The University of Southampton
University of Southampton Institutional Repository

Abnormalities affecting tyrosine kinase signalling in atypical myeloproliferative disorders

Abnormalities affecting tyrosine kinase signalling in atypical myeloproliferative disorders
Abnormalities affecting tyrosine kinase signalling in atypical myeloproliferative disorders
The myeloproliferative disorders (MPDs) are a group of haematopoietic stem cell diseases, characterised by proliferation of one or more cells of the myeloid lineage. Several lines of evidence have highlighted the importance of aberrant tyrosine kinase signalling in the pathogenesis of these disorders. Cloning of rare chromosomal translocations and point mutation analysis in the MPDs has identified diverse deregulated tyrosine kinase genes, notably PDGFRA, PDGFRB, FGFR1 and JAK2. However the majority of atypical MPDs still remain to be characterised and identification of patients harbouring fusions, particularly those involving the PDGF receptors is of increasing importance, as they are likely to be responsive to targeted therapy with imatinib.
I am investigating MPD patients for abnormalities affecting tyrosine kinase signalling, and have used three approaches, translocation cloning, expression analysis and SNP array analysis to detect regions of loss of heterozygosity (LOH). Thus far, by translocation cloning I have identified a previously undescribed partner gene fused to PDGFRB and two new PDGFRA fusion genes. I have also designed two reverse transcriptase PCR (RT-PCR) assays and a cDNA MLPA assay to detect over-expression of specific tyrosine kinases screening approximately 200 patients. Each assay identified all patients previously diagnosed with known fusions. Additionally, two patients identified with overexpression of PDGFRB have been found to have cryptic ETV6-PDGFRB fusions and overexpression of PDGFRA in one patient lead to the discovery of a previously undescribed fusion involving a novel partner gene (KIF5B).
Recent evidence has indicated that acquired isodisomy is a novel mechanism by which mutations in cancer may be reduced to homozygosity. Typically, acquired isodisomy is associated with oncogenic changes rather than tumour suppressor genes, eg. the activating JAK2 V617F mutation and 9p aUPD. I have undertaken a screen using Affymetrix 50K SNP arrays for regions of acquired isodisomy as a means to identify genomic regions that may harbour novel oncogenes in different subgroups of MPD patients. Large tracts of homozygosity (defined as >20Mb running to a telomere), strongly suggesting acquired isodisomy, were seen in 40% aMPD patients. The homozygous tracts encompassed diverse genomic regions in aMPD, but two common regions (3 cases for each region) were identified at 7q and 11q. Mutations in the CBL ubiquitin ligase gene were discovered in all three aCML patients with 11q aUPD as well as in an additional 23 MPD patients following further screening.
Hidalgo-Curtis, Claire
5aaa8cfa-7271-48ee-8538-27736ab3eaf2
Hidalgo-Curtis, Claire
5aaa8cfa-7271-48ee-8538-27736ab3eaf2
Cross, N.
f87650da-b908-4a34-b31b-d62c5f186fe4
Grand, F.
26daee41-f8f8-4bae-910f-89579532ea62

Hidalgo-Curtis, Claire (2009) Abnormalities affecting tyrosine kinase signalling in atypical myeloproliferative disorders. University of Southampton, School of Medicine, Doctoral Thesis, 389pp.

Record type: Thesis (Doctoral)

Abstract

The myeloproliferative disorders (MPDs) are a group of haematopoietic stem cell diseases, characterised by proliferation of one or more cells of the myeloid lineage. Several lines of evidence have highlighted the importance of aberrant tyrosine kinase signalling in the pathogenesis of these disorders. Cloning of rare chromosomal translocations and point mutation analysis in the MPDs has identified diverse deregulated tyrosine kinase genes, notably PDGFRA, PDGFRB, FGFR1 and JAK2. However the majority of atypical MPDs still remain to be characterised and identification of patients harbouring fusions, particularly those involving the PDGF receptors is of increasing importance, as they are likely to be responsive to targeted therapy with imatinib.
I am investigating MPD patients for abnormalities affecting tyrosine kinase signalling, and have used three approaches, translocation cloning, expression analysis and SNP array analysis to detect regions of loss of heterozygosity (LOH). Thus far, by translocation cloning I have identified a previously undescribed partner gene fused to PDGFRB and two new PDGFRA fusion genes. I have also designed two reverse transcriptase PCR (RT-PCR) assays and a cDNA MLPA assay to detect over-expression of specific tyrosine kinases screening approximately 200 patients. Each assay identified all patients previously diagnosed with known fusions. Additionally, two patients identified with overexpression of PDGFRB have been found to have cryptic ETV6-PDGFRB fusions and overexpression of PDGFRA in one patient lead to the discovery of a previously undescribed fusion involving a novel partner gene (KIF5B).
Recent evidence has indicated that acquired isodisomy is a novel mechanism by which mutations in cancer may be reduced to homozygosity. Typically, acquired isodisomy is associated with oncogenic changes rather than tumour suppressor genes, eg. the activating JAK2 V617F mutation and 9p aUPD. I have undertaken a screen using Affymetrix 50K SNP arrays for regions of acquired isodisomy as a means to identify genomic regions that may harbour novel oncogenes in different subgroups of MPD patients. Large tracts of homozygosity (defined as >20Mb running to a telomere), strongly suggesting acquired isodisomy, were seen in 40% aMPD patients. The homozygous tracts encompassed diverse genomic regions in aMPD, but two common regions (3 cases for each region) were identified at 7q and 11q. Mutations in the CBL ubiquitin ligase gene were discovered in all three aCML patients with 11q aUPD as well as in an additional 23 MPD patients following further screening.

Text
FINAL_THESIS.pdf - Other
Download (8MB)

More information

Published date: May 2009
Organisations: University of Southampton

Identifiers

Local EPrints ID: 72798
URI: http://eprints.soton.ac.uk/id/eprint/72798
PURE UUID: 4eec278d-e857-44e1-8674-db397a7439c8
ORCID for N. Cross: ORCID iD orcid.org/0000-0001-5481-2555

Catalogue record

Date deposited: 24 Feb 2010
Last modified: 14 Mar 2024 02:46

Export record

Contributors

Author: Claire Hidalgo-Curtis
Thesis advisor: N. Cross ORCID iD
Thesis advisor: F. Grand

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×