

As shown in Figure 7-4, the rule TKTimeCtrnt is used to create a goal post-
condition. The detail of the rule, in which Segment is used as an input parameter, is
illustrated in Figure 7-9. This rule calls a sub-rule TKGetTimingPredc, where

Segment and Timing are input parameters for the rule.

TKTimeCtrnt(Segment) —

{ TKGetTimingPredc(Segment, TKTiming(TConstrnt(Segment))) }

TKGetTimingPredc (Segment, TiMiNG) —> ..c..covviiiiriiiiniiiiniieenieeeieeeieeeeae (D)
<IF> ITKEMPEY(TIMING) e e 2)
STHEN> “O” 4 TIMING .eeeveeeiieeiieniieeiieesite et e ste et e sieeete e eeeteeseeeeeesseesneeens 3)
SELSES <SKIP> ...ttt 4)
SENDIF> ..ottt ettt ettt e s (5)
<LET> exp = TClass(TObj(TObjSt(Segment)))cccceoveerimeninenenicieieenans (6)
I > et e e e et e e e e e et —a e e e e e e e e ittraraaeeeeeanaaes (7
<IF> THaSParam(E€XP)cccceeeeeriirieeniienieeneente et ettt sttt sre e s s (8)
STHEND ottt)

TObJ(TObFSE(SEGMENT)) ...eceieiiiieiieieeieeeeeeee e (10)
F ESHATE(7 e (11)
+ TWriteParamLst(TATTParam(€Xp)) ...c.cccoceeveerereeneenieeieieseeeeeens (12)
) S T ettt ettt (13)
+ 7+ TOBFSE(Segment) + “ 77 i (14)

SELSE> .ottt e e (15)

Chapter 7 Translating Timing Diagrams into KAOS 187

TOb (TOBFST(SEGMENT)) vvvvee e (16)
b SSIALE =77 oo (17)
7 L TODFST(SEGMENT) + 77 oo (18)
CENDIES ..o eeees oo eseeeeseeeseee e seeeeseeseeeeeeee (19)

Figure 7-9 Rules: TKTimeCtrnt and TKGetTimingPredc

The rule TKGetTimingPredc checks whether there is a Timing parameter

value, at line (2). If so, it generates a timing constraint in the form of O7jowertimir,

upperlimit] @t line (3). At line (8), the rule checks whether a class corresponding to

that segment has a parameter. If so, the rest of a goal post-condition (which is an
effect of a causeEffectaArrow) is generated at lines (10)-(14); otherwise lines (16)-
(18) are exceuted. The sub-rule TWriteParamLst is reused, as detailed in section
5.3.8. This rule is used to identify the whole parameter for a class. An example of a
goal’s post-condition, generated from segment Off2 by the rule TKTimeCtrnt, is

shown below.

TKTimeCtrnt(Off2) —

{ TKGetTimingPredc(Off2, (TKTiming(TConstrnt(Off2))) }

TKGetTimingPrecd(Off2, [2,5]) —
<IF> ITKEmpty([2,5]) utput
<THEN> “0” + [2, 5] 0 [2,5]
<ENDIF>
<LET> exp = TClass(TObj(TObjSt(Off2))) <IN>
<IF> THasParam(exp)
<THEN>
TObj(TObjSt(Off2)) floorsensor
+ “State(State(
+ TWriteParamLst(TA11Param(exp)) £
+ 9 =")=
+ “¢”+ TObjSt(Off2) +“’” ‘Off’

Figure 7-10 Example steps of generating post-conditions for a segment Off2

Chapter 7 Translating Timing Diagrams into KAOS 188

Figure 7-11 illustrates a summary of the segment Off2 used to generate a Goal
Achieve[FisensorForTheCurrentFloorisEventuallySetOffW/N2-5secsAfterLiftStartsMvgDpt-
UpOrStartsMvgDptDwn].

Goal Achieve[FiIsensorForTheCurrentFloorisEventuallySetOffW/N2-5secsAfterLiftStarts
MvgDptUpOrStartsMvgDptDwn]

Definition: The floor sensor at the current floor is eventually set off within time interval of
2-5 seconds after lift is in the state of moving departing up or moving

departing down
FormalDef:
Y f:FLOOR e TKParamGuardValue
(liftState = ‘MovingDepartingUp’ & f = currentF| & dir = Up) v
-------- TKGrdCtrnt
(liftState = ‘MovingDepartingDown’ & f = currentF| & dir = Down)
=
O pg floorsensorState(f) = ‘off TKTimeCtrnt

Figure 7-11 A goal 3.1 & 3.2 description

7.6 Top-level textual translation rules for creating a goal from a

SimultaneityArrow

As mentioned by (Letier, Kramer et al. 2008), in KAOS, a temporal logic
pattern Immediate Response property can be specified as a goal with the temporal
logic P= Q where the response Q occurs within the same time as the P triggering
condition. Since simultaneityArrows are used to show two things happening very
close in time (at the level of abstraction), the SimultaneityArrow has the same
property as the Immediate Response property. Thus, each SimultaneityArrow is
created as an individual goal with this temporal logic pattern. The top-level rules
structure for creating a goal from a SimultaneityArrow is shown in Figure 7-12.
The structure is similar to the top-level rules for creating a goal from a segment.

The only difference is that the post-condition is defined without a timing constraint.

Chapter 7 Translating Timing Diagrams into KAOS 189

Top-level rules structure A KAOS Goal
GOAll iiiiiiii e,
Definition:covivviininiinnr e
FormalDef: FormalDef :
4 Y 4 N\

TKSimulMachiney —
<FOR> Simul <IN> TKA11SimulMachine)

{ Non-deterministic inputs/outputs

TKSParamGuardValue(Simul) local variables
Pre-condifions (TKSCause(SimuI)) I Pre-conditions |
= =
Post-condi ions(TKSEffect(Simul)) ;l Post-conditions |

1
s

. J - J

[Generated from rules
Extra information

Figure 7-12 Top-level rules structure for creating a goal from SimultaneityArrows

A goal formal definition is created by the rule TKSimul in which Machine is
used as an input parameter. This rule is defined as an iteration process for
generating each simultaneityArrow as a KAOS goal. The sub-rule TKAT11Simul
uses Machine as an input parameter. The TKA11Simul rule comprises sub-rules
TKSParamGuardValue, TKSCause and TKSEffect for generating a list of non-
deterministic parameter using in a goal, goal pre-conditions, and goal post-
conditions respectively. There are some goals that are needed to add extra non-
deterministic local variables. See section 7.9 for discussion of manually added
information. The rule TKSParamGuardvValue is the same as the rule
TKParamGuardvValue (Appendix E), the only difference being their input
parameters; the TKSParamGuardValue uses Simul while the TKParamGuardvValue
uses Segment. The rule TKSCause is the same as the rule TSimpleCauseSource
(Chapter 5, and detailed in Appendix A); only the input parameters are different.

The post-condition of a goal is generated by the rule TKSEffect as shown
below. This rule does not create timing constraints for a post-condition since a

SimultaneityArrow does not have timing constraints.

Chapter 7 Translating Timing Diagrams into KAOS 190

TKSEffect(Simul) =
<LET> exp = TObj(TObjSt(TEndSegm(Simul)))
<IN><IF> THasParam(TClass(exp))
<THEN>exp
+ “State(”
+ TWriteParamLst(TA11Param(TClass(exp)))
+9)="

+“ “” + TObjSt(TEndSegm(Simul)) + “’”

<ELSE> exp

+ “State =

+“ 7 + TObjSt(TEndSegm(Simul)) + “ "~
<ENDIF>

Figure 7-13 Rules for creating a KAOS goal from a SimultaneityArrow

For example, the post-condition generated from the simultaneityArrow line

16 in Figure 7-2 is shown in the following:

TKSEffect(line 16) — Qutput
<LET> exp = TObj(TObjSt(TEndSegm(line 16))) exp = lift
<IN><IF> THasParam(TClass(exp))c.ceceeuunenn. FALSE
<ELSE> €XP .oiiiiiiii i lift

+ CState = State =
+“°” 4+ TObjSt(TEndSegm(line 16)) + «“’ > MovingDown’
<ENDIF>

The whole goal formal definition is created from the SimultaneityArrow

line 16 in Figure 7-2, is illustrated below

Chapter 7 Translating Timing Diagrams into KAOS 191

TKSimul(Machine) —

<FOR> Simul <IN> TKAT1Simul(Machine) line 10,.58 line 16, etc.

{ TKSParamGuardValue(Simul) Output VY f : OOR
+ TKSCause(Simul) floors@mnsorState (f) = ‘Off’
+ 13 : kR :

} + TKSEffect(Simul) 1iftSt = ‘MovingDown’

Figure 7-14 The goal formal definition for the SimultaneityArrow line 16

7.7 Splitting OR relationships in a goal pre-condition into subgoals

As mentioned in section 7.3, if a goal pre-condition is declared with OR
relationships, that goal is split into subgoals. This is an attempt to generate simple
goals from a complex goal, in which each of them is used as a leaf node for a goal
tree that will be generated later. For example, from Figure 7-11, a Goal
Achieve[FlsensorForTheCurrentFloorlsEventually SetOffW/N2-5secsAfterLiftStartsMvgDpt
UpOrStartsMvgDptDwn] has pre-condition defined by an OR relationship. Thus, this
goal is split into two subgoals: Line3.1 Goal Achieve[FisensorForTheCurrentFloorls
EventuallySetOffW/N2-5secsAfterLiftStartsMvgDptUp] and Line3.2 Goal Achieve[Fisensor
ForTheCurrentFloorisEventuallySetOffW/N2-5secsAfterLiftStartsMvgDptDwn] by a
pattern: parent goal: P1 v P2 = Q, subgoall: P1 = Q, and subgoal2: P2 = Q as
shown in Figure 7-15.

where: P1 : liftState = ‘MovingDepartingUp’ & f = currentFl & dir = Up

P2 : liftState = ‘MovingDepartingDown’ & f = currentFl & dir = Down
Q : O 5 floorsensorState(f) = ‘Off’

Chapter 7 Translating Timing Diagrams into KAOS 192

Goal Achieve[FIsensorForTheCurrentFloorisEventuallySetOffW/N2-5secs
AfterLiftStartsMvgDptUpOrStartsMvgDptDwn]

Definition:

F IDef:
ormarbe V f: FLOOR

(liftState = ‘MovingDepartingUp’ & f = currentFl & dir= Up) v
(liftState = ‘MovingDepartingDown’ & f = currentF| & dir = Down)
=

O 15 floorsensorState(f) = ‘Off

¢ Pt VP=Q

Line3.1 Goal Achieve[FlsensorForTheCurrentFloorls Line3.2 Goal Achieve|FisensorForTheCurrentFloorls
EventuallySetOffW/N2-5secsAfterLiftStartsMvgDptUp] EventuallySetOffW/N2-5secsAfterLiftStartsMvgDptDwn]
Definition: ... Definition:
FormalDef:
F IDef:
ormatbel v £ FLOOR V/ f: FLOOR

(liftState = ‘MovingDepartingUp’ & (liftState = ‘MovingDepartingUp’ &

f = currentFl & dir = Up) f = currentF| & dir = Down)

= =

O g floorsensorState(f) = ‘Off O 15 floorsensorState(f) = ‘Off

Figure 7-15 Splitting an OR relationship in a goal pre-condition into subgoals

By contrast, any goal that has AND relationships defined in its pre-condition
remains the same. An example of the goal generated from line 18 and line 7 in

Figure 7-3 by the textual translation rules is illustrated in the following.

Line18&7 Goal Achievel[LiftisEventuallyMvgDptUpFromTheCurrentFloorW/N1-5
secsAfterTherelsARequestForTheLiftAbove The CurrentFloorAndTheDoorAtThe
CurrentFloorisClosed]

Definition:
FormalDef: Y/ f: FLOOR

reqlampState(f) = rLit’ & f > currentFl ~ & Line 18
doorState(currentF|) = Closed & f : reqF| & Line 7

liftState = ‘StopAtFloor e Additional
information
=

O 11,5 liftState = ‘MovingDepartingUp’

Figure 7-16 An example of AND relationship in a goal pre-condition

Chapter 7 Translating Timing Diagrams into KAOS 193

In the example in Figure 7-16, where the pre-condition of the goal is

combined with an AND relationship, this goal is left the same. However, this goal

shows two examples of adding extra information manually.

First, in some cases, it is necessary to identify the previous states of the post-
condition as shown in Figure 7-16, liftState = ‘StopAtFloor’. That is, the lift
must be in a state of stop at floor before it can start moving departing up. In
the lift case study, there are four goals: Line 18&7 Goal, Line 19&8 Goal,
Line5(a) Goal, and Line5(b) Goal that need to be added with this kind of extra
information (as detailed in Appendix F).

Secondly, the original pre-condition generated from line 7 by the translation
rules is doorState(f) = Closed & f : reqFl. The non-deterministic variable f in
this pre-condition has to be changed to currentFl. This is because we would
like to identify the current floor door’s state that must be closed, not any
other doors. Only two actions need to be altered in the lift case study which

are Line18&7 Goal and Line19&8 Goal (as detailed in Appendix F).

7.8 Generating goal trees

Goals obtained from the steps in sections 7.5 to 7.7 are used to generate goal

trees. A goal tree comprises a parent goal and its subgoals. Each sub-goal specifies

explicit tasks in which the combination of subgoals explains what to do in general

in the upper level, the parent goal. In this thesis, we propose two techniques that are

“guidelines” of goal trees generation. In the first technique, a goal tree is created

whose subgoals illustrate how changing an object’s state causes another object’s

state to be changed in the system (as detailed in section 7.8.1 below). In the second

technique, a goal tree is generated from a group of CauseEffectArrows and

SimultaneityArrows that share the same cause segment (as detailed in section

7.8.2 below).

Chapter 7 Translating Timing Diagrams into KAOS 194

7.8.1 A goal tree illustrates an object’s state change causes another object’s state

to be changed

To generate this kind of goal tree, the technique looks for continuity of
CauseEffectArrows and SimultaneityArrows that occurs from the left hand
side of the TD to the right hand side. For example, in Figure 7-17, the
CauseEffectArrow lines 18 and 7 have a MovingDepartingUp2 as an effect
segment. This MovingDepartingUp2 becomes a cause segment of the
CauseEffectArrow line 3.1. The causeEffectarrow line 3.1 has a segment Off2 as
an effect segment. This segment Off2 becomes a StartSegmt of the
SimultaneityArrow line 17. Note that at this point, the goal generated originally
by lines 3.1 and 3.2 is separated to individual Line3.1 Goal and Line3.2 Goal already
since there is an OR relationship in the pre-condition (as described in section 7.7,
Figure 7-15). Thus, Line3.1 Goal can be used for this goal tree while the Line3.2 Goal

is used in another goal tree.

Onl onl
floorsensor € On n
FLOORSENSOR
(FLOOR) Off Off2
/
requestlamp € rLit 17/ 125]
REQUESTLAMP R // (= currentil &
(fFLOOR) “Unlit curren _1/— dir = Down
18 k= currentFl &
. . dir=U
MovingArrivingUp ‘\ ir=Up
\ .
MovingUp [1,5] WMovingUp3
MOVingDepartingUp MoviygDegartingUp2 /3 1

lift :LIFT StopAtFloor 3.2 —

MovingDepartingDown
MovingDown
7

MovingArrivingDown

door € Open f: reqFl
DOOR
(:FLOOR) Closed

Figure 7-17 The lift timing diagram (parts of Figure 7-3)

Chapter 7 Translating Timing Diagrams into KAOS 195

The occurrence of the continuity of causeEffectArrows and

Simultaneity above generates a goal tree by the Milestone-driven goal refinement

pattern (detail in section 2.7.4) as shown below.

Main Goal1.1 Achievel...]

Line18&7 Goal Achieve............] Line3.1 Goal Achieve............] Line17 Goal Achieve.........]
Definition: Definition: Definition:
FormalDef: FormalDef: FormalDef:
V f: FLOOR Y f: FLOOR V f:FLOOR, f = currentFl|
reqlampState(f) = rLit' & |f > currentFl|& liftState = ‘MovingDepartingUp’ & floorsensorState(f) = ‘Off

f=currentFl| & dir = Up =

doorState(currentFi) = Closed &|f : reqFl| & IiftState = ‘MovingUp’

: =
liftState = ‘StopAtFloor’

P 0 o5 floorsensorState(f) = ‘Off
=

& 115 liftState = ‘MovingDepartingUp’

Figure 7-18 Parts of a goal tree

From Figure 7-18, few alterations need to be made in order to have correct

goal trees, as described below.

1. Non-deterministic variables’ definitions are moved on the top of the
tree after the symbol “V ”. The move does not change the meaning of
a goal, but the rearrangement. For example, moving f > currentFl and f
: reqFl of the Line18&7 Goal.

2. Extra information is added. This information is needed only in some
line such as Line17 Goal and Line18 Goal. For example, in Figure 7-18,
the Line17 Goal, which is generated by the simultaneityArrow, has
the added condition f = currentFl. Because the notation of
SimultaneityArrow itself does not allow identifying predicates,

additional information is needed in this case.

The goal model after doing these alterations is shown in the following.

Chapter 7 Translating Timing Diagrams into KAOS 196

Main Goal1.1 Achieve]...]

Line18&7 Goal Achieve............] Line3.1 Goal Achievey............] Line17 Goal Achievel.........]
Definition: Definition: Definition:
FormalDef: FormalDef: FormalDef:
YV f: FLOOR, f: reqFl, f > currentF| Y f: FLOOR, f = currentFl| V f:FLOOR, f = currentF|
reglampState(f) = TLit’ & liftState = ‘MovingDepartingUp’ & floorsensorState(f) = ‘Off’
P: di U =
= ir = Up
doorState(currentF|) = Closed & liftState = ‘MovingUp’
. =
liftState = ‘StopAtFloor
motate opAtrico O 5 floorsensorState(f) = ‘Off
=

0Q: O p g liftState = ‘MovingDepartingUp’

Q = Invariant1

Invariant 1 : liftState = ‘MovingDepartingUp’ = dir = ‘Up’

Figure 7-19 Parts of a goal tree after alteration

Line18&7 Goal is linked to the Line3.17 Goal by the Milestone-driven goal
refinement pattern where Q is used as intermediate state. However, if we use Q alone,
generating this goal tree is not correct. That is, a condition dir = Up does not exist for
Q in the Line18&7 Goal but it does exist for Q in the Line3.1 Goal as a pre-condition.
To resolve this problem, an invariant is introduced. Invariants are properties that
remain true for a specific sequence of operations in the system. In this case, the
Invariant 1: liftState = ‘MovingDepartingUp’ = dir = ‘Up’ is used to identify that
whenever the lift is in the state of MovingDepartingUp, the lift direction must be

always Up. With this invariant, the goal tree is correctly generated.

P =0R

P=0Q Q INAABALTI= R

[Q=Invy Alnv, A ...]

Invi: Q= A
Inv,: Q=B

Figure 7-20 A pattern for generating KAOS goal tree

Chapter 7 Translating Timing Diagrams into KAOS 197

A summary of the Milestone-driven goal refinement pattern used for creating a
goal tree, where Inv denotes Invariant is shown in Figure 7-20. An invariant for a
goal is an option, which is defined inside the “[...]” symbol. Q is an intermediate
state. Q may have invariants defined by Inv1, and Inv2 (and others if there are any)
which provides predicates A and B respectively. A and B then are used as a part of
pre-condition for the corresponding goal. Not every goal requires an invariant. The
invariant is used only when the next goal’s pre-condition(s) has extra information
that is not identified earlier in the previous goal’s post-condition, as in the example

shown in Figure 7-19.

7.8.2 A goal tree is generated from a group of CauseEffectArrows and

SimultaneityArrows that share the same cause segment

This kind of goal tree is generated by looking for a common segment which is
used as a cause segment for relevant CauseEffectArrows and
SimultaneityArrows. A common segment is generated as a parent goal while the

relevant CauseEffectArrows and SimultaneityArrows are created as sub-goals.

requestlamp € rLit —
REQUESTLAMP
(fFLOOR) rUnlit

MovingArrivingUp
MovingUp
MovingDepartingUp

StopAtElborl

[1,5]
f: reqFl,
f=currentFI

lift : LIFT StopAtFloor

7
/,
MovingDepartinngWn
MovingDowd /
s
MovingArrivin/gljown 9
r

I

/
door Open/ |
DOOR o

(fFLOOR) Closed \
\
! 1

\

I
uplamp : deAClli{aled
UPLAMP \
acTivated —
\\\10 . i
; . Deactivated\ =
downlamp :
DOWNLAMP Activated

Figure 7-21 Parts of a goal tree representing requestlamp, lift, door, uplamp and downlamp

Chapter 7 Translating Timing Diagrams into KAOS 198

For example in Figure 7-21, the segment StopAtFloorl is a common cause
segment for the lines 6, 9, 10, and 11. The segment StopAtFloor1 is generated as a
parent goal, while each of those lines becomes a sub-goal of the parent goal.
Remember, each sub-goal is actually generated earlier by textual translations, as
described in sections 7.5 and 7.6. Thus, only the parent goal has to be generated in
this step.

This kind of goal tree is generated by the Case-driven : Split consequent pattern
(Letier 2001).

Parent goal: P = Q AR A S
Subgoall: P = Q
Subgoal2: P = R
Subgoal3: P = S

Figure 7-22 shows the goal tree generated by those lines and the Split
consequent pattern, where
P: Y f:FLOOR, f : reqFl, f = currentFl, liftState = ‘StopAtFloor’
O, 4 requestlampState(f) = ‘rUnlit’
Op1, 57doorState(f) = ‘Open’
uplampState = ‘deActivated’

5% 3 90

downlampState = ‘Deactivated’

Chapter 7 Translating Timing Diagrams into KAOS 199

MainG2 Achievef............ J
Definition:
FormalDef:

Y f:FLOOR, f: reqFl, f= currentF|
liftState = ‘StopAtFloor’

=

O 12 4 requestlampState(f) = ‘rUnlit’
O 11, 5 doorState(f) = ‘Open’
uplampState = ‘deActivated’

downlampState = ‘Deactivated’

T P = Q AR ASAT

Line6 Goal Achievel............ J Line9 Goal Achievel............, J
Definition: Definition:
FormalDef: FormalDef:

V f:FLOOR, f: reqFl, f = currentF| YV f:FLOOR, f: reqFl, f = currentF|

liftState = ‘StopAtFloor’ liftState = ‘StopAtFloor’

= =

O p, 4 requestlampState(f) = ‘rUnlit’ O 11, 5 doorState(f) = ‘Open’
Line11 Goal Maintain............ J Line10 Goal Maintain............]
Definition: Definition:
FormalDef: FormalDef:

VY f: FLOOR, f: reqFl, f = currentF| YV f:FLOOR, f: reqFl, f = currentF|

liftState = ‘StopAtFloor’ liftState = ‘StopAtFloor’
= =
uplampState = ‘deActivated’ downlampState = ‘Deactivated’

Figure 7-22 A goal tree representing lines 6, 9, 10 and 11 in Figure 7-21

Currently, we have not found it necessary to use invariants in these kinds of

the goal tree. The Goal trees generated by TD in Figure 7-3 are shown in Appendix
F.

7.9 Manual input to modelling

For each goal, the translation rules can automatically generate a goal’s formal
definition that is composed of non-deterministic local variables, pre-conditions, and
post-conditions, where the latter is defined by an LTL operator and timing
constraints. The goal’s name, goal’s type, and goal’s textual definition need to be
created by hand, because how these parts are described depends on a user’s choice.

Extra information needs to be added to some goals for two reasons.

Chapter 7 Translating Timing Diagrams into KAOS 200

1. To complete the information on the individual goal
In a few goals, it is necessary to declare the previous state(s) to the pre-
condition of the goal. The previous states make some goals explicit and more
correct. However, most goals do not need previous state(s). That is because it is
unnecessary to declare previous states, which raises problems when generating
Goal trees that require more invariants, and creates duplicate information in the
Operation model, making the Operation model complicated. Thus, our design
does not create the previous state automatically using the translation rules. An
example of adding the previous state is described in Figure 7-16.
2. To complete goal trees

There are two reasons to add extra information. First, simultaneityArrows will
not explain the conditions on the line like causeEffectArrows. When a Goal
tree includes any goals that are created from SimultaneityArrows, some extra
information may need to be added to the goal to make the Goal tree correct. An
example of adding extra information for this kind of problem is shown by Goal
Line17 in Figure 7-18. Secondly, to have a complete Goal tree, some goals are
manually generated. These goals are actually obtained from changing states
(transitions) in the TDs, such as the lift is changing state from moving up to
moving arriving up. However, these goals are not created by the translation
rules, since the rules do not generate a goal from a transition but segments and
SimultaneityArrows. These goals are needed since they are used to bridge the
gap between the goals inside a Goal tree, and make a Goal tree complete. An

example of introducing a new goal into a Goal tree is described below.

Figure 7-23 shows the bigger figure of the goal tree from Figure 7-18. This
figure illustrates a GoalA1 Achieve[LiftStatelsEventuallyMvgArgUpAfterMvgUp] that is
generated by hand. This goal is necessary since it is used to bridge the gap between
the Line17 Goal and the Line4.1 Goal. Note that we used “A” after the word “Goal’ as
an abbreviation for the additional goal; for example, GoalA71 is the additional goal

no. 1.

Chapter 7 Translating Timing Diagrams into KAOS 201

Main Goal1 Achievel...]

T Py V Py = OW

Main Goal1.1 Achievel...] Main Goal1.2 Achievel...]

Line18&7 Goal Line3.1 Goal Line17 Goal Achievel.....] GoalA1 Achieve.....] Line4.1 Goal Achievel.....]
e Definition: Definition: Definition: -
FormalDef: FormalDef: FormalDef:
V f:FLOOR, f = currentF| liftState = ‘MovingUp’ Vf:FLOOR, f= currentF|
floorsensorState(f) = ‘Off = liftState = ‘MovingArrivingUp’
= O liftState = ‘MovingArrivingUp’ =
iftState = ‘MovingUp’ O pg floorsensorState(f) = ‘Off

Figure 7-23 The MainG1

In the lift system case study, only two goals are newly generated, GoalA7 and
GoalA2, in which the latter describes the lift state as eventually changing its state
from MovingDown to MovingArrivingDown. The detail of this goal can be found in

Appendix F.

7.10 Operation model

An Operation model defines state transitions of a goal by using DomPre and
DomPost conditions. The DomPre is used to describe the state before an operation,
while DomPost defines a relation between states before and after application of the
operation. In addition, further requirements of operations can be defined by using
RegPre, ReqgPost, and ReqTrig, as mentioned in section 2.7.5.

An operation is created from a leaf node of goal trees. Thus, an Operation
model is a collection of operations created from whole leaf nodes. Each goal pattern
has a unique operation pattern. For example, goals with a pattern Bounded
Achieve P=>0.; Q and a pattern Global Invariant P = Q have operation

patterns defined as shown in Figure 7-24. Those operation patterns are well defined

Chapter 7 Translating Timing Diagrams into KAOS 202

by (Lamsweerde, Dardenne et al. 1991; Letier 2001), here we generate the

Operation model that follows these patterns.

Goal model Goal model

rchieve variar m
Achieve P :Osd Q Invariant

DomPre —-Q
DomPost Q

DomPre =P
DomPost P
ReqPost Q

DomPre Q
DomPost ~Q
ReqgPost -P

ReqTrig 7Q S<d-1 P

Operation model Operation model

Figure 7-24 Operation patterns: Bounded Achieve and Global Invariant

For example, consider the Line9 Goal below:

Line9 Goal Achieve [TheDoorAtTheCurrentFloorlsEventuallyOpenBetween1-5secsAfter
LiftStopsAtThatFloor]

Definition: The door at the current floor is eventually open between 1 and 5 seconds after
the lift is stopped at that floor.

FormalDef Y f:FLOOR, f:reqFl, f = currentF|
liftState = ‘StopAtFloor’
=

01, 5 doorState(f) = ‘Open’

The Line9 Goal is declared by the Bounded Achieve pattern where

P: liftState = ‘StopAtFloor’ and Q: doorState(f) = ‘Open’. Thus, its operation is defined as

Operation DoorOpen
Input door{arg f : FLOOR, f : reqFl, f = currentFl }state
Output door{arg f : FLOOR, f : reqFl, f = currentFl}state
DomPre doorState(f) = ‘Close’
DomPost doorState(f) = ‘Open’
ReqTrig doorState(f) = ‘Close’ Sy 9 4 (liftState = ‘StopAtFloor’)

Chapter 7 Translating Timing Diagrams into KAOS 203

Another example is the Line10 Goal. This goal is defined by the Global
Invariant pattern. The operation model generated from this goal is illustrated

below.

Line10 Goal Maintain[DownlamplsDeactivatedSimultaneouslyWhenLiftStopsAtFloor]
Definition: The downlamp is set to deactivate at once whenever the lift stops at that floor
FormalDef:

liftState = ‘StopAtFloor’

=

downlampState = ‘Deactivated’

The Line10 Goal is defined as a Maintain and corresponds to the Global
Invariant pattern as shown in Figure 7-24, where P: liftState = ‘StopAtFloor’ and

Q: downlampState = ‘Deactivated’. The operations for the Line10 Goal are defined as

follows.

Operation downlampDeactivated Operation downlampActivated
Input liftState Input downlampState
Output liftState Output downlampState
DomPre liftState # ‘StopAtFloor’ DomPre downlampState = ‘Deactivated’
DomPost liftState = ‘StopAtFloor’ DomPost downlampState = ‘Activated’
ReqPost downlampState = ‘Deactivated’ ReqPost liftState # ‘StopAtFloor’

Other operation models can be found in Appendix F.

7.11 Summary

This chapter explains the textual translation rules used to generate KAOS
goals from segments defined with cCcauseEffectArrows and from
SimultaneityArrows. The translation rules use TD BNF definitions as input
parameters to generate individual goals. The TD BNF definitions for KAOS
transformation differs from what was declared in Event-B translation. Here, one
timing constraint for each CauseEffectArrow is allowed. Creating a goal from

nested timing constraints is not supported. Currently, an individual goal is created

Chapter 7 Translating Timing Diagrams into KAOS 204

by the rules either in a pattern of Achieve: Bounded Achieve P => Q<4 Q Or
Maintain: Global Invariant P = Q. Next, those goals are used to create
Goal trees.

A Goal tree can be generated by two techniques. First, the Goal tree is
generated in which its subgoals illustrate how changing of an object’s state causes
another object’s state to be changed in the system. Secondly, the Goal tree is
generated from a group of CauseEffectArrows and SimultaneityArrows that
share the same cause segment.

For the first technique, some goals need to be declared with invariants. Using
invariants, which is an option, enable the creation of a correct goal tree (as
described in section 7.8.1). That is because invariants give supportive information
that is not directly shown by the goals. The invariants are not used in the second
technique.

Some additional goals are added by hand. These goals are introduced into
corresponding goal trees in order to complete the goal model (as described in
section 7.9). Operation models are generated from the leaf node of the goal trees
which use well-defined operation patterns, provided by (Lamsweerde, Dardenne et

al. 1991; Letier 2001).

Chapter 8 Comparison and

Evaluation

This chapter explains the differences and similarities of each technique used
to transform TD into Event-B, UML-B and KAOS models. Section 8.1 describes
the comparison between Event-B, UML-B and KAOS models. Section 8.2 gives
the comparison for the other related works. Section 8.3 provides the evaluation of
our model. Section 8.4 gives quantification manual editing while an example of PO

is explained in section 8.5.

8.1 Comparison between Event-B, UML-B and KAOS models

Transforming TD into Event-B, UML-B and KAOS models have some

things in common and differences in detail.
8.1.1 Timing diagram notations

e The same TD notations can be used both for creating an Event-B model
from the direct translation rules, and for generating KAOS Goal and
Operation models. That is, the whole of a class’s name are defined as

uppercase letters. For example, FLOORSENSOR.

Chapter 8 Comparison and Evaluation 206

The TD used for transforming into UML-B model is a bit different. That
is, the first character of a class’s name is an uppercase letter and the rest
are lowercase letters. For example, Floorsensor.

Each TD class for translating an Event-B model is created as a set in the
Event-B CONTEXT part, while each TD class for translating an UML-
B model is generated as a class in the Event-B MACHINE part.

8.1.2 Identify TD Timing constraints

In transforming TD into Event-B and UML-B, defining TD timing
constraints is the same. That is, a timing constraint is attached with the
Simple NodeType. Then, one can define nested timing constraints for a
CauseEffectArrow.

In transforming TD into KAOS, defining TD timing constraints is
different. That 1is, at most one timing constraint for a
CauseEffectArrow (section 7-1 and 7-2) is allowed. That is because
we are not identifying past LTL operators as goal pre-conditions. Using

nested timing constraints has to use past operators.

8.1.3 How models are generated

Metamodel:

» In Event-B and KAOS: TD metamodel is defined by BNF definitions

» In UML-B: TD metamodel is created by EMF

Defining timing constraint in a model

»In Event-B and UML-B: timing constraints are defining in a pre-
condition (guard)

»In KAOS: timing constraints are defining in a post-condition (action).

Chapter 8 Comparison and Evaluation 207

8.1.4 TD components used for the translation

In transforming TD into an Event-B model: each segment that is
declared with constraints is used to create an Event-B event. If that
segment has simultaneityArrows defined, the SimultaneityArrows
are also generated as a part of that event.

In transforming TD into UML-B: each TD state transition is used to
generate an Event-B event.

In transforming TD into KAOS: each segment that is declared with
constraints and simultaneityArrows are used separately to create a

goal.

8.1.5 Ease of production and amendment

To generate an Event-B model: the difficult part is generating TD BNF
definitions that should represent TD correctly and can be used as closely
as possible for the rest of the translation techniques. Textual translation
rules use BNF elements as input parameters. Most Event-B components
can be generated from the rules and altering a model is easy to do.

To generate a UML-B model: it takes a lot of effort to generate a model
starting from creating the TD metamodel and source model using
Eclipse, and using the UML-B toolkit since it needs a high specification
computer. Using ATL has problems as it does not support creating an
output element by combination of source elements across the rules.
Moreover, the UML-B itself does not fully support generating
SimultaneityArrows nor identifying multiple previous states to the
same target state. The output model needs to be altered such as adding
associations to classes since TD notation does not support this.

To generate KAOS Goal and Operation models: the TD BNF from the
direct translation of an Event-B model can be reused with some

modifications, as well as the textual translation rules. The hardest part

Chapter 8 Comparison and Evaluation 208

for the KAOS translation is generating goal trees since they need to be

created with the KAOS refinement patterns. Generating a KAOS

Operation model uses the pattern provided at the leaf nodes of goal

trees.

8.1.6 Manual additional information

Context:

>

In Event-B: most of the context elements are generated from TD by
the textual translation rules, only a few have to be created manually.
Those manual creation elements are actually defined as predicates
on the causeEffectArrows but they cannot be used to generate
context since TD notations do not support this.

In UML-B: since the limitations of ATL, the ATL rules can
generate the context’s name while the body of the context must be
generated by hand.

In KAOS: there is no concept of context.

Events/Goal

>

In Event-B: some events are necessary added manually. That is
because TD expresses only a part of the whole system
specifications. Moreover, each event is generated by two TD
notations: segments with constraints (CauseEffectArrows) and
SimultaneityArrows attached to the segment. However, not every
event can be represented by CauseEffectArrows and
SimultaneityArrows. Thus, some events need to be added. For
example, in the lift case study, we have to add events:
ChangeDirUp, ChangeDirDown and doorClosed.

In UML-B: there are fewer events manually appended since every
transition is generated to be an event. However, there is more

alteration in the UML-B model than in the Event-B model generated

Chapter 8 Comparison and Evaluation 209

by the direct translation. That is for two reasons: first, the limitation
of ATL itself. Secondly, to generate some variables used in the
model, associations among classes need to be generated, which
cannot be done directly from TD notations, but must be by hand.

» In KAOS: a number of goals need to be added manually. That is
because each goal is generated by two TD notations: segment with
constraints and simultaneityArrows. However, not every system
specification can be represented by these notations. Thus, some
goals need to be appended. We find what goal is missing and needs
to be added, while generating a goal tree. For example, the goal that
describes changing the state of the lift from moving up to moving

arriving up.

e Variables

» In Event-B and UML-B model: variables are added manually for the
same reasons described above. Some of these variables are actually
defined as a part of predicate, some are not. However, since none of
the TD notations can be used to identify these kinds of variables,
they have to be defined by hand. For example, in the lift case study,
we have to add variables currentFl and dir to represent the current
position of the lift and lift direction respectively. These variables are
defined as machine variables.

> In KAOS: there are no variables to be added.

8.1.7 Invariants

¢ In Event-B and UML-B: invariants are used to maintain some properties
that remain true for a specific sequence of operations of the system.
» In Event-B: invariants are defined by hand within the MACHINE
part INVARIANTS.

Chapter 8 Comparison and Evaluation 210

» In UML-B: invariants are defined within the MACHINE part by

hand. They can be defined as machine invariants or class invariants.
In KAOS: invariants are used with the same propose and identified at
some points of a goal tree by hand. Using invariants in a goal tree is
useful because they provide the supportive information that is needed

for generating a correct goal tree.

8.1.8 Controlling time progress: Ticktok event

In Event-B and UML-B: a Ticktok event is generated for the purpose of
controlling time progress.

There is no Ticktok event created in KAOS.

8.1.9 Easy to Understand

For an Event-B model: the Event-B model output is simple to
understand for someone who has knowledge of Event-B.

For UML-B model: UML-B has specific keywords such as Self and uses
special symbols such as “.” to refer to attributes of a class. Thus, time
may be needed for developers/users at the beginning to understand these
symbols before generating a model. The advantage of using UML-B is
its graphical user interface; thus it is easy for users to figure out where
to add the missing information to the model.

For KAOS model: since defining KAOS looks similar to declaring an
event in Event-B, creating a KAOS goal is adapted from what is done in
Event-B. The KAOS output goals are not difficult to understand since
there is a textual definition for each goal to explain what the goal aims
for. The formal definition for the goal elaborates the goal by using
temporal logic operators, which currently is only the operator ©

(eventually).

Chapter 8 Comparison and Evaluation 211

8.1.10 Capturing all requirements

TDs are best used to describe the behaviour of functional requirements with
causal dependencies between objects and timing constraints. However, TDs are not
suitable for use with some kinds of requirements, for example, non-functional
requirements. Even though TDs can capture the functional requirements as
described above, in generating Event-B, UML-B and KAOS models there needs to

be some extra information added, as described in section 8.1.6.

8.2 Comparison with other related works

Some groups have investigated cause/effect relationships and timing
constraints. For example, (Abrial, 2008b) introduces patterns for state-based
specifications in Event-B. The patterns are useful for our research. They can,
however, illustrate only cause/effect relationships, not timing constraints. (Cansell,
et al., 2007) introduces timing constraints pattern for distributed applications. A
number of groups combined UML and B such as (Ledang and Souquieres, 2002a),
who investigated a combination of B-Method with Class diagram and State
diagram, while (Jiufu, 2007) has proposed translating statechart diagrams into B;
(Younes and Ayed, 2007) focuses on the translation of Activity diagrams into
Event-B; (Idani and Ledru, 2007) propose systematic transformation rules to
generate a Class diagram from a B specification. Our work is unique in providing
techniques to create timing constraints from a TD to an Event-B model.

There is a work by (Bicarregui, et al., 2008) to extend Event-B notations to
three LTL operators: Next (0), Eventually (0) and Bounded eventually (< ;) where
n denotes time units. The work proposes using three new constructs that are to
replace the standard Event-B structure, WHEN... THEN...END, that are
WHEN.. NEXT...END, WHEN.. EVENTUALLY...END and
WHEN.. WITHIN...NEXT...END to represent the three LTL operators Next,

Eventually and Bounded eventually respectively. We have approached this in a

Chapter 8 Comparison and Evaluation 212

different way, as we are generating timing constraints in Event-B model by using
the standard Event-B notations provided.

(Aziz, et al., 2009) captures three KAOS Goal model patterns: Immediate
achieve, Eventually/Unbound achieve, and Bounded achieve to represent three new
constructs as proposed by (Bicarregui, et al., 2008) above.

Apart from our early work in (Joochim and Poppleton, 2007) that investigates
how to generate KAOS goal trees from TD, there are a number of investigations
that explore possible techniques for translating KAOS framework to other models.
For example, (Letier, et al., 2008) proposes a technique to translate KAOS
Operation models to Labelled Transition Systems (LTS). The LTS is Statemachine-
like diagram; it is a group of components in which each component is defined by a
set of states and transitions, where each transition is labelled by an event.
(Landtsheer, et al., 2004) investigates translating KAOS Operation models into
event-based tabular specifications, which describe system requirements through a
set of tables. Some attempts to combine KAOS with B are introduced by (Ponsard
and Dieul, 2006) who try to generate B operations from KAOS operations.
However, this work only focuses on traceability links. Other work has been done
by (Hassan, et al., 2009) to transform KAOS Operation model to B specification
language in security requirements, unlike our work, which attempts to generate
KAOS Goal model and Operation model from TD.

A variety of versions of the lift case study are used in many papers such as
(Dardenne, et al., 1991), who explain how to generate KAOS goals, agents and
operations for a simple lift case study. Some of those lift specifications are
functional requirements, as ours is, but no timing constraints are involved. A
number of the specifications identify human activities such as “passenger out of
elevator when at destination floor”, which we do not deal with in our research.
Research by (Choppy and Reggio, 2005) represents a combination of Problem
frames and UML diagrams (Use case, Class, and State diagrams) by using a lift
system case study. This paper shows how to define a lift system in a class diagram
and a state diagram with a fewer number of components than our work, and with

no timing constraints involved. The classical B machine which represents a lift

Chapter 8 Comparison and Evaluation 213

control system found in (Abrial, 1996) is the most similar model to ours that shows
how to represent the lift specifications by B method. However, this case study also
has a fewer number of objects than within our case study and has no timing
constraints.

There exist TD editors such as TimeGen (Intel), TimingTool (MOHC, 2009),
and SynaptiCAD (SynaptiCAD, 2009). However, these editors do not fit with our
research since they are defined with different types from our TD, and are not
written on the Eclipse framework. Thus, they could not easily fit with RODIN and
UML-B.

8.3 Evaluation

8.3.1 Tool validation

The output of our translation can be automatically validated by the RODIN
tools. B prover is an automatic proof of correctness of implementation relative to
high level specifications. It also does syntax checking for a model. ProB performs
consistency checking (finding deadlocks and invariant violations) and animation.

The validation detail for each model is shown below:

For an Event-B model from the direct translation: We used RODIN
Platform 0.9.1 for creating an Event-B model obtained from the direct translation
rule. The Event-B model is verified by RODIN toolkit for proof obligations (POs)
and syntax checking while a RODIN plugin, ProB 1.1.0, is used for consistency
checking (find deadlocks and invariant violations) and animation. We also used
ProB 1.2.6 (which is a separated tool from the RODIN toolkit) for model re-
checking and verifying deadlock freeness. The result of validation is: Total POs:
135, Auto discharged: 122, Manual discharged: 11, Reviewed: 2 and
Undischarged: 0.

Chapter 8 Comparison and Evaluation 214

For an Event-B model generated from a UML-B model: The UML-B
0.4.3 is used for generating a model obtained from ATL, RODIN Platform 0.9.1 is
used for POs. A RODIN plugin, ProB 1.1.0, is used for consistency checking and
animation. The result of validation is: Total POs: 142, Auto discharged: 54, Manual
discharged: 84, Reviewed: 4 and Undischarged: 0. The number of POs auto
discharged in the UML-B model is fewer than in the Event-B model and manual
discharged is more because the UML-B model comprises a large number of
transitions and classes. Moreover, the way to define guards and invariants by
combining many associations among classes makes it harder to prove than in the
direct translation.

During the process of improving the translation tools, we have had to rework
proofs many times. As the work progressed, the number of automatically proved
obligations slightly increases while the number of manually proved obligations

increases a lot.

KAOS: there is a tool for Goal model verification (Rifaut, et al., 2003).

However, to use it one needs to be trained abroad.

8.3.2 Validation of the correctness of the transformations defined

Currently, we use a lift as only one case study. The lift case study has many
objects and shows various kinds of timing constraints, and simultaneous and causal
dependecies in a reactive requirements system. However, it is needed to have other
case studies to ensure the correctness of the transformation defined. The purpose is
to check whether our TD notaions cover other kinds of requirements. The other
case studies should have different kinds of casual dependencies and timing
constraints from the lift system. Morover, it is necessary to validate the
transformation rules are correct and complete. To do so, we should to provide
incorrect/incomplete input models to inspect whether the translation rules generate

an incorrect output model. This task is considered as further work.

Chapter 8 Comparison and Evaluation 215

8.4 Quantification manual editing

The Event-B, UML-B and KAOS output models are needed to be manually
modified in order to make the models complete. The quantification of how much
manual editing is needed for each model shown in the following.

Event-B : 108 modified to 450 lines generated (24%)

UML-B : 162 modified to 557 lines generated (29.08%)

KAOS: 8 modified to 32 leaf node goals generated (2.50%)

How to make the tools fully automated is explained in the following.

8.4.1 Event-B

For the additional information that cannot be identified by the TD notations
itself (e.g. identifying the number of floors), we have nothing to do with the rules
in such this case.

For the information that already have in the model -e.g. variables currentFl
and dir- but we cannot generate to Event-B, we may create a new TD notation to
support identifying variables at the causeEffectArrows’ conditions. Thus, model
variables can be directly generated from those CauseEffectArrows’ conditions.
Moreover, the simultaneityArrows should be identified by a combination of OR
nodes (see the example problem in section 5.4).

For some extra events added, we may alter the rules to generate an Event-B
model from the TD state transitions instead of using TD segments as what we have
done.

Currently, the Event-B output model is generated as text. Users have to copy
the text to RODIN tool again. Thus, to make the tool more efficiently, the Event-B

output model should automatically be generated in the RODIN tool.

84.2 UML-B

The ways to correct the UML-B model is the same as those described for the

Event-B model above. However, the limitations of ATL and UML-B cause some

Chapter 8 Comparison and Evaluation 216

parts of UML-B output models have to be manually generated. The further step of
fulfilling the TD to UML-B translation rules is to revise UML-B tool to support
identifying TD multiple previous states of the same target state and

SimultaneityArrows.

8.4.3 KAOS

The same ways used in the Event-B model are also used to have complete
KAOS Goal models. The problem only found in KAOS is, in some goals, it is
needed to declare conditions on the SimultaneityArrows. Thus, a new notation
for the simultaneityArrows to identify conditions is introduced. The conditions

are optional and used as guards for the goals.

8.5 Example of proof obligations

This section shows an example of how the invariant preservation statement
(INV), as described in section 2.3.2, is used for the PO. Consider an event
floorsensorOffUp which is obtained from the UML-B model as shown in the

following:

MACHINE L

INVARIANTS
Invariantl: Vd- ((d€Door)= (lift_state # StopAtFloor =

door_state(d) = Closed))

EVENTS floorsensorOffUp
ANY FloorsensorSelf
f
WHERE
Guardl: f & FLOOR
Guard2: FloorsensorSelf € Floorsensor
Guard3: floorsensor_state (FloorsensorSelf) = On

Guard4: lift_state = MovingDepartingUp

Chapter 8 Comparison and Evaluation 217

Guard5: (gclock - liftMovingDepartingUpTime 2 2)
N (gclock - liftMovingDepartingUpTime £ 5)
A f = currentFl A dir = Up
THEN

Actionl: 1lift_state *= MovingUp

END

According to the consistency proofs as described in section 2.3.2, the
corresponding parts of the machine are used in the INV proof obligation for the
event floorsensorOffUp as shown in the following. This PO is named
automatically by the RODIN prover as floorsensor0ffUp/Invl/INV. Notice that

Guard5 is separated into individual guards for the proof as shown below:

Axioms -

Vd- ((dEDoor)= (1lift_state # StopAtFloor
Invariant1

= door_state(d) = Closed))
Guard1 f € FLOOR
Guard2 FloorsensorSelf € Floorsensor
Guard3 floorsensor_state (FloorsensorSelf) = On

Hypothesis| Guard4 lift_state = MovingDepartingUp
Guard5 gclock - liftMovingDepartingUpTime 2 2
Guard6 gclock - liftMovingDepartingUpTime < 5
Guard7 f = currentFl
Guard8 dir = Up
Before-after
predicate lift_state = MovingUp
of the event
(BA)
=
Modified Vd- ((d€EDoor) = (MovingUp # StopAtFloor
Goal | specific =

Invariant (Im) | qoor state(d) = Closed))

Chapter 8 Comparison and Evaluation 218

As shown above, a proof obligation comprises two parts: a hypothesis, and a
goal; shown by the elements before and after the = symbol respectively. In this
case, this goal is to prove that after the action: 1ift_state = MovingUp (wWhich is
represented by BA) is performed, the Invariant1 is still preserved. That is, a goal is
generated by assigning a state MovingUp in BA to the 1ift_state in Invariant1
(as highlighted). This goal is proved interactively by the Predicate Prover (PP) in

the Proof Control panel as shown in Figure 2-7.

Chapter 9 Contribution and

Limitations

The contribution of the thesis is showing how to formalise specification of
systems that contain causal dependencies with timing constraints, in Event-B and
KAOS by using TDs. As a result, we propose systematic translation rules to
transform TD into Event-B, UML-B and KAOS Goal models.

This chapter declares benefits and contributions to research we have done in
section 9.1 and section 9.2 respectively. The limitation of the work is demonstrated

in section 9.3, and future directions are stated in section 9.4.

9.1 Benefits

According to the research goals in section 1.3, the first two goals to generate
translation techniques to transform a TD to Event-B, UML-B and KAOS were
accomplished. The benefit of our contribution is providing another option to
generate timing constraints and causal dependencies requirements of a reactive
system to Event-B, UML-B and KAOS Goals by using graphical visualisation, TD.
Thus, instead of manually generating these targets model (Event-B, UML-B and
KAOS Goal model) in a textual form, users can use the TD as a graphical front-
end, and these target models are created automatically. Moreover, in Event-B and

UML-B, we provided a pattern to generate events’ pre- and post-conditions

Chapter 9 Contribution and Limitations 220

that concern with timing constraints, and an event (Ticktok) to control time
progression. Having the timing constraints guard and the time progress patterns
decrease the time required in considering how to model the time from the
beginning.

For KAOS, apart from having the translation rules to automatically generate
KAOS goals from TD, we also provided guidelines to generate KAOS Goal trees
from TD. These guidelines assist users to generate KAOS parent goals from sub-
goals. Along the parent goal/sub-goal creating process, some goals may be
introduced. Thus, it helps users to find incomplete information that may be left
since from the requirements elicitation processes.

The third goal in section 1.3, evaluating the use of TD to specify timing
constraints and casual dependencies requirements in Event-B compare with using

textual one has not been done due to limited time.

9.2 Contribution

We produced a model - in four different forms - on a real time case study: a
lift system.

1. TD based TD UML 2.0 diagram notations

2. Event-B

3. UML-B

4. KAOS Goal and Operation models

Our contribution can be identified as the following:

1. We propose bridging the gap between graphical requirements notations (TD)
and declarative FM (Event-B). We provide a technique to generate Event-B
from an existing tool UML-B from TD. This is another contribution of
generating Event-B models from graphical notation TD. Both model
generated from 1 and 2 can be proved correct by RODIN tools.

2. Since KAOS Goal models explain timing constraints by linear temporal

logics (LTLs) which are in textual forms, we present a technique to generate

Chapter 9 Contribution and Limitations 221

KAOS goals’ formal definition by TD which it represents as graphical
requirements.
3. We provide multiple views of one system’s requirements by expressing them

in TD, Event-B, UML-B and KAOS models.

The detail of each contribution is described in the following sections.

9.2.1 Requirements to TD

We used TD which is based on the (OMG, 2007) Robust TD notations for
capturing the requirements of a system. A subset of TD notations was selected and
some notations were justified to make it easy to generate Event-B, UML-B and
KAOS Goal models. Those TD notations are essential to identify causal
dependencies between objects and their combinations. TD classes were generated
from objects in requirements that have causal dependency between them. One can
define timing constraints, conditions that make states of objects change, and
simultaneous events, by TD notations. The selected TD notations have abilities to

model other systems that can be described with time constraints.

9.2.2 TD to Event-B Translation

We produced rules for translating systematically. We created an Event-B
model from TD. In doing this, first, we identified TD BNF definitions to describe
individual TD notations. Next, we created formal translation rules to transform TD
into a textual Event-B model, where the TD BNF definitions are used as input
parameters for the translation.

e The translation rules create sets, constants and axioms in a CONTEXT
part. For a MACHINE part, the rules can create variables and their initial
values, invariants, events and a Ticktok event, of which the latter is used
for time progress. For each event, the translation rules can create an event’s
name, non-deterministic local variables (if there are any), events’ guards

and actions.

Chapter 9 Contribution and Limitations 222

e Other parts that cannot be identified by TD such as additional variables,
events and invariants, need to be created by hand. For example, lift
changing direction and guards for ticking the clock. The detail of generating

Event-B to TD is explained in Chapter 5.

9.2.3 TD to UML-B Translation

Since TD represents partial system requirements, to generate a complete
Event-B model, one needs to use other non-timing requirements. In doing that, one
may add those requirements directly to an Event-B model as in the previous
translation or use another model, e.g. Class diagram and Statecharts. To make it
convenient for users and to integrate TD with an existing tool, we have
implemented systematic translation to provide part of an automatic translation
system from TD using UML-B.

We generated transition rules to transform TD to UML-B by using ATL. In
doing that, the TD metamodel is created on Eclipse and used to create a case study
as example for a source model; an existing UML-B metamodel is used as a target
model.

e The rules can generate a CONTEXT (without detail inside due to the
limitation of ATL) and a MACHINE part. In the MACHINE part, the
rules generate classes, class attributes and their types, Statemachines,
some machine variables and a Ticktok event. In a Statemachines, the
rules generate states, state transitions with names, parameters with their
types, guards and actions.

e Other parts, such as detail inside the CONTEXT, invariants, additional
variables and events, are created by hand since they cannot be identified

by TD notations.

9.2.4 TD to KAOS Translation

The third approach was adopted because other relevant research tries to

combine KAOS and B, but does not deal with integrating requirements in which

Chapter 9 Contribution and Limitations 223

there are timing constraints and causal dependencies between objects to KAOS.
Our research has been done in a different way, in which we use TD information to
generate KAOS Goal model.
e We generate translation rules that use TD BNF definitions as input
parameters for creating an individual KAOS goal, focusing on goal’s
formal definition. The rules create each goal’s formal definition, a
goal’s name, and type, while its textual definition is created manually.
Next, those goals are formalised and grouped by KAOS goal refinement
patterns to generate a goal tree by our proposed techniques. Invariants
are used in some points of the goal tree in order to fulfil the goal tree
refinement pattern and additional goals are added by hand in this step.
® An operation is generated from each leaf node goal of goal trees by

KAOS goal refinement patterns provided by (Letier, 2001).

9.3 Limitations

9.3.1 General limitations

At the moment, the TD can generate partial Event-B machines both from the
direct translation rules and UML-B as well as partial KAOS Goal and Operation
models. However, the TD has not been designed to collect whole system
requirements. Therefore, some information needs to be added in these models.

Another constraint is the original UML TD 2.0 and our TD notations still
cannot be used to demonstrate human actions. There are many requirements
concerned with human activities, for example in the lift system that needs human
intervention to request the lift by pressing buttons. In this case, we can demonstrate
the pressing activity by representing it as an event in Event-B, but cannot control
human pressing activity time. For a clearer example, there is the case study of the
Ambulance Service system in (Letier, 2001), which is used to generate a KAOS
model. The Ambulance Service system has many timing constraints; one of them is

responding to emergency calls requiring the rapid intervention of an ambulance.

Chapter 9 Contribution and Limitations 224

That requirement has to deal with calling by operators. It is a good case study for
KAQS, but not for TD, since we cannot guarantee the correctness of a model

depending on human activities.

9.3.2 Timing diagram notations and tool limitations

For the limitation of the TD itself, one cannot identify a simultaneityArrow
with a combination OR node. For example, Figure 7-3, lines 16 and 17, are used to
identity whenever a floor sensor is set off, once the lift is in a state of moving up or
moving down. Those lines are represented by simultaneityArrows since there is
no timing constraint concerned. Not having a combination node causes a problem
whenever generated by an Event-B model (as describe in section 5.4). That is, an
event action is generated in which there are two conflicting actions within the same
event. This has to be resolved by separating them into different events manually.
The UML-B tool also has the limitation that cannot fully support generating
SimultaneityArrows (as shown in Figure 6-43). Another weakness is, currently,
there is no TD editor. Thus, sometime it takes a lot effort to create and to alter TD

manually while using EMF.

9.3.3 KAOS translation limitation

At present, KAOS translation has a limitation of not dealing with timing
constraints that have occurred in the past states. This issue is considered to be a

future work.

9.4 Future directions

Some future directions are suggested as follows.

1. We found that from the lift case study, sometimes, it is necessary to

identify combination of OR nodes and constraints for the

Chapter 9 Contribution and Limitations 225

SimultaneityArrows. Thus, TD SimultaneityArrows should be
appended by these properties.

2. In UML-B translation, Timeline Transitions names may be
identified. Defining Timeline Transitions names would help creating
events’ name easier. Instead of the events’ name being generated by a
combination of many elements, it is defined directly from the Timeline
Transitions.

3. Eliminate the manual addition of information which can be generated
from the TD.

4. Include past operators in the KAOS goal models to cover other
applications that may have to use them.

5. At the moment TD is created by using EMF. Thus, having a graphical
front end for TD is a way for creating and modifying a TD model easily.

6. In a case where enormous system requirements with timing constraints
are concerned, it is better to generate a TD for each subsystem and
integrate the TDs to form a whole system. The future work is to find
techniques to combine those TD subsystems.

7. Identify refinement steps in the Event-B model. For example, in the lift
case study, the abstract model has basic lift behaviour while the timing
constraints are introduced in the refinement steps.

8. Investigate a technique to transfer KAOS Goal and Operational models
to an Event-B model.

9. More case studies to ensure the toolset techniques are sufficiently general

and robust.

References 226

References

Abrial, J.-R. (1996). The B-book : Assigning Programs to Meanings, Cambridge
University Press.

Abrial, J.-R. (2005a). Formal Method Course. Retrieved 26 April 2005.

Abrial, J.-R. (2005b). Using Design Patterns in Formal Developments. In
Proceedings of the Refinement Workshop (REFINE 2005), University of
Manchester, UK, Elsevier.

Abrial, J.-R. (2006). Formal Methods in Industry: Achievements, Problems,
Future. In Proceedings of the 28th International Conference on Software
Engineering (ICSE’06), Shanghai, China, ACM.

Abrial, J.-R. (2007). Formal Methods : Theory Becoming Practice, Journal of
Universal Computer Science 13(5): 619-628.

Abrial, J.-R. (2008a). Summary of Event-B Proof Obligations. Retrieved 29 April
2009, Available from
http://www.cs.man.ac.uk/~banach/COMP60110.Info/CourseSlides/Slides.6
up.0903ProofObs.pdf.

Abrial, J.-R. (2008b). Tutorial - Case study of a complete reactive system in Event-
B: A mechanical press controller. In Proceedings of the 5th International
Symposium on Formal Methods (FM’2008), Turku, Finland, Springer,
LNCS 5014.

Abrial, J.-R., Arief, B., Butler, M., Coleman, J., Iliasov, A., Johnson, 1., Jones, C.,
Khomenko, V., Koutny, M., Laibinis, L., Leppanen, S., Lecomte, T.,
Leuschel, M., Oliver, L., Razali, R., Rezazadesh, A., Romanaovsky, A.,
Snook, C., Troubitsyna, E., Voisin, L., and Warwick, J. (2007). RODIN
Assessment Report 3, Deliverable D34 (D7.4), RODIN.

Abrial, J.-R., Butler, M., Hallerstede, S., and Voisin, L. (2008). A Roadmap for the
Rodin Toolset. In Proceedings of the 1st International Conference on
Abstract State Machines, B and Z, London, UK, Springer-Verlag, LNCS
5238.

References 227

Abrial, J.-R., and Hallerstede, S. (2006). Refinement, Decomposition and
Instantiation of Discrete Models: Application to Event-B, Fundamenta
Informaticae 77(1-2): 1-28.

Abrial, J.-R., Hallerstede, S., Metha, F., Metayer, C., and Voisin, L. (2005).
Specification of Basic Tools and Platform. RODIN Deliverable D10.

Abrial, J.-R., and Hoang, T. S. (2008). Using Design Patterns in Formal Methods:
an Event-B Approach. In Proceedings of the 5th International Colloquium :
Theoretical Aspects of Computing (ICTAC 2008), Istanbul, Turkey,
Springer-Verlag.

Agerholm, S., and Larsen, P. G. (1998). A Lightweight Approach to Formal
Methods. In Proceedings of the International Workshop on Current Trends
in Applied Formal Methods, Boppard, Germany, Springer-Verlag.

Allemand, M., C. Attioghé, et al. (2002). SHE'S Project. A report of join
workshops on the 2nd International Workshop on Integration of
Specification Techniques for Applications in Engineering (INT'02),
Grenoble, France.

Allilaire, F., and Idrissi, T. (2004). ADT : Eclipse development tools for ATL. In
Proceedings of the 2nd European Workshop on Model Driven Architecture
(MDA) with an emphasis on Methodologies and Transformations
(EWMDA-2), Canterbury, UK, Computing Laboratory, University of Kent.

Ambler, S. W. (2004). The Object Primer: Agile Model Driven Development with
UML 2, Cambridge University Press.

Anwer, S., and Ikram, N. (2006). Goal Oriented Requirement Engineering: A
Critical Study of Techniques. In Proceedings of the 13th Asia Pacific
Software Engineering Conference (APSEC’06), Bangalore, India, IEEE
Xplore.

Attiogbé, C., P. Poizat, et al. (2003). Integration of Formal Datatypes within State
Diagrams. In Proceeding of the European Joint Conferences on Theory and
Practice of Software, Warsaw, Poland, LNCS.

ATL (2008). ATLAS Transformation Language. Retrieved 20 April 2008,
Available from http://www.eclipse.org/m2m/atl/.

ATLAS Group, L. a. 1. (2008). ATL : Atlas Transformation Language ATL User
Manual - Version 0.7. Retrieved 11 Febuary 2008, Available from
http://www.eclipse.org/m2m/atl/doc/ATL._User Manual[v0.7].pdf.

Aziz, B., Arenas, A. E., Bicarregui, J., Ponsard, C., and Massonet, P. (2009). From
Goal-Oriented Requirements to Event-B Specifications. In Proceedings of
the 1st NASA Formal Methods Symposium, Moffett Field, California,
USA, Deploy-Project ePrint.

Barland, 1., Greiner, J., and Vardi, M. (2006). Using Temporal Logic to Specify
Properties. Retrieved 3 July 2006, Available from
http://cnx.org/content/m1231/latest.

Bashar, N., and Easterbrook, S. (2000). Requirement Engineering: A Roadmap. In
Proceedings of the Conference on the The Future of Software Engineering,
Limerick, Ireland, ACM.

Becker-Kornstaedt, U., H. Neu, et al. (2001). Software Process Technology
Transfer: Using a Formal Process Notation to Capture a Software Process

References 228

in Industry. In Proceeding of the 8th European Workshop:software Process
Technology, Germany, Springer Berlin.

Berthomieu, B. and M. Diaz (1991). "Modeling and Verification of Time
Dependent Systems Using Timed Petri Nets." IEEE Transactions on
Software Engineering 17(3): 259-273.

Bicarregui, J., Arenas, A., Aziz, B., Massonet, P., and Ponsard, C. (2008). Towards
Modelling Obligations in Event-B. In Proceedings of the International
Conference of ASM, B and Z Users, London, UK, Springer, LNCS 5238.

Bicarregui, J. C., Clutterbuck, D. L., Finnie, G., Haughton, H., Lano, K., Lesan, H.,
Marsh, D. W. R. M., Matthews, B. M., Moulding, M. R., Newton, A. R.,
Ritchie, B., Rushton, T. G. A., and Scharbach, P. N. (1997). Formal
methods into practice: case studies in the application of the B method,
Software Engineering 144(2): 119-133.

Bolognesi, T., and Brinksma, E. (1987). Introduction to the ISO specification
language LOTOS, Computer Networks and ISDN Systems 14(1): 25-59.

Booch, G., Rumbaugh, J., and Jacobson, 1. (2003). The Unified Modeling
Language User Guide, Pearson Education.

Bowen, J. P., and Hinchey, M. G. (2006). Ten Commandments of Formal Methods
...Ten Years Later, Computer 39(1): 40-48.

Brisolara, L. B. d., M. E. Kreutz, et al. (2009). UML as Front-End Language for
Embedded Systems Design, 1GI Global.

Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., and Grose, T. J. (2003a).
Eclipse Modeling Framework, Addison-Wesley Professional.

Budinsky, F., Steinberg, D., Merks, E., Raymond, Ellersick, and Grose., T.
(2003b). EclipseModeling Framework, Addison Wesley Professional.

Butler, M. (2000). csp2B : A Practical Approach to Combining CSP and B, Formal
Aspects of Computing 12(3): 182-196.

Butler, M., Abrial, J.-R., Damchoom, K., and Edmunds, A. (2008). Applying
Event-B and Rodin to the filestore (Invited paper). In Proceedings of the
ABZ 2008, London, UK, ASRNet.

Butler, M., and Hallerstede, S. (2007). The Rodin Formal Modelling Tool. In
Proceedings of the BCS-FACS Christmas 2007 Workshop - Formal
Methods In Industry, London, United Kingdom, BCS.

Butler, M., Leuschel, M., and Snook, C. (2005a). Combining CSP and B for
Specificaiton and Property Verification. In Proceedings of the Formal
Methods 2005, Newcastle Upon Tyne, England, Springer, LNCS 3582.

Butler, M., Leuschel, M., and Snook, C. (2005b). Tools for system validation with
B abstract machines (Invited papers). In Proceedings of the 12th
International Workshop on Abstract State Machines (ASM 2005), Paris,
France, Laboratory of Algorithm, Complexity and Logic.

Cansell, D., Méry, D., and Rehm, J. (2007). Time Constraint Patterns for Event B
Development. In Proceedings of the Formal Specification and Development
in B, 7th International Conference of B (B 2007), Besancon, France,
Springer, LCNS 4355.

Cassez, F. and O.-H. Roux (2005). "Structural Translation from Time Petri Nets to
Timed Automata." Electronic Notes in Theoretical Computer Science
128(6): 145-160.

References 229

Cerone, A. and A. Maggiolo-Schettini (1999). "Time-based expressivity of time
Petri nets for system specification." Theoretical Computer Science 216(1-
2): 1-53.

Chen, P. P.-S. (1976). The Entity-Relationship Model - Toward a Unified View of
Data, ACM Transactions on Database Systems (TODS) 1(1): 9-36.

Choppy, C., and Reggio, G. (2005). A UML-based approach for problem frame
oriented software development, Information and Software Technology
47(14): 929-954.

Chung, L. (1993). Representing and Using Non-Functional Requirements: A
Process-Oriented Approach. PhD from Department of Computer Science,
University of Toronto.

ClearSy (2009). Atelier-B. Retrieved 19 October 2008, Available from
http://www.atelierb.eu/index en.html.

Cobden, M., Humphreys, B., Macarthur, K., and O'Neill, B. (2007). Timing
Diagram Plugin Support for RODIN/UML-B, A group design project
report, Department of Electronics and Computer Science, University of
Southampton.

Cox, K., J. G. Hall, et al. (2005). "Editorial: A roadmap of problem frames
research." Information and Software Technology 47(14): 891-902.

Dardenne, A., Fickas, S., and Lamsweerde, A. v. (1991). Goal-directed Concept
Acquisition in Requirements Elicitation. In Proceedings of the 6th
International Workshop on Software Specification and Design, Como, Italy,
IEEE.

Dardenne, A., Lamsweerde, A. v., and Fickas, S. (1993). Goal-Directed
Requirements Acquisition, Science of Computer Programming 20(1-2): 3-
50.

Darimont, R. (1995). Process Support for Requirments Elaboration. PhD from
Dépt. Ingénierie Informatique, Université Catholique de Louvain.

Darimont, R., and Lamsweerde, A. v. (1996). Formal Refinement Patterns for
Goal-Driven Requirements Elaboration, ACM SIGSOFT Software
Engineering Notes 21(6): 179-190.

Dehbonei, B., and Mejia, F. (1995). Formal development of safety-critical software
systems in railway signalling. Applications of Formal Methods. M. G.
Hinchey and J. P. Bowen, Prentice-Hall: 227-252.

Eclipse (2008). Eclipse Modeling Framework Project (EMF). Retrieved 2
September 2008, Available from http://www.eclipse.org/modeling/emf/.

El-Maddah, I., and Maibaum, T. (2003). Goal-Oriented Requirements Analysis for
Process Control Systems Design. In Proceedings of the Formal Methods
and Models for Co-Design (MEMOCODE’03), Mont Saint-Michel, France,
IEEE Computer Society.

EMFT-Eclipse (2009). Eclipse Modeling Framework Technology (EMFT).
Retrieved 9 March 2009, Available from
http://www.eclipse.org/modeling/emft/?project=ecoretools.

Event-B.org (2008). B2Latex. Retrieved 17 November 2008, Available from
http://www.event-b.org/plugins.html.

References 230

Event-B.org (2009). Rodin Platform Installation. Retrieved 15 Febuary 2009,
Available from http://www.event-b.org/platform.html.

FAUST (2008). An Overview of the FAUST Toolbox. Retrieved 20 November
2008, Available from http://faust.cetic.be.

Fisler, K. (2006). Towards Diagrammability and Efficiency in Event Sequence
Language, International Journal on Software Tools for Technology (STTT)
8(4): 431-447.

Fisman, D., and Eisner, C. (2009). Sugar 2.0 Formal Specification Language.
Retrieved 17 April 2009, Available from
www.haifa.ibm.com/projects/verification/sugar/images/sugar2 sv-ac.ppt.

Fitzgerald, J., Larsen, P. G., Mukherjee, P., Plat, N., and Verhoef, M. (2004).
Validated Designs for Object-oriented Systems, Springer.

Fowler, M., and Scott, K. (2004). UML Distilled: A Brief Guide to The Standard
Object Modelling Language, Addison-Wesley Professional.

Friedental, S., and Steiner, R. (2004). System Modeling Language (SysML)
Overview. In Proceedings of the NDIA System Engineering.

Gavras, A. (2003). "Considerations on telecom modelling languages." Retrieved 7
October, 2009, Available from
http://www.modatel.org/~Modatel/pub/deliverables/D3.add2-final.pdf.

George, V. and R. Vaughn (2003). "Application of Lightweight Formal Methods in
Requirement Engineeringl." CrossTalk-The Journal of Defense Software
Engineering(Jan).

Guttag, J. V., Horning, J. J., Garland, S. J., Jones, K. D., Modet, A., and Wing, J.
M. (1993). Larch : Language and Tools for Formal Specification, Springer-
Verlag.

Hall, A. (2007). Realising the Benefits of Formal Methods, Formal Methods and
Software Engineering: 1-4.

Hallerstede, S. (2006). Justifications for the Event-B Modelling Notation. In
Proceedings of the Formal Specification and Development in B (B 2007),
Besancon, France, Springer, LNCS 4533.

Hassan, R., Bohner, S., El-Kassas, S., and Hinchey, M. (2009). Integrating formal
analysis and design to preserve security properties. In Proceedings of the
42nd Hawaii International Conference on System Sciences (HICSS-42),
Waikoloa, Hawaii, USA, IEEE Computer Society.

Hause, M., Thom, F., and Moore, A. (2005). Inside SysML, Computing & Control
Engineering 16(4): 10-15.

Heaven, W., and Finkelstein, A. (2004). A UML profile to support requirements
engineering with KAOS, Software Engineering 151(1): 10-27.

Hoare, C. A. R. (1985). Communicating Sequential Processes, Prentice-Hall
International Series In Computer Science.

Hoare, J., Dick, J., Neilson, D., and Sgrensen, 1. (1996). Applying the B
technologies on CICS. In Proceedings of the 3rd International Symposium
of Formal Methods Europe (FME’96), Oxford, United Kingdom, Springer-
Verlag.

Hozmann, G. J. (1997). The model checker SPIN, IEEE Transactions on Software
Engineering 23(5): 275-295.

Hull, E., Jackson, K., and Dick, J. (2004). Requirements Engineering, Springer.

References 231

IBM (2008). Sugar 2.0, Available from
http://www.eetimes.com/news/design/showArticle.jhtml?articleID=165049
43.

Idani, A., and Ledru, Y. (2007). Object oriented concepts identification from
formal B specifications Formal Methods in System Design 3: 233-247.

Intel. Retrieved 2 June 2009, Available from "NEW"
http://www.xfusionsoftware.com/.

Jackson, M. (1995). Software Requirements and Specifications : A Lexicon of
Practice, Principles and Prejudices, Addison-Wesley.

Jackson, M. (2001). Problem Frames Analysis and Structuring Software
Development Problems, Addison-Wesley.

Jackson, M. (2005). "Problem Frames and Software Engineering." Information &
Software Technology 47(14): 903-912.

Jayaratchagan, N. (2004). Declarative Programming in Java, Available from
http://www.onjava.com/pub/a/onjava/2004/04/21/declarative.html.

Jiufu, L. (2007). Integration of statechart and B method based analysis and
verification for flight control software of unmanned aerial vehicle, ACM
SIGSOFT Software Engineering Notes 32(2): 1-4.

Jones, C. B. (1986). Systematic Software Development Using VDM, Prentice Hall.

Joochim, T., and Poppleton, M. R. (2007). Transforming Timing Diagrams into
Knowledge Acquisition in Automated Specification. In Proceedings of the
2nd International Conference on Advance in Information Technology
(IAIT2007), Bangkok, Thailand, King Mongkut's University of
Technology.

Joochim, T. at. el. (2010). Timing Diagrams Requirements Modeling using Event-B
Formal Methods. In Proceedings of the Software Engineering (SE 2010),
Innsbruck, Austria, Actapress.

Jureta, L. (2006). Engineering Requirement for Information Systems using KASO
and Request frameworks. Retrieved 22 JaNaury 2009, Available from
http://www.isys.ucl.ac.be/staff/stephane/GETI2100Slide/KAOS.pdf.

Khan, M. U., Geihs, K., Gutbordt, F., Gohner, P., and Trauter, R. (2006). Model-
Driven Development of Real-Time Systems with UML 2.0 and C. In
Proceedings of the Joint Meeting of the Fourth on Model-Based
Development Computer-Based Systems and The Third International
Workshop on Model-Based Methodologies for Pervasive and Embedded
Software, Postdam, Germany, IEEE Computer Society.

King, S., Hammond, J., Chapman, R., and Pryor, A. (2000). Is Proof More Cost-
Effective Than Testing?, IEEE Transactions on Software Engineering
26(8): 675-686.

Langari, Z. and A. B. Pidduck (2005). Quality, Cleanroom and Formal Methods.
International Conference on Software Engineering, the third workshop on
Software quality St Louis, Missouri, USA, ACM.

Lamsweerde, A. v. (2000). Formal Specification : a Roadmap. In Proceedings of
the Future of Software Engineering Track (ICSE' 00), Limerick, Ireland,
ACM.

Lamsweerde, A. v. (2001). Goal-Oriented Requirements Engineering: A Guide
Tour. In Proceedings of the 5th IEEE International Symposium on

References 232

Requirements Engineering (RE’01), Toronto, Canada, IEEE Computer
Society.

Lamsweerde, A. v. (2004). Goal-Oriented Requirement Engineering : A Roundtrip
from Research to Practice. In Proceedings of the 12th IEEE Joint
International Requirements Engineering Conference (RE’04), Kyoto, Japan,
IEEE Xplore.

Lamsweerde, A. v. (2009). Requirements Engineering : From System Goals to
UML Models to Software Specifications, John Wiley & Son.

Lamsweerde, A. v., Dardenne, A., Delcourt, B., and Dubisy, F. (1991). The KAOS
Project: Knowledge acquisition in automated specifications of software. In
Proceedings of the AAAI Spring Symposium series, Symposium: Design of
Composite Systems, Stanford University, California, USA, Al Magazine.

Lamsweerde, A. v., and Massonet, R. D. P. (1995). Goal-Directed Elaboration of
Requirements for a Meeting Scheduler: Problems and Lessons Learnt. In
Proceedings of the 2nd IEEE International Symposium on Requirements
Engineering, York, England, IEEE Computer Society.

Lamsweerde, A. v., and Willemet, L. (1998). Inferring Declarative Requirements
Specifications from Operational Scenarios, IEEE Transactions on Software
Engineering 24(12): 1089-1114.

Landtsheer, R. D., Letier, E., and Lamsweerde, A. v. (2004). Deriving tabular
event-based specifications from goal-oriented requirements models,
Requirements Engineering 9(2): 104-120.

Ledang, H., and Souquieres, J. (2002a). Contributions for Modelling UML State-
Charts in B. In Proceedings of the 3rd International Conference on
Integrated Formal Methods, Turku, Finland, Springer, LNCS 2335.

Ledang, H., and Souquieres, J. (2002b). Integration of UML Views using B
Notations. In Proceedings of the Workshop on Integration and
Transformation of UML models (WITUML’02), Malaga, Spain.

LeMieux, D. H. (2003). On-Line Termal Barrier coating Monitoring for Real-time
Failure Protection and Life Maximization, U.S. Department of Energy,
National Enery Technology Laboratory: 1-15.

Letier, E. (2001). Reasoning about Agents in Goal-Oriented Requirement
Engineering. PhD Thesis from Dépt. Ingénierie Informatique, Universite
Catholique de Louvain Belgium.

Letier, E., Kramer, J., Magee, J., and Uchitel, S. (2008). Deriving Event-Based
Transition Systems from Goal-Oriented Requirements Models, Automated
Software Engineering 15(2): 175-206.

Letier, E., and Lamsweerde, A. v. (2002a). Agent-Based Tactics for Goal-Oriented
Requirements Elaboration. In Proceedings of the 24th International
Conference on Software Engineering (ICSE’02), Orlando, Florida, USA,
ACM.

Letier, E., and Lamsweerde, A. v. (2002b). Deriving Operational Software
Specifications from System Goals. In Proceedings of the 10th International
Symposium on the Foundation of Software Engineering (FSE 2002), USA,
ACM, Vol. 27.

Leuschel, M. (2007). ProB. In Proceedings of the RODIN Industry Day, Paris,
France, CLEARSY.

References 233

Leuschel, M., and Butler, M. (2005). Automatic Refinement Checking for B. In
Proceedings of the 7th International Conference on Formal Engineering
Methods (ICFEM’05), Manchester, UK, Springer, LNCS 3785.

Liu, J.,, P. H. Chou, et al. (2001). Power-Aware Scheduling under Timing
Constraints and Slack Analysis for Mission-Critical Embedded Systems.
38th Design Automation Conference, Las Vegas, NV, USA.

Matoussi, A., Gervais, F., and Laleau, R. (2008). A First Attempt to Express KAOS
Refinement Patterns with Event B. In Proceedings of the 1st International
Conference on Abstract State MAchine, B and Z (ABZ 2008), London, UK,
Springer-Verlag, LNCS 5238.

Métayer, C., Abrial, J.-R., and Voisin, L. (2005). Event-B language. Retrieved 15
March 2009, Available from http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf.

Métayer, C., and Voisin, L. (2007). The Event-B Mathematical Language.
Retrieved 2 October 2008, Available from
http://www.labri.fr/perso/casteran/FM/Rodin/mathlL.anguage-2007-10-
26.pdf.

MOHC (2009). TimingTool. Retrieved 10 June 2009, Available from "NEW"
http://www.timingtool.com/.

Moore, A. (2006, 1 May 2006). SysML Effort About to Bear Fruit. Retrieved 7
March 2009, Available from
http://www.sdtimes.com/content/article.aspx ?ArticleID=29301.

Nakagawa, H., Taguchi, K., and Honiden, S. (2007). Formal specification
generator for KAOS: model transformation approach to generate formal
specifications from KAOS requirements models. In Proceedings of the 22nd
IEEE/ACM international conference on Automated software engineering,
Atlanta, Georgia, USA, ACM.

OMG-MOF (2007). Meta Object Facility (MOF) specification, 12 May 2009,
Available from http://www.omg.org/mof/.

OMG (2007). UML Superstructure Specification, v2.0. Retrieved 22 Janury 2009,
Available from http://www.omg.org/cgi-bin/doc?formal/05-07-04. .

OMBG (2008). UML 2.0. Retrieved 5 August 2008, Available from
http://www.uml.org/#UMI1.2.0.

Oshiro, K., Watahiki, K., and Saeki, M. (2003). Goal-Oriented Idea Generation
Method for Requirements Elicitation. In Proceedings of the 11th IEEE
International Conference on Requirements Engineering, California, USA,
IEEE Computer Society.

Peterson, J. L. (1981). Petri Net Theory and the Modeling of Systems, Prentice
Hall.

Petre, M. (1995). Why Looking Isn’t Always Seeing: Readership Skills and
Graphical Programming, Communications of the ACM 38(6): 33-44.
Pfleeger, S. L. (1998). Software Engineering Theory and Practice, POrentice Hall.

Ponsard, C., and Dieul, E. (2006). From Requirements Models to Formal
Specifications in B. In Proceedings of the International Workshop on
Regulations Modelling and their Validation and Verification
(REMO2V’06), Luxemburg, Presses Universitaires de Namur.

References 234

Ponsard, C., Massonet, P., Molderez, J. F., Rifaut, A., Lamsweerde, A. v., and Van,
H. T. (2007). Early Verification and Validation of Mission Critical
Systems, Formal Methods in System Design 30(3): 133-247.

Popandreeva, A. (2007). Object-Oriented Analysis and Design Using UML of a
Test "Rotation with Sample". International Conference on Computer
Systems and Technologies (CompSysTech' 07), University of Rousse,
Bulgaria, ACM.

Praxis High Integrity Systems (2008). Correctness by Construction. Retrieved 22
December 2008, Available from http://www.praxis-his.com.

ProB (2009). ProB 1.2. Retrieved 15 March 2009, Available from
http://www.stups.uni-duesseldorf.de/ProB/overview.php.

Ramchandani, C. (1974). Analysis of asynchronous concurrent systems by timed
Petri nets. Massachusetts Institute of Technology. MA, Cambridge. PhD
Thesis.

Razili, R., Snook, C., Poppleton, M., Garratt, P., and Walters, R. (2007).
Experimental Comparison of the Comprehensibility of a UML-based
Formal Specification versus a Textual One. In Proceedings of the 11th
International Conference on Evaluation and Assessment in Software
Engineering (EASE’07), Keele University, UK, ACM.

Reisig, W. (1985). Petri nets: an introduction, Springer-Verlag New York, Inc.

Requet, A. (2007). BRAMA. In Proceedings of the RODIN Industry Day, Paris,
France, CLEARSY.

Requet, A. (2008, 16 July 2008). The B formal Method: from Research to
Teaching, 19 April 2009, Available from
http://www.atelierb.eu/pdf/nantes_2008_atelier_b_v4.pdf.

Rifaut, A., Massonet, P., Molderez, J.-F., Ponsard, C., Stadnik, P., Lamsweerde, A.
v., and Hung, T. V. (2003). FAUST : Formal Analysis of Goal-Oriented
Requirements Using Specification Tools. In Proceedings of the 11th IEEE
International Requirements Engineering Conference (RE’03), Monterey
Bay, California, USA, IEEE.

RODIN (2009). Development Environment for Complex Systems (Rodin).
Retrieved 10 Febuary 2009, Available from http://rodin.cs.ncl.ac.uk/.

Rubio-Loyola, J., Serrat, J., Charalambides, M., Flegkas, P., Pavlou, G., and
Lafuente, A. L. (2005). Using linear temporal model checking for goal-
oriented policy refinement frameworks. In Proceedings of the 6th IEEE
International Workshop on Policies for Distributed Systems and Networks,
Stockholm, Sweden, IEEE Computer Society, Vol. 4347.

Schneider, S. (2000). Concurrent and Real-time Systems: The CSP Approach, John
Wiley & Son, Ltd.

Schneider, S. (2001). The B-method : An introduction, Palgrave Macmillan.

Smith, M. H., Hozmann, G. J., and Etessami, K. (2001). Event and Constraints: A
Graphical Editor for Capturing Logic Requirement of Programs. In
Proceedings of the 5th IEEE International Symposium on Requirements
Engineering, Toronto, Canada, IEEE Computer Society.

Snook, C., and Butler, M. (2006). UML-B: Formal modelling and design aided by
UML, ACM Transactions on Software Engineering and Methodology 15(1):
92-122.

References 235

Snook, C., and Butler, M. (2008a). UML-B and Event-B: an integration of
languages and tools. In Proceedings of the IASTED International
Conference on Software Engineering (SE2008), Innsbruck, Austria, ACTA
Press.

Snook, C., and Butler, M. (2008b). UML-B: A plug-in for the Event-B tool set In
Proceedings of the 1st International Conference on Abstract State
Machines, B and Z, London, UK, Springer-Verlag.

Snook, C., and Butler., M. (2001). Using a Graphical Design Tool for Formal
Specification. In Proceedings of the 13th Workshop of the Psychology of
Programming Interest Group, Bournemouth, United Kingdom, PPIG.

Sommerville, I. (2004). "Critical Systems Specifications 3 Formal Specification."
Retrieved 5 October, 2009, Available from
www.cs.st-andrews.ac.uk/~ifs/Books/SE8/Syllabuses/CRIT-SY S-
SLIDES/CritSysSpec-3.ppt.

Sgrensen, 1. H. (1994). The B-Toolkit demonstration. In Proceedings of the 6th
Nordic Workshop on Programming Theory, Aarhus, Denmark, Springer,
LNCS 915.

Sparx Systems (2006). UML 2 Timing Diagram. Retrieved 26 May 2009, Available
from
http://sparxsystems.com.au/resources/uml? tutorial/uml2 timingdiagram.ht
ml

Spivey, J. M. (1992). The Z Notation. A Reference Manual, Prentice Hall.

SynaptiCAD (2009). Retrieved 25 May 2009, Available from
http://www.syncad.com/.

SysML (2008). OMG System Modelling Language. Retrieved 3 Febuary 2009,
Available from http://www.omgsysml.org/.

SysML Partners (2006). SysML v.1.0a Specification (revised OMG Submission).
Retrieved 22 JaNaury 2009, 2006, Available from http://www.sysml.org.

Vanderperren, Y., and Dehaene, W. (2005). UML 2 and SysML: an Approach to
Deal with Complexity in SoC/NoC Design. In Proceedings of the
Conference on Design, Automation and Test in Europe (DATE’05),
Munich, Germany, IEEE Computer Society.

Visual Paradigm (2007). UML 2 Diagrams : Timing Diagram. Retrieved
September, 2007, Available from http://www.visual-
paradigm.com/VPGallery/diagrams/TimingDiagram.html.

Yoder, M. A. and B. A. Black (2006). A Study of Graphical vs. Textual
Programming for Teaching DSP. In Prodeeding of the 36™ annula Frontiers
in Education Conference, San Diego, CA, IEEE Xploer.

Younes, A. B., and Ayed, L. J. B. (2007). Using UML Activity Diagrams and Event
B for Distributed and Parallel Applications. In Proceedings of the 31st
Annual International Computer Software and Applications Conference
(COMPSAC 2007), Beijing, China, IEEE Computer Society, Vol. 1.

You, S. K E.(1993). Towards Modeling and Reasoing Support for Early-Phase
Requiremetns Engineering. In Proceeding of the 1* International
Symposium on Requirements Engineering (RE'93), Bonn, Germany, IEEE
Xplore.

References 236

Wing, J. M. (1990). "A Specifier's Introduction to Formal Methods." 1EEE
Computer 23(9): 8-26.

Zimmerman, M. K., Lundqvist, K., and Leveson, N. (2002). Investigating the
Readability of State-Based Formal Requirements Specification Languages.
In Proceedings of the 22nd International Conference on Software
Engineering (ICSE’02), Orlando, Florida, USA, ACM.

Appendix A. Event-B Textual

Translation rules

A.1 Event-B systematic textual direct translation rules

1. Rule : TContext

TContext(Machine) —
“SETS”
TSet(Machine)
“CONSTANTS”
TConstant(Machine)
“AXIOMS”
TAxiom(Machine)

2. Rule : TMachine

TMachine(Machine) —

“VARIABLES”
TGVarTime(Machine)
TGVarState(Machine)

“INVARIANTS”
TGVarTimeInv(Machine)
TGVarStateInv(Machine)

“EVENTS”
TGVarTimeInit(Machine)
TGVarStateInit(Machine)

TEvent(Machine)

Appendix A. Event-B Textual Translation rules 238

3. Rule: TSet

TSet(Machine) —
<FOR> t <IN> TA11Timeline(Machine)
{ TClassName(t) + “_STATES” }

4. Rule : TConstant

TConstant(Machine) —
<FOR> t <IN> TA11Timel1ine(Machine)
{ TWriteAl1CntstStates(+) }

TWriteAllCntstStates(t) — TWriteAl1Consts(TAl1State(t))
TWriteAl1Consts(Head : SeqTail) — Head + “”
+ TWriteAl1Consts(SeqTail)

TWriteAllConsts(Head: < >) — Head

5. Rule : TAxiom

TAxiom(Machine) —
<FOR> t <IN> TTimelineSet(Machine)
{ Tname(t) + “_STATES = ” + TWriteAllStates(t) }

TWriteAllStates(t) — “/” + TAl1StateLst(TA11State(t)) +

TA11StateLst(Head : SeqTail) — Head + “,” + TAT1StateLst(SeqTail)

TAT1StatelLst(Head: < >) — Head

Appendix A. Event-B Textual Translation rules 239

6. Rule : TGVarTime

TGVarTime(Machine) —
<FOR> t <IN> TA11Timeline(Machine)
{ <FOR> s <IN> TA11State(t)

{ TName(t) + s+ “Time” } }

7. Rule : TGVarTimeInv

TGVarTimeInv(Machine) —
<FOR> t <IN> TA11Timeline(Machine)
{ <FOR> s <IN> TA11State(t)

{ TName(t) +s+ “Timee N’} }

8. Rule : TGVarTimeInit

TGVarTimeInit(Machine) —
<FOR> t <IN> TA11T1imeline(Machine)

{ <FOR> s <IN> TAl1State(t)

{ TName(t) +s+ “Time :=0"}}
9. Rule : TGvarState
TGVarState(Machine) —
<FOR> t <IN> TA11Timeline(Machine)
{TName(t) + “State” }
10. Rule : TGvarStateInv
TGVarStateInv(Machine) —

<LET> exp = TClass(TTimelineInClass(t))
<IN>

Appendix A. Event-B Textual Translation rules 240

<FOR> t <IN> TA11Timeline(Machine)
{ TName(t) + “State €” +

<IF> THasParam(TClass(TName(t)))

<THEN>
“("+ TWriteParamForInv(TAl1ParamType(exp)) + “)”
+“ — ” 4+ TClassName(+) + “_STATE”

<ELSE> TClassName(t) + “_STATE”

<ENDIF>

TWriteParamForInv(Head : SeqTail) —
Head + “X” + TWriteParamForInv(SeqTail)

TWriteParamForInv(Head : < >) — Head

11. Rule : TGVarStateInit
TGVarStateInit(Machine) —

<FOR> t <IN> TA11T1imeline(Machine)

{ TName(t) + “State := {xInitValuex}” }
12. Rule : TTicktok

TTicktok — “Ticktok = BEGIN gclock := gclock + 1 END”

A.2 Translation rules for creating an event

13. Rule : TEventName

TEventName(Segment) —
<LET> exp = TObjSt(Segment)
<IN> TObj(exp) + exp + “="

Appendix A. Event-B Textual Translation rules 241

14. Rule : TParamLst

TParamLst(Segment) —
<LET> exp = TObj(TObjSt(Segment))
<IN>
<IF> THasParam(TClass(exp))
<THEN>
“ANY” +
TWriteAl1Params(TAT1Param(TClass(exp)))
<ELSE>
“WHEN ”
<ENDIF>

TWriteAll1Params(Head : ParamSeqTail) —
Head + “,” + TWriteAll1Params(ParamSeqTail)

TWriteAllParams(Head : < >) — Head

15. Rule : TParamGuardValue

TParamGuardValue(Segment) —
<LET> exp = TClass(TObj(TObjSt(Segment)))
<IN>
<IF>THasParam(exp)
<THEN>
“WHERE” +
TWriteAl1ParamsLst(TAT1Param(exp))
<ELSE> <SKIP>
<ENDIF>

TWriteAl1ParamsLst(Head : ParamSeqTail) —
Head + ‘“:” + TParamType(Head) + “&” +

TWriteAl1ParamsLst(ParamSeqTail)

Appendix A. Event-B Textual Translation rules 242

TWriteAl1ParamsLst(Head : < >) — Head + “:” + TParamType(Head)

16. Rule : TGrdCtrnt

TGrdCtrnt(Segment) —
{ “(“+ TGetGrdPredc(TNodeType(TConstrnt(Segment))) + “)” }

17. Rule : TGetGrdPredc

TGetGrdPredc(NodeType) —
<IF> NodeType = Simple
<THEN><IF> THasTiming(Simple)
<THEN> TTimingGuard(TSegment(Simple), TTiming(Simple))
+ “&” + TSimpleCauseSource(TSegment(Simple))
+ TSimp1eCond(TCond(Simple))
<ELSE>
TSimpleCauseSource(TSegment(Simple))
+ TSimp1eCond(TCond(Simple))
<ENDIF>
<ELSE><IF> NodeType = OR_node
<THEN><LET> Nodes = TAl1Instances(OR_node)
<IN> Nodes — <ITERATE>(n; ret : String = “(” |
<IF>n= Tast(Nodes)
<THEN> ret = ret + TGetGrdPredc(n) + “)”
<ELSE> ret =ret + TGetGrdPredc(n) + “)v (”
<ENDIF>)
<ENDIF>
<ELSE> <IF> NodeType = AND_node
<THEN><LET> Nodes = TAl1Instances(AND_node)
<IN> Nodes — <ITERATE>(n; ret : String = “(” |
<IF>n= Tast(Nodes)
<THEN> ret = ret + TGetGrdPredc(n) + «)”

Appendix A. Event-B Textual Translation rules

243

<ELSE> ret =ret + TGetGrdPredc(n) +) A (7
<ENDIF>)
<ENDIF>
<ENDIF>

18. Rule : TTimingGuard

TTimingGuard(Segment, Timing) — “(gclock -~

+ Tobj(TobjSt(Segment))
TobjSt(Segment))
“Time =2
TlowerLmt(Timing) + ©)”
“& (gclock -
Tobj(TobjSt(Segment))
TobjSt(Segment))

“Time <7

+ 4+ + + + + + 4+

TupperLmt(Timing) + “)”

19. Rule : TSimpleCauseSource

TSimpleCauseSource(Segment) —
<LET> exp = TClass(TObj(TObjSt(Segment)))
<IN>
<IF> THasParam(exp)
<THEN>
TObj(TObjSt(Segment))
+ “State(”
TWriteParamLst(TA11Param(exp))
+ “)="
+ TObjSt(Segment)
<ELSE>
TObj(TObjSt(Segment))

+ “State ="

Appendix A. Event-B Textual Translation rules 244

+ TOb3jSt(Segment)
<ENDIF>

TWriteParamLst(Head : SeqTail) — Head +
“ " + TWriteParamLst(SeqTail)

TWriteParamLst(Head : < >) — Head

20. Rule : TSimp1eCond

TSimp1eCond(Predicate) —

<IF> TEmpty(Predicate)

<THEN> <SKIP>

<ELSE> TAl1Instances (Predicate) — <ITERATE>(p; ret: String=“"1 —
ret < “&” +p)

<ENDIF>

21. Rule : TPrevSegm

TPrevSegm(Segment) —

“&” + “(” + TWritePrevStateLst(Segment,TA11PrevSegm(Segment)) + “)”

TWritePrevStatelLst(Segment, Head : SegmSeqTail) —
TSimplePrevSegm(Segment, Head)
+4v”
+ TWritePreStatelLst(Segment, SegmSeqTail)
TWritePrevStatelst(Segment, Head : < >) —

TSimplePrevSegm(Segment, Head)

22. Rule : TSimplePrevSegm

TSimplePrevSegm(Segment, Head) —
<LET> exp = TClass(TObj(TObjSt(Segment)))

Appendix A. Event-B Textual Translation rules 245

<IN>
<IF> THasParam(exp)

<THEN> TObj(TObjSt(Segment)) + “State(”
+ TWriteParamLst(TAl1Param(exp))
+ %)=
+ TObjSt(Head)

<ELSE>
TObj(TObjSt(Segment)) + “State ="
+ TObjSt(Head)

<ENDIF>

23. Rule : TSubst(Segment)

TSubst(Segment) —
<LET> exp = TObj(TObjSt(Segment)

<IN>
<IF> THasParam(TClass(exp))
<THEN> TObjName(exp)

+ “State(”

+ TWriteParamLst(TAT1Param(TClass(exp)))

+ “):="

+ TObjSt(Segment)
<ELSE> exp

+ “State : =7

+ TObjSt(Segment)
<ENDIF>

24.Rule : TSimul

TSimul(Segment) —
<LET> exp = TClass(TObj(TObjSt(TEndSegm(s))))
<IN>

<IF> THasS1imul(Segment)

Appendix A. Event-B Textual Translation rules

246

<THEN> <FOR> s <IN> TSimulSeq(Segment)
{<IF> THasParam(exp)
<THEN>
TObj(TObjSt(TEndSegm(s)))
+ “State(”
+ TWriteParamLst(TA11Param(exp))
+5) =7
+ TObjSt(TEndSegm(s))
<ELSE>
TObj(TObjSt(TEndSegm(s)))
+ “State := 7
+ TObjSt(TEndSegm(s))
<ENDIF>
<IF><NOT> s = Tast(TSimulSeq(Segment))
<THEN> “&”
<ELSE> <SKIP>
<ENDIF>
}
<ELSE> <SKIP>

<ENDIF>

25. Rule : TRecdTime

TRecdTime(Segment) —
TOb3j(TObjSt(Segment))
+ TOb3jSt(Segment)

+ “Time := gclock”

Appendix B. An Event-B model
created from the Direct

translation rules

An Event-B model is generated from systematic textual translation rules is
illustrated below. This Event-B model composes of two parts: a context named

LiftSystem_EventB_ctx and a machine named LiftSystem.

B.1 Context : LiftSystem_EventB_ctx

context LiftSystem_EventB_ctx

constants Lit Unlit On Off rLit rUnlit MovingArrivingUp
MovingUp MovingDepartingUp StopAtFloor MovingDepartingDown
MovingDown MovingArrivingDown Open Closed acTivated deActivated

Activated Deactivated FLOOR TOP BOTTOM Up Down

sets FLOORLAMP_STATES FLOORSENSOR STATES REQUESTLAMP_ STATES
LIFT_STATES DOOR_STATES UPLAMP_ STATES DOWNLAMP_STATES DIR

axioms
@axm39 DIR = {Up, Down}
@axml FLOORLAMP_STATES = {Lit, Unlit}

@axm2 Lit # Unlit
@axm3 FLOORSENSOR_STATES = {On, Off}
Caxm4 On # Off

@axm5 REQUESTLAMP_STATES

{rLit, rUnlit}

@axm6 rLit # rUnlit

Appendix B. An Event-B model created from the Direct translation rules 248

@axm’/7 LIFT_STATES =
{MovingArrivingUp, MovingUp, MovingDepartingUp,
StopAtFloor, MovingDepartingDown, MovingDown,
MovingArrivingDown}

@axm8 MovingArrivingUp # MovingUp

@axm9 MovingArrivingUp # MovingDepartingUp

@axml0 MovingArrivingUp # StopAtFloor

@axmll MovingArrivingUp # MovingDepartingDown

@axml? MovingArrivingUp # MovingDown

@axml3 MovingArrivingUp # MovingArrivingDown

@axml4 MovingUp # MovingDepartingUp

@axml5 MovingUp # StopAtFloor

@axml6 MovingUp # MovingDepartingDown

@axml7 MovingUp # MovingDown

Caxml8 MovingUp # MovingArrivingDown

Caxml9 MovingDepartingUp # StopAtFloor

@axm20 MovingDepartingUp # MovingDepartingDown

@axm2]l MovingDepartingUp # MovingDown

@axm22 MovingDepartingUp # MovingArrivingDown

Caxm23 StopAtFloor # MovingDepartingDown

@axm24 StopAtFloor # MovingDown

@axm25 StopAtFloor # MovingArrivingDown

@axm26 MovingDepartingDown # MovingDown

Caxm2’/7 MovingDepartingDown # MovingArrivingDown

@axm28 MovingDown # MovingArrivingDown

@axm29 DOOR_STATES = {Open, Closed}

@axm30 Open # Closed

@axm31 UPLAMP_STATES = {acTivated, deActivated}

@axm32 acTivated # deActivated

@axm33 DOWNLAMP_ STATES = {Activated, Deactivated}

@axm34 Activated # Deactivated

@axm35 FLOOR = (BOTTOM:- ' TOP)

@axm38 BOTTOM = 1

@axm37 TOP = 3

Caxm36 Up # Down

end

Appendix B. An Event-B model created from the Direct translation rules 249

B.2 Machine : LiftSystem_EventB

machine LiftSystem_EventB sees LiftSystem_EventB_ctx

variables regFl currentFl floorlampState floorsensorState
requestlampState doorState liftState uplampState downlampState dir
gclock floorlampLittime floorlampUnlitTime floorsensorOnTime
floorsensorOffTime requestlampRequestedTime
requestlampUnrequestedTime liftMovingArrivingUpTime
liftMovingUpTime liftMovingDepartingUpTime liftStopAtFloorTime
liftMovingDepartingDownTime liftMovingDownTime
liftMovingArrivingDownTime doorOpenTime doorClosedTime
uplampDeactivatedTime uplampActivatedTime downlampDeactivatedTime

downlampActivatedTime floorlampLitTime

invariants
@invl requestlampState & FLOOR — REQUESTLAMP_STATES
@inv2 regfl & FLOOR
@inv3 floorlampState & FLOOR — FLOORLAMP_STATES
@inv4 floorsensorState & FLOOR - FLOORSENSOR STATES
@inv5 doorState & FLOOR - DOOR_STATES
@inv6 liftState & LIFT_STATES
@inv7 uplampState & UPLAMP_STATES
@inv8 downlampState & DOWNLAMP_STATES
@inv9 currentFl €& FLOOR
@invl10 dir € DIR
@invll gclock € N
@invl2 floorlampLittime & N
@invl3 floorlampUnlitTime & N
@invl4 floorsensorOnTime & N
@invl5 floorsensorOffTime & N
@invl16 requestlampRequestedTime & N
@invl7 requestlampUnrequestedTime & N

@inv18 liftMovingArrivingUpTime & N

Appendix B. An Event-B model created from the Direct translation rules 250

@invl9 liftMovingUpTime € N
@inv20 liftMovingDepartingUpTime & N
@inv2l liftStopAtFloorTime € N
@inv22 liftMovingDepartingDownTime & N
@inv23 liftMovingDownTime & N
@inv24 liftMovingArrivingDownTime & N
@inv25 doorOpenTime & N
@inv26 doorClosedTime & N
@inv27 uplampDeactivatedTime & N
@inv28 uplampActivatedTime € N
@inv29 downlampDeactivatedTime & N
@inv30 downlampDeactivatedTime & N
@inv31l downlampActivatedTime & N
@inv32 floorlampLitTime € N
@inv33 " (uplampState = acTivated
/\ downlampState = Activated)
@inv34 doorState (currentFl) = Open =
liftState = StopAtFloor
@inv35 liftState # StopAtFloor =
doorState (currentF1l) = Closed
@inv36 currentFl # (currentFl + 1)

@inv37 currentFl # (currentFl - 1)

events
event INITIALISATION
then

@actl requestlampState = FLOOR x {rUnlit}
@act2 regfFl = @

Cact3 floorlampState *= {1rLit, 2»Unlit, 3»Unlit}

@act4d floorsensorState = {1 » On, 2 » Off, 3 » Off}

@act5 doorState = FLOOR x {Closed}

@act6 liftState *= StopAtFloor

Appendix B. An Event-B model created from the Direct translation rules

251

@act?7 uplampState *= deActivated

@act8 downlampState = Deactivated

@act9 currentFl = BOTTOM

@actl0
@actll
@actl2
@actl3
@actl4
@actl5
@actle
@actl?
@actls8
@actl?9
@act20
@act2l
@act22
@act23
@act24
@act25
@act26
@act27
@act28
@act30
@act3l

Qact29

end

dir = Up

gclock = 0

floorlampLittime = 0O
floorlampUnlitTime = 0
floorsensorOnTime = 0O
floorsensorOffTime = 0
requestlampRequestedTime *= 0
requestlampUnrequestedTime *= 0
liftMovingArrivingUpTime = 0
liftMovingUpTime *= 0
liftMovingDepartingUpTime = 0
liftStopAtFloorTime = 0
liftMovingDepartingDownTime = 0O
liftMovingDownTime *= 0
liftMovingArrivingDownTime = 0
doorOpenTime *= 0
doorClosedTime = 0
uplampDeactivatedTime *= 0
uplampActivatedTime = 0
downlampDeactivatedTime = 0
downlampActivatedTime = 0

floorlampLitTime = 0

event UserRequestlamprLit

any f

where

@grdl £ € FLOOR

then

@actl regFl = reqgfFl U {rf}

Appendix B. An Event-B model created from the Direct translation rules

252

@dact2 requestlampState (f) = rLit

Cact3 requestlampRequestedTime = gclock

end

event SetRequestlamprUnlit

any f
where
@grdl f & FLOOR
@grd2 liftState = StopAtFloor
/A ((gclock - liftStopAtFloorTime = 2)

/A (gclock — liftStopAtFloorTime £ 4))

/\ f = currentFl

@dgrd3 requestlampState (f) = rLit

then

@actl requestlampState(f) = rUnlit

@act2 requestlampUnrequestedTime *= gclock

end

event doorOpen
any f
where
@grdl liftState = StopAtFloor
/A ((gclock - liftStopAtFloorTime = 1)

/A (gclock — liftStopAtFloorTime £ 5))

N f € regfl /A f = currentFl
Closed

Cgrd3 doorState (f)

then
@actl doorState(f) = Open

Cact2 doorOpenTime = gclock

end

event doorClosed

where

@grdl doorState(currentFl) = Open

Appendix B. An Event-B model created from the Direct translation rules

253

@grd2
then

Qactl
Qact?2

Qact3

end

liftState = StopAtFloor

doorState (currentFl) *= Closed
regFl = regFl N\ {currentFl}

doorClosedTime *= gclock

event liftMovingDepartingUp

any f

where
@grdé6
@grdl

@grd5

@grd3
@grd7
then

Qactl
Qact?2
Qact3

Qact4

end

f € FLOOR

(requestlampState (f) = rLit

f > currentFl)

(doorState (currentFl) = Closed
((gclock - doorClosedTime 2 1)

(gclock - doorClosedTime < 5))

> > > > >

£ € reqgfFl)

currentFl € regFl

liftState = StopAtFloor

dir = Up

liftState *= MovingDepartingUp
uplampState *= acTivated
downlampState = Deactivated

liftMovingDepartingUpTime = gclock

event liftMovingDepartingUp?2

any f

Appendix B. An Event-B model created from the Direct translation rules

254

where
@grdl
@grd2
@grd3
@grd4
@grd5

then

Qactl
Qact2
Qact3

Qact4

end

f & FLOOR
f € regfFl A f > currentFl

currentFl & regfFl
liftState = MovingArrivingUp
dir = Up

liftState *= MovingDepartingUp
uplampState = acTivated
downlampState *= Deactivated

liftMovingDepartingUpTime *= gclock

event 1liftMovingUp

any f

where
@grdl
@grd2
@grd3
@grd4
@grd5
@grdo

then
@actl
@act?2
@act3

Qact4

end

f & FLOOR
f € regfFl A f > currentFl

currentFl ¢ regfFl
liftState = MovingDepartingUp
dir = Up

floorsensorState (currentFl) = Off

liftState *= MovingUp
uplampState *= acTivated
downlampState *= Deactivated

liftMovingUpTime *= gclock

event liftMovingDepartingDown

any f
where
@grdl

@grd2

f & FLOOR

(requestlampState (f) = rLit /A f < currentFl)

/\ (doorState (currentFl) = Closed

Appendix B. An Event-B model created from the Direct translation rules

255

@grd3
@grdé6
@grd5
then
@actl
@act?2
@act3
@act4

end

A ((gclock — doorClosedTime 2> 1)
/A (gclock - doorClosedTime £ 5))
N f € reqgFl)

currentFl € regFl

liftState = StopAtFloor

dir = Down

liftState *= MovingDepartingDown
uplampState = deActivated
downlampState *= Activated

liftMovingDepartingDownTime *= gclock

event liftMovingDepartingDown?2

any f

where
@grdl
@grd2
@grd3
@grd4
@grd5

then

Qactl
Qact?2
Qact3

Qact4

end

f & FLOOR
f € regfFl /A f < currentFl

currentFl & regfl
liftState = MovingArrivingDown

dir = Down

liftState = MovingDepartingDown
uplampState = deActivated
downlampState *= Activated

liftMovingDepartingDownTime *= gclock

event liftMovingDown

any f
where
@grdl

@grd2

£ € FLOOR

f € regfFl /A f < currentFl

Appendix B. An Event-B model created from the Direct translation rules

256

@ogrd3 currentFl € regfFl

@grd4 liftState = MovingDepartingDown
@grd5 dir = Down

@grd6 floorsensorState (currentFl) = Off

then
@actl liftState = MovingDown
@act?2 uplampState *= deActivated
@act3 downlampState = Activated

@act4 liftMovingDownTime *= gclock

end

event floorsensorOn
any f
where
@grdl f & FLOOR
@grd2 (liftState = MovingArrivingUp
/A ((gclock - liftMovingArrivingUpTime 2> 2)
A (gclock - liftMovingArrivingUpTime < 5))
/A f = currentFl)
V
(liftState = MovingArrivingDown

A ((gclock - liftMovingArrivingDownTime 2> 2)

IN

A (gclock - liftMovingArrivingDownTime < 5))
/\ f = currentFl)
@grd4 floorsensorState(f) = Off
then
@actl floorsensorState(f) = On
Cact2 floorsensorOnTime = gclock

end

event floorsensorOffUp

Appendix B. An Event-B model created from the Direct translation rules

257

any f
where
Cgrdl £ €& FLOOR
@grd2 liftState = MovingDepartingUp

A ((gclock - liftMovingDepartingUpTime > 2)

A (gclock - liftMovingDepartingUpTime < 5))
/\ f = currentFl /A dir = Up
@grd4 floorsensorState(f) = On
then
@dactl floorsensorState(f) = Off
@act2 liftState *= MovingUp

Cact3 floorsensorOffTime = gclock

end

event floorsensorOffDown
any f
where
@grdl £ € FLOOR
@grd2 liftState = MovingDepartingDown
/A ((gclock - liftMovingDepartingDownTime 2 2)
A (gclock - liftMovingDepartingDownTime < 5))

N\ f = currentFl /A dir = Down
@grd3 floorsensorState(f) = On
then
@dactl floorsensorState(f) = Off
@act2 liftState = MovingDown
@act3 floorsensorOffTime = gclock

end

event floorlampUnlit
any
where
@grdl f € FLOOR
@grd2 floorsensorState(f) = Off

Appendix B. An Event-B model created from the Direct translation rules

258

/A ((gclock - floorsensorOffTime = 2)
A (gclock - floorsensorOffTime) < 4)
A\ f = currentFl
@grd3 floorlampState (f) = Lit
then
@actl floorlampState(f) = Unlit
@act2 floorlampUnlitTime = gclock
end
event floorlampLit
any f
where
Cgrdl £ €& FLOOR
@grd2 floorsensorState(f) = On
/A ((gclock - floorsensorOnTime 2 2)
A\ (gclock - floorsensorOnTime < 4))
A\ f = currentFl
@grd3 floorlampState(f) = Unlit
then
@actl floorlampState(f) = Lit
@act?2 floorlampLitTime = gclock
end
event liftMovingArrivingUp
any £
where
@grdl f & FLOOR
@grd2 f € reqfFl A f > currentFl
@grd4 currentFl € regFl
@grd3 liftState = MovingUp
@dgrd5 doorState (currentFl) = Closed
@grd6 floorlampState (currentFl) = Unlit

then
@actl liftState = MovingArrivingUp

@act?2 currentFl = currentFl + 1

Appendix B. An Event-B model created from the Direct translation rules

259

@act3 liftMovingArrivingUpTime = gclock
@act4 doorState(currentFl+1l) = Closed

end

event liftMovingArrivingDown
any f
where
@grdl f & FLOOR
@grd2 f € reqfFl A f < currentFl
@grd3 currentFl € reqgFl

@grd4 liftState = MovingDown

@dgrd5 doorState (currentFl) = Closed
@grd6 floorlampState (currentFl) = Unlit
then

Cactl liftState = MovingArrivingDown
@act2 currentFl = currentFl - 1

@act3 liftMovingArrivingDownTime *= gclock
@act4 doorState(currentFl - 1) = Closed

end

event liftStopAtFloor
any f
where

@grdl £ € FLOOR

@grd2 floorsensorState(f) = On
/A ((gclock - floorsensorOnTime = 1)
A (gclock - floorsensorOnTime £ 5))

N f € regfFl A f = currentFl
@grd3 liftState = MovingArrivingUp
V liftState = MovingArrivingDown
then
@actl liftState = StopAtFloor
@act2 uplampState = deActivated

@act3 downlampState *= Deactivated

Appendix B. An Event-B model created from the Direct translation rules

260

Qact4

end

liftStopAtFloorTime = gclock

event ChangeDirUp

any f

where
@grdl
@grd2
@grd3
@grdé6
@grd4
@grd5

then

Qactl

end

f €& FLOOR
f € reqfFl A f > currentFl
currentFl € regFl

reqgFl # @
liftState = StopAtFloor

dir = Down

dir = Up

event ChangeDirDown

any f

where
@grdl
@grd2
@grd3
@grd4
@grd5
@grdé6

then

Qactl

end

f €& FLOOR
f € reqfFl A f < currentFl
currentFl & regfl

reqgFl # @
liftState = StopAtFloor

dir = Up

dir *= Down

event Ticktok

where
@grdl liftState = StopAtFloor
/\ requestlampState (currentFl) = rLit
/A (((gclock - liftStopAtFloorTime)2> 2)

A ((gclock — liftStopAtFloorTime) < 4))

Appendix B. An Event-B model created from the Direct translation rules

261

=

gclock — liftStopAtFloorTime < 4

@grd2 (liftState = MovingArrivingUp

AN floorsensorState (currentFl) = Off

(\2
N

/A ((gclock - liftMovingArrivingUpTime)

IN
(@)

A ((gclock - liftMovingArrivingUpTime)

=

gclock —-liftMovingArrivingUpTime < 5

@grd3 (liftState = MovingArrivingDown

/\ floorsensorState (currentFl) = Off
A ((gclock - liftMovingArrivingDownTime) 2 2)
A ((gclock - liftMovingArrivingDownTime) < 5))
=
gclock - liftMovingArrivingDownTime < 5
@grd4 (floorlampState (currentFl) = Unlit
AfloorsensorState (currentFl) = On

A ((gclock - floorsensorOnTime) 2= 2)

A ((gclock - floorsensorOnTime) £ 4))
=
gclock - floorsensorOnTime < 4
@grd5 (floorsensorState (currentFl) = On

A (liftState = MovingArrivingUp V
liftState = MovingArrivingDown)

/\ currentFl € reqgFl

Appendix B. An Event-B model created from the Direct translation rules

262

A ((gclock - floorsensorOnTime) = 1)
A ((gclock - floorsensorOnTime) £ 5))
=
gclock - floorsensorOnTime < 5

@grd6 (liftState = MovingDepartingUp
A floorsensorState (currentFl) = On

A ((gclock - liftMovingDepartingUpTime) 2 2)

IN
a1

A ((gclock - liftMovingDepartingUpTime)
=

gclock - liftMovingDepartingUpTime < 5

Cgrd’7 (liftState = MovingDepartingDown

A floorsensorState (currentFl) = On
A((gclock - liftMovingDepartingDownTime) 2 2)
A ((gclock — liftMovingDepartingDownTime) < 5))

=

gclock - liftMovingDepartingDownTime < 5

@grd8 (doorState (currentFl) = Closed

/\ liftState = StopAtFloor

A ((gclock - doorClosedTime) 2> 1)
N ((gclock - doorClosedTime) < 5))
=
gclock - doorClosedTime < 5

Appendix B. An Event-B model created from the Direct translation rules

263

Cgrd9 (liftState = StopAtFloor
/\ doorState (currentFl) = Closed

/\ currentFl € reqgFl

\2

A ((gclock — liftStopAtFloorTime) = 1)

IN
a1

A ((gclock - liftStopAtFloorTime)
=

gclock - liftStopAtFloorTime < 5

@grdl0 (floorlampState(currentFl) = Lit
AfloorsensorState (currentFl) = Off
A ((gclock - floorsensorOffTime) 2 2)
N ((gclock - floorsensorOffTime) < 4))
=
gclock - floorsensorOffTime < 4

then
@actl gclock = gclock + 1

end

end

Appendix C. ATL Translation

rules

module TDtoUMLB; -- Module Template

create OUT : umlbMetamodel from 1IN : TDMetamodel;

helper def : umlbproject : umlbMetamodel!UMLBProject

umlbMetamodel UMLBProject;
helper def : umlbclass : umlbMetamodel!UMLBClass =
umlbMetamodel ! UMLBClass;

helper def : umlbmachine : umlbMetamodel!UMLBMachine

umlbMetamodel !UMLBMachine;

helper def : natlType : umlbMetamodel!UMLBTypeExpression =
umlbMetamodel !UMLBTypeExpression;

helper def : prmType : umlbMetamodel!UMLBTypeExpression =

umlbMetamodel ! UMLBTypeExpression;

helper def : intType : umlbMetamodel!UMLBTypeExpression
umlbMetamodel ! UMLBTypeExpression;
helper def : umlbcontext : umlbMetamodel!UMLBContext =

umlbMetamodel ! UMLBContext; ——-- for creating Context

rule Project {
from t : TDMetamodel!TDProject
to u : umlbMetamodel!UMLBProject
(name <- t.name,
constructs <- t.construct),
ptl : umlbMetamodel!UMLBTypeExpression
(name <- 'BOOL'),
pt2 : umlbMetamodel!UMLBTypeExpression

(name <- 'NAT'"),

pt3 : umlbMetamodel!UMLBTypeExpression

Appendix C. ATL Translation rules 265

(name <- 'NAT1'"),
pt4 : umlbMetamodel!UMLBTypeExpression

(name <- 'INT')

do {thisModule.umlbproject <- u;
thisModule.boolType <- ptl;
thisModule.natType <- pt2;
thisModule.natlType <- pt3;
thisModule.intType <- pt4;
u.typeExpressions <- u.typeExpressions.append(ptl);

u.typeExpressions <- u.typeExpressions.append (pt2);
u.typeExpressions <- u.typeExpressions.append (pt3);

u.typeExpressions <- u.typeExpressions.append(ptéd);}

rule Machine {
from t : TDMetamodel!TDMachine
to ctx : umlbMetamodel!UMLBContext

(name <- t.name + '

_ctx'),
m : umlbMetamodel!UMLBMachine
(name <- t.name,
classes <- t.class),
e : umlbMetamodel!UMLBEvent
(name <- 'Ticktok'),
a : umlbMetamodel !UMLBAction
(name <- 'Actionl',
action <- 'gclock := gclock + 1'"),
gclk : umlbMetamodel!UMLBVariable
(name <- 'gclock',
typeProvider <- thisModule.intType,
initialvValue <- '0")
—— initialValue is defined in UMLBvariableElement
do {
m.events <- m.events.append(e);
e.actions <- e.actions.append(a);
m.variables <- m.variables.append(gclk);
thisModule.umlbmachine <- m;

m.contexts <- m.contexts.append(ctx);

Appendix C. ATL Translation rules

266

thisModule.umlbproject.constructs <-—

thisModule.umlbproject.constructs.append(ctx);

thisModule.umlbproject.constructs <-—

thisModule.umlbproject.constructs.append(m) ;

rule Class {
from t : TDMetamodel!TDClass
to u : umlbMetamodel!UMLBClass
(name <- t.name,
selfName <- t.name + 'Self',
statemachines <- t.timeline),

att : umlbMetamodel!UMLBAttribute

(name <- t.name.toLower ()+ 'xStatexTime',

typeProvider <- thisModule.intType,
initialvValue <- '0")

do { u.attributes <- u.attributes.append(att); }

rule StateMachine {
from t : TDMetamodel!TDTimeline
to u : umlbMetamodel!UMLBStatemachine

' _state',

(name <- t.name +
transitions <- t.timelinetransitions,

states <- t.states)

rule State {
from t : TDMetamodel!TDState
to u : umlbMetamodel!UMLBState

(name <- t.name,

}

incoming <- t.segments -> collect (c|c.incoming),

outgoing <- t.segments -> collect (c|c.outgoing))

Appendix C. ATL Translation rules 267

rule Transition {
from t : TDMetamodel!TDTimelineTransition
to u : umlbMetamodel!UMLBTransition
(name <- t.target.getTransitionName (),
target <- t.target.eContainer(),
source <- t.source.eContainer(),
guards <- t.target.constraints,
variables <-t.eContainer () .eContainer () .parameter
)
,actgclock : umlbMetamodel!UMLBAction
(name <- t.eContainer () .name + '.gClockAction',
action <- t.target.eContainer () .eContainer () .name

+ t.target.eContainer () .name

+ '"Time ('

+
t.target.eContainer () .eContainer () .eContainer () .name

+'Self) := gclock')

—— creates variables to keep the current time (gclock) for
each event

do {u.actions <- u.actions.append(actgclock); }

helper context TDMetamodel!TDSegment
def : getTransitionName() : String =
let simuls : Set (TDMetamodel!TDSegment) =
TDMetamodel!TDSegment.allInstances () —> select (clc.simul >
includes (self))
in
if simuls —-> isEmpty () then
self.eContainer () .eContainer () .name
+ self.eContainer () .name
else
simuls.last () .getTransitionName ()

endif;

Appendix C. ATL Translation rules 268

rule Parameter {

from t : TDMetamodel!TDParameter (not

umlbMetamodel !UMLBTypeExpression —>

allInstances () —-> exists(e|e.name = t.paramType))

to u : umlbMetamodel!UMLBEventVariable
(name <- t.param),
e : umlbMetamodel!UMLBTypeExpression
(name <- t.paramType)

do {thisModule.umlbproject.typeExpressions <-—
thisModule.umlbproject.typeExpressions.append (e);

u.typeProvider <- e; }

rule Constraint/{
from t : TDMetamodel!TDConstraints
to u : umlbMetamodel!UMLBPredicate
(name <- 'TimingCnstrntGuard',
predicate <-

t.effectsource.getNodePredicate()) }

helper context TDMetamodel!TDNodeType
def : getNodePredicate() : String =
if self.oclIsKindOf (TDMetamodel!Simple)
then
if not self.timing.oclIsUndefined() then
self.SimpleCause ()
-> concat (' & '+ self.SimpleGuard())
—> concat (self.SimpleCond())
else
self.SimpleCause () —->
concat (self.SimpleCond())
endif
else if self.oclIsKindOf (TDMetamodel!OR_node)
then self.Or -> iterate(e; ret : String = "' (']
if e=self.Or.last () then

ret —-> concat (e.getNodePredicate()+')")

Appendix C. ATL Translation rules 269

else
ret —-> concat (e.getNodePredicate()+') or (")
endif)
else if self.oclIsKindOf (TDMetamodel!AND_node)
then self.And -> iterate(e; ret : String ="' ("]
if e=self.And.last () then
ret —-> concat (e.getNodePredicate()+')")
else
ret -> concat (e.getNodePredicate()+ ") & (")
endif)
else 'unrecognised nodeType'

endif endif endif;

helper context TDMetamodel!TDNodeType
def : SimpleGuard() : String =
'(gclock - xAssociationx.'
+ self.causesource.eContainer () .eContainer () .name
+ self.causesource.eContainer () .name
+ 'Time >= '

+ self.timing.lowerlimit.toString() + ') '

+ ' & (gclock - xAssociationx.'
+ self.causesource.eContainer () .eContainer () .name
+ self.causesource.eContainer () .name

+ 'Time <= '

+ self.timing.upperlimit.toString() + ') ';

helper context TDMetamodel!TDNodeType

def : SimpleCond() : String =
self.predicates —-> iterate(e; ret : String = '' |
ret -> concat (' & ' +e.predicate));

—-— Add a cause as a guard with timing constraints
helper context TDMetamodel!TDNodeType
def : SimpleCause() : String =

self.causesource.eContainer () .eContainer () .name

Appendix C. ATL Translation rules 270

+ '_state(xAssociationx) = '

+ self.causesource.eContainer () .name;

Appendix D. UML-B and
Event-B models from ATL

Translation rules

D.1 An UML-B model for the lift system: Package diagram

“ Sees “

D.2 An UML-B model for the lift system: Context diagram

o Constant < Constant +% Context Axiom| % Context Axiom
TOP: INT BOTTOM: INT TOP = 3 BOTTOM = 1

4 FLOOR: [(BOTTOM.TOP)] | FLOORSEWSOR: [{s1,s2,s3}] % DIR: [{Up,Down}]

Attributes Attributes Attributes
Axioms Axioms Axioms
Theorems Theorems Theorems

< REQUESTLAMP: [{r1, r2, r3}] < DoOOR: [{dl, d2, d3}] FLooRLAMP: [{fl1, flz, fl:

Attributes Attributes Attributes
Axioms Axioms Axioms
Theorems Theorems Theorems

4+ UPLAMPSTATE: [{acTivated, defActivated}] |+ DOWMLAMPSTATE: [{Activated, Deactivated}]
Attributes Attributes

Axioms Axioms

Theorems Theorems

Appendix D. UML-B and Event-B models from ATL Translation rules

272

D.3 An UML-B model for the lift system: Class diagram

2 Requestlamp= REQUESTLAMP
Attributes
% requestlamprUnlitTime: INT
© requestlamprLitTime: INT

Events
Statemachines
S requestlamp_state =]
1init requestlamp
SetRequestlamprunlit |
UserRequestlamprLitf]
Invariants

Theorems

© Floorlamp= FLOORLAMF

Attributes
Events

Statemachines

S floorlamp_state

% floorlampUnlid
% floorlampLii

@ requestlampAtfloor © floorlampatfloc

1

© Floor= FLOOR
Attributes
dooratfloor: Doot
floorsensoratfloor: Floorsensc
reguestlampAtfloor: Requestlamp
floorlampatfloor: Floorlar

Events

Statemachines

Invariants

Theorems

Lo

Invariants

Theorems

@ floorsensoratfloc

@ doorAtfloor

1

Tz

@ Floorsensor= FLOORSENSOR
Attributes

@ floorsensoroffTime: IN

@ floorsensoroOnTime: INI

Events
Statemachines
S floorsensor_state [

floorsensoroffu;
% floorsensoroffDow|
floorsensorCr il

Invariants

Thearems

© Door= DOCOR

Attributes
@ doorClosedTime: INT
@ doorOpenTime: INT
Events
Statemachines
S door_state
init door
% doorOpen
doorClosed
Invariants

=

< lift state # StopAtFloor = door state(DoorSelf) = Closed

Thearems

Appendix D. UML-B and Event-B models from ATL Translation rules

273

© Machine Variable
uplampState: UPLAMPSTATE

© Machine Variable
downlampState: DOWNLAMPSTATE

§' Machine Statemachine
lift_state

liftMovingDepartingUp
% liftMovingDepartingDown
init lift

% liftMovingup

liftMovingArrivingUp

liftStopAtFloorup

1iftMovingDown

1iftMovingArringDown

% liftStopAtFloorDown

liftMovingArgToDptgup
liftMovingArgToDptgDown

% Machine Event
Ticktok

Machine Event
ChangDi rUp

@ Machine Variable
LiftMovingArrivingUpTime: INT

@ Machine Variable
liftMovingArrivingDownTime: INT

@ Machine Variable
liftMovingDepartingDownTime: INT

-t Machine Invariant

@ Machine Variable

dir: DIR

© Machine Variable
gclock: INT

% Machine Event
CchangD1 rDown

© Machine Variable
liftStopAtFloorTime: INT

© Machine Variable
liftMovingDepartingUpTime: INT

@ Machine Variable
currentFl: FLOOR

—(uplampState = acTivated A downlampState = Activated)

- Machine Invariant

(Lift state = StopAtFloor) = (floorsensor state(floorsensorAtfloor(currentFl)) = ¢

door state(dooratfloor(currentFl)) = Open A currentFle

= Machine Invariant

regFl adoorAtfloor(currentFl)edom(door state) = (lift state = StopAtFloor

D.4 An UML-B model for the lift system: State diagram

4 MovingArrivingUp
Statemachines
Invariants

Thearems

% liftStopatFloorUp

1iftMovingArrivingUp

4 StopAtFloor

1n1t lift

4 MovingArrivingDown
Statemachines

Invariants

Theaorems

liftStopAtFloorDowr : . :
11ftMovingArringDown

4 MovingDown

4 MovingUp . . Statemachines i
oot i # 1iftMovingArgToDptglp . . Statemachines
atemachines Invariants * 1iftMovingArgToDptgDown Invariants
Invariants Theorems Theorems

Thearems

liftMovingDepartingDown

11ftMovingUp

% 11iftMovingDepartingUp

4 MovingDepartinglp
Statemachines
Invariants

Thearams

11iftMovingDown

4 MovingDepartingDown
Statemachines

Invariants

Thearems

Appendix D. UML-B and Event-B models from ATL Translation rules 274

init door
% doorClosed
4 Closed 4 Open
Statemachines Skatemachines
Invariants # doo rOpen Invariants
Theorems Theorems
i # floorlampUnlid i
4 L1t 4 Unlit
Statemachines Statemachines
Invariants Invariants
Theaorems Theorems

floorlamplid

% off % floorsensoroffug +on

tatemachines ¢ floorsensorof f Dowr

Skatemachines
Invariants i
floorsensoror Invariants
Thearems —

1init requestlamp

SetRequestlamprunlit

4 runlit ¢ rLit
Statemachines Statemachines
Invariants Invariants

UserRequestlamprLit
Theorems Theorems

D.5 An Event-B model is generated from an UML-B model

An Event-B model is generated from an UML-B model with additional
information is illustrated below. The Event-B model composes of two contexts:

IL_ctx and L_mch_implicitContext, and one machine I_mch.

Appendix D. UML-B and Event-B models from ATL Translation rules 275

D.5.1 Context : L_ctx

context IL_ctx

constants FLOOR
BOTTOM
TOP
sl
s2
s3
rl
r2
r3
dl
dz2
d3
Up
Down
acTivated
deActivated
Activated
Deactivated
fl11
fl2
£13

sets FLOORSENSOR
REQUESTLAMP
DOOR
DIR
UPLAMPSTATE
DOWNLAMPSTATE
FLOORLAMP

axioms

@FLOORSENSOR.value FLOORSENSOR = {sl,s2,s3}

Appendix D. UML-B and Event-B models from ATL Translation rules 276

@REQUESTLAMP .value REQUESTLAMP = {rl, r2, r3}

@DOOR.value DOOR = {dl, d2, d3}

@DIR.value DIR = {Up,Down}

QUPLAMPSTATE.value UPLAMPSTATE = {acTivated, deActivated}

@DOWNLAMPSTATE .value
DOWNLAMPSTATE = {Activated, Deactivated}
@FLOORLAMP .value FLOORLAMP = {fl11, f£12, f£f13}

@BOTTOM. type BOTTOM € 7
@TOP.type TOP € Z
@sl.type sl € FLOORSENSOR

@s2.type s2 & FLOORSENSOR

@s3.type s3 & FLOORSENSOR
@rl.type rl & REQUESTLAMP
@r2.type r2 € REQUESTLAMP
@r3.type r3 € REQUESTLAMP
@dl.type d1 € DOOR
@d2.type d2 & DOOR
@d3.type d3 € DOOR
@Up.type Up € DIR

@Down.type Down & DIR

CacTivated.type acTivated €& UPLAMPSTATE
@deActivated.type deActivated & UPLAMPSTATE
@Activated.type Activated & DOWNLAMPSTATE
@Deactivated.type Deactivated & DOWNLAMPSTATE
@fll.type fll1 € FLOORLAMP

@fl2.type fl12 € FLOORLAMP

@fl3.type £f13 € FLOORLAMP
@FLOOR.value FLOOR = (BOTTOM_TOP)
@Axioml BOTTOM = 1

@Axiom TOP = 3

@s2.distinctFrom_sl s2 # sl
@s3.distinctFrom_sl s3 # sl
@s3.distinctFrom_s2 s3 # s2
@r2.distinctFrom rl r2 # rl
@r3.distinctFrom rl r3 # rl

Appendix D. UML-B and Event-B models from ATL Translation rules 277

@r3.distinctFrom_r2 r3 # r2

@d2.distinctFrom _dl d2 # dl

@d3.distinctFrom_dl d3 # dl

@d3.distinctFrom_d2 d3 # d2

@Down.distinctFrom_Up Down # Up
@deActivated.distinctFrom_acTivated deActivated # acTivated
@Deactivated.distinctFrom Activated Deactivated # Activated
@fl2.distinctFrom_f11 f£12 # fl11

@fl13.distinctFrom_f11 f13 # f1l1

@fl13.distinctFrom_f12 f13 # fl2

end

D.5.2 Context : L_mch_implicitContext

Context L_mch_implicitContext extends L_ctx

constants StopAtFloor
MovingDepartingUp
MovingDepartingDown
MovingUp
MovingArrivingUp
MovingDown
MovingArrivingDown
Door
Closed
Open
Floor
Floorlamp
Lit
Unlit
Floorsensor
Off
On
Requestlamp
rlLit

rUnlit

Appendix D. UML-B and Event-B models from ATL Translation rules 278

sets 1lift_state_ STATES
door_state_STATES
floorlamp_state_STATES
floorsensor_state_STATES

requestlamp_state_STATES

axioms

@lift state STATES.value l1lift_state_ STATES =

{StopAtFloor,MovingDepartingUp, MovingDepartingDown,MovingUp,
MovingArrivingUp,MovingDown,MovingArrivingDown}
@door_state STATES.value door_state_STATES = {Closed,Open}
@floorlamp_state_STATES.value
floorlamp_state_STATES = {Lit,Unlit}
@floorsensor_state_STATES.value
floorsensor_state_STATES = {Off,On}
@requestlamp_state_STATES.value
requestlamp_state_STATES = {rLit, rUnlit}
@StopAtFloor.type StopAtFloor € 1lift_state_ STATES
@MovingDepartingUp.type
MovingDepartingUp € 1lift_state_STATES
@MovingDepartingDown.type
MovingDepartingDown & 1lift_state_ STATES
@MovingUp.type MovingUp € 1lift_state_STATES
@MovingArrivingUp.type MovingArrivingUp & 1lift_state_STATES
@MovingDown.type MovingDown € 1ift_state_STATES
@MovingArrivingDown.type
MovingArrivingDown & 1lift_state_ STATES
@Door.value Door = DOOR

@Closed.type Closed & door_state_ STATES

@Open.type Open € door_state_ STATES
@Floor.value Floor = FLOOR
@Floorlamp.value Floorlamp = FLOORLAMP

@Lit.type Lit & floorlamp_state_STATES

@Unlit.type Unlit € floorlamp_state_STATES

Appendix D. UML-B and Event-B models from ATL Translation rules

279

@Floorsensor.value Floorsensor = FLOORSENSOR
@Off.type Off € floorsensor_state_ STATES
@On.type On & floorsensor_state_STATES
@Requestlamp.value Requestlamp = REQUESTLAMP
@rLit.type rLit & requestlamp_state_ STATES
@rUnlit.type rUnlit € requestlamp_state_STATES
@distinctStates MovingDepartingUp, StopAtFloor
MovingDepartingUp # StopAtFloor

@distinctStates MovingDepartingDown, StopAtFloor:
MovingDepartingDown # StopAtFloor
@distinctStates MovingDepartingDown,MovingDepartingUp:

MovingDepartingDown # MovingDepartingUp

@distinctStates MovingUp, StopAtFloor: MovingUp # StopAtFloor

@distinctStates MovingUp,MovingDepartingUp:
MovingUp # MovingDepartingUp

@distinctStates MovingUp,MovingDepartingDown:
MovingUp # MovingDepartingDown

@distinctStates MovingArrivingUp, StopAtFloor:
MovingArrivingUp # StopAtFloor

@distinctStates MovingArrivingUp,MovingDepartingUp:
MovingArrivingUp # MovingDepartingUp
@distinctStates MovingArrivingUp,MovingDepartingDown:
MovingArrivingUp # MovingDepartingDown
@distinctStates MovingArrivingUp,MovingUp:
MovingArrivingUp # MovingUp

@distinctStates MovingDown, StopAtFloor:
MovingDown # StopAtFloor

@distinctStates MovingDown,MovingDepartingUp:
MovingDown # MovingDepartingUp

@distinctStates MovingDown,MovingDepartingDown:
MovingDown # MovingDepartingDown
@distinctStates MovingDown,MovingUp:

MovingDown # MovingUp

@distinctStates MovingDown,MovingArrivingUp:
MovingDown # MovingArrivingUp

@distinctStates MovingArrivingDown, StopAtFloor:

MovingArrivingDown # StopAtFloor

Appendix D. UML-B and Event-B models from ATL Translation rules 280

@distinctStates MovingArrivingDown,MovingDepartingUp:
MovingArrivingDown # MovingDepartingUp
@distinctStates MovingArrivingDown,MovingDepartingDown:
MovingArrivingDown # MovingDepartingDown
@distinctStates MovingArrivingDown,MovingUp:
MovingArrivingDown # MovingUp

@distinctStates MovingArrivingDown,MovingArrivingUp:
MovingArrivingDown # MovingArrivingUp

@distinctStates MovingArrivingDown,MovingDown:
MovingArrivingDown # MovingDown

@distinctStates Open,Closed: Open # Closed
@distinctStates Unlit,Lit: Unlit # Lit
@distinctStates On,0ff: On # Off

@distinctStates rUnlit,rLit: rUnlit # rLit

end

D.5.3 Machine : L_mch

machine IL_mch sees IL_mch_implicitContext

variables reqgfFl
dir
currentFl
uplampState
downlampState
liftStopAtFloorTime
liftMovingUpTime
liftMovingDownTime
liftMovingDepartingUpTime
liftMovingDepartingDownTime
liftMovingArrivingUpTime
liftMovingArrivingDownTime
gclock
lift_state

doorClosedTime

Appendix D. UML-B and Event-B models from ATL Translation rules 281

doorOpenTime
door_state
doorAtfloor
floorlampAtfloor
floorsensorAtfloor
requestlampAtfloor

floorlamp_state

floorsensorOffTime
floorsensorOnTime

floorsensor_state

requestlamp_state

requestlamprUnlitTime
requestlamprLitTime
floorlampUnlitTime
floorlampLitTime

invariants
@regFl.type regFl € P(FLOOR)
@dir.type dir € DIR
@currentFl.type currentFl & FLOOR
@uplampState.type uplampState & UPLAMPSTATE
@downlampState.type downlampState & DOWNLAMPSTATE
@liftStopAtFloorTime.type liftStopAtFloorTime € Z
@liftMovingUpTime.type liftMovingUpTime € Z
@liftMovingDownTime.type liftMovingDownTime & 7
@liftMovingDepartingUpTime.type
liftMovingDepartingUpTime € Z
@liftMovingDepartingDownTime.type
liftMovingDepartingDownTime € 7
@liftMovingArrivingUpTime.type liftMovingArrivingUpTime € Z
@liftMovingArrivingDownTime.type

liftMovingArrivingDownTime € Z

Appendix D. UML-B and Event-B models from ATL Translation rules 282

@gclock.type gclock € 7
@lift_state.type lift_state €& 1lift_state_STATES
@doorClosedTime.type doorClosedTime € Door — Z
@doorOpenTime.type doorOpenTime € Door — 7
@door_state.type door_state €& Door — door_state_STATES
@doorAtfloor.type doorAtfloor € Floor > Door
@floorlampAtfloor.type
floorlampAtfloor & Floor »» Floorlamp
@floorsensorAtfloor.type
floorsensorAtfloor & Floor »» Floorsensor
@requestlampAtfloor.type
requestlampAtfloor € Floor »» Requestlamp
@floorlamp_state.type
floorlamp_state € Floorlamp — floorlamp_state_STATES
@floorsensorOffTime.type
floorsensorOffTime & Floorsensor — 74
@floorsensorOnTime.type floorsensorOnTime € Floorsensor — 4
@requestlamprUnlitTime.type requestlamprUnlitTime &
Requestlamp — 7
@requestlamprLitTime.type requestlamprLitTime &
Requestlamp — 7

@floorsensor_ state.type floorsensor_state

€ Floorsensor — floorsensor_state_ STATES
@requestlamp_state.type requestlamp_state

€ Requestlamp - requestlamp_state_STATES
@Invariant?2 (lift_state = StopAtFloor) =

(floorsensor_state (floorsensorAtfloor (currentFl)) = On)

@Invariant3 door_state (doorAtfloor (currentFl)) = Open
/\ currentFl€ regfFl
/\ doorAtfloor (currentFl) €
dom (door_state) = (lift_state = StopAtFloor)
@Invariantl Vd- ((d€EDoor)= (lift_state # StopAtFloor =
door_state(d) = Closed))

@invl floorlampUnlitTime € Floorlamp — 7

Appendix D. UML-B and Event-B models from ATL Translation rules 283

@inv5 floorlampLitTime € Floorlamp — 7

@Invariant4 - (uplampState = acTivated A

downlampState = Activated)

events
event INITIALISATION
then

@regFl.init reqfFl :€ P(FLOOR)

@dir.init dir :€ DIR

@currentFl.init currentFl = BOTTOM

@uplampState.init uplampState = deActivated

@downlampState.init downlampState *= Deactivated

@liftStopAtFloorTime.init liftStopAtFloorTime = 0

@liftMovingDepartingUpTime.init
liftMovingDepartingUpTime = 0

@liftMovingDepartingDownTime.init
liftMovingDepartingDownTime = 0

@liftMovingArrivingUpTime.init
liftMovingArrivingUpTime *= 0

@liftMovingArrivingDownTime.init
liftMovingArrivingDownTime = 0

@gclock.init gclock = 0

@lift_state.init 1lift_state *= StopAtFloor

@doorClosedTime.init doorClosedTime *= Door x {0}

@doorOpenTime.init doorOpenTime *= Door x {0}

@ddoor_state.init door_state = Door x {Closed}

@doorAtfloor.init doorAtfloor = {1 » dl, 2 » d2, 3 » d3}

@floorlampAtfloor.init floorlampAtfloor =

{1 » f11, 2 » £12, 3 » £13}

@floorsensorAtfloor.init floorsensorAtfloor *

{1 » s1, 2 » s2, 3 p» 53}

Appendix D. UML-B and Event-B models from ATL Translation rules 284

@requestlampAtfloor.init requestlampAtfloor =

{1 »rl, 2 » r2, 3 » r3}

@floorlamp_state.init floorlamp_state =

{£f11 » Lit, £12 » Unlit, £f13 » Unlit}

@floorsensorOffTime.init floorsensorOffTime *=
Floorsensor x {0}

@floorsensorOnTime.init floorsensorOnTime *=
Floorsensor x {0}

@floorsensor state.init floorsensor_state =

{sl » On, s2 » Off, s3 » Off}

@requestlamp_state.init requestlamp_state =

{rl » rUnlit, r2 » rUnlit, r3 » rUnlit}

@actl requestlamprUnlitTime *= Requestlamp x {0}
@act?2 requestlamprLitTime *= Requestlamp x {0}

@act3 floorlampUnlitTime = Floorlamp x {0}

end

event UserRequestlamprLit

any RequestlampSelf

f
where
ef.type £ & FLOOR
@RequestSelf.type RequestlampSelf € Requestlamp
Cgrdl requestlamp_state (RequestlampSelf) = rUnlit
then

@requestlamprlLit.Actionl reqFl = reqFl U ({f}

Appendix D. UML-B and Event-B models from ATL Translation rules 285

@requestlamp_state_enterState_rLit
requestlamp_state (requestlampAtfloor (f)) = rLit

end

event SetRequestlamprUnlit

any RequestlampSelf

f
where
ef.type £ & FLOOR
@grdl £ = currentFl
@RequestSelf.type RequestlampSelf € Requestlamp
@requestlamprUnlit.Guardl 1lift_state = StopAtFloor
@requestlamprUnlit.TimingCnstrntGuard
(gclock — liftStopAtFloorTime = 2) A

(gclock - liftStopAtFloorTime < 4)

@grd2 requestlampAtfloor (f) = RequestlampSelf
@requestlamp_state_isin_rLit
requestlamp_state (RequestlampSelf) = rLit
then

@requestlamprUnlit.Action2
requestlamprUnlitTime (RequestlampSelf) *= gclock
@requestlamp_state_enterState_rUnlit
requestlamp_state (requestlampAtfloor (currentFl)) = rUnlit

end

event doorOpen
any DoorSelf
f

where
@f.type £ € FLOOR
@DoorSelf.type DoorSelf & Door
@doorOpen.TimingCnstrntGuard 1lift_state = StopAtFloor

/\ currentFl € reqgFl

A (gclock — liftStopAtFloorTime 2= 1)

Appendix D. UML-B and Event-B models from ATL Translation rules

286

N (gclock - liftStopAtFloorTime

< 5)
@doorOpen.Guard4 doorAtfloor (f) DoorSelf
@doorOpen.Guard3 £ € reqgfFl A f = currentFl
@door state isin Closed door_state (DoorSelf) Closed

then

@doorOpen.Action?2 doorOpenTime (DoorSelf)

= gclock
@door_state_enterState_Open door_state (DoorSelf)
end

= Open
event doorClosed

any DoorSelf

where

@DoorSelf.type DoorSelf & Door

@door_state_isin_Open door_state (DoorSelf)
Cgrdl 1lift_state StopAtFloor
then

Open

@doorClosed.Action?2 doorClosedTime (DoorSelf) = gclock
@door_state_enterState_Closed

door_state (DoorSelf)

Closed
@doorClosed.Actionl regFl *= regFl N\ {currentFl}
end

event liftMovingDepartingUp
any f

where
@f.type £ € FLOOR

@lift_state_isin_StopAtFloor 1lift_state

StopAtFloor
@liftMovingDepartingUp.Guard5b
requestlamp_state (requestlampAtfloor (f)) rlLit
N f > currentFl

@liftMovingDepartingUp.Guard?2 currentFl € regFl

@liftMovingDepartingUp.Guardl

f € reqfFl
@grdl Vd-d€Door = door_state (d)

Closed
@liftMovingDepartingUp.TimingCnstrntGuard

door_state (doorAtfloor (currentFl))

Closed

Appendix D. UML-B and Event-B models from ATL Translation rules 287

v
=

/\ (gclock —-doorClosedTime ((doorAtfloor (currentFl)))

IN
a1

A (gclock —-doorClosedTime ((doorAtfloor (currentFl)))
@liftMovingDepartingUp.Guard3 dir = Up
then

@lift_state_enterState_StopAtFloor

1lift_state *= MovingDepartingUp
@liftMovingDepartingUp.Action3

liftMovingDepartingUpTime *= gclock
@liftMovingDepartingUp.Action2

downlampState = Deactivated
@liftMovingDepartingUp.Actionl uplampState *= acTivated

end

event liftMovingArgToDptgUp
any f
where
@f.type £ € FLOOR
@liftMovingArgToDptgUp.Guardl f & FLOOR
@liftMovingArgToDptgUp.Guard2 £ € reqfFl A f > currentFl
@liftMovingArgToDptgUp.Guard3 currentFl & regFl
@lift_state_isin_MovingArrivingUp
lift_state = MovingArrivingUp
@liftMovingArgToDptgUp.Guard4 dir = Up
then
@lift_state_enterState_MovingArrivingUp
lift_state *= MovingDepartingUp
@liftMovingArgToDptgUp.Actionl
liftMovingDepartingUpTime *= gclock
Cactl downlampState *= Deactivated
@act2 uplampState = acTivated

end

event 1liftMovingUp
any f

Appendix D. UML-B and Event-B models from ATL Translation rules 288

where
@f.type £ € FLOOR
@liftMovingUp.Guardl £ € reqfFl A f > currentFl
@liftMovingUp.Guard2 currentFl & regFl
@lift_state_isin_MovingDepartingUp
1lift_state = MovingDepartingUp
@liftMovingUp.Guard3
floorsensor_state (floorsensorAtfloor (currentFl)) = Off
@liftMovingUp.Guard4 dir = Up
then
@liftMovingUp.Actionl 1liftMovingUpTime *= gclock
@lift_state_enterState_MovingDepartingUp
1lift_state *= MovingUp

end

event liftMovingDepartingDown
any f
where
@f.type £ € FLOOR
@liftMovingDepartingDown.Guardl f & regFl
@liftMovingDepartingDown.Guard2 currentFl € reqgFl
@liftMovingDepartingDown.Guard3 dir = Down
@grdl Vd-d€Door = door_state(d) = Closed
@liftMovingDepartingDown.Guard4
requestlamp_state (requestlampAtfloor (f)) = rLit
/A f < currentFl

@liftMovingDepartingDown.TimingCnstrntGuard

door_state (doorAtfloor (currentF1l)) = Closed
/A (gclock —doorClosedTime ((doorAtfloor (currentFl))) = 1)
A(gclock —doorClosedTime ((doorAtfloor (currentFl))) < 5)

@lift_state_isin_StopAtFloor lift_state = StopAtFloor
then
@liftMovingDepartingDown.Actionl
uplampState = deActivated

@lift_state_enterState_StopAtFloor

Appendix D. UML-B and Event-B models from ATL Translation rules 289

lift_state *= MovingDepartingDown
@liftMovingDepartingDown.Action?2

downlampState *= Activated
@liftMovingDepartingDown.Action3

liftMovingDepartingDownTime *= gclock

end

event liftMovingArgToDptgDown
any f
where
@f.type £ € FLOOR
@liftMovingArgToDptgDown.Guardl £ & FLOOR
@liftMovingArgToDptgDown.Guard3 currentFl € reqgFl
@liftMovingArgToDptgDown.Guard2 f € regfFl A
f < currentFl
@liftMovingArgToDptgDown.Guard4 dir = Down
@lift_state_isin_MovingArrivingDown
1lift_state = MovingArrivingDown
then
@lift_state_enterState_MovingArrivingDown
lift_state *= MovingDepartingDown
@liftMovingArgToDptgDown.Actionl
liftMovingDepartingDownTime *= gclock
@actl downlampState = Activated
@act2 uplampState = deActivated

end

event liftMovingDown
any f
where
@f.type £ € FLOOR
@liftMovingDown.Guardl £ € reqfFl A f > currentFl
@liftMovingDown.Guard?2 currentFl € regFl

@lift_state_isin_MovingDepartingDown

Appendix D. UML-B and Event-B models from ATL Translation rules 290

lift_state = MovingDepartingDown
@liftMovingDown.Guard3

floorsensor_state (floorsensorAtfloor (currentFl)) = Off
@liftMovingDown.Guard4 dir = Down

then

@liftMovingDown.Actionl liftMovingDownTime * gclock
@lift_state_enterState_MovingDepartingDown

lift_state *= MovingDown

end

event floorsensorOn

any FloorsensorSelf

f

where
@grdl f € FLOOR
@FloorsensorSelf.type FloorsensorSelf € Floorsensor
@floorsensor_state_isin_Off
floorsensor_state (FloorsensorSelf) = Off

@floorsensorOn.Guardl

floorsensorAtfloor~(FloorsensorSelf) = currentFl
@floorsensorOn.TimingCnstrntGuard

(lift_state = MovingArrivingUp

AN dir = Up A f = currentFl

A (gclock - liftMovingArrivingUpTime > 2)

IN

A (gclock - liftMovingArrivingUpTime < 5))
vV
(lift_state = MovingArrivingDown

Adir = Down A f = currentFl

A (gclock - liftMovingArrivingDownTime 2> 2)
/\(gclock - liftMovingArrivingDownTime < 5))
then
@floorsensorOn.Actionl
floorsensorOnTime (FloorsensorSelf) *= gclock

@floorsensor_state_enterState_On

Appendix D. UML-B and Event-B models from ATL Translation rules 291

floorsensor_state (FloorsensorSelf) #= On

end

event floorsensorOffUp

any FloorsensorSelf

f
where
@l.type £ € FLOOR
@FloorsensorSelf.type FloorsensorSelf € Floorsensor
@floorsensor_state_isin_On
floorsensor_state (FloorsensorSelf) = On
@floorsensorOffUp.TimingCnstrntGuard

lift_state = MovingDepartingUp

N (gclock - liftMovingDepartingUpTime > 2)
N (gclock - liftMovingDepartingUpTime < 5)
A f = currentFl /A dir = Up
then
@floorsensorOffUp.Actionl
floorsensorOffTime (FloorsensorSelf) = gclock
@floorsensor_state_enterState_ Off
floorsensor_state (FloorsensorSelf) = Off

@floorsensorOffUp.Action2
1lift_state *= MovingUp

end

event floorsensorOffDown

any FloorsensorSelf

f
where
@l.type £ € FLOOR
@FloorsensorSelf.type FloorsensorSelf € Floorsensor

@floorsensor_state_isin_On

Appendix D. UML-B and Event-B models from ATL Translation rules 292
floorsensor_state (FloorsensorSelf) = On
@floorsensorOffDown.TimingCnstrntGuard
lift_state = MovingDepartingDown
N (gclock - liftMovingDepartingDownTime > 2)
A (gclock — liftMovingDepartingDownTime < 5)
A f = currentFl /A dir = Down
then
@floorsensor_state_enterState_ Off
floorsensor_state (FloorsensorSelf) = Off
@floorsensorOffDown.Action?2 1lift_state = MovingDown
@floorsensorOffDown.Actionl
floorsensorOffTime (FloorsensorSelf) = gclock
end
event floorlampUnlit
any FloorlampSelf
f
where
@f.type £ € FLOOR
@FloorlampSelf.type FloorlampSelf € Floorlamp
@floorlamp_state_isin_Lit
floorlamp_state (floorlampAtfloor (currentFl)) = Lit
@floorlampUnlit.Guard3
floorsensor_state (floorsensorAtfloor (currentFl)) = Off
@floorlampUnlit.TimingCnstrntGuard f = currentFl A
(gclock - floorsensorOffTime ((floorsensorAtfloor (currentFl))) 2 2)
A
(gclock - floorsensorOffTime ((floorsensorAtfloor (currentFl))) < 4)

@floorlampUnlit.Guardl

floorlampAtfloor~(FloorlampSelf) = currentFl
then

@floorlampUnlit.Action2

floorlampUnlitTime (FloorlampSelf) *= gclock

Appendix D. UML-B and Event-B models from ATL Translation rules 293

@floorlamp_state_enterState_Unlit
floorlamp_state (floorlampAtfloor (currentF1l)) *= Unlit

end

event floorlampLit

any FloorlampSelf

f
where
@f.type £ € FLOOR
@FloorlampSelf.type FloorlampSelf €& Floorlamp
@floorlampLit.Guardl
floorlampAtfloor~(FloorlampSelf) = currentFl

@floorlampLit.TimingCnstrntGuard f = currentFl A

(gclock - floorsensorOnTime ((floorsensorAtfloor (currentFl))) 2 2)
A\
(gclock — floorsensorOnTime ((floorsensorAtfloor (currentFl))) < 4)
@floorlampLit.Guard2
floorsensor_state (floorsensorAtfloor (currentFl)) = On

@floorlamp_state_isin_Unlit
floorlamp_state (FloorlampSelf) = Unlit
then
@floorlampLit.Action2
floorlampLitTime (FloorlampSelf) = gclock
@floorlamp_state_enterState_Lit

floorlamp_state (FloorlampSelf) *= Lit

end

event liftMovingArrivingUp
any f
where
@f.type £ € FLOOR

@liftMovingArrivingUp.Guard4 dir = Up

@liftMovingArrivingUp.Guard3 currentFl € reqgFl

Appendix D. UML-B and Event-B models from ATL Translation rules 294

@liftMovingArrivingUp.Guard2 f € reqfFl A f > currentFl
@liftMovingArrivingUp.Guardl £ & FLOOR

@lift state isin MovingUp lift_state = MovingUp

@grdl

floorlamp_state (floorlampAtfloor (currentFl)) = Unlit

then
@lift_state_enterState_MovingUp
lift_state *= MovingArrivingUp
@liftMovingArrivingUp.Action2
liftMovingArrivingUpTime *= gclock
@liftMovingArrivingUp.Actionl currentFl *= currentFl + 1

end

event liftMovingArringDown
any f
where
@f.type £ € FLOOR
@lift_state_isin_MovingDown lift_state = MovingDown

@liftMovingArringDown.Guard4 dir = Down
@liftMovingArringDown.Guard3 currentFl € reqgFl
@liftMovingArringDown.Guardl f & FLOOR

@liftMovingArringDown.Guard2 f € reqgfFl A f < currentFl

@grd2
floorlamp_state (floorlampAtfloor (currentFl)) = Unlit
then
@liftMovingArringDown.Actionl currentFl = currentFl - 1

@liftMovingArringDown.Action2
liftMovingArrivingDownTime *= gclock

@lift_state_enterState_MovingDown
1lift_state *= MovingArrivingDown

end

Appendix D. UML-B and Event-B models from ATL Translation rules 295

event liftStopAtFloorUp
any f
where
@f.type £ € FLOOR
@liftStopAtFloorUp.Guardl f € reqgFl

@liftStopAtFloorUp.TimingCnstrntGuard

(gclock —-floorsensorOnTime ((floorsensorAtfloor (currentFl))) 2 2)
A
(gclock —-floorsensorOnTime ((floorsensorAtfloor (currentFl))) < 5)
@liftStopAtFloorUp.Guard3
floorsensor_state (floorsensorAtfloor (currentFl))= On A

f = currentFl A f € reqgFl
@lift_state_isin_MovingArrivingUp
lift_state = MovingArrivingUp
@liftStopAtFloorUp.Guard2 f = currentFl
then
@lift_state_enterState_MovingArrivingUp
lift_state *= StopAtFloor
@liftStopAtFloorUp.Action3 downlampState *= Deactivated
@liftStopAtFloorUp.Actionl liftStopAtFloorTime *= gclock
@liftStopAtFloorUp.Action2 uplampState = deActivated

end

event liftStopAtFloorDown
any f
where
@f.type £ € FLOOR
@liftStopAtFloorDown.Guard2 f = currentFl
@liftStopAtFloorDown.Guardl f € reqgFl
@liftStopAtFloorDown.TimingCnstrntGuard (gclock-
floorsensorOnTime ((floorsensorAtfloor (currentFl)))> 2) A
(gclock - floorsensorOnTime ((floorsensorAtfloor (currentFl))) < 5)
@liftStopAtFloorDown.Guard3

floorsensor_state (floorsensorAtfloor (currentFl)) = On A

f = currentFl A f € reqgfFl

Appendix D. UML-B and Event-B models from ATL Translation rules

296

@lift_state_isin_MovingArrivingDown
lift_state = MovingArrivingDown
then
@liftStopAtFloorDown.Actionl
liftStopAtFloorTime *= gclock
@lift_state_enterState_MovingArrivingDown

1lift_state *= StopAtFloor

@liftStopAtFloorDown.Action?2 uplampState *= deActivated

@liftStopAtFloorDown.Action3 downlampState *= Deactivated

end

event ChangDirUp

any f

where
@f.type £ € FLOOR
@ChangDirUp.Guardl f € reqfFl A f > currentFl
@ChangDirUp.Guard5 dir = Down
@ChangDirUp.Guard4 1lift_state = StopAtFloor
@ChangDirUp.Guard3 reqgFl # @
@ChangDirUp.Guard?2 currentFl € regFl

then
@ChangDirUp.Actionl dir = Up

end

event ChangDirDown
any f
where
@f.type £ € FLOOR
@ChangDirDown.Guard5 dir = Up
@ChangDirDown.Guard3 reqFl # 92

@ChangDirDown.Guard4 1lift_state = StopAtFloor

@ChangDirDown.Guardl f € reqfFl A f < currentFl

@ChangDirDown.Guard2 currentFl € regFl
then

Appendix D. UML-B and Event-B models from ATL Translation rules 297

@ChangDirDown.Actionl dir = Down

end

event Ticktok
where
@Ticktok.Guardl
lift_state = StopAtFloor

A requestlamp_state (requestlampAtfloor (currentFl)) = rLit
/A (((gclock - liftStopAtFloorTime) 2= 2)
A ((gclock — liftStopAtFloorTime) < 4))

=

gclock - liftStopAtFloorTime < 4

@Ticktok.GuardlO

(floorlamp_state (floorlampAtfloor (currentFl)) = Lit

/\ floorsensor_state (floorsensorAtfloor (currentFl)) = Off

A
(gclock - floorsensorOffTime (floorsensorAtfloor (currentFl))2 2)
A
(gclock - floorsensorOffTime (floorsensorAtfloor (currentFl))< 4))
=
gclock - floorsensorOffTime (floorsensorAtfloor (currentFl)) <

@Ticktok.Guard9
(lift_state = StopAtFloor
/\ door_state (doorAtfloor (currentFl)) = Closed

/\ currentFl € reqFl

[\
[

N (gclock - liftStopAtFloorTime

IN

N (gclock - liftStopAtFloorTime < 5))

=

gclock - liftStopAtFloorTime < 5

@Ticktok.Guard8

(door_state (doorAtfloor (currentFl)) = Closed

/\ lift_state = StopAtFloor

Appendix D. UML-B and Event-B models from ATL Translation rules 298

A(gclock — doorClosedTime (doorAtfloor (currentF1l))

(\2
i

A(gclock — doorClosedTime (doorAtfloor (currentF1))

IN
a1

=

gclock - doorClosedTime (doorAtfloor (currentFl)) < 5

@Ticktok.Guard?

(lift_state = MovingDepartingDown
/A floorsensor_state (floorsensorAtfloor (currentFl)) = On

A ((gclock - liftMovingDepartingDownTime) 2 2)

IN

A ((gclock - liftMovingDepartingDownTime) 5))
=

gclock - liftMovingDepartingDownTime < 5

@Ticktok.Guardo6

(lift_state = MovingDepartingUp A

floorsensor_state (floorsensorAtfloor (currentFl)) = On
A ((gclock - liftMovingDepartingUpTime) 2= 2)
A ((gclock - liftMovingDepartingUpTime) < 5))

=

gclock - liftMovingDepartingUpTime < 5

@Ticktok.Guardb

(floorsensor_state (floorsensorAtfloor (currentF1l)) = On
A\
(lift_state = MovingArrivingUp V
lift_state = MovingArrivingDown)
A (currentFl € reqrFl) A
(gclock - floorsensorOnTime (floorsensorAtfloor (currentFl)) 2 1)
A\
(gclock - floorsensorOnTime (floorsensorAtfloor (currentFl)) < 5))
=
gclock - floorsensorOnTime (floorsensorAtfloor (currentFl)) < 5

@Ticktok.Guard4

Appendix D. UML-B and Event-B models from ATL Translation rules 299

(floorlamp_state (floorlampAtfloor (currentF1l)) = Unlit

A floorsensor_state (floorsensorAtfloor (currentFl)) = On

A
(gclock - floorsensorOnTime (floorsensorAtfloor (currentFl)) 2 2)
A
(gclock - floorsensorOnTime (floorsensorAtfloor (currentFl)) < 4))
=
gclock - floorsensorOnTime (floorsensorAtfloor (currentFl)) < 4

@Ticktok.Guard3

(lift_state = MovingArrivingDown
/\ floorsensor_state (floorsensorAtfloor (currentFl)) = Off
/A ((gclock - liftMovingArrivingDownTime) 2= 2)
/A ((gclock - liftMovingArrivingDownTime) < 5))

=

gclock - liftMovingArrivingDownTime < 5

@Ticktok.Guard?2

(lift_state = MovingArrivingUp
/\ floorsensor_state (floorsensorAtfloor (currentFl)) = Off
A ((gclock - liftMovingArrivingUpTime) 2= 2)
A ((gclock — liftMovingArrivingUpTime) £ 5))
=
gclock - liftMovingArrivingUpTime < 5
then
@Ticktok.Actionl gclock = gclock + 1

end

end

Appendix E. KAOS Textual

Translation rules

E.1 Translation rules for creating a KAOS goal from segments defined

with causeEffectArrow

1. Rule : TKParamGuardvValue

TParamGuardValue(Segment) —
<LET> exp = TClass(TOb3j(TObjSt(Segment)))
<IF>THasParam(exp)
<THEN>
“vV7 o+
TWriteAllParamsLst(TAl1Param(exp))
<ELSE><SKIP>
<ENDIF>

TWriteAllParamsLst(Head : ParamSeqTail) —
Head + “:” + TParamType(Head) + <" +
TWriteAl1ParamsLst(ParamSeqTail)

TWriteAllParamsLst(Head : < >) — Head + “:” + TParamType(Head)

Appendix E. KAOS Textual Translation rules 301

2. Rule : TKGrdCtrnt

TKGrdCtrnt(Segment) —
{ “(”+ TKGetGrdPredc(TNodeType(TConstrnt(Segment))) + “)” }

3. Rule : TKGetGrdPredc

TKGetGrdPredc(NodeType) —
<IF> NodeType = Simple
<THEN> TSimp1eCauseSource(TSegment(Simple))
+ TSimp1eCond(TCond(Simple))
<ELSE><IF> NodeType = OR_node
<THEN><LET> Nodes = TAl1Instances(OR_node)
<IN>Nodes — <ITERATE>(n; ret : String = *“(” |
<IF>n= Tast(Nodes)
<THEN> ret = ret + TKGetGrdPredc(n) + “)”
<ELSE> ret =ret + TKGetGrdPredc(n) + “)v (”

<ENDIF>)
<ENDIF>
<ELSE><IF> NodeType = AND_node
<THEN><LET> Nodes = TAT1Instances(AND_node)
<IN> Nodes — <ITERATE>(n; ret : String = “(” |
<IF>n= Tast(Nodes)
<THEN> ret = ret + TKGetGrdPredc(n) + «)”
<ELSE> ret =ret + TKGetGrdPredc(n) + “) A (”
<ENDIF>)
<ENDIF>
<ENDIF>

Appendix E. KAOS Textual Translation rules 302

4. Rule : TKTimeCtrnt

TKTimeCtrnt(Segment) —

{ TKGetTimingPredc(Segment, TKTiming(TConstrnt(Segment))) }

5. Rule : TKGetTimingPredc

TKGetTimingPredc (Segment, Timing) —
<IF> !TKEmpty(Timing)
<THEN> “0” + Timing
<ELSE> <SKIP>
<ENDIF>

<LET> exp = TClass(TOb3j(TObjSt(Segment)))
<IN>
<IF> THasParam(exp)
<THEN>

TOb3j(TObjSt(Segment))

+ “State(”

+ TWriteParamLst(TA11Param(exp))

+ ="

+“°” + TObjSt(Segment) + «“*
<ELSE>

TObj(TObjSt(Segment))

+ “State ="

+“” + TObjSt(Segment) + “’°”
<ENDIF>

Appendix E. KAOS Textual Translation rules 303

E.2 Translation rules for creating a KAOS goal from

SimultaneityArrow

6. Rule : TKSParamGuardValue

TKSParamGuardValue(Simul) —
<LET> exp = TClass(TObj(TObjSt(TKSStartSegm(Simul))))
<IF>THasParam(exp)
<THEN>
“V7 o+
TWriteAl1ParamsLst(TAT1Param(exp))
<ELSE><SKIP>
<ENDIF>
TWriteAllParamsLst(Head : ParamSeqTail) —

Head + “:” + TParamType(Head) + “,” +
TWriteAllParamsLst(ParamSeqTail)

TWriteAllParamsLst(Head : < >) — Head + “:” + TParamType(Head)

7. Rule : TKSCause(Simul)

TKSCause(Simul) —
<LET> exp = TObj(TObjSt(TKSStartSegm(Simul)))
<IN>
<IF> THasParam(TClass(exp))
<THEN>
exp

+ “State(”
+ TWriteParamLst(TA11Param(TClass(exp)))

b3

+ “)=

Appendix E. KAOS Textual Translation rules

304

+“ 7+ TObjSt(TKStartSegm(Simul)) + “~ 7
<ELSE>

exp

+ “State ="

+“ 7+ TObjSt(TKStartSegm(Simul)) + “’ ”
<ENDIF>

8. Rule : TKSEffect

TKSEffect(Simul) =
<LET> exp = TObj(TObjSt(TEndSegm(Simul)))
<IN>
<IF> THasParam(TClass(exp))
<THEN>
exp
+ “State(”
+ TWriteParamLst(TA11Param(TClass(exp)))
+)=
+“ 7+ TObjSt(TEndSegm(Simul)) + “ "~ ”
<ELSE>
exp
+ “State ="
+% " + TObjSt(TEndSegm(Simul)) + « * 7
<ENDIF>

Appendix F. KAOS Goals and Operation models

F.1 Goal Model

MainG1 Achieve
[DoorAtTheRequestedFloorisEventually
OpenedBetween7-25secsAfterTherelsA

RequestFortheLiftToServiceTheFloor]

P1 Vv P, = 0W

Py =0W

MainG1.1 Achieve

[DoorAtTheRequestedFloorls
EventuallyOpenedBetween7-25secs
AfterTherelsaRequestForthe
LiftAboveTheCurrentFloor]

A

? Pq= 0W

Achieve

Line18&7 [LiftisEventuallyMvgDptUp

Lined achieve

MainG1.2 Achieve
[DoorAtTheRequestedFloorls
EventuallyOpenedBetween7-25secs
AfterTherelsaRequestForthe
LiftBelowTheCurrentFloor]

3

Line1938 Achieve
[LiftisEventuallyMvgDptDwn

Line9 Achieve

FromTheCurrentFloorBetween [TheDoorAtTheCurrent FromTheCurrentFloorBetween [TheDoorAtTheCurrent
1-5secsAfterTherelsARequest FloorlsEventuallyOpen 1-5secsAfterTherelsARequest FloorlsEventuallyOpen
ForTheLiftAbove TheCurrentFloor Between1-5secsAfter ForTheLiftBelowTheCurrentFloor Between1-SsecsAfter
AndTheDoorAtTheCurrentFloor LiftStopAtThatFloor] AndTheDoorAtTheCurrentFloor LiftStopAtThatFloor]
IsClosed] IsClosed]
Line3.1 Achieve Line5(a) Achieve Line3.2 ‘Achieve Line5(b) Achieve

[LiftisEventuallyStopAtThe
CurrentFloorBetween1-5secs
AfterFloorsensorStateAtThe
CurrentFloorlsOnAndLiftls
InThe StateofMvgArgUp

[FloorsensorForTheCurrent
FloorlsEventuallySetOff
Between2-5secsAfter
LiftStartsMvgDptUp]

S=¢

[LiftisEventuallyStopAtThe
CurrentFloorBetween1-5secs
AfterFloorsensorStateAtThe

[FloorsensorForTheCurrent
FloorlsEventuallySetOff
Between2-5secsAfter

Line17 Achieve

Lined.1 P
[LiftStatelsMovingUp Achieve

GoalA1 pchieve

S [LiftisEventually [FloorsensorForThe
1 1]
Simultaneously ChagedToState CurrentFloorisEventually
WheneveFloorsensor
heneveFloorsenso MvgArgUpAfter SetOnBetween2-5secs
MvgUp] AfterLiftMvgArgUp]

IsSetOff]

3 CurrentFloorlsOnAndLiftls
LftStartshvaDptDwn] InTheStateofMvgArgUp
Line18 Achleve GoalA2 pieve Lined2z oo o
G mctancsoay " [LitisEventually [FlaorsenzorForThe
WheneveFIoorser{sor ChangedToState CurrentFloorlsEventually
AtTheCurrentFloor MvgArgDwnAfter SetOnBetween2-5secs
IsSetOff] MvgDwn] AfterLiftMvgArgDwn]

MainG1.1 Achieve
[DoorAtTheRequestedFloorls
EventuallyOpenedBetween7-25secs
AfterTherelsaRequestForthe
LiftAbove TheCurrentFloor]

_ Achieve
Line18&7) iftisEventuallyMvgDptUp

FromTheCurrentFloorBetween
1-5secsAfterTherelsARequest
ForThelLiftAboveTheCurrentFloor
AndTheDoorAtTheCurrentFloor

Lined Achieve
[TheDoorAtTheCurrent
FloorlsEventuallyOpen
IsClosed]
Line3.1 Achieve
[FloorsensorForTheCurre

Between1-5secsAfter
ntFloorlsEventuallySetOff

LiftStopAtThatFloor]
Line5(a) Achieve
[LiftlsEventuallyStopAtThe
CurrentFloorBetween1-5secs
AfterFloorsensorStateAtThe
Between2-5secsAfter X
. S=0T CurrentFloorlsOnAndLiftls
LiftStartsMvgDptUp] InTheStateofMvgArgUp
Achieve GoalA1 . Line4.1 I
[LiftStatelsMovingUp _Achieve Achieve
" [LiftisEventually [FloorsensorForThe
Simultaneously
ChagedToState CurrentFloorlsEventually
WheneveFloorsensor
MvgArgUpAfter SetOnBetween2-5secs
AtTheCurrentFloor MvgUpl AfterLiftMvaArgU
1sSetOff] 9vp erLiftMvgArgUp]
MainG1.2 Achieve
[DoorAtTheRequestedFloorls
EventuallyOpenedBetween7-25secs
AfterTherelsaRequestForthe
LiftBelowTheCurrentFloor]
A
Achieve T P2=0W Line9 Achieve
Line19&R.iftisEventuallyMvgDptDwn p. 0Q L
FromTheCurrentFloorBetween 2= V=o0w [TheDoorAtTheCurrent
1-5secsAfterTherelsARequest Féoect’\:zgxfnst::ggg:?
ForThelLiftBelowTheCurrentFloor , -
AndTheDoorAtTheCurrentFloor Q=0R =0V LiftStopAtThatFloor]
IsClosed]
Line5(b! Achieve
Line3.2 Achieve =08 T=>0U [LiftilsEventuallyStopAtThe
[FloorsensorForTheCurre CurrentFloorBetween1-5secs
ntFloorlsEventuallySetOff AfterFloorsensorStateAtThe
Between2-5secsAfter CurrentFloorlsOnAndLiftls
LiftStartsMvgDptDwn] S =0T InTheStateofMvgArgUp
Line16 Achieve GoalA2 : . .
: i Achieve Line4.2 Achieve
[Llflgit::'.ellltsal\r/‘lggﬂ'lsgl;Dwn [LiftisEventually [FloorsensorForThe
Y ChangedToState CurrentFloorlsEventually
WheneveFloorsensor
MvgArgDwnAfter SetOnBetween2-5secs
AtTheCurrentFloor MvgDwn] AfterLiftMvgArgDwn]
1sSetOff] 9 gArg
Appendix F. KAOS Goals and Operation Models 306

MainG2 Achieve
[WheneverLiftStopsAtTheRequested
FloorTheRequestlampAtThatFloor
IsEventuallyUnlitBetween2-4secs
DoorAtThatFloorlsEventaullyOpened
Between1-5secsUplampAnd
DownlampAreSimultaneouslyDeactivated]

4 P= QARASAT

P=T
P= S

Line6 . Line9 . Line11 Line10
Achieve Achieve Maintain Maintain
[TheRequestlampAtThe [TheDoorAtTheRequested . .
RequestedFloorlsEventually FloorlsEventually [UplamptIsDeactlvated [DoyvnlamptIsDeactlvated
UnlitBetween2-4secs OpenBetween1-5secs SlmAuItaneoustWhen SlmAuItaneoustWhen
AfterLiftStopsAtThatFloor] AfterLiftStopsAtThatFloor] LiftStopsAtFloor] LiftStopsAtFloor]

Appendix F. KAOS Goals and Operation Models 307

MainG3 Achieve
[WheneverFloorsensorAtTheCurrent
FloorlsSetOffFloorlamplsEventuallySet
UnlitBetween2-4secsAndLiftls
SimultaneouslylnAStateOf
MovingUpOrMovingDown]

T P— QAR

P =Q P=R
. Line16&17
Line1 Achieve Maintain
[WheneverFloorsensorAt [WheneverFloorsensorAtThe
TheCurrentFloorlsSetOff CurrentFloorlsSetOffLiftls
FloorlamplsEventuallySet SimultaneouslylnAStateOf
UnlitBetween2-4secs] MovingUpOrMovingDown]

t

Line16 Maintain Line17 Maintain
[WheneverFloorsensorAtThe [WheneverFloorsensorAtThe
CurrentFloorlsSetOffLiftls CurrentFloorlsSetOffLiftls
SimultaneouslylnAState Of SimultaneouslylnAState Of
MovingDown] MovingUp]

Appendix F. KAOS Goals and Operation Models

308

MainG4 Maintain
[UplampSimultaneouslySetTo
DeactivatedWhileDownlamp
SimultaneouslySetToActivated
WheneverlLiftlsinAState Of
MvgDptDwn]

T P— QAR

P=Q P=R
Line12 Maintain Line13 Maintain
[UplamplsSimultaneously [DownlamplsSimultaneously
SetToDeactivated SetToActivated
WheneverLiftlsinAStateOf WheneverLiftlsinAStateOf
MvgDptDwn] MvgDptDwn]

MainG5 Maintain

[UplampSimultaneouslySetTo
ActivatedWhileDownlamp
SimultaneouslySetToDeActivated
WheneverLiftlsInAState Of
MvgDptUp]

T P = QAR

P =Q P=R
Line14 Maintain Line15 Maintain
[UplampSimultaneously [DownlamplsSimultaneously
SetToActivated SetToDeactivated
WheneverLiftlsInAState Of WheneverLiftlsInAState Of
MvgDptUp] MvgDptUp]

Appendix F. KAOS Goals and Operation Models 309

MainGé Achieve
[LiftlsEventuallyChangesltsState
FromMvgArgUpToMvgDptUpOr

MvgArgDwnToMgvDptDown
WheneverThereAreRequestsFor
OtherFloorsAndNoRequest
ForTheCurrentFloor]

|

GoalA3 Achieve GoalA4
[LiftlsEventuallyChangesltsState [LiftlsEventuallyChangesltsState
FromMvgArgUpToMvgDptUp FromMvgArgDwnToMvgDptDwn
WheneverThereAreRequestsAbove WheneverThereAreRequestsBelow
ThatCurrentFloorAndNoRequest ThatCurrentFloorAndNoRequest

ForTheCurrentFloor]

ForTheCurrentFloor]

Appendix F. KAOS Goals and Operation Models

310

MainG7 Achieve

[FloorlampAtTheCurrentFloorlsEventuallyLitBetween

2-4secsAndLiftisEventuallyStopsAtTheCurrentFloor

Between1-5secsAfterFloorsensorStateAtTheCurrent
FloorlsOnAndLiftlsInTheStateOfMvgArgUpOrMvgArgDwn]

MainG7.1 Achieve MainG7.2 Achieve
[FloorlampAtTheCurrentFloor [FloorlampAtTheCurrentFloor
IsEventuallyLitBetween IsEventuallyLitBetween
2-4secsAndLiftisEventuallyStops 2-4secsAndLiftisEventuallyStops
AtTheCurrentFloorBetween AtTheCurrentFloorBetween
1-5secsAfterFloorsensorState 1-5secsAfterFloorsensorState
AtTheCurrentFloorlsOnAndLift AtTheCurrentFloorlsOnAndLift
IsInTheStateOfMvgArgUp] IsInTheStateOfMvgArgDwn]
1 P= QAR 1 P= QAR
P =Q P=R P =Q P=>R
LiAeZ(a) Achieve Life5(a) Achieve Ljne2(b) Achieve l/ines(b) Achieve
[FloorlampAtTheCurrentFloor [LiftlsEventuallyStopAtThe [FloorlampAtTheCurrentFloor [LiftlsEventuallyStopAtThe
IsEventuallyLitBetween2-4secs CurrentFloorBetween1-5secs IsEventuallyLitBetween2-4secs CurrentFloorBetween1-5secs
AfterFloorsensorStateAt AfterFloorsensorStateAt AfterFloorsensorStateAt AfterFloorsensorStateAt
TheCurrentFloorlsOnAndLift TheCurrentfFoorlsOnAndLift TheCurrentFloorlsOnAndLift TheCurrentfFoorlsOnAndLift
IsInTheStateOfMvgArgUp] IsInTheStateOfMvgArgUp] IsInTheStateOfMvgArgDwn] IsInTheStateOfMvgArgDwn]

Appendix F. KAOS Goals and Operation Models 311

Appendix F. KAOS Goals and Operation Models 312

F.2 The Detail of Goal and Operation Models:

MainG1 Goal Achieve[DoorAtTheRequestedFloorlsEventuallyOpenedBetween7-25secs
AfterTherelsARequestFortheLiftToServiceTheFloor]
Definition : Door at the requested floor is eventually opened between 7 and 25 seconds
after there is a request for the lift to service that floor
FormalDef V f:FLOOR, f:reqFl, (f > currentFl v f< currentFl)
requestlampState(f) = ‘rLit’
doorState(currentFl) = ‘Closed’
liftState = ‘StopAtFloor’
=
07, 25) doorState(f) = ‘Open’

MainG1.1 Goal Achieve[DoorAtTheRequestedFloorlsEventuallyOpenedBetween7-25secs
AfterTherelsaRequestFortheLiftAboveTheCurrentFloor]
Definition : Door at the requested floor is eventually opened between 7 and 25 seconds
after there is a request for the lift above the current floor
FormalDef V f: FLOOR, f:regFl, f > currentFl

requestlampState(f) = ‘rLit’

doorState(currentFl) = ‘Closed’

liftState = ‘StopAtFloor’

=

07, 25) doorState(f) = ‘Open’

MainG1.2 Goal Achieve[DoorAtTheRequestedFloorlsEventuallyOpenedBetween7-25secs
AfterTherelsaRequestFortheLiftBelowTheCurrentFloor]
Definition : Door at the requested floor is eventually opened between 7 and 25 seconds
after there is a request for the lift below the current floor
FormalDef V f: FLOOR, f:reqFl, f < currentFl

requestlampState(f) = ‘rLit’

doorState(currentFl) = ‘Closed’

liftState = ‘StopAtFloor’

=

07, 25) doorState(f) = ‘Open’

Appendix F. KAOS Goals and Operation Models 313

MainG2 Goal Achieve[WheneverLiftStopsAtTheRequestedFloorTheRequestlampAtThat
FloorlsEventuallyUnlitBetween2-4secsDoorAtThatFloorlsEventuallyOpenedBetween1-5
secsUplampAndDownlampAreSimultaneouslyDeactivated]

Definition : Whenever lift stops at the requested floor, the request lamp at that floor is
eventually unit between 2 and 4 seconds, door at that floor is eventually opened between 1

and 5 seconds, and up lamp and down lamp are simultaneously deactivated

FormalDef V f:FLOOR, f:reqFl, f = currentFl
liftState = ‘StopAtFloor’
=

02, 4 regestlampState(f) = ‘runlit’
01,51 doorState(f) = ‘Open’
uplampState = ‘deActivated’

downlampState = ‘Deactivated’

MainG3 Goal Achieve[WheneverfloorsensorAtTheCurrentFloorlsSetOffFloorLamplsEven
tuallySetUnlitBetween2-4secsAndLiftlsSimultaneouslylnAStateOfMovingUpOrMovingDow
n]
Definition : Whenever floor sensor at the current floor is set off, floor lamp is eventually set
unlit between 2 and 4 seconds and lift is simultaneously in a state of moving up or moving
down
FormalDef V f: FLOOR, f:reqgFl, f = currentFl

floorsensorState(f) = ‘Off’

=

02, 4 floorlampState(f) = ‘Unlit’

(liftState = ‘MovingUp’ v liftState = ‘MovingDown’

MainG4 Goal Maintain[UplampSimultaneouslySetToDeactivatedWhileDownlampSimultan
eouslySetToActivatedWheneverLiftlsiInAStateOfMvgDptDown]
Definition : Up lamp is simultaneously set to deactivated while down lamp is
simultaneously set to activated whenever lift is in a state of moving departing down
FormalDef liftState = ‘MovingDepartingDown’

=

uplampState = ‘deActivated’

downlampState = ‘Activated’

Appendix F. KAOS Goals and Operation Models 314

MainG5 Goal Maintain[UplampSimultaneouslySetToActivatedWhileDownlampSimultan
eouslySetToDeativatedWheneverLiftlsinAState OfMvgDptup]
Definition : Up lamp is simultaneously set to activated while down lamp is simultaneously
set to deactivated whenever lift is in a state of moving departingup
FormalDef liftState = ‘MovingDepartingup’

=

uplampState = ‘acTivated’

downlampState = ‘Deactivated’

MainG6é Goal Achieve[LiftlsEventuallyChangesltsStateFromMvgArgUpToMvgDptUpOr
MvgArgDownToMgvDptdownWheneverThereAreRequestsForOtherFloorsAndNoRequestF
orTheCurrentFloor]
Definition : Lift is eventually changes its state from moving arriving up to moving departing
up or moving arriving down to moving departing down whenever there are requests for
other floors and no request for the current floor
FormalDef V f:FLOOR, f : regFl, (f > currentFl v f < currentFl)

currentF| & reqFl

liftState = ‘MovingArrivingUp’ v

liftState = ‘MovingArrivingDown’

=

¢ liftState = ‘MovingDepartingUp’ v

liftState = ‘MovingDepartingDown’

MainG7 Goal Achieve[FloorlampAtTheCurrentFloorlsEventuallyLitBetween2-4secsAndLift
IsEventuallyStopsAtTheCurrentFloorBetween1-5secsAfterFloorsensorStateAtTheCurrent
FloorlsOnAndLiftlsInTheStateOfMvgArgUpOrMvgArgDwn]
Definition : Floor lamp at the current floor is eventually lit between 2 and 4 seconds and lift
is eventually stops at the current floor between 1 and 5 seconds after floor sensor state at
the current floor is on and lift is in the state of moving arriving up or moving arriving down
FormalDef V f: FLOOR, f : regFl, f = currentFl

floorsensorState(f) = ‘On’ &

(liftState = ‘MovingArrivingUp’ v

liftState = ‘MovingArrivingDown’)

=

02, 4 floorlampState(f) = ‘Lit’

Appendix F. KAOS Goals and Operation Models 315

O, g liftState(f) = ‘StopAtFloor’

MainG7.1 Goal Achieve[FloorlampAtTheCurrentFloorlsEventuallyLitBetween2-4secsAnd
LiftlsEventuallyStopsAtTheCurrentFloorBetween1-5secsAfterFloorsensorStateAtTheCurr
entFloorlsOnAndLiftlsInTheStateOfMvgArgUp]
Definition : Floor lamp at the current floor is eventually lit between 2 and 4 seconds and lift
is eventually stops at the current floor between 1 and 5 seconds after floor sensor state at
the current floor is on and lift is in the state of moving arriving up
FormalDef V f: FLOOR, f : reqFl, f = currentFl

floorsensorState(f) = ‘On’ &

liftState = ‘MovingArrivingUp’)

=

02, 4 floorlampState(f) = ‘Lit’

O, 5 liftState(f) = ‘StopAtFloor’

MainG7.2 Goal Achieve[FloorlampAtTheCurrentFloorlsEventuallyLitBetween2-4secs
AndLiftEventuallyStopsAtTheCurrentFloorBetween1-5secsAfterFloorsensorState AtTheCur
rentFloorlsOnAndLiftlsInTheStateOfMvgArgDwn]
Definition : Floor lamp at the current floor is eventually lit between 2 and 4 seconds and lift
is eventually stops at the current floor between 1 and 5 seconds after floor sensor state at
the current floor is on and lift is in the state of moving arriving down
FormalDef V f: FLOOR, f : reqgFl, f = currentFl

floorsensorState(f) = ‘On’ &

liftState = ‘MovingArrivingDown’)

=

02, 4 floorlampState(f) = ‘Lit’

O, 5 liftState(f) = ‘StopAtFloor’

Line1 Goal Achieve[WheneverFloorsensorAtTheCurrentFloorlsSetOffFloorlamplsEventua
llySetUnlitBetween2-4secs]

Definition : Floor lamp at the current floor is eventually set to unlit between 2 and 4
seconds after floor sensor at the current floor is set off

FormalDef YV f: FLOOR, f = currentFI

floorsensorState(f) = ‘Off’

Appendix F. KAOS Goals and Operation Models 316

=

0 (2, 4 floorlampState(f) = ‘Unlit’

Operation FloorlampUnilit

Input floorlamp{arg f : FIOOR, f = currentFl}state

Output floorlampf{arg f : FIOOR, f = currentFl}state

DomPre floorlampState(f) = ‘Lit’

DomPost floorlampState(f) = ‘Unlit’

ReqTrig floorlampState(f) = ‘Lit’ S1 5 (floorsensorState(f) = ‘Off’)

Line2(a) Goal Achieve[FloorlampAtTheCurrentFloorlsEventuallyLitBetween2-4secsAfter
FloorsensorStateAtTheCurrentFloorlsOnAndLiftlsinTheStateOfMvgArgUp]
Definition : Floor lamp at the current floor is eventually lit between 2 and 4 seconds after
floor sensor state at the current floor is on and lift is in the state of moving arriving up
FormalDef: V f : FLOOR, f: reqFl, f = currentFl

floorsensorState(f) = ‘On’

liftState = ‘MovingArrivingUp’

=

02, 4 floorlampState(f) = ‘Lit’

Operation FloorlampLit
Input floorlamp{arg f : FIOOR, f: regFl, f = currentFl }State
Output floorlampf{arg f : FIOOR, f: regFl, f = currentFI }State
DomPre floorlampState(f) = ‘Unlit’
DomPost floorlampState(f) = ‘Lit’
ReqTrig floorlampState(f) = ‘Unlit’
S, 5 (floorsensorState(f) = ‘On’ & liftState = ‘MovingArringUp’)

Line2(b) Goal Achieve[FloorlampAtTheCurrentFloorlsEventuallyLitBetween2-4secsAfter
FloorSensorStateAtTheCurrentFloorlsOnAndLiftlsInTheStateOfMvgArgDwn]
Definition : Floor lamp at the current floor is eventually lit between 2 and 4 seconds after
floor sensor state at the current floor is on and lift is in the state of moving arriving down
FormalDef: Vf:FLOOR, f: reqFl, f = currentFl

floorsensorState(f) = ‘On’

liftState = ‘MovingArrivingDown’

Appendix F. KAOS Goals and Operation Models 317

=

02, 4 floorlampState(f) = ‘Lit’

Operation FloorlampLit
Input floorlamp{arg f : FIOOR, f = currentFl}state
Output floorlampf{arg f : FIOOR, f: regFl, f = currentFI }State
DomPre floorlampState(f) = ‘Unlit’
DomPost floorlampState(f) = ‘Lit’
ReqTrig floorlampState(f) = ‘Unlit’
S, 3 (floorsensorState(f) = ‘On’ & liftState = ‘MovingArringDown’)

Line3.1 Goal Achieve[FloorsensorForTheCurrentFloorlsEventuallySetOffBetween2-5secs
AfterLiftStartsMvgDptUp]
Definition: The floor sensor at the current floor is eventually set off between 2 and 5
seconds after lift is in the state of moving departing up providing the direction of lift is up
FormalDef V f: FLOOR, f = currentFl

liftState = ‘MovingDepartingUp’ & dir = Up

=

02,5 floorsensorState(f) = ‘Off’

Operation FloorsensorOff

Input floorsensor{arg f : FIOOR, f = currentFl}State

Output floorsensor{arg f : FIOOR, f = currentFl}State

DomPre floorsensorState(f) = ‘On’

DomPost floorsensorState(f) = ‘Off’

ReqTrig floorsensorState(f) = ‘On’ §y; 4 (liftState = ‘MovingDepartingUp’
& dir = Up)

Line3.2 Goal Achieve[FloorsensorForTheCurrentFloorlsEventuallySetOffBetween2-5secs
AfterLiftStartsMvgDptDwn]
Definition: The floor sensor at the current floor is eventually set off between 2 and 5
seconds after lift is in the state of moving departing down providing the direction of lift is
down
FormalDef: ¥V f: FLOOR, f = currentFl

(liftState = ‘MovingDepartingDown’ & dir = Down)

Appendix F. KAOS Goals and Operation Models 318

=

0 2.5 floorsensorState(f) = ‘Off’

Operation FloorsensorOff
Input floorsensor{arg f : FIOOR, f = currentFl}State
Output floorsensor{arg f : FIOOR, f = currentFl}State
DomPre floorsensorState(f) = ‘On’
DomPost floorsensorState(f) = ‘Off’
ReqTrig floorsensorState(f) = ‘On’
Sp1 4 (liftState = ‘MovingDepartingDown’ & dir = Down)

Line4.1 Goal Achieve[FloorsensorForTheCurrentFloorlsEventuallySetOnBetween2-5secs
AfterLiftMvgArgUp]
Definition: Floor sensor for the current floor is eventually set on between 2 and 5 seconds
after lift is moving arriving up
FormalDef V f : FLOOR, f = currentFl

liftState = ‘MovingArrivingUp’

=

02,5 floorsensorState(f) = ‘On

Operation FloorsensorOn

Input floorsensor{arg f : FIOOR, f = currentFl}State
Output floorsensor{arg f : FIOOR, f = currentFl}State
DomPre floorsensorState(f) = ‘Off’

DomPost floorsensorState(f) = ‘On

ReqTrig floorsensorState(f) = ‘Off’ §y 4 (liftState = ‘MovingArrivingUp’)

Line4.2 Goal Achieve[FloorsensorForTheCurrentFloorlsEventuallySetOnBetween2-5secs
AfterLiftMvgArgDwn]
Definition: Floor sensor for the current floor is eventually set on between 2 and 5 seconds

after lift is moving arriving down

FormalDef V f:FLOOR, f = currentFl
liftState = ‘MovingArrivingDown’
=

0 2,51 floorsensorState(f) = ‘On’

Appendix F. KAOS Goals and Operation Models 319

Operation FloorsensorOn

Input floorsensor{arg f : FIOOR, f = currentFl}State
Output floorsensor{arg f : FIOOR, f = currentFl}State
DomPre floorsensorState(f) = ‘Off’

DomPost floorsensorState(f) = ‘On’

ReqTrig floorsensorState(f) = ‘Off’ §1 4 (liftState = ‘MovingArrivingDown’)

Line5(a) Goal Achieve][LiftlsEventuallyStopAtTheCurrentFloorBetween1-5secsAfterFloor
sensorStateAtTheCurrentFloorlsOnAndLiftlsinTheStateOfMvgArgUp]
Definition : A lift is eventually stopped at the current floor between 1 and 5 seconds after a
floor sensor at that floor is set on and lift is in the state of moving arriving up.
FormalDef V f: FLOOR, f : regFl, f = currentFl

floorsensorState(f) = ‘On’ &

liftState = ‘MovingArrivingUp’

=

0.5 liftState = ‘StopAtFloor’

Operation LiftStopAtFloor
Input liftState
Output liftState
DomPre liftState # ‘StopAtFloor’
DomPost liftState = ‘StopAtFloor’
ReqTrig liftState # ‘StopAtFloor’
Sjo.99, 41 (floorsensorState(f) = ‘On’ & liftState = ‘MovingArrivingUp’)

Line5(b) Goal AchievelLiftisEventuallyStopAtTheCurrentFloorBetween1-5secsAfterFloor
sensonrsensorStateAtTheCurrentFloorlsOnAndLiftlsinTheStateOfMvgArgDwn]
Definition : A lift is eventually stopped at the current floor between 1 and 5 seconds after a
floor sensor at that floor is set on and lift is in the state of moving arriving down.
FormalDef V f: FLOOR, f : reqFl, f = currentFl

floorsensorState(f) = ‘On’ &

liftState = ‘MovingArrivingDown’

=

O 5 liftState = ‘StopAtFloor’

Appendix F. KAOS Goals and Operation Models 320

Operation LiftStopAtFloor
Input liftState
Output liftState
DomPre liftState # ‘StopAtFloor’
DomPost liftState = ‘StopAtFloor’
ReqTrig liftState # ‘StopAtFloor’
Sjo.09,4) (floorsensorState(f) = ‘On’ & liftState = ‘MovingArrivingDown’)

Line6 Goal Achieve[TheRequestlampAtTheRequestedFloorlsEventuallyUnlitBetween2-4
secs AfterLiftStopsAtThatFloor]
Definition: The request lamp at the current floor is eventually set to unlit between 2 and 4
seconds after lift is in the state of stop at floor
FormalDef ¥V f: FLOOR, f = currentFl

liftState = ‘StopAtFloor’

=

02, 4 requestlampState(f) = ‘rUnlit’

Operation RequestlamprUnlit

Input requestlamp{arg f : FLOOR, f = currentFl}State

Output requestlamp{arg f : FLOOR, f = currentFl}State

DomPre requestlampState(f) = ‘rLit’

DomPost requestlampState(f) = ‘rUnlit’

ReqTrig requestlampState(f) = ‘rLit’ § 5 (liftState = ‘StopAtFloor’)

Line9 Goal Achieve[TheDoorAtTheCurrentFloorlsEventuallyOpenBetween1-5secsAfterLift
StopsAtThatFloor]
Definition : Door at the current floor is eventfully opened between 1 and 5 seconds after

the lift stops at the current floor

FormalDef V f:FLOOR, f :reqgFl, f = currentFl
liftState = ‘StopAtFloor’
=

01,5 doorState(f) = ‘Open’

Operation DoorOpen
Input door{arg f : FLOOR, f : regFl, f = currentFl}State

Appendix F. KAOS Goals and Operation Models

321

Output door{arg f : FLOOR, f : reqFl, f = currentFl}State

DomPre doorState(f) = ‘Closed’

DomPost doorState(f) = ‘Open’

ReqTrig doorState(f) = ‘Closed’ Syg9 4 (liftState = ‘StopAtFloor’)

Line10 Goal Maintain[DownlamplsDeactivatedSimultaneouslyWhenLiftStopsAtFloor]
Definition : Down lamp is set to deactivate at once after lift stops at floor
FormalDef liftState = ‘StopAtFloor’

=

downlampState = ‘Deactivated’

Operation DownlampDeactivated
Input liftState

Output liftState

DomPre liftState # ‘StopAtFloor’
DomPost liftState = ‘StopAtFloor’
ReqPost downlampState = ‘Deactivated’

Operation DownlampActivated

Input downlampState

Output downlampState

DomPre downlampState = ‘Deactivated’
DomPost downlampState = ‘Activated’
ReqPost liftState # ‘StopAtFloor’

Line11 Goal Maintain[UplamplsDeactivatedSimultaneouslyWhenLiftStopsAtFloor]
Definition: Up lamp is set to deactivate at once whenever the lift stops at floor
FormalDef: liftState = ‘StopAtFloor’

=

uplampState = ‘deActivated’

Operation UplampdeActivated
Input liftState

Output liftState

DomPre liftState # ‘StopAtFloor’

Appendix F. KAOS Goals and Operation Models 322

DomPost liftState = ‘StopAtFloor’
RegPost uplampState = ‘deActivated’

Operation UplampacTivated

Input uplampState

Output uplampState

DomPre uplampState = ‘deActivated’
DomPost uplampState = ‘acTivated’
ReqPost liftState # ‘StopAtFloor’

Line12 Goal Maintain[UplampSimultaneouslySetToDeactivatedWheneverLiftlsinAStateOf
MvgDptDwn]
Definition: Up lamp is set to deactivate at once whenever the lift starts moving departing
down
FormalDef liftState = ‘MovingDepartingDown’

=

uplampsState = ‘deActivated’

Operation Uplampdeactivated

Input liftState

Output liftState

DomPre liftState # ‘MovingDepartingDown’
DomPost liftState = ‘MovingDepartingDown’
RegPost uplampState = ‘deActivated’

Operation Uplampactivated

Input uplampState

Output uplampState

DomPre uplampState = ‘deActivated’
DomPost uplampState = ‘acTivated’
ReqPost liftState # ‘MovingDepartingDown’

Line13 Goal Maintain[DownlampSimultaneouslySetToActivatedWheneverLiftisinAState Of
MvgDptDwn]

Appendix F. KAOS Goals and Operation Models 323

Definition : Down lamp is set to activate at once whenever the lift starts moving departing
down
FormalDef liftState = ‘MovingDepartingDown’

=

downlampState = ‘Activated’

Operation DownlampActivated

Input liftState

Output liftState

DomPre liftState # ‘MovingDepartingDown’
DomPost liftState = ‘MovingDepartingDown’
RegPost downlampState = ‘Activated’

Operation DownlampDeactivated

Input downlampState

Output downlampState

DomPre downlampState = ‘Activated’
DomPost downlampState = ‘Deactivated’
ReqPost liftState # ‘MovingDepartingDown’

Line14 Goal Maintain[UplampSimultaneouslySetToActivatedWheneverLiftlsinAState Of
MvgDptUp]
Definition : Uplamp is set to activate at once whenever the lift starts moving departing up
FormalDef: liftState = ‘MovingDepartingUp’

=

uplampState = ‘Activated’

Operation UplampActivated

Input liftState

Output liftState

DomPre liftState # ‘MovingDepartingUp’
DomPost liftState = ‘MovingDepartingUp’
RegPost uplampState = ‘Activated’

Operation UplampDeactivated

Appendix F. KAOS Goals and Operation Models 324

Input uplampState

Output uplampState

DomPre uplampState = ‘Activated’
DomPost uplampState = ‘Deactivated’
ReqPost liftState # ‘MovingDepartingUp’

Line15 Goal Maintain[DownlampSimultaneouslySetToDeactivatedWheneverLiftlsinAState
OfMvgDptUp]
Definition : Downlamp is set to deactivate at once whenever the lift starts moving deapring
up
FormalDef: liftState = ‘MovingDepartingUp’

=

downlampState = ‘Deactivated’

Operation DownlampActivated

Input liftState

Output liftState

DomPre liftState # ‘MovingDepartingUp’
DomPost liftState = ‘MovingDepartingUp’

RegPost downlampState = ‘Deactivated’

Operation DownlampDeactivated
Input downlampState

Output downlampState

DomPre downlampState = ‘Deactivated’
DomPost downlampState = ‘Activated’

ReqPost liftState # ‘MovingDepartingUp’

Line16&17 Goal Maintain[WheneverFloorsensorAtTheCurrentFloorslsSetOffLiftlsSimutan
eouslylnAStateOfMovingUpOrMovingDown]
Definition : Whenever floorsensor at the current floor is set off, lift is simultaneously in a
state of moving up or moving down
FormalDef: /{:FLOOR, f = currentFI

floorsensorState(f) = ‘Off’

=

Appendix F. KAOS Goals and Operation Models 325

liftState = ‘MovingUp’ v liftState = ‘MovingDown’

Line16 Goal Maintain[WheneverFloorsensorAtTheCurrentFloorslsSetOffLiftlsSimutaneous
lyInAStateOfMovingDown]

Definition : Whenever floorsensor at the current floor is set off, lift is simultaneously in a
state of moving down

FormalDef: ¥ f: FLOOR, f = currentFl
floorsensorState(f) = ‘Off’
=

liftState = ‘MovingDown’

Operation FloorsensorOff

Input floorsensor{arg f : FLOOR, f = currentFl}State
Output floorsensor{arg f : FLOOR, f = currentFl}State
DomPre floorsensorState(f) = ‘On’

DomPost floorsensorState(f) = ‘Off’

ReqPost liftState = ‘MovingDown’

Operation FloorsensorOn

Input liftState

Output liftState

DomPre liftState = ‘MovingDown’
DomPost - (liftState = ‘MovingDown’)

ReqgPost floorsensorState(f) = ‘On’

Line17 Goal Maintain[WheneverFloorsensorAtTheCurrentFloorslsSetOffLiftlsSimutaneous
lyInAStateOfMovingUp]
Definition : Whenever floorsensor at the current floor is set off, lift is simultaneously in a
state of moving up
FormalDef: YV f: FLOOR, f = currentFl

floorsensorState(f) = ‘Off’

=

liftState = ‘MovingUp’

Operation FloorsensorOff

Appendix F. KAOS Goals and Operation Models 326

Input floorsensor{arg f : FLOOR, f = currentFl}State
Output floorsensor{arg f : FLOOR, f = currentFl}State
DomPre floorsensorState(f) = ‘On’

DomPost floorsensorState(f) = ‘Off’

ReqPost liftState = ‘MovingUp’

Operation FloorsensorOn

Input liftState

Output liftState

DomPre liftState = ‘MovingUp’
DomPost - (liftState = ‘MovingUp’)

ReqgPost floorsensorState(f) = ‘On’

Line18&7 Goal AchievelLiftisEventuallyMvgDptUpFromTheCurrentFloorBetween1-5secs
AfterTherelsARequestForTheLiftAboveTheCurrentFloorAndTheDoorAtTheCurrentFloorls
Closed]
Definition: Lift is eventually moving departing up from the current floor between 1 and 5
seconds after there is a request for the lift above the current floor and the door at the
current floor is closed.
FormalDef V f: FLOOR, f : regFl, f > currentFl

requestlampState(f) = ‘rLit’ &

doorState(currentFl) = ‘Closed’ &

liftState = ‘StopAtFloor’

=

O, 5 liftState = ‘MovingDepartingUp’

Operation LiftMovingDepartingUp
Input liftState
Output liftState
DomPre liftState = ‘StopAtFloor’
DomPost liftState = ‘MovingDepartingUp’
ReqTrig liftState = ‘StopAtFloor’
S0.990, 41 (requestlampState(f) = ‘rLit’ & doorState(currentFl) = ‘Closed’ &
liftState = ‘StopAtFloor’)

Appendix F. KAOS Goals and Operation Models 327

Line19&8 Goal Achieve][LiftisEventuallyMvgDptDwnFromTheCurrentFloorBetween1-5secs
AfterTherelsARequestForThelLiftBelowTheCurrentFloorAndTheDoorAtTheCurrentFloorlsCl
osed]
Definition: Lift is eventually moving departing down from the current floor between 1 and 5
seconds after there is a request for the lift below the current floor and the door at the
current floor is closed.
FormalDef V f: FLOOR, f : reqFl, f < currentFl

requestlampState(f) = ‘rLit’ &

doorState(currentFl) = ‘Closed’ &

liftState = ‘StopAtFloor’

=

O, 5 liftState = ‘MovingDepartingDown’

Operation RequestlamprUnlit
Input liftState
Output liftState
DomPre liftState = ‘StopAtFloor’
DomPost liftState = ‘MovingDepartingDown’
ReqTrig liftState = ‘StopAtFloor’
Sj0.99,4) (requestlampState(f) = ‘rLit’ & doorState(currentFl) = ‘Closed’ &
liftState = ‘StopAtFloor’)

Line2(a) Goal Achieve[FloorlampAtTheCurrentFloorlsEventuallyLitBetween2-4secsAfter
FloorsensorStateAtTheCurrentFloorlsOnAndLiftlsinTheStateOfMvgArgUp]
Definition: Floor lamp at the current floor is eventually lit between 2 and 4 seconds after
floor sensor state at the current floor is set on and lift is in the state of moving arriving up
FormalDef V f: FLOOR, f : regFl, f = currentFl

floorsensorState(f) = ‘On’ &

liftState = ‘MovingArrivingUp’

=

02, 4 floorlampState(f) = ‘Lit’

Operation floorlampLit

Input floorlamp{arg f : FLOOR, f : regFl, f = currentFl}State
Output floorlamp{arg f : FLOOR, f : reqFl, f = currentFl}State
DomPre floorlampState(f) = ‘Unlit’

Appendix F. KAOS Goals and Operation Models 328

DomPost floorlampState(f) = ‘Lit’
ReqTrig floorlampState(f) = ‘Unlit’
Sp1,3 (floorsensorState(f) = ‘On’ & liftState = ‘MovingArrivingUp’)

Line2(b) Goal Achieve[FloorlampAtTheCurrentFloorlsEventuallyLitBetween2-4secsAfter
FI oorsensorStateAtTheCurrentFloorlsOnAndLiftlsInTheStateOfMvgArgDwn]
Definition: Floor lamp at the current floor is eventually lit between 2 and 4 seconds after
floor sensor state at the current floor is set on and lift is in the state of moving arriving
down
FormalDef V f: FLOOR, f : reqFl, f = currentFl

floorsensorState(f) = ‘On’ &

liftState = ‘MovingArrivingDown’

=

02, 4 floorlampState(f) = ‘Lit’

Operation floorlampLit
Input floorlamp{arg f : FLOOR, f : reqFl, f = currentFl}State
Output floorlamp{arg f : FLOOR, f : reqFl, f = currentFl}State
DomPre floorlampState(f) = ‘Unlit’
DomPost floorlampState(f) = ‘Lit’
ReqTrig floorlampState(f) = ‘Unlit’
Si1,5 (floorsensorState(f) = ‘On’ & liftState = ‘MovingArrivingDown’)

Goal A1 Achieve[LiftlsEventuallyChangedToStateMvgUpAfterMvgUp]
Definition: Lift is eventually changed to state moving arriving up after moving up
FormalDef liftState = ‘MovingUp’

=

¢ liftState = ‘MovingArrivingUp’

Goal A2 Achieve[LiftlsEventuallyChangedToStateMvgDwnAfterMvgDwn]
Definition: Lift is eventually changed to state moving arriving down after moving down
FormalDef liftState = ‘MovingDown’

=

¢ liftState = ‘MovingArrivingDown’

Appendix F. KAOS Goals and Operation Models 329

GoalA3 AchievelLiftlslsEventuallyChangedltsStateFromMvgArgUpToMvgDeptUpWhen
ever ThereAreRequestsAboveThatCurrentFloorAndNoRequestForTheCurrentFloor]
Definition: Lift is eventually changed its state form moving arriving up to moving departing
up whenever there are requests above the current floor and no request for
the current floor
FormalDef V f: FLOOR, f : regFl, f > currentFl

currentfl ¢ reqFl &

liftState = ‘MovingArrivingUp’

=

¢ liftState = ‘MovingDepartingUp’

GoalA4 Achieve[LiftlslsEventuallyChangedItsStateFromMvgArgDownToMvgDeptDown
WheneverThereAreRequestsBelowThatCurrentFloorAndNoRequestForTheCurrentFloor]
Definition: Lift is eventually changed its state form moving arriving down to moving
departing down whenever there are requests below the current floor and no request for the
current floor
FormalDef V f: FLOOR, f : regFl, f < currentFl

currentfl ¢ reqFl &

liftState = ‘MovingArrivingDown’

=

¢ liftState = ‘MovingDepartingDown’

