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1. Introduction

Sample survey theory is concerned with methods of sampling from a finite population
of N units and then making inferences about finite population quantities on the basis of the
sample data. A method of sampling coupled with a method of estimation given the sample data

is often referred to as a sampling strategy, and typically corresponds to a set of rules which tell

one how to obtain a sample of units from the finite population and then how to manipulate the
resulting sample data to estimate the value of a quantity defined for the entire population.

In this paper we review the essential characteristics of the three different approaches to
specifying a sampling strategy; the design based approach, the model assisted approach and the
model based approach. All three approaches are in use in major statistical agencies.
Furthermore, the advantages and disadvantages of all three have been hotly debated in the
sampling theory literature in recent years. See the sequence of papers Smith (1976), Smith
(1984) and Smith (1994) for a clear and entertaining description of how this debate has
progressed. However, with the exception of Brewer and Sédrndal (1983), there seems to have
been little attempt to view all three approaches from a unified statistical perspective.

We describe such a unified framework for survey design and estimation below. After
embedding the above three approaches in this common framework, we then contrast them in
terms of their concepts of efficiency as well as their robustness to assumptions about the

characteristics of the finite population. Our conclusion is that although no one approach



delivers both efficiency and robustness, the model-based approach seems to achieve the best
compromise between these typically conflicting objectives.

The paper is organised as follows. In the following section, some basic concepts of the
statistical (as opposed to the practical) theory of sample design and estimation are introduced,
along with the common distributional framework that underlies the development in the paper. In
sections 3 through 5 this framework is used to characterise the statistical basis for choosing an
efficient sampling strategy under the above three approaches. The paper concludes in section 6
with a discussion of how the different robustness concepts that apply within each approach
relate to one another within this framework, together with comments on the strengths and

weaknesses of each.

2. Basic Concepts

A fundamental sample survey concept is that of a population frame. This is the list of
the N units making up the finite population. Availability of a frame is a basic requirement
underlying most (though not all) of sample survey theory, since sampling methods are usually
expressed in terms of rules for deciding which elements of a list constitute the sample. Note
that this frame requirement does not exclude multistage surveys from consideration, since these
require access to an initial frame for selection of first stage units and then subsequent “sub-
frames” for selection of second and later stage units.

In what follows it will be assumed that the frame always contains a unique identifier or
label for each unit of the population. In many cases the frame also contains the values of one or
more auxiliary variables associated with each unit of the finite population. We use the index /
(and sometimes J and K as well) to denote the population labels. Without loss of generality we
can assume these labels take the values 1, 2, .., N, so it makes sense to refer to the I population
unit.

For simplicity we also assume in this paper that there is only one auxiliary variable, X
and one survey variable Y. We put X, equal to the value of X for the I population unit, with Y,
defined similarly. The extension to multiple Y-variables and multiple X-variables does not
involve introduction of new concepts, but does make the notation much more complex.

2



A traditional objective of most surveys is estimation of the finite population total,
N
T=YY,.
I=1

In order to estimate 7, the survey sampler (who is assumed to have access to the population
frame) “selects” a sample of units from the population by identifying their labels on the frame,
and then measures their corresponding values of Y. These sample values of Y are then
combined with framework information to generate the required estimate of 7.

A convenient way of characterising the above sample selection process is to assume that,
for each unit / on the frame, the survey sampler generates a “new” variable S, which takes a
value equal to the number of times that particular population unit’s ¥ value is observed. The set
of labels corresponding to population units that are sampled in this way is s = {I: S, > 0}. The
labels of the remaining non-sampled population units then define the set r = {I: §,=0}.

The distribution of these S, values effectively defines what is generally referred to as the
design of the sample survey. In principle at least, the survey sampler has complete control over
(and hence complete knowledge of) this distribution. Let S denote the vector valued random
variable corresponding to the N population values of §, and let X denote the corresponding N-
vector of population values of the X,.

Throughout, we assume that the distribution of S only depends on the known
population values in X. That is, given X, the distribution of S is completely specified. This
assumption is often referred to as “uninformative sampling” in the literature (e.g. Pfeffermann
1993). An immediate consequence is that, given X, the distributions of S and Y, the population
N-vector of Y values, are independent. Note that this assumption is not appropriate in cases
where the sampler has limited or no control over the sampling process, since in those cases
there is the possibility of selection bias, and consequent dependence between the distributions
of Y and S, even after conditioning on X. See Smith (1983) and Sugden and Smith (1984).

This characterisation of the outcome of sample selection as a random vector S includes
probability sampling as a special case. However, since there is no requirement that the
distribution of S be non-degenerate, it also includes many so-called “non-random” (strictly

speaking non-probability sampling based) selection methods used by survey practitioners.



Turning now to estimation of 7, we see that any estimator of this quantity can only be
based on the available data, i.e. the observed sample values of Y together with relevant frame
information (the population values of X and §). Consequently, we consider a general linear
estimator of 7 of the form

T=YW,8X)5Y,
where W,(S,X) is a “sample weight” associated with population unit / when this unit appears
in sample. Observe that this weight generally depends on S and X. Also, we can equivalently
write

N
T=YW,8,X)5s,
I1=1

since S, =0 for non-sampled population units.

In general, we can think of the values of the W, (S,X) as characterising the estimation
process in the same way that the values S, characterised the sampling process. That is, the
survey sampler can be considered as in principle defining a value W, (S,X) for each population
unit (whether sampled or not), and consequently a “new” variable over the population. The
value of this “weight variable” W may depend on the population values of the auxiliary
variable, X, and those of the selection variable, S, but not those of the survey variable Y. That is,
if we put W equal to the population vector defined by the W, (S,X), then W is a random vector
whose distribution is completely determined by that of S and X. To keep our notation simple,
we drop explicit referencing to S and X when writing down individual weights from now on,
writing W, = W,(S,X) in what follows. In all cases, however, the reader should keep in mind the
dependence of these weights on the realised values of S and X.

A sampling strategy corresponds to the pair (S, W). Deciding on a sampling strategy

therefore consists of (i) given X, choosing an appropriate distribution for S, and (ii) given X
and the distribution generated under (i), choosing an appropriate specification for W. In the
following sections we compare and contrast three different approaches to carrying out (i) and
(ii) above. In particular, we focus on choice of an optimal strategy in each case.

Finally, we observe that in all cases, the inferential framework assumed is the one

defined by the joint distribution of S, X and Y. That is, the sample space for inference is the one



corresponding to all possible realisations of these three vectors. Consequently, all relevant
probabilities are defined with respect to this joint distribution, as are expectations and variances

(both conditional and unconditional).

3. Optimality under the Design Based Approach

This approach has its origin in Neyman’s key paper (Neyman, 1934). It also represents
the basic underlying philosophy in most traditional sampling theory texts, e.g. Cochran (1977),

Kish (1965). A key concept under this approach is that of design unbiasedness. That is, for any

choice of sampling process S, the weighting process W must be such that the frequency
weighted average value of T over all possible samples generated under S is the actual value of
T. In other words, this approach restricts consideration to those weights W which ensure that,
irrespective of the particular sample selection method (i.e. S) employed,

E(T-T|X,Y)=0. (1)
for all values of Y and X.

For (1) to hold for arbitrary Y and X we must have

E(W,S,| X,Y)=1

or, since the distributions of both S and W are completely determined by that of X,
EW,S,|X) =1.

A sufficient condition for this to be satisfied is clearly where

W= E(S,|X) )
in which case
T= E—S’YI . 3)
~ E(S,|X)

The design based approach requires that all inferential probabilities be conditioned on both Y
and X. Consequently, under this approach the efficiency of T is measured by

N N N
var(T - T| X, Y) = var(T| X, Y) = Var(z W,S,Y,| X,Y) =3 ¥ cov(W,S,.W,S,|X)Y,Y,
1=1

I1=1J=1
which, in the case of the weighting method (2) above, becomes

. w cov(S,,S,[X)
var(T - T|X,Y) = P YyY,. 4)
| ZZE(&IX)E(SJIX) Y




In some circumstances (e.g. where a particularly complex sampling method has been
employed) it may be impossible to evaluate (2) exactly. In such cases condition (1) is at least
approximately true whenever

W, = E(S,|X) (3)
where E denotes an estimate of the conditional regression function, based on the frame values

of X. In this case the bias of the resulting estimator T under the design based approach is

A Q[ E(S,|X)
E(T-T|X,Y|= )| L= -1J (6)
(P-rix.y) E Es|x) )’
with variance
. Q cov(S,, S| X)
var(T - T|X,Y) = ~ e (7
| ZzEw,lX)E(S,lX) v
The measure of efficiency of T in this case is therefore its design mean squared error
MSE(T|X,Y) = var(ﬂ X,Y) + EX(T-T|X,Y)
< cov(S,,S,| X) ES|X) [ EGS,|X)
E +|= 1= -1y,
~ 4| E(S, |X)E(S 1X) (ES,]X) E(S,|X)
ii E{(s, - Ecs|0)(s, - £¢5,|%0)| X}
— L E(S,|X)ES,)|X) m
(8)

It is straightforward to show that if E actually recovers E(S ,| X), then (8) reduces to the earlier
expression (4) for the design variance of T.

We do not explore specification of E in this paper, beyond noting that many standard
weighting methods, including poststratification and ratio estimation, are special cases. For

example, ratio estimation can be characterised as replacing E(S ,| X) by the weighted average

EXS

E(S, |X) =4 ——
EXJ
Irrespective of whether the W, are defined via (2) or via (5), the “classic” design based
approach to choosing an optimal sampling strategy is to choose an appropriate distribution for
S in order to make the mean squared error (8) above as small as possible, subject usually to a

restriction on the sample size, or more generally, on the sum of the components of S.



Where no restriction is placed on Y, this is an impossible task - a result first noted by
Godambe (1955). A short proof of this famous “nonexistence” result, essentially based on
Basu (1971) goes as follows: Consider the population defined by ¥, >0 and ¥, =0,/ = 1. In
this case (4) is zero (and so our strategy is efficient) if we select our sample so that pr(S, =
11X)=1,s0 E (S1| X) =1, and use the weighting scheme (2). In particular, this strategy remains
efficient when we impose the further restriction pr(S, = 11X) = 0. However, this restricted
strategy is no longer optimal if we apply it to another population where ¥, >0 and ¥, =0, J = 2.
Consequently, no “globally” optimal sampling strategy exists under the design based
approach. Each sampling strategy needs to be looked at anew, since there is no “gold

standard” against which it can be compared.

4. Optimality under the Model Assisted Approach

As the preceding paragraph makes clear, the main problem with the design based
approach to finding an optimal sampling strategy is that it is far too general. By specifying
efficiency criteria in terms of the conditional distribution of T given X and Y, this approach
paints itself into a corner. As a consequence, almost from the very beginning of large scale
application of design based theory in survey sampling, practitioners have adopted “design-
unbiasedness” strategies which have “small design mean squared error” for those realisations
of Y which are, in some sense, “reasonable”.

In practice, such values of Y are typically defined by assuming a model for the
distribution of Y given X. That is, practitioners have been willing to use models in order to
identify “optimal” strategies for estimating 7. However, their assessment of these strategies

has remained design based.

4.1 Model assisted strategies that are also design unbiased

This model assisted approach is comprehensively discussed in the recent text by
Sédrndal, Swensson and Wretman (1992). Typically, the approach still assumes that the
weighting variable W at least approximately satisfies (2). That is, the resulting estimator T is
design-unbiased, or approximately so. However, rather than attempting to specify the
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distribution of the sample design variable S by minimising the design mean squared error (8)
for all possible values of Y, the model assisted approach seeks to minimise the expectation of
this quantity given X. That is, we seek a distribution for S which minimises the average value of
(8) over those Y values “consistent with” the known values in X.

From (8) we see that this expected or “average” (design) mean squared can be written

A w2 EL(S, - E(S,1X0)(S, - E(S,[%0)|X
E[MSE(T|X,Y)|X]=ZZ {( E(S,|X))(E(S,|X) ) }

EYY,|X) .

©)
Given a specification for the first and second order moments of Y given X, this expression can
be minimised, and an optimal sample design (and hence optimal sampling strategy) obtained.
To illustrate, consider the case where the X, are strictly positive and the regression of Y on X is

linear and through the origin. That is
E(Y,|X) = BX,
var(Y,| X) = o] (10)
cov(Y,,YJ| X)=0;1=J.

Then, when the weights W, are determined by (2),

E[MSE(T|X.V)|X]= Y, %

I=1

cov(S,,S,|X)
E(S,|X)E(S,|X)

N N
ol +B Y X,
I=

1J=1

To make things even simpler, we restrict ourselves further to the case of Bernoulli sampling.
Here S, is either one or zero, with the I population unit either included into or excluded from
the sample according to the outcome of an independent Bernoulli trial with “success”
probability 7, = E(S,| X). Consequently

var($,| X) = E(S,|X)[1- E(S,|X)] =7, (1- )
and, for I = J

cov(S,,S,|X) =0.

The expected design mean squared error for this case is therefore

E[MSE(T|X,Y)|X] = i(ﬂi - 1)(012 + XD,

I=1 1

This expression is minimised, subject to the expected sample size constraint



when

Vo +B°X; (11)
YAoj +BX;

1

T, =n

~
]

Observe that when o, is proportional to X, this optimal sample inclusion probability is
proportional to X,. Furthermore, for o, = o >> B, these optimal probabilities are approximately
nN"'. That is, in cases where the regression effect in (10) is insignificant, a strategy that has

equal first order inclusion probabilities is indicated.

4.2 Model assisted strategies that are design unbiased on average

The requirement that T be design unbiased (or approximately design unbiased) that
was imposed in 4.1 is rather strong. An appealing extension of the model assisted approach,
whose motivation follows along the same lines as those leading to the use of the average mean
squared error (9), is discussed in Brewer (1995). This replaces the design unbiasedness
requirement by the weaker requirement that the design bias of T averages out to zero over
possible values of Y. That is, rather than exact (or “approximately exact”) design
unbiasedness, one requires average design unbiasedness, or

E(T-T|X)= E(E(f"—T|X,Y)|X) 0. (12)

Clearly, exact design unbiasedness implies average design unbiasedness. However, as we shall
see in 5.1, there are many other design biased strategies which also satisfy (12). Consequently,

this condition is rather weak. Under the regression model (10) for Y, it translates as

N
> w,s, —1)Y,|Y,X)|X

I=1

EE =F

DEW,S,|X)-DY| X)

= B (EW,S,|X)- DX, =0

or

N N
YEW,S|X)X, = Y X,
1=1 I=1



There is no unique solution to this identity. In particular, all three of the following weighting
methods satisfy it.
N
2%
W, =2L=—- (13)
Y ES,|X)X,
J=1

W, === (14)

and

[F0g=
>

~
Il
—_

W, = (15)

E(S)| )E E(S |X)
Note that the weights (13) and (14) do not depend on 1. Furthermore (13) is the same
for any realisation of S. In an asymptotic (large N, large n) sense, the weights defined by (13)
and (14) are essentially the same, so an asymptotic analysis will lead to the same optimal
sample design for both these weighting systems provided one exists. Also, since
N
E

J=

E E E(S |X)
it follows that a similar asymptotic analysis indicates the weights defined by (15) and (2) are
equivalent, so, in the case of the regression model (10) and Bernoulli sampling, the
asymptotically optimal design under (15) is specified by the inclusion probabilities (11).

A large sample optimal sample design under either (13) or (14) can be obtained. As

usual we assume the regression model (12) and Bernoulli sampling. Then

E(MSE(ﬂ Y,X)| X) - ivar(W,S,|X)(O,2 +B7X7) + i{E(W,S,| X)-1} o2

I=1 I=1

En (1-m,)(0" + X )+E(n -7’0

_ 72

where
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Provided o, /X, does not increase with X,, this average mean squared error is minimised by
choosing a sample design that makes 7 as large as possible, subject to the usual sample size
constraint. Such an optimal sample design is easily seen to be the “extreme” design that sets 7,
=1 for the n units in the population with largest values of X, and 7, = O for the remaining N - n

population units.

4.3 The robustness-efficiency tradeoff

If efficiency is the sole criterion for choice of a strategy and the assumed regression
model (10) holds for the population being surveyed, then using the extreme sample design with
weights defined by either (13) or (14) should lead to a much smaller average mean squared
error than the more traditional design (11) with weights defined by either (2) or (15).

However, it is not unfair to say that most users of the model assisted approach would
prefer the strategy specified by (11) and (15). In general, their main argument for this is that the
weights (15), unlike (13) and (14), lead to an approximately design unbiased estimator (since
they approximate the exactly design unbiased weights (2)), and consequently the sampling
strategy specified by (11) and (15) is more “robust” to model misspecification than the
strategy specified by the extreme design consisting of those n units with largest X-values,
coupled with the weights specified by (13) or (14).

Since any model assumption is inevitably wrong, this argument, on the surface at least,
seems reasonable. However, it is important to realise that the “robustness” achieved by design
unbiasedness is a repeated sampling property. There is no guarantee that a sample generated via
(11) and using the (approximately) design unbiased weights (15) will result in an estimate that
is more accurate than the estimates obtained using the design biased weights (13) or (14) for

the same sample. This issue is discussed in more detail in section 6.

S. Efficiency under the Model Based Approach

As the discussion in the previous two sections has made clear, the concept of design
unbiasedness is crucial to both the design based as well as the model assisted approaches to
defining a sampling strategy. However, under the model based approach this basic requirement
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is abandoned. The argument for doing so is straightforward. Since the distributions of both S
and W are completely known once X is known, their realisations contribute no information
about Y (and functions of Y, like 7)) over and above that already provided by X. That is, once X
is known, S and W become ancillary statistics for inference about Y. Consequently, application
of the Conditionality Principle leads to the conclusion that any inference about 7' should be
conditioned on S and W. Since design unbiasedness does not condition on these values
(averaging in fact over all possible realisations of these statistics), it is an inappropriate criterion
to apply to the estimator T.

The model based approach has been most strongly linked with the work of Richard
Royall and his students. An elegant summary of the philosophy behind this approach is set out
in Royall (1976). Since design unbiasedness is no longer a requirement, the obvious alternative

property we require of T under this approach is that it be model unbiased. That is,
E(T-T|8,X)=0. (16)

In other words, the values of the estimation errors 7 — T obtained for all population realisations
Y consistent with the actual value of X observed, and the sample S actually obtained, should
average out to zero. The natural measure of the accuracy of T as an estimator of T under this
approach is then the variance of T-T given S and X.

In the context of the regression model (10) and the general linear estimator T the model
unbiasedness condition (16) becomes

Y W,S,-DX, =0 (17)

and an optimal sample design is then one that ensures the resulting conditional variance
N

$,X) = i(W,S, ~1’0; = 2 {AS, >0)(W,S, 1)’ + A(S, =0)}o; (18)

I1=1

Var(f" -T

is as small as possible. Here A denotes the indicator function that takes the value 1 if its
argument is true and is zero otherwise.

Note that the variance criterion (18) does not depend on weights for nonsampled units.
Consequently, these can be set to zero. The optimal weights for the sampled units are obtained

by minimising (18) subject to (17). These turn out to be of the form
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N
| YA, =0)X,
S R +1 (19)
S 02 N X2
TTIDAG, >0)0—§

J=1

WI

and it is straightforward to show that in this case

E%

2
f=EYI+ : ;12 EXI
) 71

r

o}

which is the “classic” linear predictor of 7 under the model (10).
The final step in finding an optimal model based sample design is to identify the
distribution for S that minimises (18) when W is defined by (19). Since in this case
N 2
YACS, = O)X,) N

S.X =(’Nl —+ Y A(S, =0)0;
) EA(S,>O)X

Var(f -T

A 1=l
o;
it is not difficult to see that, provided X, / o, is nonincreasing in X,, the optimal sample design is

the extreme design (i.e. the one that selects the n units with largest X-values).

5.1 Model unbiased is also average design unbiased

It is interesting to observe that, for any set of model unbiased weights, (16) implies
E(T-T|X) = E(E(T-7|5,W.X)|X) =0

and so all such weighting methods are also average design unbiased (12). Furthermore,

E[MSET|X.Y)|X]= E E((T -7) | X,Y)| X]

=E:(f—T)2|X]

- EE((T -7) | S,W,X)| X}

= E-Var(f“ - T| S,W,X)| X] .
Since the conditional variance inside the square brackets in the last expression above is

minimised whenever the extreme sample is chosen, it follows that the optimal model based

design for T under (10) also minimises the average mean squared error of this estimator. That
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is, the optimal model based design for T under (10) is also the optimal design for this estimator

under the average design unbiased approach of section 4.2.

6. Choosing a Robust Strategy

So far we have concentrated on choice of an optimal strategy (if one exists) separately
for each of the three approaches considered in this paper. In practice, however, one has to make
a choice between these approaches for any particular application. How does one choose
between the design based, model assisted and model based approaches to identifying a
sampling strategy in such a case? One criterion that is often invoked in making such a choice is
that of robustness. We choose the approach that leads to robust inference (i.e. inference that is
somehow not strongly tied to assumptions about the conditional distribution of Y given X), and,
within the chosen approach identify an optimal strategy.

Now, from the design based point of view, robustness is a non-issue, since inference
under this approach does not need to model the conditional distribution of Y given X.
Consequently, a naive user might argue that its nonparametric nature makes the design based
approach the obvious methodology for choosing a sampling strategy. However, as we have seen
earlier, this choice leads nowhere since there are no relevant optimality criteria that can be
checked under this approach. If one wants both robustness and optimality, one must turn to the
model assisted and model based approaches.

Both of these recognise that one has to model the distribution of a survey variable Y in
terms of available frame information (X) in order to decide on a strategy. Where these two
approaches diverge, however, is on the meaningfulness of imposing the requirement that the
sampling strategy adopted be design unbiased (or at least approximately so). In particular, the
model assisted approach claims robustness as a consequence of imposing (exact or

approximate) design unbiasedness.

6.1 Robustness and design unbiasedness
The basic argument behind the imposition of design unbiasedness (exact or, more
usually, approximate) is that of robustness. One allows the model to dictate the type of sample
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selected, but one does not allow it to also dictate the type of weighting method used. The
weights are typically constrained so that the repeated sampling average value of the estimator T

is equal to, or is approximately equal to, the population total of ¥ no matter what model actually

holds for Y in the population of interest. In the words of a colleague and staunch believer in the

model assisted approach (Ken Brewer), adopting the model assisted approach is like wearing
both a belt and braces to hold up one’s trousers. If the belt (the model) should break, then one
is not going to be totally embarrassed, since the braces (design unbiasedness) should still keep
things in place.

From a model based point of view, however, this robustness argument is unconvincing.
Since, as has already been pointed out, design unbiasedness is not a property associated with
any particular sample, but rather one obtained by averaging over repeated samples, there does
not appear to be any reason to believe that imposition of design unbiasedness on its own is
sufficient to somehow protect the survey analyst from a large estimation error (due to model
misspecification for example) in any particular sample. A very large positive error associated
with sample 1 can be cancelled out by a corresponding large negative error associated with
sample 2. “On average” things are fine, but for any particular sample they may be terrible. One
has only to remember Basu’s elephant fable (Basu, 1971) to realise how foolish complete
reliance on design unbiasedness can be.

The standard counter argument to this criticism is that in large samples, the use of
probability sampling methods allows the law of large numbers to be invoked, ensuring that a
design unbiased (or approximately design unbiased) estimator will converge to the true value of
T. Consequently the robustness property is really a large sample property. While this
observation is certainly true, it also assumes that the survey analyst is only interested in large
sample inference. It also fails to mention how large is “large”. Central limit behaviour may
require sample sizes considerably greater than the survey designer can afford. Furthermore, it
leaves wide open the question of appropriate sample design for small to medium sample sizes.
Many modern survey collections are run under very tight budgets, ruling out large sample sizes.

Sample designs for these collections rely on design unbiasedness at their peril, and modern
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model based designs are increasingly being used in these cases in an effort to maximise

estimation efficiency.

6.2 Model based is not model dependent

As we saw in the preceding section, the model based approach can lead to extreme
samples when taken to its logical conclusion. This has lead to strong criticism of the model
based approach (Hansen, Madow and Tepping, 1983), since such extreme samples can lead to
highly biased estimators if the model is misspecified. What this criticism ignores of course is
that there is no particular reason why one should not investigate the sensitivity of an optimal
model based design to breakdown of the model assumptions. Such analyses have in fact been a
primary focus of model based strategies for some time, and they typically lead to non-extreme
designs which are operationally very similar to many conventional designs.

To illustrate, the model based strategy defined by the extreme sample and the weights
(19) becomes model biased if the true relationship between Y and X deviates from the strict
proportionality relationship defined by (10). If the true relationship between Y and X is in fact
described by a polynomial of degree K, say, then the optimal estimator defined by (10) remains
unbiased provided the sample satisfies a K" order “balance” condition, i.e. where the sample
moments of X of order up to K equal their corresponding population moments (Royall and
Herson, 1973). This particular “model robust” sample design is certainly NOT extreme.

It is important to realise that such model robust strategies are not the “blanket cures”
claimed for probability sampling and design unbiasedness. They provide a reasonable level of
efficiency over a chosen range of alternative potential models for the distribution of Y given X.
In doing so, they lose efficiency at the assumed model (which generates the weights used in f).
This efficiency loss may be considerable if the range of potential alternative models is wide. In
effect, the size of one’s insurance premium goes up the greater the number of unpleasant events
against which one wants to be protected. At the end of the day, it remains the survey designer’s
responsibility to carry out a sufficiently careful analysis of whatever data sources are available
to ensure that the model underlying the chosen strategy is a good representation of the true
distribution of Y given X in the population.
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6.3 Robustness by adapting to the sample data

No amount of pre-selection analysis can prepare one for every eventuality. Models that
seemed entirely appropriate before the sample data were obtained may suddenly look rather
fragile when one has had a chance to actually check out the relationship between Y and X in the
sample data. If one adopts a model based approach this situation is of no great concern. A
crucial advantage to adopting this approach is its flexibility. There is no restriction that the
model used to develop the sample selection procedures (the “design” model) should also be
used in estimation.

In many cases there are distinct advantages in “widening” the scope of possible
models for Y at the estimation stage of a survey, using the information collected in the sample.
A common example of this is poststratification (Holt and Smith, 1979, Valliant 1993;
Nascimento Silva and Skinner 1995). Another example is the widespread use of calibration
weighting methods, where original sample weights derived at the time of sample selection
(based perhaps on some preliminary “design” model for the population) are modified at the
time of estimation so they result in estimates that are unbiased with respect to a final, more
complex, “estimation” model for the population (Deville and Sarndal, 1992). A similar idea
underlies the introduction of nonparametric adjustment factors based on a nonparametric
smooth of the “design” model sample residuals (Chambers, Dorfman and Wehrly 1993).
These adjustment factors can then be applied to the optimal weights under the “design” model
to obtain final weights that are much more robust to model misspecification than the original
optimal weights. Of course, these modified weights are no longer efficient under the “design”
model, but, as always, one has to pay an efficiency premium for robustness.

As an interesting aside, it can be shown that these model based nonparametric weights
are in some circumstances very similar to the (exactly or approximately) design unbiased
weights derived under the model assisted approach (Chambers 1996). Consequently, there
appears to be scope for these two apparently quite distinct approaches to lead to essentially the
same sample inferences. Although further research is needed here, such a confluence may help

resolve the sometimes overheated debate on which approach is “best”.
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6.4 Is probability sampling essential?

By probability sampling we mean a distribution for S such that pr(S ;> O| X) >0 for all
I. This condition is an integral part of any sampling strategy under both the design based and
model assisted approaches. This is because

(1) Efficiency is measured either by var(f— T| Y,X) or by its expected value under the
model, both of which are identically zero if the distribution of S is degenerate;

(i1) The requirement that T be exactly (or approximately) design unbiased leads to weights
that satisfy (or approximately satisfy) (2). Consequently we require E (S . | X) > Ofor all
I. This is guaranteed by probability sampling;

(iii)  Robustness considerations under both approaches require application of the law of large
numbers in order to guarantee that a design unbiased (or approximately design
unbiased) estimator takes values arbitrarily close to the unknown population total T for
large enough populations and samples.

In contrast, probability sampling is not essential under the model based approach. However, this

does not mean that such sampling methods are excluded under this approach. Model based

strategies are typically specified in terms of tight sample constraints (e.g. balance), but no
restriction is placed on the actual method used to select the sample. There are good arguments

(e.g. Royall 1976) for using a probability sampling method to actually select the final sample,

subject to it satisfying these constraints, in order to avoid the unconscious bias that may creep

into the selection process if a nonprobability method of sampling is employed.

In terms of the notation that has been used in this paper, this bias arises because the
distributions of the population vectors S and Y are no longer independent given X. In particular,
the distribution of S depends on Y as well as X. In such cases the model based (and model
assisted) results presented in this paper are no longer valid. Alternative results can be derived,
provided we can specify the nature of the dependence between S, Y and X. This is typically
impossible, or at least very difficult. Consequently, a proponent of the model based approach
will typically favour some form of probability sampling because this guarantees the

distributions of S and Y are independent given X.
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From a model based perspective, therefore, the principal argument for using probability
sampling is to provide robustness against selection bias effects. However, there is another, more
practical, aspect to probability sampling that makes it desirable from a model based point of
view. This is the fact that “balanced” samples (in the general sense of balance, that is where the
sample satisfies conditions which ensure unbiasedness of the proposed estimator within a
specified class of alternative models that are “possible” for the survey population) are typically
easier to achieve provided an appropriate form of randomisation is used.

For example, if the estimator of choice is the simple ratio estimator and the class of
alternative models for the population is specified in terms of polynomial regression models of
order up to and including K, then a balanced sample is one with all its X-moments up to and
including order K equal to the corresponding population moments of X. On expectation over
repeated sampling (i.e. in design expectation) a sample selected with equal inclusion
probabilities for all population units will be balanced (Royall and Pfeffermann, 1982; Royall
and Cumberland, 1988). Consequently, one way of achieving this type of balance is to take
such a probability sample, and use it if its “balance” is adequate. Otherwise, we reject it, and
select another probability sample. This idea of using probability-based “rejection” sampling to
screen for adequately balanced samples has been shown to lead more precise inference than the
corresponding use of unrestricted randomised sampling (Tam and Chan, 1984; Deville, 1992).
In general, therefore, there is no tension between robust model based design and probability
sampling. The former provides a criterion that the sample of choice should (at least
approximately) satisfy, and the latter provides a mechanism for choosing samples to check
against this criterion.

At the end of the day however, one has to ask oneself the question: Is there anything
one can do if the underlying population model is such that our estimator, even when computed
on a “balanced” sample, remains biased? That is, the real population model is not a member of
the class of models underlying the chosen balance criteria, and so balance does not guarantee
unbiasedness with respect to “reality”. Does the fact that this sample has been selected via
some form of randomisation based procedure help? Here it seems that one has no recourse but
to design unbiasedness. That is, the only statements one can make relate to average properties

19



of the estimator over repeated sampling, rather than to the properties of the estimator for the
actual sample selected. Since, as we have already pointed out, these average properties may be
far from the actual behaviour of the estimator over the chosen sample, the inevitable conclusion
one has to draw is that one cannot be protected against everything, and so one has to accept
some risk in survey inference. The key property of good sample design is that it minimises this

risk (by appropriate choice of model, balance criteria etc.) subject to available resources.

6.5 What is the right way to measure precision?

The astute reader will no doubt by now have asked the question: Efficiency of
estimation is all very well, but the bottom line in any statistical analysis of sample survey data
must be an accurate measure of the precision of that analysis. Where is the discussion on how
to measure precision properly? Should one measure the precision of an estimator T by its
design based error variance var(f’ - T| X,Y) or should one measure it by its model based error
variance var(T — T|S,X)?

Which measure is appropriate depends very much on what one means by precision and
when one is measuring precision. Assuming unbiasedness of T, we take precision as being the
variance of the estimation error 7 -7 with respect to all relevant sources of uncertainty at any
particular point in time. Thus, one could argue that since S is unknown prior to sample
selection, the design based error variance is a measure of our uncertainty about the estimation
error before the sample is selected. However, it does condition on Y, which is also unknown
before the sample is selected (and only partially known afterwards). Consequently, a better
measure of precision before sampling is var(T - T| X).

After the sample is selected, however, and remembering that we are assuming the
outcome S is ancillary (e.g. through probability sampling), it is clear that the appropriate
measure of precision is at least the model based frequentist variance var(f - T| S,X), or, if one
is adopting a Bayesian approach, the posterior variance var(T - T| S,X,Y,), where Y, is the
vector of sample Y-values. There is strong empirical evidence (e.g. Royall and Cumberland,
1981) that a variance which does not condition on S (like the design based variance) can give a
very misleading picture of the precision of T once S is known.
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The situation gets even more complicated when we consider the problem of estimating
precision. There are well known methods for estimating the design based error variance
Var(f—T|X,Y) (see Wolter, 1985). Such estimators have model based properties as well
however. Let V denote a design unbiased estimator of Var(f— T| X,Y). That is
E (‘7| X,Y) = var(f’ - T| X,Y). Suppose also (as will usually be the case under either the model

assisted or model based approaches) that T is model unbiased. Then
var(T - T|X) = E(Var(f’ ~T|X,Y)| X) + var(E(f ~T|X,Y)| X)

- E(E(‘7| X,Y)| X) + Var(E(f“— T|X,Y)| X)

- E(V|X)+ var(E(f— T|X,Y)| X)

= E(E(V|8,%)|X)+ var( E(T - T| X, Y)|X)
while

Var(f - T| X) = E(Var(f" - T| S,X)| X) + Var(E(f" - T| S,X)| X)

= E(var(f” - T| S,X)| X)

SO
E(Ea?| S,X) - var(T - T|$,X)| X) - -var(E(f ~T|X,Y))| X)
That is, the average model bias of the design unbiased variance estimator Vis equal to minus
the average variance of the design bias of the estimator 7. In general, therefore, the design
unbiased variance estimator V will be biased low for the “correct” post-sample uncertainty of
the estimator 7. One situation where V will be a reasonable measure of this uncertainty is
where the sample design ensures that the average design bias of T varies little between different
realisations of Y. This will be the case if 7 is also design unbiased, or approximately design
unbiased. Sample designs that ensure this condition is satisfied are typically those that lead to
“balanced” samples for T. Consequently, design based variance estimators like V are usually
“safe” (in the sense of actually estimating the right thing) in balanced samples. In unbalanced
samples, however, they are not to be trusted.
Of course, model unbiased variance estimators can also be derived, and these will

provide “correct” measures of precision irrespective of the type of sample selected. However,

these variance estimators will no longer be correct if the assumed model is misspecified. Hence
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robustness of variance estimation is as important as robustness of estimation under the model
based approach.

In a series of papers, Royall and Eberhardt (1975) and Royall and Cumberland (1978,
1981a, 1981b, 1985) have explored a general approach to robustifying standard least squares
type model based variance estimators. Their method assumes correct specification of the
conditional mean of Y given X and uses a nonparametric moment estimator (rather than a
parametric one) for the leading term in the conditional variance Var(f"— T| S,X). Empirical
results presented by these authors indicate that the general performance of this robust approach
to variance estimation (including confidence interval uniformly good provided
samples are balanced, or are close to balance. In unbalanced samples, however, presence of bias
in the estimator 7" can lead to substantial noncoverage.

Consequently, at the time of writing there does not appear to be a general solution
(either design based or model based) to estimating the precision of a sample survey estimator
a elected. In particular, accurate variance and confidence interval

estimation in unbalanced samples remains an area of current research.
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