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Abstract

This article proposes two approaches for small area estimation under informative
sampling. The semi-parametric approach makes no assumptions regarding the
relationship between the area selection probabilities and the true area means. The
proposed predictors under this approach are approximately unbiased for both the
sampled and nonsampled areas but the prediction RMSESs can be large particularly for
nonsampled areas. The parametric approach models the relationship between the area
selection probabilities and the area means and incorporates this relationship into the
model for the study variable. As illustrated by a simulation study, the use of this

approach can reduce the RMSEs quite significantly.
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1. Introduction

It is now generally accepted that small
area estimation should be based on
statistical models that permit borrowing
information across areas or over time. See
the recent book by Rao (2003) for a
thorough discussion and comprehensive
account of available methods. All the
models and estimators considered so far
assume either that all the population areas
are represented in the sample or that the
sampled areas are selected with equal
probabilities. Only few studies consider the
case where the sampling of units within the
selected areas is with unequal selection
probabilities, see e.g., Kott (1990), Arora
and Lahiri (1997) and Prasad and Rao
(1999). In this article we consider situations
where the selection of the sampled areas is
with probabilities that are related to the true
(unknown) area means, and the sampling of
units within the selected areas is with
probabilities that are related to the study
variable values, even when conditioning on
the model covariates.

The problem with this kind of sampling
designs is that the model holding for the
sample data can differ from the model
holding for the population values, giving
rise to what is known in the sampling
literature as ‘informative sampling’. As
illustrated in this article, failure to account
for the effects of an informative sampling
scheme may result in severe bias of the
small area predictors.

We use relationships
population  distribution,

between the
the  sample

distribution and the sample-complement
distribution of a study variable developed
in Pfeffermann and Sverchkov (1999) and
Sverchkov and Pfeffermann (2000) (see
next section), in order to derive
approximately unbiased semi-parametric
predictors of the area means under
informative sampling schemes for both
sampled and nonsampled areas. A fully
parametric approach that consists of
modeling the area means as functions of the
area sample selection probabilities is also
considered. Empirical results illustrating
the biases that could be encountered when
ignoring the sampling process and the
performance of the proposed predictors are
shown. We conclude with a brief summary
that contains an outline for future research.

2. The sample and sample-complement
distributions

Consider a finite population U
consisting of N units belonging to M areas,

. . - M
with N, unitsinarea I, zilei =N. Let
y define the study variable with value Y,

for unit j in area iand denote by X; the

values of auxiliary (covariate) variables
associated with that unit. In what follows
we consider the population y-values as
random outcomes of the following two
level model:

First level- values (random effects)

{u,..u,, } are generated independently
from some distribution with probability
density function (pdf) f (u;) for which

. Nn- 2y 2
E,(u)=0;E,(u)=0;, where E,
defines the expectation operator
Second level- values {y,..y, } are
generated  from  some  conditional
distribution with paf f_(y; | x;,u;), for
i=1.M.



We assume a two-stage sampling
scheme by which in the first stage m areas
are selected with probabilities

7, =Pr(i € s), and in the second stage n,
units are sampled from area i selected in
the first stage with  probabilities
7wy =Pr(jes;|ies). Note that the
sample inclusion probabilities at both
stages may depend in general on all the
population or area values of vy, x and
possibly also design variables z, used for
the sample selection but not included in the
working model. Also, the population areas
are not necessarily the same as the primary

sampling units (PSUs). Denote by I, and
I;; the sample indicator variables at the two
stages (I, =1 iff ies and similarly for
[;), and by W, =1/7z and w,, =1/7;

the corresponding first and second stage
sampling weights.

Following Pfeffermann et. al (1998), we
define the conditional sample pdf of u,,

i.e., the first level pdf of u; for area ies

as,
def

fou)=f(u|L =1

saves Pr (I, =1Ju;) , (u;) (21)
© o Pr(L, =)
Similarly, the conditional sample-

complement pdf, i.e., the conditional pdf of
u, for area i¢s is defined in Sverchkov

and Pfeffermann (2000) as,

L) = fu11,=0)

Bayes Pr([; = 0|ui) fo(u) (2.2)
TP, =0)

Notice that the population, sample and

sample-complement pdfs of u; are the same

iff Pr(I, =1|u,) =Pr(I; =1) Vi, in which

case the sampling of areas is

noninformative.
The second level sample pdf and

sample-complement pdf of 'y, are defined

similarly to (2.1) and (2.2) as,

def

fs(yij |Xijlui) = f(yij |Xij'ui11ij =1)
3 Pr(I; zl‘yijvxij'ui) £ (Y ‘Xij U;) (2.3)
Pr(l; :1‘xij,ui)

def
fc(yij |Xij’ui) = f(yij |Xij1ui’Iij =0)
B Pr(I; = O‘yijlxij’ui) f, (Y, ‘Xij ;) (2.4)
Pr(L; = O‘xij,ui)
Here again the population, sample and
sample-complement pdfs of 'y, are the

Pr(Iij :1‘yij 1Xij ’ui)

same iff
= Pr(I; =1‘xij,ui) V], in which case the

sampling of units within the selected areas
is noninformative. The model defined by
(2.1) and (2.3) defines the two-level sample
model analogue of the population model
defined by f (u;|z) and f (y;[%;,U;);
see also Pfeffermann et. al (2001).

The following relationships between the
three distributions are established in
Pfeffermann and Sverchkov (1999) and
Sverchkov and Pfeffermann (2000) for

general pairs of random variables Vv, ,V,
measured on elements ieU, where
E,.E; and E. define respectively

expectations under the population, sample
and sample-complement distributions and

(7, ,W,) denote the sample inclusion
probabilities and the sampling weights.

C

fo (v |V2i) = f (v vy, i€s)

_E(7 Vi V) £ (Vg Vo) (2.5)
Ep (m, |V2i)
E, (W vy |V2i)
Ep (Vli |V2i) = W (263.)
1
E, (7 V) = m (2.6 b)



o (v, |V2i) = f(vy |V2i igs)
_ Ep[(l_”i)|V1ivV2i] fp(vli |V2i)

E, [0V, ] &0
_ Es [(Wi _1) |V1i ’V2i] fs (Vli |V2i)
B E[(w, ~ DV, ]
E.(v, |V )= Ep[(l_”i)vli |V2i]
A Ep[(l_”i)|vzi]
_ Es [(W| _1)V1i |V2i] (2 8)
E,[(w, ~D)|v,] '
Defining v,; =u;,V,; =constant yields the

relationships holding for the random area
effects u;. Defining Vi = Vi
V,; = (%;,U;) and substituting z;; and
w;; for 7z, and w; respectively, yields the
relationships holding for the observations
Y-

3. Optimal Small Area Predictors
The target population parameters are the
—_— Ni
small area means Y; =D " y;/N; for
i=1..M, (the means in sampled and
nonsampled areas). Let D, ={(y,,w,,w),
(i, D) es; (I, Iy, xq), (k1) eU} define the

known data. The MSE of a predictor Y,

with respect to the population pdf given D,
is,

MSE(Y; | D,) = E,[(Y; - Y))" | D] (3.1)

=[Y, —E, (Y, D,)J’ +V, (Y| D)

The variance V (Y, | D,) does not depend

on the form of the predictor and hence the

MSE is minimized when Y; = E_(Y; | D;).
In what follows we distinguish between

sampled areas (I, =1) and nonsampled

areas (I, =0). Denote by s; the sample of

units in sampled area i. Then, for the
sampled areas,

EP(Y_il D, 1, =1 :Ni[z Ep(yii |D;)

jesi

+Z|gsi Ep(yil | stIi :11Iil :0)] (3.2)

:%[Zjesi Yij +2|esi E.(y; | D,.1; =1)]

For areas i not in the sample,

Ni

— 1
Ep(Yi | Ds’Ii =O)=WzkzlEp(yik | Ds’Ii =0)

k=1

=NizNi Ec(yik | Ds’Ii =O) (33)

The predictors in (3.2) and (3.3) can be
written in a single equation as,

— 1 N,
Ep(Yi | Ds) :W{Zkﬂ Yieki +

U E Ly, -L)ID,L =1}, (34)

k=1 "¢C

l i
o D Y D 1 =00-1)

4. Bias of Small Area Predictors when
ignoring the Sampling Scheme

Consider for convenience the case of a
sampled area. Ignoring the sampling
scheme implies an implicit assumption that
the sample-complement model is the same
as the sample model, such that

Yi,IGN = Zjesi Yii "'Zmi Es(yn | D;. 1, =1)
where E.(y, | D,,I; =1) defines the

expectation of y with respect to the sample
distribution. Hence,

E,[(V; o —¥) [ D1, =1]

1
:WZIesi ES(yil | Ds’Ii :1)

1
_Wzm E.(y, |D,,I. =1)

1 COVs(yn'Wui | D, 1; =1)
"N 2 Efw, 1D, =1
with the second equality following from
(2.8). Thus, unless the study values Yy, and

(4.1)

the sampling weights w,, within the

selected areas are uncorrelated, ignoring the
sampling scheme results in biased
predictors (see also the empirical results).
A similar expression of the bias can be
obtained for nonsampled areas.



Example

Let the population model be the ‘unit
level random effects model’
Yiji =H+U; +& ;

u, ~ N(,c?%), & ~ N(0,57) (4.2)

with the random effects and residual terms
being mutually independent. Consider the
common sampling scheme by which m
areas are sampled with probabilities

7w, =CcxN, for some constant c, and
7y =Ny I N; (fixed sample size n, within
the  selected areas), such  that
z; =Prl(i, j) e s]=mm;; = const. (For
fixed m, c=m/N.) Note that sampling

within the selected areas is noninformative
in this case but if the area sizes N, are

correlated with the random effects u,, the

selection of the areas is informative (say,
the areas are school districts, the study
variable measures children’s attainments,
the large districts are rich areas with high
school attainments).

Suppose that the area sizes can be

modeled as log(N,) ~ N(Au, + B,c7,)

with A>0, implying that,
2
o
E, (7, |u)<exp(Au, +B +7M) : It

follows that (see Pfeffermann et al. 1998
example 4.3),
E (7 |u)f (u.
fs(Ui)= p( || |) p( |)
Ep(ﬂ-i)
=N(Ac’,0?) (4.3)
so that E (u;) = Aoy #E,(u)=0. The
fact that the random effects in the sample
have in this case a positive expectation is
easily explained by the fact that the
sampling scheme considered tends to select

the areas with large positive random
effects. Note, however, that by defining

w*=u+Ac: and U =u —Ac’, the
model holding for the sample data in
sampled areas is y; = u*+u; +€;

u ~N(0,0’),e ~N(0,52), which is

i
the same as the population model. Thus, the

optimal predictors under the population
model for the area means €, = u+U, in

sampled areas (I, =1), are still optimal

under the sample model. (Recall that for the
present example the sampling scheme
within the selected areas is
noninformative.)

Next consider nonsampled areas. By

(2.7),
B0 U1, @)
o E,0-7)
(4.4)
__ LW EG@lu)f, )
) Ep(l_”i) Ep(l—ﬂ'i)
Let

E,m=E,[>" 11=E,[E, X" 1, {N}]
=E > 7]=ME, ()  define  the

expected number of sampled areas, such
that E (7;) =E,(m)/M . If the number

of sampled areas is fixed, E (m)=m. By

(4.4) and (2.5),
Mf, (u) - E (m) f,(u))

f.(u)= and
M —E, (m)
hence,
£ (1) - Eo(ME.@)
M —E_(m)
_ Ey(mAgy (45)
- M-E,(m) '

Here again the negative expectation of
the random effects pertaining to
nonsampled areas is easily explained by the
tendency of the sampling scheme to sample
the areas with large positive random
effects. It follows form (4.5) that ignoring
the sampling scheme underlying the
selection of the areas and predicting, for
example, the sample means in nonsampled
areas by the average of the predictors in the
sampled areas yields in this example biased
predictors with bias,

’ "M -E,(m)
, M
o, M_E.(m Ep(m) (4.6)



5. Inference

The first step of the proposed approach
is to fit a model to the sample data, which
of course is a necessary step in any small
area estimation problem. Notice that
although we consider informative sampling,
the sample model can be identified from the
sample data using standard techniques, see,
e.g., Rao (2003) for details.

In what follows we suppose therefore
that an adequate model has been fitted to
the sample data, and in order to illustrate
the estimation procedures we assume that
this model is the ‘nested error regression
model’,

Vi =% ' BHu+e; ;U |l =1~ N(0,o7),
& |l =1~ N(0,57) (5.1)

The model defined by (5.1) is in common
use for small area estimation problems, see
e.g., Battesse et al. (1988). Suppose further
that the sampled areas had been included in

the sample with inclusion probabilities 7;,

I =1..m, and that n, units were sampled
from area i in the sample with probabilities
T - Finally, we assume that,

Es (Wj|i | Xij | yij ) ui) = Es (Wj|i | Xij’ yij)
= ¢, exp(ax; +by;) (5.2)
where ¢, >0, aand b are fixed parameters.

Comment: As with the sample model (5.1),
the expectation in (5.2) refers to the sample
distribution  within the areas. The
relationship in the sample between the
sampling weights and the observed data can
be identified and estimated therefore from
the sample data, see Pfeffermann and
Sverchkov (1999, 2003) for discussion and
examples. On the other hand, the
relationship between the sampling weights

W, and the area means is more difficult to

detect since the area means are not
observable, and in the rest of this section
we do not model this relationship. See
Section 6 and also Pfeffermann et al.
(2001) for examples of modeling the area
selection probabilities. Kim (2003) assumes
the model (5.1) for the population values
and a similar model to (5.2) for the
sampling probabilities within the areas but

it is assumed that all the areas in the
population are represented in the sample.

As established in Section 3, the optimal
predictor for a sampled area i is,

E, (Y |D. I =1)=

[Zjesi Yij +Z|esi E.(Yy | D, I; =D]/N;.
In order to compute the expectations
E.(y, | D,I; =1) we proceed as follows:
First, by (2.7), (5.1) and (5.2),

o (¥ %5, Iy =1)

_ [Es (W||i |Xil » Yin ui) -1] fs(yil |Xil ' ui)
Es(Wl|i|X ui)_l

—U, —bo?

=)

il
_ ﬂ,” i yiJ
- ﬂ’ll -1 O, ¢(

e

Y
o 63)

where Uy =X, 'S +U;,
A, = C expl(b*c? 12) +ax, +bu,]

= E (W | %;,U;) and ¢ is the standard

normal pdf. Notice that if b =0 (selection
probabilities within the sampled areas only
depend on the x-values and hence the
sampling is noninformative), the pdf in
(5.3) reduces to the conditional normal
density defined by (5.1). Second, by (5.3),
Ec(yil |Xil’ui’Ii =1)

=, +ib0'e2 (54)
ﬁ“n -
Finally,
E.(yi | D, I =1)
= Es[Ec(in | D, u;, [ =1)] (5.5)

= Es[Ec(in | i Ui I =1)]
where the exterior expectation is with
respect to the distribution of u; | D,,I, =1.
Under the model (5.1), the latter
distribution is known to be normal with

mean U, =y[y,—-X'B] and variance
O_i27’i , where (V;,X)= Z?:l(yipxij)/ni
are the sample means of (y,x) in sampled
area i, of=0c’/n =Var(y, |u;) and

Vi :Uu2 /[O'u2 +O_i2]'



Thus, for the sampled areas
E.(y,|D,,I; =1) is obtained by
computing the expectation of the right

hand side of (5.4) with respect to the
normal distribution of

u; | D, I, =1. We find that,

E.(y, |D,,1, :1) =(x,'B+0,)

5.6

+ho? ES( - D, 1, =1) (5.6)
|I

Notice that if b=0 (noninformative

sampling within the areas)

E.(y, | D, I, =1) = x, "B +U,, which is

the standard result.

I.) can

s1

The expectation E, ( -|D
i.l

be computed numerically. Alternatively, for

the practical case where the sampling

fractions within the selected areas are very

small, 4, = E (W | X;,u;) is under mild

conditions much larger than 1 and therefore
we may approximate,

E( ﬂi |D I)EES[(l—’_ﬂ’llil)'Ds’ |]

The latter expectation can be computed
analytically yielding,

E.(Yy | DI, =1) =0, +bo?[1+

1 bo? b’cly, ., (5:7)
coe-= >l
where U, =X, 'S +U;.

It follows from (3.2) and (5.7) that for
given parameters{f,c,,a,b,c%,c2}, the

—ax, —bu, +

optimal predictor of \7| for sampled area i
is,

Ep(Y_ile’Ii:]'):
%{(Ni—ni)ém[ﬂ +(X; = %) A1
+(N; —n;)bc? +bC eXp(—b b bd,

+bGTiyi)Z|esi exp(-ax; —bx; ')} (5.8)

whered, =G, + X, is the optimal
predictor of the area mean
6 =X,"B+u; =E (Y, |u). The terms

in (5.8) that are multiplied by b correct for
the difference between the sample-
complement expectation and the sample
expectation. Notice on the other hand that
even under noninformative sampling (b=0),
the predictor implied by (5.8) differs from
the predictor €, in common use. This is so
because the target parameter is defined to
be the finite area mean Y, rather thané),,

see Rao (2003, Eqg. 7.2.37).
For the nonsampled areas, the optimal
predictor of the area means is defined in

(3:3)tobe, E,(Y;|D,,I; =0)

Zk L Ec(Yi | D, I; =0)/N;.
and then (2.6),
E.(Yi I D, I; =0) = E[E, (Vi | %4, U;) | D]
(W =D E, (Y | %5 1)

By (2.8)

=Rl | D]
S(VVI | Ds)_l
ES[(VVI _1) E (Wk|i yik |Xik’ui) | DS]
_ ( k|I|Xik’ui)
= (5.9)
E.(w D)1

Computing the two expectations in the
numerator of the last expression of (5.9)
employing (5.1) and (5.2), yields after some
algebra,

E (y|k|Ds’ i 0) Xlklﬂ+bo-ez+
w, —1)u
[¥| D,] (5.10)
E.(w |D,)-1
Estimating u, = E_[(y; —%; '8)|u] and
E.(w, | D,) by the corresponding sample
Usi = Z(yij =X ‘B)/n; and

jesi

means

E.(w|D,)=Y. w/m (application of

the method of moments), and substituting
the estimates in (5.10), gives the following

simple estimate for E_(y, | D,,I, =0),

E (ylk | Ds’ i _0)= Xij Iﬁ—l—bo-ez +
Z(Wi _1) us,i
s (5.11)

D> (w -1)

ies
It follows from (3.3) and (5.10) that for
given parameters {4,¢c,,a,b,0%,c72}, the



optimal predictor of \7, for area i not in the
sample is,

~ o )

E,(Y; | D, I; =0) = X;' B +bo;

Z (W| - 1) GH i
+ —iesz WD) (5.12)

ies

6. Parametric estimation

The analysis of the preceding section
makes no assumptions regarding the form
of the relationship between the area
selection probabilities and the area means.
However, in situations where this
relationship can be modeled adequately,
more efficient predictors can be obtained by
incorporating the area selection
probabilities into the model, thus making
the sampling scheme noninformative.

For example, suppose that the
population model is the ‘unit level random
effect model’

Yij = 4+ U; +€
u, ~N(0,07); i ~ N(0,o7)
i=1.M, j=1..N, (6.1)

Suppose further that the area sizes can be
modeled as, N, = Int[K, xexp(K,u.)]

where K, and K, are constants, and that

the selection of the areas is with
probabilities 7; that are proportional to the

sizesN;. Then, to a close approximation,

the distribution of u, | log(z,) is normal

and the population model can be written as,
Yij = H+U; +€

= By + B log(m) +m, +e;; (6.2)

7,~N(0,62), ¢ ~N(0,67%)

For the case where the selection of the
samples within the sampled areas is with
equal probabilities, the population model
defined by (6.2) holds also for the sample
data  (the  sampling  scheme is
noninformative for this model), and the
small area means can be predicted using
standard procedures. Thus, by incorporating
the area selection probabilities into the
model, the sampling scheme becomes
noninformative. Notice, however, that the
use of this model requires knowledge of the

area selection probabilities for all
i =1..M . See Rubin (1985) and Skinner
(1994) for more general results and
discussion of the implications of including
the selection probabilities among the
covariates of statistical models.

When the selection of the samples
within the sampled areas is informative,
one can either model the relationship
between the selection probabilities and the
study variable and apply the methodology
described in Section 5, (see also Kim 2003,
this article assumes that all the population
areas are represented in the sample), or use
the weighted direct estimates of the area
means as the observed data. (In practice,
the only available data to the analyst are
often the direct estimates anyway.) See
Kott (1990), Arora and Lahiri (1997) and
Prasad and Rao (1999) for modeling of the
direct area estimates. All these studies,
however, assume implicitly noninformative
sampling.

Suppose that the direct estimates are the
Hajek’s estimates,

Oni = Zjesi Wi ¥y /Zjesi Wi (6.3)
where 6, = p+u, =E_ (Y, |u) defines
the i-th area mean. Then, under (6.2),
combined with the common assumption
that 6, =6,+¢; , & ~ N(0,07) where
¢; defines the sampling error in area i, the
model holding for the direct estimators is,
04, =6,+¢ ¢ ~N(0,57);
0, = By + B log(7;) + 1,

77i - N(07o-1?)

The model defined by (6.4) is the familiar
Fay and Herriot (1979) model that is in
common use for small area estimation.
Notice again that this model can be fitted

using standard procedures (ignoring the
sampling process).

(6.4)

7. Monte-Carlo simulation study

In order to illustrate the biases that could
occur when ignoring an informative
sampling scheme (employing standard
predictors), and to study the performance of
the predictors proposed in this article that
account for the sampling process, we



designed a small simulation study. The
study was carried out as follows:

1- Generate population random area effects
u ~N(0,07%) and  area  sizes
N, = Int[1000 x exp[u, /(50,)] for
i=1.M (o’ =16, M=150 population
areas).

2- Generate y-values using the model (6.1)
with 1 = 20, 0'92 =100.

3- Select areas with probabilities
z, =mN, /Zl;—’:olNi (m=90 sampled areas)
using Systematic PPS sampling.

4- Sample n, units from selected area i
with  probabilities z;; = nyz; /" Z,
(n,=n, =5
selected area), where z; :exp(yij /50),

again using Systematic PPS sampling.
These selection probabilities satisfy the
relationship (5.2) with a =0, b =—(1/50)

and ¢, = (N; /n;)E(z;).

sampled units in each

Repeat Steps 1-4 1000 times.

For each sample we computed the
following 4 predictors of the area means:

A- 67, =7.Y, +(@—y,)y for sampled areas,
6= 7Y +A-7)ym=y for
sziesyi /m’

7 =6, 116, +6. 1], (65.67)
computed by method of moments; see
Prasad and Rao (1990).

The predictors {6} are the ordinary

predictors under noninformative sampling
(ignoring the sample selection), when the
area sizes are sufficiently large such that

> e IN; =0

k=1"1j

nonsampled  areas;

B- éH,i (Eq. 6.3) for sampled areas (‘direct
estimator’), 6, =D W6, /D, W,
for nonsampled areas.

C- Proposed ‘semi-parametric’ predictors
assuming the relationship (5.2) for the

weights w;; ; The predictors are defined by

(5.8) for the sampled areas and by (5.12)
for the nonsampled areas with a=0,

X; =1, = . Note that under the model

(6.1) and the sampling scheme used to
select the areas, the sample random effects
also have a normal distribution but with a
different expectation, thus justifying the use
of the predictors (5.8) and (5.12). See
Pfeffermann et. al (1998). The unknown
model parameters have been replaced by

sample estimates: (G.,5°) computed by
method of moments, 2 = ¥ ; the parameters
b and c, indexing the relationship between
the weights w; and the study variable (Eq.

5.2) were estimated by fitting the model

w; = C exp(by; ) +&;, using the REG

and NLIN procedures of SAS.

D- Fay-Herriot predictors obtained by
fitting the model (6.4) (parametric

approach); o’ estimated by the Fay-

n

Herriot (1979) method, 05 taken as known

(computed as, 67 =" @, -2 Im).

The assumption that the sampling error
variance is known is common. Estimating
the variance from the sample data yields

very similar  results. S =(8,,/3)
computed by generalized least squares with

0, ; as the dependent variable values and

v,07) replaced by (6;,67).

The results of the simulation study are
displayed in Figures 1-4. Figures 1 and 2
show for each area the empirical prediction
bias and root mean square error (RMSE) of
the four predictors over all the simulations
for which that area has been sampled,
Figures 3 and 4 show for each area the bias
and RMSE of the four predictors over all
the simulations for which that area has not

been sampled. Denote by Vtr the true area
mean in simulation r, r=1...1000 and let
Y,

tr

(o

represent any of the predictors. Define
D, =1 if area t was sampled in simulation
rand D, =0 otherwise. For a given areart,



the prediction bias and RMSE when this
area has been sampled is computed as,
1000

D, (Y -V,
Bias, = <=L 1202\(” tr);
[)U
r=1
1000 > o
D -Y )?
RMSEt:Z’—l « (e —¥0) (7.1)

1000

Zr:l D"’
The prediction bias and RMSE when area t
has not been sampled are obtained by
replacing D, by (1-D,) in (7.1). The
four Figures show also at the bottom for
each predictor the average of the
corresponding measure over all the 150
areas.

The conclusions from this simulation
study are clear-cut and can be summarized
as follows:

1- Ignoring an informative sampling
scheme can result in severe prediction bias
for both sampled and nonsampled areas.

2- The direct (design based) estimators are
approximately unbiased in sampled areas
but are biased for the area means of
nonsampled areas. This result is explained

by the fact that the estimator éH,i estimates

the average of the area means in the
population, which is different from the
average of the nonsampled area means. For
the present population model under which

the true area means 6, are exchangeable,
the predictor,

0y, = Zies (w, =18, /Zies (w, 1) is
approximately design unbiased for the area
means in nonsampled areas, but this
property does not necessarily hold for other
models. In fact, no approximately design

unbiased predictors for the area means in
nonsampled areas exist in general.

3- The use of the semi-parametric approach
yields unbiased predictors for both the
sampled and nonsampled areas but with
large  RMSEs for nonsampled areas
compared to the use of the fully parametric
approach. Notice in this respect that under
the present model and sampling scheme
used for the selection of the areas,

E.(0)=u—[m/(M-m)o,/5  and
var, (6,) = o2 —[mM /(M —m)*](c, /5)°.

(The parameter o,/5 indexes the

distribution of the area sizes. See step one
of the design of the simulation study.) For

=20, M =150, m =90, o> =16 as in
the present study, E_(6)=18.8 and
Var, (6,) =13.6. Thus, by predicting the

area means of nonsampled areas by their
true expected value of 18.8, the RMSE of

the prediction error is +/13.6 =3.69,
which is only slightly lower than the
average RMSE of 3.79 achieved by use of
the semi-parametric predictors (see bottom
of Figure 4). However, the use of the
expected values under the model or the
semi-parametric approach do not account
for the relationship between the area means
and the sample selection probabilities. As
illustrated in the present study, including
this relationship as part of the model can
reduce the RMSE quite substantially,
particularly for nonsampled areas where no
direct estimates exist.

8. Summary

This article proposes two approaches for
small area estimation under informative
sampling. The semi-parametric approach
makes no assumptions regarding the
relationship between the area selection
probabilities and the true area means. The
proposed predictors under this approach are
approximately unbiased for both the
sampled and nonsampled areas but the
prediction RMSEs can be large particularly
for nonsampled areas.

The parametric approach models the
relationship between the area selection
probabilities and the area means and
incorporates this relationship into the model
for the study variable. As illustrated by the
simulation study, the use of this approach
can reduce the RMSEs quite significantly
but a major issue that needs to be
investigated is the robustness of the
parametric predictors to misspecification of
the model relating the area selection
probabilities to the area means.

Two other outstanding issues are the
development  of  appropriate = MSE
estimators for the nonparametric approach
and the extension of this approach to other
plausible sample models.
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Bias

Figure 1. Prediction Bias in Sampled Areas
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Figure 2. Prediction RMSE m Sampled Areas

5‘_H

mﬂﬂiﬂl}g{ﬂ}fﬂh Hﬂh H }[ﬂ'ﬂthHHIH Hfﬂ‘lihly H]fuﬁp}}mlhﬂiﬁ"iﬁ%}mn I*IH #ﬂ:lﬂl{*ﬂ{ 11{

H Hyg

o S @ K
0 &6@69965“ (59 O%ﬁb%b c-dn%’ 690(5%@0‘%53?5690@%00%%}6 00&%(%%%6

=

2
8
SS S& @@SSSSSS ®

s %ﬁsw@%%sﬁgwﬁg i 5 ﬁsﬁsss& s SRR ESSs g &S

3

0 0 2 30 40 50 60 V0O 80 W W 10 10 130 MO 150

© OO Qrdinary (Average= 3.65) HHH Hajek (Average=4.60)
8 8 8 Qo —Parametric (Average=126) F F F Parametric (Average=0.87)

11




Bias

Figure 5. Prediction Bias in Nonsampled Areas
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Figure 4. Prediction RMSE in Nonsampled Areas
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