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by Tossaporn Joochim 

 

 

Event-B is a language for the formal development of reactive systems. At 

present the RODIN toolkit (RODIN, 2009) for Event-B is used for modelling 

requirements, specifying refinements and verification. In order to extend the 

ability to model graphically requirements for the real-time domain, where timing 

constraints are essential, we use Timing diagrams for Event-B, UML-B and 

Knowledge Acquisition in autOmated Specification (KAOS). The Timing 

diagrams, based on UML 2.0 Timing diagram notation (OMG, 2007), provide an 

intuitive graphical specification capability for timing constraints and causal 

dependencies between system events. Translation schemes to Event-B, UML-B 

and KAOS are proposed and presented.  

The benefit of our contribution is providing a graphical option to generate 

timing constraints and causal dependencies of a reactive system to Event-B, 

UML-B and KAOS Goals. Thus, instead of manually generating these Event-B, 

UML-B and KAOS Goal models in a textual form, users can use the TD as a 

graphical front-end, and these target models are created automatically. 

We compare the three applications of the Timing diagrams in terms of their 

contribution to formal requirements engineering. A partial case study of a Lift 

System is used to demonstrate the translation in practice. 
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Chapter 1 Introduction 

1.1 Overview  

A requirement is “a feature of the system or a description of something the 

system is capable of doing in order to fulfil the system’s purpose” (Pfleeger, 1998). 

Requirements engineering (RE) is a part of the software development life cycle that 

is important for acquiring explicit system requirements. The RE is used to explore 

problems and potential solutions. It is also used for comparing alternative solutions 

and deciding which solution should be adopted for that system (Jureta, 2006). To 

specify requirements, one can use many different techniques, such as rich text, 

dataflow diagram, prototyping, Unified Modelling Language (UML) (OMG, 2008), 

Goal-Oriented Requirements Engineering (GORE), Knowledge Acquisition in 

autOmated Specification (KAOS) (Lamsweerde, Dardenne et al., 1991), and 

Formal Methods (FMs). 

Critical systems are systems whose failure may have serious consequences to 

human beings, systems or businesses. Examples are: fire alarms, medical systems, 

traffic control, chemical plant control, and automotive control systems. Thus, to 

develop critical systems, one has to ensure that, as far as possible, the processes 

used are rigorous. Using mathematical notations – which describe the system in 

terms of predicates, booleans, sets, relations, and functions, as in Formal Methods 

(FMs) – is a way to improve the conformance of design to specifications, and to 

help eliminate errors early in the design process (Abrial, 1996; Bowen and 

Hinchey, 2006).  



Chapter 1 Introduction                                                                                             2 

 

Since FMs has the concept of proving correctness, which supports the 

accuracy of software development, FMs have a major benefit in defining the precise 

specification and processing its verification (Abrial, 2005; Hall, 2007). The benefits 

of FMs can be summarized as follows: 

• Developers are forced to consider more error behaviours arising from 

requirements, which can be eliminated by well-defined mathematical 

notations (Abrial, 2007; Langari and Pidduck, 2005). Developers are 

guided towards creating reliable and secure software systems. This aspect 

is always omitted from informal descriptions (Hall, 2007). 

• Formal modelling is a way of improving the system analysis phase 

(Agerholm and Larsen, 1998). It can help developers achieve a better 

understanding of requirements and discover errors early in the lifecycle 

(Langari and Pidduck, 2005). This reduces the overall cost of the project 

(Agerholm and Larsen, 1998; Hall, 2007). King (King, Hammond et al., 

2000) has shown that performing proof of correctness in FMs can detect 

more errors early in the development lifecycle; which is expedient from the 

economic point of view. 

• Formal specifications of design and refinements can be proved consistent 

by model checking and by proof (Abrial, 2008a). It is also possible to use 

animation to help validate. Examples of tool support are in RODIN 

(RODIN, 2009), Atelier B (Requet, 2008; ClearSy, 2009) and ProB (ProB, 

2009). 

• Reasoning about derived system properties by stating theorems and other 

properties about the system makes the models more precise (George and 

Vaughn, 2003; Lamsweerde, 2009). 

• In the formal development, the first model is called the abstract model. The 

abstract model is transformed through a formal sequence to obtain the 

refinement/concrete model. The concept of refinement in formal methods 

allows more detail, and the expression of some design decisions, to be 

added, in a stepwise manner, into the model. The advantage of refinement 

is allowing the model to be analysed at an abstract level, resulting in 
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reduced complexity/ambiguities (Abrial and Hallerstede, 2006). Absence 

of ambiguities is a benefit brought about by using formal specifications.  

• FMs have been shown to provide more valuable documentation (Bowen 

and Hinchey, 2006). 

The Event-B (Abrial and Hallerstede, 2006) method is an FM developed by 

Jean-Raymond Abrial. It is a formal language for state-based modelling and 

verification for reactive systems, developed in the context of RODIN (RODIN, 

2009), a European IST project. Event-B itself is composed of static and dynamic 

parts. The static part is called a CONTEXT and is used to declare constants, carrier 

sets and axioms. The dynamic part is called a MACHINE, which contains state 

variables, variable properties described by invariants and units of behaviour, which 

are called EVENTS. Event-B is good for identifying precise system requirements 

(due to its use of mathematical notation, and well-defined semantics), but it is not 

yet clear how best to model various complex requirements patterns in Event-B, such 

as timing constraints and causal dependencies on system events. Moreover, Event-B 

can be difficult to uses and it requires trained professionals (Bashar and 

Easterbrook, 2000; Lamsweerde, 2000; Bowen and Hinchey, 2006). 

UML (OMG, 2008) is a language for specifying, visualizing, and 

documenting the artifacts of software systems using graphical diagrams. UML is 

suitable for using in object-oriented analysis and design (Popandreeva, 2007) and is 

best used to describe functional requirements (defining what the system has to do in 

its environment). For example, the lift must stop at the requested floors, and the 

lift’s door must be opened only when the lift is stopped are functional requirements 

for the lift system. Other examples of systems that can use UML to identify their 

specfications are handling control of technical equipment (e.g. uses Sequence 

diagram and Statechart), embedded systems such as mobile phones (e.g. uses 

Component diagram), and giving a clear description of what the system should do 

(e.g. uses Use-case diagram). Currently, the official version is UML 2.0 (OMG, 

2008). 

Even though UML is a popular object-oriented modelling approach and has 

been using widely, it lacks mappings to formal models. Presently, many groups of 

people are trying to bridge the gap between B-Method and UML diagrams (Ledang 
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and Souquierès, 2002a; Ledang and Souquierès, 2002b; Jiufu, 2007; Younes and 

Ayed, 2007); the U2B and UML-B (Snook and Butler, 2008a) projects.  

UML-B tool is a graphical front end for Event-B; UML-B language defines 

abstract syntax with the Eclipse Meta-Object Facility (MOF) (OMG-MOF, 2007). 

MOF is one of the OMG standards and a meta-metamodel. It is a mechanism for 

building metamodels, which is used to define types of model structures and 

architecture. MOF is designed as a four-layered structure: 

M0: this level is used to describe real-world objects. 

M1: this level is used to define models such as UML and UML-B diagrams. 

M2: this level is used to define metamodel description –syntax and semantic- 

of elements in the M1 layer. For instance, the UML-B metamodel and our 

Timing Diagram (TDs) metamodel are defined at this level. 

M3: this level is a meta-metamodel; it is used to define MOF itself. 

UML-B uses UML-like diagrams, i.e. Class diagrams and Statecharts, to 

generate system specifications models. UML-B models can then be translated into 

Event-B by using a U2B translator. Users can update/add/modify information 

directly using the tool. 

Timing constraints and causal dependencies among objects play an essential 

role in the different varieties of systems. Timing constraints are one of the control 

issues in reactive and critical systems that are particularly critical to systems and 

must be controlled (Liu, Chou et al., 2001; Ng and Patel, 1994). A system which 

fails to meet the timing constraints deadline may not only be able to make an 

emergency control but can have also other inconvenient consequences (Groom, 

Maciejewski et al., 1999). Some failures may cost a great deal of money and even 

human lives (LeMieux, 2003). Thus, it is important to correctly model timing and 

causal constraints system.  

Timing diagrams (TDs) (OMG, 2008) are one of the new artefacts introduced 

to UML 2.0 and are used to explain the behaviours of objects throughout a given 

period of time (Ambler, 2004; Khan, Geihs et al., 2006). TDs are best used to depict 

functional requirements with causal dependencies between objects and timing 

constraints (Gavras, 2003; Brisolara, Kreutz et al., 2009). For example, parts of a 

lift system: “…The lift will be stopped at the current floor between 1-5 seconds 



Chapter 1 Introduction                                                                                             5 

 

after the current floor sensor is set on. A lift door does not open until the lift 

stops…” 

Even though the information on the TD, such as the lift system, can be 

expressed in other diagrams, for example using Statecharts in UML-B, it is not a 

helpful way for the users to operate. For instance, one can put timing or state 

constraints into Statecharts, but, in general, one Statemachine refers to other 

Statecharts for the dependency.  

If we have three different classes, and each object of these classes has state 

changes, then we need three Statecharts. Each such Statechart may have guards that 

refer to other Statecharts which means, in using UML-B, we have guards on the 

state transitions here which refer to some activities going on somewhere else. For 

(Sommerville, 2004) example, Figure 1-1, there are three different Statecharts: 

Door, Lift and Floorsensor. There are guards from the Lift to the Floorsensor, from 

the Door to the Lift, and from the Floorsensor to the Lift.  

 

 

Figure 1-1 Example of Statecharts for Door, Lift and Floorsensor  
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If a guard is concerned with timing constraints, it must be declared with a 

long condition on the state transition (as shown in Figure 1-1 by the guard between 

MovingArringUp and StopAtFloor states of the Lift Statechart). In UML-B, the 

causal interaction between these objects cannot be contained in a single diagram. 

Thus, we have many charts to display at the same time which makes it difficult to 

read on a computer screen, and is not helpful for the users in terms of modelling. 

In TDs, as shown in Figure 1-2, we can describe the causality explicitly with 

arrows between the Door, the Lift and the Floor sensor, and have them all on the 

same screen.  

 

Figure 1-2 Example of Timing diagram for Door, Lift and Floorsensor 

 

The TD notations include graphically described extra conditions (as shown by 

f : reqFl & f = currentFl) and timing constraints (as shown by [1,5]). It is very 

natural to form expressions in timing constraints using a TD timing constraints 

notation. Therefore, combining TD and UML-B would be beneficial for the user. 

There are other two mathematical modelling languages concerned with time: 

Timed Petri Nets (Berthomieu and Diaz, 1991; Ramchandani, 1974) and Time Petri 

Nets (TPNs) (Cerone and Maggiolo-Schettini, 1999). Both are graphic 

representation for concurrent formalisms approaches for specifiying real-time 

formal systems and extend Petri Net (Reisig, 1985). Timed Petri Nets and TPNs 

consist of places, transitons, time, and directed arcs which represent conditions, 

events, timing constraints of the transtitions, and relationships between places and 

transtions in the system respectively. For Timed Petri Net, a transition can fire as 
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soon as possible whilst for TPNs it fires within a time interval (Cassez and Roux, 

2005).   

In this research we selected TDs over Timed Petri Nets/TPNS since adding 

new notations (with the purpose of generating expressions to interface with Event-B 

and KAOS, as described in Chapter 4) is more flexible with TDs than Timed Petri 

Nets/TPNs. Moreover, TDs use simple graphical notations and are not difficult to 

understand.  

Requirements are often unclear when first elicited from stakeholders. Goal-

Oriented requirements engineering (GORE) allows the requirements to be clarified 

throughout an incremental process. It concerns the use of goals for eliciting, 

elaborating and refining, specifying and modelling of requirements (Lamsweerde 

2004; Anwer and Ikram 2006). Examples of the goal-oriented approach are Non-

Functional Requirements (NFRs) (Chung, 1993), i
*
 diagrams (Yu, 1993), Goal-

Oriented Idea Generation Method (GOIG) (Oshiro, Watahiki et al., 2003) and 

Knowledge Acquisition in autOmated Specification (KAOS) (Dardenne, 

Lamsweerde et al., 1993) frameworks. NFRs are used to represent and analyze non-

functional requirements and guides the design processes. i
*
 diagrams show how 

actors in a system depend on each others for a specific goal in a system. GOIG is 

focused on idea-generation, that is, stakeholders’ ideas are elicited as sub-goals. The 

ideas are grouped, and associations between those ideas are used to generate a goal 

graph. 

KAOS is a goal-oriented modelling requirements specification technique, in 

which a goal defines an objective of the composite system. KAOS has concepts of 

refining goals, identifying agents, and exploring alternative responsibilities (Letier 

and Lamsweerde 2002a); it uses the Goal model to declare the system requirements. 

The Goal model is composed of a goal name, definition, and formal definition, 

where the latter is written as a temporal logic statement using linear temporal logic 

(LTL). Since the LTL can explain the specification of some properties - for 

example, next (�) and eventually (�) - those properties are similar with what can be 

expressed by TD. This is the reason KAOS is selected over the other GOREs. 

KAOS is a semi-FM and does not have the capability of generating and discharging 

proof obligations as in full FMs. Thus, an attempt to generate a FM model from a 

KAOS model is founded in (Nakagawa, Taguchi et al., 2007) to transform KAOS 
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into VDM++ (Fitzgerald, Larsen et al. 2004), a formal object-oriented specification 

language. There are a number of tools supports that generation of KAOS models 

such as Objectiver (Delor, farimont et al., 2003; Ponsard, Balych et al., 2006) and 

FAUST tool (Rifaut, Massonet et al., 2003). The Objectiver is a tool for generating 

KAOS models and documents while the FAUST tool is used to verify KAOS 

models. Heaven and Finkelstein attempted to combine UML and KAOS; the 

researchers created a tool to allow KAOS to be represented in UML by using a 

profile (Heaven and Finkelstein, 2004). 

Problem Frames (Jackson, 1995) is a technique to demonstrate problem 

requirements in a diagrammatic form, which the diagram is called Problem 

diagrams. As shown in Figure 1-3, a Problem diagram comprises a software 

Machine, real world which is called Problem World, and the system requirements 

are represented by a dotted oval (Jackson, 2001). The Problem diagrams identify 

how these system components relevant with each others. The machine interacts with 

the Problem World by shared control phenomena (e.g. shared events and/or shared 

states), called specification phenomena. The links between the Problem World and 

the requirements are called requirement phenomena which are “the phenomena that 

the customer for the system would observe to determine whether the requirement is 

satisfied” (Jackson, 2005). 

 

 

Figure 1-3 Problem diagram 

 

Problem Frames has a concept of decomposition in which a large problem can 

be separated into subproblems. Each subproblem is a complete system which has its 

own Problem diagram, a Machine, a requirement and Problem World (Jackson, 

2005; Cox, Hall et al., 2005).  

Even though the concept of Problem Frames to refine a large problem into 

subproblem is similar with KAOS, the Problem Frames is not aiming at using 

formal descriptions such as temporal logics nor mathematic notations. Thus, the 
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Problem Frames is not selected in this research as we aim at generating tool 

supported formal method models.  

1.2 Motivation 

The key contributions of this work are indicated by three motivating 

assumptions we make:  

1. When FMs are used early in the system development process, they help to 

remove ambiguity, incompleteness, and inconsistencies in system 

specifications (Sommerville, 2004; Wing, 1990). This decreases 

requirements’ errors because it forces the developers to do a detailed 

analysis of the requirements (Abrial, 2005; Hall, 2007). Thus, 

implementation and validation costs should be reduced, as there are fewer 

errors in the specifications; that is useful in term of requirement 

engineering. However, FMs demand costly trainings of engineers because 

of their mathematical and logical basis (Bashar and Easterbrook, 2000; 

Lamsweerde, 2000; Bowen and Hinchey, 2006). This leads to the second 

assumption. 

2. It is useful to enable more requirements to be expressed graphically when 

working with FMs. That is, we wish to enhance the graphical aspects of 

FMs with graphical elements (such as is done in UML-B and KAOS). 

Using graphical methods has some benefits over FMs as in the following: 

• Presenting requirements in graphical form is an easier way 

and more readable for software developers/students to define 

their requirement specifications than by difficult using of 

formal notations (Yoder and Black, 2006). As (Razili, Snook 

et al., 2007) has suggested that model comprehensibility can 

be improved by using UML-based graphical specifications 

rather than the formal notation alone. 

• It reduces the training for the formalism if developers are able 

to model graphically rather than using FMs (Becker-

Kornstaedt, Neu et al., 2001). Modelling may become 



Chapter 1 Introduction                                                                                             10 

 

accessible to more staff and it does not require a high level of 

professional training.  

• Using simple symbols helps teaching FM courses (Snook and 

Butler., 2001; Razili, Snook et al., 2007). 

There are other papers to support those ideas, such as Zimmerman who 

states that tabular and diagrammatic notations are more readable than 

textual ones in a complex system. (Zimmerman, Lundqvist et al., 2002). 

This is confirmed by a number of related studies in (Petre, 1995). 

3. The integration of different specification modelling frameworks for 

specifying and reasoning about requirements is beneficial (Allemand, 

Attiogbé et al., 2002;  Attiogbé, Poizat et al., 2003). Moreover, it is also 

useful to describe one system in multiple views. 

1.3 Goal 

The goals for the research are identified as in the following 

1. To provide an option to help users/developers generate timing constraints 

and casual dependecies requirements in a reactive system in forms of 

Event-B and UML-B formal models. 

2. To generate a translation technique to transform a TD into KAOS Goal 

models. The TD graphical front-end is beneficial in an engineering context 

since the original KAOS Goals’ formal definitions is defined by linear 

temporal logics (LTLs) textual declarations. It is inconvenient for a user 

who is unfamiliar with using temporal logics. Thus, a TD is used as 

graphical front-end to represent a KAOS Goal model. With the translation 

rules, KAOS goals are automatically generated from TD. 

3. To confirm that using graphical TD to specify timing constraints and 

casual dependencies requirements in Event-B is easier than using textual 

methods. 

 

According to the goals above, we select some modelling frameworks as the 

basis for our contribution:  
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1. Extended Timing diagrams (TDs): OMG UML2.0 TD notations are clearly 

defined and widely used to describe behaviours of objects in many critical 

systems and even within electronics engineering for a long time (Fowler 

and Scott 2004). Thus, we select to extend UML TD notations for timing 

constraints graphical modelling and causal event dependencies. The reason 

to extend UML TDs is they do not support adequate notations to explain 

certain kinds of specification. For example, identifying combination of 

causes that make something to happen, and showing synchronisation of 

objects that change their states simultaneously. Thus, AND and OR node 

notations are created as well as simultaneity arrows (more detail in Chapter 

4). Here, a TD is used as a source model in generating target models: 

Event-B, UML-B and KAOS models.  

2. Event-B is selected as it is well used in Electronics and Computer Science 

school, University of Southampton. There are many partners through the 

RODIN project and is used in industries (Europe). Moreover, it is 

integrated well with Eclipse and has good tools support such as Event-B 

RODIN toolkits, B prover and animators. Although, Event-B is good for 

identifying precise system requirements by using set-theoretic notation, it 

is not yet clear how to model timing constraints and causal dependencies 

on system requirements in Event-B. Thus, we selected to add TDs as the 

front-end for Event-B. Event-B then can be described by visualisation 

graphics for the time. 

3. UML-B is selected as it is plug-in for RODIN and is developed on Eclipse. 

UML-B is graphical Event-B modelling in which Class diagrams and 

Statecharts are used to express formal specifications. An Event-B model is 

generated automatically when the model is saved. Thus, it is suitable as an 

alternative way to generate an Event-B model. 

4. KAOS has been widely applied in many critical systems, according to 

(Lamsweerde 2004), it is used in Air Traffic Control (conflict handling 

between ground and on board collision avoidance systems) and Aerospace 

(design of test suites for rocket launch). KAOS explains timing constraints 

by LTLs, and cause-effect relationships in pre- and post-conditons which 

are in textual form. In contrast, TDs timing constraints can be clearly 
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explained using notations that are time bounds and causal dependencies 

arrows. TDs use more natural visualisation graphical to declare the time 

than in the KAOS LTL operators. Thus, TD is selected as a front-end for 

KAOS. Moreover, both KAOS and Event-B use first-order predicate logics 

to describe system behaviour and have a concept of refinement to explain 

more system detail in the further steps. Thus, it is interesting to integrate 

TD to KAOS which aims to generate Event-B models later. 

5. Atlas Transformation Language (ATL) (ATL 2008) is developed on 

Eclipse and a language to generate a target model from source models 

based on metamodel. We select ATL as a language for generation an 

UML-B model from a TD since UML-B is also developed on Eclipse. 

Moreover, there are many ATL examples on-lines. 

6. Backus-Nuar Form (BNF): BNF is used to describe TD notations which 

are used to generate an Event-B model and KAOS Goal model. BNF is 

widely used for explaining syntax of a language and provides standard 

symbols to do that. Thus, it is suitable to use BNF for creating formally 

systematic translation rules in our work. 

7. A lift case study is used in the transformations. Even though, the lift is a 

single example, it is appropriate to validate my work as follows. It has real 

time properties; represents causal dependencies among objects in the 

system; and some parts of the specification cannot be modelled by timing 

diagram (see section 5.2, 6.5.1 and 8.1.6 for detail) which is useful as an 

example of fulfilling models by hand. Moreover, a specification of lift is 

well-known, not hard to understand and is widely used in many works, as 

details describe in section 8.2. 

1.4 Contribution Overview 

Our contribution focuses on how parts of system’s requirements, concerned 

with timing constraints and causal dependencies between a system’s objects, are 

transformed into FM models. The aim of this contribution is to enable users to 

easily model critical system requirements using graphical notations e.g. TD; by 
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adding UML-B and KAOS graphical capability to express timing constraints and 

event dependencies requirements. 

 

 

Figure 1-4 Research aim  

 

Figure 1-4 presents the whole thesis scenario. Requirements are partitioned 

into other requirements (non-timing), and timing and causal dependency 

requirements. The requirements which can be described by causal dependency and 

timing constraints are modelled by TD. Formal translation rules 1 and rule 2 are 

built based on TD BNF definitions to create Event-B and KAOS models from TD 

respectively. Other requirements are used to generate the remainder of the Event-B 

and KAOS models for completion. Atlas Transformation Language (ATL) (ATL 

2008) transformation rules are generated to create UML-B Class diagrams and 

Statecharts from TD. The remainder of the UML-B models are also generated from 

the rest of the requirements. Next, Event-B and UML-B models are 

analysed/verified by the RODIN Toolkit. If there are any errors, ambiguities or 

incompleteness, which are indicated by the RODIN (model checking and proof 

obligations), the Event-B and UML-B models are revised; the TD can be fixed as 

well as system requirements may be revised. This step is repeated until the models 
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are correct by means of proof. This process has a beneficial effect on system 

requirements as it increases the degree of confidence that the output system has few 

errors, is unambiguous and consistent. It enables the gaining of a clear 

understanding of the task at an early stage.  

1.5  Document Structure 

The remainder of this thesis is structured as follows:  

 

Chapter 2 reviews the literature on the technical approaches that are directly 

involved in the research. The chapter starts with describing the general idea of RE 

techniques and FMs. The Event-B notations and methods used to develop Event-B 

are described. The use of refinement in Event-B, that takes a model of abstract level 

to one with more concrete detail, is explained. The RODIN tool set that can be used 

in Event-B development is also explained. The UML-B toolkit, a graphical front-

end for Event-B, and its implementation, are demonstrated. The KAOS framework, 

that is a technique for goal-oriented modelling of requirements specification, and its 

notation, are described. There is an explanation of MOF and Eclipse 

metamodelling, which are used to generate UML-B and TD metamodel. The 

chapter finishes with an explanation of the ATL language, which is used to generate 

formal rules to transform TD to UML-B model, illustrated by examples of ATL 

rules. 

  

Chapter 3 describes other relevant techniques which are elaborated in this thesis. 

The chapter starts with giving explanation of OMG System Modelling Language 

(SysML), which is a graphical modelling language for specifying, analyzing, and 

designing systems. Requirements diagram, which is a new diagram for SysML is 

discussed, illustrated with an example of modelling a lift system. An 

Action/Reaction pattern, which is used as a guideline for translating TD to Event-B, 

is described. Relevant researches on combining KAOS, B, UML and CSP, is 

discussed; likewise works on transforming TD to LTL formulas. The chapter 

finished with an explanation of properties that are significant for maintaining the 

correctness of doing RE, i.e. traceability, safety, liveness and fairness. 
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Chapter 4 describes a case study, lift System, which provides examples of 

requirements focusing on timing constraints and causal dependencies among 

objects. It is used for exploring translations from TD to Event-B, UML-B and 

KAOS. UML TD 2.0 is described; this is the standard notation used for defining the 

behaviour of different objects within a time-scale. Selected and amended TD 

notations are explained. A preliminary TD editor is introduced at the end of the 

chapter, but it was based on outdated TD notations, and so was not used for creating 

TD here. Instead, we created TD from Microsoft Visio for the 

representation/visualisation. For translating TD into UML-B, the TD description is 

generated by EMF. 

 

Chapter 5 describes how to generate direct translation rules that are used to 

transform TD into Event-B model. TD BNF definitions are provided and used as 

input parameters for formal translation rules. The rule definitions are explained, 

followed by illustrations of generating Event-B models from the rules. The chapter 

finishes with a description of how non-timing requirements are added to complete 

the Event-B model. 

 

Chapter 6 describes the translation rules for generating UML-B models from TD. 

The chapter starts with explanation of TD Metamodel created by EMF. TD used for 

the translation is introduced. ATL translation rules which, are used to create UML-

B components, are described through examples. The chapter finishes with an 

explanation of how additional information are added to the model. 

 

Chapter 7 describes the translation techniques that are used for generating KAOS 

Goal models from TD. The chapter starts by explaining a scope of TD and LTL 

operators which can be used for the translation. Next, explanation of TD BNF, and 

formal translation rules are provided, together with examples. Steps of goal trees 

creation and manual information addition are illustrated. The chapter finishes with a 

description of how Operation models are created. 
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Chapter 8 gives a comparative evaluation of the three direct translation 

methodologies; that is from TD to Event-B, UML-B and KAOS models. The 

comparisons explain what the differences and similarities in techniques and 

notations used to generate those models, as well as what additional information and 

where it is needed for each. We address how straightforward or complicated it is to 

generate and alter the models. This chapter provides the comparison with other 

related works. The comparison of a number of proof obligations in Event-B and 

UML-B models is provided. Finally, an example of proof obligations is explained. 

 

Chapter 9 explains the contributions of this research. Limitations of the work are 

examined. Possible directions for future work are described. 



 

 

Chapter 2 Technical 

Background 

This chapter aims at giving background to the knowledge used in the thesis. 

Many fields of knowledge are used vary from FMs: specifically Event-B and 

UML-B techniques, Goal-oriented requirement engineering, Eclipse modelling 

framework and metamodel. The knowledge explanations are provided along with 

examples. 

The structure of this chapter is as follows. Section 2.1 introduces background 

knowledge of RE methodologies, along with FMs. Section 2.2 explains FM 

methodologies and their categories. Section 2.3 gives the detail of Event-B 

modelling by describing the philosophy, followed by an introduction to the 

constructs used for modelling systems in Event-B. More detail is given on the 

refinement method used to develop Event-B models and proof obligations. Section 

2.4 explains the RODIN tools used for creating and verifying the models generated 

in the thesis. Section 2.5 explains an UML-B tool that is used to develop a UML-B 

model. Section 2.6 discusses Linear Temporal Logic (LTL) operators that are used 

to describe KAOS Goal and Operation models. Section 2.7 explains KAOS 

frameworks, with corresponding examples. Section 2.8 introduces metamodelling: 

creating types and model structures for the models. Section 2.9 describes ATL and 

its components. 
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2.1 Requirements Engineering 

Requirements engineering (RE) is the first step of the system development 

process. It is concerned with activities for eliciting, evaluating, specifying, 

analysing, documenting, and revising, the objectives, functionalities, and 

constraints to be obtained for a proposed system within a particular environment. 

Requirements can be grouped into two categories: functional and non-functional. 

Functional requirements associate with specific functions, tasks or behaviours the 

proposed system must support. For example, “lift doors must be closed when the 

lift is moving”, and “the lift must be eventually stop at requested floors” are 

functional requirements. Non-functional requirements provide constraints that are 

not explicitly functional but do satisfy functional requirements. They include 

availability, reliability, performance, convenience, installation, and maintainability 

requirements. For example, “the lift should move smoothly between floors”, “the 

lift position must be clearly seen at any time by users”, and “the lift has to be tested 

every year”, are non-functional requirements. This thesis focuses on functional 

requirements. 

Requirements are elicited (by using techniques such as data collection, 

questionnaires, prototyping, knowledge reuse) and evaluated (e.g. by inconsistency 

management and risk analysis). More detail of elicitation and evaluation can be 

found in (Lamsweerde, 2009). Later, the results of elicitation and evaluation need 

to be specified and documented. There are many techniques for identifying 

requirements specification. For example, describing in natural language, using 

decision tables, entity-relationship diagrams (ERD) (Chen, 1976), dataflow 

diagrams (DFD), UML diagrams (OMG, 2008), e.g. TD, UML-like diagrams, e.g. 

UML-B (Snook and Butler, 2008a), semi-formal specifications, e.g. KAOS 

(Lamsweerde, et al., 1991), and formal specifications, e.g. Z (Spivey, 1992) and 

Event-B (RODIN, 2009). 

This thesis examines a combination of requirements specification techniques: 

TDs, Event-B, UML-B, and KAOS (as described in Chapter 1). TD was selected 

because we emphasise modelling a system’s timing requirements where there are 

causal dependencies between system objects. Moreover, OMG UML provides TD 

standard notations, some of which are appropriate for our translation. Event-B and 
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UML-B were chosen as they are techniques for FM modelling and have effective 

tools support. KAOS is a semi-formal method, which uses timing constraints by 

discrete time points. Thus, it was selected to combine with TD. 

2.2 Formal Methods 

FMs are a set of techniques used to create a formal specification, develop a 

new specification (for example: refinements), and verify a specification by using 

mathematical notations for software engineering. The benefit expected from 

formalization is a higher degree of precision in specification, as it forces one to 

write an unambiguous detailed description and consider all the cases that may 

cause erroneous behaviour. As a result, the specification gains a high-level of 

correctness of requirements and benefits the design process. Using a FM helps 

reduce defect rates in software development and saves money in fixing errors in 

requirements, as shown by (Praxis High Integrity Systems, 2008) and (Hall, 2005). 

FMs can be broadly classified into two categories. 

• State-based notations: this kind of FM supports creating system 

specifications by construction of a set-theoretic model. The model is 

described by invariants, state variables, and operations over the states. 

Invariants define condition constraints that the system’s states must be 

always hold. Variables are used to indicate system state information. An 

operation is defined by pre- and post-conditions over system variables. A 

pre-condition contains necessary input variables that are constraints for an 

operation to be applied. A post-condition contains output variables after an 

operation is applied; it updates the system states. Examples of this kind of 

FM are VDM (Jones, 1986), Z (Spivey, 1992) and B (Abrial, 1996). 

• Process algebras notations: this kind of FM supports creating system 

specifications by using methods derived from algebraic operators. It 

specifies a system as collections of concurrent and communication 

processes. These processes can be executed by many abstract machines 

according to specific rules of interaction. In particular, this FM requires 

interactions between components of software architectures and protocols. 
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Examples of this kind of FM are LOTOS (Bolognesi and Brinksma, 1987) 

and Communicating Sequential Process (CSP) (Hoare, 1985). 

There are some other FM methodologies, whose features are defined in 

between those categories above. Two examples are: Petri Nets (Peterson, 1981) 

which is state-based, defined as a graphical language, and suitable for modelling 

concurrent behaviour of distributed systems; and Larch (Guttag, et al., 1993) which 

is a state-based and algebraic specification method, specialized in the specification 

of abstract data types and their properties. 

2.3 Event-B Modelling 

The classical B-Method (Abrial, 1996; Schneider, 2001) is a mathematical 

method for formal system specification, design and implementation of software 

based on refinement. The classical B-Method defines a machine with variables, 

invariants, and operations. It has a concept of refinement that allows one to 

gradually build a model more and more precise in detail. The benefit of refinement 

helps to reduce degree of model’s complexity. Moreover, if the model is massive, it 

is impossible to represent everything. To verify the correctness of a B model, proof 

obligations and model checking are used. Examples of tools supporting verification 

in B are Atelier B (ClearSy, 2009), B-toolkit (Sørensen, 1994) and ProB (ProB, 

2009). 

Event-B is derived from classical B. It keeps the concepts of classical B-

Method but adds the concept of event. Event-B has simplified language syntax, 

stronger refinement notion and more powerful tool support (RODIN, 2009). Since 

Event-B models have well-defined syntax and semantics, it is possible to test them 

by proving that transitions made during the software process are correct. The 

Event-B provides proof obligations (POs) to ensure the correctness of a model. The 

POs are generated according to the correctness criteria, which are required within 

the models. Those POs have to be discharged by users and can be supported by 

automated proof tools, the RODIN tool (Butler and Hallerstede, 2007). Other plug-

ins for RODIN are UML-B (Snook and Butler, 2008b) for adding class-oriented 

and Statemachine Event-B modelling capabilities, ProB (Leuschel, 2007) for 
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animating, systematically checking and assisting proving a B model, and BRAMA 

(Requet, 2007) for animating B models. 

The B-Method has been successfully employed in the development of safety-

critical systems such as signalling on Line 14 of the Paris Metro (Dehbonei and 

Mejia, 1995), and the Roissy Airport Shuttle (Abrial, 2006; Abrial, 2007). 

Bicarregui reports using B in six case studies, such as a short-term conflict alert air 

traffic control application, and clinical biochemistry (Bicarregui, et al., 1997). The 

B-Method also contributed to the development of IBM’s CICS product (Hoare, et 

al., 1996). 

2.3.1 Contexts and Machines 

Event-B’s kernel mathematical language is defined and explained in 

(Métayer and Voisin, 2007). An Event-B model comprises static and dynamic 

parts, which are called CONTEXT and MACHINE respectively. A machine SEES at 

least one context. 

The CONTEXT may contain carrier sets, constants, axioms and theorems. 

Carrier SETS (s) define sets and are represented by their name. Different carrier sets 

are independent. CONSTANTS (c) are defined by a number of AXIOMS A(s,c). 

AXIOMS gives properties about constraints  and are dependent on the carrier sets s 

(Abrial and Hallerstede, 2006). THEOREMS are required assertions for proving. 

They are derived properties that should be provable from axioms (Hallerstede, 

2006). The structure of an Event-B context is illustrated in the following: 

 

    CONTEXT context_name 

    SETS s 

    CONSTANTS c 

    AXIOMS A(s,c) 

    THEOREMS 

Figure 2-1 Event-B Static structure: Context 

 

The MACHINE defines the behaviour of the Event-B model. It includes 

VARIABLES v, INVARIANTS I(s, c, v), INITIALISATION T and EVENTS E. VARIABLES 



Chapter 2 Technical Background                                                                          22 

 

 

define machine variables, which are used to maintain state information while 

performing events. INVARIANTS are used to define a property over the states and 

context of the system that must be satisfied by all events. INITIALISATION is used to 

specify the initial values of variables, while EVENTS define the units of behaviour 

that include possible state changes. The structure of an Event-B machine is 

illustrated in the following: 

 

 MACHINE machine_name 

 SEES context_name 

 VARIABLES v 

 INVARIANTS I(s, c, v) 

  INITIALISATION T 

  EVENTS 

   E1 = WHEN G1(s, c, v) THEN S1(s, c, v) END 

  E2 = ANY l WHERE G1(l, s, c, v) THEN S2(l, s, c, v) END 

  … 

  END 

Figure 2-2 Event-B Dynamic structure: Machine 

 

An event has a name and is composed of guards G(s, c, v) and actions S(s, c, 

v). Guards identify lists of conditions for the event to occur, while actions identify 

how the state variables evolve when the event occurs. Alternatively, an event can 

be defined without a guard or possibly with a non-deterministic clause, as shown in 

Figure 2-3. From this figure, three possible structure types of an event are shown: 

Simple, Guarded and Non deterministic. 

 

Figure 2-3 Event-B Structure 
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A Simple structure declares an event that does not have a guard but actions 

S(s, c, v). A Guarded structure is used to identify an event with guards G(s, c, v) and 

actions S(s, c, v) but omitting local variables l. A Non deterministic structure is the 

general form of an event and used when the event has local variables l with guards 

G(l, s, c, v) and actions G(l, s, c, v). Examples of each Event-B structure are given 

below: 

 

 

Figure 2-4 Examples of each Event-B Structure 

 

From Figure 2-4, an event Ticktok is defined as a Simple structure and gclock 

as a machine variable. An event doorClosed is defined as a Guard structure, where 

doorState and currentFl are machine variables. Note that currentFl will be defined as 

an element of a class FLOOR, while doorState is defined as a surjective function 

from a class FLOOR to a set of door’s states in INVARIANT. An event floorlampOn is 

defined as a Non deterministic structure with a non-deterministic local variable f 

under ANY clause. The guards, f : FLOOR & f = currentFl & floorlampState(f) = Off, are 

defined in a WHERE clause, where currentFl and floorlampState are machine 

variables. The action clause is defined by floorlampState(f) := On. 

2.3.2 Before-After predicates associated with an assignment 

A before-after predicate (BA) is used to express a relationship between the 

machine’s state variable before an assignment takes place (denoted by v), and after 

an assignment takes place (denoted by v'). The before-after predicates are defined 

within three kinds of assignment: Deterministic, Non-deterministic and Empty. 
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Deterministic: a deterministic assignment is in a form <variable identifier list> := 

<expression list>. That is, if v is a list of variables and E a list of expressions, an 

action is declared by v := E(v) in which its before-after predicate is defined by 

v' = E(v). For example, an action v := v + 1 is written in the form of a before-after 

as v' = v + 1. 

 

Non-deterministic: a non-deterministic assignment is in a form of  

<variable identifier list> :| <before-after predicate>.  

For example, v,y :| v' = v + 1 ∧  y' = y + 1 which is equivalent to v,y := v + 1, y + 1. 

 

Empty: the substitution does nothing and is assigned to skip. The before-after state 

for this kind of substitution is v' = v. 

 

Consistency Proofs 

 

An Event-B model has to perform consistency proofs to ensure the 

correctness of the model. In the RODIN tool, the POs are automatically generated 

by the Proof obligation generator and the outcomes are transmitted to the Prover 

(Abrial, 2008b). The Prover performs automatic or interactive proofs and provides 

the outcomes. The detail of the tool is described in section 2.4 below. There are a 

number of POs that have to be generated, as described in (Métayer, et al., 2005; 

Abrial and Hallerstede, 2006; Abrial, et al., 2007). Here, we give examples of two 

proof obligations: Invariance Preservation and Feasibility. 

 

The invariant preservation statement (INV) is the PO that each invariant is 

maintained whenever variables’ values are changed by each event. The formal 

definition of INV is illustrated below (Abrial, 2008b). 

 

Axioms  A(s,c) 

(1) 

Invariants  I(s, c, v) 

Guards of the event  G(s, c, v) 

Before-after predicate of the event  BA(s, c, v, v’) 

�   �  

Modified Specific Invariant  Im(s, c, v’)  
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A feasibility statement (FIS) is the PO that under the axiom A(s,c), the 

invariants I(s, c, v), and the guard G(s, c, v), the action gives at least an after value v'. 

The formal definition of FIS is illustrated below (Abrial, 2008a). 

 

Axioms  A(s,c) 

(2) 
Invariants  I(s, c, v) 

Guards of the event  G(s, c, v) 

�   �  

∃ v’ Before-after predicate  ∃ v ’BA(s, c, v, v’)  

2.3.3 Refinement 

The concept of refinement in Event-B allows more detail, and the expression 

of some design decisions, to be added, in a stepwise manner, into the model. The 

advantage of refinement is allowing the model to be analysed at an abstract level, 

resulting in reduced complexity (Abrial and Hallerstede, 2006). In the formal 

development, the first Event-B model is called the abstract model. The abstract 

model is transformed through a formal sequence to obtain the refinement/concrete 

model. Performing refinements can be done in many ways, such as adding new 

variables and constants, introducing new events, decomposition of events, 

changing/adding algorithms detail, and replacing existing variables. 

Refinement is sub-categorized into feature augmentation and structural 

refinement (Butler, et al., 2008). 

• Feature augmentation: a feature augmentation is a refinement in which 

existing model features are maintained and additional features are added, 

such as variables, invariant, events, additional guards and actions. This kind 

of refinement defines new properties for a model. It can be called a 

superposition or a horizontal refinement. 

• Structural refinement: this refinement is adding detailed design to the 

implementation. Examples of structural refinements are refining the 

algorithm of an event’s operators, event decomposition, and replacing an 

existing event’s variable with new variables. This refinement can be called 

a procedural refinement or a vertical refinement. 
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When a Structural refinement is applied to a model, gluing invariants must 

be introduced. A gluing invariant links the state of the concrete model to the states 

of its abstract model. For example, one performs a refinement when a variable v in 

the abstract model is replaced by a variable w in the concrete model. In this case, a 

gluing invariant J(v, w) is used to glue variable v to the variable w mathematically. 

Thus, the states of abstract machines are related to the states of refinement 

machines. An example of defining a gluing invariant is now given. 

Model A(v) has a variable v defined by v ⊆  T, where T is a set of integers; 

model B(w) has a variable w that represents a sequence of integers and is defined 

by w ∈  seq(T). A possible refinement of model A by model B has gluing invariant 

J(v, w) ≅  v = ran(w). This gluing invariant includes the abstract variable v and is 

called a gluing invariant because it glues the two models together. It is used to 

relate new variables to those in the abstract models. 

The general form of a refinement model is shown in Figure 2-5 where w 

represents concrete variables, J(s, c, v, w) gluing invariants, and N concrete 

initialisation. H(s, c, w) and R(s, c, w) are guards and actions for concrete event Er1 

respectively. 

 

 MACHINE refinement_model_name 

 REFINES abstract_model_name 

 SEES context_name 

 VARIABLES w 

 INVARIANT J(s, c, v, w) 

 INITIALISATION N 

 EVENTS 

 Er1 REFINES E1 = WHEN H(s, c, w) THEN R(s, c, w) END 

 Er2 REFINES E2 = ANY … WHERE…THEN … END 

 … 

 END 

Figure 2-5 Refinement model structure 
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Consistency Proofs for Refinement 

 

Since new events can be introduced in the refinement, the new events also 

have to be proved. For example, it is necessary to prove that the new events will 

not run forever, or, when a concrete event in the new event is enabled, the 

corresponding abstract one is enabled. The latter is called Guard strengthening 

(GRD) and is an example of a PO illustrated in the following formula (Abrial, 

2008b). Other numbers of POs can be found in (Métayer, et al., 2005). 

 
 

Axioms  A(s,c) 

(3) 

Abstract invariants and theorems  I(s, c, v) 

Concrete invariants and  J(s, c, v, w) 

Concrete event guards  H(s, c, w) 

�   �  
Abstract event specific guard  g(s, c, v)  

 

2.4 RODIN Tools 

The RODIN toolkit version 0.9.1 (Event-B.org, 2009), used in this thesis, is 

an Eclipse environment for modelling and proof in Event-B. RODIN is built on the 

Eclipse platform and comprises many features, for example, refinement, PO 

generation and some plug-in tools. Some of the latter are: Atelier B (ClearSy, 

2009), ProB (ProB, 2009), UML-B (Snook and Butler, 2008b), and B2Latex 

(Event-B.org, 2008). The RODIN tool has two default perspectives as shown in 

Figure 2-6 and Figure 2-7. 

In RODIN, Event-B CONTEXTS, MACHINES and their refinements, are 

created within the same project as shown in the Project Explorer tab in Figure 2-6. 

The Editor tab (in the centre) is for editing a model whose elements’ properties are 

shown in the Properties tab beneath. The Outline tab displays the list of model 

elements. 
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Figure 2-6 RODIN Modelling Perspective 

 

The RODIN tool contains a proof obligation generator, automated and 

interactive provers (Abrial, et al., 2008). The automated and interactive proof is 

shown in the Obligations Explorer tab, Figure 2-7. To perform interactive proof, 

one can select hypotheses from the Selected Hypotheses tab (in the upper centre). 

The Proof Tree and Goal tabs display the sequence of proving, and the goal of 

proving, respectively. The proved result and a number of provers (provided by the 

tool) are in the Proof Control panel. 

 

 

Figure 2-7 RODIN Proving Perspective 
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2.5 UML-B 

UML-B (Snook and Butler, 2008b) has been developed as a plug-in for 

RODIN toolkits and implemented by the Eclipse Modelling Framework (EMF). It 

is a graphical formal modelling notation based on UML (Booch, et al., 2003), and 

relies on Event-B (Abrial, et al., 2007) and its verification tool (Abrial, et al., 

2005). UML-B is a tool that supports the construction of a graphical model, using 

UML-like diagrams, i.e. Class diagram and Statemachines, and an Event-B like 

annotation language. UML-B models can then be automatically translated to Event-

B using the U2B translator for further analysis. In this thesis, the UML-B version 

0.4.3 is used. 

2.5.1 Package diagram 

The UML-B top-level Package diagram is first opened with an empty 

canvas. This is the default perspective for representing a UML-B project. 

 

 

Figure 2-8 UML-B Package diagram perspective 
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A Package diagram is used to describe the association between machines and 

contexts in a UML-B project. UML-B provides drawing tools as illustrated in the 

Palette panel, on the right. This is used to create machines and contexts with a 

graphical representation as shown in the Editor panel in the centre. For example, in 

Figure 2-8, My_Machine is a machine while My_Context is a context. A 

machine sees a context via the relationship Sees. The Properties tab represents 

properties of the selected component in the Editor view, while the Navigator tab is 

for displaying the list of diagrams within a project.  

2.5.2 Context diagram 

Static data in Event-B, such as sets, constants, axioms and theorems, are 

modelled in the CONTEXT part. UML-B provides this in a separate package 

called a Context diagram. The Context diagram is drawn as a Class diagram but 

has constant data represented by ClassType, Attributes, Constants and Association. 

 

 

Figure 2-9 UML-B Context diagram perspective 

 

Whenever a UML-B model generates an Event-B model, ClassTypes are 

defined as carrier sets or constants. In Figure 2-9, ClassType C1 and C2 are defined 
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as sets, while ClassType C3 is defined as a constant as shown in Figure 2-10. C3 

is generated as a constant since it is assigned to constant values {1, 2, 3}. An 

association between ClassType, for example c1toc2, is also generated as a 

constant with a corresponding axiom as shown below. 

 

 

Figure 2-10 Event-B 

2.5.3 Class diagrams 

The dynamic part is generated in a Class diagram and used to describe a 

machine. In a machine, one can define classes, variables, events, Statemachines 

and invariants. 

 

Figure 2-11 UML-B Context diagram perspective 
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“Classes represent subsets (variable or fixed) of the ClassType that were 

introduced in the context” (Snook and Butler, 2008b). That means a class’s Fixed 

property can be set to false (default value) or true. If it is set to false, that 

class is generated as a variable unless it is a 
��. For example, in Figure 2-11, class 

D is generated as a variable for a machine with its invariants D � � (D_SET) as 

shown in Figure 2-12. 

 

 

Figure 2-12 An Event-B variable is generated from an UML-B non-fixed property class 

 

If the Fixed property for class D is set to true, the Event-B generated from 

class � is shown in Figure 2-13. 

 

 

Figure 2-13 An Event-B class is generated from an UML-B fixed property class 
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Associations between classes, for example an association AtoB� in Figure 2-

11 and Figure 2-12, define machine variables (global variables). Attributes and 

events that are attached to a class are generated as events’ local variables and 

machine events respectively. 

2.5.4 Statemachines 

A Statemachine is used to model the behaviours of a system. It can be 

identified in two ways: within a corresponding class, and as a Machine 

Statemachine. A Statemachine is defined within a class in order to explain the 

behaviour of a class’s states changing and modifying a class’s variables. In 

contrast, if an object has to be represented by a Statemachine, a Machine 

Statemachine is utilized. For example, from Figure 2-11, the A_Statemachine� is 

defined within class A while B_Statemachine�is a Machine Statemachine. Below is 

an example of the A_Statemachine. 

 

Figure 2-14 An example Statemachine 

 

A Statemachine transition represents an event with behaviour associated with 

the change of states, from a source state to a target state. Each transition is 

generated as an event. Figure 2-14 shows two events are created: �
 and ���. 

Additional guards and actions can be attached to the transition in the Properties tab 



Chapter 2 Technical Background                                                                          34 

 

 

to describe the events’ behaviours. Note that, ������� is a �����
�� �������� 

defined in Figure 2-11. 

Each event uses a keyword <ClassNameSelf>, a class name in which a 

transition is followed by Self, to identify the non-deterministic selection of an 

instance of the class. For example, consider the event �
 created from the transition 

�
 in Figure 2-14, as illustrated below. 

 

 

Figure 2-15 An event On created from a transition 

 

The word �
��� is automatically created as a non-deterministic variable with 

a guard �
����∈��, where � represents a class in which this transition takes place. 

A source state (��
���������
���
��� �!���) and a target state 

(��
���������
���
��� �"��#) are automatically generated as a guard and an 

action respectively. 

2.5.5 Implementation of UML-B 

UML-B is implemented with the EMF, which is an Eclipse project providing 

code generation, model editor, and efficient Application Programming Interface 

(API) utilities based on a metamodel (Snook and Butler, 2006). Graphical 

Modelling Framework (GMF) is an Eclipse project used to automatically generate 

code for the UML-B graphical modelling tool, based on the EMF model (detail of 

EMF is given in section 2.8.2). UML-B provides drawing tools and a translator to 

generate Event-B models, i.e. whenever an UML-B drawing model is saved, the 
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U2B translator automatically generates the corresponding Event-B model. RODIN 

automatically verifies the Event-B model and reports any errors. 

Even though UML-B is similar to UML, it is designed on a separate 

metamodel (Snook and Butler, 2008a). Figure 2-16 shows parts of the UML-B 

metamodel in which classes represent abstract meta-classes. Class UMLBProject 

defines the name of a project via UMLBname where name is defined as a string. 

UMLBProject is composed of UMLBconstruct in which is subtyped into 

UMLBMachine and UMLBContext. UMLBMachine contains UMLBEvent and 

UMLBVariable, which are used to define machine events and machine variables 

respectively. The class UMLBMachine contains a contexts association. This is the 

way that machines are linked to contexts in a model. 

 

 

Figure 2-16 Parts of UML-B Metamodel�

 

UMLBClass is a subtype of UMLBabstractClass. As shown in Figure 2-17, 

the UMLBabstractClass contains UMLBEvent and UMLBabstractAttribute, which 

are used to define classes’ events and classes’ attributes respectively. 
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Figure 2-17 UMLBabstractClass, UMLBEvent and UMLBabstractAttribute Metamodel 

 

In Figure 2-16, UMLBstatemachineCollection contains UMLBStatemachine 

that is used to define Statemachines. The UMLBStatemachine contains 

UMLBTransition and UMLBState. The UMLBTransition represents Statemachines’ 

transitions, in which each transition links a couple of states by target and source 

associations to UMLBState. The UMLBTransition is a subtype of 

UMLBguardedAction. The UMLBguardedAction contains UMLBAction, 

UMLBPredicate and UMLBEventVariable, which are used to define actions, guards 

and events’ variables (local variables for an event) respectively for a transition. 

2.6 Linear Temporal Logic (LTL) 

LTL is used to describe a sequence of events referring to time. It is defined 

over discrete time points and has proved convenient for specification requirements 

(Letier, 2001). LTL provides the temporal operators as follows. 

 

� some time in the future  � some time in the past 

� always in the future  � always in the past 

U always in the future until  S always in the past since 

W always in the future unless  B always in the past back to 

� in the next state  � in the previous state 
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In LTL (Lamsweerde, 2009), time is declared as the set Nat of natural 

numbers, and a history H is defined as a function, H: Nat � State(x), where x 

represents the set of system variables and State(x) stands for the set of all possible 

states for the corresponding variables in x. This function operates for every time 

point i in H. To define the LTL semantics more precisely, the notion (H, i) |= P is 

used to express the LTL assertion that P is satisfied by history H at time position i, 

where i ∈  Nat. The semantic rules for the LTL temporal operators are divided into 

two categories: future operators and past operators, as follows (taken from 

(Lamsweerde, 2009)). 

 

Future operators 

(H, i) |= � P  iff for some j � i : (H, j) |= P 

(H, i) |= � P  iff for every j � i : (H, j) |= P 

(H, i) |= P U Q 

 

iff there exists a j � i such that (H, j) |= Q 

and for every k, i � k < j : (H, k) |= P 

(H, i) |= P W Q  iff (H, i) |= P U Q or (H, i) |= � P 

(H, i) |= � P  iff (H, i +1) |= P 

P �Q “entails” Equivalent to � (P →  Q) 

P ⇔ Q “congruent” Equivalent to � (P ↔  Q) 

 

Past operators 

(H, i) |= � P  iff for some j � i : (H, j) |= P 

(H, i) |= � P  iff for every j � i : (H, j) |= P 

(H, i) |= P S Q 

 

iff there exists a j � i such that (H, j) |= Q 

and for every k, j < k � i : (H, k) |= P  

(H, i) |= P B Q  iff (H, i) |= P S Q or (H, i) |= � P 

(H, i) |= � P  iff (H, i -1) |= P with i > 0 

@ P Equivalent to (� ¬ P ) ∧  P 

 

Relative Real-time Properties 

In RE, some properties are need to be defined over real-time constraints. 

Examples of such properties are: 

“All borrowed books must be returned within a week” 
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“Lift door must be opened between 1 and 5 minutes after the lift stops at that 

floor” 

 

Relative real-time properties are properties referring to real-time delays 

between system states. In order to specify such properties, bounded versions of the 

above temporal operators are used. Examples of those operators are 

 

� �d (some time in the future within deadline d) 

� �d (always in the future up to deadline d) 

 

To define those operators, a temporal distance function is used, as defined in 

the following: 

 

dist: Nat ×  Nat →  D where D = {d | there exists a natural n such that d = n ×  u} 

where u denotes a chosen time unit such as second, minute and hour. 

 

dist(i, j) = |j – i| ×  u 

 

For example, the semantics of the real-time operators is then defined below 

(the rest of the semantics is declared in (Lamsweerde, 2009)). 

 

(H, i) |= � � d P iff for some j � i with dist(i, j) � d: : (H, j) |= P 

(H, i) |= � � d P iff for every j � i such that dist(i, j) � d: : (H, j) |= P 

2.7 Knowledge Acquisition in autOmated Specification (KAOS) 

A system requirement is a statement of what the system has to perform to 

accomplish the system’s goal. A requirement for a computer system specifies a 

statement to be implemented by the proposed system. It always involves other 

system components and is described in terms of environmental phenomena (e.g. 

agents and system’s constraints). Examples of system requirements are 

• All lift doors shall always remain closed while the lift is moving 

• A book must be returned within a deadline 
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A goal is a prescriptive statement and defines an objective the composite 

system should meet through the cooperation of its agents in the environment. A 

requirement is a goal under the responsibility of a single software agent. An agent 

is an active object and performs a specific role/operation in a requirement. Agents 

can be human, devices, software, etc. For example, the first requirement in the 

above list is assigned to a DoorController agent, while the second is assigned to a 

Library software agent. 

KAOS stands for Knowledge Acquisition in autOmated Specification 

(Dardenne, et al., 1993) or Keep All Objects Satisfied (Letier and Lamsweerde, 

2002b). It is a goal-oriented RE that uses a Goal model to generate system 

requirements. A Goal model is then used to generate one or more Operation 

models. Each Operation model defines the state transitions in the application 

domain by using pre- and post-conditions. The detail of Goal and Operation 

models are described in the following sections. 

2.7.1 Goal model 

The first model generated in KAOS is a Goal model. A Goal model is created 

by focusing on a part of the goal and then proceeding to the next part until 

completing the whole Goal model (El-Maddah and Maibaum, 2003). This process 

is called goal refinement. A Goal model is represented as a tree structure, which 

can be called a Goal tree, as shown in Figure 2-20. Each goal is graphically 

represented by a parallelogram labelled by the goal’s name and prefixed by its 

type, as shown in Figure 2-18. 

There are four types of goal (Darimont and Lamsweerde, 1996; Rubio-

Loyola, et al., 2005) : 

• Achieve and Cease goals require some target properties to be eventually 

satisfied or denied, respectively, in some future state. This goal category 

is used for specification of liveness properties. 

• Maintain and Avoid goals require some target properties to be 

permanently satisfied or denied, respectively, in every future state. 
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Maintain and Avoid goal categories are used to specify safety 

properties. 

 

To illustrate how a KAOS model is created, an example of a meeting 

scheduling problem is used as an example from this point forward (Letier, 2001). 

Parts of the meeting scheduling problem specification are provided below: 

 

“… Each requested meeting will eventually be held with the presence of all 

intended participants. Participants’ date constraints are eventually 

accurately known by the scheduler …” 

 

From the problem statement above, supposes a “participants’ constraints 

known” is selected to be generated as a goal. This goal is created as shown in 

Figure 2-18. The goal has identified Achieve as a goal type with a name 

PrtcptsCstrKnow. 

 

Figure 2-18 An example of a goal 

2.7.2 Goal formal definition 

Each goal is declared by a type (Achieve, Maintain, Cease and Avoid), 

definition (Definition) and formal definition (FormalDef). A goal definition is 

described by text. A formal definition is composed of optional inputs/outputs, pre-

conditions and post-conditions. Inputs/outputs declare objects’ attributes of an 

operation. Pre- and post-conditions describe current conditions and target 

conditions of an operation, respectively. A goal formal definition uses LTL to 

define a goal description. Thus, a goal formal definition is written as a temporal 

logic statement. An example of the definition of the  

Goal Achieve[PrtcptsCstrKnown] from Figure 2-18 is illustrated below: 

 



Chapter 2 Technical Background                                                                          41 

 

 

�
�

∀

�

  

�
�

�

�

 

Figure 2-19 A definition of the goal Achieve[PrtcptsCstrKnown] 

 

Goal types are keywords that allow one to specify a goal formal definition 

pattern at the declaration level (Lamsweerde and Willemet, 1998). Each of these 

goal patterns represents a particular shape of temporal logic formula. Examples of 

those patterns are illustrated in  

Table 2-1. 

 

Goal Type Temporal logic formula Pattern 

Achieve P �  � Q Unbounded Achieve 

 P �  � � d Q Bounded Achieve 

 P �  � Q Immediate Achieve 

Cease P �  � ¬Q Unbounded Cease 

 P �  � � d ¬Q Bounded Cease 

 P �  � ¬Q Immediate Cease 

Maintain P �  Q 
Permanent Maintain/ 

Immediately response 

 P �  � Q After Maintain 

Avoid P �  ¬ Q Permanent Avoid 

 … … 

 

Table 2-1 Goal types with temporal logic formulas 
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For example from Figure 2-19, the Goal Achieve[PrtcptsCstrKnown] is 

specified as a Unbounded Achieve P �  � Q where P is Intended(p,m) and Q is 

CstrKnown(p,m). 

Another example is a Bounded Achieve P �  � � d Q, it means whenever the 

current condition P occurred, the target condition Q will eventually occur within 

deadline d. The Permanent Maintain/Immediately response P�Q means whenever 

the current condition P occurs, the target condition Q must be occurred at the same 

time point. More goal patterns can be found in (Letier, 2001). 

2.7.3 Goal refinement 

A Goal model is created by an AND/OR graph called a goal refinement 

graph. A goal refinement graph shows how a parent goal (at a higher-level) is 

refined into subgoals, and how subgoals are grouped into the higher-level one 

(Lamsweerde, 2001); this is called goal refinement. Asking WHY and HOW 

questions are techniques used to generate a goal refinement graph. By asking 

HOW questions, subgoals are identified from an already identified parent goal 

(top-down processes). By asking WHY questions, a parent goal is generated from 

already identified subgoals (bottom-up processes). The goal refinement is stopped 

when every subgoal can be assigned to a single agent. Leaf node goals in a goal 

refinement graph represent software requirements. 

To explain how a goal refinement graph is created, consider the goal 

Achieve[PrtcptsCstrKnown] as shown below (the same goal within Figure 2-18). The 

goal Achieve[PrtcptsCstrKnown] is refined into two subgoals 

Achieve[PrtcptsCstrRequested] and Achieve[RequestedCstrProvided] by asking a 

HOW question. Similarly, other parts of the goal refinement graph are generated by 

asking HOW and WHY questions. A process of goal refinement is brought about 

by application of formal goal refinement patterns to expand the parent goal is 

described later in section 2.7.4. 
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Figure 2-20 KAOS goal refinement graph 

 

AND and OR refinement combinations 

 

A goal refinement process uses logic to decompose a parent goal into 

subgoals, or compose subgoals to generate a parent goal. Decomposing and 

composing use two kinds of goal refinements in combination: AND and OR. An 

AND-refinement is represented by a black circle symbol while an OR-refinement is 

represented by a white circle symbol, as shown below. 

 

Figure 2-21 Symbols for AND and OR refinement 

 

Using AND-refinement means a parent goal can be refined into subgoals that 

are more detailed; for example, Subgoal1 and Subgoal2. This means that to achieve 

a parent goal, all subgoals must be selected. OR-refinement is an alternative goal 

refinement. In this case, more than one alternative subgoal can be selected. 
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2.7.4 Formal goal refinement patterns 

“Goal decompositions made by hand are usually incomplete and sometimes 

inconsistent” (Lamsweerde and Massonet, 1995). Thus, Darimont provides formal 

patterns for building goal refinement graphs that are proved correct (Darimont and 

Lamsweerde, 1996). A formal refinement pattern is a one-level AND-tree of a 

parent goal. That means there is no pattern for OR-refinement. There are a number 

of goal refinement pattern defined in (Darimont, 1995). Here, we explain those are 

used in the thesis. 

 

A Milestone-driven goal refinement pattern 

 

The Milestone-driven goal refinement pattern refines an Unbounded Achieve goal 

of the form P �  � Q by introducing an intermediate state M (milestone), see Figure 

2-22. To reach a state satisfying the target condition Q from a state satisfying the 

condition P, it must act via the intermediate state satisfying condition M. 

�

� �

 

Figure 2-22 A Milestone-driven goal refinement pattern 

(Darimont and Lamsweerde, 1996; Letier, 2001) 

 

For example from Figure 2-19, the goal Achieve[PrtcptsCstrKnown] is refined 

into two subgoals Achieve[PrtcptsCstrRequested] and Achieve[RequestedCstr 

Provided] by using the Milestone-driven goal refinement pattern where 

  P : Intended(p,m) 

  Q: CstrKnown(p,m) 

  M: CstrRequested(p,m) 

 

The following subgoals are thereby obtained: 
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Goal Achieve[PrtcptsCstrRequested] 

FormalDef ∀  p: Participant, m: Meeting 
Intended(p,m) �  � CstrRequested(p,m) 

 
Goal Achieve[RequestedCstrProvided] 

FormalDef ∀  p: Participant, m: Meeting 
 CstrRequested(p,m) �  � CstrKnown(p,m) 

 

A case-driven goal refinement pattern: split antecedent 

 

The Case-driven: split antecedent goal refinement tactic refines a goal by 

splitting it into cases as shown in Figure 2-23. This technique is used when 

different cases can be identified in a goal. 

�∨

� �

 

Figure 2-23 A case-driven goal refinement pattern: split antecedent 

 

For example, a fire-safety monitoring problem is provided as “… If the room 

temperature is overheated or the room is very humid, a room window will be 

eventually opened …”  

This specification above can be generate as a Goal Achieve[TheRoom 

WindowOpenAfterTheRoomIsOverHeatedOrTheRoomIsHumid] as in the following: 

 

Goal Achieve[TheRoomWindowOpenAfterTheRoomIsOverHeatedOrTheRoomIsHumid] 

FormalDefinition: When the room temperature is overheated or the room is very humid, a 

room window will be eventually opened. 

FormalDef: ∀ r : Room 

           r.temperatureLevel = ‘Overheated’ ∨  r.humidityLevel = ‘High’ 

          �  

           � r.windowState = ‘Open’ 
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The Goal Achieve[TheRoomWindowOpenAfterTheRoomIsOverHeatedOrThe 

RoomIsHumid] is refined into two subgoals Achieve[TheRoomWindowOpenAfterThe 

RoomIsOverHeated] and Achieve[TheRoomWindowOpenAfterTheRoomHumidityIsHigh] 

by using the Case-driven: split antecedent goal refinement where: 

P1 : r.temperatureLevel = ‘Overheated’ 

  P2 : r.humidityLevel = ‘High’ 

  Q : � r.windowState = ‘Open’ 

 

The following subgoals are thereby obtained: 

Goal Achieve[TheRoomWindowOpenAfterTheRoomIsOverHeated] 

FormalDef ∀  r :Room 
 r.temperatureLevel = ‘Overheated’ �  � r.windowState = ‘Open’ 

 
 

Goal Achieve[TheRoomWindowOpenAfterTheRoomHumidityIsHigh] 

FormalDef ∀  r :Room 
  r.humidityLevel = ‘High’�  � r.windowState = ‘Open’ 

2.7.5 Operation model 

Once subgoal-agent allocation is complete, each leaf node goal is assigned to 

an operation. The operations are defined by the following conditions (this section is 

taken from (Lamsweerde, 2009)): 

• A domain pre-condition (DomPre) characterizing the input states 

when the operation is applied. 

• A domain post-conditon (DomPost) characterizing the output states 

when the operation has been applied. 

• Required pre-condition (ReqPre) is a condition on the operation’s 

input states for satisfaction of the goal. It captures a permission; 

under this condition the operation may be applied when the domain 

pre-condition holds. 

• Required trigger condition (ReqTrig) is a condition on the 

operation’s input states for satisfaction of the goal. It captures an 

obligation; under this condition, the operation must be applied when 

the domain pre-condition holds. 
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• Required post-condition (ReqPost) is a condition on the operations’ 

output states for satisfaction of the goal. It captures an additional 

effect that the operation must have specifically to ensure the goal. 

Note that the operation is not applied if a trigger condition becomes true in a 

state where the operation’s domain pre-condition is not true. If the domain pre-

condition becomes subsequently true and the trigger condition is still true, the 

operation must be applied. 

The operation is not applied if a required pre-condition becomes true in a 

state where the operation’s domain pre-condition is not true. If the domain pre-

condition becomes subsequently true and the required pre-condition is still true, 

then the operation may be applied – but not necessarily. 

There are a number of operation model patterns as defined in (Letier, 2001). 

Here, we explain those that are used in this thesis. 

 

Operation model: Global Invariant 

 

The goal Permanent Maintain/Immediately response of the form P �  Q has an 

operation model, which is called Global invariant, as illustrated in the following: 

�

 

Figure 2-24 Operation model: Global invariant 
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For example, suppose a simple fire alarm problem is identified as “… fire 

alarm is set to switch on immediately after the carbon monoxide level inside that 

room is critical …”. 

The formal definition of the Goal Maintain[FireAlarmsOn] which corresponds to 

this problem is shown below. 

Goal Maintain[FireAlarmsOn] 

FormalDef ∀  r :Room, f : FireAlarm 
           r.CO2Level = ‘Critical’ �  f.State = ‘On’ 

 

Thus, the two corresponding operations: FireAlarmOn and FireAlarmOff are 

defined as in the following, where 

P : r.CO2Level = ‘Critical’ 

Q : f.State = ‘On’ 

 
Operation FireAlarmOn  Operation FireAlarmOff 

 Input r : Room   Input f : FireAlarm 

 Output r : Room   Output f : FireAlarm 

 DomPre r.CO2Level ≠  ‘Critical’   DomPre f.State = ‘On’  

 DomPost r.CO2Level = ‘Critical’   DomPost f.State = ‘Off’  

 ReqPost f.State = ‘On’    ReqPost 	r.CO2Level ≠  ‘Critical’ 

 

Operation model: Bounded Achieve 

 

The goal Bounded Achieve of the form P �  ��d Q has an operation model as 

illustrated in the following: 

�

 

Figure 2-25 Operation model: Bounded achieve 
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For example, suppose the fire alarm problem is modified to “… fire alarm is 

set to switch on within time interval of 2-3 seconds after carbon monoxide level 

inside that room is critical …”. The formal definition of the Goal 

Achieve[FireAlarmsOn] is shown below: 

Goal Achieve[FireAlarmsOn] 

FormalDef ∀  r :Room, f : FireAlarm 
r.CO2Level = ‘Critical’ � � [2,3] f.State = ‘On’ 

 

A corresponding goal model is generated by this goal is illustrated in the 

following, where 

P : r.CO2Level = ‘Critical’ 

Q: f.State = ‘On’ 

 

Operation FireAlarmOn 

 Input f : FireAlarm 

 Output r: Room, f : FireAlarm 

 DomPre f.State = ‘Off’  

 DomPost f.State = ‘On’  

 ReqTrig � f.State = ‘Off’ S [1,2] r.CO2Level = ‘Critical’ 

2.8 Metamodelling 

In software engineering, metamodelling comprises a means of construction, 

identification rules, frames, and constraints that are useful for modelling software 

problems. Similarly, it can be said that metamodelling provides a particular 

model’s properties concept. Creating a model always conforms to its metamodel. 

Metamodels can be defined in many ways. For example, the most well-known are 

using Meta-Object Facility (OMG-MOF, 2007) and Ecore (EMFT-Eclipse, 2009). 

The following sections discuss the literature on these examples. 

2.8.1 Meta-Object Facility (MOF) 

MOF (OMG-MOF, 2007) is one of standard technologies developed by the 

Object Management Group (OMG). It is a language for describing other languages 

(meta-metamodel). MOF 2.0 is the current standard and has been used as meta-
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metamodel for UML2.0 (OMG, 2008), and SysML (SysML, 2008). MOF and 

UML share core modelling concepts, while MOF reuses UML notation for 

visualizing metamodels. MOF is a four-layered architecture (numbered M0-M3). 

Examples of models are defined in each layer shown in Figure 2-26. 

 

Figure 2-26 Four-layer MOF Architecture 

 

The M3 layer is the meta-metamodel. The meta-metamodel is a mechanism 

for building metamodels. The well-known models defined in the M3 layer are 

MOF itself and Ecore (Budinsky, et al., 2003b). 

The M2 layer consists of metamodel descriptions. These metamodels are 

used to define syntax and semantic of M1 elements. Examples of languages 

described in the M2 layer are UML, XML, JAVA, Event-B languages, and our 

TDs. 

The M1 layer consists of model instances conforming to the M2 metamodel 

layer. Examples of models in the M1 layer are model written using UML diagrams, 

i.e. specific Class diagrams and state machines. 

The M0 layer comprises real world objects. These might be actual data 

values and model instances, e.g. object diagrams. 
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2.8.2 Eclipse Modelling Framework 

Eclipse Modelling Framework (EMF) (Budinsky, et al., 2003a; Eclipse, 

2008) is one implementation of Meta Object Facility (MOF). EMF was started as a 

MOF of the OMG implementation and is an enhancement of MOF2.0. It is open 

source and is used for “modelling frameworks and a code generation facility for 

building tools and other applications based on a structured data model” (Eclipse, 

2008). EMF specifies a model by identifying its objects, attributes, relationships 

between objects, object operations and object constraints, such as multiplicity. 

Ecore, which is an EMF model and metamodel itself, is a model used to 

represent models in EMF. An Ecore model can be generated in any of these forms: 

Java interfaces, XML Schema or UML diagrams. That is, one can write a Java 

program to declare a model, or define a model as an XML file. The last option is 

using UML diagram to create and edit a model. These forms give the same 

information, just different representations. In summary, one can choose any of 

them that matches this perspective and EMF can generate the others. 

EMF includes a graphical Ecore editor (EMFT-Eclipse, 2009) based on UML 

notations. For example, Figure 2-27 shows part of a TD metamodel represented by 

a UML diagram. This UML diagram defines relationships between classes Name, 

TDClass, TDParameter, and TDTimeline for TD metamodel. A corresponding 

generated Ecore model is shown in Figure 2-28. 

 

 

Figure 2-27 Example of UML diagram of interfaces:  

TD metamodel (parts of) 
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Figure 2-28 Ecore model is generated from a UML diagram 

 

An example of how the UML diagram above is re-represented in a Java 

interface and an XML file shown below. 

 

• A Java interface is created by EMF 

 

 public interface TDClass extends Name { 

 

  EList<TDParameter> getParameter(); 

 

  EList<TDTimeline> getTimeline(); 

 

 } // TDClass 

 

 

 public interface TDParameter extends EObject { 

  String getParam(); 

 

  void setParam(String value); 

 

  String getParamType(); 

 

  void setParamType(String value); 

 

 } // TDParameter 
 

• An XML Schema is generated by EMF 

 

<?xml version="1.0" encoding="UTF-8"?> 

<ecore:EPackage xmi:version="2.0" 

 xmlns:xmi="http://www.omg.org/XMI" 

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

 xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" 

 name="TDmetamodel" 

 nsURI="ecs.soton.ac.uk" nsPrefix="TDmetamodel"> 

 <eClassifiers xsi:type="ecore:EClass" name="TDClass" 

 eSuperTypes="#//Name"> 

 <eStructuralFeatures xsi:type="ecore:EReference" 
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 name="parameter" upperBound="-1" 

 eType="#//TDParameter" containment="true"/> 

 </eClassifiers> 

 <eClassifiers xsi:type="ecore:EClass" name="TDParameter"> 

 <eStructuralFeatures xsi:type="ecore:EAttribute" 

     name="param" 

 eType="ecore:EDataType" 

 http://www.eclipse.org/emf/2002/Ecore#//EString"/> 

 <eStructuralFeatures xsi:type="ecore:EAttribute" 

 name="paramType" 

 eType="ecore:EDataType 

 http://www.eclipse.org/emf/2002/Ecore#//EString"/> 

 </eClassifiers> 

</ecore:EPackage> 

 

The benefit of EMF is automatic Java code generation and plug-ins. In doing 

that, an EMF generator generates a generator model from an Ecore model (in any 

of the three forms above). This generator model is used to generate code and a 

plug-in. This is the same process that we used to create a TD plug-in, as shown in 

Figure 2-29, named TDmetamodel Model. The TD plug-in is then used to define a 

TD instance for transforming TD into UML-B by the Atlas Transformation 

Language (ATL), which is described in Chapter 6. 

 

Figure 2-29 TDmetamodel Model Plug-in 

2.9 Atlas Transformation Language (ATL) 

UML-B is implemented by EMF, which is a metamodel based on an Eclipse 

project. Similarly, ATL is developed on Eclipse platform and is used to generate a 
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target model from a source model. Since UML-B and ATL are built on the same 

platform, it is appropriate to use ATL to transform a TD model into a UML-B 

model. In order to do that, a TD metamodel is provided and an existing UML-B 

metamodel is used (detailed in Chapter 6). The explanation of ATL now follows. 

ATL is a model transformation language and was developed by the ATLAS 

INRIA & LINA research group (ATL, 2008). It was developed within the Eclipse 

platform in which the ATL Integrated Development Environment (IDE) provides�a 

number of development tools such as syntax highlighting and debugging (Allilaire 

and Idrissi, 2004). An ATL transformation module is composed of rules that define 

how source model elements are matched and navigated to create and initialize the 

elements of the target model. The ATL transformation approach is summarised in 

Figure 2-30 (ATLAS Group, 2008). 

 

 

Figure 2-30 ATL transformation approach 

 

A source model Ma conforms to a metamodel MMa and is transformed into a 

target model Mb, which conforms to a metamodel MMb. The transformation 

definition Mt is written in the ATL language. This transformation definition is a 

model and conforms to a metamodel MMt. These metamodels conform to the 

metamodel MMM (such as Meta-Object Facility (MOF) defined by OMG or Ecore, 

within the Eclipse Modelling Framework (EMF)). 

ATL is a mixture of declarative and imperative constructs. Note that there are 

two common approaches to programming: imperative programming and 
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declarative programming. Imperative programming provides a list of instructions, 

or algorithm, to be executed in a particular order. An example of the imperative 

approach is a Java program that counts the number of words in a sentence 

beginning with a capital letter. Declarative programming describes a set of 

conditions without giving its control flow, and lets the program figure out how to 

accomplish them. The SQL statement SELECT * FROM Book WHERE Author = 

‘Tony’ is an example for the declarative approach “In other words, ‘specifying 

how’ describes imperative programming and ‘specifying what is to be done, not 

how’ describes declarative programming.” (Jayaratchagan, 2004). 

ATL transformations are unidirectional; they operate on read-only source 

models and produce a output target model. That is, during the execution of the 

transformations, the source model is navigated but is not allowed to change; the 

target model cannot be navigated. An ATL module is composed of a header, 

imports, helpers and transformation rules. The detail of each component is now 

described. 

2.9.1 Header 

A header names the transformation model and declares the source and target 

models. A scheme of a header section is shown below. 

 

module module_name; 

  create OUT : target_metamodel_name from  

         IN : source_metamodel_name; 

 

The header section starts with the keyword module followed by the name of 

the module (module_name). The keyword create defines the target model while 

the keyword from indicate the source model. The target and source models are 

bound to variables OUT and IN to indicate the target metamodel’s name and the 

source metamodel’s name respectively. Generally, more than one source and target 

models can be declared in the header section. 
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2.9.2 Transformation rules 

Transformation rules express the transformation logic and provide the means 

for ATL developers to specify the target model elements to be generated from the 

source model elements. The transformation rules syntax definition is described 

below. 

 

 rule rule_name { 

 from in_var : in_type [(condition)]? 

 [using { var1 : var_type1= init_exp1; 

 ... 

 varn : var_typen= init_expn; } ]? 

 to out_var1 : out_type1 

 (binding1), 

 ...  

 out_varn : out_typen 

 (bindingn) 

 [do { statements } ]? } 

 

Each rule is identified by a rule name (rule_name) which must be unique 

within an ATL transformation model. An ATL rule is composed of two mandatory 

parts (the from and the to) and two optional parts (the using and the do). 

The from part is used to indicate the source model. It comprises a source 

variable declaration (in_var) and its type (in_type). The in_type is declared in a 

form of metamodel_name!metamodel_element. This is the way to identify with 

which elements the rule is involved. For example 

 

from c : GeometricElement!Circle 

 

where c is a source variable used in the rule, the GeometricElement is a 

source metamodel’s name and the Circle is a source model element. The variable 

may contain an optional boolean expression (condition) to state a subset of the 

source model elements. 

The using part defines a number of local variables which are used in the to 

and the do parts. An example of a using part is shown in Figure 2-31 (ATLAS 

Group, 2008); it defines a pi and an area values as variables to use in the rule. 
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from c : GeometricElement!Circle 

using { pi : Real = 3.14; 

area : Real = pi * c.radius.square(); } 

to ... 

Figure 2-31 An example of the using section 

 

The to part contains a number of target pattern elements. It is a mandatory 

section and has to contain at least one target pattern element. Each target pattern 

element is declared by a name (out_var) and its type (out_type) in which each 

element is separated by a comma. 

A target element is identified by a set of bindings (binding) which is used to 

define the way a source element is generated to be a target element. Each binding 

has to be identifid by the syntax definition below. The name of a target element 

(target_element_name) must be matched with the element’s name defined in the 

target model. 

 

target_element_name <- expression 

 

The do part is optional and is used to specify some imperative codes that will 

be executed after the initialization of the target elements generated by the rules. 

An example of defining the to and the do parts are illustrated by a rule 

Machine, Figure 2-32. This rule aims to create an UML-B machine 

(umlbMetamodel!UMLBMachine) and a context (umlbMetamodel!UMLBContext) 

from a source model element (TDMetamodel!TDMachine) where variable t is used 

to represent a source model element, while variables m and ctx represent target 

model elements. 

 

rule Machine { 

 from t : TDMetamodel!TDMachine 

 to m : umlbMetamodel!UMLBMachine 

 (name <- t.name, 

 classes <- t.class), 

 ... 

 ctx : umlbMetamodel!UMLBContext 

 (name <- t.name + '_ctx' ) 

 do { m.contexts <- m.contexts.append(ctx); 

       ...} } 

Figure 2-32 An example of the do section 
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For creating the UML-B machine, a machine’s name and a machine’s class 

are created by source elements t.name and t.class respectively. For creating the 

UML-B context, the context’s name is created from a source element t.name 

appended by the string _ctx. The do section expresses the way to add the variable 

ctx into the UML-B machine by using the keyword append, where contexts is an 

association in the target model umlbMetamodel!UMLBMachine used to link 

contexts to a machine. 

 

Figure 2-33 Example of TDMetamodel (parts of) 

 

Another example is shown in Figure 2-34. This figure shows the rule 

Constraint which aims to generate a guard for a UML-B transition. This rule uses 

a source model element TDMetamodel!TDConstraints, as shown in Figure 2-33, 

to generate a target model element umlbMetamodel!UMLBPredicate. The rule calls 

a helper getNodePredicate(t.timing), as detailed in Figure 2-35, to generate a 

predicate string and then assign to a target model element predicate. 

 
 rule Constraint{ 

 from t : TDMetamodel!TDConstraints 

 to u : umlbMetamodel!UMLBPredicate ( 

 name <- 'TimingCnstrntGuard', 

 predicate <- t.effectsource.getNodePredicate(t.timing)) 

 } 

Figure 2-34 Example of a rule: Constraint 
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2.9.3 Helpers 

A helper is a technique to define ATL translation rules with specific 

behaviours. An ATL helper makes it possible to define ATL code that can be called 

from different points of an ATL transformation. Helpers can be defined only on 

source models, since target models are not allowed to navigate. An ATL helper is 

defined by the following: 

• an optional context type : defines kind of element the helper applies to 

• a helper name : each helper must have a name defined as a string 

• an optional set of parameters; a parameter is identified by 

parameter_name : parameter_type 

• a return value type : each helper must have a return value 

• an ATL expression that represents the ATL helper’s code 

 

There are two kinds of helpers: Operation helpers and Attribute helpers as 

follows. 

 

Operation helpers: an operation helper can have input parameters, and a result of 

the Operation helpers is created each time the helper is called. Operation helper 

syntax is defined below. 

 

helper [context context_type]? def : helper_name (parameter_name : 

parameter_type) : return_type = expression; 

 

An example of an Operation helper is illustrated in Figure 2-35. This helper is 

named getNodePredicate and aims to generate a guard – a return value – which 

is a string for an UML-B transition. The helper uses an input parameter t whose 

type is defined by a source model element, TDMetamodel!TDTiming, as shown in 

Figure 2-33. 
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 helper context TDMetamodel!TDNodeType 

 def : getNodePredicate(t:TDMetamodel!TDTiming) : String = 

  if self.oclIsKindOf(TDMetamodel!Simple) 

  then self.SimpleGuard(t) -> concat(self.SimpleCond()) 

  end if self.oclIsKindOf(TDMetamodel!AND_node) 

  then ... ; 

 

Figure 2-35 Example of an Operation helper: getNodePredicate 

 

This helper checks whether the node type is Simple, AND_node, or OR_node. 

In order to do that, a condition if self.oclIsKindOf(t:TDMetamodel!TDNode 

Type)is used. The self is a keyword and used to define a context of an instance of 

a specific type. Thus, in this helper, self is used to indicate an instance of 

TDNodeType. The keyword oclIsKindOf() is an operation that returns a Boolean 

value stating whether self is either an instance of what defined inside the 

parentheses “(…)” or of one of its subtypes (ATL, 2008). This helper returns a 

string which is generated from concatenation (concat) of strings created from the 

other two helpers: SimpleGuard(t) and SimpleCond(). The helper 

SimpleGuard(t) is also an Operation helper and uses t as an input parameter, 

while the helper SimpleCond()is an Attribute helper, the detail of which is 

explained in the following paragraph. Note that the TDMetamodel and the helper 

getNodePredicate described in this section are different from that explained in 

Chapter 6. 

 

Attribute helpers: an attribute helper is used to associate read-only named values to 

source model elements. An Attribute helper cannot have input parameters and its 

return value is calculated only once when the value is required for the first time. 

Attribute helper syntax is defined below. 

 

helper [context context_type]? def : helper_name :  

return_type = expression; 

 

An example of an Attribute helper is illustrated in Figure 2-36. This helper is 

named SimpleCond() and is called from the helper getNodePredicate as shown 

in Figure 2-35. 
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 helper context TDMetamodel!TDNodeType 

 def : SimpleCond() : String = 

 self.predicates -> iterate(e; ret : String = '' | 

  if not e.oclIsUndefined() then 

   ret -> concat(' & ' + e.predicate) 

  else 

   ret -> concat('') 

  endif 

 ); 

Figure 2-36 Example of an Attribute helper: SimpleCond() 

 

The helper aims to generate a string value as a part of a condition for an 

UML-B transition, if there is any. From Figure 2-33, a string is created by an 

iterative process to concatenate predicate values (predicate) defined in a 

TDPredicate. In order to do that, we have to do iteration with an association 

predicates attached to the Simple node type, which is represent by 

self.predicates in ATL. The keyword self represents a source element Simple 

since this helper is called by the helper getNodePredicate whose Simple is 

inherited. The recursion is defined by the keyword iterate. The iterative syntax is 

defined below. 

 

source -> iterate(iterator; variable_declaration = init_exp | body) 

 

This iterative expression comprises four parts: iterator, an accumulator 

variable declaration (variable_declaration), a variable initial value, and a body. 

The iterator is used to refer an instance of a source collection. In the case of 

SimpleCond()helper, e is defined as an iterator representing a predicate value. 

The accumulator variable declaration is used to define an accumulator variable and 

its initial values (init_exp) are used inside the body, which is ret in this case. 

The body expresses the use of the iterator and variable. The iterate() 

operation returns a value in the accumulator variable once the last iteration has 

been performed. 

From Figure 2-36, the body of the SimpleCond() helper checks whether the 

predicate value is empty by the keyword oclIsUndefined(). The 

oclIsUndefined() returns a boolean value true if predicate is undefined. If there 
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are predicate values, each of them is concatenated with each other with a symbol 

“&”, if not the helper returns an empty string. 

2.10 Summary 

This chapter provides background knowledge used in this thesis. It starts 

from broad RE techniques and then focuses on using FMs. Event-B modelling is 

introduced; the detail of performing refinement and POs is given. The way RODIN 

toolkits are used to create and verify a model is presented. We explain features of 

an UML-B tool that is a graphical front-end for Event-B and used to create a model 

from TD. KAOS framework descriptions are discussed as goal-oriented modelling. 

The knowledge of metamodelling and Eclipse EMF is explained since they are 

used to generate ATL translation rules for mapping a TD model to a UML-B 

model. 

 



 

 

Chapter 3 Other Relevant 

Work 

This chapter aims at giving background of the knowledge other related work 

used in this research. These works are relevant to our research since one of them is 

used as a part of our translation patterns. Some provide tools that may useful for 

future work. Some show how their work is trying to expand KAOS, TD and Event-

B in other ways. This Chapter begins with describing SysML background; section 

3.2 explains an Action/Reaction pattern; section 3.3 gives an explanation of 

relevant research in KAOS and B. The next section describes research in KAOS 

and UML, while section 3.5 explains work on CSP and B; section 3.6 gives an 

explanation of other related research concerning TD, while section 3.7 describes 

LTL properties, which are useful for RE. 

3.1 SysML 

UML has been used broadly but it does not have a digram to identify some 

special needs such as modelling requirements and defining functions. Thus, 

Systems Modelling Language (SysML, 2008), which is as an extension of UML 

2.0, was developed. SysML is a “general-purpose graphical modelling language for 

specifying, analyzing, designing, and verifying complex systems that may include 

hardware, software, information, personnel, procedures, and facilities” (OMG, 

2008;SysML,2008).
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SysML 1.1 (SysML, 2008) reuses a subset of UML 2.0 and defines additional 

extensions by using UML’s profile mechanism (Hause, et al., 2005; Vanderperren 

and Dehaene, 2005). Figure 3-1 illustrates the reuse and extension of UML 2.0 by 

SysML. 

 
 

Figure 3-1 UML 2.0 and SysML 1.0 

 

UML 2.0 Statemachine, Use Case, and Sequence diagrams are reused while 

some existing UML diagrams are extended as follows: 

- Block Definition diagram: the Block Definition diagram is based on the 

UML Class diagram. It uses blocks, which are modular units of system 

description, to describe the structure of a system or element of interest in 

broad view. 

- Internal Block diagram: the Internal Block diagram is based on the UML 

Composite Structure diagram. It is used to show how the defined blocks are 

used in detail. 

- Activity diagram: the Activity diagram is based on the UML activity 

diagram. It is used to show the control flow, flow of inputs and outputs 

between actions. 

 

SysML introduces two new diagrams, the Parametrics diagram and the 

Requirements diagram. The Parametrics diagram is used to show relations between 

parameters. The Requirements diagram provides a modelling construction for text-

based requirements, and the relationship between requirements and other model 
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elements that satisfy or verify them in a graphical manner. An example of a 

Requirement diagram for a simple lift system is shown in Figure 3-2. 

 

 

Figure 3-2 An example of Requirements diagram for a lift system 

 

A Requirements diagram uses <<requirement>> stereotype to identify the 

requirements in which, for example, there can be subcategories of 

<<functionalRequirement>> and <<PerformanceRequirement>>. A 

<<functionalRequirement>> is used for specifying an operation that a system must 

perform while a <<PerformanceRequirement>> is used for identifying satisfaction 

constraints of the system. Relationships between requirements are shown by using 

stereotypes such as <<deriveReqt>>, <<satisfy>>, <<verify>> and <<copy>>. The 

<<deriveReqt>> describes the derivation of multiple requirements that support a 

source requirement while <<satisfy>> describes the satisfaction of requirements by 

designing and implementation (Moore, 2006; SysML Partners, 2006). The 

<<verify>> is used to specify the relationship between a requirement and a test case. 

The <<copy>> is for reusing requirements; that is, the slave requirements property is 

a read-only copy of the master requirements property. For example in Figure 3-2, a 

part of a slave requirement LiftStartsMovingUp’s text property is copy from text 

property of a master DoorClosed requirement. 
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The Requirements diagram has the idea of breaking a compound requirement 

into multiple subrequirements as shown in the figure above. That is, a top-level 

Requirement diagram illustrates whole requirements in general while the bottom-

level shows detailed requirements and relationships between them. The SysML 

decomposition concept of requirement is similar to KAOS goal refinement. 

3.2 Action/Reaction Pattern and B 

An Action/Reaction pattern was introduced by Abrial to describe causes and 

effects in reactive systems (Abrial, 2005b; Abrial, 2008b; Abrial and Hoang, 2008). 

The actions are the causes which make the effects take place. As shown in Figure 

3-3, the continuous line, dashed line and curved arrow represent action, reaction 

and cause/effect between action and reaction respectively. The Action/Reaction 

pattern is used to model a B machine while refinements are gradually created 

corresponding to additional information in the Action/Reaction models (Abrial and 

Hoang, 2008). 

 

Figure 3-3 Examples of action and reaction pattern 

 

Figure 3-4 illustrates an example of Action/Reaction patterns for the lift 

system corresponding to <<requirement>> DoorClosed and <<requirement>> 

liftStartsMovingUp in Figure 3-2. Note that this is only a straightforward example; 

extra information is added to this Event-B for completeness later. 
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Figure 3-4 Action/Reaction patterns and corresponding B machines 

 

The Action/Reaction pattern describes changing of states, which is similar to 

changing states in TD. Translating TD to Event-B in this work uses this pattern as a 

part of translation patterns and has some extra structures and information. 

3.3 KAOS and B 

One approach for diminishing the gap between KAOS requirement and 

formal method specification is introduced by (Ponsard and Dieul, 2006). The idea 

is to generate a B machine from a KAOS model and to create the connection 

between FAUST toolbox (FAUST, 2008) and RODIN platform. The FAUST 

toolset aims at achieving formal assurance, verification and validation (V & V), for 

the KAOS model at an early stage (Ponsard, et al., 2007). The FAUST toolbox 

composes tools such as Refinement checker, Compiler and Animator. The 

Refinement checker can automatically verify and validate goals, and operations 

on a given domain. The Compiler is used to generate a finite state machine from a 

KAOS Operation model and represents it in a graphical domain-based visualisation 

using Animator. 

Matoussi has been investigating a technique how to create Event-B models 

incrementally from KAOS goal models (Matoussi, et al., 2008). Currently, the 

technique can generate Event-B models from two KAOS refinement patterns: 

milestone-driving tactic and case-driven refinement tactic, in which the latter needs 
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to have additional constraints to complete an Event-B model. Those two KAOS 

patterns are the same as we found in mapping TD to KAOS. 

3.4 KAOS and UML 

Heaven and Finkelstein introduced a technique to create a profile to allow the 

KAOS model to be represented in UML (Heaven and Finkelstein, 2004). The UML 

is extended by introducing new stereotypes and tags which allow one to model the 

KAOS in UML. Since UML editors do not support temporal logic notation, the 

formal definitions in KAOS have to be rewritten in ASCII. The following is an 

example of how to represent a KAOS goal model by the UML stereotype. 

(Example below has been taken from (Heaven and Finkelstein, 2004)) 

 

Goal Achieve[AmbulanceIntervention] 

InformalDef For every urgent call reporting and incident, there should be an 

ambulance at the scene of the incident within 14 mins 

FormalDef ∀ c: UrgentCall, inc : Incident (@ Reporting (c, inc)) �  

 � � 14 min ∃ amb: Ambulance (Intervention (amb,inc))) 

 

UML which represents the same goal is: 

 

{form = Achieve 

informalDef = For every urgent call reporting and incident, there should be an 

ambulance at the scene of the incident within 14 mins 

formalDef = forall c: UrgentCall, inc : Incident (just Reporting(c,inc) --> 

eventually [<= 14 min] exists amb: Ambulance (Intervention(amb, inc)))} 

 

Though this technique explains how to combine KAOS with UML, there is 

no clear use for this contribution of KAOS in UML. The users have to learn and 

understand how to use KAOS-UML apart from only modelling. The benefit is 

unclear. This approach merely describes how to model the KAOS by using UML 

notation. 
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3.5 CSP and B 

A B machine is good for modelling a reactive system, since the operations 

thereby enabled can run in parallel. Thus, parallel activities are easily modelled in 

B. However, B machines “can be less convenient at modelling sequential activity” 

(Butler, et al., 2005a). It needs to have a program counter to order the actions’ 

execution. In contrast, Communication Sequential Process (CSP) – a process 

algebra defined by (Hoare, 1985) – provides operators such as sequential 

composition, choice and parallel composition of processes, as well as synchronous 

communication between parallel processes (Butler, et al., 2005b). CSP was 

designed for describing systems of interacting components, where each component 

is called a process. The process communicates with others and its environment 

using an alphabet of events. “An event describes a particular kind of atomic 

indivisible action that can be performed or suffered by the process” (Schneider, 

2000). 

Butler introduces csp2B, which allows specifications to be written in a 

combination of CSP and B (Butler, 2000). Then, the CSP can be compiled to a pure 

B representation which can be analyzed by a standard B tool such as ProB. (Butler, 

et al., 2005a) proposes a technique to represent an extension of ProB which 

supports checking of specifications written in a combination of CSP and B. The 

technique is to define events in the CSP specification to have the same name as B 

operations. The combination of CSP and B enables ProB to do automated 

consistency checking and refinement checking of specifications written in a 

combination of CSP and B. 

A case below provides an example of how to identify a lift is moving up 

specification in CSP. The lift is moving up specification is composed of 4 states: 

StopAtFloor, MovingDepartingUp, MovingUp and MovingArrivingUp. After the 

lift is in a state of MovingDepartingUp, the corresponding floorsensor at that 

floor is set to Off and then the lift changes to the state MovingUp. Whenever the 

lift is in a state of MovingArrivingUp, the floorsensor for the upper floor is set 

to On and then the lift can be in a state of MovingDepartingUp or StopAtFloor. 

The symbols → , ?, � and ; are used for prefix operator, input, deterministic 

choice and sequential composition respectively. 
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LIFT(f) = (StopAtFloor → MVDU(f)) � (StopAtFloor → MVDD(f)) 

 

MVDU(f) = MovingDepartingUp → FloorsensorOff?(f) → MovingUp 

  → MVAU(f) 

 

MVAU(f) = (MovingArrivingUp → FloorsensorOn?(f+1) → MVDU(f+1)) 

  � 

     (MovingArrivingUp → FloorsensorOn?(f+1) → StopAtFloor) 

MVDD(f) = … 

3.6 Other concepts 

PLS/Sugar 2.0 (IBM, 2008) is a formal specification language used to 

describe hardware’s behaviour over time. PSL/Sugar 2.0 uses Sugar Extended 

Regular Expressions (SERE) to describe a set of state sequences (Fisman and 

Eisner, 2009) in which the sequence can be represented by a TD. An example of 

SERE is {req;busy[*4];gnt} which can be illustrated in TD as shown in Figure 

3-5 (taken from (Fisman and Eisner, 2009)). 

 

Figure 3-5 Timing diagram representing {req;busy[*4];gnt} 

 

Figure 3-5 shows that, first, the req is set true for 1 unit of time. Then, 

whenever req is false, the busy is held true for 4 units of time. Finally, gnt is set 

true after the busy is set false. PLS/Sugar 2.0 provides another way that is easy for 

the user to understand and to read a sequence of system behaviour. However, 

PLS/Sugar 2.0 does not identify notations that are used for sending message 

between objects as in UML TD. The PLS/Sugar 2.0 diagram is used to describe the 

sequence of events and does not describe causality. 

Fisler proposes an event-sequence language for capturing TD’s transitions 

into an event of a sequence and a temporal constraint (Fisler, 2006). An example of 
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TD is illustrated in figure 3-6. A transition in TD is indicated by a state value, such 

as a, followed by an arrow direction such as a
 and a� to denote falling and rising 

transitions of a respectively. An event e is a conjunction of transitions. 

 

 

Figure 3-6 An example of a Timing diagram 

 

In the figure above, two outlined areas indicate regions of the TD that occur 

in sequence. A cluster C is used to specify shade regions in the TD. Timing 

constraints T are specified by a set of tuples <e, l, u, Boolean value>, where e 

are events covered, l and u are lower and upper bound timing constraints, and the 

Boolean value is whether the timer is enabled. Below, we show the event-

sequence language which corresponds with the TD above: 

 

C = {{a�, b�, c�, a�}; b�} 

T = {<a�, c�, 2, 5, true> 

 <c�, a�, 1, 2, true> 

 <a�, b�, 3, 9, true>} 

 

This technique is easily understood and offers notations that are readable for users. 

 

Barland describes the meaning of temporal logic notations in a timeline 

(Barland, et al., 2006). An example of a timeline which represents �(q → �¬p) 

is illustrated in Figure 3-7. 

 

p

q
 

Figure 3-7 Timeline 

after (Barland, et al., 2006) 
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Even though transferring from LTL notations to TD is easy to understand, the 

researchers do not propose a technique to express timing constraints. Moreover, 

translating from a LTL formula to TD is implicit. That is because one LTL formula 

can be translated to one or more TD. As shown in Figure 3-8, the notation p → 

�q can be illustrated by more than one TD. 

 

 

Figure 3-8 Timing diagram for p →  � q notation 

3.7 LTL properties and Requirements Engineering 

This topic focuses on some LTL properties, i.e. traceability, safety, liveness 

(progress) and fairness. These properties are importance and used for maintaining 

the correctness of doing RE. 

Traceability: in the RE context, traceability is understanding how high-level 

requirements – objective, goals, aims, expectations, and needs – are transformed 

into low-level requirements (Hull, et al., 2004). SysML Requirements diagram 

(SysML Partners, 2006), which was described in section 3.1, provides requirements 

traceability. 

Safety: a safety property one that guarantees something bad never happens. 

A temporal logic formula for the safety property can be written as �¬unsafe where 

unsafe is a propositional formula. A system has the safety property whenever all 

states of the system can be reached. The safety property can be declared as the 

Avoid goal pattern in KAOS model and is the main objective of using FM in RE 

processes. In Event-B, the safety properties are identified as invariants. For 

example, “the lift door must be closed all the time while the lift is moving” is a 

safety property and is defined as an Event-B invariant. 
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Liveness progress: a liveness progress property asserts that something good 

eventually happens. A temporal logic formula for the liveness property can be 

written as �G for some propositional formula G. In the same way, we can say that 

it guarantees an action will eventually be executed (Friedental and Steiner, 2004). 

The progress property is the opposite of starvation (deadlock) and can be declared 

as the Achieve goal pattern in KAOS model. 

Fairness: a fairness property indicates that, from time to time, a system must 

pass through a state which satisfies some properties. A temporal logic formula for 

the fairness property can be written as � � G which means G holds definitely often. 

In this thesis, we do not model the fairness properties. However in the lift case 

study, one can identify a fairness property as a performance requirement. For 

example, a lift must be shut down for its annual check. 

 

An example of a tool which can check the states’ correctness of a model is 

ProB (Leuschel and Butler, 2005). ProB is a graphical animator and model checker 

for B method. It provides a feature to verify the safety and progress property of the 

system states. The model checker in ProB does this by automatically detecting 

invariant violations and deadlocks in traceable state spaces. Apart from ProB, there 

is a model checker which can verify program requirements such as deadlock 

freedom and livelock freedom which is called “Timeline Editor” (Smith, et al., 

2001). The Timeline Editor is used to verify requirements which are implemented 

in the form of events along a timeline. The timeline looks similar to UML TD. 

However, it is represented in new notations and extra definitions such as events and 

lines. To obtain the requirement to be checked, “the timeline specification is 

mechanically converted into an equivalent test automaton for using in a logic 

model checking process such as Spin” (Hozmann, 1997). The tool has an interface 

that is easy for users and can fully verify requirement properties such as deadlock 

freedom and liveness issues. However, the notations used in the timing-like 

diagram for the identification of events along a timeline needs training, because 

they are different from UML 2.0 TD. 
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3.8 Summary 

The literature review in this chapter describes work related to this thesis. 

SysML introduces some new diagrams to those defined in UML; one of them is a 

Requirement diagram. The Requirement diagram represents system requirements in 

a graphical way. The diagram has a concept of requirements decomposition, which 

is similar to KAOS goal refinement. This is beneficial to software developers for 

presenting sub-requirements and tracing them back to corresponding 

documentation, test cases and design modules. Action/Reaction patterns provide a 

method of creating an Event-B model from causal dependency relationships 

between objects. This pattern is used as part of our techniques to generate Event-B 

and KAOS models from a TD. Some relevant work that concerns the combination 

of KAOS, B, CSP and UML, is described in this chapter. Some work has been 

trying to generate formal languages from TD, such as PLS/Sugar and the event-

sequence language. LTL properties such as traceability, safety, liveness and 

fairness, that are important for requirements engineering, are explained. Those 

properties should be concerned whenever modelling explicit system requirements.



 

 

Chapter 4 Timing Diagrams 

and Lift Specification 

Recently, TD has been added to the UML 2.0 specification, but it has been 

used in electronic engineering for a long time (Fowler and Scott, 2004). The TD is 

a particular type of interaction diagram and is used for exploration and monitoring 

of the behaviour of objects over any given period of time. However, using TD is 

suitable for some kinds of specification behaviours. We clarify what kinds of 

system specification are appropriately and inappropriately described by the TD. 

- Appropriate requirements are those that can be declared as changing states 

of hardware with time, or there are causal dependencies between the system’s 

objects, or both; for example, embedded software components for a microwave 

controller, vendor machine controllers, and ATM transaction processing. 

- Inappropriate requirements are those concerns with human actions such as 

modelling a person pressing a button, business requirements such as budget 

controlling, and improving response time to customer inquiries. 

 

The rest of this chapter starts by presenting lift specifications that are used in 

this work. Section 4.2 explains UML 2.0 TD (OMG, 2008). Section 4.3 provides 

the amended TD notations that are obtained by selecting UML 2.0 TD’s notations 

and adding some new notations to make it suitable for translation; section 4.4 

illustrates TD for the lift specifications. Section 4.5 provides a brief glossary for 

TD; section 4.6 gives an example of a preliminary TD editor.
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4.1 Lift Specification 

The original lift position display specification is taken from (Jackson, 2001) 

where it is described as the following: 

“A somewhat primitive lift in a small hotel has been installed and 

successfully operated for many years. Now it is to be fitted with an 

information panel in the lobby, to show waiting guests where the lift is 

at any time, so that they will know how long they can expect to wait 

until it arrives. 

The panel has two lamps for each floor. There is a floor lamp (square 

lamp) to show that the lift is at the floor, and a round lamp to show that 

there is a request outstanding for the lift to visit the floor. In addition, 

there are two arrow-shaped lamps to indicate the direction of travel. 

There is a lobby, and there are eight other floors, so the panel looks like 

this.” 

 

Figure 4-1 Lift Position Display 

“The job is to drive the panel display from a very minimal interface 

with the existing request buttons and floor sensors of the lift. A floor 

sensor is on when the lift is within 6 inches of the rest position of the 

floor. Pressing a button is detected as a pulse. There is one button at 

each floor to summon the lift, and a set of buttons inside the lift car – 

one button to direct the lift to each floor.” 
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The lift specification used in this thesis 

 

The specification above shows causal dependencies between system objects 

that can be specified in TD. To make it more suitable for modelling with TD, 

Event-B and KAOS, the specifications are expanded to include timing constraints 

and hardware, i.e. Door. In addition, it is assumed that there is one floor sensor for 

each floor. 

The amended lift system specifications are described in two parts: the lift 

moves from the current floor to service a request at floor f, and the lift general 

servicing. 

1. The lift moves from the current floor to service a request at floor f 

 1.1 The request lamp for floor f must be lit. 

 1.2 Before the lift starts moving departing up/down from the current 

floor, the lift’s door must be closed. 

 1.3 If the lift door is open at the current floor and there is a request to 

service some floor f, then the lift door at the current floor must be closed. 

Next, within between 1-5 seconds after the door closed, the lift starts 

moving departing up or moving departing down. 

 1.4 The current floor sensor must be off within 2-5 seconds after lift 

starts moving departing up or moving departing down. 

 1.5 The floor lamp for floor f will be unlit within 2-4 seconds after the 

current floor sensor is set off. 

 1.6 Whenever the floor sensor status is off, it means the lift is moving 

(possibly moving up or moving down, cannot be both). 

 1.7 The floor sensor for floor f must be on within between 2-5 seconds 

when the lift is moving nearly arriving up/down at the rest position of the 

floor f. 

 1.8 The lift will be stopped at floor f within between 1-5 seconds after 

floor sensor at floor f is set on. 

 1.9 The floor lamp for floor f will be lit within 2-4 seconds after the 

current floor sensor is set on. 
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 1.10 Whenever the lift stops at the requested floor f, the lift door will be 

opened within between 1-5 seconds. 

 1.11 Request lamp for floor f will be unlit within 2-4 seconds after the lift 

stops at floor f. 

 

2. Lift general servicing 

 2.1 While the lift starts moving departing up, the up lamp must be 

activated and the down lamp must be deactivated. 

 2.2 While the lift starts moving departing down, the up lamp must be 

deactivated and the down lamp must be activated. 

 2.3 If the lift is stationary, both up and down lamps must be deactivated. 

 2.4 If there is no request, the lift will stop at the last floor serviced. 

 

The simple example below indicates the kind of requirements we believe can 

be specified in TD. This example shows how a floorlamp and a floorsensor objects 

– requirements 1.5 and 1.9 – are associated in TD. 

 

 

Figure 4-2 A simple TD shows relationship between floorlamp and floorsensor 

4.2 UML 2.0 Timing Diagram 

There are two forms of TD: a compact notation and a robust/full notation. 

The details of these notations are described below. 

 

The compact TD uses a Lifeline to represent individual object in the 

diagram. An object is identified on the left-hand side while its states are listed 

along the right-hand side. A state is denoted by text and a state change represented 
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by a crossing (OMG, 2007; Visual Paradigm, 2007). A DurationConstraint is used 

to specify the period of time for each state. The compact TD is suitable for 

exploring the general behaviour of one or more objects during a period of time, 

while the robust TD is used whenever one would like to identify more detailed 

information. An example of the compact TD is illustrated in Figure 4-3. 

 

Figure 4-3 Compact Timing diagram (OMG, 2007) 

 

The robust TD shows the states of each object on the left-hand side of the 

diagram (Y-axis) while timing constraints are on the X-axis. A timeline is used to 

display the change in state or value of one or more elements over time 

(Sparx Systems, 2006).  

 

Figure 4-4 Robust Timing diagram (Ambler, 2004) 
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Event/Stimuli are optionally labelled at transition points to indicate the 

reason for the change (Ambler, 2004). An example of a robust TD is illustrated in 

Figure 4-4. 

According to Figure 4-4, Code and OK are messages sent between objects. 

Cardout is an event which makes an object user change its state from Waitcard 

to WaitAccess. Time Constraint indicates when an event must occur, while 

Duration Constraints indicate how long a state or value must be in effect; where d 

and t represent a unit of duration and time respectively. A Time Observation 

indicates the point of time a Lifeline’s state is observed. 

4.3 UML Timing Diagram Amended 

Though UML 2.0 TD uses simple notations to explain the changing of 

object’s states through time, it is composed of many notations specifying properties 

that are not dealt with in this work. Thus, a subset of notations is selected and some 

notations are justified, which are easier for generating expressions to interface with 

Event-B and KAOS. The TD notations used in this research are based on the 

(OMG, 2007) Robust TD notations. The notations for graphic nodes and paths to 

be included in the TD are described in  

Table 4-1. 

 

Node Type and Notation Reference 

Object and State 

 

A state notation on the horizontal axis indicates the 

state of an object. 

Timeline 

 

 

A Timeline�is used to illustrate an object changing 

states, where an object can have a Timeline. A 

Timeline is composed of a chain of segments in 

which segments represents an object’s state and the 

position it appears on the Timeline. A segment is 

connected with another by a Transition. Time is 
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Node Type and Notation Reference 

indicated on the horizontal axis. 

CauseEffectArrow 

 

 

An arrowed line indicates a cause and an effect 

between objects’ segments. The beginning of line 

represents a cause segment while the end of the line 

(with arrow) represents an effect segment. A simple 

form of a CauseEffectArrow is to link a cause 

segment to an effect segment.�

AND 

 

 

 

 

OR 

 

“AND” and “OR” notations are used for specifying 

combinations of cause segments within a 

CauseEffectArrow. Currently, they are not used to 

contribute one cause to many effect segments. 

Using “AND” notation means the causes that make 

an object changing its state are derived from a 

combination of those cause segments, while “OR” 

indicates or-inclusive relationship. Each 

“AND/OR” notation comprises the minimum of 

two cause segments (as represented by bold-lines, 

while dashed-lines represent other specified 

segments if there are any). Nested “AND” and 

“OR” relationships for a CauseEffectArrow are 

allowed. 

Condition 

 

Conditions are optional additional constraints that 

cause a state change. A condition is represented by 

plain text presented above the CauseEffectArrow. 

Duration constraint 

 

[t1, t2] 

 

Duration indicates time constraints and is used to 

describe how long a state or value must be in 

effect. Time unit in the duration constraint can be 

second or minute. The duration constraints can be 

identified by using symbols, i.e. [t1, t2] indicates 

the time constraint starts from t1 and ends at t2. 
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Node Type and Notation Reference 

 

SimultaneityArrow 

 

 

 

Simultaneity� is represented by an arc dashed-line 

and is used to synchronize objects that change their 

states simultaneously. When the application is 

eventually developed, one does not expect things to 

be exactly simultaneous. It means one expects them 

to happen very close to each other and no particular 

constraint; that is two things are very close in time. 

It is used in terms of “the level of abstraction.” 

 

Table 4-1 Timing diagram notations 

 

To be practical, we define a CauseEffectArrow to be drawn from the start 

point of a cause segment to the start point of an effect segment as shown in Figure 

4-5 (A). However, if an object has no state change, it can be drawn as shown in 

Figure 4-5 (B). 

 

 

Figure 4-5 Robust Timing 

 

The amended TD is generally designed to fit with other systems that concern 

timing constraints, changing an object’s state through time and within an object 

itself. It provides sufficient notation to identify discrete timing constraints in the 

system specification. Here, we clarify some points of similarity and difference 

between amended TD and UML 2.0 TD. 
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 Similarity: 

1. Timelines 

2. States 

3. Duration constraints 

4. Conditions can be seen as messages in standard UML TD notations 

Difference: 

• An arrowed line is used to indicate cause and effect between objects’ 

states rather than sending messages between the objects as in standard 

UML TD. 

• SimultaneityArrows are a new notation 

• AND and OR nodes are new notations 

 

So far, we have not found any cases in the lift system that need to be 

modelled by Time Observation (defined in standard UML TD). Thus, we do not 

deal with this symbol at this time. 

4.4 Timing Diagram for the Lift specifications 

To provide a simple example, we select requirements 1.4 and 2.1 that are 

concerned with four objects: lift, floor sensor, up lamp and down lamp. TD which 

is created from these objects represents specification number 1.4 (lines a and b) and 

2.1 (lines c and d) is shown in Figure 4-6. Note that the symbols a and b are not TD 

notations but used only for explanation in this section. 

Figure 4-6 shows that the lift comprises seven states: MovingArrivingUp, 

MovingUp, MovingDepartingUp, StopAtFloor, MovingDepartingDown, 

MovingDown and MovingArrivingDown. A floor sensor has two states: On and Off. 

Uplamp has two states: deActivated and acTivated, while downlamp has two states: 

Deactivated and Activated. We have to use different names for Uplamp and 

Downlamp states since Event-B and UML-B models do not allow duplicate names. 
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Figure 4-6 Timing diagram from Floorsensor, Lift, Uplamp and Downlamp 

 

In terms of RE, we can describe the relation between lift movement and the 

floor sensors as: whenever a user presses a button to request a lift, the lift starts 

moving departing up (a)/ departing down (b) from the current floor. Within 

between 2-5 seconds after the lift starts moving departing up/down, the current 

floor sensor will turn off, requirement 1.4. At the same point of time, if the lift 

starts moving departing up say, the up lamp changes its status to activate (d) while 

the down lamp changes its status to deactivate (c), requirement 2.1. 

In term of TD notations, we say that there are four Timelines which 

represent the state changes in time for the corresponding objects: floorsensor, lift, 

uplamp, and downlamp, belonging to classes FLOORSENSOR, LIFT, UPLAMP 

and DOWNLAMP respectively. The lines a and b show the combination of the 

CauseEffectArrow�by using “OR” notation; it means the floorsensor�is set to Off 

according to whether the lift is in the state of MovingDepartingUp or 

MovingDepartingDown. Predicates such as f = currentFl & dir = Up are additional 

conditions on the CauseEffectArrow where f represents a floor and is a dynamic 

state parameter that can change in time. Here, f is also the object index for class 

FLOORSENSOR. The currentFl represents the present floor for the lift, while dir 
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represents direction of the lift. The curved dashed-lines (c and d) represent 

SimultaneityArrow. They are used to synchronize the liftMovingDepartingUp 

segment with the uplamp and downlamp objects to determine the occurrences 

happen very close to each other with no particular constraint. The whole TD for the 

lift specification is illustrated in Figure 4-7. 
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Figure 4-7 Timing diagram for the lift specification 
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4.5 A brief glossary for Timing Diagrams 

 

Figure 4-8 Timing diagram and named parts 

 

For translation rules we describe in the later chapters, we repeatedly refer to 

parts of TD by using specific terms. We would like to describe those terms by 

using Figure 4-8: the CauseEffectArrow a and b. 

• Cause states: MovingDepartingUp and MovingDepartingDown are 

causes that make a floor sensor change its state from On to Off. Thus, 

we say 
���������	
������ and 

���������	
������
� are cause 

states of this CauseEffectArrow. 

• Cause segments: a segment represents an object’s state and the 

positon it apperars on the Timeline. Thus, MovingDepartingUp2 and 

MovingDepartingDown6 are segments that make a floor sensor 

change its state from On to Off. Thus, we say 
���������	
������� 

and 
���������	
������
�� are cause segments of this 

CauseEffectArrow. 
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• Previous states: A previous state is a state before the current state of 

interest. A state before floor sensor changes to be Off is On. Thus, we 

say On is a previous state. 

• Previous segments: A previous segment is a segment before the 

current segment of interest. A segment before floor sensor changes to 

be Off is On. Thus, we say ��� is a previous segment. 

4.6 Preliminary Timing diagram editor 

Working with a group design project from the School of Electronics and 

Computer Science, University of Southampton (Cobden, et al., 2007), a 

preliminary TD editor plug-in was created. The interactive editor was created based 

on our TD notations (at that time), and used the Eclipse EMF and GMF 

frameworks. Figure 4-9 provides parts of a screenshot for the lift system from the 

TD editor window. 

 

 

Figure 4-9 Timing diagram editor window 
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In its default configuration, the TD editor window displays the Navigator tab on the 

left side of the window. The Editor’s tab is located in the top middle part of the 

window, and the palette is positioned on the top right part of the window. The three 

remaining tabs (Problems, Properties and Tasks) are located at the bottom of the 

window. 

A TD can be created by selecting elements in the palette that are Timeline, 

State, Segment, Transition, SimultaneityArrow and CauseEffectArrow. A 

Timeline is used to represent an object in which one Timeline can be identified 

by many states. A Timeline comprises a number of segments that represent an 

object’s state. A Transition is used to link individual segments in the same 

Timeline. A CauseEffectArrow is used to connect different objects’ segments to 

identify causal dependency between Timelines. Time constraints are identified by 

Lower Bound and Upper Bound and are attributes of the CauseEffectArrow. A 

SimultaneityArrow, shown as a blue dashed-line in Figure 4-9, links a 

CauseEffectArrow and a segment. That is, the beginning of the 

SimultaneityArrow is the CauseEffectArrow and the end (with arrow) is the 

segment. This is different from the current TD in which a SimultaneityArrow 

links segments. 

In Figure 4-9, a Time synchronisation line is represented by a vertical 

dashed-line and is used to synchronize duration constraints between objects. 

However, this notation is no longer used in the current TD notations. That is 

because the lines are not used for the translation. Moreover, it makes the diagram 

rather untidy, especially whenever there are many objects in it. 

Although, the editor can generate most TD notations, it was created on an 

earlier TD metamodel version. Thus, it is not used to generate the TD as shown in 

this work. Moreover, the editor cannot specify the combination of “AND/OR” 

relationships for CauseEffectArrow, nor identify parameters for a model. 

Parameters of each Timeline, for example l : LIFT as shown in Figure 4-10, are 

simply created as textual descriptions. 
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Figure 4-10 Timing diagram editor: Parameter 

 

In this thesis, a TD is created from Microsoft Visio™ for the 

representation/visualisation. For translating TD into UML-B, the TD description 

was generated by EMF, whose detail is explained in Chapter 6. 

4.7 Summary 

This chapter shows the lift system specifications and TD notations used for 

translation. Some TD notations are obtained from UML 2.0 TD while others are 

introduced for the proper translation. The full detail of TD is generated from the 

case study represented in this chapter. A glossary for TD normally used in the later 

chapters is identified. A preliminary TD editor is discussed. 

 



 

 

Chapter 5 Translating Timing 

Diagrams into Event-B models 

(direct translation) 

This chapter describes translation rules used to transform a TD into an Event-

B model. The clarification for what kind of the systems’ specifications are suitable 

for description by TD has been explained at the beginning of chapter 4. There are 

two steps to create translation rules to transform TD into Event-B: defining TD 

BNF and identifying translation rules. Research by (Essalmi and Ayed 2006) 

proposed transformation rules of BNF and Extended BNF (ISO/IEC 2008) 

grammars to UML Class diagrams, while we have approached this in a different 

way. We identify TD BNF that describes features and relationships among the 

TD’s notations. Then, translation rules are created by using a TD element as an 

input parameter for the rules to generate an Event-B model. 

Section 5.1 explains the TD BNF definitions. Section 5.2 shows the 

corresponding Event-B parts are created from the top-level translation rules. 

Section 5.3 gives the basic translation rules and gives detailed examples, which are 

used to generate Event-B elements. The details of extra information required to 

complete the model are discussed in section 5.4.  
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5.1 TD BNF definition 

This section introduces the TD BNF definitions in which are used to create 

translations rules to transform TD into an Event-B model. The BNF symbols 

(Métayer and Voisin 2007) are as follows. 

• The symbol ��� means “is defined as”. The element on the left of the 

symbol is defined by the expression on the right. 

• The symbol � denotes alternative. 

• Constructs within square brackets ��� are optional. 

• Terminals are surrounded by quotes ��	
 

• The symbol �� represents n concatenated instances of �, where n � 0. 

The symbol �
 represents n concatenated instances of �, where n � 1 

• Parentheses ��� are used for grouping� 

• The symbol �� ������� is for additional explanation; this symbol is 

not a part of the translation rules. 

Figure 5-1 shows an example of how the TD BNF definitions are 

represented. Note that strings such as ���, ����, …, 
���������	
������
��, 

represent segment names that are generated by BNF definitions and are described 

later. 

 

Figure 5-1 Timing diagram for floorsensor, lift and uplamp 

(Parts of Figure 5-2) 
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A TD project (�������) is represented by a name and is composed of at least 

one TD machine (�������). We decided to have many �������� in a �������� to 

correspond with the UML-B metamodel (in chapter 6). A TD machine has a name 

(must be unique) and comprises one class as a minimum. A class is defined by a 

name (���������), at least one object and an object definition ( !�"#�$). 

 

������������������������
�

����������������������
�

���������%����&�

�������������������� !�
� !�"#�$�

��������������%����&�

 

In TD, we allow naming of an object and its class to indicate whether the 

object occurs singly (:) or multiply ( ⊆ ) in the system. This naming is defined by 

 !�"#�$. 

 

 !�"#�$����� !�������⊆ 	������"���'����� !����������	������"���'���

 !����������%����&�

�����"���'�������������������

� �����������	���������	������()*�����+	���������	������()*������	�

��������������� �� 
��
������ �	
	����
�� �	��
�����()*����������� �� 
��
������ �	
	����
�� ������ �	��

 

 

For example in a lift case study (as shown in Figure 5-1), there is only one 

lift in the system. Thus, an  !�"#�$ for the lift is declared as lift : LIFT. In 

contrast, there is a floor sensor in every floor,  floorsensor ⊆ FLOORSENSOR is 

defined. 

A class may have parameters (�����) with parameter types (�����()*�) in 

which both of them are defined by a string. A parameter is used to indicate the 

specific object of interest from the set. For example, in the case of an object 

floorsensor, a parameter f : FLOOR identifies which floorsensor it is where f is a 

parameter with a type FLOOR. Thus, the complete identification for an object 
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floorsensor is declared by floorsensor ⊆ FLOORSENSOR(f:FLOOR). The 

parameter tells which object one is using in that case and that information is 

required for the translation. This is the way one can introduce information for the 

translation. 

 

 !������� !������ !�%�
�(������� 

 

An object is defined by a name ( !�����). It is composed of at least one 

object’s state ( !�%�) and a�(�������. A (������� represents a chain of an object’s 

states changing in a class. Since one object has one (�������, a�(�������’s name is 

defined by the same name as its corresponding object’s name. A (������� is 

composed of at least one segment. A segment is presented by a corresponding 

object’s state’s name followed by a positive integer. For example, ���, ���� and 

���, in Figure 5-1 represent segments for the object floorsensor. 

 

(�����������������%�&����
�

%�&��������� !�%���'�!���%��'������'��,$$���-���.��

 !�%�����������

�'�!�������Ζ 
�

%��'������%����%�&���,�/%�&���

%����%�&�������%�&�����

,�/%�&�������%�&�����

 

One segment is composed of zero or more SimultaneityArrows (%��'�). A 

SimultaneityArrow links a segment (%����%�&��) and another segment 

(,�/%�&��). For example, in Figure 5-1, there is one SimultaneityArrow in which 

StopAtFloor1 and deActivated2� are %����%�&�� and ,�/%�&�� respectively. 

Presently, we do not allow a SimultaneityArrow in the same segment, nor 

combinations of SimultaneityArrow using “AND” or “OR” nodes. A segment 

can have a ��'��,$$���-���. which is optional. 

 

��'��,$$���-���.����������������
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�����������������/�()*��

��/�()*������%��*����� 0"��/����-�#"��/��

%��*���������'��%�&����(����&������/��������

��'��%�&�������%�&�����

���/����������%����&�

 0"��/��������/�()*������/�()*��

-�#"��/��������/�()*������/�()*��

(����&�������	���.���������+	�'**����������	�

��.������������Ζ 
�

'**������������Ζ 
�

 

A ��'��,$$���-���. is actually used to define a constraint (����������) 

between segments. This constraint is defined by a type (��/�()*�) which can be a 

simple (%��*��) or a grouping of either OR nodes ( 0"��/�) or AND nodes 

(-�#"��/�). Those grouping nodes allow one to create combinations of cause 

segments. A %��*�� consists of a cause segment (��'��%�&��), an optional timing 

constraint ((����&) and an optional string condition (���/�����). A timing constraint 

is declared as a pair of positive integer values: a lower bound (��.�������) and an 

upper bound ('**�������). 

For example, in Figure 5-1, a segment ���� has a ��'��,$$���-���. which is 

declared by an  0"��/�. The BNF definitions of this ��'��,$$���-���. are 

identified as in the following. 

First, from the BNF definition ��'��,$$���-���.���������������, it�is applied  

to  ��'��,$$���-���.����� 0"��/� 

Second, from the BNF definition  0"��/��������/�()*������/�()*�, 

  each ��/�()*� is replaced with %��*�� that are segments 

���������	
������� and 
���������	
������
���

Third, from the BNF definition %��*���������'��%�&������(����&������/�������, 

  each %��*�� is given (����& and ���/����� values thus: 

� � %��*�������
���������	
������� �1+�2��$����'�����3��4�/�����5*�

� � %��*�������
���������	
������
����1+�2��$����'�����3��4�/�����#�.� 
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Finally, the ��'��,$$���-���. for the segment ���� is defined as 

���������	
������� �1+�2��$����'�����3��4�/�����5*�� 

���������	
������
����1+�2��$����'�����3��4�/�����#�.� 
 

A TD used for transforming into an Event-B model is illustrated in Figure 5-2. 
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Figure 5-2 Timing diagram for an Event-B model direct translation 
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5.2 Event-B model parts vs. Top-level textual translation rules 

This section gives the whole picture of how each Event-B model’s part is 

generated from corresponding top-level textual rules as shown in Figure 5-3. In this 

figure, the blue coloured boxes represent parts generated from the rules, and the 

dotted boxes represent parts the extra information added for the model completion. 

→ →

 

Figure 5-3 Event-B model’s parts correspond with top-level textual rules 

 

The translation rules cover generating CONTEXT and MACHINE parts for 

an Event-B model are now described. 

For the Context part, the rules ���
, �����
	�
 and ������ use ������� as 

an input parameter to create sets, constants, and axioms for the model respectively. 

The details of those rules are described in section 5.3.1 below. TD notations, that 

can be used to directly generate a CONTEXT part, are classes and objects’ states. 

However, if one intended to identify extra information that cannot be identified by 

TD, such as a specific member of a class, e.g. there are three floors for the lift 

system, or extra sets provide supportive information for the system, e.g. the 

directions (DIR) of a lift movement can be only 
�� and ��
�, this information has 
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to be manually added. For example, identifying a set DIR in a CONTEXT is 

shown in Figure 5-4. The set’s name is declared in SETS, each element of a set is 

defined as a constant in CONSTANTS, while a set’s name assigned to its element 

values is identified in AXIOMS. 

 

 

Figure 5-4 A set DIR 

 

For a MACHINE part, rules ���	
���� and ���	
�
	
�� are used to 

generate machine variables. Most of machine’s variables are generated by the rules. 

However, it may have some variables that are manually added. Those variables are 

actually used in a ��'��,$$���-���. predicate. For example, in case of the lift 

system, reqFl and currentFl are variables that are added by hand and used to 

represent a list of requested floors and a current lift position respectively. 

Variables that can be generated by the translation rules have to define their 

invariants in an INVARIANTS part. This can be done by using rules 

���	
������� and ���	
�
	
����. Additional invariants may be appended in this 

step. For example, a condition that defines that an up lamp and a down lamp must 

not be activated at the same time, and the lift door must not open while the lift is 

moving. 

Events in a machine comprise two kinds: an INITIALISATION event and 

other events. The INITIALISATION event is used to declare variables’ initial 

states, which are created by rules ���	
�������
 and ���	
�
	
����
. The other 

events are defined by a rule �����
. There are some events which cannot be 

created by translation rules. For example, an event that changes the direction of the 

lift, and events that represent the lift continue moving for many floors before 

stopping. That is because in the first example, this information cannot be 
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represented by TD notations; in the second example, this information is not 

represented by %�&����� but states while the rules use %�&����� in generating an 

event (as described in section 5.3.3 below). 

5.3 Translation rules 

This section demonstrates the translation rules that are used for transforming 

TD into an Event-B model. In these translation rules, a component using bold 

typewriter font demonstrates a name of the translation rule, e.g. �����
. A plain 

string inside angle brackets, e.g. <IF> and <THEN>, is a keyword in the macro 

translation language. TD language elements are defined in the same font as TD 

BNF definitions, e.g.  !���. The Event-B parts are shown using italic font written 

in quotations, e.g. “Time” and “WHEN”. 

The following table identifies the whole set of basic rules generally used for 

translation. Note that this table does not contain compound translation rules that 

appear in the following sections, but only those fundamental rules that are usually 

used. The details of the complex rules are given in Appendix A. 

 

�	�
((elem1, elem2, …, elemn)) →  elemn; this rule produces the last element for 

an input sequence of elements. 

�������
	����(��/�()*�)� →  (��/�()*�6,� ��/�()*�1,� �);� this rule produces a 

sequence containing the instances which are sub-��/�()*��of an input ��/�()*�. 

�����	
	�(�����) →  (�����6,� �����1, �); this rule produces the sequence of 

parameters for an input������. 

�����	
	��!"�(�����) →  (�����()*�6,� �����()*�1, �); this rule produces the 

sequence of parameter types for an input������. 

�����
������(%�&������ →  (%�&����6,� %�&����1, �); this rule produces a 

sequence containing all the previous segments for an input %�&����. 

�����
	
�((�������) →  ( !���6,�  !���1, �); this rule produces the sequence of 

objects states for an input�(�������. 
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������������(�������) →  ((�������6+� (�������1+� �); this rule produces the 

sequence of (�������s for an input��������. 

���	��( !�) →  �����; this rule produces the class for an input object. 

���	���	��((�������) →  ���������; this rule produces the class’s name for an 

input (�������.�

�����(%��*��) → � (���/�����6+� ���/�����1+� �); this rule produces the sequence of 

���/������ for an input %��*��. 

�����

�
(%�&����) →  ����������; this rule produces the ���������� for an input�

%�&����. 

���"
!(���) →  7  8; this rule checks whether an input set is empty. If so, the rule 

produces the Boolean value true.�

��������(%��'�) →  ,�/%�&��; this rule produces the ,�/%�&�� for an input 

SimultaneityArrow.�

���
������
#�
$����

�
(�������) →  (%�&����6+� %�&����1+� �); this rule 

produces a sequence containing all the segments defined with ����������s for an 

input �������. 

�%	��	
	�(�����) →  7  8; this rule checks whether an input ������ has 

parameters. If so, the rule produces the Boolean value true.�

�%	�������(%��*��) → �7  8; this rule checks whether an input %��*�� node has 

been defined with timing constraints. If so, the rule produces the Boolean value 

true. 

���&�
��
((����&) → � ��.�������; this rule produces the ��.������� value for an 

input�(����&. 

��	��((�������) →  ����; this rule produces the (�������’s name for an input 

(�������.�

������!"�(����������)�→ ���/�()*�; this rule produces the ��/�()*� for an input 

����������. 

�'�(( !�%�) →   !�; this rule produces the object for an input object state. 

�'�(�	��( !�) →   !�����; this rule produces the object name for an input 

object. 
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�'�(�
(%�&����) →   !�%�� this rule produces the object state for an input�

%�&����.�

��	
	��!"�(�����) →  �����()*�; this rule produces the parameter types for an 

input parameter. 

�������
(%��*��) → �%�&����; this rule produces the %�&���� value for an input 

%��*��. 

��������)(%�&����) →  (%��'�6+� %��'�1+� �); this rule produces a sequence of 

SimultaneityArrow for an input�%�&����. 

�������������	��((�������) → � �����; this rule produces the ����� for an input 

(�������. 

�������(%��*��) → �(����&; this rule produces the (����& value for an input %��*��. 

�*""�
��
((����&) → � '**�������; this rule produces the� '**�������� value for an 

input�(����&.�

Table 5-1 Basic rules for TD to Event-B translation 

5.3.1 Translation rules for creating a set in the Context part 

The CONTEXT part is used to identify static values such as sets, constants 

and axioms in an Event-B model. Here, we describe how translation rules create 

the CONTEXT part. The rule ���
�(Figure 5-3) is used to create a set’s name in 

which each element in a set is defined as a constant with the rule �����
	�
. The 

rule �������genereated axioms which are declaration of sets’s names followed by 

their elements. Below is an explanation of the rules for ������, while the detail of 

the rules ���
 and �����
	�
 can be found in Appendix A.  

The rule ������, Figure 5-5, uses a ������� as an input value and recursively 

generates a list of states as elements for a set. Each axiom is created by a (������� 

which is represented by an iterator �. This rule creates a set name followed by the 

list of the set’s elements. Those elements are generated by a sub-rule 

�#
�
�����
	
�� which uses (��������as an input parameter. 
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������(�������) →  

 <FOR> � <IN> ������������(�������) 

  { ���	���	��(�)�+ “_STATES = ” + �#
�
�����
	
��(�)�} 

�#
�
�����
	
��(�)�→  “{”  + �����
	
���
(�����
	
�(�)) + “}” 

�����
	
���
(9��/���%�:(���) →  9��/�+ “,” + �����
	
���
(%�:(���) 

�����
	
���
(9��/�:�;�<�) →  9��/ 

Figure 5-5 Rule ������ : creating axioms in an Event-B Context 

 

For example, the rule ������ generates an axiom for a Timeline floorsensor 

as FLOORSENSOR_STATES = {On, Off}. 

5.3.2 Translation rules for creating variables and their initial values 

Variables are dynamic parts of a machine and are used to maintain local state 

information. There are two kinds of variable that can be generated from a TD: 

variables used to record timing constraints and variables used to record state 

values. 

Variables used to record timing constraints. Whenever a segment has a 

CauseEffectArrow, that means it may have timing constraints between objects. If 

so, this timing must be recorded and used as guards for synchronising 

corresponding events. Thus, each event must record a current time in its related 

machine variables whenever that event is performed. In doing that, the rules 

���	
����, ���	
�������� and ���	
�������
 are used to identify variables, 

their invariants and initial values respectively. Below is the detail of the rule 

���	
����. 

� � ���	
����(�������) →  

   <FOR> � <IN> ������������(�������) 

   {<FOR> ��<IN> �����
	
�(�) 

    {��	��(�)�+ � + “Time” } } 

Figure 5-6 Rule ���	
����: creating machine variables to record time�
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This rule uses a ������� as an input value. It collects Timeline from the 

������� and then uses it to generate each variable. A variable is generated from a 

Timeline’s name followed by each state of the Timeline and a string Time. For 

example in a lift system, there are seven Timelines: floorlamp, floorsensor, 

requestlamp, lift, door, uplamp and downlamp. The rule ���	
���� generates 

variables from each timeline. For the Timeline floorsensor, it creates two 

variables: floorsensorOnTime and floorsensorOffTime. The invariants of these 

variables are defined by the rule ���	
������� as floorsensorOnTime ∈  % and 

floorsensorOffTime ∈  %. Initial variables’ values are generated by the rule 

���	
�������
 as floorsensorOnTime := 0 and floorsensorOffTime := 0. The 

details of the rules ���	
������� and ���	
�������
 are shown in Appendix A. 

 

Variables used to record state values. Since an object changes its state 

based on the constraints it satisfies, it is necessary to have a variable to record the 

object’s current state. These kinds of variable are used for synchronising events. As 

shown in Figure 5-3, these variables are generated by the rule ���	
�
	
�, while 

their invariants and initial values are created by rules ���	
�
	
����� and 

���	
�
	
����
 respectively. Below is the detail of the rule ���	
�
	
����. 

�

���	
�
	
����(�������) →  

<LET> exp = ���	��(�������������	��(�)) ................................................ (1) 

<IN> <FOR> � <IN> ������������(�������) ............................................... (2) 

  {��	��(�)�+ “State ∈” + ................................................................... (3) 

  <IF> �%	��	
	�(���	��(��	��(�))) ............................................... (4) 

  <THEN> ........................................................................................... (5) 

   “(”+ �#
�
��	
	�+�
���(�����	
	��!"�(exp)) + “)” ......... (6) 

   “ →  ” + ���	��(��	��(�)) + “_STATE” .................................. (7) 

  <ELSE> ���	��(��	��(�)) + “_STATE” ........................................... (8) 

  <ENDIF> .......................................................................................... (9) 

  } ..................................................................................................... (10) 

�#
�
��	
	�+�
���(9��/���%�:(���) →  .................................................... (11) 
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 9��/�+ “× ” + �#
�
��	
	�+�
���(%�:(���) ......................................... (12) 

�#
�
��	
	�+�
���(9��/�:�;�<�) →  9��/ .................................................. (13) 

Figure 5-7 Rule ���	
�
	
����: creating machine variables to record states 

 

This rule uses a ������� as an input value. It collects Timeline from the 

������� and then uses it to generate each variable as shown at line (2). A variable 

is generated from a Timeline’s name followed by a string “State ∈” at line (3). If a 

corresponding class has parameter, the output string from line (3) is concatenated 

with parameter type at line (6) followed by a class name and the string “_STATE”, at 

line (7). If the corresponding class has no parameter, then line (8) is performed 

instead. 

Sub-rule �#
�
��	
	�+�
��� is called from line (6) whenever the 

corresponding class has a parameter. This sub-rule is defined recursively to give 

parameter types for that class. For example, an invariant is created from this 

Timeline ������� ��� shown in the following: 

 

���	
�
	
����(�������) →  

<LET> exp = ���	��(�������������	��(�)) 

<IN> 

<FOR> ��<IN> ������������(�������) .. ������� ���! ������"#$! ��%&��'�"#$! etc. 

 {��	��(�)�+ “State ∈” + .....................................................������� ���('"'� ∈  

 <IF> �%	��	
	�(���	��(��	��(�))) ...................................................... 
)*+,

 <THEN> 

  “(”+ �#
�
��	
	�+�
���(�����	
	��!"�(exp)) + “)” ........... -./00*1�
  + “ →  ” + ���	���	��(�) + “_STATE” ....... →

./00*(,2(0*3()4),
 

 <ELSE> ���	���	��(�) + “_STATE” 

 <ENDIF> 

 } 

�#
�
��	
	�+�
���(
./00*

�:�;�<�) →  
./00*

 ........................................... 
./00*

 

 

Output: floorsensorState ∈ (FLOOR) →  FLOORSENSOR_STATE 
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Suppose a class floorsensor has two parameters, f : FLOOR and a : AA, the sub-

rule �#
�
��	
	�+�
��� generates a relationship between those parameters as 

(FLOOR ×  AA). Thus, an invariant in this case is: 

 

floorsensorState ∈ (FLOOR ×  AA) →FLOORSENSOR_STATE 

 

From Figure 5-2, one may expect that an object state’s initial value can be 

generated from the first segment in the Timeline. For example, the first segment of 

the object door is Closed, in which the corresponding variable generated by the 

rule ���	
�
	
� is doorState. Thus, by the rule ���	
�
	
����, an invariant for 

this variable is created as doorState ∈ FLOOR →DOOR_STATE. This variable has 

its initial value defined as doorState := FLOOR ×  {Closed}. That means, at the 

initial state, the door for every floor is closed. However, it is incorrect to use the 

first segment as an initial state for every object. For example, an object floorsensor 

has a first segment On, but one cannot identify its initial state directly as 

floorsensorState := FLOOR ×  {On}. That is because the floorsensorState for that 

floor is set On if an only if the lift is at that floor. Thus, it is not true that at the 

initial state, the lift stations at every floor. In fact, in the beginning if the lift is 

stationed at the first floor, then only the floorsensorState at the first floor is set On. 

If there are three floors in a system, the initial value for the floorsensorState is 

floorsensorState := {1 �  On, 2 �  Off, 3 � Off} where 1, 2 and 3 denotes the 

number of the floors. 

 

���	
�
	
����
(�������) →  

 <FOR> � <IN> ������������(�������) 

   {��	��(�)�+ “State := {xInitValuex}” } 

 

Figure 5-8 Rule ���	
�
	
����
: creating initial values for those variables 

used to record states 
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Thus, the rule ���	
�
	
����
, which is used to define the initial states of 

these variables need to be generated by hand, which is represented by a marking 

xInitValuex. 

Other examples of variables that have to be generated by hand are dir and 

currentFl, which are used to indicate the lift direction and the current position for 

the lift. Actually, these variables are already shown as a string as the 

CauseEffectArrow’s predicates. However, one cannot generate variables from the 

predicates as it is not a notation but a string of conditions. 

5.3.3 Structure of Translation rules for creating an Event-B event 

Each Event-B event is created by the rule �����
. This rule uses a ������� 

for an�input parameter and is defined recursively. The rule �����
 is composed of 

sub-rules as shown below. 

 

Figure 5-9 Structure of translation rules to create an Event-B event 

→
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To generate events, first, the rule ���
������
#�
$����

�
(�������) is 

used to collect only Segments defined with constraints – i.e. that segment has a 

CauseEffectArrow – from a machine. Without CauseEffectArrow, a Segment is 

an ordinary segment. It does not have a causal dependency between objects and 

will not be considered to generate an event. Next, each Segment from the collection 

is used to generate an individual event. 

An Event-B event is basically composed of a name, guards and actions, thus 

the rule� �����
 is designed to generate those parts. The rule� �����
 is sub-

divided into four groups. 

1
st
 group: this group has a rule �����
�	�� (detailed in Figure 5-11) that is 

used to create an event’s name. 

2
nd

 group: this group comprises translation rules that are used to create 

guards for an event. As described in chapter 2, an event can be defined into three 

types: Simple, Guards and Non deterministic. The rules in the 2
nd

 group are used to 

define Guards and Non deterministic types, not the Simple type. Since the Simple 

type has only the action part but not guards, it is inappropriate to generate this type 

from the TDs. TDs are designed to explain the changing of state according to 

conditions, which are guards. 

As shown in Figure 5-10, for the Non deterministic type, the rule ��	
	���
�

(detailed in Figure 5-13)�is used to create a string ANY and a list of local variables; 

the rule ��	
	���	
��	���� (detailed in Appendix A)� is used� for identifying 

those local variables with their corresponding types. For the Guard type, the rule 

��	
	���
�is used to create a string WHEN. 

3
rd

 group: this group comprises translation rules used to create event guards. 

Those guards are created from four features that are associated with that Segment: 

previous segments, cause segments, conditions, and timing constraints. A rule 

��
��

�
�(detailed in Figure 5-14) is used to create guards from cause segments, 

conditions, and timing constraints. A rule ��
�������(detailed in Appendix A) is 

used to create a guard from previous segments. Most of the guards are generated 

from those rules. However, some additional guards may be added. Most of them 
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are associated with extra variables generated manually as covered earlier in 

CONTEXT. 

 

→

 

Figure 5-10 Structure of translation rules and Event-B model types 

 

4
th

 group: this group comprises translation rules used to create events’ 

actions. There are three kinds of actions generated here. First, an action is 

generated from a segment with constrints, by a rule �����
 (detailed in Figure 5-

20). Secondly, if a Segment has SimultaneityArrows, an action is created by 

the rule ������ (detailed in Figure 5-22). Thirdly, actions are created to record the 

current time of a corresponding machine variable whenever the event is activated, 

by the rule ��������� (detailed in Figure 5-23). The rules generate mostly essential 

actions. However, in some events, actions may need to be added. For example, in 

the case of the lift system, it has to add actions to update current floor position 

whenever the lift is moving up or moving down. 
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5.3.4 Creating an event’s name 

To create an event’s name, the �����
�	�� rule is used. This rule gives an 

event’s name for an input %�&���� and uses basic rules, i.e. �'�(�and �'�(�
, as 

described in Table 5-1. 

 

� � �����
�	��(%�&����) →  

   <LET> exp = �'�(�
(%�&����) 

   <IN>  �'�((exp) + exp + “=” 

Figure 5-11 Rule �����
�	��: creating an event’s name 

 

This rule creates an event’s name by concatenating an object’s name with an 

object state’s name followed by the “=” symbol. 

 

 

Figure 5-12 Timing diagram for floorsensor and lift (parts of Figure 5-2) 

 

For example in Figure 5-12, %�&����������has a CauseAffectArrow in which 

���������	
������� or 
���������	
������
�� are cause segments that stimulate 

the object floorsensor to change its state from On to Off. Generating an event’s 

name from the Segment ���� is illustrated below: 

 

 

 



Chapter 5 Translating Timing Diagrams into Event-B models                            105 

 

 

�����
�	��(����) →  

 <LET> exp = �'�(�
(����) 

 <IN> �'�((exp) ............................................................................. ������� ��� 
  + exp + “=” ..................................................................................... 

0�� 5 

 

Output:  floorsensorOff = 

5.3.5 Creating non-deterministic local variables and their values 

A rule ��	
	���
�is used to check whether an event is defined by Guards or 

Non deterministic type. Each of these types identify the beginning of the guards 

with a string WHEN or ANY corresponding to a type Guards or Non deterministic 

respectively. This rule uses a %�&���� as input parameter. 

 

��	
	���
(%�&����) →  

 <LET> exp = �'�((�'�(�
(%�&����)) ....................................................... (1) 

 <IN>  ............................................................................................................ (2) 

 <IF> �%	��	
	�(���	�� (exp)) ................................................................... (3) 

  <THEN> .............................................................................................. (4) 

   “ANY” + ....................................................................................  (5) 

   �#
�
�����	
	��(�����	
	�(���	��(exp))) ............................(6) 

  <ELSE> ............................................................................................... (7) 

   “WHEN ” ................................................................................... (8) 

  <ENDIF> ............................................................................................. (9) 

�#
�
�����	
	��(9��/ : �����%�:(���) →  

� 9��/ + “,” + �#
�
�����	
	��(�����%�:(���) 

�#
�
�����	
	��(9��/ :�;�<) →  9��/�

 

Figure 5-13 Rule ��	
	���
: creating a list of local variables for an event 
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The rule ��	
	���
� checks whether a class corresponding to the input 

%�&���� has a parameter at line (3). If so, this rule generates a string ANY, line (5), 

followed by a list of parameters as shown in line (6); those parts are for creating 

Non-deterministic type. Otherwise, it creates a string WHEN for Guarded type, as 

shown in line (8). The list of parameters is generated by a sub-rule 

�#
�
�����	
	��. This rule iteratively generates parameters, each of them being 

separated by a “,” symbol. For example, a segment ���� in Figure 5-12, belongs to 

an object floorsensor which resides in a class FLOORSENSOR whose parameter is 

f. An example of creating a local variable from this segment is illustrated below. 

�

��	
	���
(����) →  

<LET> exp = �'�((�'�(�
(����)) 

<IN> 

 <IF> �%	��	
	�(���	�� (exp)) ................................................................ 
)�&�

 <THEN> 

  “ANY” + ........................................................................................... 
426

 

  �#
�
�����	
	��(�����	
	�(���	��(exp))) 

 <ENDIF> 

�#
�
�����	
	��($ :�;�<) →  $�

 

Output: ANY f 

 

Each local variable needs to identify its types within WHERE clauses. Rule 

��	
	���	
��	��� (Figure 5-10, detailed in Appendix A) is used to identify the 

variables’ types. For example, within the same example above, this rule generates 

WHERE f : FLOOR for output. 

Suppose a class FLOORSENSOR has parameters f, a and b with a type 

FLOOR, AA and BB respectively. Thus, the rule ��	
	���	
��	��� would 

generate WHERE  f : FLOOR  &  a : AA  &  b : BB. The detail of this rule is shown 

in Appendix A. 
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5.3.6 Creating an Event’s guards 

As shown in Figure 5-10, event guards are created by the rule ��
��

�
 and 

��
������. This section explains how to create guard from the rule ��
��

�
, 

while the detail of the rule ��
������ can be found in Appendix A. 

 

→

→

 

Figure 5-14 Rule ��
��

�
 and sub-rules 

 

The detail of the rule ��
��

�
 is shown in Figure 5-14, a coloured box. 

This rule gives an output NodeType for an input Segment. The NodeType then is 

used as an input parameter for the sub-rule ���
�
��
���. 

The rule ���
�
��
��� checks whether the input NodeType is a %��*��, 

 0"��/� or� -�#"��/�. If NodeType is� %��*��, three other sub-rules, 

���������	
�, ����"���	������
��� and ����"������, are called in order to 

generate guards from timing constraints, cause segments and conditions 

respectively. If the NodeType is  0"��/��or -�#"��/�, the rule ���
�
��
��� is 

recursively called. The detail of the rules ���
�
��
��� is illustrated as follows. 
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���
�
��
���(��/�()*�) →  

<IF> ��/�()*� = %��*�� .................................................................................. (1) 

<THEN><IF> �%	�������(%��*��) ................................................................. (2) 

 <THEN> ���������	
�(�������
(%��*��), �������(%��*��)) ................ (3) 

  + “&” + ����"���	������
��(�������
(%��*��)) ........................ (4) 

  + ����"������(�����(%��*��)) ....................................................... (5) 

 <ELSE> ...................................................................................................... (6) 

� � ����"���	������
��(�������
(%��*��)) ...................................... (7) 

  + ����"������(�����(%��*��)) ....................................................... (8) 

<ENDIF> ......................................................................................................... (9) 

 

<ELSE><IF> ��/�()*� =  0"��/� ............................................................... (10) 

<THEN><LET> Nodes =  �������
	����( 0"��/�) .................................... (11) 

 <IN> Nodes →  <ITERATE> (n; ret : String = “(” | .................................... (12) 

  <IF> n =��	�
(Nodes) ..................................................................... (13) 

  <THEN> ret = ret + ���
�
��
���(n) + “)” ................................... (14) 

  <ELSE>  ret = ret + ���
�
��
���(n) + “) ∨ (” .............................. (15) 

  <ENDIF> ) ....................................................................................... (16) 

 <ENDIF> .................................................................................................. (17) 

 

<ELSE><IF> ��/�()*�  =  -�#"��/��

<THEN><LET> Nodes  =  �������
	����(-�#"��/�) ................................ (18) 

 <IN>�Nodes →  <ITERATE> (n; ret : String = “(” | .................................... (19) 

  <IF> n =��	�
(Nodes) ..................................................................... (20) 

  <THEN> ret = ret + ���
�
��
���(n) + “)” .................................... (21) 

  <ELSE> ret = ret + ���
�
��
���(n) + “) ∧ (” ............................... (22) 

  <ENDIF>) ........................................................................................ (23) 

 <ENDIF> .................................................................................................. (24) 

<ENDIF> ....................................................................................................... (25) 

Figure 5-15 Rule����
�
��
���: creating event guards from 

timing constraints, cause segments and conditions 

 

1
st
 part:  If NodeType is Simple 

2
nd

 part:  If NodeType is Or_node 

3
rd

 part: If NodeType is And_node 
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For example if a ��/�()*� is  0"��/�, a rule �������
	����( 0"��/�) at 

line (11) collects the elements underneath the  0"��/� as a sequence within a 

variable �����. Line (12) is defined as iteration in which an iterative expression is 

defined by the ATL-like syntax as in the following: 

 

source →  <ITERATE>(iterator;  return_ var_declaration :  return_var_type 

                                       =  init_expression | body) 

 

That is, at line (12), the variable ����� is a source of iteration process when � 

is an iterator. This iteration returns a variable ��� which is defined as a string 

provided with an initial value equal to “(”. Line (13) checks whether � is the last 

element in the sequence. If so at line (14), the return value ��� is concatenated with 

string value from calling itself, ���
�
��
���(n), followed by the “)” symbol. If 

not, line (15), the return value ��� is concatenated with string value from calling 

itself followed by the string “) ∨ (”. 

For example, from Figure 5-16, the Segment Off2 is used to generate guards 

for the event floorsensorOff  by the rule ���
�
��
���. The process of generating 

guards can be done step by step as shown in Figure 5-17. Note that, we present 

order numbers such as 1, 2 and 3 to show which parts of the CauseEffectArrow 

are used in the rule ���
�
��
���; these numbers are not TD notations. 

Step 1, the rule ��
��

�
� (from Figure 5-14) gives a ��/�()*� which is 

equal to  0"��/��as an output. 

Step 2, the rule �������
	���( 0"��/�), at line (11) in Figure 5-15, collects 

all ��/�()*�s beneath this  0"��/� and keeps them in a variable ����� as a 

sequence. Remember that, since the %��*�� BNF definition is defined as %��*��������

��'��%�&��� �(����&�� � ����/�������, the variable ����� has two %��*�� elements as 

shown in the following: 

 

  ����� = (%��*��6, %��*��1) 

where� %��*��6 = ��=��&#�*�����&5*1��1+2��$���'�����3��4�/�����5*�

� � %��*��1�=���=��&#�*�����&#�.�>��1+2��$���'�����3��4�/�����#�.��
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Figure 5-16 Timing diagram for floorsensor and lift (same as Figure 5-6) 

 

∨

 

Figure 5-17 An example of a process for creating guards from Figure 5-16 
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Step 3, each ��/�()*� is used to generate guards, where the initial return 

value is equal to “(”. Thus, in this step, the %��*��6 is used first 

Step 4, the %��*��6�is not the last node in the sequence. 

Step 5, the %��*��6� is used as input parameter for the rule ���
�
��
��� 

itself. The output from the rule is concatenated “) ∨  (” 

Step 6-9, since %��*��6 is a %��*�� ��/�()*�, it is used to create guards by 

sub-rules in steps 7-9. At this point, suppose the steps 7-9 return a group of output 

guards called guard_clauses1. 

Step 10, %��*��1 is used. 

Step 11, %��*��1�is the last node in the sequence. 

Step 12, %��*��1�is used as input parameter for the rule ���
�
��
��� itself. 

The output from the rule is concatenated with “)”. 

Steps 13-16, Since %��*��1 is a simple ��/�()*�, it is used to create guards 

by sub-rules in step 14-16. At this point, suppose the steps 14-16 return a group of 

output guards called guard_clauses2. 

Step 17, the return value is (guard_clauses1) ∨  (guard_clauses2) 

 

Within the same process, if the ��/�()*� is -�#"��/�, the return value is in a 

form of (guard_clauses1) ∧  (guard_clauses2). 

5.3.7 Creating an Event’s guards from Timing constraints 

The rule����������	
� uses %�&�����and (����& as input parameters. The 

rule generates timing constraints as a guard by concatenating an object’s name, an 

object’s state, additional strings, and timing constraints. 

�

�

�

�

�

�

�
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� ���������	
�(%�&����, (����&) →  

  “(gclock - ” 	��'�((�'�(�
(%�&����)) 

� � 	��'�(�
(%�&����))�	�“Time � ” 

� � 	����&�
��
((����&)+“)”�	�“& (gclock - ” 

� � 	��'�((�'�(�
(%�&����))�	��'�(�
(%�&����))�

� � 	�“Time � ”�	��*""�
��
((����&) + “)”�

Figure 5-18 Rule����������	
�:  creating a timing constraint guard 

 

From Figure 5-16, and step 7 in Figure 5-17, when %��*��6 is used as an input 

parameter for the rule ���������	
�, the following output is generated. 

 

���������	
�(�������
(%��*��6), �������(%��*��6)) = ........................ ���� 7 

���������	
�(��=��&#�*�����&5*1, �1+�2�) →  

 “(gclock  - ” ...................................................................................... -89��9: ;

� 	��'�((�'�(�
(��=��&#�*�����&5*1) ...................................................... �<�'
� 	�'�(�
(��=��&#�*�����&5*1) ..................................... 

=�>< 8?�$"�'< 8+$
� 	�“Time � ” ......................................................................................... 

)<#� � 

� 	����&�
��
��1+�2�) +“)” ........................................................................... 
@1
�

� 	�“& (gclock - ” ........................................................................... 
A
� -89��9: ;

 

� 	��'�((�'�(�
(��=��&#�*�����&5*2)) ..................................................... �<�'
� 	��'�(�
(��=��&#�*�����&5*1)) .................................. 

=�>< 8?�$"�'< 8+$
� 	�“Time � ” ......................................................................................... 

)<#� ��
� 	��*""�
��
(�1+�2�) + “)” .......................................................................... 

B1
�

 

Output: (gclock - liftMovingDepartingUpTime � 2) 

 & (gclock - liftMovingDepartingUpTime � 5) 

 

The output for a %��*��1 is generated within the same way, 

 (gclock - liftMovingDepartingDownTime � 2) 

 & (gclock - liftMovingDepartingDownTime � 5) 
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The guards generated from timing constraints (by the rule ���������	
�) 

are then concatenated with guards created from cause segments (by the rules 

��������������������������������	
����

��	
����

��	
����

��	
����

��) and conditions (by the rule ��������������������������������������������). The details of 

rules ��������������������������������	
����

��	
����

��	
����

��	
����

�� and �������������������������������������������� are shown in Appendix A. 

Up to this point the Segment Off2 in Figure 5-16 is used to generate parts of 

an event as illustrated below: 

≥

≤

≥

≤

∨

 

Figure 5-19 Parts of an event floorsensorOff 

5.3.8 Creating an Event’s actions from an effect segment 

As shown in Figure 5-9, actions for an event are generated from three rules: 

�����
, ������� and ����������which are placed in between THEN …. END 

clause. The rules �����
� and ������� are used to generate actions from that 

segment, and from SimultaneityArrows attached to that segment respectively. 

The rule ��������� generates an action to record the current time whenever that 

event is activated.  
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The detail of the rule �����
 is shown in Figure 5-20, where %�&���� is used 

as input parameter. 

 

�����
(%�&����) →  

<LET> exp = �'�((�'�(�
(%�&����)) ............................................................ (1) 

<IN> <IF> �%	��	
	�(���	��(exp)) .............................................................. (2) 

 <THEN> �'�(�	��(exp)........................................................................... (3) 

  + “State( ” ......................................................................................... (4) 

  + �#
�
��	
	���
(�����	
	�(���	��(exp))) ............................... (5) 

  + “) := ” ............................................................................................ (6) 

  + �'�(�
(%�&����) ......................................................................... (7) 

 <ELSE> exp .............................................................................................. (8) 

  + “State : = ” ..................................................................................... (9) 

  + �'�(�
(%�&����) ........................................................................ (10) 

 <ENDIF> ................................................................................................. (11) 

�#
�
��	
	���
(9��/���%�:(���) →  

� 9��/ + “�” + �#
�
��	
	���
(%�:(���) ............................................. (12) 

�#
�
��	
	���
(9��/�:�;�<�) →  9��/ ........................................................ (13) 

Figure 5-20 Rule������
: creating an Event’s action from a Segment 

 

The rule checks whether a class has a parameter, in line (2). If so, lines (3)-

(7) are used to generate an action by concatenating an object’s name with the string 

“State(”, at lines (3)-(4), then followed by a list of parameters which is generated 

by the sub-rule �#
�
��	
	���
. The result is concatenated with the “) := ” 

symbol, at line (6), and object’s state at line (7). Where the class has no parameters, 

lines (8)-(10) are used. 

An example of generating an action where the Segment  $$1,�as in Figure 5-

16, is used as an input parameter is illustrated below: 
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�����
( $$1) →  

<LET> exp = �'�((�'�(�
( $$1)) 

<IN> <IF> �%	��	
	�(���	��(exp)) ......................................................... 
)*+,

 

 <THEN> �'�(�	��(exp) .............................................................. ������� ��� 
  + “State( ” .................................................................................... ('"'�- 
  + �#
�
��	
	���
(�����	
	�(���	��(exp))) ................................... �
  + “) := ” ........................................................................................... 

1 C5 

  + �'�(�
( $$1) ............................................................................... 
0��

<ENDIF> 

�#
�
��	
	���
($ :�;�<�)  → �$ .......................................................................... �
 

Output: floorsensorState(f) := Off 

 

Suppose a class floorsensor has two parameters, e.g. f : FLOOR and a : AA, 

the sub-rule �#
�
��	
	���
 generates (f� a). Thus, an action in this case is 

defined as floorsensorState (f � a) := Off. 

5.3.9 Creating an Event’s action from a SimultaneityArrow 

This section explains how a SimultaneityArrow is used to create an action 

clause. That is, if a segment has SimultaneityArrows, each is used to create an 

action. 

In Figure 5-21, since the segment D���E�FG��
� has a CauseEffectArrow, 

this segment is used to generate an event liftStopAtFloor (by the rules explained 

above). The segment D���E�FG��
� has two SimultaneityArrows a and b. 

Remember that, the TD BNF definition for a SimultaneityArrow is %��'�� ����

%����%�&���,�/%�&��. Thus, the %����%�&�� of a and b is the same segment; that is 

D���E�FG��
�, while the ,�/%�&�� of a and b are ��	����	��H� and H�E����	��H� 

respectively. With the translation rule ������, the event liftStopAtFloor has an 

action generated by these SimultaneityArrows. 
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Figure 5-21 Timing diagram shows Simultaneity between 

lift, uplamp and downlamp (parts of Figure 5-2) 

 

The rule ������ creates an action from an input�%�&����. The detail of the 

rule is illustrated in Figure 5-22. Line (2), this rule checks whether there is 

SimultaneityArrow for the segment. If so, the rule iteratively generates an action 

as shown at line (4) – (19); otherwise it creates nothing as shown at line (21). The 

detail of the rule is illustrated in the following. 

 

������(%�&����) →  

<LET> exp = ���	��(�'�((�'�(�
(��������(�)))) .......................................... (1) 

<IN> <IF> �%	������(%�&����) ....................................................................... (2) 

<THEN> <FOR> � <IN> ��������)(%�&����) ................................................. (3) 

 {<IF> �%	��	
	�(exp) ................................................................................. (4) 

 <THEN> ....................................................................................................... (5) 

  �'�((�'�(�
(��������(�))) ............................................................... (6) 

  + “State( ” ............................................................................................ (7) 

  + �#
�
��	
	���
(�����	
	�(exp)) ................................................ (8) 

  + “) := ” ............................................................................................... (9) 
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  + �'�(�
(��������(�)) .................................................................... (10) 

 <ELSE> ...................................................................................................... (11) 

  �'�((�'�(�
(��������(�))) ............................................................. (12) 

  + “State := ” ....................................................................................... (13) 

  + �'�(�
(��������(�)) .................................................................... (14) 

 <ENDIF> .................................................................................................... (15) 

 <IF><NOT> ��= �	�
(��������)(%�&����))............................................ (16) 

� <THEN> “&” .............................................................................................. (17) 

 <ELSE> <SKIP>. ........................................................................................ (18) 

 <ENDIF> .................................................................................................... (19) 

 } ................................................................................................................. (20) 

<ELSE> <SKIP> .............................................................................................. (21) 

<ENDIF> ......................................................................................................... (22) 

Figure 5-22 Rule�������: creating a substitution 

 

Since there are two SimultaneityArrows a and b attached with the %�&�����

D���E�FG��
� in Figure 5-21, an action is generated by two iteration processes as 

shown in the following. 

 

������(D���E�FG��
�) →  

<LET> exp = ���	��(�'�((�'�(�
(��������(�)))) 

<IN> <IF> �%	������(D���E�FG��
�) ....................................................... IJ�K 

<THEN> <FOR> � <IN> ��������)(D���E�FG��
�) .................................... L	M NO
 {<IF> �%	��	
	�(exp) .................................................... 

FEPDKM 
Q�� � R 	 

  <ELSE> 

   �'�((�'�(�
(��������(a)))........................................ 
S�T �"#$

   + “State := ” ..................................................................... ('"'� C5 

   + �'�(�
(��������(a)) ............................................ ?�"9'< >"'�S 
  <ENDIF> 

  <IF><NOT> ��= �	�
(��������)(D���E�FG��
�)) 
� � <THEN> “&” ...................................................................................... 

A
 

1
st
  iteration 
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  <ENDIF> 

   �'�((�'�(�
(��������(b))) ............................................ &$�"#$
   + “State := “ ..................................................................... ('"'� C5 

   + �'�(�
(��������(b)) ............................................ 
S�49'< >"'�S 

 } 

 

Output : downlampState := Deactivated & uplampState := deActivated 

5.3.10 Creating an action for recording current time whenever that event is 

activated 

To record the current time whenever that event is activated, the rule 

��������� is used. This time is used for synchronisation of events. The rule uses a 

%�&���� as an input. The detail of the rule is shown below: 

 

� � � ���������(%�&����) →  

� � � � �'�((�'�(�
(%�&����)) 

    + �'�(�
(%�&����) 

    + “Time := gclock” 

Figure 5-23 Rule����������: creating an action 

 

Thus, an action is generated from the %�&���� ���� in Figure 5-16 by the rule 

��������� is floorsensorOffTime := gclock. 

5.3.11 Creating an event Ticktok 

An event Ticktok is introduced in the model for generating time progression. 

This event presents ticking of the clock that occurs independently, and the clock is 

used for synchronisation of events. The Ticktok event uses a global variable gclock 

which represents the current time and is advanced by the event. The gclock is 

defined as an integer with initial value 0. We use a discrete time model rather than 

2
nd

  iteration 
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a continuous one since it is suitable for ensuring the time is held within fixed 

limits. Using discrete time is similar to the approach of (Butler and Falampin 

2002). The detail of the �����
�� rule is shown in the following. 

 

� �����
���→  “Ticktok = BEGIN gclock := gclock + 1 END” 

Figure 5-24 Rule �����
��: creating a Ticktok event 

 

This rule generates an event Ticktok = BEGIN gclock := gclock + 1 END 

 

The event Ticktok identifies a unit of time progress equal to 1. This unit can 

broadly be millisecond, second, minute, etc. The lift system case study identifies 

timing constraints in seconds. Thus, we use a second unit for our model. 

To control the accuracy of system timing constraints, it is necessary to 

“ensure the timing constraints are satisfied by preventing the clock variable (in our 

case gclock) from progressing to a point at which the required properties would be 

violated” (Butler and Falampin 2002). However, in a real system, time cannot be 

prevented from progressing and we leave this for the implementation to ensure 

timing properties are always satisfied in time. 

 

Addition information add into a Ticktok event 

 

To prevent the time from progressing, it is necessary to add stronger guards 

for the Ticktok event. Those guards are derived from each timing constraint that is 

attached to the CauseEffectArrows. For example from Figure 5-2, the 

CauseEffectArrows in the TD involves ten timing constraints called '<#< 8 -U1, 
'<#< 8 -@1, … for explanation here. 

floorlamp Unlit within [2, 4] seconds after floorsensor Off ................... '<#< 8 -U1 
floorlamp Lit within [2, 4] seconds after floorsenseor On ..................... '<#< 8 -@1 
floorsensor Off within [2, 5] seconds after lift MovingDepartingUp ..... '<#< 8 -V1 
floorsensor Off within [2, 5] seconds after lift MovingDepartingDown '<#< 8 -W1 
lift StopAtFloor within [1, 5] seconds after floorsensor On ................... '<#< 8 -B1 
… etc. 
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Thus, there are ten guards to be added into the Ticktok event. Each guard 

comprises two parts: pre- and post-conditions in the form of <pre-condition & 

post-condition>. 

 

Ticktok  = 

 WHERE 

  grd1: . . . 

  grd2: . . . 

  grd3: ( liftState = MovingDepartingUp & ............................................ (1) 

   floorsensorState(currentFl) = On & ............................................ (2) 

   ((gclock − liftMovingDepartingUpTime) � 2) & .......................... (3) 

   ((gclock − liftMovingDepartingUpTime) � 5) .............................. (4) 

   )................................................................................................ (5) 

� � � & ............................................................................................ (6) 

   gclock - liftMovingDepartingUpTime < 5 .................................... (7) 

 

  grd4: (liftState = MovingDepartingDown & ......................................... (8) 

   floorsensorState(currentFl) = On & ............................................ (9) 

   ((gclock − liftMovingDepartingDownTime) � 2) & .................... (10) 

   ((gclock − liftMovingDepartingDownTime) � 5) ........................ (11) 

   ).............................................................................................. (12) 

� � � & .......................................................................................... (13) 

� � � gclock - liftMovingDepartingDownTime < 5 ................................ (14) 

  grd5: . . . 

  . . . 

  grd10: . . . 

 

 THEN  gclock := gclock + 1 END 

Figure 5-25 Ticktok event’s guards (parts of) 

 

Figure 5-25 gives an example to illustrate the detail of how grd3 and grd4 are 

generated from '<#< 8 -V1 and '<#< 8 -W1 respectively. The full detail of other guards 

can be found in Appendix B. The grd3 has pre-conditions as shown in line (1) to 
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(4). The pre-conditions are similar to those defined by the rules 

����"���	������
��,� ��
������� and� ���������	
� in Figure 5-19 

respectively. However, in line (2), the local variable f is replaced by the machine 

variable currentFl. Thus, there are no non-deterministic variables defined by the 

Ticktok event. In grd4, lines (8)-(12), are also similar to those defined in Figure 5-

19. Thus, identifying the Ticktok event’s guards is a process of re-defining cause 

segments, previous segments, and timing constraints. Notice that in other events, 

those cause segments, previous segments, and timing constraints are combined 

within the same guard, as in the example shown in Figure 5-19, while in the Ticktok 

event they are separated, as seen in grd3 and grd4. This is the reason to simplify 

POs and make it easier to identify Ticktok’s guards’ post-conditions. 

A Ticktok guard post-condition is defined by the pattern below: 

 

“gclock - ” +  !� + ��'��%�&���+ “Time” + “ <  ” + '**��������

 

For example, the post-condition for grd3 as defined at line (7) is 

 

gclock - liftMovingDepartingUpTime < 5 

 

This means the clock is allowed to progress between an upper and lower 

bound until time expires. For example, from the grd3, a floorsensor is being set to 

Off between 2 and 5 seconds after the lift is in the state of MovingDepartingUp. 

5.4 User manual input on modelling 

Since the translation rules create events from Segments that have constraints 

(have a CauseEffectArrow), there are some events that have to be manually added 

into the Event-B machine.  That is because not every changing state in the TD is 

identified by the CauseEffectArrows. For example, the changing states of the 

door from Open to Close, and changing state of the lift from MovingArrivingUp to 

MovingDepartingUp or MovingArrivingDown to MovingDepartingDown. 
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Moreover, TD are not designed to keep the whole information of the system. Thus, 

there is missing information which may not be identified in the specification (and 

that is why it is not generated as a TD) from the beginning,  or information that 

cannot be identified as a TD because it is not supported by TD notations. For 

example, the lift changing directions from up to down or from down to up needs to 

be created manually since it is not identified in the specification, but it needs to be 

included in the system. 

Currently, a SimultaneityArrow is not designed to have a combination of 

OR nodes. Thus, if there is a SimultaneityArrow that is used to indicate this kind 

of relationship, the output model has to be altered manually. Thus, in Figure 5-26, a 

and b are SimultaneityArrows that demonstrate whenever a floorsensor is set Off, 

the lift is in a state of MovingUp or MovingDown instantly. The whole 

floorsensorOff event is generated by translation rules shown in Figure 5-27. 

 

 

Figure 5-26 SimultaneityArrow for the lift object  

(Parts of Figure 5-2) 
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Figure 5-27 A floorsensorOff event before revision 

 

In Figure 5-27, the action generated by the rule ������ is not recognized by 

Event-B complier. That is because Event-B does not deal with OR relationships in 

an action part. Thus, we have to revise the floorsensorOff event by separating it 

into two events: floorsensorOffUp and floorsensorOffDown as shown in Figure 5-

28. In order to do that, we also split the original floorsensorOff event’s guards and 

actions into the corresponding events. 
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Figure 5-28 Two new events are regenerated from floorsensorOff event 
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5.5 Summary 

This chapter explains how translation rules are used to transform a TD to an 

Event-B model. First, we generate BNF definitions for describing a TD. Next, 

translation rules are created in which TD BNF elements are used as input parameter 

for the rules. The rule covers generating the Event-B CONTEXT and the 

MACHINE parts. 

For the CONTEXT part, we can generate sets, constants, and axioms. 

Additional sets that cannot be identified by TD need to be added by hand; for 

example, identifying a set of lift directions to up and down. 

For the MACHINE part, the rules can generate machine variables, 

invariants, variables’ initial values, and events. Normally, if an extra set is 

generated by hand in the context part, the additional machine variables, invariants 

and their initial values corresponding to that set are generated by hand in the 

MACHINE part. Some other machine variables may also be identified. For 

example, in the lift case study, the machine variable currentFl is manually added to 

represent the current floor of the lift. In the MACHINE part, each event is 

generated by a segment that has a CauseEffectArrow. The rules can generate an 

event’s name and its body in one of two types: Guard or Non deterministic. The 

first type does not have local variables, while the latter is declared with non-

deterministic local variables. An event’s guards are generated from timing 

constraints, Cause segments, Previous segments, and conditions attached to the 

CauseEffectArrow. An event’s actions are generated from a target state and 

SimultaneityArrows. Each event is provided with an action to record the time it 

is activated. This time is used to synchronise events. Currently, TD notation does 

not support identifying SimultaneityArrow with OR nodes, thus any action 

created by this kind of node needs to be split into corresponding events. 

There are some events that need to be added by hand. That is because not 

every event can be identifyied by a CauseEffectArrow. For example, changing 

state in an object itself, such as an event to represent the state of a door changing 
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from open to close, needs to be generated by hand. This alteration depends on the 

characteristics of each system. 

To control timing of events, we create the Ticktok event for time progression 

and for preventing the clock variable progressing to a point at which system 

properties will be violated. 

 



 

 

Chapter 6 Translating Timing 

diagrams into UML-B  

The use of TD is suitable for identifying timing constraints in an object itself 

and among other objects. However, a TD is not designed to add state-based 

information nor gather whole system information. Thus, to create a complete 

Event-B model from a TD, the missing information must be added, such as 

variables, constants and some events. In order for that process to be accomplished, 

either the information must be added by hand or an existing tool like UML-B must 

be used. A UML-B is a plug-in for RODIN toolkits and is implemented by Eclipse 

EMF. UML-B is an Event-B graphical front end, has a well-defined Metamodel of 

Classes, and Statemachines, and can be automatically translated into an Event-B 

model whenever the model is saved. The Event-B verification tools, i.e. syntax 

checker and Prover, then run and immediately display any problems which are 

shown in the relevant UML-B diagrams. Thus, we selected the UML-B plug-in as 

it provides Event-B integration and its features – using Class and Statemachine – 

are TD compatible. For example, it enables us to compare state changes in the TD 

along a Timeline using the UML-B Statemachine. ATL, which is also developed 

on the Eclipse platform and generates a target model from a source model, was 

selected for translation rules. ATL like UML-B also has a well-defined Metamodel. 

Section 6.1 identifies TD used for translation into UML-B. Section 6.2 gives an 

overview of how a TD source model is transformed into a target UML-B model, 

using ATL translation rules. The abstract syntax of a TD is identified by a TD 
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 metamodel in section 6.3, and is used to generate a TD input model as described in 

section 6.4. ATL translation rules for creating each UML-B model component are 

explained in section 6.5. TD cannot be used to create a complete UML-B output 

model because a TD in itself only represents some parts of the whole specification. 

Thus, some additional information is required for the model, as explained in 

section 6.6. 

 

Figure 6-1 Timing Diagram used for transforming into a UML-B model 
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6.1 Timing Diagram used for translation into UML-B 

A TD used for generating UML-B is slightly different from the TD used for 

the direct translation of an Event-B model shown in Chapter 5. 

Unlike the TD for the direct translation, where a class name is represented by 

capital letters, in TD translation to a UML-B model, a class name must begin with 

a capital letter followed with small letters. 

 

Thus, in chapter 5, floorsensor ⊆  FLOORSENSOR(f:FLOOR) 

 in chapter 6, floorsensor ⊆  Floorsensor(f:FLOOR) 

 

For the direct translation, class names are generated as a set in a CONTEXT 

part. For the UML-B translation, class names are generated as a class in a 

MACHINE part. 

6.2 Overview of the TD to UML-B ATL transformation 

We use ATL as a language to transform a TD model into a UML-B model. 

Figure 6-2 shows a source model Timing diagram (TD), which conforms to a 

metamodel TDMetamodel, transformed into a target model UML-B which conforms 

to a metamodel umlbMetamodel. The transformation definition TDtoUMLB.atl is 

written in ATL language and conforms to a metamodel ATL. The whole metamodel 

conform to the Ecore metamodel. 

 

Figure 6-2 Overview of the TD to UML-B ATL transformation 
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6.3 Timing diagram Metamodel 

The TD metamodel created by EMF to describe abstract syntax of TD is 

illustrated in Figure 6-3. The same colours within Figure 2-16 are used to identify 

which parts of the TD metamodel are generated into UML-B metamodel parts. A 

TD model is initially generated inside a project (TDProject) with a string name 

(Name) provided. A project is made up of one or more TD machines 

(TDMachine). A TDMachine contains at least a TD class (TDClass). Each 

machine and class is given a name. A class may or may not have parameters. If 

there is a parameter (TDParameter), the parameter is defined by a string name 

(param) and type (paramType). A class has zero or many Timelines 

(TDTimeline). Each Timeline has at least one state (TDState), and zero or many 

transitions (TDTimelineTransition). 

Each TD state may have zero or many segments (TDSegment), in which 

each segment is identified by its incoming (incoming) and outgoing (outgoing) 

transitions. Each transition connects to a couple of segments: a source (source) and 

a target (target) segment. A segment may or may not have a SimultaneityArrow 

(Simul). If so, it connects two segments. At present, the TD metamodel allows 

developers to generate a SimultaneityArrow within the same segment. However, 

we must assume that to correctly generate a TD model, one has to know that a 

SimultaneityArrow links different object segments. 

A segment has zero or more constraints (TDConstraints) in which each 

constraint has one node type (TDNodeType). Why do we need a class 

TDConstraints instead of having a direct association between TDSegment and 

TDNodeType? The reason is to maintain the TDConstraints class. Without this 

class ATL cannot generate a UML-B model correctly. We may need to explore the 

reason in future work; however, we think that it could be a problem with ATL itself 

or the ordering of translation rules. 
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Figure 6-3 Timing diagram Metamodel 

 

 There are three kinds of node type: Simple node (Simple), And node 

(AND_node), and Or node (OR_node). And and Or nodes require at least two 
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node types; they can be And or Or nodes themselves or Simple node types. A 

Simple node type is actually a segment and is used to identify a cause segment 

(causesource) for a CauseEffectArrow. Each Simple node could have zero or 

more conditions (TDPredicate), with each condition identified by a string. In 

addition, a Simple node may have at most one timing constraint (TDTiming). A 

timing constraint is declared by lower bound (lowerlimit) and upper bound 

(upperlimit) whose values are integers. 

 

Figure 6-4 An example TD vs. TDMetamodel 

 

For example in Figure 6-4, a segment Off2 has a constraint defined by a node 

type OR. This node type comprises two simple node types pointing to segments 

MovingDepartingUp2 and MovingDepartingDown6. The simple node type 

MovingDepartingUp2 has predicates and a timing constraint defined by f = 

currentFl & dir = up, and [2, 5] respectively. In the same manner, the simple node 

type MovingDepartingDown6 has predicates and a timing constraint defined by f = 

currentFl & dir = down, and [2, 5] respectively. 
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6.4 Generating a TD input model 

A TD model is generated from TD metamodel using Eclipse EMF. Figure 6-

5 shows parts of a screenshot of an Eclipse EMF editor view for a lift system. 

 

 

Figure 6-5 Timing diagram instance generated by Eclipse EMF 

 

The editor view is located at the top of the window while the Properties tab is 

positioned at the bottom. The figure shows a TD machine named lift located inside a 

LiftSystem project. Each class is declared inside the machine, together with any 

existing Parameters, Timelines, States, Segments, Nodetypes, Timing constranints, 

Predicates and Transitions. For example the highlighted segment in Figure 6-5 

indicates a segment Off2. This segment belongs to a class Floorsensor. This class has 



Chapter 6 Translating Timing Diagrams into UML-B                                          134 

 

a parameter f, a Timeline named floorsensor, and comprises two states: On and Off. 

Each state is defined by its segment, for example, a segment Off2 belongs to the 

state Off. This segment has a constraint defined by an OR node with a combination 

of two Simple NodeTypes represented by line 3.1 and 3.2 in Figure 6-1. Each Simple 

NodeType has Timing and Predicates as shown in Figure 6-5. Incoming, Outgoing and 

Simul are defined by the Properties tab as shown at the bottom of the figure. In 

Figure 6-1, the segment Off2 has two SimultaneityArrows: XYZ[\]^_  ̀ and 

XYZ[\]aYb\c as shown in the Properties tab. Since the TD Timeline transitions do 

not have name, we do not declare a name for Timeline Transitions in the 

metamodel. Thus, we have to carefully select the corresponding transitions. Giving 

Timeline Transitions names is considered as future work. 

6.5 ATL Translation rules 

This section describes details of ATL translation rules used to transform a TD 

into a UML-B diagram. Figure 6-6 shows an ATL header section named TDtoUMLB 

which use a target and a source model conforming to umlbMetamodel and 

TDMetamodel respectively. They are some helpers defined at the beginning of the 

ATL module such as umlbproject and nat1Type (the details of ATL helpers are 

described in section 2.9.3). These helpers will be used in the rule Project as 

shown in Figure 6-10 to append the corresponding values to a target UML-B 

model. For example, the helper umlbproject is used to add a project that is created 

from a TD to a UML-B Project. The helper nat1Type is used to add a positive 

number to a UML-B TypeExpression. The details of using umlbproject and 

nat1Type helpers are explained in section 6.5.2 below while the other helpers are 

detailed in Appendix C. 
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module TDtoUMLB; 

create OUT : umlbMetamodel from IN : TDMetamodel; 

helper def : umlbproject : umlbMetamodel!UMLBProject = 

 umlbMetamodel!UMLBProject; 

helper def : nat1Type : umlbMetamodel!UMLBTypeExpression = 

 umlbMetamodel!UMLBTypeExpression; 

Figure 6-6 Header section of TDtoUMLB.atl 

 

Figure 6-7 illustrates parts of a UML-B metamodel in which the same colours 

used in Figure 6-3 are used to emphasize corresponding TD to UML-B parts used 

during the conversion. 

 

�

Figure 6-7 UML-B Metamodel (parts of) 

 

There are a number of UML-B parts which can be directly generated from 

TD components, e.g. Project, Machine and Class. However, some of UML-B 

components cannot be directly created. For example, generating a guard for a 
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UML-B event, many of TD metamodel classes are involved, such as 

TDConstraints, TDNodeType, Simple, AND_node, OR_node, TDPredicate and 

TDTiming. The detail of creating a UML-B model is described next. 

6.5.1 Top-Level ATL translation rules 

This section explains the structure of the top-level ATL rules and the 

corresponding UML-B model components created. As shown in Figure 6-8, an 

UML-B project’s name is created from the rule Project, while a machine is 

generated from the rule Machine. The rule Machine is also used for creating a 

machine event Ticktok and a machine variable gclock, which are used to generate 

time progress, and the global clock for the machine respectively. Extra machine 

variables are added such as reqFl to keep the list of requested floors (this is the 

same variable created by hand in Chapter 5). A SEES association and a context’s 

name are created from the Machine rule. However, the context detail has to be 

declared manually. This is because ATL has a limitation and cannot re-use 

elements to generate other new elements across rules. ATL does not have the 

flexibility to generate an element that has to be created from the combination of 

used target elements. Thus, we cannot use TD class names to generate carrier sets 

in a Context, since they are already used to create classes by the rule Class (as 

described in section 6.5.4 below). 

UML-B class names and attributes are created from the rule Class. Some 

attributes need to be redefined since part of an attribute’s name is generated from 

its corresponding state’s name. Statemachines belonging to corresponding classes 

are generated by the rule Statemachine. 
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Figure 6-8 Top-level ATL rules 

 

Our translation rules do not cover defining UML-B Machine Statemachines. 

This is because a TD Timeline, which can be seen as a UML-B Class Statemachine 

must belong to a class. According to our TD metamodel, one cannot generate a 

Timeline without a class. Invariants have to be manually created since they can 

not be declared by TD. 

6.5.2 Creating UML-B Project 

An UML-B project is generated by mapping a class TDProject to a class 

UMLBProject (Figure 6-9) by the rule Project (Figure 6-10) as detailed in line (2) 

and (3) where a variable u is used to represent a target model element, Project. 

From Figure 6-10, the rule Project maps the source model element 

TDMetamodel!TDProject represented by a variable t in line (2), to a target model 

element umlbMetamodel!UMLBProject represented by a variable u in line (3). 

UML-B project’s name is created from a TD project’s name as shown in line (4). 
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Figure 6-9 TDMetamodel and umlbMetamodel : Project and Machine 

 

As shown in Figure 6-9 right, UMLBProject comprises UMLBconstruct 

which is sub typed into UMLBMachine and UMLBContext. Thus, line (5) maps an 

association construct of TDMetamodel to an association constructs of 

umlbMetamodel. This association maps UMLBMachine and UMLBContext (which 

are both created later by the rule Machine, Figure 6-12) into UMLBProject 

automatically. 

 

rule Project { ............................................................................................ (1) 

 from t : TDMetamodel!TDProject ....................................................... (2) 

 to u : umlbMetamodel!UMLBProject ................................................... (3) 

 (name <- t.name, ................................................................. (4) 

 constructs <- t.construct), ........................................... (5) 

 pt1 : umlbMetamodel!UMLBTypeExpression .............................. (6) 

 (name <- 'BOOL'), ............................................................... (7) 

 pt2 : umlbMetamodel!UMLBTypeExpression .............................. (8) 

 (name <- 'NAT'), ................................................................. (9) 

 pt3 : umlbMetamodel!UMLBTypeExpression ............................ (10) 

 (name <- 'NAT1'), ............................................................. (11) 

 pt4 : umlbMetamodel!UMLBTypeExpression ............................ (12) 

 (name <- 'INT') ................................................................. (13) 

do { thisModule.umlbproject <- u;  ................................................... (14) 
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 thisModule.boolType <- pt1;  ......................................................... (15) 

 thisModule.natType <- pt2;  ........................................................... (16) 

 thisModule.nat1Type <- pt3;  ......................................................... (17) 

 thisModule.intType <- pt4;  ........................................................... (18) 

 u.typeExpressions <- u.typeExpressions.append(pt1);  ..... (19) 

 u.typeExpressions <- u.typeExpressions.append(pt2);  ..... (20) 

 u.typeExpressions <- u.typeExpressions.append(pt3);  ..... (21) 

 u.typeExpressions <- u.typeExpressions.append(pt4);}  ... (22) 

} 

Figure 6-10 ATL rules for creating UML-B Project 

 

The texts, such as BOOL and NAT1, inside the ' ' symbol as shown above are 

additional information. We use them to create variable types such as Boolean 

(BOOL), positive integer (NAT1), etc., for use in the model. If we do not create those 

types in advance, the user must define them manually later. Moreover, since our 

model defines a timing constraint as an integer, generating a type INT also supports 

this. This way one can introduce strings or variable types directly to the UML-B 

model. 

Lines (6)-(13) show assigning BOOL, NAT, NAT1 and INT to each target model 

element UMLBTypeExpression which is represented by variables pt1, pt2, pt3 

and pt4 respectively. Those variables are assigned to a corresponding helper in 

lines (15)-(18), in a do part in which a command <thisModule.helperName> 

is used for inferring a helper. Note that using to and do is described in section 

2.9.2. Lines (19)-(22) are used to append those variables to the project. 

6.5.3 Creating a UML-B Context’s name and Machine 

A UML-B context’s name and machine are created by the rule Machine as 

shown in Figure 6-12. This rule uses the source model element 

TDMetamodel!TDMachine as shown in line (2). As shown in lines (4)-(5), a 

context’s name, represented by the variable ctx, is created by the TD machine 

name followed by the string _ctx. The texts such as _ctx, Ticktok and gclock := 
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gclock + 1, as shown in Figure 6-12, are additional information which we use to 

directly generate UML-B parts that cannot be obtained by the TD. In this case, they 

are used to introduce a string, an event name, and an event action. Line (7) is the 

generation of the UML-B machine name by the TD machine name. Line (8), an 

association class in TDMetamodel is mapped to an association classes in 

umlbMetamodel; this is for adding classes (that are created later in rule Class) to 

the machine. 

�
������
����������
����  

Figure 6-11 TDMetamodel and umlbMetamodel : Machine and Class 

 
rule Machine {  ........................................................................................... (1) 

 from t : TDMetamodel!TDMachine  .................................................. (2) 

 to  .................................................................................................................. (3) 

 ctx : umlbMetamodel!UMLBContext  ........................................... (4) 

 (name <- t.name + '_ctx'),  ............................................ (5) 

 m : umlbMetamodel!UMLBMachine  ............................................... (6) 

 (name <- t.name,  ................................................................ (7) 

 classes <- t.class),  ........................................................ (8) 

 e : umlbMetamodel!UMLBEvent  ................................................... (9) 

 (name <- 'Ticktok'),  ...................................................... (10) 

 a : umlbMetamodel!UMLBAction  ............................................... (11) 

 (name <- 'Action1',  ........................................................ (12) 

 action <- 'gclock := gclock + 1'),  .......................... (13) 

 gclk : umlbMetamodel!UMLBVariable ...................................... (14) 

 (name <- 'gclock', ........................................................... (15) 

 typeProvider <- thisModule.intType, ......................... (16) 
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 initialValue <- '0') ....................................................... (17) 

do { .............................................................................................................. (18) 

 m.events <- m.events.append(e); .......................................... (19) 

 e.actions <- e.actions.append(a); ...................................... (20) 

 m.variables <- m.variables.append(gclk); ........................ (21) 

 thisModule.umlbmachine <- m;  ............................................... (22) 

 m.contexts <- m.contexts.append(ctx); .............................. (23) 

 thisModule.umlbproject.constructs <- ................................ (24) 

  thisModule.umlbproject.constructs.append(ctx); 

 thisModule.umlbproject.constructs <-  ................................. (25) 

  thisModule.umlbproject.constructs.append(m); } 

} 

Figure 6-12 ATL rules for creating UML-B Machine 

 

An event Ticktok, represented by the variable e of the target model element 

umlbMetamodel!UMLBEvent, is created in lines (9)-(10). A Ticktok action is 

assigned to gclock := gclock + 1 as shown in lines (11)-(13) while the machine 

variable gclock whose type is assigned to an integer with an initial value of 0, is 

generated as shown in lines (14)-(17). The variables ctx, m, e, a and gclk are 

assigned to corresponding UML-B components by the do section. 

In the do section, line (19) is used to add the event Ticktok to 

UMLBMachine, line (20) appends the action to the event Ticktok. Line (21) 

assigns the variable gclk as a machine variable, and then the machine is added to 

UMLBMachine by calling the helper thisModule.umlbmachine, shown in line 

(22). Line (23) links the context to the machine by adding this context to an 

association, contexts. Line (24) appends this context to a project by calling the 

helper thisModule.umlbproject.constructs. The helper 

thisModule.umlbproject is defined earlier (Figure 6-6) and constructs is an 

association name as illustrated in Figure 6-9. Line (25) appending the machine to 

the project. The rule Machine generates a package diagram and the event Ticktok 

in the machine part as illustrated below. 
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Figure 6-13 Package Diagrams and Event Ticktok in a Machine part 

6.5.4 Creating UML-B Class and local attributes 

Figure 6-14 shows part of the corresponding TD, TDMetamodel and 

umlbMetamodel used for generating UML-B classes and attributes. UML-B 

classes and attributes are created by the rule Class as shown in Figure 6-15. A 

class name is generated by a TDClass name followed with a string Self as shown 

in lines (4)-(5). The Self is used to identify a unique non-deterministic variable 

name for the class. For example, FloorsensorSelf is a non-deterministic variable 

used in the class Floorsensor. Line (6) shows the mapping of the TD timeline 

association to the UMLB statemachines association. This is how we link 

Statemachines to a class.  



Chapter 6 Translating Timing Diagrams into UML-B                                          143 

 

 

 

Figure 6-14 TDMetamodel and umlbMetamodel : Class and Attribute 

 

A class attribute is generated by mapping the TDClass to the 

UMLBAttribute, where the result is kept in variable att, as shown in line (7). An 

attribute name is generated by the TDClass name which is changed to lower case 

letters by the function toLower(), followed by the string xStatexTime, line (8). 

We use a string xStatexTime to represent features that need to be completed by 

hand. In this case, it is a part of a class attribute name. Every class attribute name is 

generated from every corresponding state name of a class. For example, the class 

Floorsensor must have attributes floorsensorOffTime and floorsensorOnTime. We 
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cannot generate whole attributes because this rule is working with UMLBClass, 

line (2), not a UMLBState. The UMLBState is used for generating a Statemachine 

in the rule StateMachine as shown in Figure 6-17 below. As ATL cannot reuse the 

same elements to generate other components across the rules, we cannot generate 

whole attributes for this class. 

 

rule Class { ................................................................................................ (1) 

 from t : TDMetamodel!TDClass  ................................................. (2) 

 to u : umlbMetamodel!UMLBClass .............................................. (3) 

 (name <- t.name, .......................................................... (4) 

 selfName <- t.name + 'Self', .................................. (5) 

 statemachines <- t.timeline), ................................ (6) 

 att : umlbMetamodel!UMLBAttribute ........................................ (7) 

 (name <- t.name.toLower()+ 'xStatexTime', ........ (8) 

 typeProvider <- thisModule.intType, .................... (9) 

 initialValue <- '0') ................................................ (10) 

do { u.attributes <- u.attributes.append(att); } ...................... (11) 

} 

Figure 6-15 ATL rules for creating UML-B Class�

 

Lines (9)-(10) show how to assign an attribute type and initial value which 

are integer and 0 respectively. The attribute is appended to UMLBClass as shown 

in line (11). Those attributes are used to record the current time whenever 

corresponding events belonging to the class are activated. Figure 6-16 shows how 

classes and their attributes are generated from the rule Class. 
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Figure 6-16 Lift system Class diagrams 

 

Even though a TD has symbols “:” and “ ⊆ ” to indicate whether an object 

appears singly or multiple in a class, those symbols are not defined in a TD 

metamodel nor in a UML-B metamodel. That is because in UML-B, defining a 

class with many objects inside can be done by using a Machine Class; defining an 

object is done by a Machine Statemachine. This is not identified within a TD 

metamodel but depends on the user’s choice. ATL translation rules create classes. 

Thus, if an object occurs singly in a system, such as in our lift system case study, 

the UML-B output model has to be modified as described in section 6.6.3 below. 

6.5.5 Creating UML-B Statemachines 

This section shows the StateMachine rule which is used to generate a UML-

B Statemachine as shown in Figure 6-17. An example of a Statemachine that is 

generated by this rule is shown in Figure 6-18, and the corresponding parts of TD, 

TDMetamodel and umlbMetamodel are shown in Figure 6-21. In Figure 6-17, a 

TDTimeline is transformed into a UMLBStatemachine in which a Statemachine 

name is generated by TDTimeline name followed by the string _state. This rule 

also generates mappings of TD associations states and timelinetransitions to 

UML-B associations, states, and transitions respectively. This mapping is 

used to generate UML-B Statemachine states and transitions as shown later in the 

rules State and Transition respectively. 
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 rule StateMachine { 

  from t : TDMetamodel!TDTimeline 

  to u : umlbMetamodel!UMLBStatemachine ( 

    name <- t.name + '_state', 

    states <- t.states, 

    transitions <- t.timelinetransitions) 

  } 

Figure 6-17 ATL rule for creating a UML-B Statemachine 

 

For example, the result from this rule generates a Statemachine named 

floorsensor_state for the class Floorsensor as shown in the following: 

 

 

Figure 6-18 An example of a Statemachine generated from the rule Statemachine 

 

6.5.6 ATL translation rules for creating UML-B Statemachine states, transitions 

and actions 

Statemachine states and transitions are generated by the rules State and 

Transition as shown in Figure 6-19. Each transition is identified by a name which 

represents an Event-B name. A transition may have parameters, guards, and 

actions, which are created by rules Parameter, Constraint, and Transition 

respectively. Additional information may need to be identified to complete the 

model. 
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Figure 6-19 ATL rules for creating UML-B Statemachine State, Transition,  

Parameters and Actions 

6.5.7 Creating UML-B Statemachine states 

Figure 6-21 shows corresponding parts of TD, TDMetamodel and 

umlbMetamodel used to generate UML-B states and transitions. 

Statemachine states are generated by the rule State. Each state has a name 

that is generated from TDState name as shown in Figure 6-20 line (4). 

 

rule State {  ............................................................................................... (1) 

 from t : TDMetamodel!TDState  ................................................. (2) 

 to u : umlbMetamodel!UMLBState  ............................................. (3) 

 (name <- t.name,  ................................................................ (4) 

 incoming <- t.segments -> collect(c|c.incoming),  (5) 

 outgoing <- t.segments -> collect(c|c.outgoing))  (6) 

} 

Figure 6-20 ATL rule for creating UML-B State 

 

Since UML-B does not have segments, TD incoming and outgoing 

associations cannot be directly mapped. Those associations are collected by a 

keyword collect and then assigned to segments. Next, those segments are 
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assigned to the corresponding UMLBState incoming and outgoing associations 

as shown in lines (5)-(6). 

 

  

Figure 6-21 TDMetamodel and umlbMetamodel : Statemachine, State, Transition,  

Action, Guard and Parameter 

6.5.8 Creating UML-B Statemachine transitions and actions 

UMLBTransition can be generated from TDTimelineTransition by the rule 

Transition as shown in Figure 6-22. This rule is composed of two parts. The first 

part from lines (3)-(8), is for generating transitions, and the second part, in lines 

(9)-(15), is for creating actions. 
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rule Transition {  ..................................................................................... (1) 

from t : TDMetamodel!TDTimelineTransition  ..................................... (2) 

to u : umlbMetamodel!UMLBTransition  ................................................. (3) 

 (name <- t.target.getTransitionName(), ................................... (4) 

 target <- t.target.eContainer(),  .............................................. (5) 

 source <- t.source.eContainer(),  .............................................. (6) 

 guards <- t.target.constraints,  ................................................ (7) 

 variables <- t.eContainer().eContainer().parameter ), ...... (8) 

actgclock : umlbMetamodel!UMLBAction  ............................................... (9) 

 (name <- t.eContainer().name + '.gClockAction',  .............. (10) 

 action <- t.target.eContainer().eContainer().name  .......... (11) 

 + t.target.eContainer().name  ..................................................... (12) 

 + 'Time('  ........................................................................................... (13) 

 + t.target.eContainer().eContainer().eContainer().name  . (14) 

 +'Self) := gclock' ) ....................................................................... (15) 

do {u.actions <- u.actions.append(actgclock); }  ....................... (16) 

} 

Figure 6-22 ATL rule for creating UML-B Transition 

 

First part, creating transitions: A transition has a name which represents an 

event’s name and is created by the helper getTransitionName as shown in line 

(4). Lines (5)-(6) is maps TD associations target and source to UML-B 

associations target and source. Keyword eContainer() is used to refer to an 

upper class level in an aggregation association. For example, from TDMetamodel 

in Figure 6-21 and line (5) in Figure 6-22, the command target <- 

t.target.eContainer() means traversal from the class TDTimelineTransition, 

which is represented by t of the target association, to a class TDSegment. The 

eContainer() of the class TDSegment is the class TDState. Line (7) maps the 

TD association t.target.constraints to an UML-B association guards. This is 

for creating a UML-B transition guard. Line (8) shows an association creating 

transition parameters. 



Chapter 6 Translating Timing Diagrams into UML-B                                          150 

 

Second part, creating actions: Lines (9)-(15) generate an action for each 

transition. An action label, .gClockAction, is created in line (10), while the body 

of an action is created in lines (11)-(15). Line (16) appends the guard created 

earlier from, lines (9)-(15), to UMLBTransition. For example, in the following 

figure, floorsensor.gClockAction is a label while 

floorsensorOnTime(FloorsensorSelf) := gclock is a guard. This guard is 

used to record the current time whenever the corresponding event is activated. 

 

 

 

Figure 6-23 A floorsensorOff transition action 

6.5.9 Creating an Event name 

An event name is generated using the helper getTransitionName(), as 

illustrated in Figure 6-24. 

 

helper context TDMetamodel!TDSegment  ............................................... (1) 

def : getTransitionName() : String =  ............................................... (2) 

let simuls : Set(TDMetamodel!TDSegment) =  ..................................... (3) 

 TDMetamodel!TDSegment.allInstances()-> .......................................... (4) 

 select(c|c.simul ->includes(self))  ................................................. (5) 

 in  ................................................................................................................. (6) 

 if simuls -> isEmpty() then  ............................................................... (7) 

 self.eContainer().eContainer().name  ..................................... (8) 

 + self.eContainer().name  ............................................................. (9) 

 else  ........................................................................................................... (10) 

 simuls.last().getTransitionName() ......................................... (11) 

 endif;  ....................................................................................................... (12) 

Figure 6-24 ATL rule for creating an event name 
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The helper returns a string value which is a transition name and uses the 

keyword self, as shown in line (5), which represents an instance segment 

belonging to a TDMetamodel!TDSegment. At line (3), simuls is a variable defined 

for use only in this helper. This variable is initiated as a set of segments by the 

keyword Set. In line (4)-(5), the members of the simuls set are selected from 

SimultaneityArrows (simul) that is related to the segment indicated by the 

command includes(self). For example in Figure 6-25, consider the segment 

MovingUp3, which is the self in this case. This segment has one simul a that is 

pointed from segment Off2. Thus, the simuls set for the segment MovingUp3 is 

simuls = {Off2}. The segment Off2 has no SimultaneityArrow. Thus, a set 

simuls for the segment Off2 is defined as simuls = {}. 

 

Figure 6-25 Timing diagram: floorsensor and Lift with SimultaneityArrows�

 

Line (7) checks whether simuls is empty by keyword isEmpty(), if so an 

event name is generated from a Timeline name, in line (8), followed by a state 

name, in line (9). For example the segment Off2, which is a target segment of a 

transition t1, has simuls = {}. Thus, a transition name is generated from a 

Timeline name, floorsensor, followed with a state name, Off; a transition name for 

t1 is floorsensorOff�+���9	*
��
�Figure 6-26��	�. If simuls is not empty, it returns 

the last elements in simuls to the helper getTransitionName() as shown in line 
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(11). For example in Figure 6-25, the segment MovingUp3, which is a target 

segment of a transition t2, has simuls = {Off2}, �9����5,�
������������
���	��9��

9����
� getTransitionName(). The segment Off2 itself has no 

SimultaneityArrow�� We then follow the �+,�� �
	(���� *hen� 5�
�
+��
5� +�

�
+
����	
�
+,��for�� ����
+��:!��9���
+
����	
�
+,���	
��3����floorsensorOff�*9�(9��� 

+ 
+,�� for� �9�� �
+
����	
� ��
;� <��*��
� �9�� ��+��� MovingDepartingUp� +
#�

MovingUp� +�� �9	*
� �
� Figure 6-26� <��	*�� �9�� �
+
����	
� 
+,�� �	
� ��� ��� +��	�

floorsensorOff�*9�(9� ���5�
�
+��#� following� �9�� �+,���
	(����	�� �9�� �
+
����	
� �3 

<: SimultaneityArrow <. T9�� �
+
����	
 ��
;� ��+��s�MovingDepartingDown�+
#�

MovingDown. 

 

 

 

Figure 6-26 The floorsensorOff transitions are generated from SimultaneityArrows 

 

Up to this point, the ATL translation rules generate Class, Statemachine 

inside that class, Statemachine states and transitions, and actions for the 

corresponding transitions, as shown by an example of class Floorsensor in Figure 

6-27. 
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Figure 6-27 UML-B floorsensor Class diagram and its Statemachine�

6.5.10 Creating UML-B transition’s guards 

The rule Constraint is used to generate guards of a transition. This rule uses 

the helper GetNodePredicate() which is made up of three sub-helpers: a helper 

for creating timing constraints (SimpleGuard), conditions (SimpleCond), and cause 

segments (SimpleCause), as shown below: 
 

 
 

The details of the rule Constraint are shown in Figure 6-28. This rule 

creates a guard labelled TimingCnstrntGuard while the guard itself is generated 

by the helper getNodePredicate(). 

 

rule Constraint{ 

 from t : TDMetamodel!TDConstraints 

 to u : umlbMetamodel!UMLBPredicate ( 

   name <- 'TimingCnstrntGuard', 

   predicate <- t.effectsource.getNodePredicate()) } 
 

Figure 6-28 ATL main rule for creating UML-B Guards 
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Figure 6-29 TDMetamodel and umlbMetamodel:  

TDConstraints and UMLBPredicate 

 

Checking Node types 

 

Figure 6-29 shows the parts of TDMetamodel and umlbMetamodel used to 

generate the detail of a UML-B transition guard. The helper getNodePredicate(), 

as shown in Figure 6-30, is used for checking whether a node type is Simple, 

OR_node or AND_node as shown in lines (3), (13) and (20) respectively. If a node 

type is Simple, it further checks whether that Simple node type has timing 

constraints by an ATL function oclIsUndefined(), as shown in line (5). This 

function returns a Boolean value true if there is no timing. If timing is defined, a 

guard is generated by concatenating the output from the three helpers, i.e. 

SimpleCause(), SimpleGuard(), and SimpleCond(), as shown in lines (6)-(8). 

Otherwise, a guard is generated without timing constraints as shown in lines (10)-

(11). 

 

helper context TDMetamodel!TDNodeType  ............................................. (1) 

def : getNodePredicate() : String =  ................................................. (2) 

 if self.oclIsKindOf(TDMetamodel!Simple)  ....................................... (3) 

 then  ............................................................................................................. (4) 
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  if not self.timing.oclIsUndefined() ....................................... (5) 

  then self.SimpleCause()  ............................................................... (6) 

  -> concat(' & '+ self.SimpleGuard())  .................................... (7) 

  -> concat(self.SimpleCond())  .................................................... (8) 

  else  .................................................................................................... (9) 

  self.SimpleCause()  ...................................................................... (10) 

  -> concat(self.SimpleCond())  .................................................. (11) 

  endif  ................................................................................................ (12) 

 else if self.oclIsKindOf(TDMetamodel!OR_node)  ......................... (13) 

  then self.Or -> iterate(e; ret : String = '('|  .............. (14) 

   if e=self.Or.last() ............................................................ (15) 

   then ret -> concat(e.getNodePredicate()+')')  .......... (16) 

   else  ......................................................................................... (17) 

   ret -> concat(e.getNodePredicate()+') or (')  ......... (18) 

   endif)  ..................................................................................... (19) 

  else if self.oclIsKindOf(TDMetamodel!AND_node)  .............. (20) 

   then self.And -> iterate(e; ret : String ='('|  ..... (21) 

    if e=self.And.last() ................................................. (22) 

    then ret -> concat(e.getNodePredicate()+')')  . (23) 

    else  ................................................................................ (24) 

    ret -> concat(e.getNodePredicate()+ ') & (')  (25) 

    endif)  ............................................................................ (26) 

   else 'unrecognised nodeType'  ......................................... (27) 

   endif 

  endif 

 endif; 

Figure 6-30 A helper for checking node types and event’s guards 

 

If a node type is OR_node, line (13), the sub-node type of the OR_node is 

collected by an expression self.Or, line (14). This collection is iterated by means 

of an iterate operation in which e represents an iterator, ret is a return value 

with an initial value equal to the string ‘(’. Each element in the collection is 
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checked whether it is the last node, as shown in line (15). If so, this node type is 

used in recursive call for the rule getNodePredicate(). The result generated from 

the rule is added with a symbol ‘)’ at the end, line (16). Otherwise, this node type 

is used in recursive call for the rule getNodePredicate() and ending with a string 

‘) or (’ as shown in line (18). This is the way to generate guards with nested OR 

node types. A guard for AND node types also uses the same process as shown in 

lines (20)-(26). Note that whenever the string & and or are generated in a UML-B 

model, they are automatically changed to the � and ∨  symbol.  

 

Creating a guard from a Cause segment 

 

The helper SimpleCause() is used to generate a guard from a cause segment, 

as illustrated in Figure 6-31. This helper works with the source model element 

TDMetamodel!TDNodeType. Thus, self in this case represents a node type. A 

guard is generated from a Timeline name of a cause segment, line (3), then 

concatenated with the string _state(xAssociationx) =, in line (4), followed by 

the state name in line (5). 

 

helper context TDMetamodel!TDNodeType  ............................................. (1) 

def : SimpleCause() : String =  ........................................................... (2) 

 self.causesource.eContainer().eContainer().name  ........... (3) 

 + '_state(xAssociationx) = '  ................................................. (4) 

 + self.causesource.eContainer().name;  ............................... (5) 

Figure 6-31 A helper for creating a UML-B guard from a cause segment 

 

The string xAssociationx is a mark for additional information added by 

hand. The reason is to have a complete UML-B model, one may have to declare 

associations among class or/and other classes’ attributes, since TD notations do not 

support identifying that kind of information. Thus, the string xAssociationx is 

represented for the user to replace with the proper information later. Section 6.6.5 

explains through examples the replacement of xAssociationx. Figure 6-32 shows 
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an example of a guard for the transition floorsensorOff. This example focuses on 

the part of guard generated by the helper SimpleCause(), while the parameter f 

with type FLOOR is generated by the rule Parameter, as shown in Appendix C. 

The whole guards for this transition are illustrated in the next section. 

 

 

Figure 6-32 Guards generated from a cause segment for the floorsensorOff event 

 

Creating a guard from Timing constraints 

The helper SimpleGuard() is used for creating a UML-B guard from a 

timing constraint. The details of this helper are illustrated in Figure 6-33. This 

helper works with a source model element TDMetamodel!TDNodeType. Thus, self 

here represents a node type. The helper generates a guard by concatenating the 

string (gclock - xAssociationx, with other corresponding TD elements such as 

timing constraints. 

 

 helper context TDMetamodel!TDNodeType 

 def : SimpleGuard() : String = 

  '(gclock - xAssociationx.' 

  + self.causesource.eContainer().eContainer().name 

  + self.causesource.eContainer().name 

  + 'Time >= ' 

  + self.timing.lowerlimit.toString() + ') ' 

  + ' & (gclock - xAssociationx.' 

  + self.causesource.eContainer().eContainer().name 

  + self.causesource.eContainer().name 

  + 'Time <= ' 

  + self.timing.upperlimit.toString() + ')'; 

Figure 6-33 The helper for creating a UML-B guard from a timing constraint 
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An illustration of how to generate a guard with the helper SimpleCond() is 

not show here, but its detailed explanation can be found in Appendix C. This helper 

simply takes predicates, if there are any defined within TDPredicate, see Figure 6-

29, and concatenates with those guards generated by the helpers SimpleCause() 

and SimpleGuard(). An example of a guard for the transition floorsensorOff is 

shown below: 

 

 

Figure 6-34 Timing constraint guard for floorsensorOff event 

 

The UML-B tool does not allow adding a carriage return in the property view 

for a display arrangement. Thus, since the length of this guard is too long to be 

captured in one screen, we copy the whole guard from Figure 6-34 and represent it 

as the following: 
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6.6 UML-B Model alteration 

As mentioned above, TD is not designed to add state-based information nor 

gather whole system information. Thus, there are some UML-B model features that 

cannot be created by TD itself. In addition, ATL has a limitation and cannot 

generate multiple outputs from an input element if that element is used across the 

rules, as explained in section 6.5.4. This section identifies what features need to be 

added to an UML-B output model. 

6.6.1 Adding UML-B Context diagram body 

We can generate a UML-B context diagram name as shown in section 6.5.3. 

However, there are no details inside the context diagram such as ClassTypes, 

Constants, and Axioms. Thus, this part is generated by hand. 

 

 

Figure 6-35 Context Diagram for the Lift system 

 

In case of the lift system, ClassTypes, e.g. '(��), '(��)
�*
�), ���), �+), 

etc., as shown in Figure 6-35, are generated as sets in Event-B unless it is assigned 

a constant value. For example, the ClassType '(��) is defined as a set of integers 

,�-#-./, representing a number of floors starting from 1. Thus, the ClassType 

'(��) is generated as a constant, while its value is defined as AXIOMS in Event-B 
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as shown in Figure 6-36. �+) has its instances property set to Up and Down to 

identify the direction of the lift. �+) is created as a set while its instance properties 

are generated as CONSTANTS for an Event-B model, also shown in Figure 6-36. 

 

 

Figure 6-36 Event-B Context part is generated from UML-B diagram for the Lift system 

6.6.2 Modifying UML-B Classes 

Modifying class attributes and defining classes to their corresponding sets 

 

As described before, the string xStatex is used to illustrate missing 

information that cannot be created by TD itself, or from the limitations of ATL. For 

example, the class '�������� in Figure 6-37 left has an attribute defined by 

���������0
����0�����1�+*�. 
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Figure 6-37 UML-B Class diagram for Floorlamp before and after modification 

 

For it to be correct, attributes for this class are generated from every state 

corresponding to the class. The class '�������� has two states: 	
����and (��. 

Thus, attributes for the class '��������� are ���������(������� 1� +*� and 

���������	
��������1�+*��as shown in Figure 6-37 right. 

To identify classes representing subsets of the corresponding ClassTypes that 

are introduced in the CONTEXT, an assignment <Class = ClassType> is used. 

For example, '���������!�'(��)(��2 (as shown in Figure 6-37 right) allows a 

'�������� class instance to get its values from ClassType '(��)(��2. 

 

Adding associations between classes and machine invariants 

 

Associations between classes are information that is not declared by a TD. 

Which associations are added depend on each system specification. For example, in 

the lift case study, there are some associations added such as 3�����������and�

�����4�
4��������� to declare a door and a floorsensor at a floor respectively, as 

shown in Figure 6-38 (other associations are shown in Appendix D). Those 

associations are created as variables with their invariants, as shown by an example 

for �����4�
4����������below: 

��������415������4�
4��������� 

+
�����
�415������4�
4������������'�����6�'����4�
4���
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�

Figure 6-38 Association between classes 

 

Figure 6-38 also shows how to declare invariants. Invariants can be defined 

manually inside a corresponding class as shown in the class ����, or defined as 

Machine Invariants. The invariant inside the class ���� is used to indicate 

whenever the lift is not stationary at a floor, the lift door must be closed. The 

Machine Invariant indicates that uplamp and downlamp must not be activated at the 

same time. The rest of the invariants can be found in Appendix D. 

6.6.3 Modifying to create a lift in a system 

Since ATL translation rules generated a class (���, to create a lift in a 

system, the class (���� is changed to a Statemachine �����4���� as shown in 

Figure 6-39. 

The class (���’s attributes, such as ��������
7������
7	����� and 

����
��������������, must then change to machine variables. Other related 

variables like �8���
�'� and 3��� are used to represent a current position and 

directions of the lift are added by hand. There are extra events: 9��
7����	� and 

9��
7������:
 are manually created for controlling the change in direction of the 

lift. 
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Figure 6-39 A class lift is changed to a Statemachine lift_state 

6.6.4 Modifying UML-B Statemachine 

Modifying Statemachine initial state 

Our rule can generate the Statemachine for each class. However, one needs to 

identify an initial state for that Statemachine. For example, Figure 6-41 shows the 

door�4���� Statemachine before and after adding an initial state. This initial state 

generates an Event-B INITIALISATION as shown in Figure 6-40. 

 

 

Figure 6-40 Parts of an Event-B model: generate door initialisation 

 

 



Chapter 6 Translating Timing Diagrams into UML-B                                          164 

 

 

Figure 6-41 UML-B Statemachine for Door before and after modification 

 

Modifying Statemachine Transitions 

Each UML-B Statemachine transition generates an Event-B event with the 

corresponding transition name. Therefore, each transition name should to be 

unique, as well as its action should do a specific task and not be in conflict. Two 

problems occur with the UML-B Statemachine generated from ATL and U2B from 

the example shown in Figure 6-42. Its corresponding Machine Statemachine 

�����4���� and Statemachine (���� are� shown in Figure 6-39 and Figure 6-43 

respectively. 
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Figure 6-42 TD for the Lift and Floorsensor 

 

Figure 6-43 Statemachine for the Lift generated from ATL 

 

The first problem concerns the condition that the lift can StopAtFloor�

whenever it is in a previous state of MovingArrivingUp�or MovingArrivingDown, 

as shown in Figure 6-42. The Statemachine corresponding to the (��� is shown in 

Figure 6-43 in which there are two state transitions assigned with the same name 

(���
�����'����. The U2B translator converts a UML-B model to an Event-B 

model as shown in Figure 6-44. 

 

 

 . . . 

Figure 6-44 An Event-B liftStopAtFloor event generated from  

UML-B liftStopAtFloor transition 
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Consider the two highlighted guards; these guards are previous states before 

the lift stops at the floor, and are automatically generated by U2B, not by ATL 

rules. These guards made the event ����
���������� incorrect since the two 

guards are in conflict. That is, the lift cannot be in a state of MovingArrivingUp and 

MovingArrivingDown at the same time. This problem can be fixed by combining 

these two guards with a conjunction ∨  (or) by hand. This combination may be 

generated automatically if and only if the U2B translator is re-designed to do this. 

However, we selected to solve this problem another way. In the solution, those 

transitions ����
���������� are assigned to different names as shown in Figure 

6-45, in order to have them generated separately in Event-B as shown in Figure 6-

46. This way, events are simpler and easier for proving than combining guards 

together within an event. 

 

 

Figure 6-45 UML-B transitions liftStopAtFloorUp and liftStopAtFloorDown 

after modification 
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. . . 

 

. . . 

Figure 6-46 Event-B events: liftStopAtFloorUp�and liftStopAtFloorDown 

 

The second problem happens because SimultaneityArrows. Figure 6-42 

shows that there are two SimultaneityArrows from the segment Off2 to segments 

MovingUp3 and MovingDown7. This causes UML-B to generate two state 

transitions with the same name �����4�
4�����, as shown in Figure 6-43 (by the 

helper getTransitionName() as shown in Figure 6-24). The problem is U2B 

generates those two UML-B transitions to the same Event-B event, 

�����4�
4�����-�as shown in Figure 6-47. This event is incorrect since guards 

and actions themselves (highlighted) are in conflict. The lift cannot be in states of 

MovingDepartingUp and MovingDepartingDown at the same time, nor can it be in 

the states of MovingUp and MovingDown after performing the event. However, 

changing transition names alone raises another problem. This is because not only is 

the �����4�
4����� transition generated in the Lift Statemachine, but also in the 

Floorsensor Statemachine, as shown in Figure 6-43 and Figure 6-48. 
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 . . . 

 

 . . . 

Figure 6-47 An Event-B floorsensorOff 

 

Following this example, if we rename the transition �����4�
4������in the 

Lift Statemachine, we have to rename it with the same name in the Floorsensor 

Statemachine. Unfortunately, UML-B does not allow renaming elements already 

existing with that name, even though they are generated with the same transition 

name from the beginning. 

 

Figure 6-48 A Statemachine for floorsensor 

 

Thus, the solution to this problem is renaming �����4�
4������transitions in 

the Lift Statemachine to ��������
7	� and ��������
7��:
�� and splitting the 

�����4�
4������ transition in the Floorsensor Statemachine to 

�����4�
4�����	� and �����4�
4�������:
�as shown in Figure 6-49. 
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Figure 6-49 A Statemachine for lift and floorsensor 

 

Guards and actions for events �����4�
4�������:
 and �����4�
4�����	� 

are split from the former �����4�
4����� transition. 

6.6.5 Modifying UML-B event guards 

As mentioned in section 6.5.10, a transition guard is generated with the 

marking xAssociationx, which needs to be deleted or replaced. To explain how to 

delete xAssociationx, consider the timing constraint guard for the transition 

floorsensorOffUp (the corresponding Statemachine is shown in Figure 6-49) with 

xAssociationx as illustrated below: 

 

(gclock − xAssociationx.liftMovingDepartingUpTime � 2) d 
(gclock − xAssociationx.liftMovingDepartingUpTime 	 5) 

 

Since the Statemahine (��� has no association to other classes, this guard is 

altered by deleting marking xAssociationx. Thus, the correct version of this 

transition’s guard is shown below. 
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(gclock − liftMovingDepartingUpTime � 2) d 
(gclock − liftMovingDepartingUpTime 	 5) 

 

In some cases, the marking has to be replaced by corresponding associations 

and attributes. Those associations and attributes are created earlier by hand in 

CONTEXT and/or class diagram. For example, Figure 6-50 top illustrates an 

association �����4�
4��������� between classes '���� and '����4�
4��, where 

a Statemachine�����������4���� is shown at the bottom of the figure. 

 

 

 

Figure 6-50 An association between classes Floorlamp, Floor and Floorsensor 

 

The transition ���������	
���� in Figure 6-50 has part of the guard 

generated by the ATL translation rules as shown below: 

 

(gclock − xAssociationx.floorsensorOffTime � 2) e 
(gclock − xAssociationx.floorsensorOffTime 	 4) 

 

The marking in this guard is replaced by an association 

�����4�
4����������and a variable �8���
�'�, from Figure 6-39, as illustrated 

below: 

 

(gclock – (floorsensorAtfloor(currentFl)).floorsensorOffTime � 2) 

e 
(gclock – (floorsensorAtfloor(currentFl)).floorsensorOffTime 	 4) 
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The symbol “.” represents referring to an attribute for the corresponding 

class. This symbol is changed to “(  )” automatically by the U2B translator 

whenever it is found in an expression. For the example above, it is changed to 

 

(gclock – floorsensorOffTime((floorsensorAtfloor(currentFl))) � 2) 

e 
(gclock – floorsensorAtfloor((floorsensorAtfloor(currentFl))) 	 4) 

 

This is the way one can correct the marking xAssociationx. Other 

xAssociationx are replaced with a similar technique. Figure 6-51 shows the full 

detail of the event ���������	
��� in Event-B. 

 

 

Figure 6-51 An event ���������	
��� is generated in Event-B 

6.6.6 Timing Constraints 

As described earlier, the event Ticktok is generated by the rule Machine, as 

shown in Figure 6-12. The rule also generates the event action, that is gclock := 

gclock + 1. The variable gclock, whose type is assigned to an integer and initial 

value 0, is also created by this rule. The event guards are manually created, using 

the same technique with the Event-B direct translation as described in section 
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5.3.11. The Ticktok event provides time progress as an output value. Below is a 

part of the event Ticktok’s guards. 

 

 

 

Figure 6-52 A Ticktok event 

6.7 Summary 

This chapter explains how to generate a UML-B model from a TD using 

ATL rules. TD used for this translation is slightly different from the direct 

translation (Chapter 5), as identifying a first letter for a class name by a capital 

letter (as described in section 6.1). This is because the class names here are used to 

generate class in Class diagram in the MACHINE part, while class names in 

Chapter 5 are used to generate sets in the CONTEXT part. Since the UML-B 

metamodel does not specify if there are single or multiple objects for a class, but 

leaves it to user choice, ATL translation rules generate only TD classes and objects 

in classes. Thus, one needs to alter the result model by hand to have it fit the 

system specification. Here is the summary of generating an UML-B from TD. 

First, TD metamodel is created and used to describe abstract syntax of TD. It 

is an Ecore model itself. 
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Secondly, a TD model conforms to the TD metamodel generated by Eclipse 

EMF. This model is used as a source model for the ATL translation rules. 

Next, the ATL translation rules for creating a UML-B model are identified. 

The rules can generate a UML-B Project, CONTEXT name, MACHINES and 

Class diagrams. For a Class diagram, the rules can generate attributes and its 

Statemachines. For a Statemachine, we create rules for generating states and state 

transitions. Each state transition comprises parameters, guards and actions that are 

created from our rules. We also have a rule for creating a Ticktok event for time 

progressing. 

Finally, since TD illustrates some parts of the whole specifications, an output 

UML-B model generated from ATL rules has to be completed or modified. For 

example, associations among classes need to be added since they cannot be 

identified by TD notations. Some events, such as ChangeDirUp and 

ChangeDirDown, and invariants, are invented. Moreover, ATL does not allow 

generating UML-B components from TD elements already used in another rule. 

Thus in ATL rules, a symbol xStatex and xAssociationx are used as marks where 

the UML-B output model components require adjustment. The xStatex represents 

states needing replacement, while xAssociationx needs to be replaced by 

association among Classes. Additional parts of a UML-B model that have to be 

modified are: CONTEXT diagram, class attributes, initial state for a Statemachine 

and some Statemachine transition guards. 

UML-B tool itself also does not fully support identifying multiple previous 

states of the same target state, see section 6.6.4. The same problem occurs with 

SimultaneityArrows. For example, where there are two SimultaneityArrows 

originally starting from a same source segment but ending at different target 

segments. Thus, the generated UML-B output model has some Statemachine 

transitions providing the same name. U2B translator gathers those same transition 

names to generate an event. As a result, this event comprises guards and actions 

from many conflicting transitions. We need to split these kinds of event into many 

events with corresponding guards and actions. 

 



 

 

Chapter 7 Translating Timing 

diagrams into KAOS 

This chapter investigates the techniques for generating KAOS Goal and 

Operation models from TD. KAOS is a semi-formal method in which each goal 

definition is identified by linear temporal logic (LTL). TDs demonstrate system 

specifications in some temporal logic shapes along a timeline, i.e. in the next state 

(�), some time in the future (�), and entails (� ). Thus, it is possible to generate 

KAOS from TD. This transformation attempts to add a KAOS graphical capability 

for expressing timing constraints and event dependency requirements. 

Transforming TD into KAOS can help check the completeness of a system’s goals. 

Additional information, that may need to be added to KAOS that is obtained from 

the generating process, could identify what information is missing from the TDs. 

This chapter starts with defining the scope of TD and LTL operators used for the 

translation. Section 7.2 explains BNF TD definition used for transforming into 

KAOS. Section 7.3 gives steps for generating KAOS Goal and Operation models 

from TD. Section 7.4 provides textual translation rules. Sections 7.5 and 7.6 

explain how to create a goal from a segment defined with CauseEffectArrows and 

SimultaneityArrows. Section 7.7 describes a technique for splitting a goal into 

subgoals whenever the goal’s pre-condition is defined with the OR relationship. 

Section 7.8 explains techniques used to generate goal trees. Section 7.9 gives 

examples of user manual input to modelling. Section 7.10 shows examples of 

generating Operation model.   
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7.1 Scope of LTL operators and shape of Timing Diagrams 

For KAOS, we are concerned with generating events that will occur in the 

future under the timing constraints provided. We are not dealing with timing 

constraints that have occurred in the past states. The example on the next page gives 

a case where it would be useful to support past operators. However, LTL past 

operators are not used for defining a KAOS goal model. In other words, we are not 

modelling a KAOS goal that includes timing constraints as pre-conditions (because 

it has to be defined as a past operator) but in a post-condition (see section 2.7.2 for 

the KAOS goal structure). 

Currently, we have found in the case study that there are two LTL future 

operators which correspond to two KAOS Goal models: Maintain Global 

invariant P � Q and Bounded achieve P � ��d Q (see section 2.7.2 

and 2.7.5). Our work is generating translation rules to create these kinds of KAOS 

goal models. 

 

Aspects a timing constraint does allow 

 

To clarify what TD is suitable for using KAOS translation, consider a room 

heating and humidity control problem as defined below. 

“…whenever the room temperature is overheated or the room is overhumid 

with a condition that there is electricity in the system, a room window will be 

eventually opened between 3 and 5 seconds…” 

 

Figure 7-1 A timing diagram where KAOS translation is allowed 
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The specification above generates a TD as shown in Figure 7-1, where a 

corresponding goal formal definition is defined by Bounded achieve P � ��d 

Q as shown in the following: 

 

pre-condition P: (Overheat ∨  Overhumid)) ∧  Have Electricity 

               �  

post-condition Q: �[3,5] Window Open 

 

This kind of TD is allowed for the KAOS transformation since there are no 

past operators in the pre-conditions. 

 

Aspects a timing constraint does not allow 

 

If the room heating and humidity control problem specification above is 

modified to “...whenever the room temperature is overheated or the room is very 

humid, for between 1 and 2 seconds with a condition there is electricity in the 

system, a room window will be eventually opened between 3 and 5 seconds…”. 
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Figure 7-2 Timing diagrams where KAOS translation is not allowed 

 

A TD generated with this new specification above is illustrated in Figure 7-2 

left. This kind of TD with nested timing constraints is not allowed for the KAOS 

transformation. That is because nested timing constraints cause a pre-condition to 

be included with a LTL past operator = (some time in the past), which we are not 

dealing with at this moment as shown in the following. 
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pre-condition : =[1,2] (Overheat ∨  Overhumid)) ∧  Have Electricity 

            �  

post-condition : �[3,5] Window Open 

 

Another example supposes timing constraints are defined by a %��*�� node 

(see section 5.1 for the original TD BNF definitions) as shown in Figure 7-2 right. 

This kind of TD is not allowed for the KAOS transformation. That is because, not 

only nested timing constraints alone force one to define LTL past operators, but also 

having timing constraints by a %��*�� node allows identifying multiple timing 

constraints in a CauseEffectArrow. It is complicated and unclear how to generate a 

KAOS goal formal definition from this kind of TD. This is the reason the TD BNF 

definition for KAOS is slightly different from that defined in the direct translation 

in chapter 5. The detail of TD BNF definitions for KAOS is described in the 

following section. 

7.2 BNF Timing Diagram for KAOS 

Most TD BNF definitions used for KAOS translation is the same as that 

defined by the Event-B direct translation (Chapter 5). However, for KAOS, there is 

a difference in defining timing constraints. That is, a timing constraint ((����&) is 

directly connected with ����������� instead of a %��*��� segment. The rest of TD 

BNF definitions are the same. The TD BNF definitions for KAOS shown below 

highlight the definitions for ����������� and %��*�� concerned with the 

differentiation. 

�

������������������������
�

����������������������
�

���������%����&�

�������������������� !�
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Figure 7-3 illustrates TD used for transforming to KAOS Goal and Operation 

models. Notice that there is a timing constraint for each CauseEffectArrow. 

Numbers such as 1, 2, and 3 are not TD notations but are used for explanation in this 

chapter. 
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Figure 7-3 Timing diagram used for KAOS Models 

7.3 Steps in generating KAOS Goal and Operation models 

Generating a KAOS Goal and Operation models comprises four steps. 
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1. A KAOS goal is created by two TD notations: segments which are declared 

with CauseEffectArrows and SimultaneityArrows. This step uses our textual 

transformation rules, as explained in sections 7.5 and 7.6. 

2. Consider the goals obtained from step 1: 

• If the goal pre-condition is declared with OR relationships, that goal 

is split into sub-goals by a pattern below: 

 Parent goal: P1 ∨  P2 �  Q 

 Subgoal1: P1 �  Q 

 Subgoal2: P2 �  Q 

• The goal reamins the same if its pre-condition is declared with AND 

relationships. 

This step breaks a complex goal into simple goals. Each simple goal is 

then used as a leaf node goal for a goal tree in step 3. Explanations of 

this process are described in section 7.7. 

3. Generate goal trees from goals obtained from steps 1 and 2. Goal trees 

generated correspond to KAOS goal refinement patterns, as described in detail in 

section 7.8. 

4. An operation is generated from individual leaf node of goal trees by KAOS 

operation patterns as described in detail in section 7.10. 

7.4 Textual translation rules for generating a goal 

This section explains formal translation rules used to transform a TD into a 

KAOS Goal model. There are extra basic translation rules apart from those defined 

in the direct translation TD to Event-B, chapter 5. Top-level textual translation rules 

for creating a goal from a segment that has a CauseEffectArrow is described in 

section 7.5, while section 7.6 explains how to generate a goal from a 

SimultaneityArrow. 
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Basic translation rules 

 

To generate KAOS goal from a TD, some rules are reused from the direct 

translation (Table 5-1), while others are introduced in this chapter as shown in the 

table below. 

 

� ��"
!((����&) →  7  8; this rule checks whether an input (����& exists. If so, the 

rule gives the Boolean value true. 

� ������(����������) →  (����&; this rule gives a (����& for an input ����������.�

� ��������(�������) →  (%��'�6, %��'�1, �); this rule gives a sequence of 

SimultaneityArrows for an input �������. 

� ��
	

����(%��'�) →  %����%�&�; this rule gives the SimultaneityArrow start 

segment for an input SimultaneityArrow. 

Table 7-1 Additional basic rules for TD to KAOS transformation 

7.5 Textual translation rules for creating a goal from segments 

�

→

�

 

Figure 7-4 Top-level rules structure for creating a goal from a segment 
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An overview of top-level textual rules used to generate goal formal definitions 

from segments that have CauseEffectArrows is shown in Figure 7-4. In this 

figure, the coloured boxes represent parts generated from the rules, and hatched 

boxes represent parts the extra information added for the model completion. See 

section 7.9 for a discussion of manually added information. 

A goal’s name and its type have to be generated by hand. A goal formal 

definition is created by the rule � ������
� in which a �������� is used as a 

parameter for the rule. This rule generates each goal by the sub-rule 

���
������
#�
$����

�
,�which is reused from chapter 5, Table 5-1. This rule 

collects only segments that are defined with CauseEffectArrows as a sequence. 

Next, each %�&���� is used to generate other parts of the goal formal definition by 

other sub-rules. A goal formal definition is composed of three parts: non-

deterministic inputs/outputs local variables, pre-conditions, and post-conditions. 

Each is generated by the sub-rules as explained in the following: 

• Non-deterministic inputs/outputs local variables are generated by a 

goal � �	
	���	
��	���. These local variables are used inside a 

goal. The detail of this rule is shown in Appendix E. 

• Pre-conditions that are cause states and conditions are generated from 

the sub-rule � �
��

�
. This rule uses a %�&���� as an input 

parameter. 

• A post-condition is generated by the sub-rule � �����

�
. This rule 

uses a %�&���� as an input parameter to generate a post-condition and 

defines LTL future operator �. 

The detail of sub-rules and examples are explained in the following section. 

7.5.1 Creating pre-conditions from cause states and conditions 

This section describes the rule � �
��

�
 that is used to generate parts of 

KAOS pre-condition: cause states and conditions. This rule calls a sub-rule 

� ��
�
��
��� as shown in Figure 7-5. The rule � ��
�
��
��� creates pre-

conditions of a goal formal definition for an input ��/�()*�. 
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→

→

 

Figure 7-5 Rule: � �
��

�
 and sub-rules 

 

The rule � ��
�
��
��� is similar to the rule ���
�
��
��� in section 5.3.6. 

It checks whether the input ��/�()*� is %��*��,  0"��/� or� -�#"��/�. The 

difference here is, if the ��/�()*� is� %��*��+� two other sub-rules 

����"���	������
��� and ����"������ are called in order to generate guards 

from cause states and conditions respectively. The rest of this rule is the same as the 

rule ���
�
��
��� in section 5.3.6. That is, if a ��/�()*� is  0"��/�� or 

-�#"��/�, the rule � ��
�
��
��� recursively calls itself. The detail of 

� ��
�
��
��� is illustrated in the following, which shows only part of a %��*���

node that is different from section 5.3.6. 

 

� ��
�
��
���(��/�()*�) ............................................................................. (1) 

<IF>  ��/�()*�  = %��*��  ............................................................................ (2) 

<THEN>����"���	������
��(�������
(%��*��)) .................................... (3) 

 + ����"������(�����(%��*��))  ...................................................... (4) 

<ELSE><IF> ��/�()*�  =   0"��/�� ............................................................ (5) 

…  

<ELSE> <IF> ��/�()*�  =  -�#"��/�� ........................................................ �>� 

…  

<ENDIF> 

Figure 7-6 Rule: � ��
�
��
����
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The rules ����"���	������
�� and ����"������ are also reused from the 

TD direct translation rules in chapter 5. For example, Figure 7-7 shows how the 

segment Off2 is used to create a pre-condition by the rule � �
��

�
. 

 

 

Figure 7-7 Timing diagram for floorsensor and lift (parts of Figure 7.3)�

 

Since the rule � ��
�
��
����is similar to the rule����
�
��
��� in section 

5.3.6, we do not repeat how to generate it step by step. Instead, we explain how to 

generate cause segments and conditions from the rule ����"���	������
�� and 

����"������ (see Figure 7-8).  
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Figure 7-8 Steps for generating pre-conditions for lines 3.1 and 3.2 in Figure 7-7 
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Note that Figure 7-8 shows only relevant parts of the rule 

����"���	������
�� used for creating pre-condition for a segment Off2 in Figure 

7-7. The detailed rules are given in Appendix A. 

Steps for generating pre-conditions from cause states and conditions are 

shown in Figure 7-8. First, the rule � �
��

�
 is used with the segment Off2 as 

the input parameter. At this step, the basic rule ������!"� gives the ��/�()*� of 

the segment Off2, which is an  0"��/�. Next, in step 1, the sub-rule 

� ��
�
��
��� is called, where  0"��/� is used as an input parameter. Since the 

��/�()*� is  0"��/�, then step 2 is actioned. Note that the details of steps 2-4 were 

explained in detail in section 5.3.6. 

In the  0"��/� section, each sub-��/�()*� underneath the  0"��/� is 

collected as a sequence. In this case, there are two %��*�� nodes: 

��=��&#�*�����&5*1� and ��=��&#�*�����&#�.�>� (see Figure 7-7). The 

��=��&#�*�����&5*1� is first sent back to the rule � ��
�
��
��� as the input 

parameter as shown in step 3, and then it is sent as %��*�� node to the %��*���node 

section in step 4. 

Step 5 shows the generation of pre-conditions from cause states by the rule 

����"���	������
��, where a %��*�� node is used as the input parameter. The 

detail of the cause state generated by the rules is shown in this figure. Step 6 shows 

a condition, which is attached to the ��=��&#�*�����&5*1, is generated to be a part 

of pre-condition by the rule ����"������. The rule ����"������ simply 

concatenates each condition if there are many of them. The details of these rules are 

given in Appendix A. 

Next, steps 3-6 are repeated to generate a cause state and conditions for the 

%��*�� node, ��=��&#�*�����&#�.�>. The pre-conditions generated from the 

segment Off2 are shown below. 
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∨

�

7.5.2 Creating post-conditions 

As shown in Figure 7-4, the rule � �����

�
 is used to create a goal post-

condition. The detail of the rule, in which %�&���� is used as an input parameter, is 

illustrated in Figure 7-9. This rule calls a sub-rule ����������
�������
���, where 

%�&���� and (����& are input parameters for the rule. 

�

� �����

�
(%�&����) →�

{ � ��
�������
���(%�&����, � ������(�����

�
(%�&����)) ) } 

�

� ��
�������
��� (%�&����, (����&) →  .................................................... (1) 

<IF> !� ��"
!((����&)  ................................................................................. (2) 

<THEN> “�” + (����&� .................................................................................. (3) 

<ELSE> <SKIP>  .................................................................................................. (4) 

<ENDIF>  .............................................................................................................. (5) 

<LET> exp = ���	��(�'�((�'�(�
(%�&����))) .............................................. (6) 

<IN>  ...................................................................................................................... (7) 

<IF> �%	��	
	�(exp)  ......................................................................................... (8) 

<THEN>  ............................................................................................................... (9) 

� �'�((�'�(�
(%�&����))  ...................................................................... (10) 

 + “State( ”  ............................................................................................... (11) 

 + �#
�
��	
	���
(�����	
	�(exp))  ............................................... (12) 

 +  “) = ”  .................................................................................................. (13) 

 + “ ‘ ” + �'�(�
(%�&����� + “ ’ ”  ....................................................... (14) 

<ELSE>  .............................................................................................................. (15) 
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 �'�((�'�(�
(%�&����))  ...................................................................... (16) 

 +  “State = ”  ........................................................................................... (17) 

 + “ ‘ ” + �'�(�
(%�&����) + “ ’ ”  ....................................................... (18) 

<ENDIF>  ............................................................................................................ (19) 

 

Figure 7-9 Rules: � �����

�
 and � ��
�������
����

 

The rule � ��
�������
��� checks whether there is a (����& parameter 

value, at line (2). If so, it generates a timing constraint in the form of �[lowerlimit, 

upperlimit] at line (3). At line (8), the rule checks whether a class corresponding to 

that segment has a parameter. If so, the rest of a goal post-condition (which is an 

effect of a CauseEffectArrow) is generated at lines (10)-(14); otherwise lines (16)-

(18) are exceuted. The sub-rule �#
�
��	
	���
 is reused, as detailed in section 

5.3.8. This rule is used to identify the whole parameter for a class. An example of a 

goal’s post-condition, generated from segment Off2 by the rule � �����

�
, is 

shown below. 

 

→

→

 

Figure 7-10 Example steps of generating post-conditions for a segment Off2 
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Figure 7-11 illustrates a summary of the segment Off2 used to generate a Goal 

Achieve[FlsensorForTheCurrentFloorIsEventuallySetOffW/N2-5secsAfterLiftStartsMvgDpt- 

UpOrStartsMvgDptDwn]. 

 

∨

�

∀

 

Figure 7-11 A goal 3.1 & 3.2 description 

7.6 Top-level textual translation rules for creating a goal from a 

SimultaneityArrow 

As mentioned by (Letier, Kramer et al. 2008), in KAOS, a temporal logic 

pattern +���3�����)�4��
4� property can be specified as a goal with the temporal 

logic P�Q where the response Q occurs within the same time as the P triggering 

condition. Since SimultaneityArrows are used to show two things happening very 

close in time (at the level of abstraction), the SimultaneityArrow has the same 

property as the +���3�����)�4��
4� property. Thus, each SimultaneityArrow is 

created as an individual goal with this temporal logic pattern. The top-level rules 

structure for creating a goal from a SimultaneityArrow is shown in Figure 7-12. 

The structure is similar to the top-level rules for creating a goal from a segment. 

The only difference is that the post-condition is defined without a timing constraint. 
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→

�

 

Figure 7-12 Top-level rules structure for creating a goal from SimultaneityArrows 

 

A goal formal definition is created by the rule � ������in which ������� is 

used as an input parameter. This rule is defined as an iteration process for 

generating each SimultaneityArrow as a KAOS goal. The sub-rule � ���������

uses �������� as an input parameter. The � �������� rule comprises sub-rules 

� ��	
	���	
��	���, � ��	���� and � ��--��
 for generating a list of non-

deterministic parameter using in a goal, goal pre-conditions, and goal post-

conditions respectively. There are some goals that are needed to add extra non-

deterministic local variables. See section 7.9 for discussion of manually added 

information. The rule � ��	
	���	
��	��� is the same as the rule 

� �	
	���	
��	��� (Appendix E), the only difference being their input 

parameters; the � ��	
	���	
��	��� uses� %��'� while the � �	
	���	
��	��� 

uses %�&����. The rule � ��	��� is the same as the rule ��������	
����

����������	
����

����������	
����

����������	
����

�� 

(Chapter 5, and detailed in Appendix A); only the input parameters are different. 

The post-condition of a goal is generated by the rule � ��--��
�as shown 

below. This rule does not create timing constraints for a post-condition since a 

SimultaneityArrow does not have timing constraints. 
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� ��--��
(%��'�) →�

<LET> exp = �'�((�'�(�
(��������(%��'�))) 

<IN><IF> �%	��	
	�(���	��(exp)) 

<THEN> exp 

  + “State( ” 

  + �#
�
��	
	���
(�����	
	�(���	��(exp��� 

  + “) = ” 

  + “ ‘ ” + �'�(�
(��������(%��'�)) + “ ’ ” 

<ELSE> exp 

  + “State = ” 

  + “ ‘ ” + �'�(�
(��������(%��'�)) + “ ’ ” 

<ENDIF> 

Figure 7-13 Rules for creating a KAOS goal from a SimultaneityArrow 

 

For example, the post-condition generated from the SimultaneityArrow line 

16 in Figure 7-2 is shown in the following: 

 

� ��--��
(�����6>) →  stuvtu 
 <LET> exp = �'�((�'�(�
(��������(�����6>))) ……. wxv y z{|u 
 <IN><IF> �%	��	
	�(���	��(exp)) ………….…….. }~��� 

 … 

 <ELSE> exp ………………….…………………………    z{|u 
  +  “State = ” ……………………………………... 

�u�uw y
  + “ ‘  ” + �'�(�
(��������(�����6>)) + “ ’  ” ….  ����{������ � 
 <ENDIF> 

 

The whole goal formal definition is created from the SimultaneityArrow 

line 16 in Figure 7-2, is illustrated below 
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→

�
�

∀

�

Figure 7-14 The goal formal definition for the SimultaneityArrow line 16 

7.7 Splitting OR relationships in a goal pre-condition into subgoals 

As mentioned in section 7.3, if a goal pre-condition is declared with OR 

relationships, that goal is split into subgoals. This is an attempt to generate simple 

goals from a complex goal, in which each of them is used as a leaf node for a goal 

tree that will be generated later. For example, from Figure 7-11, a Goal 

Achieve[FlsensorForTheCurrentFloorIsEventuallySetOffW/N2-5secsAfterLiftStartsMvgDpt 

UpOrStartsMvgDptDwn] has pre-condition defined by an OR relationship. Thus, this 

goal is split into two subgoals: Line3.1 Goal Achieve[FlsensorForTheCurrentFloorIs 

EventuallySetOffW/N2-5secsAfterLiftStartsMvgDptUp] and Line3.2 Goal Achieve[Flsensor 

ForTheCurrentFloorIsEventuallySetOffW/N2-5secsAfterLiftStartsMvgDptDwn] by a 

pattern: parent goal: P1 ∨  P2 �  Q, subgoal1: P1 �  Q, and subgoal2: P2 �  Q as 

shown in Figure 7-15. 

where:  P1 : liftState = ‘MovingDepartingUp’ & f = currentFl & dir = Up 

  P2 : liftState = ‘MovingDepartingDown’ & f = currentFl & dir = Down 

  Q : �[2,5] floorsensorState(f) = ‘Off’ 

 



Chapter 7 Translating Timing Diagrams into KAOS                                            192 

 

 

∨

�

∀

�

∀ ∀

�

��

�

 

Figure 7-15 Splitting an OR relationship in a goal pre-condition into subgoals 

 

By contrast, any goal that has AND relationships defined in its pre-condition 

remains the same. An example of the goal generated from line 18 and line 7 in 

Figure 7-3 by the textual translation rules is illustrated in the following. 

 

�

∀

 

Figure 7-16 An example of AND relationship in a goal pre-condition 
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In the example in Figure 7-16, where the pre-condition of the goal is 

combined with an AND relationship, this goal is left the same. However, this goal 

shows two examples of adding extra information manually. 

• First, in some cases, it is necessary to identify the previous states of the post-

condition as shown in Figure 7-16, liftState = ‘StopAtFloor’. That is, the lift 

must be in a state of stop at floor before it can start moving departing up. In 

the lift case study, there are four goals: Line 18&7 Goal, Line 19&8 Goal, 

Line5(a) Goal, and Line5(b) Goal that need to be added with this kind of extra 

information (as detailed in Appendix F). 

• Secondly, the original pre-condition generated from line 7 by the translation 

rules is doorState(f) = Closed & f : reqFl. The non-deterministic variable f in 

this pre-condition has to be changed to currentFl. This is because we would 

like to identify the current floor door’s state that must be closed, not any 

other doors. Only two actions need to be altered in the lift case study which 

are Line18&7 Goal and Line19&8 Goal (as detailed in Appendix F). 

7.8 Generating goal trees 

Goals obtained from the steps in sections 7.5 to 7.7 are used to generate goal 

trees. A goal tree comprises a parent goal and its subgoals. Each sub-goal specifies 

explicit tasks in which the combination of subgoals explains what to do in general 

in the upper level, the parent goal. In this thesis, we propose two techniques that are 

“guidelines” of goal trees generation. In the first technique, a goal tree is created 

whose subgoals illustrate how changing an object’s state causes another object’s 

state to be changed in the system (as detailed in section 7.8.1 below). In the second 

technique, a goal tree is generated from a group of CauseEffectArrows and 

SimultaneityArrows that share the same cause segment (as detailed in section 

7.8.2 below). 
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7.8.1 A goal tree illustrates an object’s state change causes another object’s state 

to be changed 

To generate this kind of goal tree, the technique looks for continuity of 

CauseEffectArrows and SimultaneityArrows that occurs from the left hand 

side of the TD to the right hand side. For example, in Figure 7-17, the 

CauseEffectArrow lines 18 and 7 have a ������������������ as an effect 

segment. This ������������������ becomes a cause segment of the 

CauseEffectArrow line 3.1. The CauseEffectArrow line 3.1 has a segment ���� as 

an effect segment. This segment ���� becomes a %����%�&�� of the 

SimultaneityArrow line 17. Note that at this point, the goal generated originally 

by lines 3.1 and 3.2 is separated to individual Line3.1 Goal and Line3.2 Goal already 

since there is an OR relationship in the pre-condition (as described in section 7.7, 

Figure 7-15). Thus, Line3.1 Goal can be used for this goal tree while the Line3.2 Goal 

is used in another goal tree. 

 

 

Figure 7-17 The lift timing diagram (parts of Figure 7-3) 
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The occurrence of the continuity of CauseEffectArrows and 

Simultaneity above generates a goal tree by the Milestone-driven goal refinement 

pattern (detail in section 2.7.4) as shown below. 

 

�

∀

�

∀

�

∀

�

� �

�

�

 

Figure 7-18 Parts of a goal tree 

 

From Figure 7-18, few alterations need to be made in order to have correct 

goal trees, as described below. 

1. Non-deterministic variables’ definitions are moved on the top of the 

tree after the symbol “ ∀ ”. The move does not change the meaning of 

a goal, but the rearrangement. For example, moving f > currentFl and f 

: reqFl of the Line18&7 Goal. 

2. Extra information is added. This information is needed only in some 

line such as Line17 Goal and Line18 Goal. For example, in Figure 7-18, 

the Line17 Goal, which is generated by the SimultaneityArrow, has 

the added condition f = currentFl. Because the notation of 

SimultaneityArrow itself does not allow identifying predicates, 

additional information is needed in this case. 

 

The goal model after doing these alterations is shown in the following. 
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Figure 7-19 Parts of a goal tree after alteration 

 

Line18&7 Goal is linked to the Line3.1 Goal by the Milestone-driven goal 

refinement pattern where Q is used as intermediate state. However, if we use Q alone, 

generating this goal tree is not correct. That is, a condition dir = Up does not exist for 

Q in the Line18&7 Goal but it does exist for Q in the Line3.1 Goal as a pre-condition. 

To resolve this problem, an invariant is introduced. Invariants are properties that 

remain true for a specific sequence of operations in the system. In this case, the 

Invariant 1: liftState = ‘MovingDepartingUp’ �  dir = ‘Up’ is used to identify that 

whenever the lift is in the state of MovingDepartingUp, the lift direction must be 

always Up. With this invariant, the goal tree is correctly generated. 

 

� ∧∧

�

∧ ∧ �∧

�

�

�

 

Figure 7-20 A pattern for generating KAOS goal tree 
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A summary of the Milestone-driven goal refinement pattern used for creating a 

goal tree, where Inv denotes Invariant is shown in Figure 7-20. An invariant for a 

goal is an option, which is defined inside the “[…]” symbol. Q is an intermediate 

state. Q may have invariants defined by Inv1, and Inv2 (and others if there are any) 

which provides predicates A and B respectively. A and B then are used as a part of 

pre-condition for the corresponding goal. Not every goal requires an invariant. The 

invariant is used only when the next goal’s pre-condition(s) has extra information 

that is not identified earlier in the previous goal’s post-condition, as in the example 

shown in Figure 7-19. 

7.8.2 A goal tree is generated from a group of CauseEffectArrows and 

SimultaneityArrows that share the same cause segment 

This kind of goal tree is generated by looking for a common segment which is 

used as a cause segment for relevant CauseEffectArrows and 

SimultaneityArrows. A common segment is generated as a parent goal while the 

relevant CauseEffectArrows and SimultaneityArrows are created as sub-goals.  

 

Figure 7-21 Parts of a goal tree representing requestlamp, lift, door, uplamp and downlamp 
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For example in Figure 7-21, the segment ���� �¡¢���£ is a common cause 

segment for the lines 6, 9, 10, and 11. The segment ���� �¡¢���£ is generated as a 

parent goal, while each of those lines becomes a sub-goal of the parent goal. 

Remember, each sub-goal is actually generated earlier by textual translations, as 

described in sections 7.5 and 7.6. Thus, only the parent goal has to be generated in 

this step. 

This kind of goal tree is generated by the Case-driven : Split consequent pattern 

(Letier 2001). 

  Parent goal: P �  Q ∧  R ∧  S 

  Subgoal1: P �  Q 

  Subgoal2: P �  R 

  Subgoal3: P �  S 

 

Figure 7-22 shows the goal tree generated by those lines and the Split 

consequent pattern, where  

P: ∀  f : FLOOR, f : reqFl, f = currentFl, liftState = ‘StopAtFloor’ 

Q: �[2, 4] requestlampState(f) = ‘rUnlit’ 

R: �[1, 5] doorState(f) = ‘Open’ 

S: uplampState = ‘deActivated’ 

T: downlampState = ‘Deactivated’ 
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Figure 7-22 A goal tree representing lines 6, 9, 10 and 11 in Figure 7-21 

 

Currently, we have not found it necessary to use invariants in these kinds of 

the goal tree. The Goal trees generated by TD in Figure 7-3 are shown in Appendix 

F. 

7.9 Manual input to modelling 

For each goal, the translation rules can automatically generate a goal’s formal 

definition that is composed of non-deterministic local variables, pre-conditions, and 

post-conditions, where the latter is defined by an LTL operator and timing 

constraints. The goal’s name, goal’s type, and goal’s textual definition need to be 

created by hand, because how these parts are described depends on a user’s choice. 

Extra information needs to be added to some goals for two reasons. 
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1. To complete the information on the individual goal 

In a few goals, it is necessary to declare the previous state(s) to the pre-

condition of the goal. The previous states make some goals explicit and more 

correct. However, most goals do not need previous state(s). That is because it is 

unnecessary to declare previous states, which raises problems when generating 

Goal trees that require more invariants, and creates duplicate information in the 

Operation model, making the Operation model complicated. Thus, our design 

does not create the previous state automatically using the translation rules. An 

example of adding the previous state is described in Figure 7-16. 

2. To complete goal trees 

There are two reasons to add extra information. First, SimultaneityArrows will 

not explain the conditions on the line like CauseEffectArrows. When a Goal 

tree includes any goals that are created from SimultaneityArrows, some extra 

information may need to be added to the goal to make the Goal tree correct. An 

example of adding extra information for this kind of problem is shown by Goal 

Line17 in Figure 7-18. Secondly, to have a complete Goal tree, some goals are 

manually generated. These goals are actually obtained from changing states 

(transitions) in the TDs, such as the lift is changing state from moving up to 

moving arriving up. However, these goals are not created by the translation 

rules, since the rules do not generate a goal from a transition but segments and 

SimultaneityArrows. These goals are needed since they are used to bridge the 

gap between the goals inside a Goal tree, and make a Goal tree complete. An 

example of introducing a new goal into a Goal tree is described below. 

 

Figure 7-23 shows the bigger figure of the goal tree from Figure 7-18. This 

figure illustrates a GoalA1 Achieve[LiftStateIsEventuallyMvgArgUpAfterMvgUp] that is 

generated by hand. This goal is necessary since it is used to bridge the gap between 

the Line17 Goal and the Line4.1 Goal. Note that we used “A” after the word “Goal” as 

an abbreviation for the additional goal; for example, GoalA1 is the additional goal 

no. 1. 
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Figure 7-23 The MainG1 

 

In the lift system case study, only two goals are newly generated, GoalA1 and 

GoalA2, in which the latter describes the lift state as eventually changing its state 

from MovingDown to MovingArrivingDown. The detail of this goal can be found in 

Appendix F. 

7.10 Operation model 

An Operation model defines state transitions of a goal by using DomPre and 

DomPost conditions. The DomPre is used to describe the state before an operation, 

while DomPost defines a relation between states before and after application of the 

operation. In addition, further requirements of operations can be defined by using 

ReqPre, ReqPost, and ReqTrig, as mentioned in section 2.7.5. 

An operation is created from a leaf node of goal trees. Thus, an Operation 

model is a collection of operations created from whole leaf nodes. Each goal pattern 

has a unique operation pattern. For example, goals with a pattern Bounded 

Achieve P��	d Q and a pattern Global Invariant P � Q have operation 

patterns defined as shown in Figure 7-24. Those operation patterns are well defined 
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by (Lamsweerde, Dardenne et al. 1991; Letier 2001), here we generate the 

Operation model that follows these patterns. 

 

�
�

 

 

Figure 7-24 Operation patterns: Bounded Achieve and Global Invariant 

 

For example, consider the Line9 Goal below: 

 

Line9 Goal Achieve [TheDoorAtTheCurrentFloorIsEventuallyOpenBetween1-5secsAfter 

LiftStopsAtThatFloor] 

Definition: The door at the current floor is eventually open between 1 and 5 seconds after 

the lift is stopped at that floor.  

FormalDef   ∀   f : FLOOR, f : reqFl, f = currentFl  

  liftState = ‘StopAtFloor’ 

  �   

  � [1, 5] doorState(f) = ‘Open’ 

 

The Line9 Goal is declared by the Bounded Achieve pattern where 

P: liftState = ‘StopAtFloor’ and Q: doorState(f) = ‘Open’. Thus, its operation is defined as 

 

 

 Operation DoorOpen 

  Input door{arg f : FLOOR, f : reqFl, f = currentFl }state 

  Output door{arg f : FLOOR, f : reqFl, f = currentFl}state 

  DomPre doorState(f) = ‘Close’ 

  DomPost doorState(f) = ‘Open’ 

  ReqTrig doorState(f) = ‘Close’ S[0.99, 4] (liftState = ‘StopAtFloor’) 
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Another example is the Line10 Goal. This goal is defined by the Global 

Invariant pattern. The operation model generated from this goal is illustrated 

below. 

 

Line10 Goal Maintain[DownlampIsDeactivatedSimultaneouslyWhenLiftStopsAtFloor] 

Definition: The downlamp is set to deactivate at once whenever the lift stops at that floor 

FormalDef:  

 liftState = ‘StopAtFloor’ 

 �  

 downlampState = ‘Deactivated’ 

 

The�Line10 Goal is defined as a Maintain and corresponds to the Global 

Invariant pattern as shown in Figure 7-24, where P: liftState = ‘StopAtFloor’ and 

Q: downlampState = ‘Deactivated’. The operations for the Line10 Goal are defined as 

follows. 

 

Operation downlampDeactivated 

   Input liftState 

   Output liftState 

   DomPre liftState ≠  ‘StopAtFloor’ 

   DomPost liftState = ‘StopAtFloor’ 

  ReqPost downlampState = ‘Deactivated’ 

 Operation downlampActivated 

   Input downlampState 

   Output downlampState 

   DomPre downlampState = ‘Deactivated’ 

   DomPost downlampState = ‘Activated’ 

   ReqPost liftState ≠  ‘StopAtFloor’ 

 

Other operation models can be found in Appendix F. 

7.11 Summary 

This chapter explains the textual translation rules used to generate KAOS 

goals from segments defined with CauseEffectArrows and from 

SimultaneityArrows. The translation rules use TD BNF definitions as input 

parameters to generate individual goals. The TD BNF definitions for KAOS 

transformation differs from what was declared in Event-B translation. Here, one 

timing constraint for each CauseEffectArrow is allowed. Creating a goal from 

nested timing constraints is not supported. Currently, an individual goal is created 
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by the rules either in a pattern of Achieve: Bounded Achieve P � �	d Q or 

Maintain: Global Invariant P � Q. Next, those goals are used to create 

Goal trees. 

A Goal tree can be generated by two techniques. First, the Goal tree is 

generated in which its subgoals illustrate how changing of an object’s state causes 

another object’s state to be changed in the system. Secondly, the Goal tree is 

generated from a group of CauseEffectArrows and SimultaneityArrows that 

share the same cause segment. 

For the first technique, some goals need to be declared with invariants. Using 

invariants, which is an option, enable the creation of a correct goal tree (as 

described in section 7.8.1). That is because invariants give supportive information 

that is not directly shown by the goals. The invariants are not used in the second 

technique. 

Some additional goals are added by hand. These goals are introduced into 

corresponding goal trees in order to complete the goal model (as described in 

section 7.9). Operation models are generated from the leaf node of the goal trees 

which use well-defined operation patterns, provided by (Lamsweerde, Dardenne et 

al. 1991; Letier 2001). 



 

 

Chapter 8 Comparison and 

Evaluation 

This chapter explains the differences and similarities of each technique used 

to transform TD into Event-B, UML-B and KAOS models. Section 8.1 describes 

the comparison between Event-B, UML-B and KAOS models. Section 8.2 gives 

the comparison for the other related works. Section 8.3 provides the evaluation of 

our model. Section 8.4 gives quantification manual editing while an example of PO 

is explained in section 8.5. 

8.1 Comparison between Event-B, UML-B and KAOS models 

Transforming TD into Event-B, UML-B and KAOS models have some 

things in common and differences in detail. 

8.1.1 Timing diagram notations 

• The same TD notations can be used both for creating an Event-B model 

from the direct translation rules, and for generating KAOS Goal and 

Operation models. That is, the whole of a class’s name are defined as 

uppercase letters. For example, FLOORSENSOR. 
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• The TD used for transforming into UML-B model is a bit different. That 

is, the first character of a class’s name is an uppercase letter and the rest 

are lowercase letters. For example, Floorsensor. 

• Each TD class for translating an Event-B model is created as a set in the 

Event-B CONTEXT part, while each TD class for translating an UML-

B model is generated as a class in the Event-B MACHINE part. 

8.1.2 Identify TD Timing constraints 

• In transforming TD into Event-B and UML-B, defining TD timing 

constraints is the same. That is, a timing constraint is attached with the 

%��*�����/�()*�. Then, one can define nested timing constraints for a 

CauseEffectArrow. 

• In transforming TD into KAOS, defining TD timing constraints is 

different. That is, at most one timing constraint for a 

CauseEffectArrow (section 7-1 and 7-2) is allowed. That is because 

we are not identifying past LTL operators as goal pre-conditions. Using 

nested timing constraints has to use past operators. 

8.1.3 How models are generated 

• Metamodel: 

� In Event-B and KAOS: TD metamodel is defined by BNF definitions 

� In UML-B: TD metamodel is created by EMF 

• Defining timing constraint in a model 

� In Event-B and UML-B: timing constraints are defining in a pre-

condition (guard) 

� In KAOS: timing constraints are defining in a post-condition (action). 
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8.1.4 TD components used for the translation 

• In transforming TD into an Event-B model: each segment that is 

declared with constraints is used to create an Event-B event. If that 

segment has SimultaneityArrows defined, the SimultaneityArrows 

are also generated as a part of that event. 

• In transforming TD into UML-B: each TD state transition is used to 

generate an Event-B event. 

• In transforming TD into KAOS: each segment that is declared with 

constraints and SimultaneityArrows are used separately to create a 

goal. 

8.1.5 Ease of production and amendment 

• To generate an Event-B model: the difficult part is generating TD BNF 

definitions that should represent TD correctly and can be used as closely 

as possible for the rest of the translation techniques. Textual translation 

rules use BNF elements as input parameters. Most Event-B components 

can be generated from the rules and altering a model is easy to do. 

• To generate a UML-B model: it takes a lot of effort to generate a model 

starting from creating the TD metamodel and source model using 

Eclipse, and using the UML-B toolkit since it needs a high specification 

computer. Using ATL has problems as it does not support creating an 

output element by combination of source elements across the rules. 

Moreover, the UML-B itself does not fully support generating 

SimultaneityArrows nor identifying multiple previous states to the 

same target state. The output model needs to be altered such as adding 

associations to classes since TD notation does not support this. 

• To generate KAOS Goal and Operation models: the TD BNF from the 

direct translation of an Event-B model can be reused with some 

modifications, as well as the textual translation rules. The hardest part 
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for the KAOS translation is generating goal trees since they need to be 

created with the KAOS refinement patterns. Generating a KAOS 

Operation model uses the pattern provided at the leaf nodes of goal 

trees. 

8.1.6 Manual additional information 

• Context: 

� In Event-B: most of the context elements are generated from TD by 

the textual translation rules, only a few have to be created manually. 

Those manual creation elements are actually defined as predicates 

on the CauseEffectArrows but they cannot be used to generate 

context since TD notations do not support this. 

� In UML-B: since the limitations of ATL, the ATL rules can 

generate the context’s name while the body of the context must be 

generated by hand. 

� In KAOS: there is no concept of context. 

 

• Events/Goal 

� In Event-B: some events are necessary added manually. That is 

because TD expresses only a part of the whole system 

specifications. Moreover, each event is generated by two TD 

notations: segments with constraints (CauseEffectArrows) and 

SimultaneityArrows attached to the segment. However, not every 

event can be represented by CauseEffectArrows and 

SimultaneityArrows. Thus, some events need to be added. For 

example, in the lift case study, we have to add events: 

ChangeDirUp, ChangeDirDown and doorClosed. 

� In UML-B: there are fewer events manually appended since every 

transition is generated to be an event. However, there is more 

alteration in the UML-B model than in the Event-B model generated 
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by the direct translation. That is for two reasons: first, the limitation 

of ATL itself. Secondly, to generate some variables used in the 

model, associations among classes need to be generated, which 

cannot be done directly from TD notations, but must be by hand. 

� In KAOS: a number of goals need to be added manually. That is 

because each goal is generated by two TD notations: segment with 

constraints and SimultaneityArrows. However, not every system 

specification can be represented by these notations. Thus, some 

goals need to be appended. We find what goal is missing and needs 

to be added, while generating a goal tree. For example, the goal that 

describes changing the state of the lift from moving up to moving 

arriving up. 

 

• Variables 

� In Event-B and UML-B model: variables are added manually for the 

same reasons described above. Some of these variables are actually 

defined as a part of predicate, some are not. However, since none of 

the TD notations can be used to identify these kinds of variables, 

they have to be defined by hand. For example, in the lift case study, 

we have to add variables currentFl and dir to represent the current 

position of the lift and lift direction respectively. These variables are 

defined as machine variables. 

� In KAOS: there are no variables to be added. 

8.1.7 Invariants 

• In Event-B and UML-B: invariants are used to maintain some properties 

that remain true for a specific sequence of operations of the system. 

� In Event-B: invariants are defined by hand within the MACHINE 

part INVARIANTS. 
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� In UML-B: invariants are defined within the MACHINE part by 

hand. They can be defined as machine invariants or class invariants. 

• In KAOS: invariants are used with the same propose and identified at 

some points of a goal tree by hand. Using invariants in a goal tree is 

useful because they provide the supportive information that is needed 

for generating a correct goal tree. 

8.1.8 Controlling time progress: Ticktok event 

• In Event-B and UML-B: a Ticktok event is generated for the purpose of 

controlling time progress. 

• There is no Ticktok event created in KAOS. 

8.1.9 Easy to Understand 

• For an Event-B model: the Event-B model output is simple to 

understand for someone who has knowledge of Event-B. 

• For UML-B model: UML-B has specific keywords such as Self and uses 

special symbols such as “.” to refer to attributes of a class. Thus, time 

may be needed for developers/users at the beginning to understand these 

symbols before generating a model. The advantage of using UML-B is 

its graphical user interface; thus it is easy for users to figure out where 

to add the missing information to the model. 

• For KAOS model: since defining KAOS looks similar to declaring an 

event in Event-B, creating a KAOS goal is adapted from what is done in 

Event-B. The KAOS output goals are not difficult to understand since 

there is a textual definition for each goal to explain what the goal aims 

for. The formal definition for the goal elaborates the goal by using 

temporal logic operators, which currently is only the operator � 

(eventually). 
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8.1.10 Capturing all requirements 

TDs are best used to describe the behaviour of functional requirements with 

causal dependencies between objects and timing constraints. However, TDs are not 

suitable for use with some kinds of requirements, for example, non-functional 

requirements. Even though TDs can capture the functional requirements as 

described above, in generating Event-B, UML-B and KAOS models there needs to 

be some extra information added, as described in section 8.1.6. 

8.2 Comparison with other related works 

Some groups have investigated cause/effect relationships and timing 

constraints. For example, (Abrial, 2008b) introduces patterns for state-based 

specifications in Event-B. The patterns are useful for our research. They can, 

however, illustrate only cause/effect relationships, not timing constraints. (Cansell, 

et al., 2007) introduces timing constraints pattern for distributed applications. A 

number of groups combined UML and B such as (Ledang and Souquierès, 2002a), 

who investigated a combination of B-Method with Class diagram and State 

diagram, while (Jiufu, 2007) has proposed translating statechart diagrams into B; 

(Younes and Ayed, 2007) focuses on the translation of Activity diagrams into 

Event-B; (Idani and Ledru, 2007) propose systematic transformation rules to 

generate a Class diagram from a B specification. Our work is unique in providing 

techniques to create timing constraints from a TD to an Event-B model. 

There is a work by (Bicarregui, et al., 2008) to extend Event-B notations to 

three LTL operators: Next (�), Eventually (�) and Bounded eventually ( ≤  n) where 

n denotes time units. The work proposes using three new constructs that are to 

replace the standard Event-B structure, WHEN…THEN…END, that are 

WHEN…NEXT…END, WHEN…EVENTUALLY…END and 

WHEN…WITHIN...NEXT…END to represent the three LTL operators Next, 

Eventually and Bounded eventually respectively. We have approached this in a 
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different way, as we are generating timing constraints in Event-B model by using 

the standard Event-B notations provided. 

 (Aziz, et al., 2009) captures three KAOS Goal model patterns: Immediate 

achieve, Eventually/Unbound achieve, and Bounded achieve to represent three new 

constructs as proposed by (Bicarregui, et al., 2008) above. 

Apart from our early work in (Joochim and Poppleton, 2007) that investigates 

how to generate KAOS goal trees from TD, there are a number of investigations 

that explore possible techniques for translating KAOS framework to other models. 

For example, (Letier, et al., 2008) proposes a technique to translate KAOS 

Operation models to Labelled Transition Systems (LTS). The LTS is Statemachine-

like diagram; it is a group of components in which each component is defined by a 

set of states and transitions, where each transition is labelled by an event. 

(Landtsheer, et al., 2004) investigates translating KAOS Operation models into 

event-based tabular specifications, which describe system requirements through a 

set of tables. Some attempts to combine KAOS with B are introduced by (Ponsard 

and Dieul, 2006) who try to generate B operations from KAOS operations. 

However, this work only focuses on traceability links. Other work has been done 

by (Hassan, et al., 2009) to transform KAOS Operation model to B specification 

language in security requirements, unlike our work, which attempts to generate 

KAOS Goal model and Operation model from TD. 

A variety of versions of the lift case study are used in many papers such as 

(Dardenne, et al., 1991), who explain how to generate KAOS goals, agents and 

operations for a simple lift case study. Some of those lift specifications are 

functional requirements, as ours is, but no timing constraints are involved. A 

number of the specifications identify human activities such as “passenger out of 

elevator when at destination floor”, which we do not deal with in our research. 

Research by (Choppy and Reggio, 2005) represents a combination of Problem 

frames and UML diagrams (Use case, Class, and State diagrams) by using a lift 

system case study. This paper shows how to define a lift system in a class diagram 

and a state diagram with a fewer number of components than our work, and with 

no timing constraints involved. The classical B machine which represents a lift 
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control system found in (Abrial, 1996) is the most similar model to ours that shows 

how to represent the lift specifications by B method. However, this case study also 

has a fewer number of objects than within our case study and has no timing 

constraints. 

There exist TD editors such as TimeGen (Intel), TimingTool (MOHC, 2009), 

and SynaptiCAD (SynaptiCAD, 2009). However, these editors do not fit with our 

research since they are defined with different types from our TD, and are not 

written on the Eclipse framework. Thus, they could not easily fit with RODIN and 

UML-B. 

8.3 Evaluation 

8.3.1 Tool validation 

The output of our translation can be automatically validated by the RODIN 

tools. B prover is an automatic proof of correctness of implementation relative to 

high level specifications. It also does syntax checking for a model. ProB performs 

consistency checking (finding deadlocks and invariant violations) and animation. 

The validation detail for each model is shown below: 

 

For an Event-B model from the direct translation: We used RODIN 

Platform 0.9.1 for creating an Event-B model obtained from the direct translation 

rule. The Event-B model is verified by RODIN toolkit for proof obligations (POs) 

and syntax checking while a RODIN plugin, ProB 1.1.0, is used for consistency 

checking (find deadlocks and invariant violations) and animation. We also used 

ProB 1.2.6 (which is a separated tool from the RODIN toolkit) for model re-

checking and verifying deadlock freeness. The result of validation is: Total POs: 

135, Auto discharged: 122, Manual discharged: 11, Reviewed: 2 and 

Undischarged: 0. 
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For an Event-B model generated from a UML-B model: The UML-B 

0.4.3 is used for generating a model obtained from ATL, RODIN Platform 0.9.1 is 

used for POs. A RODIN plugin, ProB 1.1.0, is used for consistency checking and 

animation. The result of validation is: Total POs: 142, Auto discharged: 54, Manual 

discharged: 84, Reviewed: 4 and Undischarged: 0. The number of POs auto 

discharged in the UML-B model is fewer than in the Event-B model and manual 

discharged is more because the UML-B model comprises a large number of 

transitions and classes. Moreover, the way to define guards and invariants by 

combining many associations among classes makes it harder to prove than in the 

direct translation. 

During the process of improving the translation tools, we have had to rework 

proofs many times. As the work progressed, the number of automatically proved 

obligations slightly increases while the number of manually proved obligations 

increases a lot. 

  

KAOS: there is a tool for Goal model verification (Rifaut, et al., 2003). 

However, to use it one needs to be trained abroad. 

8.3.2 Validation of the correctness of the transformations defined 

Currently, we use a lift as only one case study. The lift case study has many 

objects and shows various kinds of timing constraints, and simultaneous and causal 

dependecies in a reactive requirements system. However, it is needed to have other 

case studies to ensure the correctness of the transformation defined. The purpose is 

to check whether our TD notaions cover other kinds of requirements. The other 

case studies should have different kinds of casual dependencies and timing 

constraints from the lift system. Morover, it is necessary to validate the 

transformation rules are correct and complete. To do so, we should to provide 

incorrect/incomplete input models to inspect whether the translation rules generate 

an incorrect output model. This task is considered as further work. 
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8.4 Quantification manual editing 

The Event-B, UML-B and KAOS output models are needed to be manually 

modified in order to make the models complete. The quantification of how much 

manual editing is needed for each model shown in the following. 

Event-B : 108 modified to 450 lines generated (24%) 

UML-B : 162 modified to 557 lines generated (29.08%) 

KAOS:  8 modified to 32 leaf node goals generated (2.50%) 

How to make the tools fully automated is explained in the following. 

8.4.1 Event-B 

For the additional information that cannot be identified by the TD notations 

itself (e.g. identifying the number of floors), we have nothing to do with the rules 

in such this case.  

For the information that already have in the model -e.g. variables currentFl 

and dir- but we cannot generate to Event-B, we may create a new TD notation to 

support identifying variables at the CauseEffectArrows’ conditions. Thus, model 

variables can be directly generated from those CauseEffectArrows’ conditions. 

Moreover, the SimultaneityArrows should be identified by a combination of OR 

nodes (see the example problem in section 5.4). 

For some extra events added, we may alter the rules to generate an Event-B 

model from the TD state transitions instead of using TD segments as what we have 

done. 

Currently, the Event-B output model is generated as text. Users have to copy 

the text to RODIN tool again. Thus, to make the tool more efficiently, the Event-B 

output model should automatically be generated in the RODIN tool. 

8.4.2 UML-B 

The ways to correct the UML-B model is the same as those described for the 

Event-B model above. However, the limitations of ATL and UML-B cause some 
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parts of UML-B output models have to be manually generated. The further step of 

fulfilling the TD to UML-B translation rules is to revise UML-B tool to support 

identifying TD multiple previous states of the same target state and 

SimultaneityArrows. 

8.4.3 KAOS 

The same ways used in the Event-B model are also used to have complete 

KAOS Goal models. The problem only found in KAOS is, in some goals, it is 

needed to declare conditions on the SimultaneityArrows. Thus, a new notation 

for the SimultaneityArrows to identify conditions is introduced. The conditions 

are optional and used as guards for the goals. 

8.5 Example of proof obligations 

This section shows an example of how the invariant preservation statement 

(INV), as described in section 2.3.2, is used for the PO. Consider an event 

floorsensorOffUp which is obtained from the UML-B model as shown in the 

following: 

 

MACHINE L 

… 

INVARIANTS 

     Invariant1: ¤¥
·((d¦Door)§(lift_state 
 StopAtFloor §  

                 door_state(d) = Closed)) 

…  

EVENTS floorsensorOffUp 

    ANY FloorsensorSelf  

        f  

    WHERE 

      Guard1: f ¦ FLOOR 
      Guard2: FloorsensorSelf ¦ Floorsensor 
      Guard3: floorsensor_state(FloorsensorSelf) = On 

      Guard4: lift_state = MovingDepartingUp 
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      Guard5: (gclock − liftMovingDepartingUpTime � 2) 

         (̈gclock − liftMovingDepartingUpTime 	 5) 

         ¨ f = currentFl  ̈dir = Up 

    THEN 

      Action1: lift_state © MovingUp 
       … 

    END 

  

According to the consistency proofs as described in section 2.3.2, the 

corresponding parts of the machine are used in the INV proof obligation for the 

event floorsensorOffUp as shown in the following. This PO is named 

automatically by the RODIN prover as floorsensorOffUp/Inv1/INV. Notice that 

Guard5 is separated into individual guards for the proof as shown below: 

 

  Axioms - 

 
Invariant1 

¤¥
·((d¦Door)§(lift_state 
 StopAtFloor 

§ door_state(d) = Closed)) 

 Guard1 f ¦ FLOOR 

 Guard2 FloorsensorSelf ¦ Floorsensor 

 Guard3 floorsensor_state(FloorsensorSelf) = On 

Hypothesis Guard4 lift_state = MovingDepartingUp 

 Guard5 gclock − liftMovingDepartingUpTime � 2 

 Guard6 gclock − liftMovingDepartingUpTime 	 5 

 Guard7 f = currentFl 

 Guard8 dir = Up 

 Before-after 

predicate  

of the event 

(BA) 

lift_state = MovingUp 

 

 �   

 

Goal 

Modified 

Specific 

Invariant (Im) 

¤¥
·((d¦Door)§( MovingUp 
 StopAtFloor  

§  

door_state(d) = Closed)) 
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As shown above, a proof obligation comprises two parts: a hypothesis, and a 

goal; shown by the elements before and after the �  symbol respectively. In this 

case, this goal is to prove that after the action: lift_state = MovingUp (which is 

represented by BA) is performed, the Invariant1 is still preserved. That is, a goal is 

generated by assigning a state MovingUp in BA to the lift_state in Invariant1 

(as highlighted). This goal is proved interactively by the Predicate Prover (PP) in 

the Proof Control panel as shown in Figure 2-7. 

 



 

 

Chapter 9 Contribution and 

Limitations 

The contribution of the thesis is showing how to formalise specification of 

systems that contain causal dependencies with timing constraints, in Event-B and 

KAOS by using TDs. As a result, we propose systematic translation rules to 

transform TD into Event-B, UML-B and KAOS Goal models. 

This chapter declares benefits and contributions to research we have done in 

section 9.1 and section 9.2 respectively. The limitation of the work is demonstrated 

in section 9.3, and future directions are stated in section 9.4. 

9.1 Benefits 

According to the research goals in section 1.3, the first two goals to generate 

translation techniques to transform a TD to Event-B, UML-B and KAOS were 

accomplished. The benefit of our contribution is providing another option to 

generate timing constraints and causal dependencies requirements of a reactive 

system to Event-B, UML-B and KAOS Goals by using graphical visualisation, TD. 

Thus, instead of manually generating these targets model (Event-B, UML-B and 

KAOS Goal model) in a textual form, users can use the TD as a graphical front-

end, and these target models are created automatically. Moreover, in Event-B and 

UML-B, we provided a pattern to generate events’ pre- and post-conditions
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that concern with timing constraints, and an event (Ticktok) to control time 

progression. Having the timing constraints guard and the time progress patterns 

decrease the time required in considering how to model the time from the 

beginning.  

For KAOS, apart from having the translation rules to automatically generate 

KAOS goals from TD, we also provided guidelines to generate KAOS Goal trees 

from TD. These guidelines assist users to generate KAOS parent goals from sub-

goals. Along the parent goal/sub-goal creating process, some goals may be 

introduced. Thus, it helps users to find incomplete information that may be left 

since from the requirements elicitation processes.  

The third goal in section 1.3, evaluating the use of TD to specify timing 

constraints and casual dependencies requirements in Event-B compare with using 

textual one has not been done due to limited time.  

9.2 Contribution 

We produced a model - in four different forms - on a real time case study: a 

lift system. 

1. TD based TD UML 2.0 diagram notations 

2. Event-B 

3. UML-B 

4. KAOS Goal and Operation models 

 

Our contribution can be identified as the following: 

1. We propose bridging the gap between graphical requirements notations (TD) 

and declarative FM (Event-B). We provide a technique to generate Event-B 

from an existing tool UML-B from TD. This is another contribution of 

generating Event-B models from graphical notation TD. Both model 

generated from 1 and 2 can be proved correct by RODIN tools. 

2. Since KAOS Goal models explain timing constraints by linear temporal 

logics (LTLs) which are in textual forms, we present a technique to generate 
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KAOS goals’ formal definition by TD which it represents as graphical 

requirements. 

3. We provide multiple views of one system’s requirements by expressing them 

in TD, Event-B, UML-B and KAOS models. 

 

The detail of each contribution is described in the following sections. 

9.2.1 Requirements to TD 

We used TD which is based on the (OMG, 2007) Robust TD notations for 

capturing the requirements of a system. A subset of TD notations was selected and 

some notations were justified to make it easy to generate Event-B, UML-B and 

KAOS Goal models. Those TD notations are essential to identify causal 

dependencies between objects and their combinations. TD classes were generated 

from objects in requirements that have causal dependency between them. One can 

define timing constraints, conditions that make states of objects change, and 

simultaneous events, by TD notations. The selected TD notations have abilities to 

model other systems that can be described with time constraints. 

9.2.2 TD to Event-B Translation 

We produced rules for translating systematically. We created an Event-B 

model from TD. In doing this, first, we identified TD BNF definitions to describe 

individual TD notations. Next, we created formal translation rules to transform TD 

into a textual Event-B model, where the TD BNF definitions are used as input 

parameters for the translation. 

• The translation rules create sets, constants and axioms in a CONTEXT 

part. For a MACHINE part, the rules can create variables and their initial 

values, invariants, events and a Ticktok event, of which the latter is used 

for time progress. For each event, the translation rules can create an event’s 

name, non-deterministic local variables (if there are any), events’ guards 

and actions. 
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• Other parts that cannot be identified by TD such as additional variables, 

events and invariants, need to be created by hand. For example, lift 

changing direction and guards for ticking the clock. The detail of generating 

Event-B to TD is explained in Chapter 5. 

9.2.3 TD to UML-B Translation 

Since TD represents partial system requirements, to generate a complete 

Event-B model, one needs to use other non-timing requirements. In doing that, one 

may add those requirements directly to an Event-B model as in the previous 

translation or use another model, e.g. Class diagram and Statecharts. To make it 

convenient for users and to integrate TD with an existing tool, we have 

implemented systematic translation to provide part of an automatic translation 

system from TD using UML-B. 

We generated transition rules to transform TD to UML-B by using ATL. In 

doing that, the TD metamodel is created on Eclipse and used to create a case study 

as example for a source model; an existing UML-B metamodel is used as a target 

model. 

• The rules can generate a CONTEXT (without detail inside due to the 

limitation of ATL) and a MACHINE part. In the MACHINE part, the 

rules generate classes, class attributes and their types, Statemachines, 

some machine variables and a Ticktok event. In a Statemachines, the 

rules generate states, state transitions with names, parameters with their 

types, guards and actions. 

• Other parts, such as detail inside the CONTEXT, invariants, additional 

variables and events, are created by hand since they cannot be identified 

by TD notations. 

9.2.4 TD to KAOS Translation 

The third approach was adopted because other relevant research tries to 

combine KAOS and B, but does not deal with integrating requirements in which 
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there are timing constraints and causal dependencies between objects to KAOS. 

Our research has been done in a different way, in which we use TD information to 

generate KAOS Goal model. 

• We generate translation rules that use TD BNF definitions as input 

parameters for creating an individual KAOS goal, focusing on goal’s 

formal definition. The rules create each goal’s formal definition, a 

goal’s name, and type, while its textual definition is created manually. 

Next, those goals are formalised and grouped by KAOS goal refinement 

patterns to generate a goal tree by our proposed techniques. Invariants 

are used in some points of the goal tree in order to fulfil the goal tree 

refinement pattern and additional goals are added by hand in this step. 

• An operation is generated from each leaf node goal of goal trees by 

KAOS goal refinement patterns provided by (Letier, 2001). 

9.3 Limitations 

9.3.1 General limitations 

At the moment, the TD can generate partial Event-B machines both from the 

direct translation rules and UML-B as well as partial KAOS Goal and Operation 

models. However, the TD has not been designed to collect whole system 

requirements. Therefore, some information needs to be added in these models. 

Another constraint is the original UML TD 2.0 and our TD notations still 

cannot be used to demonstrate human actions. There are many requirements 

concerned with human activities, for example in the lift system that needs human 

intervention to request the lift by pressing buttons. In this case, we can demonstrate 

the pressing activity by representing it as an event in Event-B, but cannot control 

human pressing activity time. For a clearer example, there is the case study of the 

Ambulance Service system in (Letier, 2001), which is used to generate a KAOS 

model. The Ambulance Service system has many timing constraints; one of them is 

responding to emergency calls requiring the rapid intervention of an ambulance. 
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That requirement has to deal with calling by operators. It is a good case study for 

KAOS, but not for TD, since we cannot guarantee the correctness of a model 

depending on human activities. 

9.3.2 Timing diagram notations and tool limitations 

For the limitation of the TD itself, one cannot identify a SimultaneityArrow 

with a combination OR node. For example, Figure 7-3, lines 16 and 17, are used to 

identity whenever a floor sensor is set off, once the lift is in a state of moving up or 

moving down. Those lines are represented by SimultaneityArrows since there is 

no timing constraint concerned. Not having a combination node causes a problem 

whenever generated by an Event-B model (as describe in section 5.4). That is, an 

event action is generated in which there are two conflicting actions within the same 

event. This has to be resolved by separating them into different events manually. 

The UML-B tool also has the limitation that cannot fully support generating 

SimultaneityArrows (as shown in Figure 6-43). Another weakness is, currently, 

there is no TD editor. Thus, sometime it takes a lot effort to create and to alter TD 

manually while using EMF. 

9.3.3 KAOS translation limitation 

At present, KAOS translation has a limitation of not dealing with timing 

constraints that have occurred in the past states. This issue is considered to be a 

future work. 

9.4 Future directions 

Some future directions are suggested as follows. 

 

1. We found that from the lift case study, sometimes, it is necessary to 

identify combination of OR nodes and constraints for the 
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SimultaneityArrows. Thus, TD SimultaneityArrows should be 

appended by these properties. 

2.  In UML-B translation, Timeline Transitions names may be 

identified. Defining Timeline Transitions names would help creating 

events’ name easier. Instead of the events’ name being generated by a 

combination of many elements, it is defined directly from the Timeline 

Transitions. 

3. Eliminate the manual addition of information which can be generated 

from the TD. 

4. Include past operators in the KAOS goal models to cover other 

applications that may have to use them.  

5. At the moment TD is created by using EMF. Thus, having a graphical 

front end for TD is a way for creating and modifying a TD model easily. 

6. In a case where enormous system requirements with timing constraints 

are concerned, it is better to generate a TD for each subsystem and 

integrate the TDs to form a whole system. The future work is to find 

techniques to combine those TD subsystems. 

7. Identify refinement steps in the Event-B model. For example, in the lift 

case study, the abstract model has basic lift behaviour while the timing 

constraints are introduced in the refinement steps. 

8. Investigate a technique to transfer KAOS Goal and Operational models 

to an Event-B model. 

9. More case studies to ensure the toolset techniques are sufficiently general 

and robust. 

 



References                                                                                                              226 

 

 

References 

 

 

 

Abrial, J.-R. (1996). The B-book : Assigning Programs to Meanings, Cambridge 

University Press. 

Abrial, J.-R. (2005a). Formal Method Course. Retrieved 26 April 2005. 

Abrial, J.-R. (2005b). Using Design Patterns in Formal Developments. In 

Proceedings of the Refinement Workshop (REFINE 2005), University of 

Manchester, UK, Elsevier. 

Abrial, J.-R. (2006). Formal Methods in Industry: Achievements, Problems, 

Future. In Proceedings of the 28th International Conference on Software 

Engineering (ICSE’06), Shanghai, China, ACM. 

Abrial, J.-R. (2007). Formal Methods : Theory Becoming Practice, Journal of 

Universal Computer Science 13(5): 619-628. 

Abrial, J.-R. (2008a). Summary of Event-B Proof Obligations. Retrieved 29 April 

2009, Available from 

http://www.cs.man.ac.uk/~banach/COMP60110.Info/CourseSlides/Slides.6

up.0903ProofObs.pdf. 

Abrial, J.-R. (2008b). Tutorial - Case study of a complete reactive system in Event-

B: A mechanical press controller. In Proceedings of the 5th International 

Symposium on Formal Methods (FM’2008), Turku, Finland, Springer, 

LNCS 5014. 

Abrial, J.-R., Arief, B., Butler, M., Coleman, J., Iliasov, A., Johnson, I., Jones, C., 

Khomenko, V., Koutny, M., Laibinis, L., Leppanen, S., Lecomte, T., 

Leuschel, M., Oliver, I., Razali, R., Rezazadesh, A., Romanaovsky, A., 

Snook, C., Troubitsyna, E., Voisin, L., and Warwick, J. (2007). RODIN 

Assessment Report 3, Deliverable D34 (D7.4), RODIN. 

Abrial, J.-R., Butler, M., Hallerstede, S., and Voisin, L. (2008). A Roadmap for the 

Rodin Toolset. In Proceedings of the 1st International Conference on 

Abstract State Machines, B and Z, London, UK, Springer-Verlag, LNCS 

5238. 



References                                                                                                              227 

 

 

Abrial, J.-R., and Hallerstede, S. (2006). Refinement, Decomposition and 

Instantiation of Discrete Models: Application to Event-B, Fundamenta 

Informaticae 77(1-2): 1-28. 

Abrial, J.-R., Hallerstede, S., Metha, F., Metayer, C., and Voisin, L. (2005). 

Specification of Basic Tools and Platform. RODIN Deliverable D10. 

Abrial, J.-R., and Hoang, T. S. (2008). Using Design Patterns in Formal Methods: 

an Event-B Approach. In Proceedings of the 5th International Colloquium : 

Theoretical Aspects of Computing (ICTAC 2008), Istanbul, Turkey, 

Springer-Verlag. 

Agerholm, S., and Larsen, P. G. (1998). A Lightweight Approach to Formal 

Methods. In Proceedings of the International Workshop on Current Trends 

in Applied Formal Methods, Boppard, Germany, Springer-Verlag. 

Allemand, M., C. Attiogbé, et al. (2002). SHE'S Project. A report of join 

workshops on the 2nd International Workshop on Integration of 

Specification Techniques for Applications in Engineering (INT'02), 

Grenoble, France. 

Allilaire, F., and Idrissi, T. (2004). ADT : Eclipse development tools for ATL. In 

Proceedings of the 2nd European Workshop on Model Driven Architecture 

(MDA) with an emphasis on Methodologies and Transformations 

(EWMDA-2), Canterbury, UK, Computing Laboratory, University of Kent. 

Ambler, S. W. (2004). The Object Primer: Agile Model Driven Development with 

UML 2, Cambridge University Press. 

Anwer, S., and Ikram, N. (2006). Goal Oriented Requirement Engineering: A 

Critical Study of Techniques. In Proceedings of the 13th Asia Pacific 

Software Engineering Conference (APSEC’06), Bangalore, India, IEEE 

Xplore. 

Attiogbé, C., P. Poizat, et al. (2003). Integration of Formal Datatypes within State 

Diagrams. In Proceeding of the European Joint Conferences on Theory and 

Practice of Software, Warsaw, Poland, LNCS. 

ATL (2008). ATLAS Transformation Language. Retrieved 20 April 2008, 

Available from http://www.eclipse.org/m2m/atl/. 

ATLAS Group, L. a. I. (2008). ATL : Atlas Transformation Language ATL User 

Manual - Version 0.7. Retrieved 11 Febuary 2008, Available from 

http://www.eclipse.org/m2m/atl/doc/ATL_User_Manual[v0.7].pdf. 

Aziz, B., Arenas, A. E., Bicarregui, J., Ponsard, C., and Massonet, P. (2009). From 

Goal-Oriented Requirements to Event-B Specifications. In Proceedings of 

the 1st NASA Formal Methods Symposium, Moffett Field, California, 

USA, Deploy-Project ePrint. 

Barland, I., Greiner, J., and Vardi, M. (2006). Using Temporal Logic to Specify 

Properties. Retrieved 3 July 2006, Available from 

http://cnx.org/content/m1231/latest. 

Bashar, N., and Easterbrook, S. (2000). Requirement Engineering: A Roadmap. In 

Proceedings of the Conference on the The Future of Software Engineering, 

Limerick, Ireland, ACM. 

Becker-Kornstaedt, U., H. Neu, et al. (2001). Software Process Technology 

Transfer: Using a Formal Process Notation to Capture a Software Process 



References                                                                                                              228 

 

 

in Industry. In Proceeding of the 8th European Workshop:software Process 

Technology, Germany, Springer Berlin. 

Berthomieu, B. and M. Diaz (1991). "Modeling and Verification of Time 

Dependent Systems Using Timed Petri Nets." IEEE Transactions on 

Software Engineering 17(3): 259-273. 

Bicarregui, J., Arenas, A., Aziz, B., Massonet, P., and Ponsard, C. (2008). Towards 

Modelling Obligations in Event-B. In Proceedings of the International 

Conference of ASM, B and Z Users, London, UK, Springer, LNCS 5238. 

Bicarregui, J. C., Clutterbuck, D. L., Finnie, G., Haughton, H., Lano, K., Lesan, H., 

Marsh, D. W. R. M., Matthews, B. M., Moulding, M. R., Newton, A. R., 

Ritchie, B., Rushton, T. G. A., and Scharbach, P. N. (1997). Formal 

methods into practice: case studies in the application of the B method, 

Software Engineering 144(2): 119-133. 

Bolognesi, T., and Brinksma, E. (1987). Introduction to the ISO specification 

language LOTOS, Computer Networks and ISDN Systems 14(1): 25-59. 

Booch, G., Rumbaugh, J., and Jacobson, I. (2003). The Unified Modeling 

Language User Guide, Pearson Education. 

Bowen, J. P., and Hinchey, M. G. (2006). Ten Commandments of Formal Methods 

…Ten Years Later, Computer 39(1): 40-48. 

Brisolara, L. B. d., M. E. Kreutz, et al. (2009). UML as Front-End Language for 

Embedded Systems Design, IGI Global. 

Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., and Grose, T. J. (2003a). 

Eclipse Modeling Framework, Addison-Wesley Professional. 

Budinsky, F., Steinberg, D., Merks, E., Raymond, Ellersick, and Grose., T. 

(2003b). EclipseModeling Framework, Addison Wesley Professional. 

Butler, M. (2000). csp2B : A Practical Approach to Combining CSP and B, Formal 

Aspects of Computing 12(3): 182-196. 

Butler, M., Abrial, J.-R., Damchoom, K., and Edmunds, A. (2008). Applying 

Event-B and Rodin to the filestore (Invited paper). In Proceedings of the 

ABZ 2008, London, UK, ASRNet. 

Butler, M., and Hallerstede, S. (2007). The Rodin Formal Modelling Tool. In 

Proceedings of the BCS-FACS Christmas 2007 Workshop - Formal 

Methods In Industry, London, United Kingdom, BCS. 

Butler, M., Leuschel, M., and Snook, C. (2005a). Combining CSP and B for 

Specificaiton and Property Verification. In Proceedings of the Formal 

Methods 2005, Newcastle Upon Tyne, England, Springer, LNCS 3582. 

Butler, M., Leuschel, M., and Snook, C. (2005b). Tools for system validation with 

B abstract machines (Invited papers). In Proceedings of the 12th 

International Workshop on Abstract State Machines (ASM 2005), Paris, 

France, Laboratory of Algorithm, Complexity and Logic. 

Cansell, D., Méry, D., and Rehm, J. (2007). Time Constraint Patterns for Event B 

Development. In Proceedings of the Formal Specification and Development 

in B, 7th International Conference of B (B 2007), Besancon, France, 

Springer, LCNS 4355. 

Cassez, F. and O.-H. Roux (2005). "Structural Translation from Time Petri Nets to 

Timed Automata." Electronic Notes in Theoretical Computer Science 

128(6): 145-160. 



References                                                                                                              229 

 

 

 

Cerone, A. and A. Maggiolo-Schettini (1999). "Time-based expressivity of time 

Petri nets for system specification." Theoretical Computer Science 216(1-

2): 1-53. 

Chen, P. P.-S. (1976). The Entity-Relationship Model - Toward a Unified View of 

Data, ACM Transactions on Database Systems (TODS) 1(1): 9-36. 

Choppy, C., and Reggio, G. (2005). A UML-based approach for problem frame 

oriented software development, Information and Software Technology 

47(14): 929-954. 

Chung, L. (1993). Representing and Using Non-Functional Requirements: A 

Process-Oriented Approach. PhD from Department of Computer Science, 

University of Toronto. 

ClearSy (2009). Atelier-B. Retrieved 19 October 2008, Available from 

http://www.atelierb.eu/index_en.html. 

Cobden, M., Humphreys, B., Macarthur, K., and O'Neill, B. (2007). Timing 

Diagram Plugin Support for RODIN/UML-B, A group design project 

report, Department of Electronics and Computer Science, University of 

Southampton. 

Cox, K., J. G. Hall, et al. (2005). "Editorial: A roadmap of problem frames 

research." Information and Software Technology 47(14): 891-902. 

Dardenne, A., Fickas, S., and Lamsweerde, A. v. (1991). Goal-directed Concept 

Acquisition in Requirements Elicitation. In Proceedings of the 6th 

International Workshop on Software Specification and Design, Como, Italy, 

IEEE. 

Dardenne, A., Lamsweerde, A. v., and Fickas, S. (1993). Goal-Directed 

Requirements Acquisition, Science of Computer Programming 20(1-2): 3-

50. 

Darimont, R. (1995). Process Support for Requirments Elaboration. PhD from 

Dépt. Ingénierie Informatique, Université Catholique de Louvain. 

Darimont, R., and Lamsweerde, A. v. (1996). Formal Refinement Patterns for 

Goal-Driven Requirements Elaboration, ACM SIGSOFT Software 

Engineering Notes 21(6): 179-190. 

Dehbonei, B., and Mejia, F. (1995). Formal development of safety-critical software 

systems in railway signalling. Applications of Formal Methods. M. G. 

Hinchey and J. P. Bowen, Prentice-Hall: 227–252. 

Eclipse (2008). Eclipse Modeling Framework Project (EMF). Retrieved 2 

September 2008, Available from http://www.eclipse.org/modeling/emf/. 

El-Maddah, I., and Maibaum, T. (2003). Goal-Oriented Requirements Analysis for 

Process Control Systems Design. In Proceedings of the Formal Methods 

and Models for Co-Design (MEMOCODE’03), Mont Saint-Michel, France, 

IEEE Computer Society. 

EMFT-Eclipse (2009). Eclipse Modeling Framework Technology (EMFT). 

Retrieved 9 March 2009, Available from 

http://www.eclipse.org/modeling/emft/?project=ecoretools. 

Event-B.org (2008). B2Latex. Retrieved 17 November 2008, Available from 

http://www.event-b.org/plugins.html. 



References                                                                                                              230 

 

 

Event-B.org (2009). Rodin Platform Installation. Retrieved 15 Febuary 2009, 

Available from http://www.event-b.org/platform.html. 

FAUST (2008). An Overview of the FAUST Toolbox. Retrieved 20 November 

2008, Available from http://faust.cetic.be. 

Fisler, K. (2006). Towards Diagrammability and Efficiency in Event Sequence 

Language, International Journal on Software Tools for Technology (STTT) 

8(4): 431-447. 

Fisman, D., and Eisner, C. (2009). Sugar 2.0 Formal Specification Language. 

Retrieved 17 April 2009, Available from 

www.haifa.ibm.com/projects/verification/sugar/images/sugar2_sv-ac.ppt. 

Fitzgerald, J., Larsen, P. G., Mukherjee, P., Plat, N., and Verhoef, M. (2004). 

Validated Designs for Object-oriented Systems, Springer. 

Fowler, M., and Scott, K. (2004). UML Distilled: A Brief Guide to The Standard 

Object Modelling Language, Addison-Wesley Professional. 

Friedental, S., and Steiner, R. (2004). System Modeling Language (SysML) 

Overview. In Proceedings of the NDIA System Engineering. 

Gavras, A. (2003). "Considerations on telecom modelling languages."  Retrieved 7 

October, 2009, Available from    

http://www.modatel.org/~Modatel/pub/deliverables/D3.add2-final.pdf. 

George, V. and R. Vaughn (2003). "Application of Lightweight Formal Methods in 

Requirement Engineering1." CrossTalk-The Journal of Defense Software 

Engineering(Jan). 

Guttag, J. V., Horning, J. J., Garland, S. J., Jones, K. D., Modet, A., and Wing, J. 

M. (1993). Larch : Language and Tools for Formal Specification, Springer-

Verlag. 

Hall, A. (2007). Realising the Benefits of Formal Methods, Formal Methods and 

Software Engineering: 1-4. 

Hallerstede, S. (2006). Justifications for the Event-B Modelling Notation. In 

Proceedings of the Formal Specification and Development in B (B 2007), 

Besancon, France, Springer, LNCS 4533. 

Hassan, R., Bohner, S., El-Kassas, S., and Hinchey, M. (2009). Integrating formal 

analysis and design to preserve security properties. In Proceedings of the 

42nd Hawaii International Conference on System Sciences (HICSS-42), 

Waikoloa, Hawaii, USA, IEEE Computer Society. 

Hause, M., Thom, F., and Moore, A. (2005). Inside SysML, Computing & Control 

Engineering 16(4): 10-15. 

Heaven, W., and Finkelstein, A. (2004). A UML profile to support requirements 

engineering with KAOS, Software Engineering 151(1): 10-27. 

Hoare, C. A. R. (1985). Communicating Sequential Processes, Prentice-Hall 

International Series In Computer Science. 

Hoare, J., Dick, J., Neilson, D., and Sørensen, I. (1996). Applying the B 

technologies on CICS. In Proceedings of the 3rd International Symposium 

of Formal Methods Europe (FME’96), Oxford, United Kingdom, Springer-

Verlag. 

Hozmann, G. J. (1997). The model checker SPIN, IEEE Transactions on Software 

Engineering 23(5): 275-295. 

Hull, E., Jackson, K., and Dick, J. (2004). Requirements Engineering, Springer. 



References                                                                                                              231 

 

 

IBM (2008). Sugar 2.0, Available from 

http://www.eetimes.com/news/design/showArticle.jhtml?articleID=165049

43. 

Idani, A., and Ledru, Y. (2007). Object oriented concepts identification from 

formal B specifications Formal Methods in System Design 3: 233-247. 

Intel. Retrieved 2 June 2009, Available from "NEW" 

http://www.xfusionsoftware.com/. 

Jackson, M. (1995). Software Requirements and Specifications : A Lexicon of 

Practice, Principles and Prejudices, Addison-Wesley. 

Jackson, M. (2001). Problem Frames Analysis and Structuring Software 

Development Problems, Addison-Wesley. 

Jackson, M. (2005). "Problem Frames and Software Engineering." Information & 

Software Technology 47(14): 903-912. 

Jayaratchagan, N. (2004). Declarative Programming in Java, Available from 

http://www.onjava.com/pub/a/onjava/2004/04/21/declarative.html. 

Jiufu, L. (2007). Integration of statechart and B method based analysis and 

verification for flight control software of unmanned aerial vehicle, ACM 

SIGSOFT Software Engineering Notes 32(2): 1-4. 

Jones, C. B. (1986). Systematic Software Development Using VDM, Prentice Hall. 

Joochim, T., and Poppleton, M. R. (2007). Transforming Timing Diagrams into 

Knowledge Acquisition in Automated Specification. In Proceedings of the 

2nd International Conference on Advance in Information Technology 

(IAIT2007), Bangkok, Thailand, King Mongkut's University of 

Technology. 

Joochim, T. at. el. (2010). Timing Diagrams Requirements Modeling using Event-B 

Formal Methods. In Proceedings of the Software Engineering (SE 2010), 

Innsbruck, Austria, Actapress. 

Jureta, I. (2006). Engineering Requirement for Information Systems using KASO 

and Request frameworks. Retrieved 22 JaNaury 2009, Available from 

http://www.isys.ucl.ac.be/staff/stephane/GETI2100Slide/KAOS.pdf. 

Khan, M. U., Geihs, K., Gutbordt, F., Gohner, P., and Trauter, R. (2006). Model-

Driven Development of Real-Time Systems with UML 2.0 and C. In 

Proceedings of the Joint Meeting of the Fourth on Model-Based 

Development Computer-Based Systems and The Third International 

Workshop on Model-Based Methodologies for Pervasive and Embedded 

Software, Postdam, Germany, IEEE Computer Society. 

King, S., Hammond, J., Chapman, R., and Pryor, A. (2000). Is Proof More Cost-

Effective Than Testing?, IEEE Transactions on Software Engineering 

26(8): 675-686. 

Langari, Z. and A. B. Pidduck (2005). Quality, Cleanroom and Formal Methods. 

International Conference on Software Engineering, the third workshop on 

Software quality St Louis, Missouri, USA, ACM. 

Lamsweerde, A. v. (2000). Formal Specification : a Roadmap. In Proceedings of 

the Future of Software Engineering Track (ICSE' 00), Limerick, Ireland, 

ACM. 

Lamsweerde, A. v. (2001). Goal-Oriented Requirements Engineering: A Guide 

Tour. In Proceedings of the 5th IEEE International Symposium on 



References                                                                                                              232 

 

 

Requirements Engineering (RE’01), Toronto, Canada, IEEE Computer 

Society. 

Lamsweerde, A. v. (2004). Goal-Oriented Requirement Engineering : A Roundtrip 

from Research to Practice. In Proceedings of the 12th IEEE Joint 

International Requirements Engineering Conference (RE’04), Kyoto, Japan, 

IEEE Xplore. 

Lamsweerde, A. v. (2009). Requirements Engineering : From System Goals to 

UML Models to Software Specifications, John Wiley & Son. 

Lamsweerde, A. v., Dardenne, A., Delcourt, B., and Dubisy, F. (1991). The KAOS 

Project: Knowledge acquisition in automated specifications of software. In 

Proceedings of the AAAI Spring Symposium series, Symposium: Design of 

Composite Systems, Stanford University, California, USA, AI Magazine. 

Lamsweerde, A. v., and Massonet, R. D. P. (1995). Goal-Directed Elaboration of 

Requirements for a Meeting Scheduler: Problems and Lessons Learnt. In 

Proceedings of the 2nd IEEE International Symposium on Requirements 

Engineering, York, England, IEEE Computer Society. 

Lamsweerde, A. v., and Willemet, L. (1998). Inferring Declarative Requirements 

Specifications from Operational Scenarios, IEEE Transactions on Software 

Engineering 24(12): 1089-1114. 

Landtsheer, R. D., Letier, E., and Lamsweerde, A. v. (2004). Deriving tabular 

event-based specifications from goal-oriented requirements models, 

Requirements Engineering 9(2): 104-120. 

Ledang, H., and Souquierès, J. (2002a). Contributions for Modelling UML State-

Charts in B. In Proceedings of the 3rd International Conference on 

Integrated Formal Methods, Turku, Finland, Springer, LNCS 2335. 

Ledang, H., and Souquierès, J. (2002b). Integration of UML Views using B 

Notations. In Proceedings of the Workshop on Integration and 

Transformation of UML models (WITUML’02), Malaga, Spain. 

LeMieux, D. H. (2003). On-Line Termal Barrier coating Monitoring for Real-time 

Failure Protection and Life Maximization, U.S. Department of Energy, 

National Enery Technology Laboratory: 1-15. 

Letier, E. (2001). Reasoning about Agents in Goal-Oriented Requirement 

Engineering. PhD Thesis from Dépt. Ingénierie Informatique, Universite 

Catholique de Louvain Belgium. 

Letier, E., Kramer, J., Magee, J., and Uchitel, S. (2008). Deriving Event-Based 

Transition Systems from Goal-Oriented Requirements Models, Automated 

Software Engineering 15(2): 175-206. 

Letier, E., and Lamsweerde, A. v. (2002a). Agent-Based Tactics for Goal-Oriented 

Requirements Elaboration. In Proceedings of the 24th International 

Conference on Software Engineering (ICSE’02), Orlando, Florida, USA, 

ACM. 

Letier, E., and Lamsweerde, A. v. (2002b). Deriving Operational Software 

Specifications from System Goals. In Proceedings of the 10th International 

Symposium on the Foundation of Software Engineering (FSE 2002), USA, 

ACM, Vol. 27. 

Leuschel, M. (2007). ProB. In Proceedings of the RODIN Industry Day, Paris, 

France, CLEARSY. 



References                                                                                                              233 

 

 

Leuschel, M., and Butler, M. (2005). Automatic Refinement Checking for B. In 

Proceedings of the 7th International Conference on Formal Engineering 

Methods (ICFEM’05), Manchester, UK, Springer, LNCS 3785. 

Liu, J., P. H. Chou, et al. (2001). Power-Aware Scheduling under Timing 

Constraints and Slack Analysis for Mission-Critical Embedded Systems. 

38th Design Automation Conference, Las Vegas, NV, USA. 

Matoussi, A., Gervais, F., and Laleau, R. (2008). A First Attempt to Express KAOS 

Refinement Patterns with Event B. In Proceedings of the 1st International 

Conference on Abstract State MAchine, B and Z (ABZ 2008), London, UK, 

Springer-Verlag, LNCS 5238. 

Métayer, C., Abrial, J.-R., and Voisin, L. (2005). Event-B language. Retrieved 15 

March 2009, Available from http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf. 

Métayer, C., and Voisin, L. (2007). The Event-B Mathematical Language. 

Retrieved 2 October 2008, Available from 

http://www.labri.fr/perso/casteran/FM/Rodin/mathLanguage-2007-10-

26.pdf. 

MOHC (2009). TimingTool. Retrieved 10 June 2009, Available from "NEW" 

http://www.timingtool.com/. 

Moore, A. (2006, 1 May 2006). SysML Effort About to Bear Fruit. Retrieved 7 

March 2009, Available from 

http://www.sdtimes.com/content/article.aspx?ArticleID=29301. 

Nakagawa, H., Taguchi, K., and Honiden, S. (2007). Formal specification 

generator for KAOS: model transformation approach to generate formal 

specifications from KAOS requirements models. In Proceedings of the 22nd 

IEEE/ACM international conference on Automated software engineering, 

Atlanta, Georgia, USA, ACM. 

OMG-MOF (2007). Meta Object Facility (MOF) specification, 12 May 2009, 

Available from http://www.omg.org/mof/. 

OMG (2007). UML Superstructure Specification, v2.0. Retrieved 22 Janury 2009, 

Available from http://www.omg.org/cgi-bin/doc?formal/05-07-04. . 

OMG (2008). UML 2.0. Retrieved 5 August 2008, Available from 

http://www.uml.org/#UML2.0. 

Oshiro, K., Watahiki, K., and Saeki, M. (2003). Goal-Oriented Idea Generation 

Method for Requirements Elicitation. In Proceedings of the 11th IEEE 

International Conference on Requirements Engineering, California, USA, 

IEEE Computer Society. 

Peterson, J. L. (1981). Petri Net Theory and the Modeling of Systems, Prentice 

Hall. 

Petre, M. (1995). Why Looking Isn’t Always Seeing: Readership Skills and 

Graphical Programming, Communications of the ACM 38(6): 33-44. 

Pfleeger, S. L. (1998). Software Engineering Theory and Practice, POrentice Hall. 

Ponsard, C., and Dieul, E. (2006). From Requirements Models to Formal 

Specifications in B. In Proceedings of the International Workshop on 

Regulations Modelling and their Validation and Verification 

(REMO2V’06), Luxemburg, Presses Universitaires de Namur. 



References                                                                                                              234 

 

 

Ponsard, C., Massonet, P., Molderez, J. F., Rifaut, A., Lamsweerde, A. v., and Van, 

H. T. (2007). Early Verification and Validation of Mission Critical 

Systems, Formal Methods in System Design 30(3): 133-247. 

Popandreeva, A. (2007). Object-Oriented Analysis and Design Using UML of a 

Test "Rotation with Sample". International Conference on Computer 

Systems and Technologies (CompSysTech' 07), University of Rousse, 

Bulgaria, ACM. 

Praxis High Integrity Systems (2008). Correctness by Construction. Retrieved 22 

December 2008, Available from http://www.praxis-his.com. 

ProB (2009). ProB 1.2. Retrieved 15 March 2009, Available from 

http://www.stups.uni-duesseldorf.de/ProB/overview.php. 

Ramchandani, C. (1974). Analysis of asynchronous concurrent systems by timed 

Petri nets. Massachusetts Institute of Technology. MA, Cambridge. PhD 

Thesis. 

Razili, R., Snook, C., Poppleton, M., Garratt, P., and Walters, R. (2007). 

Experimental Comparison of the Comprehensibility of a UML-based 

Formal Specification versus a Textual One. In Proceedings of the 11th 

International Conference on Evaluation and Assessment in Software 

Engineering (EASE’07), Keele University, UK, ACM. 

Reisig, W. (1985). Petri nets: an introduction, Springer-Verlag New York, Inc. 

Requet, A. (2007). BRAMA. In Proceedings of the RODIN Industry Day, Paris, 

France, CLEARSY. 

Requet, A. (2008, 16 July 2008). The B formal Method: from Research to 

Teaching, 19 April 2009, Available from 

http://www.atelierb.eu/pdf/nantes_2008_atelier_b_v4.pdf. 

Rifaut, A., Massonet, P., Molderez, J.-F., Ponsard, C., Stadnik, P., Lamsweerde, A. 

v., and Hung, T. V. (2003). FAUST : Formal Analysis of Goal-Oriented 

Requirements Using Specification Tools. In Proceedings of the 11th IEEE 

International Requirements Engineering Conference (RE’03), Monterey 

Bay, California, USA, IEEE. 

RODIN (2009). Development Environment for Complex Systems (Rodin). 

Retrieved 10 Febuary 2009, Available from http://rodin.cs.ncl.ac.uk/. 

Rubio-Loyola, J., Serrat, J., Charalambides, M., Flegkas, P., Pavlou, G., and 

Lafuente, A. L. (2005). Using linear temporal model checking for goal-

oriented policy refinement frameworks. In Proceedings of the 6th IEEE 

International Workshop on Policies for Distributed Systems and Networks, 

Stockholm, Sweden, IEEE Computer Society, Vol. 4347. 

Schneider, S. (2000). Concurrent and Real-time Systems: The CSP Approach, John 

Wiley & Son, Ltd. 

Schneider, S. (2001). The B-method : An introduction, Palgrave Macmillan. 

Smith, M. H., Hozmann, G. J., and Etessami, K. (2001). Event and Constraints: A 

Graphical Editor for Capturing Logic Requirement of Programs. In 

Proceedings of the 5th IEEE International Symposium on Requirements 

Engineering, Toronto, Canada, IEEE Computer Society. 

Snook, C., and Butler, M. (2006). UML-B: Formal modelling and design aided by 

UML, ACM Transactions on Software Engineering and Methodology 15(1): 

92-122. 



References                                                                                                              235 

 

 

Snook, C., and Butler, M. (2008a). UML-B and Event-B: an integration of 

languages and tools. In Proceedings of the IASTED International 

Conference on Software Engineering (SE2008), Innsbruck, Austria, ACTA 

Press. 

Snook, C., and Butler, M. (2008b). UML-B: A plug-in for the Event-B tool set In 

Proceedings of the 1st International Conference on Abstract State 

Machines, B and Z, London, UK, Springer-Verlag. 

Snook, C., and Butler., M. (2001). Using a Graphical Design Tool for Formal 

Specification. In Proceedings of the 13th Workshop of the Psychology of 

Programming Interest Group, Bournemouth, United Kingdom, PPIG. 

Sommerville, I. (2004). "Critical Systems Specifications 3 Formal Specification." 

Retrieved 5 October, 2009, Available from  

www.cs.st-andrews.ac.uk/~ifs/Books/SE8/Syllabuses/CRIT-SYS-

SLIDES/CritSysSpec-3.ppt. 

Sørensen, I. H. (1994). The B-Toolkit demonstration. In Proceedings of the 6th 

Nordic Workshop on Programming Theory, Aarhus, Denmark, Springer, 

LNCS 915. 

Sparx Systems (2006). UML 2 Timing Diagram. Retrieved 26 May 2009, Available 

from 

http://sparxsystems.com.au/resources/uml2_tutorial/uml2_timingdiagram.ht

ml 

Spivey, J. M. (1992). The Z Notation. A Reference Manual, Prentice Hall. 

SynaptiCAD (2009). Retrieved 25 May 2009, Available from 

http://www.syncad.com/. 

SysML (2008). OMG System Modelling Language. Retrieved 3 Febuary 2009, 

Available from http://www.omgsysml.org/. 

SysML Partners (2006). SysML v.1.0a Specification (revised OMG Submission). 

Retrieved 22 JaNaury 2009, 2006, Available from http://www.sysml.org. 

Vanderperren, Y., and Dehaene, W. (2005). UML 2 and SysML: an Approach to 

Deal with Complexity in SoC/NoC Design. In Proceedings of the 

Conference on Design, Automation and Test in Europe (DATE’05), 

Munich, Germany, IEEE Computer Society. 

Visual Paradigm (2007). UML 2 Diagrams : Timing Diagram. Retrieved 

September, 2007, Available from http://www.visual-

paradigm.com/VPGallery/diagrams/TimingDiagram.html. 

Yoder, M. A. and B. A. Black (2006). A Study of Graphical vs. Textual 

Programming for Teaching DSP. In Prodeeding of the 36
th

 annula Frontiers 

in Education Conference,  San Diego, CA, IEEE Xploer. 

Younes, A. B., and Ayed, L. J. B. (2007). Using UML Activity Diagrams and Event 

B for Distributed and Parallel Applications. In Proceedings of the 31st 

Annual International Computer Software and Applications Conference 

(COMPSAC 2007), Beijing, China, IEEE Computer Society, Vol. 1. 

You, S. K E.(1993). Towards Modeling and Reasoing Support for Early-Phase 

Requiremetns Engineering. In Proceeding of the 1
st
 International 

Symposium on Requirements Engineering (RE'93), Bonn, Germany, IEEE 

Xplore. 

  



References                                                                                                              236 

 

 

Wing, J. M. (1990). "A Specifier's Introduction to Formal Methods." IEEE 

Computer 23(9): 8-26. 

Zimmerman, M. K., Lundqvist, K., and Leveson, N. (2002). Investigating the 

Readability of State-Based Formal Requirements Specification Languages. 

In Proceedings of the 22nd International Conference on Software 

Engineering (ICSE’02), Orlando, Florida, USA, ACM. 

 

 



 

 

Appendix A.  Event-B Textual 

Translation rules 

A.1 Event-B systematic textual direct translation rules 

1. Rule :  ����
��
�

�

����
��
(���������→  

 “SETS”  

� � ���
(���������

 “CONSTANTS”  

� � �����
	�
(���������

 “AXIOMS” �

� � ������(�������� 

 

2.  Rule :  �.	�$����

 

�.	�$���(���������→  

 “VARIABLES”  

� � �����	
����(����������

� � �����	
�
	
�(���������

 “INVARIANTS”  

� � �����	
�������(���������

� � �����	
�
	
����(���������

 “EVENTS” �

� � �����	
�������
(���������

� � �����	
�
	
����
(���������

� � � � �������
(�������� 
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3.  Rule :  ���
�

�

����
(�������)�→�

  <FOR>  t  <IN>  ������������(�������� 

   { ���	���	��(t)��+ “_STATES ” } 

 

 

4. Rule :  �����
	�
�

��

������
	�
(���������→  

  <FOR>  t  <IN>  ������������(���������

� � � {  �#
�
������
�
�
	
��(��� } 

�

��#
�
������
�
�
	
��(���→  �#
�
��������
�(�����
	
�(�)) 

��#
�
��������
�(9��/���%�:(�����→  9��/� +  “ ”  

                                                                              + �#
�
��������
�(%�:(���) 

��#
�
��������
�(9��/�:�;�<�)  →  9��/ 

�

 

5. Rule :  �������

�

�������(�������) →�

              <FOR>  t  <IN>  �����������
(�������� 

   {  ��	��(t���+ “_STATES  =  ” + �#
�
�����
	
��(��� } 

 

���#
�
�����
	
��(����→  “{”   + �����
	
���
(�����
	
�(�))  + “}” 

 

�������
	
���
(9��/���%�:(���)  →  9��/� +  “,” + �����
	
���
(%�:(���) 

�������
	
���
(9��/�:�;�<�)  →  9��/�

�

�

�
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6. Rule :  ���	
�����

 

���	
����(�������) →  

  <FOR>  �  <IN>  ������������(�������) 

     { <FOR>  �� <IN>  �����
	
�(�� 

    {���	��(�)��+ � + “Time” }  } 

 

7. Rule :  ���	
��������

 

���	
�������(�������) →  

  <FOR>  �  <IN>  ������������(�������) 

     { <FOR>  �� <IN>  �����
	
�(�� 

    {���	��(�)��+ � + “Time ∈  % ” }  } 

 

8. Rule :  ���	
�������
�

 

���	
�������
(�������) →  

  <FOR>  �  <IN>  ������������(�������) 

     { <FOR>  �� <IN>  �����
	
�(�� 

    {���	��(�)��+ � + “Time := 0” } } 

 

9. Rule :  ���	
�
	
��

�

���	
�
	
�(�������) →  

  <FOR>  �  <IN>  ������������(�������) 

     {��	��(�)��+ “State” }  

 

10. Rule :  ���	
�
	
�����

�

���	
�
	
����(�������) →  

<LET> exp = ���	��(�������������	��(�)) 

<IN>  
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<FOR> �� <IN>  ������������(�������) 

    {  ��	��(�)��+ “State ∈”  + 

                      <IF> �%	��	
	�(���	��(��	��(�))) 

        <THEN>               

                            “(”+ �#
�
��	
	�+�
���(�����	
	��!"�(exp)) + “)”�

                              + “ →  ” +  ���	���	��(�) +  “_STATE” 

                     <ELSE> ���	���	��(�) +  “_STATE” 

       <ENDIF> 

                 }  

 

�#
�
��	
	�+�
���(9��/���%�:(���)  →   

                                                     9��/� +  “× ” + �#
�
��	
	�+�
���(%�:(���) 

�#
�
��	
	�+�
���(9��/�:�;�<�)  →  9��/ 

 

11. Rule :  ���	
�
	
����
�

�

���	
�
	
����
(�������) →  

  <FOR>  �  <IN>  ������������(�������) 

   { ��	��(�)��+ “State := {xInitValuex}” } 

 

12. Rule :  �����
���

�

� � �����
���→   “Ticktok  =   BEGIN  gclock := gclock + 1 END ” 

A.2 Translation rules for creating an event 

13. Rule :  �����
�	���

�

�����
�	��(%�&����) →  

  <LET> exp = �'�(�
(%�&����) 

  <IN>   �'�((exp) + exp + “=” 
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14. Rule :  ��	
	���
�

�

��	
	���
(%�&����) →  

<LET> exp = �'�((�'�(�
(%�&����)) 

<IN> 

      <IF> �%	��	
	�(���	��(exp)) 

      <THEN>  

       “ANY”   +  

       �#
�
�����	
	��(�����	
	�(���	��(exp))) 

      <ELSE> 

             “WHEN ” 

      <ENDIF> 

 

��#
�
�����	
	��(9��/ : �����%�:(���) →  

     9��/� +  “,” + �#
�
�����	
	��(�����%�:(���) 

��#
�
�����	
	��(9��/ :�;�<) →  9��/�

 

15.  Rule : ��	
	���	
��	����

�

��	
	���	
��	���(%�&����) →  

<LET> exp = ���	��(�'�((�'�(�
(%�&����))) 

<IN>  

  <IF>�%	��	
	�(exp) 

  <THEN>  

   “WHERE”   + 

   �#
�
�����	
	����
(�����	
	�(exp)) 

  <ELSE> <SKIP> 

  <ENDIF> 

 

��#
�
�����	
	����
(9��/ : �����%�:(���) →  

     9��/� +  “:” + ��	
	��!"�(9��/) + “&” + 

�� � � � �#
�
�����	
	����
(�����%�:(���) 
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��#
�
�����	
	����
(9��/ : ;�<) →   9��/� +  “:” + ��	
	��!"�(9��/)  

 

16.�Rule : ��
��

�
 

 

��
��

�
(%�&����) →  

   {���“(“ +����
�
��
���(������!"�(�����

�
(%�&����)))�+�“)”   } 

 

17. Rule : ���
�
��
��� 

 

���
�
��
���(��/�()*�) →  

<IF>  ��/�()*�  =  %��*���

<THEN><IF> �%	�������(%��*��) 

               <THEN> ���������	
�(�������
(%��*��), �������(%��*��)) 

                               + “&” + ����"���	������
��(�������
(%��*��)) 

                               + ����"������(�����(%��*��)) 

               <ELSE> 

                                  ����"���	������
��(�������
(%��*��)) 

                               + ����"������(�����(%��*��)) 

               <ENDIF> 

<ELSE><IF> ��/�()*�  =   0"��/��

<THEN><LET> Nodes  =  �������
	����( 0"��/�) 

              <IN>   Nodes →  <ITERATE>(n; ret : String = “(” | 

                          <IF> n =��	�
(Nodes) 

                          <THEN> ret = ret  + ���
�
��
���(n) + “)” 

                          <ELSE>  ret = ret  + ���
�
��
���(n) + “) ∨  (” 

                          <ENDIF> ) 

            <ENDIF> 

<ELSE> <IF> ��/�()*�  =  -�#"��/��

<THEN><LET> Nodes  =  �������
	����(-�#"��/�) 

              <IN>   Nodes →  <ITERATE>(n; ret : String = “(” | 

                          <IF> n =��	�
(Nodes) 

                          <THEN> ret = ret  + ���
�
��
���(n) + “)” 
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                        <ELSE>  ret = ret  + ���
�
��
���(n) + “) ∧  (” 

                        <ENDIF> ) 

            <ENDIF> 

<ENDIF> 

 

18. Rule :  ���������	
��

 

���������	
�(%�&����, (����&) →  “(gclock  - ” 

�����������������������,����((���(�
(%�&����)) 

�����������������������,����(�
(%�&����)) 

�����������������������,�“Time ≥  ” 

�����������������������,����&�
��
((����&) + “)” 

�����������������������,�“& (gclock – ” 

�����������������������,����((���(�
(%�&����)) 

�����������������������,����(�
(%�&����)) 

�����������������������,�“Time ≤  ” 

�����������������������,���""�
��
((����&) + “)” 

 

19. Rule :  ����"���	������
���

 

����"���	������
��(%�&����) →  

<LET> exp = ���	��(�'�((�'�(�
(%�&����))) 

<IN> 

  <IF> �%	��	
	�(exp) 

  <THEN> 

   �'�((�'�(�
(%�&����)) 

   +  “State( ” 

�� � �#
�
��	
	���
(�����	
	�(exp))   

   +  “) = ” 

   + �'�(�
(%�&����) 

  <ELSE> 

�� � �'�((�'�(�
(%�&����)) 

   +  “State = ” 
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   + �'�(�
(%�&����) 

  <ENDIF> 

�

�#
�
��	
	���
(9��/���%�:(���)  →  9��/� +   

“� ” + �#
�
��	
	���
(%�:(���) 

�#
�
��	
	���
(9��/�:�;�<�)  →  9��/ 

 

20. Rule : ����"������ 

 

   ����"������(���/�����) →  

 <IF> ���"
!(���/�����) 

 <THEN> <SKIP> 

 <ELSE> �������
	���� (���/�����)  →  <ITERATE>(p; ret : String = “ ” | →  

                                                                         ret ←  “&”  + p) 

<ENDIF> 

 

21.  Rule :  ��
������ 

�

��
������(%�&����) →  

 “&” + “(” + �#
�
��
���
	
���
(%�&����,�����
������(%�&����)) + “)”  

 

�#
�
��
���
	
���
(%�&����,�9��/�: %�&�%�:(���) →  

     ����"���
������(%�&����,�9��/) 

 + “ ∨ ” 

+ �#
�
��
��
	
���
(%�&����,�%�&�%�:(���) 

�#
�
��
���
	
���
(%�&����, 9��/�: ;�<) →  

     ����"���
������(%�&����,�9��/) 

 

22.�Rule : ����"���
������ 

 

����"���
������(%�&����,�9��/) →  

<LET> exp = ���	��(�'�((�'�(�
(%�&����))) 
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<IN> 

        <IF> �%	��	
	�(exp)    

        <THEN>  �'�((�'�(�
(%�&����)) + “State(” 

                        + �#
�
��	
	���
(�����	
	�(exp))�

                          +  “) =  ” 

                        + �'�(�
(9��/)  

        <ELSE> 

                        �'�((�'�(�
(%�&����)) + “State =” 

                        + �'�(�
(9��/) 

       <ENDIF> 

 

23. Rule :  �����
(%�&����) 

 

�����
(%�&����) →  

<LET> exp = �'�((�'�(�
(%�&����) 

<IN> 

<IF> �%	��	
	�(���	��(exp)) 

<THEN> �'�(�	��(exp) 

  +  “State( ” 

  +  �#
�
��	
	���
(�����	
	�(���	��(exp))) 

  +  “) := ” 

  +  �'�(�
(%�&����) 

<ELSE>  exp 

  +  “State : = ” 

  +  �'�(�
(%�&����) 

<ENDIF> 

 

24. Rule :  ������ 

 

 ������(%�&����) →  

<LET> exp = ���	��(�'�((�'�(�
(��������(�)))) 

<IN> 

<IF> �%	������(%�&����) 
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<THEN> <FOR>  �� <IN> ��������)(%�&����) 

               {<IF> �%	��	
	�(exp) 

               <THEN> 

                        �'�((�'�(�
(��������(�))) 

                        +  “State( ” 

                           + �#
�
��	
	���
(�����	
	�(exp)) 

                        + “) := ” 

                        + �'�(�
(��������(�)) 

               <ELSE> 

                         �'�((�'�(�
(��������(s))) 

                         +  “State :=  ” 

                         + �'�(�
(��������(�)) 

               <ENDIF> 

                <IF> <NOT> ��= �	�
(��������)(%�&����)) 

����������������<THEN> “&” 

                <ELSE> <SKIP> 

                <ENDIF> 

               } 

<ELSE> <SKIP> 

<ENDIF> 

 

25. Rule :  ��������� 

 

����������(%�&����) →  

�� �'�((�'�(�
(%�&����)) 

  + �'�(�
(%�&����)�

  + “Time := gclock” 

 



 

 

Appendix B.  An Event-B model 

created from the Direct 

translation rules  

An Event-B model is generated from systematic textual translation rules is 

illustrated below. This Event-B model composes of two parts: a context named 

LiftSystem_EventB_ctx and a machine named LiftSystem. 

B.1 Context : LiftSystem_EventB_ctx 

 

context LiftSystem_EventB_ctx 

 

constants Lit Unlit On Off rLit rUnlit MovingArrivingUp 

MovingUp MovingDepartingUp StopAtFloor MovingDepartingDown 

MovingDown MovingArrivingDown Open Closed acTivated deActivated 

Activated Deactivated FLOOR TOP BOTTOM Up Down  

 

sets FLOORLAMP_STATES FLOORSENSOR_STATES REQUESTLAMP_STATES 

LIFT_STATES DOOR_STATES UPLAMP_STATES DOWNLAMP_STATES DIR  

 

axioms 

  @axm39 DIR = {Up, Down} 

  @axm1 FLOORLAMP_STATES = {Lit, Unlit} 

  @axm2 Lit 
 Unlit 

  @axm3 FLOORSENSOR_STATES = {On, Off} 

  @axm4 On 
 Off 

  @axm5 REQUESTLAMP_STATES = {rLit, rUnlit} 

  @axm6 rLit 
 rUnlit 
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  @axm7 LIFT_STATES =  

{MovingArrivingUp, MovingUp, MovingDepartingUp, 

   StopAtFloor, MovingDepartingDown, MovingDown, 

         MovingArrivingDown} 

  @axm8 MovingArrivingUp 
 MovingUp 

  @axm9 MovingArrivingUp 
 MovingDepartingUp 

  @axm10 MovingArrivingUp 
 StopAtFloor 

  @axm11 MovingArrivingUp 
 MovingDepartingDown 

  @axm12 MovingArrivingUp 
 MovingDown 

  @axm13 MovingArrivingUp 
 MovingArrivingDown 

  @axm14 MovingUp 
 MovingDepartingUp 

  @axm15 MovingUp 
 StopAtFloor 

  @axm16 MovingUp 
 MovingDepartingDown 

  @axm17 MovingUp 
 MovingDown 

  @axm18 MovingUp 
 MovingArrivingDown 

  @axm19 MovingDepartingUp 
 StopAtFloor 

  @axm20 MovingDepartingUp 
 MovingDepartingDown 

  @axm21 MovingDepartingUp 
 MovingDown 

  @axm22 MovingDepartingUp 
 MovingArrivingDown 

  @axm23 StopAtFloor 
 MovingDepartingDown 

  @axm24 StopAtFloor 
 MovingDown 

  @axm25 StopAtFloor 
 MovingArrivingDown 

  @axm26 MovingDepartingDown 
 MovingDown 

  @axm27 MovingDepartingDown 
 MovingArrivingDown 

  @axm28 MovingDown 
 MovingArrivingDown 

  @axm29 DOOR_STATES = {Open, Closed} 

  @axm30 Open 
 Closed 

  @axm31 UPLAMP_STATES = {acTivated, deActivated} 

  @axm32 acTivated 
 deActivated 

  @axm33 DOWNLAMP_STATES = {Activated, Deactivated} 

  @axm34 Activated 
 Deactivated 

  @axm35 FLOOR = (BOTTOMªTOP) 
  @axm38 BOTTOM = 1 

  @axm37 TOP = 3 

  @axm36 Up 
 Down 

end 
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B.2 Machine : LiftSystem_EventB 

 

machine LiftSystem_EventB sees LiftSystem_EventB_ctx  

 

variables reqFl currentFl floorlampState floorsensorState 

requestlampState doorState liftState uplampState downlampState dir 

gclock floorlampLittime floorlampUnlitTime floorsensorOnTime 

floorsensorOffTime requestlampRequestedTime 

requestlampUnrequestedTime liftMovingArrivingUpTime 

liftMovingUpTime liftMovingDepartingUpTime liftStopAtFloorTime 

liftMovingDepartingDownTime liftMovingDownTime 

liftMovingArrivingDownTime doorOpenTime doorClosedTime 

uplampDeactivatedTime uplampActivatedTime downlampDeactivatedTime 

downlampActivatedTime floorlampLitTime  

 

invariants 

  @inv1 requestlampState « FLOOR � REQUESTLAMP_STATES 
  @inv2 reqFl ¬ FLOOR 
  @inv3 floorlampState « FLOOR � FLOORLAMP_STATES 
  @inv4 floorsensorState « FLOOR � FLOORSENSOR_STATES 
  @inv5 doorState « FLOOR � DOOR_STATES 
  @inv6 liftState « LIFT_STATES 
  @inv7 uplampState « UPLAMP_STATES 
  @inv8 downlampState « DOWNLAMP_STATES 
  @inv9 currentFl « FLOOR 
  @inv10 dir « DIR 
  @inv11 gclock « ­ 
  @inv12 floorlampLittime « ­ 
  @inv13 floorlampUnlitTime « ­ 
  @inv14 floorsensorOnTime « ­ 
  @inv15 floorsensorOffTime « ­ 
  @inv16 requestlampRequestedTime « ­ 
  @inv17 requestlampUnrequestedTime « ­ 
  @inv18 liftMovingArrivingUpTime « ­ 
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  @inv19 liftMovingUpTime « ­ 
  @inv20 liftMovingDepartingUpTime « ­ 
  @inv21 liftStopAtFloorTime « ­ 
  @inv22 liftMovingDepartingDownTime « ­ 
  @inv23 liftMovingDownTime « ­ 
  @inv24 liftMovingArrivingDownTime « ­ 
  @inv25 doorOpenTime « ­ 
  @inv26 doorClosedTime « ­ 
  @inv27 uplampDeactivatedTime « ­ 
  @inv28 uplampActivatedTime « ­ 
  @inv29 downlampDeactivatedTime « ­ 
  @inv30 downlampDeactivatedTime « ­ 
  @inv31 downlampActivatedTime « ­ 
  @inv32 floorlampLitTime « ­ 
  @inv33 ¬(uplampState = acTivated   

®
 downlampState = Activated) 

  @inv34 doorState(currentFl) = Open ¯  

liftState = StopAtFloor 

  @inv35 liftState 
 StopAtFloor ¯   

doorState(currentFl) = Closed 

  @inv36 currentFl 
 (currentFl + 1) // For POs 

  @inv37 currentFl 
 (currentFl − 1) // For POs 

 

events 

  event INITIALISATION 

    then 

      @act1 requestlampState ° FLOOR × {rUnlit} 
      @act2 reqFl ° ± 
      @act3 floorlampState ° {1²Lit, 2²Unlit, 3²Unlit} 
 // if changes to floorlampState ³ {}, PO is discharged 
      @act4 floorsensorState ° {1 ² On, 2 ² Off, 3 ² Off} 
 // if changes to floorsensorState ³ {}, PO is discharged 
      @act5 doorState ° FLOOR × {Closed} 
      @act6 liftState ° StopAtFloor 



Appendix B. An Event-B model created from the Direct translation rules            251 

 

 

      @act7 uplampState ° deActivated 
      @act8 downlampState ° Deactivated 
      @act9 currentFl ° BOTTOM 
      @act10 dir ° Up 
      @act11 gclock ° 0 
      @act12 floorlampLittime ° 0 
      @act13 floorlampUnlitTime ° 0 
      @act14 floorsensorOnTime ° 0 
      @act15 floorsensorOffTime ° 0 
      @act16 requestlampRequestedTime ° 0 
      @act17 requestlampUnrequestedTime ° 0 
      @act18 liftMovingArrivingUpTime ° 0 
      @act19 liftMovingUpTime ° 0 
      @act20 liftMovingDepartingUpTime ° 0 
      @act21 liftStopAtFloorTime ° 0 
      @act22 liftMovingDepartingDownTime ° 0 
      @act23 liftMovingDownTime ° 0 
      @act24 liftMovingArrivingDownTime ° 0 
      @act25 doorOpenTime ° 0 
      @act26 doorClosedTime ° 0 
      @act27 uplampDeactivatedTime ° 0 
      @act28 uplampActivatedTime ° 0 
      @act30 downlampDeactivatedTime ° 0 
      @act31 downlampActivatedTime ° 0 
      @act29 floorlampLitTime ° 0 
  end 

 

  event UserRequestlamprLit  

  // The original name got from the rule is requestlamprLit 

    any f  

    where 

      @grd1 f « FLOOR 
    then 

      @act1 reqFl ° reqFl  ́{f} 
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      @act2 requestlampState(f) ° rLit 
      @act3 requestlampRequestedTime ° gclock 
  end 

 

  event SetRequestlamprUnlit  

// line 6; the original name got from the rule  

is requestlamprUnLit 

    any f  

    where 

      @grd1 f « FLOOR 
      @grd2 liftState = StopAtFloor  

  
®
 ((gclock − liftStopAtFloorTime � 2)

®
 (gclock − liftStopAtFloorTime 	 4))  

  
®
 f = currentFl 

      @grd3 requestlampState(f) = rLit 

    then 

      @act1 requestlampState(f) ° rUnlit 
      @act2 requestlampUnrequestedTime ° gclock 
  end 

 

  event doorOpen // line 9 

    any f  

    where 

      @grd1 liftState = StopAtFloor  

  
®
 ((gclock − liftStopAtFloorTime � 1)

®
 (gclock − liftStopAtFloorTime 	 5))  

  
®
 f « reqFl ® f = currentFl 

      @grd3 doorState(f) = Closed 

    then 

      @act1 doorState(f) ° Open 
      @act2 doorOpenTime ° gclock 
  end 

 

  event doorClosed 

    where 

      @grd1 doorState(currentFl) = Open 



Appendix B. An Event-B model created from the Direct translation rules            253 

 

 

      @grd2 liftState = StopAtFloor // from POs 

    then 

      @act1 doorState(currentFl) ° Closed 
      @act2 reqFl ° reqFl µ {currentFl} 
      @act3 doorClosedTime ° gclock 
  end 

 

  event liftMovingDepartingUp // line 18 and 7 

    any f  

    where 

      @grd6 f « FLOOR 
      @grd1 (requestlampState(f) = rLit 

            
®
 f > currentFl) 

            
®

(doorState(currentFl) = Closed 

            
®
 ((gclock − doorClosedTime � 1)  

            
®
 (gclock − doorClosedTime 	 5)) 

            
®
 f « reqFl) 

      @grd5 currentFl ¶ reqFl  
      // The lift much serve the currentFl first if there is 

 a request  for the currentFl. Otherwise, the lift will  

move to other floors and in the same time service  

the currentFl. 

      @grd3 liftState = StopAtFloor 

      @grd7 dir = Up 

    then 

      @act1 liftState ° MovingDepartingUp 
      @act2 uplampState ° acTivated 
      @act3 downlampState ° Deactivated 
      @act4 liftMovingDepartingUpTime ° gclock 
  end 

 

event liftMovingDepartingUp2  

  // Used whenever there is no continuously request between 

connected floors; The lift will change its state from 

MovingArrivingUp to MovingDepartingUp. 

    any f  
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    where 

      @grd1 f « FLOOR 
      @grd2 f « reqFl ® f > currentFl 
      @grd3 currentFl ¶ reqFl 
      @grd4 liftState = MovingArrivingUp 

      @grd5 dir = Up 

    then 

      @act1 liftState ° MovingDepartingUp 
      @act2 uplampState ° acTivated 
      @act3 downlampState ° Deactivated 
      @act4 liftMovingDepartingUpTime ° gclock 
  end 

 

  event liftMovingUp 

    any f  

    where 

      @grd1 f « FLOOR 
      @grd2 f « reqFl ® f > currentFl 
      @grd3 currentFl ¶ reqFl 
      @grd4 liftState = MovingDepartingUp 

      @grd5 dir = Up 

      @grd6 floorsensorState(currentFl) = Off  

  // addition guard from Simultaneity -- future work 

    then 

      @act1 liftState ° MovingUp 
      @act2 uplampState ° acTivated 
      @act3 downlampState ° Deactivated 
      @act4 liftMovingUpTime ° gclock 
  end 

 

  event liftMovingDepartingDown // line 19 and 8 

    any f  

    where 

      @grd1 f « FLOOR 
      @grd2 ( requestlampState(f) = rLit 

®
 f < currentFl) 

            
®

(doorState(currentFl) = Closed 
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®
 ((gclock − doorClosedTime � 1)  

            
®
 (gclock − doorClosedTime 	 5)) 

            
®
 f « reqFl) 

      @grd3 currentFl ¶ reqFl 
      @grd6 liftState = StopAtFloor 

      @grd5 dir = Down 

    then 

      @act1 liftState ° MovingDepartingDown 
      @act2 uplampState ° deActivated 
      @act3 downlampState ° Activated 
      @act4 liftMovingDepartingDownTime ° gclock 
  end 

 

event liftMovingDepartingDown2  

  // Used whenever there is no continuously request between 

connected floors;The lift will change its state from 

MovingArrivingDown to MovingDepartingDown. 

    any f  

    where 

      @grd1 f « FLOOR 
      @grd2 f « reqFl ® f < currentFl 
      @grd3 currentFl ¶ reqFl 
      @grd4 liftState = MovingArrivingDown 

      @grd5 dir = Down 

    then 

      @act1 liftState ° MovingDepartingDown 
      @act2 uplampState ° deActivated 
      @act3 downlampState ° Activated 
      @act4 liftMovingDepartingDownTime ° gclock 
  end 

 

  event liftMovingDown 

    any f  

    where 

      @grd1 f « FLOOR 
      @grd2 f « reqFl ® f < currentFl 
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      @grd3 currentFl ¶ reqFl 
      @grd4 liftState = MovingDepartingDown 

      @grd5 dir = Down 

      @grd6 floorsensorState(currentFl) = Off  

 // addition guards from SimultaneityArrow -- future work 

    then 

      @act1 liftState ° MovingDown 
      @act2 uplampState ° deActivated 
      @act3 downlampState ° Activated 
      @act4 liftMovingDownTime ° gclock 
  end 

 

  event floorsensorOn // line 4.1 and 4.2 

    any f  

    where 

      @grd1 f « FLOOR 
      @grd2 (liftState = MovingArrivingUp   

  
®
 ((gclock − liftMovingArrivingUpTime � 2)  

  
®
 (gclock − liftMovingArrivingUpTime 	 5)) 

            
®
 f = currentFl) 

            · 
            (liftState = MovingArrivingDown  

  
®
((gclock − liftMovingArrivingDownTime � 2)  

®
 (gclock − liftMovingArrivingDownTime 	 5)) 

            
®
 f = currentFl) 

      @grd4 floorsensorState(f) = Off 

    then 

      @act1 floorsensorState(f) ° On 
      @act2 floorsensorOnTime ° gclock 
  end 

 

  event floorsensorOffUp  

  // Line 3.1; the floorsensorOff has to be spited into 2 

events: floorsensorOffUp and floorsensorOffDown. That is because 

the Simultaneity arrows:  MovingUp and MovingDown. Without the      
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SimultanetiyArrow, those floorsensorOffUp and floorsensorOffDown 

can be combined. 

    any f  

    where 

      @grd1 f « FLOOR 
      @grd2 liftState = MovingDepartingUp 

®
 ((gclock − liftMovingDepartingUpTime � 2)  

®
 (gclock − liftMovingDepartingUpTime 	 5)) 

®
 f = currentFl 

®
 dir = Up 

      @grd4 floorsensorState(f) = On 

    then 

      @act1 floorsensorState(f) ° Off 
      @act2 liftState ° MovingUp 
      @act3 floorsensorOffTime ° gclock 
  end 

 

  event floorsensorOffDown 

    any f  

    where 

      @grd1 f « FLOOR 
      @grd2 liftState = MovingDepartingDown 

®
 ((gclock − liftMovingDepartingDownTime � 2)  

®
 (gclock − liftMovingDepartingDownTime 	 5)) 

®
 f = currentFl 

®
 dir = Down 

      @grd3 floorsensorState(f) = On 

    then 

      @act1 floorsensorState(f) ° Off 
      @act2 liftState ° MovingDown 
      @act3 floorsensorOffTime ° gclock 
  end 

 

  event floorlampUnlit // line 1 

    any f  

    where 

      @grd1 f « FLOOR 
      @grd2 floorsensorState(f) = Off 
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®
 ((gclock − floorsensorOffTime � 2)  

®
 (gclock − floorsensorOffTime) 	 4) 

®
 f = currentFl 

      @grd3 floorlampState(f) = Lit 

    then 

      @act1 floorlampState(f) ° Unlit 
      @act2 floorlampUnlitTime ° gclock 
  end 

 

  event floorlampLit // line 2 

    any f  

    where 

      @grd1 f « FLOOR 
      @grd2 floorsensorState(f) = On 

®
 ((gclock − floorsensorOnTime � 2)  

®
 (gclock − floorsensorOnTime 	 4)) 

®
 f = currentFl 

      @grd3 floorlampState(f) = Unlit 

    then 

      @act1 floorlampState(f) ° Lit 
      @act2 floorlampLitTime ° gclock 
  end 

 

  event liftMovingArrivingUp 

    any f  

    where 

      @grd1 f « FLOOR 
      @grd2 f « reqFl ® f > currentFl 
      @grd4 currentFl ¶ reqFl 
      @grd3 liftState = MovingUp 

      @grd5 doorState(currentFl) = Closed // from POs 

      @grd6 floorlampState(currentFl) = Unlit  

// manually additional  guards 

    then 

      @act1 liftState ° MovingArrivingUp 
      @act2 currentFl ° currentFl + 1 
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      @act3 liftMovingArrivingUpTime ° gclock 
      @act4 doorState(currentFl+1) ° Closed // From PO 
  end 

 

  event liftMovingArrivingDown 

    any f  

    where 

      @grd1 f « FLOOR 
      @grd2 f « reqFl ® f < currentFl 
      @grd3 currentFl ¶ reqFl 
      @grd4 liftState = MovingDown 

      @grd5 doorState(currentFl) = Closed // from POs 

      @grd6 floorlampState(currentFl) = Unlit  

// manually additionalguards 

    then 

      @act1 liftState ° MovingArrivingDown 
      @act2 currentFl ° currentFl − 1 
      @act3 liftMovingArrivingDownTime ° gclock 
      @act4 doorState(currentFl − 1) ° Closed // From PO 
  end 

 

  event liftStopAtFloor // line 5 

    any f  

    where 

      @grd1 f « FLOOR 
      @grd2 floorsensorState(f) = On 

®
 ((gclock − floorsensorOnTime � 1)  

®
 (gclock  − floorsensorOnTime 	 5)) 

®
 f « reqFl ® f = currentFl 

      @grd3 liftState = MovingArrivingUp  

· liftState = MovingArrivingDown 
    then 

      @act1 liftState ° StopAtFloor 
      @act2 uplampState ° deActivated 
      @act3 downlampState ° Deactivated 
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      @act4 liftStopAtFloorTime ° gclock 
  end 

 

  event ChangeDirUp 

    any f  

    where 

      @grd1 f « FLOOR 
      @grd2 f « reqFl ® f > currentFl 
      @grd3 currentFl ¶ reqFl 
      @grd6 reqFl 
 ± 
      @grd4 liftState = StopAtFloor 

      @grd5 dir = Down 

    then 

      @act1 dir ° Up 
  end 

 

  event ChangeDirDown 

    any f  

    where 

      @grd1 f « FLOOR 
      @grd2 f « reqFl ® f < currentFl 
      @grd3 currentFl ¶ reqFl 
      @grd4 reqFl 
 ± 
      @grd5 liftState = StopAtFloor 

      @grd6 dir = Up 

    then 

      @act1 dir ° Down 
  end 

 

  event Ticktok 

    where 

 // Requestlamp Unlit 

      @grd1 liftState = StopAtFloor  

  
®
 requestlampState(currentFl) = rLit  

  
®

(((gclock − liftStopAtFloorTime)� 2) 

            
®
 ((gclock − liftStopAtFloorTime) 	 4)) 
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            ¯ 

            gclock - liftStopAtFloorTime < 4 

 

      // Floorsensor On (when lift Moving Arriving Up). 

         It has to be spited into two floorsensorOn guards. 

         Because it cannot be written as 

         => 5 + (liftMovingArrivingUpTime or  

                 LiftMovingArrivingDownTime) - gclock > 1 

      @grd2 (liftState = MovingArrivingUp      

  
®
floorsensorState (currentFl) = Off  

  
®
 ((gclock − liftMovingArrivingUpTime) � 2)  

  
®

((gclock − liftMovingArrivingUpTime) 	 5)) 

            ¯ 

            gclock -liftMovingArrivingUpTime < 5 

  

 // Floorsensor On (when lift Moving Arriving Down) 

      @grd3 ( liftState = MovingArrivingDown   

  
®

floorsensorState(currentFl) = Off  

  
®
((gclock − liftMovingArrivingDownTime) � 2)  

  
®
((gclock − liftMovingArrivingDownTime) 	 5)) 

            ¯ 

            gclock - liftMovingArrivingDownTime < 5 

  

 // Floorlamp Lit 

      @grd4 ( floorlampState(currentFl) = Unlit 

  
®
floorsensorState(currentFl) = On    

  
®
((gclock − floorsensorOnTime) � 2)  

  
®
((gclock − floorsensorOnTime) 	 4)) 

            ¯ 

            gclock - floorsensorOnTime < 4 

 

 // Lift stops at floor 

      @grd5 ( floorsensorState(currentFl) = On  

  
®
(liftState = MovingArrivingUp ·  

  liftState = MovingArrivingDown)  

  
®

currentFl « reqFl  



Appendix B. An Event-B model created from the Direct translation rules            262 

 

 

  
®
((gclock − floorsensorOnTime) � 1)  

  
®
((gclock − floorsensorOnTime) 	 5)) 

            ¯ 

            gclock - floorsensorOnTime < 5 

 

      // Floorsensor Off (when lift Moving Departing Up). 

         It has to be spited into two floorsensorOff guards. 

         Because it cannot be written as 

         => 5 + (liftMovingDepartingUpTime or  

          liftMovingDepartingDownTime) - gclock > 1 

      @grd6 (liftState = MovingDepartingUp   

  
®
floorsensorState(currentFl) = On  

  
®
((gclock − liftMovingDepartingUpTime) � 2)  

  
®
((gclock − liftMovingDepartingUpTime) 	 5)) 

            ¯ 

            gclock - liftMovingDepartingUpTime < 5  

 

 

 // Floorsensor Off (when lift Moving Departing Down) 

      @grd7 (liftState = MovingDepartingDown 

  
®
floorsensorState(currentFl) = On  

  
®
((gclock − liftMovingDepartingDownTime) � 2)  

  
®
((gclock − liftMovingDepartingDownTime) 	 5)) 

            ¯ 

            gclock - liftMovingDepartingDownTime < 5 

 

      // Lift Moving Departing Up and Down 

         The guards for liftMovingDeparingUp and  

         liftMovingDepartinDown are the same. 

      @grd8 (doorState(currentFl) = Closed  

  
®

liftState = StopAtFloor  

  
®
((gclock − doorClosedTime) � 1)  

  
®
((gclock − doorClosedTime) 	 5)) 

            ¯ 

            gclock - doorClosedTime < 5  

 



Appendix B. An Event-B model created from the Direct translation rules            263 

 

 

 // Door open 

      @grd9 (liftState = StopAtFloor        

  
®

doorState(currentFl) = Closed  

  
®

currentFl « reqFl              
  

®
((gclock − liftStopAtFloorTime) � 1)  

  
®
((gclock − liftStopAtFloorTime) 	 5)) 

            ¯ 

            gclock - liftStopAtFloorTime < 5 

 

      // Floorlamp Unlit       

      @grd10 ( floorlampState(currentFl) = Lit     

   
®
floorsensorState(currentFl) = Off    

   
®
((gclock − floorsensorOffTime) � 2)  

   
®
((gclock − floorsensorOffTime) 	 4)) 

             ¯ 

             gclock - floorsensorOffTime < 4 

    then 

      @act1 gclock ° gclock + 1 
  end 

end 



 

 

Appendix C.  ATL Translation 

rules 

module TDtoUMLB; -- Module Template 

create OUT : umlbMetamodel   from  IN : TDMetamodel; 

 

helper def : umlbproject : umlbMetamodel!UMLBProject =   

  umlbMetamodel!UMLBProject; 

helper def : umlbclass : umlbMetamodel!UMLBClass =   

  umlbMetamodel!UMLBClass; 

helper def : umlbmachine : umlbMetamodel!UMLBMachine =   

  umlbMetamodel!UMLBMachine; 

helper def : nat1Type : umlbMetamodel!UMLBTypeExpression =  

  umlbMetamodel!UMLBTypeExpression; 

helper def : prmType : umlbMetamodel!UMLBTypeExpression =  

  umlbMetamodel!UMLBTypeExpression; 

helper def : intType : umlbMetamodel!UMLBTypeExpression =  

  umlbMetamodel!UMLBTypeExpression; 

helper def : umlbcontext : umlbMetamodel!UMLBContext =   

  umlbMetamodel!UMLBContext;  --- for creating Context 

 

 

rule Project { 

 from t : TDMetamodel!TDProject 

 to   u : umlbMetamodel!UMLBProject 

   (name <- t.name,  

    constructs <- t.construct), 

      pt1 : umlbMetamodel!UMLBTypeExpression 

   (name <- 'BOOL'), 

      pt2 : umlbMetamodel!UMLBTypeExpression 

   (name <- 'NAT'), 

 

      pt3 : umlbMetamodel!UMLBTypeExpression 
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   (name <- 'NAT1'), 

      pt4 : umlbMetamodel!UMLBTypeExpression 

   (name <- 'INT') 

 do {thisModule.umlbproject <- u; 

     thisModule.boolType <- pt1; 

     thisModule.natType <- pt2; 

     thisModule.nat1Type <- pt3; 

     thisModule.intType <- pt4; 

    u.typeExpressions <- u.typeExpressions.append(pt1); 

     u.typeExpressions <- u.typeExpressions.append(pt2); 

     u.typeExpressions <- u.typeExpressions.append(pt3); 

     u.typeExpressions <- u.typeExpressions.append(pt4);} 

} 

 

 

rule Machine { 

 from t : TDMetamodel!TDMachine 

 to  ctx : umlbMetamodel!UMLBContext 

           (name <- t.name + '_ctx'), 

     m : umlbMetamodel!UMLBMachine 

           (name <- t.name, 

            classes <- t.class), 

     e : umlbMetamodel!UMLBEvent 

           (name <- 'Ticktok'), 

     a : umlbMetamodel!UMLBAction 

           (name <- 'Action1', 

            action <- 'gclock := gclock + 1'), 

     gclk : umlbMetamodel!UMLBVariable 

           (name <- 'gclock', 

            typeProvider <- thisModule.intType, 

            initialValue <- '0') 

   -- initialValue is defined in UMLBvariableElement 

  do { 

   m.events <- m.events.append(e); 

   e.actions <- e.actions.append(a); 

   m.variables <- m.variables.append(gclk); 

   thisModule.umlbmachine <- m; 

   m.contexts <- m.contexts.append(ctx); 
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   thisModule.umlbproject.constructs <-  

thisModule.umlbproject.constructs.append(ctx); 

   thisModule.umlbproject.constructs <-  

thisModule.umlbproject.constructs.append(m); } 

} 

 

 

rule Class { 

 from t : TDMetamodel!TDClass 

 to   u : umlbMetamodel!UMLBClass  

   (name <- t.name,   

   selfName <- t.name + 'Self', 

   statemachines <- t.timeline), 

     att : umlbMetamodel!UMLBAttribute 

   (name <- t.name.toLower()+ 'xStatexTime',  

   typeProvider <- thisModule.intType,  

   initialValue <- '0')   

 do { u.attributes <- u.attributes.append(att); } 

} 

 

 

rule StateMachine { 

 from t : TDMetamodel!TDTimeline  

 to   u : umlbMetamodel!UMLBStatemachine  

   (name <- t.name + '_state', 

   transitions <- t.timelinetransitions, 

   states <- t.states)  

 } 

 

 

rule State { 

 from t : TDMetamodel!TDState 

 to   u : umlbMetamodel!UMLBState  

   (name <- t.name,     

   incoming <- t.segments -> collect(c|c.incoming), 

   outgoing <- t.segments -> collect(c|c.outgoing)) 

} 
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rule Transition { 

 from t : TDMetamodel!TDTimelineTransition  

 to   u : umlbMetamodel!UMLBTransition  

   (name <- t.target.getTransitionName(), 

   target <- t.target.eContainer(), 

   source <- t.source.eContainer(), 

   guards <- t.target.constraints, 

variables <-t.eContainer().eContainer().parameter 

)  

,actgclock : umlbMetamodel!UMLBAction 

(name <- t.eContainer().name + '.gClockAction', 

   action <- t.target.eContainer().eContainer().name  

   + t.target.eContainer().name 

   + 'Time(' 

+ 

t.target.eContainer().eContainer().eContainer().name 

+'Self) := gclock')   

-- creates variables to keep the current time (gclock) for 

 each event 

do {u.actions <- u.actions.append(actgclock); } 

} 

 

 

helper context  TDMetamodel!TDSegment   

 def :  getTransitionName() : String =  

 let simuls : Set(TDMetamodel!TDSegment) =  

 TDMetamodel!TDSegment.allInstances()-> select(c|c.simul -> 

 includes(self)) 

 in 

   if simuls -> isEmpty() then 

   self.eContainer().eContainer().name   

   + self.eContainer().name 

  else 

   simuls.last().getTransitionName()   

 endif; 
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rule Parameter { 

  from t : TDMetamodel!TDParameter (not   

  umlbMetamodel!UMLBTypeExpression -> 

allInstances() -> exists(e|e.name = t.paramType)) 

  to   u : umlbMetamodel!UMLBEventVariable   

   (name <- t.param), 

   e : umlbMetamodel!UMLBTypeExpression  

   (name <- t.paramType)  

  do {thisModule.umlbproject.typeExpressions <- 

   thisModule.umlbproject.typeExpressions.append(e); 

    u.typeProvider <- e; } 

} 

 

 

rule Constraint{ 

  from t : TDMetamodel!TDConstraints 

  to   u : umlbMetamodel!UMLBPredicate  

   (name <-  'TimingCnstrntGuard', 

   predicate <-  

   t.effectsource.getNodePredicate()) } 

 

 

helper context  TDMetamodel!TDNodeType  

def : getNodePredicate() : String =  

  if self.oclIsKindOf(TDMetamodel!Simple)  

  then 

   if  not self.timing.oclIsUndefined() then 

    self.SimpleCause()  

-> concat(' & '+ self.SimpleGuard())  

-> concat(self.SimpleCond()) 

   else 

    self.SimpleCause() ->  

    concat(self.SimpleCond()) 

   endif    

  else if self.oclIsKindOf(TDMetamodel!OR_node)  

   then self.Or -> iterate(e; ret : String = '('| 

   if e=self.Or.last() then 

       ret -> concat(e.getNodePredicate()+')') 
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   else 

       ret -> concat(e.getNodePredicate()+') or (') 

   endif) 

  else if self.oclIsKindOf(TDMetamodel!AND_node) 

   then self.And -> iterate(e; ret : String ='('| 

   if e=self.And.last() then 

       ret -> concat(e.getNodePredicate()+')') 

   else 

         ret -> concat(e.getNodePredicate()+ ') & (') 

   endif) 

   else 'unrecognised nodeType' 

  endif endif endif; 

 

 

helper context  TDMetamodel!TDNodeType  

def  :  SimpleGuard() : String =  

'(gclock - xAssociationx.' 

   + self.causesource.eContainer().eContainer().name 

   + self.causesource.eContainer().name  

   + 'Time >= '  

   + self.timing.lowerlimit.toString() + ') '  

   + ' & (gclock - xAssociationx.'  

   + self.causesource.eContainer().eContainer().name  

   + self.causesource.eContainer().name  

   + 'Time <= '  

   + self.timing.upperlimit.toString() + ')'; 

 

 

helper context  TDMetamodel!TDNodeType  

def  :  SimpleCond() : String =  

         self.predicates -> iterate(e; ret : String = '' | 

     ret -> concat(' & ' +e.predicate)); 

 

 

--  Add a cause as a guard with timing constraints  

helper context  TDMetamodel!TDNodeType  

def  :  SimpleCause() : String =  

  self.causesource.eContainer().eContainer().name 
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   + '_state(xAssociationx) = ' 

  + self.causesource.eContainer().name; 

 



 

 

Appendix D. UML-B and 

Event-B models from ATL 

Translation rules  

D.1 An UML-B model for the lift system: Package diagram  

 

 

D.2 An UML-B model for the lift system: Context diagram 
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D.3 An UML-B model for the lift system: Class diagram 
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D.4 An UML-B model for the lift system: State diagram 
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D.5 An Event-B model is generated from an UML-B model 

 

An Event-B model is generated from an UML-B model with additional 

information is illustrated below. The Event-B model composes of two contexts: 

L_ctx and L_mch_implicitContext, and one machine L_mch. 
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D.5.1  Context : L_ctx 

context L_ctx 

 

constants FLOOR // classType instances 

          BOTTOM // utility constant 

          TOP // utility constant 

          s1 // enumeration constant 

          s2 // enumeration constant 

          s3 // enumeration constant 

          r1 // enumeration constant 

          r2 // enumeration constant 

          r3 // enumeration constant 

          d1 // enumeration constant 

          d2 // enumeration constant 

          d3 // enumeration constant 

          Up // enumeration constant 

          Down // enumeration constant 

          acTivated // enumeration constant 

          deActivated // enumeration constant 

          Activated // enumeration constant 

          Deactivated // enumeration constant 

          fl1 // enumeration constant 

          fl2 // enumeration constant 

          fl3 // enumeration constant 

 

 

sets FLOORSENSOR // ClassType 

     REQUESTLAMP // ClassType 

     DOOR // ClassType 

     DIR // ClassType 

     UPLAMPSTATE // ClassType 

     DOWNLAMPSTATE // ClassType 

     FLOORLAMP // ClassType 

 

 

axioms 

  @FLOORSENSOR.value FLOORSENSOR = {s1,s2,s3} 
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  @REQUESTLAMP.value REQUESTLAMP = {r1, r2, r3} 

  @DOOR.value DOOR = {d1, d2, d3} 

  @DIR.value DIR = {Up,Down} 

  @UPLAMPSTATE.value UPLAMPSTATE = {acTivated, deActivated} 

  @DOWNLAMPSTATE.value  

DOWNLAMPSTATE = {Activated, Deactivated} 

  @FLOORLAMP.value FLOORLAMP = {fl1, fl2, fl3} 

  @BOTTOM.type BOTTOM « ¸ 
  @TOP.type TOP « ¸ 
  @s1.type s1 « FLOORSENSOR 
  @s2.type s2 « FLOORSENSOR 
  @s3.type s3 « FLOORSENSOR 
  @r1.type r1 « REQUESTLAMP 
  @r2.type r2 « REQUESTLAMP 
  @r3.type r3 « REQUESTLAMP 
  @d1.type d1 « DOOR 
  @d2.type d2 « DOOR 
  @d3.type d3 « DOOR 
  @Up.type Up « DIR 
  @Down.type Down « DIR 
  @acTivated.type acTivated « UPLAMPSTATE 
  @deActivated.type deActivated « UPLAMPSTATE 
  @Activated.type Activated « DOWNLAMPSTATE 
  @Deactivated.type Deactivated « DOWNLAMPSTATE 
  @fl1.type fl1 « FLOORLAMP 
  @fl2.type fl2 « FLOORLAMP 
  @fl3.type fl3 « FLOORLAMP 
  @FLOOR.value FLOOR = (BOTTOM_TOP) 

  @Axiom1 BOTTOM = 1 

  @Axiom TOP = 3 

  @s2.distinctFrom_s1 s2 
 s1 

  @s3.distinctFrom_s1 s3 
 s1 

  @s3.distinctFrom_s2 s3 
 s2 

  @r2.distinctFrom_r1 r2 
 r1 

  @r3.distinctFrom_r1 r3 
 r1 
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  @r3.distinctFrom_r2 r3 
 r2 

  @d2.distinctFrom_d1 d2 
 d1 

  @d3.distinctFrom_d1 d3 
 d1 

  @d3.distinctFrom_d2 d3 
 d2 

  @Down.distinctFrom_Up Down 
 Up 

  @deActivated.distinctFrom_acTivated deActivated 
 acTivated 

  @Deactivated.distinctFrom_Activated Deactivated 
 Activated 

  @fl2.distinctFrom_fl1 fl2 
 fl1 

  @fl3.distinctFrom_fl1 fl3 
 fl1 

  @fl3.distinctFrom_fl2 fl3 
 fl2 

end 

D.5.2 Context : L_mch_implicitContext 

Context L_mch_implicitContext extends L_ctx  

 

constants StopAtFloor // lift_state-state 

          MovingDepartingUp // lift_state-state 

          MovingDepartingDown // lift_state-state 

          MovingUp // lift_state-state 

          MovingArrivingUp // lift_state-state 

          MovingDown // lift_state-state 

          MovingArrivingDown // lift_state-state 

          Door // class instances 

          Closed // door_state-state 

          Open // door_state-state 

          Floor // class instances 

          Floorlamp // class instances 

          Lit // floorlamp_state-state 

          Unlit // floorlamp_state-state 

          Floorsensor // class instances 

          Off // floorsensor_state-state 

          On // floorsensor_state-state 

          Requestlamp // class instances 

          rLit // requestlamp_state-state 

          rUnlit // requestlamp_state-state 
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sets lift_state_STATES // statemachine 

     door_state_STATES // Door-statemachine 

     floorlamp_state_STATES // Floorlamp-statemachine 

     floorsensor_state_STATES // Floorsensor-statemachine 

     requestlamp_state_STATES // Requestlamp-statemachine 

 

 

axioms 

  @lift_state_STATES.value lift_state_STATES =       

     

{StopAtFloor,MovingDepartingUp,MovingDepartingDown,MovingUp, 

 MovingArrivingUp,MovingDown,MovingArrivingDown} 

  @door_state_STATES.value door_state_STATES = {Closed,Open} 

  @floorlamp_state_STATES.value  

floorlamp_state_STATES = {Lit,Unlit} 

  @floorsensor_state_STATES.value  

floorsensor_state_STATES = {Off,On} 

  @requestlamp_state_STATES.value  

 requestlamp_state_STATES = {rLit,rUnlit} 

  @StopAtFloor.type StopAtFloor « lift_state_STATES 
  @MovingDepartingUp.type  

 MovingDepartingUp « lift_state_STATES 
  @MovingDepartingDown.type  

 MovingDepartingDown « lift_state_STATES 
  @MovingUp.type MovingUp « lift_state_STATES 
  @MovingArrivingUp.type MovingArrivingUp « lift_state_STATES 
  @MovingDown.type MovingDown « lift_state_STATES 
  @MovingArrivingDown.type  

  MovingArrivingDown « lift_state_STATES 
  @Door.value Door = DOOR 

  @Closed.type Closed « door_state_STATES 
  @Open.type Open « door_state_STATES 
  @Floor.value Floor = FLOOR 

  @Floorlamp.value Floorlamp = FLOORLAMP 

  @Lit.type Lit « floorlamp_state_STATES 
  @Unlit.type Unlit « floorlamp_state_STATES 
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  @Floorsensor.value Floorsensor = FLOORSENSOR 

  @Off.type Off « floorsensor_state_STATES 
  @On.type On « floorsensor_state_STATES 
  @Requestlamp.value Requestlamp = REQUESTLAMP 

  @rLit.type rLit « requestlamp_state_STATES 
  @rUnlit.type rUnlit « requestlamp_state_STATES 
  @distinctStates MovingDepartingUp,StopAtFloor :  

 MovingDepartingUp 
 StopAtFloor 

  @distinctStates MovingDepartingDown,StopAtFloor: 

 MovingDepartingDown 
 StopAtFloor 

  @distinctStates MovingDepartingDown,MovingDepartingUp: 

  MovingDepartingDown 
 MovingDepartingUp 

  @distinctStates MovingUp,StopAtFloor: MovingUp 
 StopAtFloor 

  @distinctStates MovingUp,MovingDepartingUp: 

 MovingUp 
 MovingDepartingUp 

  @distinctStates MovingUp,MovingDepartingDown: 

 MovingUp 
 MovingDepartingDown 

  @distinctStates MovingArrivingUp,StopAtFloor: 

 MovingArrivingUp 
 StopAtFloor 

  @distinctStates MovingArrivingUp,MovingDepartingUp: 

 MovingArrivingUp 
 MovingDepartingUp 

  @distinctStates MovingArrivingUp,MovingDepartingDown: 

 MovingArrivingUp 
 MovingDepartingDown 

  @distinctStates MovingArrivingUp,MovingUp: 

 MovingArrivingUp 
 MovingUp 

  @distinctStates MovingDown,StopAtFloor: 

 MovingDown 
 StopAtFloor 

  @distinctStates MovingDown,MovingDepartingUp: 

 MovingDown 
 MovingDepartingUp 

  @distinctStates MovingDown,MovingDepartingDown: 

 MovingDown 
 MovingDepartingDown 

  @distinctStates MovingDown,MovingUp: 

 MovingDown 
 MovingUp 

  @distinctStates MovingDown,MovingArrivingUp: 

 MovingDown 
 MovingArrivingUp 

  @distinctStates MovingArrivingDown,StopAtFloor: 

 MovingArrivingDown 
 StopAtFloor 
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  @distinctStates MovingArrivingDown,MovingDepartingUp: 

MovingArrivingDown 
 MovingDepartingUp 

  @distinctStates MovingArrivingDown,MovingDepartingDown: 

  MovingArrivingDown 
 MovingDepartingDown 

  @distinctStates MovingArrivingDown,MovingUp: 

 MovingArrivingDown 
 MovingUp 

  @distinctStates MovingArrivingDown,MovingArrivingUp: 

  MovingArrivingDown 
 MovingArrivingUp 

  @distinctStates MovingArrivingDown,MovingDown: 

 MovingArrivingDown 
 MovingDown 

  @distinctStates Open,Closed: Open 
 Closed 

  @distinctStates Unlit,Lit: Unlit 
 Lit 

  @distinctStates On,Off: On 
 Off 

  @distinctStates rUnlit,rLit: rUnlit 
 rLit 

end 

 

D.5.3 Machine : L_mch 

 

machine L_mch sees L_mch_implicitContext  

 

variables reqFl // utility variable 

          dir // utility variable 

          currentFl // utility variable 

          uplampState // utility variable 

          downlampState // utility variable 

          liftStopAtFloorTime // utility variable 

          liftMovingUpTime // utility variable 

          liftMovingDownTime // utility variable 

          liftMovingDepartingUpTime // utility variable 

          liftMovingDepartingDownTime // utility variable 

          liftMovingArrivingUpTime // utility variable 

          liftMovingArrivingDownTime // utility variable 

          gclock // utility variable 

          lift_state // statemachine belonging to the machine 

          doorClosedTime // attribute of Door 
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          doorOpenTime // attribute of Door 

          door_state // statemachine belonging to class, Door 

          doorAtfloor // attribute of Floor 

          floorlampAtfloor // attribute of Floor 

          floorsensorAtfloor // attribute of Floor 

          requestlampAtfloor // attribute of Floor 

          floorlamp_state // statemachine belonging to class, 

 Floorlamp 

          floorsensorOffTime // attribute of Floorsensor 

          floorsensorOnTime // attribute of Floorsensor 

          floorsensor_state  

        // statemachine belonging to class, Floorsensor 

          requestlamp_state  

   // statemachine belonging to class, Requestlamp 

          requestlamprUnlitTime  

          requestlamprLitTime  

          floorlampUnlitTime 

          floorlampLitTime 

 

 

invariants 

  @reqFl.type reqFl « ¹(FLOOR) 
  @dir.type dir « DIR 
  @currentFl.type currentFl « FLOOR 
  @uplampState.type uplampState « UPLAMPSTATE 
  @downlampState.type downlampState « DOWNLAMPSTATE 
  @liftStopAtFloorTime.type liftStopAtFloorTime « ¸
  @liftMovingUpTime.type liftMovingUpTime « ¸ 
  @liftMovingDownTime.type liftMovingDownTime « ¸ 
  @liftMovingDepartingUpTime.type  

liftMovingDepartingUpTime « ¸ 
  @liftMovingDepartingDownTime.type  

liftMovingDepartingDownTime « ¸ 
  @liftMovingArrivingUpTime.type liftMovingArrivingUpTime « ¸ 
  @liftMovingArrivingDownTime.type  

liftMovingArrivingDownTime « ¸ 
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  @gclock.type gclock « ¸ 
  @lift_state.type lift_state « lift_state_STATES 
  @doorClosedTime.type doorClosedTime « Door � ¸ 
  @doorOpenTime.type doorOpenTime « Door � ¸ 
  @door_state.type door_state « Door � door_state_STATES 
  @doorAtfloor.type doorAtfloor « Floor 6 Door 

  @floorlampAtfloor.type  

floorlampAtfloor « Floor 6 Floorlamp 

  @floorsensorAtfloor.type  

floorsensorAtfloor « Floor 6 Floorsensor 

  @requestlampAtfloor.type  

requestlampAtfloor « Floor 6 Requestlamp 

  @floorlamp_state.type  

  floorlamp_state « Floorlamp � floorlamp_state_STATES 
  @floorsensorOffTime.type  

floorsensorOffTime « Floorsensor � ¸ 
  @floorsensorOnTime.type floorsensorOnTime « Floorsensor � ¸ 
  @requestlamprUnlitTime.type requestlamprUnlitTime «  

Requestlamp � ¸ 
  @requestlamprLitTime.type requestlamprLitTime «  

Requestlamp � ¸ 
  @floorsensor_state.type floorsensor_state  

« Floorsensor � floorsensor_state_STATES 
  @requestlamp_state.type requestlamp_state  

« Requestlamp � requestlamp_state_STATES 
@Invariant2 (lift_state = StopAtFloor) ¯

(floorsensor_state(floorsensorAtfloor(currentFl)) = On)

  @Invariant3 door_state(doorAtfloor(currentFl)) = Open   

  
®
 currentFl« reqFl    

  
®

doorAtfloor(currentFl)«
dom(door_state) ¯ (lift_state = StopAtFloor) 

  @Invariant1 º»
·((d«Door)¯(lift_state 
 StopAtFloor ¯  

               door_state(d) = Closed)) 

  @inv1 floorlampUnlitTime « Floorlamp � ¸
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  @inv5 floorlampLitTime « Floorlamp � ¸ 
  @Invariant4 ¬(uplampState = acTivated 

®
  

                downlampState = Activated) 

 

 

events 

  event INITIALISATION 

    then 

      @reqFl.init reqFl :« ¹(FLOOR) 
      @dir.init dir :« DIR 
      @currentFl.init currentFl ° BOTTOM 
      @uplampState.init uplampState ° deActivated 
      @downlampState.init downlampState ° Deactivated 
      @liftStopAtFloorTime.init liftStopAtFloorTime ° 0 
      @liftMovingDepartingUpTime.init 

liftMovingDepartingUpTime ° 0 
      @liftMovingDepartingDownTime.init  

liftMovingDepartingDownTime ° 0 
      @liftMovingArrivingUpTime.init  

liftMovingArrivingUpTime ° 0 
      @liftMovingArrivingDownTime.init  

liftMovingArrivingDownTime ° 0 
      @gclock.init gclock ° 0 
      @lift_state.init lift_state ° StopAtFloor 
      @doorClosedTime.init doorClosedTime ° Door × {0} 
      @doorOpenTime.init doorOpenTime ° Door × {0} 
      @door_state.init door_state ° Door × {Closed} 
      @doorAtfloor.init doorAtfloor ° {1 ² d1, 2 ² d2, 3 ² d3} 

// doorAtfloor :« Floor 6 Door 

      @floorlampAtfloor.init floorlampAtfloor °
{1 ² fl1, 2 ² fl2, 3 ² fl3} 

// floorlampAtfloor :« Floor 6 Floorlamp 

      @floorsensorAtfloor.init floorsensorAtfloor °
{1 ² s1, 2 ² s2, 3 ² s3} 
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// floorsensorAtfloor :« Floor 6 Floorsensor 

      @requestlampAtfloor.init requestlampAtfloor °  
     {1 ² r1, 2 ² r2, 3 ² r3}  
  // requestlampAtfloor :¼ Floor 6 Requestlamp 

      @floorlamp_state.init floorlamp_state °  
{fl1 ² Lit, fl2 ² Unlit, fl3 ² Unlit}  

  // floorlamp_state :¼  
Floorlamp � floorlamp_state_STATES 

      @floorsensorOffTime.init floorsensorOffTime °  
Floorsensor × {0} 

      @floorsensorOnTime.init floorsensorOnTime °  
Floorsensor × {0} 

      @floorsensor_state.init floorsensor_state °  
        {s1 ² On, s2 ² Off, s3 ² Off}  
 // floorsensor_state :¼  

Floorsensor � floorsensor_state_STATES 

      @requestlamp_state.init requestlamp_state °  
        {r1 ² rUnlit, r2 ² rUnlit, r3 ² rUnlit}  
 // requestlamp_state ³ Requestlamp × {rUnlit} 
      @act1 requestlamprUnlitTime ° Requestlamp × {0} 
      @act2 requestlamprLitTime ° Requestlamp × {0} 
      @act3 floorlampUnlitTime ° Floorlamp × {0} 
  end 

 

 

  event UserRequestlamprLit 

    any RequestlampSelf // contextual instance of  

class Requestlamp 

        f  

    where 

      @f.type f « FLOOR 
      @RequestSelf.type RequestlampSelf « Requestlamp 
      @grd1 requestlamp_state(RequestlampSelf) = rUnlit 

    then 

      @requestlamprLit.Action1 reqFl ° reqFl  ́{f} 
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@requestlamp_state_enterState_rLit 

requestlamp_state(requestlampAtfloor(f)) ° rLit 
  end 

 

 

  event SetRequestlamprUnlit 

    any RequestlampSelf // contextual instance of  

class Requestlamp 

        f  

    where 

      @f.type f « FLOOR 
      @grd1 f = currentFl 

      @RequestSelf.type RequestlampSelf « Requestlamp 
      @requestlamprUnlit.Guard1 lift_state = StopAtFloor 

      @requestlamprUnlit.TimingCnstrntGuard  

  (gclock − liftStopAtFloorTime � 2) 
®
  

  (gclock − liftStopAtFloorTime 	 4) 

      @grd2  requestlampAtfloor(f) = RequestlampSelf 

      @requestlamp_state_isin_rLit   

   requestlamp_state(RequestlampSelf) = rLit 

    then 

@requestlamprUnlit.Action2  

requestlamprUnlitTime(RequestlampSelf) ° gclock 
      @requestlamp_state_enterState_rUnlit      

  requestlamp_state(requestlampAtfloor(currentFl)) ° rUnlit 
  end 

 

 

event doorOpen 

    any DoorSelf // contextual instance of class Door 

        f  

    where 

      @f.type f « FLOOR 
      @DoorSelf.type DoorSelf « Door 
      @doorOpen.TimingCnstrntGuard lift_state = StopAtFloor  

    
®
 currentFl « reqFl  

®
(gclock − liftStopAtFloorTime � 1 ) 
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®
(gclock − liftStopAtFloorTime 	 5 ) 

      @doorOpen.Guard4 doorAtfloor(f) = DoorSelf 

      @doorOpen.Guard3 f « reqFl ® f = currentFl 
      @door_state_isin_Closed door_state(DoorSelf) = Closed 

    then 

@doorOpen.Action2 doorOpenTime(DoorSelf) ° gclock 
      @door_state_enterState_Open door_state(DoorSelf) ° Open 
  end 

 

event doorClosed 

    any DoorSelf // contextual instance of class Door 

    where 

      @DoorSelf.type DoorSelf « Door 
      @door_state_isin_Open door_state(DoorSelf) = Open 

      @grd1 lift_state = StopAtFloor 

    then 

      @doorClosed.Action2 doorClosedTime(DoorSelf) ° gclock 
      @door_state_enterState_Closed  

door_state(DoorSelf) ° Closed 
      @doorClosed.Action1 reqFl ° reqFl µ {currentFl} 
  end 

 

 

event liftMovingDepartingUp 

    any f  

    where 

      @f.type f « FLOOR 
      @lift_state_isin_StopAtFloor lift_state = StopAtFloor 

      @liftMovingDepartingUp.Guard5     

  requestlamp_state(requestlampAtfloor(f)) = rLit  

  
®
 f > currentFl 

      @liftMovingDepartingUp.Guard2 currentFl ¶ reqFl 
      @liftMovingDepartingUp.Guard1 f « reqFl 
      @grd1 ;d·d�Door & door_state(d) = Closed 

      @liftMovingDepartingUp.TimingCnstrntGuard     

  door_state(doorAtfloor(currentFl)) = Closed  
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®
 (gclock −doorClosedTime((doorAtfloor(currentFl))) � 1)  

 
®
 (gclock −doorClosedTime((doorAtfloor(currentFl))) 	 5) 

      @liftMovingDepartingUp.Guard3 dir = Up 

    then 

      @lift_state_enterState_StopAtFloor  

lift_state ° MovingDepartingUp 

      @liftMovingDepartingUp.Action3  

liftMovingDepartingUpTime ° gclock 
      @liftMovingDepartingUp.Action2  

downlampState ° Deactivated 
      @liftMovingDepartingUp.Action1 uplampState ° acTivated 
  end 

 

 

event liftMovingArgToDptgUp 

    any f  

    where 

      @f.type f « FLOOR 
      @liftMovingArgToDptgUp.Guard1 f « FLOOR 
      @liftMovingArgToDptgUp.Guard2 f « reqFl ® f > currentFl 
      @liftMovingArgToDptgUp.Guard3 currentFl ¶ reqFl 
      @lift_state_isin_MovingArrivingUp  

lift_state = MovingArrivingUp 

      @liftMovingArgToDptgUp.Guard4 dir = Up 

    then 

      @lift_state_enterState_MovingArrivingUp  

  lift_state ° MovingDepartingUp 
      @liftMovingArgToDptgUp.Action1  

liftMovingDepartingUpTime ° gclock 
      @act1 downlampState ° Deactivated 
      @act2 uplampState ° acTivated 
  end 

 

 

event liftMovingUp 

    any f  
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    where 

      @f.type f « FLOOR 
      @liftMovingUp.Guard1 f « reqFl ® f > currentFl 
      @liftMovingUp.Guard2 currentFl ¶ reqFl 
      @lift_state_isin_MovingDepartingUp  

lift_state = MovingDepartingUp 

      @liftMovingUp.Guard3  

  floorsensor_state(floorsensorAtfloor(currentFl)) = Off 

      @liftMovingUp.Guard4 dir = Up 

   then 

@liftMovingUp.Action1 liftMovingUpTime ° gclock 
      @lift_state_enterState_MovingDepartingUp  

lift_state ° MovingUp 
  end 

 

 

event liftMovingDepartingDown 

    any f  

    where 

      @f.type f « FLOOR 
      @liftMovingDepartingDown.Guard1 f « reqFl 
      @liftMovingDepartingDown.Guard2 currentFl ¶ reqFl 
      @liftMovingDepartingDown.Guard3 dir = Down 

      @grd1 ;d·d�Door & door_state(d) = Closed 

      @liftMovingDepartingDown.Guard4     

   requestlamp_state(requestlampAtfloor(f)) = rLit  

   
®

f < currentFl 

      @liftMovingDepartingDown.TimingCnstrntGuard 

door_state(doorAtfloor(currentFl)) = Closed  

 
®
(gclock −doorClosedTime((doorAtfloor(currentFl))) � 1)  

 
®
(gclock −doorClosedTime((doorAtfloor(currentFl))) 	 5) 

      @lift_state_isin_StopAtFloor lift_state = StopAtFloor 

    then 

      @liftMovingDepartingDown.Action1  

uplampState ° deActivated 
      @lift_state_enterState_StopAtFloor  
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  lift_state ° MovingDepartingDown 
      @liftMovingDepartingDown.Action2  

downlampState ° Activated 
      @liftMovingDepartingDown.Action3 

liftMovingDepartingDownTime ° gclock 
  end 

 

 

event liftMovingArgToDptgDown 

    any f  

    where 

      @f.type f « FLOOR 
      @liftMovingArgToDptgDown.Guard1 f « FLOOR 
      @liftMovingArgToDptgDown.Guard3 currentFl ¶ reqFl 
      @liftMovingArgToDptgDown.Guard2 f « reqFl ®  

 f < currentFl 

      @liftMovingArgToDptgDown.Guard4 dir = Down 

      @lift_state_isin_MovingArrivingDown  

  lift_state = MovingArrivingDown 

    then 

      @lift_state_enterState_MovingArrivingDown  

  lift_state ° MovingDepartingDown 
      @liftMovingArgToDptgDown.Action1  

  liftMovingDepartingDownTime ° gclock 
      @act1 downlampState ° Activated 
      @act2 uplampState ° deActivated 
  end 

 

 

event liftMovingDown 

    any f  

    where 

      @f.type f « FLOOR 
      @liftMovingDown.Guard1 f « reqFl ® f > currentFl 
      @liftMovingDown.Guard2 currentFl ¶ reqFl 
      @lift_state_isin_MovingDepartingDown  
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  lift_state = MovingDepartingDown 

      @liftMovingDown.Guard3      

  floorsensor_state(floorsensorAtfloor(currentFl)) = Off 

      @liftMovingDown.Guard4 dir = Down 

  then 

@liftMovingDown.Action1 liftMovingDownTime ° gclock 
      @lift_state_enterState_MovingDepartingDown  

lift_state ° MovingDown 
  end 

 

 

event floorsensorOn 

    any FloorsensorSelf // contextual instance of  

class Floorsensor 

        f  

    where 

      @grd1 f « FLOOR 
      @FloorsensorSelf.type FloorsensorSelf « Floorsensor 
      @floorsensor_state_isin_Off  

  floorsensor_state(FloorsensorSelf) = Off 

      @floorsensorOn.Guard1  

  floorsensorAtfloor½(FloorsensorSelf) = currentFl 
      @floorsensorOn.TimingCnstrntGuard  

       (lift_state = MovingArrivingUp  

®
dir = Up 

®
 f = currentFl  

  
®
(gclock − liftMovingArrivingUpTime � 2) 

  
®
(gclock − liftMovingArrivingUpTime 	 5)) 

  · 
   (lift_state = MovingArrivingDown  

  
®
dir = Down 

®
 f = currentFl  

  
®
(gclock − liftMovingArrivingDownTime � 2) 

  
®
(gclock − liftMovingArrivingDownTime 	 5)) 

    then 

      @floorsensorOn.Action1  

floorsensorOnTime(FloorsensorSelf) ° gclock 
      @floorsensor_state_enterState_On 
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  floorsensor_state(FloorsensorSelf) ° On 
  end 

 

 

event floorsensorOffUp 

    any FloorsensorSelf // contextual instance of class 

 Floorsensor 

        f  

    where 

      @l.type f « FLOOR 
      @FloorsensorSelf.type FloorsensorSelf « Floorsensor 
      @floorsensor_state_isin_On  

           floorsensor_state(FloorsensorSelf) = On 

      @floorsensorOffUp.TimingCnstrntGuard  

       lift_state = MovingDepartingUp  

  
®
(gclock − liftMovingDepartingUpTime � 2) 

  
®
(gclock − liftMovingDepartingUpTime 	 5) 

  
®

f = currentFl 
®
 dir = Up 

    then 

      @floorsensorOffUp.Action1  

  floorsensorOffTime(FloorsensorSelf) °  gclock 
      @floorsensor_state_enterState_Off 

  floorsensor_state(FloorsensorSelf) ° Off 
      @floorsensorOffUp.Action2  

lift_state ° MovingUp 
  end 

 

 

event floorsensorOffDown 

    any FloorsensorSelf // contextual instance of  

class Floorsensor 

        f  

    where 

      @l.type f « FLOOR 
      @FloorsensorSelf.type FloorsensorSelf « Floorsensor 
      @floorsensor_state_isin_On  
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            floorsensor_state(FloorsensorSelf) = On 

      @floorsensorOffDown.TimingCnstrntGuard  

  lift_state = MovingDepartingDown 

  
®
(gclock − liftMovingDepartingDownTime � 2) 

  
®
(gclock − liftMovingDepartingDownTime 	 5) 

  
®

f = currentFl 
®
 dir = Down 

    then 

      @floorsensor_state_enterState_Off 

  floorsensor_state(FloorsensorSelf) ° Off 
      @floorsensorOffDown.Action2 lift_state ° MovingDown 
      @floorsensorOffDown.Action1  

floorsensorOffTime(FloorsensorSelf) ° gclock 
  end 

 

 

event floorlampUnlit 

    any FloorlampSelf // contextual instance of  

class Floorlamp 

        f  

    where 

      @f.type f « FLOOR 
      @FloorlampSelf.type FloorlampSelf « Floorlamp 
      @floorlamp_state_isin_Lit      

        floorlamp_state(floorlampAtfloor(currentFl)) = Lit  

             // floorlamp_state(FloorlampSelf) = Lit 

      @floorlampUnlit.Guard3  

        floorsensor_state(floorsensorAtfloor(currentFl)) = Off 

      @floorlampUnlit.TimingCnstrntGuard f = currentFl 
®

(gclock − floorsensorOffTime((floorsensorAtfloor(currentFl))) � 2)  

®
  

(gclock − floorsensorOffTime((floorsensorAtfloor(currentFl))) 	 4) 

      @floorlampUnlit.Guard1  

floorlampAtfloor½(FloorlampSelf) =  currentFl 
    then 

@floorlampUnlit.Action2 

 floorlampUnlitTime(FloorlampSelf) ° gclock 
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      @floorlamp_state_enterState_Unlit                      

       floorlamp_state(floorlampAtfloor(currentFl)) ° Unlit 
  end 

 

 

event floorlampLit 

    any FloorlampSelf // contextual instance of  

class Floorlamp 

        f  

    where 

      @f.type f « FLOOR 
      @FloorlampSelf.type FloorlampSelf « Floorlamp 
      @floorlampLit.Guard1  

floorlampAtfloor½(FloorlampSelf) = currentFl 
      @floorlampLit.TimingCnstrntGuard f = currentFl 

®
 

(gclock − floorsensorOnTime((floorsensorAtfloor(currentFl))) � 2) 

®
 

(gclock − floorsensorOnTime((floorsensorAtfloor(currentFl))) 	 4) 

      @floorlampLit.Guard2  

         floorsensor_state(floorsensorAtfloor(currentFl)) = On 

      @floorlamp_state_isin_Unlit  

         floorlamp_state(FloorlampSelf) = Unlit 

    then 

@floorlampLit.Action2 

floorlampLitTime(FloorlampSelf) ° gclock 

      @floorlamp_state_enterState_Lit 

         floorlamp_state(FloorlampSelf) ° Lit 
  end 

 

 

event liftMovingArrivingUp 

    any f  

    where 

      @f.type f « FLOOR 
      @liftMovingArrivingUp.Guard4 dir = Up 

      @liftMovingArrivingUp.Guard3 currentFl ¶ reqFl 



Appendix D. UML-B and Event-B models from ATL Translation rules                294 

 

 

      @liftMovingArrivingUp.Guard2 f « reqFl ® f > currentFl 
      @liftMovingArrivingUp.Guard1 f « FLOOR 
      @lift_state_isin_MovingUp lift_state = MovingUp 

      @grd1  

floorlamp_state(floorlampAtfloor(currentFl)) = Unlit  

            // manually additional guards 

    then 

      @lift_state_enterState_MovingUp  

lift_state ° MovingArrivingUp 
      @liftMovingArrivingUp.Action2  

liftMovingArrivingUpTime ° gclock 
      @liftMovingArrivingUp.Action1 currentFl ° currentFl + 1 
  end 

 

 

event liftMovingArringDown 

    any f  

    where 

      @f.type f « FLOOR 
      @lift_state_isin_MovingDown lift_state = MovingDown 

      @liftMovingArringDown.Guard4 dir = Down 

      @liftMovingArringDown.Guard3 currentFl ¶ reqFl 
      @liftMovingArringDown.Guard1 f « FLOOR 
      @liftMovingArringDown.Guard2 f « reqFl ® f < currentFl 
      @grd2  

floorlamp_state(floorlampAtfloor(currentFl)) = Unlit  

            // manually added 

    then 

      @liftMovingArringDown.Action1 currentFl ° currentFl − 1 
      @liftMovingArringDown.Action2  

liftMovingArrivingDownTime ° gclock 
      @lift_state_enterState_MovingDown  

lift_state ° MovingArrivingDown 
  end 
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event liftStopAtFloorUp 

    any f  

    where 

      @f.type f « FLOOR 
      @liftStopAtFloorUp.Guard1 f « reqFl 
      @liftStopAtFloorUp.TimingCnstrntGuard  

(gclock −floorsensorOnTime((floorsensorAtfloor(currentFl))) � 2) 

®
  

(gclock −floorsensorOnTime((floorsensorAtfloor(currentFl))) 	 5) 

      @liftStopAtFloorUp.Guard3 

floorsensor_state(floorsensorAtfloor(currentFl))= On 
®
  

f = currentFl 
®
 f « reqFl 

      @lift_state_isin_MovingArrivingUp  

    lift_state = MovingArrivingUp 

      @liftStopAtFloorUp.Guard2 f = currentFl 

    then 

      @lift_state_enterState_MovingArrivingUp  

lift_state ° StopAtFloor 
      @liftStopAtFloorUp.Action3 downlampState ° Deactivated 
      @liftStopAtFloorUp.Action1 liftStopAtFloorTime ° gclock 
      @liftStopAtFloorUp.Action2 uplampState ° deActivated 
  end 

 

 

event liftStopAtFloorDown 

    any f  

    where 

      @f.type f « FLOOR 
      @liftStopAtFloorDown.Guard2 f = currentFl 

      @liftStopAtFloorDown.Guard1 f « reqFl 
      @liftStopAtFloorDown.TimingCnstrntGuard (gclock−  

floorsensorOnTime((floorsensorAtfloor(currentFl)))� 2) 
®

(gclock − floorsensorOnTime((floorsensorAtfloor(currentFl))) 	 5) 

@liftStopAtFloorDown.Guard3        

floorsensor_state(floorsensorAtfloor(currentFl)) = On 
®
  

       f = currentFl 
®
 f « reqFl 
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      @lift_state_isin_MovingArrivingDown  

       lift_state = MovingArrivingDown 

    then 

      @liftStopAtFloorDown.Action1  

liftStopAtFloorTime ° gclock 
      @lift_state_enterState_MovingArrivingDown  

lift_state ° StopAtFloor 
      @liftStopAtFloorDown.Action2 uplampState ° deActivated 
      @liftStopAtFloorDown.Action3 downlampState ° Deactivated 
  end 

 

 

event ChangDirUp 

    any f  

    where 

      @f.type f « FLOOR 
      @ChangDirUp.Guard1 f « reqFl ® f > currentFl 
      @ChangDirUp.Guard5 dir = Down 

      @ChangDirUp.Guard4 lift_state = StopAtFloor 

      @ChangDirUp.Guard3 reqFl 
 ± 
      @ChangDirUp.Guard2 currentFl ¶ reqFl 
    then 

      @ChangDirUp.Action1 dir ° Up 
  end 

 

 

event ChangDirDown 

    any f  

    where 

      @f.type f « FLOOR 
      @ChangDirDown.Guard5 dir = Up 

      @ChangDirDown.Guard3 reqFl 
 ± 
      @ChangDirDown.Guard4 lift_state = StopAtFloor 

      @ChangDirDown.Guard1 f « reqFl ® f < currentFl 
      @ChangDirDown.Guard2 currentFl ¶ reqFl 
    then 



Appendix D. UML-B and Event-B models from ATL Translation rules                297 

 

 

      @ChangDirDown.Action1 dir ° Down 
  end 

 

 

event Ticktok 

    where 

      @Ticktok.Guard1 // Requestlamp Unlit 

      lift_state = StopAtFloor   

 
®
 requestlamp_state(requestlampAtfloor(currentFl)) = rLit  

 
®
 (((gclock − liftStopAtFloorTime) � 2)  

 
®
 ((gclock − liftStopAtFloorTime) 	 4)) 

      ¯ 

      gclock - liftStopAtFloorTime < 4           

 

     @Ticktok.Guard10  // Floorlamp Unlit 

     (floorlamp_state(floorlampAtfloor(currentFl)) = Lit   

®
 floorsensor_state(floorsensorAtfloor(currentFl)) = Off  

®
  

(gclock − floorsensorOffTime(floorsensorAtfloor(currentFl))� 2)  

®
  

(gclock − floorsensorOffTime(floorsensorAtfloor(currentFl))	 4)) 

¯ 

gclock - floorsensorOffTime(floorsensorAtfloor(currentFl)) <  

 

      @Ticktok.Guard9 // Door open 

      (lift_state = StopAtFloor  

 
®

door_state(doorAtfloor(currentFl)) = Closed  

 
®
 currentFl « reqFl  

 
®
(gclock − liftStopAtFloorTime � 1)  

 
®
(gclock − liftStopAtFloorTime 	 5)) 

      ¯ 

      gclock - liftStopAtFloorTime < 5 

                       

      @Ticktok.Guard8 // Lift Moving Departing Up and Down 

      (door_state(doorAtfloor(currentFl)) = Closed  

  
®
 lift_state = StopAtFloor  
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®
(gclock − doorClosedTime(doorAtfloor(currentFl)) � 1)  

  
®
(gclock − doorClosedTime(doorAtfloor(currentFl)) 	 5)) 

       ¯ 

       gclock - doorClosedTime(doorAtfloor(currentFl)) < 5    

 

      @Ticktok.Guard7 // Floorsensor Off (when lift  

Moving Departing Down) 

      (lift_state = MovingDepartingDown  

  
®
 floorsensor_state(floorsensorAtfloor(currentFl)) = On  

  
®
 ((gclock − liftMovingDepartingDownTime) � 2)  

  
®
 ((gclock − liftMovingDepartingDownTime) 	 5)) 

        ¯ 

       gclock - liftMovingDepartingDownTime < 5  

 

      @Ticktok.Guard6 // Floor sensor Off (when lift  

Moving Departing Up) 

      (lift_state = MovingDepartingUp 
®
 

       floorsensor_state(floorsensorAtfloor(currentFl)) = On  

®
 ((gclock − liftMovingDepartingUpTime) � 2)  

®
((gclock − liftMovingDepartingUpTime) 	 5)) 

       ¯ 

       gclock - liftMovingDepartingUpTime < 5 

 

      @Ticktok.Guard5 // Lift Stop At Floor 

      (floorsensor_state(floorsensorAtfloor(currentFl)) = On 

  
®

      (lift_state = MovingArrivingUp ·
lift_state = MovingArrivingDown) 

 
®

(currentFl « reqFl)®
(gclock − floorsensorOnTime(floorsensorAtfloor(currentFl)) � 1)  

®
(gclock − floorsensorOnTime(floorsensorAtfloor(currentFl)) 	 5)) 

¯ 

gclock - floorsensorOnTime(floorsensorAtfloor(currentFl)) < 5  

 

      @Ticktok.Guard4 // Floorlamp Lit 



Appendix D. UML-B and Event-B models from ATL Translation rules                299 

 

 

     (floorlamp_state(floorlampAtfloor(currentFl)) = Unlit  

®
floorsensor_state(floorsensorAtfloor(currentFl)) = On  

®
(gclock − floorsensorOnTime(floorsensorAtfloor(currentFl)) � 2)  

®
(gclock − floorsensorOnTime(floorsensorAtfloor(currentFl)) 	 4)) 

¯ 

gclock - floorsensorOnTime(floorsensorAtfloor(currentFl)) < 4  

       

 @Ticktok.Guard3 // Floorsensor On (when lift Moving Arriving  

                         Down) 

     (lift_state = MovingArrivingDown   

®
floorsensor_state(floorsensorAtfloor(currentFl)) = Off  

®
((gclock − liftMovingArrivingDownTime) � 2) 

®
 ((gclock − liftMovingArrivingDownTime) 	 5)) 

      ¯ 

      gclock - liftMovingArrivingDownTime < 5 

       

 

 @Ticktok.Guard2 // Floorsensor On (when lift Moving  

Arriving Up) 

 (lift_state = MovingArrivingUp  

®
floorsensor_state(floorsensorAtfloor(currentFl)) = Off  

®
((gclock − liftMovingArrivingUpTime) � 2)  

®
((gclock − liftMovingArrivingUpTime) 	 5)) 

       ¯ 

       gclock - liftMovingArrivingUpTime < 5  

    then 

      @Ticktok.Action1 gclock ° gclock + 1 
  end 

end 

 



 

 

Appendix E.  KAOS Textual 

Translation rules 

E.1 Translation rules for creating a KAOS goal from segments defined 

with CauseEffectArrow 

 

1.   Rule : � �	
	���	
��	��� 

�

��	
	���	
��	���(%�&����) →  

<LET> exp = ���	��(�'�((�'�(�
(%�&����))) 

<IF>�%	��	
	�(exp) 

<THEN>  

“ ∀ ”   + 

�#
�
�����	
	����
(�����	
	�(exp)) 

<ELSE><SKIP> 

<ENDIF> 

 

��#
�
�����	
	����
(9��/ : �����%�:(���) →  

     9��/� +  “:” + ��	
	��!"�(9��/) + “,” + 

     �#
�
�����	
	����
(�����%�:(���) 

�

��#
�
�����	
	����
(9��/ : ;�<) →   9��/� +  “:” + ��	
	��!"�(9��/) 
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2.   Rule : � �
��

�
 

 

� �
��

�
(%�&����) →  �

{ “( ” +���� ��
�
��
���(������!"�(�����

�
(%�&����)))  + “)” }��

 

 

3.   Rule : � ��
�
��
��� 

 

� ��
�
��
���(��/�()*�) →  

<IF> NodeType  =  %��*���

<THEN> ����"���	������
��(�������
(%��*��)) 

                + ����"������(�����(%��*��)) 

<ELSE><IF> ��/�()*�  =   0"��/��

             <THEN><LET> Nodes  =  �������
	����( 0"��/�) 

             <IN>Nodes →  <ITERATE>(n; ret : String = “(” | 

                           <IF> n =��	�
(Nodes) 

                          <THEN> ret = ret  + � ��
�
��
���(n) + “)” 

                          <ELSE>  ret = ret  + � ��
�
��
���(n) + “) ∨  (” 

                          <ENDIF> ) 

            <ENDIF> 

<ELSE><IF> ��/�()*�  =  -�#"��/��

��������������<THEN><LET> Nodes  =  �������
	����(-�#"��/�) 

              <IN> Nodes →  <ITERATE>(n; ret : String = “(” | 

                          <IF> n =��	�
(Nodes) 

                          <THEN> ret = ret  + � ��
�
��
���(n) + “)” 

                        <ELSE>  ret = ret  + � ��
�
��
���(n) + “) ∧  (” 

                        <ENDIF> ) 

             <ENDIF> 

<ENDIF> 
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4.  Rule : � �����

�
�

�

� �����

�
(%�&����) →   

             { � ��
�������
���(%�&����, � ������(�����

�
(%�&����)) ) } 

 

 

5.   Rule : � ��
�������
��� 

 

� ��
�������
��� (%�&����, (����&) →  

  <IF>  !� ��"
!((����&) 

  <THEN> “�”  + (����&� 

  <ELSE> <SKIP> 

  <ENDIF> 

  <LET> exp = ���	��(�'�((�'�(�
(%�&�������  

  <IN> 

  <IF> �%	��	
	�(exp�  

  <THEN> 

   �'�((�'�(�
(%�&������  

   + “State( ” 

   + �#
�
��	
	���
(�����	
	�(exp�� 

   +  “) = ” 

   + “ ‘ ” + �'�(�
(%�&����� + “ ’ ” 

  <ELSE> 

�� � �'�((�'�(�
(%�&������ 

   +  “State = ”  

   + “ ‘ ” + �'�(�
(%�&����) + “ ’ ” 

  <ENDIF> 
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E.2 Translation rules for creating a KAOS goal from 

SimultaneityArrow 

 

6.  Rule : � ��	
	���	
��	��� 

 

� ��	
	���	
��	���(%��'�) →  

<LET> exp = ���	��(�'�((�'�(�
(� ��
	

����(%��'�)))) 

<IF>�%	��	
	�(exp) 

<THEN>  

  “ ∀ ”  + 

 �#
�
�����	
	����
(�����	
	�(exp)) 

<ELSE><SKIP> 

<ENDIF> 

��#
�
�����	
	����
(9��/ : �����%�:(���) →  

     9��/� +  “:” + ��	
	��!"�(9��/) + “,” + 

�� � � � �#
�
�����	
	����
(�����%�:(���) 

 

��#
�
�����	
	����
(9��/ : ;�<) →   9��/� +  “:” + ��	
	��!"�(9��/) 

 

 

7.   Rule : � ��	���(%��'�) 

 

� ��	���(%��'�) →  

<LET> exp = �'�((�'�(�
(� ��
	

����(%��'�))) 

<IN> 

<IF> �%	��	
	�(���	��(exp)) 

<THEN> 

  exp 

  +  “State( ” 

  + �#
�
��	
	���
(�����	
	�(���	��(exp))) 

  +  “) = ” 



Appendix E. KAOS Textual Translation rules                                                       304 

 

  + “ ‘  ” + �'�(�
(� �
	

����(%��'�)) + “ ’  ” 

 <ELSE> 

  exp 

  +  “State = ”  

  + “ ‘  ” + �'�(�
(� �
	

����(%��'�)) + “ ’  ” 

<ENDIF> 

 

 

8.  Rule : � ��--��
 

�

� ��--��
(%��'�) →  

 <LET> exp = �'�((�'�(�
(��������(%��'�))) 

 <IN> 

 <IF> �%	��	
	�(���	��(exp)) 

 <THEN> 

  exp 

  +  “State( ” 

  + �#
�
��	
	���
(�����	
	�(���	��(exp)))�

  +  “) = ” 

  + “ ‘  ” + �'�(�
(��������(%��'�)) + “ ’  ” 

 <ELSE> 

  exp 

  +  “State = ”  

  + “ ‘  ” + �'�(�
(��������(%��'�)) + “ ’  ”  

<ENDIF> 

�



 

 

Appendix F. KAOS Goals and Operation models  

F.1 Goal Model  
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F.2 The Detail of Goal and Operation Models: 

MainG1 Goal Achieve[DoorAtTheRequestedFloorIsEventuallyOpenedBetween7-25secs 

AfterThereIsARequestFortheLiftToServiceTheFloor] 

Definition : Door at the requested floor is eventually opened between 7 and 25 seconds 

after there is a request for the lift to service that floor 

FormalDef  ∀ f : FLOOR,  f : reqFl, (f > currentFl  ∨   f < currentFl)   

 requestlampState(f)  =  ‘rLit’  

 doorState(currentFl) = ‘Closed’ 

 liftState = ‘StopAtFloor’ 

 �  

 � [7, 25] doorState(f) = ‘Open’ 

 

MainG1.1 Goal Achieve[DoorAtTheRequestedFloorIsEventuallyOpenedBetween7-25secs 

AfterThereIsaRequestFortheLiftAboveTheCurrentFloor] 

Definition : Door at the requested floor is eventually opened between 7 and 25 seconds 

after there is a request for the lift above the current floor 

FormalDef  ∀ f : FLOOR,  f : reqFl, f > currentFl 

 requestlampState(f)  =  ‘rLit’  

 doorState(currentFl) = ‘Closed’ 

 liftState = ‘StopAtFloor’ 

 �  

 � [7, 25] doorState(f) = ‘Open’ 

 

MainG1.2 Goal Achieve[DoorAtTheRequestedFloorIsEventuallyOpenedBetween7-25secs 

AfterThereIsaRequestFortheLiftBelowTheCurrentFloor] 

Definition : Door at the requested floor is eventually opened between 7 and 25 seconds 

after there is a request for the lift below the current floor 

FormalDef  ∀ f : FLOOR,  f : reqFl, f < currentFl 

 requestlampState(f)  =  ‘rLit’  

 doorState(currentFl) = ‘Closed’ 

 liftState = ‘StopAtFloor’ 

 �  

 � [7, 25] doorState(f) = ‘Open’ 
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MainG2 Goal Achieve[WheneverLiftStopsAtTheRequestedFloorTheRequestlampAtThat 

FloorIsEventuallyUnlitBetween2-4secsDoorAtThatFloorIsEventuallyOpenedBetween1-5 

secsUplampAndDownlampAreSimultaneouslyDeactivated] 

Definition : Whenever lift stops at the requested floor, the request lamp at that floor is 

eventually unit between 2 and 4 seconds, door at that floor is eventually opened between 1 

and 5 seconds, and up lamp and down lamp are simultaneously deactivated 

FormalDef  ∀ f : FLOOR,  f : reqFl, f = currentFl 

 liftState = ‘StopAtFloor’ 

 �  

 � [2, 4] reqestlampState(f) = ‘rUnlit’ 

 � [1, 5] doorState(f) = ‘Open’ 

 uplampState = ‘deActivated’ 

 downlampState = ‘Deactivated’ 

 

 

MainG3 Goal Achieve[WheneverfloorsensorAtTheCurrentFloorIsSetOffFloorLampIsEven 

tuallySetUnlitBetween2-4secsAndLiftIsSimultaneouslyInAStateOfMovingUpOrMovingDow 

n] 

Definition : Whenever floor sensor at the current floor is set off, floor lamp is eventually set  

unlit between 2 and 4 seconds and lift is simultaneously in a state of moving up or moving 

down 

FormalDef  ∀ f : FLOOR,  f : reqFl, f = currentFl 

 floorsensorState(f) = ‘Off’ 

 �  

 � [2, 4] floorlampState(f) = ‘Unlit’ 

 (liftState = ‘MovingUp’ ∨  liftState = ‘MovingDown’ 

 

 

MainG4 Goal Maintain[UplampSimultaneouslySetToDeactivatedWhileDownlampSimultan 

eouslySetToActivatedWheneverLiftIsInAStateOfMvgDptDown] 

Definition : Up lamp is simultaneously set to deactivated while down lamp is 

simultaneously set to activated whenever lift is in a state of moving departing down 

FormalDef  liftState = ‘MovingDepartingDown’ 

 �  

 uplampState = ‘deActivated’ 

 downlampState = ‘Activated’ 
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MainG5 Goal Maintain[UplampSimultaneouslySetToActivatedWhileDownlampSimultan 

eouslySetToDeativatedWheneverLiftIsInAStateOfMvgDptup] 

Definition : Up lamp is simultaneously set to activated while down lamp is simultaneously 

set to deactivated whenever lift is in a state of moving departingup 

FormalDef  liftState = ‘MovingDepartingup’ 

 �  

 uplampState = ‘acTivated’ 

 downlampState = ‘Deactivated’ 

 

 

MainG6 Goal Achieve[LiftIsEventuallyChangesItsStateFromMvgArgUpToMvgDptUpOr 

MvgArgDownToMgvDptdownWheneverThereAreRequestsForOtherFloorsAndNoRequestF

orTheCurrentFloor] 

Definition : Lift is eventually changes its state from moving arriving up to moving departing  

up or moving arriving down to moving departing down whenever there are requests for 

other floors and no request for the current floor 

FormalDef ∀ f : FLOOR, f : reqFl, ( f > currentFl ∨  f < currentFl) 

 currentFl ∉reqFl 

 liftState = ‘MovingArrivingUp’ ∨   

liftState = ‘MovingArrivingDown’ 

 �  

 � liftState = ‘MovingDepartingUp’ ∨   

liftState = ‘MovingDepartingDown’ 
 

 

 

MainG7 Goal  Achieve[FloorlampAtTheCurrentFloorIsEventuallyLitBetween2-4secsAndLift 

IsEventuallyStopsAtTheCurrentFloorBetween1-5secsAfterFloorsensorStateAtTheCurrent 

FloorIsOnAndLiftIsInTheStateOfMvgArgUpOrMvgArgDwn] 

Definition : Floor lamp at the current floor is eventually lit between 2 and 4 seconds and lift 

is eventually stops at the current floor between 1 and 5 seconds after floor sensor state at 

the current floor is on and lift is in the state of moving arriving up or moving arriving down 

FormalDef ∀ f : FLOOR, f : reqFl, f = currentFl 

 floorsensorState(f)  =  ‘On’ & 

 (liftState = ‘MovingArrivingUp’  ∨   

liftState = ‘MovingArrivingDown’ ) 

 �  

 � [2, 4] floorlampState(f) = ‘Lit’ 
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 � [1, 5] liftState(f) = ‘StopAtFloor’ 

 

 

MainG7.1 Goal Achieve[FloorlampAtTheCurrentFloorIsEventuallyLitBetween2-4secsAnd 

LiftIsEventuallyStopsAtTheCurrentFloorBetween1-5secsAfterFloorsensorStateAtTheCurr 

entFloorIsOnAndLiftIsInTheStateOfMvgArgUp] 

Definition : Floor lamp at the current floor is eventually lit between 2 and 4 seconds and lift 

is eventually stops at the current floor between 1 and 5 seconds after floor sensor state at 

the current floor is on and lift is in the state of moving arriving up 

FormalDef  ∀ f : FLOOR, f : reqFl, f = currentFl  

 floorsensorState(f)  =  ‘On’ & 

 liftState = ‘MovingArrivingUp’  ) 

 �  

 � [2, 4] floorlampState(f) = ‘Lit’ 

 � [1, 5] liftState(f) = ‘StopAtFloor’ 

 

 

MainG7.2 Goal Achieve[FloorlampAtTheCurrentFloorIsEventuallyLitBetween2-4secs 

AndLiftEventuallyStopsAtTheCurrentFloorBetween1-5secsAfterFloorsensorStateAtTheCur 

rentFloorIsOnAndLiftIsInTheStateOfMvgArgDwn] 

Definition : Floor lamp at the current floor is eventually lit between 2 and 4 seconds and lift 

is eventually stops at the current floor between 1 and 5 seconds after floor sensor state at 

the current floor is on and lift is in the state of moving arriving down 

FormalDef  ∀ f : FLOOR, f : reqFl, f = currentFl  

 floorsensorState(f)  =  ‘On’ & 

 liftState = ‘MovingArrivingDown’  ) 

 �  

 � [2, 4] floorlampState(f) = ‘Lit’ 

 � [1, 5] liftState(f) = ‘StopAtFloor’ 

 

 

Line1 Goal Achieve[WheneverFloorsensorAtTheCurrentFloorIsSetOffFloorlampIsEventua 

llySetUnlitBetween��2-4secs] 

Definition : Floor lamp at the current floor is eventually set to unlit between 2 and 4 

seconds after floor sensor at the current floor is set off 

FormalDef  ∀ f : FLOOR, f = currentFl  

 floorsensorState(f)  =  ‘Off’  
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 �  

 � [2, 4] floorlampState(f) = ‘Unlit’ 

 

Operation FloorlampUnlit 

Input floorlamp{arg f : FlOOR, f = currentFl}state 

Output floorlamp{arg f : FlOOR, f = currentFl}state 

DomPre floorlampState(f) = ‘Lit’ 

DomPost floorlampState(f) = ‘Unlit’ 

ReqTrig floorlampState(f) = ‘Lit’ S[1, 3]  (floorsensorState(f)  =  ‘Off’) 

 

 

Line2(a) Goal  Achieve[FloorlampAtTheCurrentFloorIsEventuallyLitBetween2-4secsAfter 

FloorsensorStateAtTheCurrentFloorIsOnAndLiftIsInTheStateOfMvgArgUp] 

Definition : Floor lamp at the current floor is eventually lit between 2 and 4 seconds after 

floor sensor state at the current floor is on and lift is in the state of moving arriving up 

FormalDef: ∀ f : FLOOR, f: reqFl, f = currentFl  

 floorsensorState(f)  =  ‘On’ 

 liftState = ‘MovingArrivingUp’ 

 �  

 � [2, 4] floorlampState(f) = ‘Lit’ 

 

Operation FloorlampLit 

Input floorlamp{arg f : FlOOR, f: reqFl, f = currentFl }State 

Output floorlamp{arg f : FlOOR, f: reqFl, f = currentFl }State 

DomPre floorlampState(f) = ‘Unlit’ 

DomPost floorlampState(f) = ‘Lit’ 

ReqTrig floorlampState(f) = ‘Unlit’  

  S[1, 3]  ( floorsensorState(f)  =  ‘On’ & liftState = ‘MovingArringUp’) 

 

 

Line2(b) Goal Achieve[FloorlampAtTheCurrentFloorIsEventuallyLitBetween2-4secsAfter 

FloorSensorStateAtTheCurrentFloorIsOnAndLiftIsInTheStateOfMvgArgDwn] 

Definition : Floor lamp at the current floor is eventually lit between 2 and 4 seconds after 

floor sensor state at the current floor is on and lift is in the state of moving arriving down 

FormalDef: ∀ f : FLOOR, f: reqFl, f = currentFl  

 floorsensorState(f)  =  ‘On’ 

 liftState = ‘MovingArrivingDown’ 
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 �  

 � [2, 4] floorlampState(f) = ‘Lit’ 

 

Operation FloorlampLit 

Input floorlamp{arg f : FlOOR, f = currentFl}state 

Output floorlamp{arg f : FlOOR, f: reqFl, f = currentFl }State 

DomPre floorlampState(f) = ‘Unlit’ 

DomPost floorlampState(f) = ‘Lit’ 

ReqTrig floorlampState(f) = ‘Unlit’  

  S[1, 3]  ( floorsensorState(f)  =  ‘On’ & liftState = ‘MovingArringDown’) 

 

 

Line3.1 Goal Achieve[FloorsensorForTheCurrentFloorIsEventuallySetOffBetween2-5secs 

AfterLiftStartsMvgDptUp] 

Definition: The floor sensor at the current floor is eventually set off between 2 and 5 

seconds after lift is in the state of moving departing up providing the direction of lift is up 

FormalDef  ∀ f : FLOOR,  f  =  currentFl 

 liftState  =  ‘MovingDepartingUp’ & dir = Up 

 �  

 � [2,5] floorsensorState(f) = ‘Off’ 

 

Operation FloorsensorOff  

Input floorsensor{arg f : FlOOR, f = currentFl}State  

Output floorsensor{arg f : FlOOR, f = currentFl}State 

DomPre floorsensorState(f) = ‘On’ 

DomPost floorsensorState(f) = ‘Off’ 

ReqTrig floorsensorState(f) = ‘On’ S[1,4] (liftState  =  ‘MovingDepartingUp’  

             & dir = Up) 

 

 

Line3.2 Goal Achieve[FloorsensorForTheCurrentFloorIsEventuallySetOffBetween2-5secs 

AfterLiftStartsMvgDptDwn] 

Definition: The floor sensor at the current floor is eventually set off between 2 and 5 

seconds after lift is in the state of moving departing down providing the direction of lift is 

down  

FormalDef: ∀ f : FLOOR, f  =  currentFl  

 (liftState  =  ‘MovingDepartingDown’ & dir = Down) 
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 �  

 � [2,5] floorsensorState(f) = ‘Off’ 

 

Operation FloorsensorOff  

Input floorsensor{arg f : FlOOR, f = currentFl}State 

Output floorsensor{arg f : FlOOR, f = currentFl}State 

DomPre floorsensorState(f) = ‘On’ 

DomPost floorsensorState(f) = ‘Off’ 

ReqTrig floorsensorState(f) = ‘On’  

       S[1,4] (liftState  =  ‘MovingDepartingDown’ & dir = Down) 

 

 

Line4.1 Goal Achieve[FloorsensorForTheCurrentFloorIsEventuallySetOnBetween2-5secs 

AfterLiftMvgArgUp] 

Definition: Floor sensor for the current floor is eventually set on between  2 and 5 seconds 

after lift is moving arriving up 

FormalDef  ∀ f : FLOOR, f = currentFl  

 liftState  =  ‘MovingArrivingUp’ 

 �  

 � [2,5] floorsensorState(f) = ‘On’ 

 

Operation FloorsensorOn 

Input  floorsensor{arg f : FlOOR, f = currentFl}State 

Output floorsensor{arg f : FlOOR, f  = currentFl}State 

DomPre floorsensorState(f) = ‘Off’ 

DomPost floorsensorState(f) = ‘On’ 

ReqTrig floorsensorState(f) = ‘Off’ S[1, 4]  (liftState  =  ‘MovingArrivingUp’) 

 

 

Line4.2 Goal Achieve[FloorsensorForTheCurrentFloorIsEventuallySetOnBetween2-5secs 

AfterLiftMvgArgDwn] 

Definition: Floor sensor for the current floor is eventually set on between 2 and 5 seconds 

after lift is moving arriving down 

FormalDef  ∀ f : FLOOR,  f  =  currentFl 

 liftState  =  ‘MovingArrivingDown’ 

 �  

 � [2,5] floorsensorState(f) = ‘On’ 
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Operation FloorsensorOn  

Input floorsensor{arg f : FlOOR, f = currentFl}State 

Output floorsensor{arg f : FlOOR, f = currentFl}State 

DomPre floorsensorState(f) = ‘Off’ 

DomPost floorsensorState(f) = ‘On’ 

ReqTrig floorsensorState(f) = ‘Off’ S[1, 4]  (liftState  =  ‘MovingArrivingDown’) 

 

 

Line5(a) Goal Achieve[LiftIsEventuallyStopAtTheCurrentFloorBetween1-5secsAfterFloor 

sensorStateAtTheCurrentFloorIsOnAndLiftIsInTheStateOfMvgArgUp] 

Definition : A lift is eventually stopped at the current floor between 1 and 5 seconds after a 

floor sensor at that floor is set on and lift is in the state of moving arriving up.  

FormalDef  ∀ f : FLOOR, f : reqFl, f = currentFl  

 floorsensorState(f) = ‘On’ & 

 liftState = ‘MovingArrivingUp’ 

 �  

 � [1,5] liftState  =  ‘StopAtFloor’ 

 

Operation LiftStopAtFloor  

Input liftState 

Output liftState 

DomPre liftState  ≠   ‘StopAtFloor’ 

DomPost liftState  =  ‘StopAtFloor’ 

ReqTrig liftState  ≠   ‘StopAtFloor’  

    S[0.99, 4]  (floorsensorState(f) = ‘On’ & liftState = ‘MovingArrivingUp’) 

 

 

Line5(b) Goal Achieve[LiftIsEventuallyStopAtTheCurrentFloorBetween1-5secsAfterFloor 

sensonrsensorStateAtTheCurrentFloorIsOnAndLiftIsInTheStateOfMvgArgDwn] 

Definition : A lift is eventually stopped at the current floor between 1 and 5 seconds after a 

floor sensor at that floor is set on and lift is in the state of moving arriving down.  

FormalDef  ∀ f : FLOOR, f : reqFl, f = currentFl  

 floorsensorState(f) = ‘On’ & 

 liftState = ‘MovingArrivingDown’ 

 �  

 � [1,5] liftState  =  ‘StopAtFloor’ 
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Operation LiftStopAtFloor  

Input liftState  

Output liftState 

DomPre liftState  ≠   ‘StopAtFloor’ 

DomPost liftState  =  ‘StopAtFloor’ 

ReqTrig liftState  ≠   ‘StopAtFloor’  

             S[0.99, 4]  (floorsensorState(f) = ‘On’ & liftState = ‘MovingArrivingDown’) 

 

 

Line6 Goal Achieve[TheRequestlampAtTheRequestedFloorIsEventuallyUnlitBetween2-4 

secs AfterLiftStopsAtThatFloor] 

Definition: The request lamp at the current floor is eventually set to unlit between 2 and 4 

seconds after lift is in the state of stop at floor 

FormalDef  ∀ f : FLOOR, f = currentFl  

 liftState  =  ‘StopAtFloor’ 

 �  

 � [2, 4] requestlampState(f)  =  ‘rUnlit’ 

 

Operation RequestlamprUnlit 

Input requestlamp{arg f : FLOOR, f = currentFl}State 

Output requestlamp{arg f : FLOOR, f = currentFl}State 

DomPre requestlampState(f)  =  ‘rLit’ 

DomPost requestlampState(f)  =  ‘rUnlit’ 

ReqTrig requestlampState(f)  =  ‘rLit’ S[1, 3]  (liftState  =  ‘StopAtFloor’) 

 

 

Line9 Goal Achieve[TheDoorAtTheCurrentFloorIsEventuallyOpenBetween1-5secsAfterLift 

StopsAtThatFloor] 

Definition : Door at the current floor is eventfully opened between 1 and 5  seconds after 

the lift stops at the current floor 

FormalDef  ∀ f : FLOOR, f  : reqFl, f = currentFl  

 liftState  =  ‘StopAtFloor’ 

 �  

 � [1,5]  doorState(f)  =  ‘Open’ 

Operation DoorOpen  

Input door{arg f : FLOOR, f : reqFl, f = currentFl}State 
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Output door{arg f : FLOOR, f : reqFl, f = currentFl}State 

DomPre doorState(f)  =  ‘Closed’ 

DomPost doorState(f)  =  ‘Open’ 

ReqTrig doorState(f)  =  ‘Closed’ S[0.99, 4]  (liftState  =  ‘StopAtFloor’) 

 

 

Line10 Goal Maintain[DownlampIsDeactivatedSimultaneouslyWhenLiftStopsAtFloor] 

Definition : Down lamp is set to deactivate at once after lift stops at floor  

FormalDef  liftState = ‘StopAtFloor’ 

 �  

 downlampState  =  ‘Deactivated’ 

 

Operation  DownlampDeactivated 

Input liftState 

Output liftState 

DomPre liftState ≠ ‘StopAtFloor’ 

DomPost liftState = ‘StopAtFloor’ 

ReqPost downlampState = ‘Deactivated’ 

 

Operation  DownlampActivated 

Input downlampState 

Output downlampState 

DomPre downlampState = ‘Deactivated’ 

DomPost downlampState = ‘Activated’ 

ReqPost liftState ≠  ‘StopAtFloor’ 

 

 

Line11 Goal Maintain[UplampIsDeactivatedSimultaneouslyWhenLiftStopsAtFloor] 

Definition: Up lamp is set to deactivate at once whenever the lift stops at floor 

FormalDef: liftState = ‘StopAtFloor’ 

 �  

 uplampState  =  ‘deActivated’ 

 

Operation  UplampdeActivated 

Input liftState 

Output liftState 

DomPre liftState ≠ ‘StopAtFloor’ 
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DomPost liftState = ‘StopAtFloor’ 

ReqPost uplampState = ‘deActivated’ 

 

Operation  UplampacTivated 

Input uplampState 

Output uplampState 

DomPre uplampState = ‘deActivated’ 

DomPost uplampState = ‘acTivated’ 

ReqPost liftState ≠  ‘StopAtFloor’ 

 

 

Line12 Goal Maintain[UplampSimultaneouslySetToDeactivatedWheneverLiftIsInAStateOf 

MvgDptDwn] 

Definition: Up lamp is set to deactivate at once whenever the lift starts moving departing 

down 

FormalDef  liftState = ‘MovingDepartingDown’ 

 �  

 uplampState  =  ‘deActivated’ 

 

Operation  Uplampdeactivated 

Input liftState 

Output liftState 

DomPre liftState ≠  ‘MovingDepartingDown’ 

DomPost liftState = ‘MovingDepartingDown’ 

ReqPost uplampState = ‘deActivated’ 

 

Operation  Uplampactivated 

Input uplampState 

Output uplampState 

DomPre uplampState  =  ‘deActivated’ 

DomPost uplampState  =  ‘acTivated’ 

ReqPost liftState ≠  ‘MovingDepartingDown’ 

 

 

 

Line13 Goal Maintain[DownlampSimultaneouslySetToActivatedWheneverLiftIsInAStateOf 

MvgDptDwn] 
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Definition : Down lamp is set to activate at once whenever the lift starts moving departing 

down 

FormalDef  liftState = ‘MovingDepartingDown’ 

 �  

 downlampState  =  ‘Activated’ 

 

Operation  DownlampActivated 

Input liftState 

Output liftState 

DomPre liftState ≠  ‘MovingDepartingDown’ 

DomPost liftState = ‘MovingDepartingDown’ 

ReqPost downlampState = ‘Activated’ 

 

Operation  DownlampDeactivated 

Input downlampState 

Output downlampState 

DomPre downlampState = ‘Activated’ 

DomPost downlampState = ‘Deactivated’ 

ReqPost liftState ≠  ‘MovingDepartingDown’ 

 

 

 

Line14 Goal Maintain[UplampSimultaneouslySetToActivatedWheneverLiftIsInAStateOf 

MvgDptUp] 

Definition : Uplamp is set to activate at once whenever the lift starts moving departing up 

FormalDef: liftState = ‘MovingDepartingUp’ 

 �  

 uplampState  =  ‘Activated’ 

 

Operation  UplampActivated  

Input liftState 

Output liftState 

DomPre liftState ≠  ‘MovingDepartingUp’ 

DomPost liftState = ‘MovingDepartingUp’ 

ReqPost uplampState = ‘Activated’ 

 

Operation  UplampDeactivated  
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Input uplampState 

Output uplampState 

DomPre uplampState = ‘Activated’ 

DomPost uplampState = ‘Deactivated’ 

ReqPost liftState ≠  ‘MovingDepartingUp’ 

 

 

Line15 Goal Maintain[DownlampSimultaneouslySetToDeactivatedWheneverLiftIsInAState 

OfMvgDptUp] 

Definition : Downlamp is set to deactivate at once whenever the lift starts moving deapring 

up 

FormalDef: liftState = ‘MovingDepartingUp’ 

 �  

 downlampState  =  ‘Deactivated’ 

 

Operation  DownlampActivated 

Input liftState 

Output liftState 

DomPre liftState ≠  ‘MovingDepartingUp’ 

DomPost liftState = ‘MovingDepartingUp’ 

ReqPost downlampState = ‘Deactivated’ 

 

Operation  DownlampDeactivated 

Input downlampState 

Output downlampState 

DomPre downlampState = ‘Deactivated’ 

DomPost downlampState = ‘Activated’ 

ReqPost liftState ≠  ‘MovingDepartingUp’ 

 

 

Line16&17 Goal Maintain[WheneverFloorsensorAtTheCurrentFloorsIsSetOffLiftIsSimutan 

eouslyInAStateOfMovingUpOrMovingDown] 

Definition :  Whenever floorsensor at the current floor is set off, lift is simultaneously in a 

state of moving up or moving down 

FormalDef: ∀ f : FLOOR, f = currentFl 

 floorsensorState(f) = ‘Off’ 

 �  
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 liftState = ‘MovingUp’ ∨  liftState = ‘MovingDown’ 

 

 

Line16 Goal Maintain[WheneverFloorsensorAtTheCurrentFloorsIsSetOffLiftIsSimutaneous 

lyInAStateOfMovingDown] 

Definition :  Whenever floorsensor at the current floor is set off, lift is simultaneously in a 

state of moving down 

FormalDef: ∀ f : FLOOR, f = currentFl 

 floorsensorState(f) = ‘Off’ 

 �  

 liftState = ‘MovingDown’ 

 

Operation  FloorsensorOff 

Input floorsensor{arg f : FLOOR, f  = currentFl}State 

Output floorsensor{arg f : FLOOR, f  = currentFl}State 

DomPre floorsensorState(f) = ‘On’ 

DomPost floorsensorState(f) = ‘Off’ 

ReqPost liftState = ‘MovingDown’ 

 

Operation  FloorsensorOn 

Input liftState 

Output liftState 

DomPre liftState = ‘MovingDown’ 

DomPost  ¬ (liftState = ‘MovingDown’) 

ReqPost  floorsensorState(f) = ‘On’ 

 

 

Line17 Goal Maintain[WheneverFloorsensorAtTheCurrentFloorsIsSetOffLiftIsSimutaneous 

lyInAStateOfMovingUp] 

Definition : Whenever floorsensor at the current floor is set off, lift is simultaneously in a 

state of moving up 

FormalDef: ∀ f : FLOOR, f = currentFl 

 floorsensorState(f) = ‘Off’ 

 �  

 liftState = ‘MovingUp’ 

 

Operation  FloorsensorOff 
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Input floorsensor{arg f : FLOOR, f  = currentFl}State 

Output floorsensor{arg f : FLOOR, f  = currentFl}State 

DomPre floorsensorState(f) = ‘On’ 

DomPost floorsensorState(f) = ‘Off’ 

ReqPost liftState = ‘MovingUp’ 

 

Operation  FloorsensorOn 

Input liftState 

Output liftState 

DomPre liftState = ‘MovingUp’ 

DomPost  ¬ (liftState = ‘MovingUp’) 

ReqPost  floorsensorState(f) = ‘On’ 

 

 

Line18&7 Goal Achieve[LiftisEventuallyMvgDptUpFromTheCurrentFloorBetween1-5secs 

AfterThereIsARequestForTheLiftAboveTheCurrentFloorAndTheDoorAtTheCurrentFloorIs 

Closed] 

Definition: Lift is eventually moving departing up from the current floor between 1 and 5 

seconds after there is a request for the lift above the current floor and the door at the 

current floor is closed. 

FormalDef  ∀ f : FLOOR, f : reqFl, f > currentFl  

 requestlampState(f) = ‘rLit’ & 

 doorState(currentFl) = ‘Closed’ & 

 liftState = ‘StopAtFloor’ 

 �  

 � [1, 5] liftState  =  ‘MovingDepartingUp’ 

 

Operation LiftMovingDepartingUp 

Input liftState 

Output liftState 

DomPre liftState  = ‘StopAtFloor’ 

DomPost liftState  =  ‘MovingDepartingUp’ 

ReqTrig liftState   = ‘StopAtFloor’ 

      S[0.99, 4]  (requestlampState(f) =  ‘rLit’ & doorState(currentFl) = ‘Closed’ &  

           liftState = ‘StopAtFloor’) 
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Line19&8 Goal Achieve[LiftisEventuallyMvgDptDwnFromTheCurrentFloorBetween1-5secs 

AfterThereIsARequestForTheLiftBelowTheCurrentFloorAndTheDoorAtTheCurrentFloorIsCl

osed] 

Definition: Lift is eventually moving departing down from the current floor between 1 and 5 

seconds after there is a request for the lift below the current floor and the door at the 

current floor is closed. 

FormalDef  ∀ f : FLOOR, f : reqFl, f < currentFl  

 requestlampState(f) = ‘rLit’ & 

 doorState(currentFl) = ‘Closed’ & 

 liftState = ‘StopAtFloor’ 

 �  

 � [1, 5] liftState  =  ‘MovingDepartingDown’ 

 

Operation RequestlamprUnlit 

Input liftState 

Output liftState 

DomPre liftState  = ‘StopAtFloor’ 

DomPost liftState  =  ‘MovingDepartingDown’ 

ReqTrig liftState   = ‘StopAtFloor’ 

      S[0.99, 4]  (requestlampState(f) =  ‘rLit’ & doorState(currentFl) = ‘Closed’ &  

           liftState = ‘StopAtFloor’) 

 

 

Line2(a) Goal Achieve[FloorlampAtTheCurrentFloorIsEventuallyLitBetween2-4secsAfter 

FloorsensorStateAtTheCurrentFloorIsOnAndLiftIsInTheStateOfMvgArgUp] 

Definition: Floor lamp at the current floor is eventually lit between 2 and 4 seconds after 

floor sensor state at the current floor is set on and lift is in the state of moving arriving up 

FormalDef  ∀ f : FLOOR, f : reqFl, f = currentFl  

 floorsensorState(f) = ‘On’ & 

 liftState = ‘MovingArrivingUp’ 

 �  

 � [2, 4] floorlampState(f)  =  ‘Lit’ 

 

Operation floorlampLit 

Input floorlamp{arg f : FLOOR, f : reqFl, f = currentFl}State 

Output floorlamp{arg f : FLOOR, f : reqFl, f = currentFl}State 

DomPre floorlampState(f)  =  ‘Unlit’ 
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DomPost floorlampState(f)  =  ‘Lit’ 

ReqTrig floorlampState(f)  =  ‘Unlit’ 

              S[1, 3]  (floorsensorState(f) =  ‘On’ & liftState = ‘MovingArrivingUp’) 

 

 

Line2(b) Goal Achieve[FloorlampAtTheCurrentFloorIsEventuallyLitBetween2-4secsAfter 

Fl oorsensorStateAtTheCurrentFloorIsOnAndLiftIsInTheStateOfMvgArgDwn] 

Definition: Floor lamp at the current floor is eventually lit between 2 and 4 seconds  after 

floor sensor state at the current floor is set on and lift is in the state of moving arriving 

down 

FormalDef  ∀ f : FLOOR, f : reqFl, f = currentFl  

 floorsensorState(f) = ‘On’ & 

 liftState = ‘MovingArrivingDown’ 

 �  

 � [2, 4] floorlampState(f)  =  ‘Lit’ 

 

Operation floorlampLit 

Input floorlamp{arg f : FLOOR, f : reqFl, f = currentFl}State 

Output floorlamp{arg f : FLOOR, f : reqFl, f = currentFl}State 

DomPre floorlampState(f)  =  ‘Unlit’ 

DomPost floorlampState(f)  =  ‘Lit’ 

ReqTrig floorlampState(f)  =  ‘Unlit’ 

            S[1, 3]  (floorsensorState(f) =  ‘On’ & liftState = ‘MovingArrivingDown’) 

 

 

Goal A1 Achieve[LiftIsEventuallyChangedToStateMvgUpAfterMvgUp] 

Definition: Lift is eventually changed to state moving arriving up after moving up 

FormalDef  liftState = ‘MovingUp’ 

 �  

 � liftState = ‘MovingArrivingUp’ 

 

Goal A2 Achieve[LiftIsEventuallyChangedToStateMvgDwnAfterMvgDwn] 

Definition: Lift is eventually changed to state moving arriving down after moving down 

FormalDef  liftState = ‘MovingDown’ 

 �  

 � liftState = ‘MovingArrivingDown’ 
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GoalA3 Achieve[LiftIsIsEventuallyChangedItsStateFromMvgArgUpToMvgDeptUpWhen 

ever ThereAreRequestsAboveThatCurrentFloorAndNoRequestForTheCurrentFloor] 

Definition: Lift is eventually changed its state form moving arriving up to moving departing 

up whenever there are requests above the current floor and no request for 

the current floor 

FormalDef  ∀ f : FLOOR, f : reqFl, f > currentFl 

 currentfl ∉ reqFl & 

 liftState = ‘MovingArrivingUp’ 

 �  

 � liftState = ‘MovingDepartingUp’ 

 

 

GoalA4 Achieve[LiftIsIsEventuallyChangedItsStateFromMvgArgDownToMvgDeptDown 

WheneverThereAreRequestsBelowThatCurrentFloorAndNoRequestForTheCurrentFloor] 

Definition: Lift is eventually changed its state form moving arriving down to moving 

departing down whenever there are requests below the current floor and no request for the 

current  floor 

FormalDef  ∀ f : FLOOR, f : reqFl, f < currentFl 

 currentfl ∉ reqFl & 

 liftState = ‘MovingArrivingDown’ 

 �  

 � liftState = ‘MovingDepartingDown’ 

 


