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Abstract 
 

This article proposes two approaches for small area estimation under informative 

sampling. The semi-parametric approach makes no assumptions regarding the 

relationship between the area selection probabilities and the true area means. The 

proposed predictors under this approach are approximately unbiased for both the 

sampled and nonsampled areas but the prediction RMSEs can be large particularly for 

nonsampled areas. The parametric approach models the relationship between the area 

selection probabilities and the area means and incorporates this relationship into the 

model for the study variable. As illustrated by a simulation study, the use of this 

approach can reduce the RMSEs quite significantly.  
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1. Introduction 

     It is now generally accepted that small 
area estimation should be based on 
statistical models that permit borrowing 
information across areas or over time. See 
the recent book by Rao (2003) for a 
thorough discussion and comprehensive 
account of available methods. All the 
models and estimators considered so far 
assume either that all the population areas 
are represented in the sample or that the 
sampled areas are selected with equal 
probabilities. Only few studies consider the 
case where the sampling of units within the 
selected areas is with unequal selection 
probabilities, see e.g., Kott (1990), Arora 
and Lahiri (1997) and Prasad and Rao 
(1999). In this article we consider situations 
where the selection of the sampled areas is 
with probabilities that are related to the true 
(unknown) area means, and the sampling of 
units within the selected areas is with 
probabilities that are related to the study 
variable values, even when conditioning on 
the model covariates.  
     The problem with this kind of sampling 
designs is that the model holding for the 
sample data can differ from the model 
holding for the population values, giving 
rise to what is known in the sampling 
literature as ‘informative sampling’. As 
illustrated in this article, failure to account 
for the effects of an informative sampling 
scheme may result in severe bias of the 
small area predictors.      
     We use relationships between the 
population distribution, the sample 

distribution and the sample-complement 
distribution of a study variable developed 
in Pfeffermann and Sverchkov (1999) and 
Sverchkov and Pfeffermann (2000) (see 
next section), in order to derive 
approximately unbiased semi-parametric 
predictors of the area means under 
informative sampling schemes for both 
sampled and nonsampled areas. A fully 
parametric approach that consists of 
modeling the area means as functions of the 
area sample selection probabilities is also 
considered. Empirical results illustrating 
the biases that could be encountered when 
ignoring the sampling process and the 
performance of the proposed predictors are 
shown. We conclude with a brief summary 
that contains an outline for future research. 
 
2. The sample and sample-complement  
    distributions 
 

     Consider a finite population U 
consisting of N units belonging to M areas, 
with iN  units in area i , 

1

M
ii

N N
=

=∑ . Let 

y define the study variable with value ijy  

for unit j in area i and denote by ijx  the 
values of auxiliary (covariate) variables 
associated with that unit. In what follows 
we consider the population y-values as 
random outcomes of the following two 
level model: 
First level- values (random effects) 

1{ ... }Mu u  are generated independently 
from some distribution with probability 
density function (pdf) ( )p if u  for which 

2 2( ) 0 ; ( )p i p i uE u E u σ= = , where pE  
defines the expectation operator  
Second level- values 1{ ... }

ii iNy y  are 
generated from some conditional 
distribution with pdf  ( | , )p ij ij if y x u , for 

1...i M= . 



 2

     We assume a two-stage sampling 
scheme by which in the first stage m areas 
are selected with probabilities 

Pr( )i i sπ = ∈ , and in the second stage in  
units are sampled from area i  selected in 
the first stage with probabilities 

| Pr( | )j i ij s i sπ = ∈ ∈ . Note that the 
sample inclusion probabilities at both 
stages may depend in general on all the 
population or area values of  y, x and 
possibly also design variables z, used for 
the sample selection but not included in the 
working model. Also, the population areas 
are not necessarily the same as the primary 
sampling units (PSUs). Denote by iΙ  and 

ijΙ  the sample indicator variables at the two 

stages ( 1iΙ =  iff i s∈  and similarly for 

ijΙ ), and by 1/i iw π=  and | |1/j i j iw π=  
the corresponding first and second stage 
sampling weights. 
     Following Pfeffermann et. al (1998), we 
define the conditional sample pdf of iu , 
i.e., the first level pdf  of iu  for area i s∈  
as, 

( ) ( | 1)
Pr( 1 ) ( )

Pr( 1)

def

s i i i

Bayes
i i p i

i

f u f u
u f u

= Ι =

Ι =
=

Ι =

                       (2.1) 

     Similarly, the conditional sample-
complement pdf, i.e., the conditional pdf of 

iu  for area i s∉  is defined in Sverchkov 
and Pfeffermann (2000) as, 

( ) ( | 0)
Pr( 0 ) ( )

Pr( 0)

def

c i i i

Bayes
i i p i

i

f u f u
u f u

= Ι =

Ι =
=

Ι =

                      (2.2) 

Notice that the population, sample and 
sample-complement pdfs of iu  are the same 
iff Pr( 1 | ) Pr( 1)i i iu iΙ = = Ι = ∀ , in which 
case the sampling of areas is 
noninformative.  
     The second level sample pdf and 
sample-complement  pdf of  ijy  are  defined  
 
 
 
 

similarly to (2.1) and (2.2) as, 

( | , ) ( | , , 1)

Pr( 1 , , ) ( , )

Pr( 1 , )

def

s ij ij i ij ij i ij

ij ij ij i p ij ij i

ij ij i

f y x u f y x u

y u f y u

u

= Ι =

Ι =
=

Ι =

x x

x

(2.3)

( | , ) ( | , , 0)

Pr( 0 , , ) ( , )

Pr( 0 , )

def

c ij ij i ij ij i ij

ij ij ij i p ij ij i

ij ij i

f y x u f y x u

y u f y u

u

= Ι =

Ι =
=

Ι =

x x

x

(2.4) 

Here again the population, sample and 
sample-complement pdfs of ijy  are the 

same iff Pr( 1 , , )ij ij ij iy uΙ = x  

Pr( 1 , )ij ij iu j= Ι = ∀x , in which case the 

sampling of units within the selected areas 
is noninformative. The model defined by 
(2.1) and (2.3) defines the two-level sample 
model analogue of the population model 
defined by ( | )p i if u z  and ( | , )p ij ij if y x u ; 
see also Pfeffermann et. al (2001).  
     The following relationships between the 
three distributions are established in 
Pfeffermann and Sverchkov (1999) and 
Sverchkov and Pfeffermann (2000) for 
general pairs of random variables 1 2,v v  
measured on elements i U∈ , where 

,p sE E  and cE  define respectively 
expectations under the population, sample 
and sample-complement distributions and 
( ,i iwπ ) denote the sample inclusion 
probabilities and the sampling weights.  

 

 
1 2 1 2

1 2 1 2

2

( ) ( | , )

( , ) ( )
( )

s i i i i

p i i i p i i

p i i

f v v f v v i s

E v v f v v
E v

π
π

= ∈

=
           (2.5) 

1 2
1 2

2

( )
( )

( )
s i i i

p i i
s i i

E w v v
E v v

E w v
=               (2.6a )    

2
2

1( )
( )p i i

s i i

E v
E w v

π =                  (2.6 b)   
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1 2 1 2

1 2 1 2

2

1 2 1 2

2

( ) ( , )

[(1 ) , ] ( )
[(1 ) ]

[( 1) , ] ( )
[( 1) ]

c i i i i

p i i i p i i

p i i

s i i i s i i

s i i

f v v f v v i s

E v v f v v
E v

E w v v f v v
E w v

π
π

= ∉

−
=

−

−
=

−

        (2.7) 

      

1 2
1 2

2

[(1 ) ]
( )

[(1 ) ]
p i i i

c i i
p i i

E v v
E v v

E v
π
π

−
=

−
 

            1 2

2

[( 1) ]
[( 1) ]

s i i i

s i i

E w v v
E w v

−
=

−
          (2.8) 

Defining 1 2,i i iv u v= =constant yields the 
relationships holding for the random area 
effects iu . Defining 1ij ijv y= ; 

2 ( , )ij ij iv x u= and substituting |j iπ  and 

|j iw  for iπ  and iw  respectively, yields the 
relationships holding for the observations 

ijy . 
 
3. Optimal Small Area Predictors 

     The target population parameters are the 
small area means 

1
/iN

i ij ij
Y y N

=
= ∑  for 

1...i M= , (the means in sampled and 
nonsampled   areas). Let    

|{( , , )s ij j i iD y w w= , 
  ( , ) ; ( , , ),k kl kli j s x∈ Ι Ι ( , ) }k l U∈  define the 

known data. The MSE of a predictor ˆ
iY  

with respect to the population pdf given sD  
is, 

2

2

ˆ ˆ( | ) [( ) | ]
ˆ[ ( | )] ( | )

i s p i i s

i p i s p i s

MSE Y D E Y Y D

Y E Y D V Y D

= −

= − +
         (3.1)        

The variance ( | )p i sV Y D  does not depend 
on the form of the predictor and hence the 

MSE is minimized when ˆ ( | )i p i sY E Y D= .   
     In what follows we distinguish between 
sampled areas ( 1iΙ = ) and nonsampled 
areas ( 0iΙ = ). Denote by is  the sample of 
units in sampled area i . Then, for the 
sampled areas, 

1( | , 1) [ ( | )
i

p i s i p ij sj s
i

E Y D E y D
N ∈

Ι = = ∑  

 ( | , 1, 0)]
i

p il s i ill s
E y D

∉
+ Ι = Ι =∑     (3.2) 

1 [ ( | , 1)]
i i

ij c il s ij s l s
i

y E y D
N ∈ ∉

= + Ι =∑ ∑
For areas i  not in the sample, 

1

1( | , 0) ( | , 0)iN
p i s i p ik s ik

i

E Y D E y D
N =

Ι = = Ι =∑         

              
1

1 ( | , 0)iN
c ik s ik

i

E y D
N =

= Ι =∑      (3.3)                

The predictors in (3.2) and (3.3) can be 
written in a single equation as, 

1

1( | ) { iN
p i s ik ikk

i

E Y D y
N =

= Ι +∑  

1
[ (1 ) | , 1]}iN

c ik ik s i ik
E y D

=
− Ι Ι = Ι∑       (3.4) 

1

1 [ | , 0](1 )iN
c ik s i ik

i

E y D
N =

+ Ι = − Ι∑    

 
4. Bias of Small Area Predictors when 
    ignoring the Sampling Scheme 
 

     Consider for convenience the case of a 
sampled area. Ignoring the sampling 
scheme implies an implicit assumption that 
the sample-complement model is the same 
as the sample model, such that 

,
ˆ ( | , 1)

i i
i IGN ij s il s ij s l s

Y y E y D
∈ ∉

= + Ι =∑ ∑
 where ( | , 1)s il s iE y D Ι =  defines the 
expectation of y with respect to the sample 
distribution. Hence, 

,
ˆ[( ) | , 1]p i IGN i s iE Y Y D− Ι =  

1 ( | , 1)
i

s il s il s
i

E y D
N ∉

= Ι =∑  

1 ( | , 1)
i

c il s il s
i

E y D
N ∉

− Ι =∑  

|

|

( , | , 1)1
[( 1) | , 1]i

s il l i s i
l s

i s l i s i

Cov y w D
N E w D∉

Ι =
= −

− Ι =∑   (4.1) 

with the second equality following from 
(2.8). Thus, unless the study values ily  and 
the sampling weights |l iw  within the 
selected areas are uncorrelated, ignoring the 
sampling scheme results in biased 
predictors (see also the empirical results).  
A similar expression of the bias can be 
obtained for nonsampled areas. 
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Example 

     Let the population model be the ‘unit 
level random effects model’ 

;ij i ijy u eµ= + +  
2 2~ (0, ) , ~ (0, )i u ij eu N e Nσ σ            (4.2)             

with the random effects and residual terms 
being mutually independent. Consider the 
common sampling scheme by which m 
areas are sampled with probabilities 

i ic Nπ = ×  for some constant c, and 

| 0 /j i in Nπ =  (fixed sample size 0n  within 
the selected areas), such that 

|Pr[( , ) ]ij i j ii j s constπ π π= ∈ = = . (For 
fixed m, /c m N= .) Note that sampling 
within the selected areas is noninformative 
in this case but if the area sizes iN  are 
correlated with the random effects iu , the 
selection of the areas is informative (say, 
the areas are school districts, the study 
variable measures children’s attainments, 
the large districts are rich areas with high 
school attainments). 
     Suppose that the area sizes can be 
modeled as 2log( ) ~ ( , )i i MN N Au B σ+  
with A>0, implying that, 

 
2

( | ) exp( )
2
M

p i i iE u Au B
σ

π + +p . It 

follows that (see Pfeffermann et al. 1998 
example 4.3), 

( ) ( )
( )

( )
p i i p i

s i
p i

E u f u
f u

E
π

π
=       

           2 2( , )u uN Aσ σ=                           (4.3) 

so that 2( ) ( ) 0s i u p iE u A E uσ= ≠ = . The 
fact that the random effects in the sample 
have in this case a positive expectation is 
easily explained by the fact that the 
sampling scheme considered tends to select 
the areas with large positive random 
effects. Note, however, that by defining 

2* uAµ µ σ= +  and * 2
i i uu u Aσ= − , the 

model holding for the sample data in 
sampled areas is **ij i ijy u eµ= + + , 

* 2 2~ (0, ) , ~ (0, )i u ij eu N e Nσ σ , which is 
the same as the population model. Thus, the  

optimal predictors under the population 
model for the area means i iuθ µ= +  in 
sampled areas ( 1iΙ = ), are still optimal 
under the sample model. (Recall that for the 
present example the sampling scheme 
within the selected areas is 
noninformative.) 
     Next consider nonsampled areas. By 
(2.7), 

 

[(1 ) | ] ( )
( )

(1 )

( ) ( | ) ( )
(1 ) (1 )

p i i p i
c i

p i

p i p i i p i

p i p i

E u f u
f u

E

f u E u f u
E E

π
π

π
π π

−
=

−

= −
− −

      (4.4)  

Let 

1
( ) [ ]M

p p ll
E m E

=
= Ι∑ 1

[ ( |{ })]M
p p l il

E E N
=

= Ι∑
1

[ ] ( )M
p i p il

E MEπ π
=

= =∑  define the 

expected number of sampled areas, such 
that ( ) ( ) /p i pE E m Mπ = . If the number 

of sampled areas is fixed, ( )pE m m= . By 
(4.4) and (2.5),  

( ) ( ) ( )
( )

( )
p i p s i

c i
p

Mf u E m f u
f u

M E m
−

=
−

 and 

hence,  
( ) ( )

( )
( )

p s i
c i

p

E m E u
E u

M E m
= −

−
  

            
2( )

( )
p u

p

E m A
M E m

σ
= −

−
                       (4.5) 

     Here again the negative expectation of 
the random effects pertaining to 
nonsampled areas is easily explained by the 
tendency of the sampling scheme to sample 
the areas with large positive random 
effects. It follows form (4.5) that ignoring 
the sampling scheme underlying the 
selection of the areas and predicting, for 
example, the sample means in nonsampled 
areas by the average of the predictors in the 
sampled areas yields in this example biased 
predictors with bias,    

2 2 ( )
( ) [ ]

( )
p

u u
p

E m
B i s A A

M E m
σ σ∉ = − −

−
    

2

( )u
p

MA
M E m

σ=
−

                             (4.6) 
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5. Inference 

     The first step of the proposed approach 
is to fit a model to the sample data, which 
of course is a necessary step in any small 
area estimation problem. Notice that 
although we consider informative sampling, 
the sample model can be identified from the 
sample data using standard techniques, see, 
e.g., Rao (2003) for details.  
     In what follows we suppose therefore 
that an adequate model has been fitted to 
the sample data, and in order to illustrate 
the estimation procedures we assume that 
this model is the ‘nested error regression 
model’, 

2' ; | 1 ~ (0, ) ,ij ij i ij i i uy x u e u Nβ σ= + + Ι =  
2| 1 ~ (0, )ij ij ee N σΙ =                              (5.1) 

 

The model defined by (5.1) is in common 
use for small area estimation problems, see 
e.g., Battesse et al. (1988). Suppose further 
that the sampled areas had been included in 
the sample with inclusion probabilities iπ , 

1...i m= , and that in  units were sampled 
from area i  in the sample with probabilities 

|j iπ . Finally, we assume that, 

| |( | , , ) ( | , )s j i ij ij i s j i ij ijE w x y u E w x y=

exp( )i ij ijc ax by= +                              (5.2) 

where ic >0, a and b  are fixed parameters.  
 

Comment: As with the sample model (5.1), 
the expectation in (5.2) refers to the sample 
distribution within the areas. The 
relationship in the sample between the 
sampling weights and the observed data can 
be identified and estimated therefore from 
the sample data, see Pfeffermann and 
Sverchkov (1999, 2003) for discussion and 
examples. On the other hand, the 
relationship between the sampling weights 

iw  and the area means is more difficult to 
detect since the area means are not 
observable, and in the rest of this section 
we do not model this relationship. See 
Section 6 and also Pfeffermann et al. 
(2001) for examples of modeling the area 
selection probabilities. Kim (2003) assumes 
the model (5.1) for the population values 
and a similar model to (5.2) for the 
sampling probabilities within the areas but 

it is assumed that all the areas in the 
population are represented in the sample. 
     As established in Section 3, the optimal 
predictor for a sampled area i  is,     

( | , 1)p i s iE Y D Ι = = 
 
[ ( | , 1)] /

i i
ij c il s i ij s l s

y E y D N
∈ ∉

+ Ι =∑ ∑ . 

In order to compute the expectations 
( | , 1)c il s iE y D Ι =  we proceed as follows: 

First, by (2.7), (5.1) and (5.2), 
( , , 1)c il il i if y x u Ι =  

|

|

[ ( , , ) 1] ( , )
( , ) 1

s l i il il i s il il i

s l i il i

E w x y u f y x u
E w x u

−
=

−
 

 
21 ( )

1
ij il eil

il e e

y u bσλ φ
λ σ σ

− −
=

−
 

     
1 1 ( )

1
il il

il e e

y uφ
λ σ σ

−
−

−
                   (5.3) 

where  'il il iu x uβ= + , 
2 2exp[( / 2) ]il i e il ilc b ax buλ σ= + +   

|( | , )s l i il iE w x u=  and φ  is the standard 
normal pdf. Notice that if 0b =  (selection 
probabilities within the sampled areas only 
depend on the x-values and hence the 
sampling is noninformative), the pdf in 
(5.3) reduces to the conditional normal 
density defined by (5.1). Second, by (5.3), 

2

( | , , 1)

1

c il il i i

il
il e

il

E y x u

u bλ σ
λ

Ι =

= +
−

                            (5.4) 

Finally,  

  

( | , 1)
[ ( | , , 1)]
[ ( | , , 1)]

c il s i

s c il s i i

s c il il i i

E y D
E E y D u
E E y x u

Ι =
= Ι =
= Ι =

               (5.5) 

where the exterior expectation is with 
respect to the distribution of | , 1i s iu D Ι = . 
Under the model (5.1), the latter 
distribution is known to be normal with 
mean ˆ [ ' ]i i i iu y xγ β= −  and variance 

2
i iσ γ , where 

1
( , ) ( , ) /in

i i ij ij ij
y x y x n

=
= ∑  

are the sample means of (y,x) in sampled 
area i ,  2 2 / ( | )i e i i in Var y uσ σ= =  and 

2 2 2/[ ]i u u iγ σ σ σ= + .  
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Thus, for the sampled areas 
( | , 1)c il s iE y D Ι =  is obtained by 

computing the expectation of the right  
hand side  of (5.4) with  respect to the  
normal distribution  of  

| , 1i s iu D Ι = . We find that,  
                    

2
1

ˆ( | , 1) ( ' )
1( | , 1)

1

c il s i il i

e s s i
il

E y D x u

b E D

β

σ
λ−

Ι = = +

+ Ι =
−

        (5.6)   

Notice that if b=0 (noninformative 
sampling within the areas) 

( | , 1)c il s iE y D Ι = = ˆ'il ix uβ + , which is 
the standard result.  

     The expectation 1

1( | , )
1s s i

il

E D
λ− Ι

−
can 

be computed numerically. Alternatively, for 
the practical case where the sampling 
fractions within the selected areas are very 
small, |( | , )il s l i il iE w x uλ =  is under mild 
conditions much larger than 1 and therefore 
we may  approximate,  

1

1( | , )
1s s i

il

E D
λ− Ι ≅

−
1[(1 ) | , ]s il s iE Dλ−+ Ι .    

The latter expectation can be computed  
analytically yielding, 

2

2 2 2

ˆ( | , 1) [1

1 ˆexp( )]
2 2

c il s i il e

e i i
il il

i

E y D u b

b bax bu
c

σ

σ σ γ

Ι = = + +

− − − +
(5.7) 

where ˆ ˆ'il il iu x uβ= + . 
It follows from (3.2) and (5.7) that for 
given parameters 2 2{ , , , , , }i u ec a bβ σ σ , the 

optimal predictor of iY  for sampled area i  
is, 

( | , 1)p i s iE Y D Ι = =  

1 ˆ{( ) [ ( ) ' ]i i i i i i i
i

N n n y X x
N

θ β− + + −

2( )i i eN n bσ+ −  
2 2

ˆexp(
2

e e
i

i

b b bu
c
σ σ

+ − −   

2 2

) exp( ' )}
2 i

i i
il ill s

b
ax bx

σ γ
β

∉
+ − −∑ (5.8) 

where ˆ ˆi i iu Xθ β= +  is the optimal 
predictor of the area mean 

' ( | )i i i p i iX u E Y uθ β= + = . The terms 

in (5.8) that are multiplied by b correct for 
the difference between the sample-
complement expectation and the sample 
expectation. Notice  on  the other  hand that 
even under noninformative sampling (b=0), 
the predictor implied by (5.8) differs from 
the predictor îθ  in common use. This is so 
because the target parameter is defined to 
be the finite area mean iY  rather than iθ , 
see Rao (2003, Eq. 7.2.37).  
     For the nonsampled areas, the optimal 
predictor of the area means is defined in 
(3.3) to be, ( | , 0)p i s iE Y D Ι =      

1
( | , 0) /iN

c ik s i ik
E y D N

=
= Ι =∑ . By (2.8) 

and then (2.6), 
( | , 0) [ ( | , ) | ]c ik s i c p ik ik i sE y D E E y x u DΙ = =  

( 1) ( | , )
[ | ]

( | ) 1
i p ik ik i

s s
s i s

w E y x u
E D

E w D
−

=
−

 

|

|

( | , )
[( 1) | ]

( | , )
( | ) 1

s k i ik ik i
s i s

s k i ik i

s i s

E w y x u
E w D

E w x u
E w D

−
=

−
  (5.9)  

Computing the two expectations in the 
numerator of the last expression of (5.9) 
employing (5.1) and (5.2), yields after some 
algebra, 
                           

( | , 0)c ik s iE y D Ι = = 2'ik ex bβ σ+ +
( 1)[ | ]
( | ) 1

i i
s s

s i s

w uE D
E w D

−
−

                     (5.10) 

Estimating  [( ' ) | ]i p ij ij iu E y x uβ= −  and 

( | )s i sE w D  by the corresponding sample 

means ,ˆ ( ' ) /
i

S i ij ij i
j s

u y x nβ
∈

= −∑  and 

ˆ ( | ) /s i s ii s
E w D w m

∈
= ∑  (application of 

the method of moments), and substituting 
the estimates in (5.10), gives the following 
simple estimate for ( | , 0)c ik s iE y D Ι = ,  

( | , 0)c ik s iE y D
∧

Ι = = 2'ij ex bβ σ+ +  

,ˆ( 1)

( 1)

i S i
i s

i
i s

w u

w
∈

∈

−

−

∑
∑

                                  (5.11) 

     It follows from (3.3) and (5.10) that for 
given parameters 2 2{ , , , , , }i u ec a bβ σ σ , the 
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optimal predictor of iY  for area i  not in the 
sample is, 
ˆ ( | , 0)p i s iE Y D Ι = = 2'i eX bβ σ+  

+
,ˆ( 1)

( 1)

i H i
i s

i
i s

w u

w
∈

∈

−

−

∑
∑

                               (5.12) 

 
6. Parametric estimation 

     The analysis of the preceding section 
makes no assumptions regarding the form 
of the relationship between the area 
selection probabilities and the area means. 
However, in situations where this 
relationship can be modeled adequately, 
more efficient predictors can be obtained by 
incorporating the area selection 
probabilities into the model, thus making 
the sampling scheme noninformative.  
     For example, suppose that the 
population model is the ‘unit level random 
effect model’ 
 ij i ijy u eµ= + +    

2~ (0, )i uu N σ ; 2~ (0, )ij ee N σ  

1... , 1... ii M j N= =                            (6.1)          
Suppose further that the area sizes can be 
modeled as,  1 2[ exp( )]i iN Int K K u= ×  
where 1K  and 2K  are constants, and that 
the selection of the areas is with 
probabilities iπ  that are proportional to the 
sizes iN . Then, to a close approximation, 
the distribution of | log( )i iu π  is normal 
and the population model can be written as, 

0 1

2 2

log( ) ;

~ (0, ) , ~ (0, )

ij i ij

i i ij

i ij e

y u e

e

N e Nη

µ

β β π η

η σ σ

= + +

= + + +          (6.2) 

     For the case where the selection of the 
samples within the sampled areas is with 
equal probabilities, the population model 
defined by (6.2) holds also for the sample 
data (the sampling scheme is 
noninformative for this model), and the 
small area means can be predicted using 
standard procedures. Thus, by incorporating 
the area selection probabilities into the 
model, the sampling scheme becomes 
noninformative. Notice, however, that the 
use of this model requires knowledge of the 

area selection probabilities for all 
1...i M= . See Rubin (1985) and Skinner 

(1994) for more general results and 
discussion of the implications of including 
the selection probabilities among the 
covariates of statistical models.  
     When the selection of the samples 
within the sampled areas is informative, 
one can either model the relationship 
between the selection probabilities and the 
study variable and apply the methodology 
described in Section 5, (see also Kim 2003, 
this article assumes that all the population 
areas are represented in the sample), or use 
the weighted direct estimates of the area 
means as the observed data. (In practice, 
the only available data to the analyst are 
often the direct estimates anyway.) See 
Kott (1990), Arora and Lahiri (1997) and 
Prasad and Rao (1999) for modeling of the 
direct area estimates. All these studies, 
however, assume implicitly noninformative 
sampling. 
     Suppose that the direct estimates are the 
Hajek’s estimates, 

, | |
ˆ /

i i
H i j i ij j ij s j s

w y wθ
∈ ∈

= ∑ ∑            (6.3) 

where ( | )i i p i iu E Y uθ µ= + =  defines 
the i-th area mean. Then, under (6.2), 
combined with the common assumption 
that 2

,
ˆ , ~ (0, )H i i i i N ζθ θ ζ ζ σ= +  where 

iζ  defines the sampling error in area i , the 
model holding for the direct estimators is, 

2
,

ˆ , ~ (0, )H i i i i N ζθ θ ζ ζ σ= + ;      

0 1

2

log( )

~ (0, )
i i i

i N η

θ β β π η

η σ

= + +
                    (6.4)     

The model defined by (6.4) is the familiar 
Fay and Herriot (1979) model that is in 
common use for small area estimation. 
Notice again that this model can be fitted 
using standard procedures (ignoring the 
sampling process).   
 
7. Monte-Carlo simulation study        

     In order to illustrate the biases that could 
occur when ignoring an informative 
sampling scheme (employing standard 
predictors), and to study the performance of 
the predictors proposed in this article that 
account for the sampling process, we 
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designed a small simulation study. The 
study was carried out as follows: 
 

1- Generate population random area effects 
2~ (0, )i uu N σ  and area sizes 

[1000 exp[ /(5 )]i i uN Int u σ= ×  for 

1...i M=  ( 2 16,uσ =  M=150 population 
areas).      

2- Generate y-values using the model (6.1) 
with 220, 100eµ σ= = . 
 

3- Select areas with probabilities 
150

1
/i i ij

mN Nπ
=

= ∑ (m=90 sampled areas) 

using Systematic PPS sampling. 
 

4- Sample in  units from selected area i  

with probabilities | 0 1
/ iN

j i ij ikk
n z zπ

=
= ∑  

( 0 5in n= =  sampled units in each 
selected area), where exp( / 50)ij ijz y= , 
again using Systematic PPS sampling. 
These selection probabilities satisfy the 
relationship (5.2) with 0, (1/ 50)a b= = −  
and 0( / ) ( )i i ijc N n E z= . 
 

Repeat Steps 1-4 1000 times. 
 

     For each sample we computed the 
following 4 predictors of the area means: 
 

A- ˆ ˆ ˆ(1 )i i i iy yθ γ γ= + −  for sampled areas, 
ˆ ˆ ˆ[ (1 ) ] /i i i ii s

y y m yθ γ γ
∈

= + − =∑  for 

nonsampled areas; /ii s
y y m

∈
= ∑ , 

2 2 2
0ˆ ˆ ˆ ˆ/[ / ]i u u e nγ σ σ σ= + , 2 2ˆ ˆ( , )u eσ σ  

computed  by method of moments; see 
Prasad and Rao (1990).  
The predictors { îθ } are the ordinary 
predictors under noninformative sampling 
(ignoring the sample selection), when the 
area sizes are sufficiently large such that 

1
/ 0iN

ij ik
e N

=
≅∑   

 

B- ,
ˆ
H iθ  (Eq. 6.3) for sampled areas (‘direct 

estimator’), , ,
ˆ /H i i H i ii s i s

w wθ θ
∈ ∈

= ∑ ∑%  

for nonsampled areas.  
 

C- Proposed ‘semi-parametric’ predictors 
assuming the relationship (5.2) for the 

weights |j iw ; The predictors are defined by 
(5.8) for the sampled areas and by (5.12) 
for  the    nonsampled   areas  with   0a = , 

1,ijx β µ= = . Note that under the model 
(6.1) and the sampling scheme used to 
select the areas, the sample random effects 
also have a normal distribution but with a 
different expectation, thus justifying the use 
of the predictors (5.8) and (5.12). See 
Pfeffermann et. al (1998). The unknown 
model parameters have been replaced by 
sample estimates: 2 2ˆ ˆ( , )u eσ σ  computed by 
method of moments, ˆ yµ = ; the parameters 
b  and ic  indexing the relationship between 
the weights |j iw  and the study variable (Eq. 
5.2) were estimated by fitting the model 

| exp( )j i i ij ijw c by ε= + , using the REG 
and NLIN procedures of SAS.   
 

D- Fay-Herriot predictors obtained by 
fitting the model (6.4) (parametric 
approach); 2

ησ  estimated by the Fay-

Herriot (1979) method, 2
ζσ  taken as known 

(computed as, 2 2
,

ˆˆ ( ) /H i ii s
Y mςσ θ

∈
= −∑ ). 

The assumption that the sampling error 
variance is known is common. Estimating 
the variance from the sample data yields 
very similar results. 0 1

ˆ ˆ ˆ( , )β β β=  
computed by generalized least squares with  

,Ĥ iθ  as the dependent variable values and 
2 2( , )η ζσ σ  replaced by  2 2ˆ ˆ( , )η ζσ σ . 

     The results of the simulation study are 
displayed in Figures 1-4. Figures 1 and 2 
show for each area the empirical prediction 
bias and root mean square error (RMSE) of 
the four predictors over all the simulations 
for which that area has been sampled, 
Figures 3 and 4 show for each area the bias 
and RMSE of the four predictors over all 
the simulations for which that area has not 
been sampled. Denote by trY  the true area 
mean in simulation r, r=1…1000 and let 
ˆ
trY  represent any of the predictors. Define 

1trD =  if area t was sampled in simulation 
r and 0trD =  otherwise. For a given area t, 
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the prediction bias and RMSE when this 
area has been sampled is computed as,  

1000

1
1000

1

ˆ( )tr tr trr
t

trr

D Y Y
Bias

D
=

=

−
= ∑

∑
; 

1000 2
1

1000

1

ˆ( )tr tr trr
t

trr

D Y Y
RMSE

D
=

=

−
= ∑

∑
   (7.1) 

The prediction bias and RMSE when area t 
has not been sampled are obtained by 
replacing trD  by (1 )trD−  in (7.1). The 
four Figures show also at the bottom for 
each predictor the average of the 
corresponding measure over all the 150 
areas. 
     The conclusions from this simulation 
study are clear-cut and can be summarized 
as follows: 
1- Ignoring an informative sampling 
scheme can result in severe prediction bias 
for both sampled and nonsampled areas. 
 

2- The direct (design based) estimators are 
approximately unbiased in sampled areas 
but are biased for the area means of 
nonsampled areas. This result is explained 
by the fact that the estimator ,H iθ%  estimates 
the average of the area means in the 
population, which is different from the 
average of the nonsampled area means. For 
the present population model under which 
the true area means iθ  are exchangeable, 
the predictor, 

, ,
ˆ ˆ( 1) / ( 1)H i i H i ii s i s

w wθ θ
∈ ∈

= − −∑ ∑  is 

approximately design unbiased for the area 
means in nonsampled areas, but this 
property does not necessarily hold for other 
models. In fact, no approximately design 
unbiased predictors for the area means in 
nonsampled areas exist in general.  
 

3- The use of the semi-parametric approach 
yields unbiased predictors for both the 
sampled and nonsampled areas but with 
large RMSEs for nonsampled areas 
compared to the use of the fully parametric 
approach. Notice in this respect that under 
the present model and sampling scheme 
used for the selection of the areas, 

( ) [ /( )] / 5c i uE m M mθ µ σ= − −  and  
2 2 2( ) [ /( ) ]( / 5)c i u uVar mM M mθ σ σ= − − .

(The parameter / 5uσ  indexes the 
distribution of the area sizes. See step one 
of the design of the simulation study.) For 

220, 150, 90, 16uM mµ σ= = = =  as in 
the present study,  ( ) 18.8c iE θ =  and 

( ) 13.6c iVar θ = . Thus, by predicting the 
area means of nonsampled areas by their 
true expected value of 18.8, the RMSE of 
the prediction error is 13.6 3.69= , 
which is only slightly lower than the 
average RMSE of 3.79 achieved by use of 
the semi-parametric predictors (see bottom 
of Figure 4). However, the use of the 
expected values under the model or the 
semi-parametric approach do not account 
for the relationship between the area means 
and the sample selection probabilities. As 
illustrated in the present study, including 
this relationship as part of the model can 
reduce the RMSE quite substantially, 
particularly for nonsampled areas where no 
direct estimates exist.  
 
8. Summary 

     This article proposes two approaches for 
small area estimation under informative 
sampling. The semi-parametric approach 
makes no assumptions regarding the 
relationship between the area selection 
probabilities and the true area means. The 
proposed predictors under this approach are 
approximately unbiased for both the 
sampled and nonsampled areas but the 
prediction RMSEs can be large particularly 
for nonsampled areas.  
     The parametric approach models the 
relationship between the area selection 
probabilities and the area means and 
incorporates this relationship into the model 
for the study variable. As illustrated by the 
simulation study, the use of this approach 
can reduce the RMSEs quite significantly 
but a major issue that needs to be 
investigated is the robustness of the 
parametric predictors to misspecification of 
the model relating the area selection 
probabilities to the area means. 
     Two other outstanding issues are the 
development of appropriate MSE 
estimators for the nonparametric approach 
and the extension of this approach to other 
plausible sample models. 
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