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Abstract

The problem motivating this article is the determination of sample size at the substantive
testing stage of a financial audit. An error in an audit account is said to occur when there is a
non-zero difference between its book value and true value. A typical financial auditing task
involves several stages and usually a large number of potential items are available for testing
at each stage. The sample size determination problem is to find an optimum fixed number of
items which must be tested so that the quantitative risk of a wrong decision is bounded by a
pre-specified quantity. Senior auditors often have strong subjective opinions regarding the
state of the accounts being audited which naturally leads to the choice of Bayesian methods.
Solutions are proposed under various model assumptions. A combination of analytical and
simulation based techniques is proposed and some theoretical results are obtained. The
methods developed, however, are quite general and can be applied to other sample size

determination (SSD) problems. A number of numerical illustrations are given.

S°R1 Methodology Working Paper M04/04



On a Bayesian sample size determination problem with
applications to auditing

S. K. Sahu and T. M. F. Smitht
University of Southampton, UK

Summary. The problem motivating this article is the determination of sample size at the sub-
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bounded by a pre-specified quantity. Senior auditors often have strong subjective opinions re-
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1. Introduction

The problem motivating this article is sample size determination (SSD) at the substantive
testing stage of a financial audit. Financial auditing involves several stages. At the first stage
senior auditors review the system generating the accounts and compare the current results
with those of previous years and with those of similar entities. This is often done together
with the senior management of the entity being audited. The objective of system review is to
identify any changes from previous years, any weaknesses in the system and any other areas
of possible concern. In the light of this review a strategy for more detailed explorations and
tests is developed. The next stage is to test the working of the accounting system and, in
particular, the implementation of controls and checks. This phase is known as compliance
testing and may exceptionally be done using a computer generated set of transactions,
running them through the system and checking for compliance. The substantive testing of
actual transactions follows. This procedure is usually carried out by junior auditors who
identify the items selected into the sample and then check that the money values are correct.
This is an essential part of the audit process, and of the training of auditors, but it is often
described as being of little value since errors in money values are rarely found in samples
selected from well-designed accounting systems.

The overall objective is to test whether the monetary totals recorded in the accounts
are correct or not. It should be noted that the substantive testing of items tests only the
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accuracy of the totals generated by the system as specified at the first stage. This is not a
procedure designed to discover large faults in the design of the system that may have led to
recent accounting scandals such as those at Enron and Parmalat. Discovering these system
faults is the responsibility of senior auditors at the system review stage.

It is now being argued by some auditors that the sampling of actual transactions and the
checking of money values is a waste of time because the information from the earlier stages,
especially the comparisons of totals with earlier years and similar entities, a process called
analytical review, and the compliance checks of the system, provides sufficient evidence
to reach a conclusion about the accuracy of the accounts. However, accounting standards
require that some form of substantive testing be carried out, but this may be interpreted
broadly to embrace analytical review as well as sampling, and it is believed by many auditors
that analytical review may in itself provide adequate information about the system. This
conclusion has been challenged by Swan (2001) on the grounds that analytical review has
very low power for detecting errors. A counter argument is that in order to be able to defend
an audit publicly some actual items should always be tested, but the sample size need not be
large since all that is required is confirmation that the accounting process, as evaluated at
the earlier stages, is working well. In this view sampling has a quality assurance role within
an audit rather than an estimation role. Sampling can be seen to be a protective procedure
for auditors and the absence of sampling can be viewed as an invitation to abuse the audit
process. The problems identified above are clearly statistical in nature. They relate to the
quality assurance of a complex system and to the design and analysis of studies aimed at
achieving high levels of assurance.

There is a considerable literature, see e.g. Laws and O’Hagan (2000) and the references
therein, on the analysis of audit data. The information from the early stages of an audit is
qualitative and often leads to strong opinions about the quality of the system. Combining
this prior information with the hard data generated by sampling at the substantive stage
may be done in an ad-hoc manner within the frequentist tradition (see e.g. Patterson, 1993
and Shrivastava and Shafer, 1994) or more formally using Bayes’ theorem. An important
reference is Cox and Snell (1979) who propose a Bayesian mixture model for the analysis
of substantive data. See also Laws and O’Hagan (2002). The practical problem is that if
money errors are rare then the number of errors found in small or medium sized samples
will be very small, and possibly zero. Thus the effective sample size for frequentist inference
about the total of money errors is small and the resulting inferences will be unreliable. Using
the available prior information within a Bayesian methodology may lead to more reliable
conclusions about the unknown error totals.

Despite the proposed use of Bayesian methods in the analysis of auditing data the
SSD for substantive testing has mainly been based on frequentist ideas, although there are
exceptions, see e.g. van Batenburg et al. (1994). The usual approach is to assume that
the sample will yield no money errors and to determine the sample size to guarantee that
if no errors are found then with, say, 95% confidence the proportion of items in error in
the population will not exceed a given percentage. Assuming a Poisson distribution then a
sample of size 100 gives 95% confidence that the population error rate is less than 3% if no
errors are found. This is a large sample in the audit context and most auditors would refute
this conclusion saying that they knew almost certainly that the error rate was less than 3%
before the sample was selected. For this reason various ad-hoc methods have been proposed
to employ the prior information to reduce the required sample size within the frequentist
framework. Another problem is that if any errors are found in the sample then the upper
confidence limit for the error rate increases dramatically. The usual response from auditors
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is to argue that the errors found in the sample are unique, and can be ring-fenced and
removed from the population, and that in the remaining part of the sample there were no
errors and inferences about the rest of the population can be made accordingly. We find
none of the frequentist arguments for determining sample size to be satisfactory in either
theory or practice and so we explore some Bayesian methods for SSD, which would force
auditors to be explicit about their assumptions prior to sampling.

Before setting up the model framework within which the statistical decisions will be
made we need to refine further some aspects of the audit process. The final accounts about
which a decision will be made comprise a set of sub-accounts such as, income (possibly by
category) and expenditure on specific functions, for example payroll, or on products that are
particular to the audited entity, and on administrative expenditure. Different sub-accounts
have different accounting processes, and hence different types of error, and so the audit
can be broken down into separate audits for each sub-account. If any sub-account is in
serious error then the final audit conclusion will identify this and qualify this section of the
accounts. Statistically the audit is stratified and inferences are made within strata as well
as overall. Auditors use a concept called material error to define the value of monetary
error that would lead them to qualify an account. We assume that the auditor has set the
value of material error within each sub-account; typically this will be a percentage of the
total money value of the sub-account, say 1% or 2%. Samples will be drawn from within
strata and so we concentrate on SSD within each sub-account separately. In the rest of the
paper the term account will refer to the sub-account being audited.

For SSD the only information available is prior information. Frequentist rules require
the input of point estimates of parameters, such as variances, without any measure of uncer-
tainty, which runs counter to one of the main motivations for the use of statistical methods.
Introducing uncertainty into prior estimates is a quintessentially Bayesian procedure and
we explore the use of Bayesian methods within various distributional frameworks which
may be relevant for auditing. Ideally samples should be evaluated sequentially, but this
is not possible within the audit context where the junior auditors carry out the sampling.
We assume that the objective is to determine an optimal fixed size sample that satisfies
a criterion based on the Bayes’ risk. We further assume that the auditor can specify the
implicit losses of their decision process and possibly also the cost of sampling measured in
the same units as the losses. Given the loss functions and the sampling cost function it
is possible to carry out a fully Bayesian determination of sample size, see Lindley (1997)
and the references therein. In the absence of information about sampling costs we adopt
a partial Bayes approach in the spirit of Adcock (1997), Joseph et al. (1995), and Wang
and Gelfand (2002). We adopt the framework proposed in Wang and Gelfand where two
different prior distributions are used for SSD problems. The prior for inference, the fitting
prior, can differ from the prior used for averaging to calculate the Bayes risk, the sampling
prior. We explore some of the consequences of using different fitting and sampling priors
within our chosen model framework.

The plan of the remainder of this article is as follows. In Section 2 we develop the
general methodology. Section 3 discusses the results for the normal error distribution. In
Section 4 we consider the exponential distribution for the errors and in Section 5 we discuss
a mixture distribution for the errors in an account. The article ends with a few summary
remarks in Section 6.
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2. Method

2.1. Error distribution

In financial audits the recorded value of a transaction is often called the book vaelue which
can be matched to a true value called the audit value. The error in a transaction is defined
as the difference, X; = B; — A;, between its book value, B;, and audit value, A;. In some
accounts only overstatement errors can occur in which case 0 < A; < B;. For modelling
purposes, however, we can model either the difference itself or the absolute difference and
we develop models for both of these scenarios.

Let 6 denote the mean of the error random variable X. Thus the parameter 6 is the
mean error rate per item in the account. The primary objective of the auditors is to draw
inference on the parameter 6, or equivalently N8, where N is the number of items in the
account. In the subsequent sections we parameterise the distribution of the random variable
X using 6 and assume that X6 follows the distribution f(z|@). We shall work with three
different possibilities for the density function f.

Usually in Bayesian modelling a choice has to be made between non-parametric and
parametric modelling approaches. For the general SSD problem non-parametric models
using Dirichlet processes can be considered, see e.g. Walker (2003). Here we work with
three different tailor-made models each of which corresponds to a different practical auditing
problem. Moreover, the parametric models can also be used for SSD problems which arise
in other application areas, such as medicine and clinical trials.

For many SSD problems the Gaussian assumption is used because of its simplicity and
tractability. Even when using a non-parametric model the central limit theorem may be
used to approximate some key probabilities required for the SSD problem, see e.g. Walker
(2003), Clarke and Yuan (2002) and Section 2.2 for more in this regard. In Section 3
we assume that each X; is normally distributed. As is expected, this turns out to be an
analytically tractable situation where our methods provide some exact solutions, though
the final sample size needs to be calculated using computer intensive methods.

In Section 4 we model the absolute difference, i.e. we set X; = |B; — 4;|, because some-
times auditors are interested in the absolute errors only. In such situations there are often
many small errors and a few large errors. For SSD we assume that the X;’s are exponen-
tially distributed. Note that this is also a possible model for the positive overstatement
errors where a skewed error distribution is appropriate for modelling purposes.

A drawback of both the above models is that they do not allow the particular value zero
to have a positive probability, and in typical auditing problems a large number of items
may give either no items in error or perhaps very few items in error. Thus in modelling
we need to allow the case for | X;| = 0 with non-zero probability. In Section 5 we entertain
this possibility for SSD, and employ a mixture model using the approach introduced by
Cox and Snell (1979). The mixture model is a mixture of an exponential distribution for
the non-zero errors and a point mass at | X;| = 0. In their paper Cox and Snell model the
proportional overstatement errors or taints, | X;|/B;, using the above mixture and ignore
the important fact that the taints are between 0 and 1. We, however, do not ignore this
fact and model the actual error values | X;| so that the mixture distribution is supported on
the non-negative half of the real line.
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2.2. The hypothesis testing problem
Let X(™ = (X1,...,X,) denote a random sample of size n from a population with density
f(x]6) and let 7(#) denote the prior distribution for the unknown parameter 6. Let 7(8]x(™)
denote the posterior distribution of # given the observed sample x().

We follow the development in Berger (1985, Chapter 7) to set up the hypothesis testing
problem which is to choose between the two hypotheses:

Hy:0 €0 versus H; : 0 € Oy,

where O is less than ©; in the sense that, if 8y € ©g and 6, € ©; then 0y < 6,. In this
article we shall take ©g = {6 : —00o <8 <6y} and ©; = {0 : 6y < 0 < o0}.

In the auditing context 6y represents a value corresponding to a material error per item.
If 8 < 6y the error is not material and the account will be accepted. If, however, 8 > 6, the
error is material and the account will be rejected and the auditors will qualify that section
of the accounts in their conclusions. Note that 6y is a positive quantity set in advance by
the auditors.

Let a; denote the action of accepting H; for ¢ = 0,1 and L(6, a;) denote the loss for
taking decision a; when 6 is the true value. The Bayes decision rule, denoted by 47, is to
select ag if

/ L(#, ag)m(0]x™)db < / L(#, a1)m(8]x™)db. 1)

o, SN

Under a parametric assumption it is often possible to find a suitable function g (x(”)) such
that (1) holds if and only if g (x(™) < k™(n) where k™(n) is the value of g (x(™) for
which equality holds in (1) instead of the inequality. In the parametric family f(z|6), if
X, is sufficient for 6 then Berger (1985) establishes that g (x(™)) = 7,. This will be the
case for our normal and exponential error distributions in Sections 3 and 4. However, this
simplification is not possible for our mixture error distribution and in Section 5 we work
with the appropriate g function.

The Bayes decision risk, denoted by r (m,d7), is given by

r(m,d™) = /@ L(8, a0) Py {g (x<">) < k“(n)} ©(6)d8
+ /@ L(8,a,)Pp {g (xW) > k”(n)} 7(8)dd. 2)

For SSD we may also define a cost function, ¢(n) say, for obtaining the samples. In general
SSD problems the cost function ¢(n) is often chosen to be an increasing linear function of
n while the risk decreases with n. The SSD problem is to minimise

r(m, ) + ¢(n)

over the values of the sample size, n. The smallest n which minimises the above is the
required sample size.

Note that the parametric assumption enters the sample size calculation through the
probability Ps {g (X(™) > k™(n)}. The non-parametric approach of Walker (2003) ap-
proximates this probability using the central limit theorem. Therefore, the large optimum
sample sizes for the Gaussian model will be similar to the ones obtained from an equivalent
non-parametric approach.
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2.3. Fitting and sampling priors

All Bayesian model fitting exercises need a prior distribution for the unknown parameters
in the model. This is the prior distribution which would have been used for model fitting if
the data were available. Following Wang and Gelfand (2002) we call this the fitting prior
and denote it by 7(/)(#). Often, 7{/)() is assumed to be vague (or non-informative) so
that the modeller encourages the data to drive the inference, thus it is a general purpose
working prior distribution.

The fitting prior is to be used to obtain the posterior distribution 7(8|x(™) and to
emphasise this dependence we write the posterior distribution as 7(/)(8|x(™)). Thus the
decision rule is denoted by 6;[(” and it selects ag if (1) holds for the posterior distribution
7 (8]x(™)). The quantity k™ (n) will also depend on the fitting prior used to calculate the

posterior distribution and we emphasise this dependence by writing X (n).

In the frequentist approach to the SSD problems it is usually of interest to investigate
the sensitivity of the SSD procedure when the ‘true’ parameter  assumes some particular
values. This is not considered to be satisfactory from a Bayesian perspective where the
unknown parameter 6 is assumed to be random. To perform sensitivity analysis in a coherent
Bayesian framework it is natural to assume that the parameter 8 follows an informative prior
distribution concentrated around some specific values of 8 which are of particular interest to
the practitioner. This is the prior that a pure Bayesian would employ after full consideration
of all the available prior information. Wang and Gelfand (2002) formalised this concept by
calling this informative prior distribution the sampling prior. Here this prior is denoted by
7(*)(#) and it replaces the familiar assumption of fixing @ in the classical SSD problem.

What are the differences between the fitting and sampling priors and why should they not
be the same? The sampling prior is the prior distribution used to generate the parameter
values which are then conditioned upon to generate the data from f(z|8) in substantive ex-
periments. That is, data X(™) are generated from the joint hierarchical model 7(*)(8) f(z|6).
Once data are available we would like to pretend that the informative prior distribution
which generated the data is unknown to us; and we would like to make inference with
the assumption of a relatively non-informative prior distribution. The sampling and fitting
prior distributions should not be the same because they serve two different purposes in
the SSD problems. The sampling prior distribution addresses the ‘what if” type sensitivity
scenarios, whereas the fitting prior distribution is used to form the posterior distribution
for making inference. In our numerical illustrations we will investigate the situation where
the sampling prior is the same as the fitting prior, the conventional Bayesian approach, and
also explore the effect of different sampling and fitting priors.

The distinction between the sampling and fitting prior distributions will naturally affect
the calculation of the Bayes risk, r(m,d7) given in (2). As mentioned above the decision

rule 67 will need to be written as Jg(f). The prior distribution (), used as the averaging
measure in the integrals of (2), will be the sampling prior distribution 7(*)(4). Thus the
Bayes risk (2) will have the following form:

. (W(S),(Szm) _ / L(6,a0) Py {g (X(n)) < k?f(f)(n)} (%) (6)de
(S

+ /@ 0 L(9,a1) Py {g (x(n>) > m(”(n)} ) (8)d6. 3)



A Bayesian sample size determination problem 7

2.4. Specific losses and bounding the risk

The methodology outlined in the above sections is quite general in nature. As a result it can
be specialised to particular problems such as the auditing problem motivating this article.
Here we shall make several assumptions which are particular to the auditing problems.
Auditors have some difficulty in specifying a particular cost function, ¢(n), although there

is a general consensus that the cost function is an increasing function of n. In view of this we

m) by a pre-specified

reformulate the SSD problem as that of bounding the risk r (w(s), or
quantity. We then find the minimum sample size which bounds the risk function and this
takes care of the increasing nature of the cost function. The actual upper-bound on the risk
function is related to the loss functions which we describe below.

From practical considerations in the audit problem we assume the simplest constant
loss functions L(6,aq) = Lo for 8 > 6y and L(#,a,) = Ly for 6§ < y. The loss function is
assumed to be zero if a correct decision is made. Auditors are reluctant to specify absolute
values of Ly and L, for a general problem. However, they feel more comfortable in specifying
the ratio Lo/L; or equivalently

Ly
Lo+ Ly

Henceforth, we shall work with this ratio wherever possible. Now we have the following
simpler form of the risk function (3)

’r’:

r(79,057) = Lo fo, Po {9 (X™) < k7" (n)} 710
+L; f@o Py { (X(n)) > kwm(”)} (s)( )do
= Lo [fo, Po {9 (X™) < &7 (n)} = (6)do

+57 o, Po {9 (X™) > 57" ()} 79 (6)a8] .

The above risk function is a multiple of the loss Ly and it depends on the ratio of the losses
7. In the absence of the absolute values of the losses we re-formulate the SSD problem as
one of finding the minimum 7 such that

ey
N (W( 20% ) < M(n)

for given values of n and M (n). Note that this is a canonical version of the SSD problem
which bounds the risk by LoM(n). Also under the assumption that Ly = Ly, i.e. the losses
are equal for the two possible wrong decisions, we see that the quantity to be bounded for
the SSD is the sum of two error probabilities, which is an appealing quantity to bound for
practical problems. In our numerical illustrations we shall experiment with three values of
M(n), viz. 0.10, 0.05 and 0.01. The last one implies a very strict condition on the two error
probabilities and then we shall see that many sample sizes will be very large. We set the
optimum sample size to be oo if it is greater than 5000.

3. Normal error distribution

Suppose that X|6 ~ N(6,0?) where o2 is known and assume 7(f)(8) = N(us,7?) and
7(3)(0) = N(us,72). All hyper-parameters are assumed to be known. The posterior distri-
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bution of 8 is normal with mean
B N W _
E0|z,) = X;’c <U—2" + T—Jg) , and var(0|z,) = /\fc
where \} =1/ (0—"2 + %) . We now derive k™"’ (n). The Bayes rule chooses action aq if

Ty

Lo [;2 71 (0|z,)d0 < Ly [ 79 (8)z,)d8

i.e. Lo(1 —p) < Lll]l), say,
- p > L0+0L1 =

where

) 90—)\?(71(?2" +H—£)

p= / ) (6|z)do = ® Sy
—0 As

Let ¢ = ! () where ® ! is the inverse cumulative distribution function of the standard

normal distribution. Now it is clear that p > n if

2 _
irn<k”(f)(n):a—{00 2q,\f _,u_g}
n )\f 7§
We now have -
. e _ k™ (n)—6
Pr(X, <k (n)|0)—<1>< YN )

Let ¢(-) be the density function of the standard normal random variable. The following
calculations reduce the risk function to an analytic form. The risk is given by

x(F) 1 (p_ 2
w0557 = Lo fie () e g
o k" ()0 e
L o5 {1 -2 ( 2 vt do,
o0 k"(f)(n)—us—'rsu
= LO feo:sus [0 T ¢(u)du

fo—ps

v [0 {1 () L ggan
-0 o/vn

= LoPr(U* < —a,V* < b)+ L Pr(U* < a,V* < —b)

where
e
B0 — s d VT Vi (k (n) = us)
a= , b= , = — , and d = .
Ts V142 o o

and U* and V* jointly follow the bivariate normal distribution with zero means, unit vari-

ances and correlation p* = \/117 We have used the following two identities:

/oo d(2)P(cz + d)dz Pr(U* < —a,V* <b) (4)

/ d(z)(1 = ®(cz+d)dz = Pr{U*<a,V*<-b).
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These two results are proved similarly, the proof of the first identity (4) is given below.

We have
0o 0o cz+d —a —cz+d
[ s rad= [ o0 [ ewdd= [ o6 [ ewaaz,
Now we work with the right hand side as follows:
d
$ o g d N — sy (W20 uv+e?)
Pr(U* < —a,V* < #£=) = I % Py el =) dudv

*

= f_;ff?<mp ) b(y)(2)dydz,
= 72 0(2) [25H ¢(y)dydz.

by using the transformation z = u, y = %(v — p*u), and then by substituting the
—p*

value of p*. This completes the proof. Thus we have an analytic expression for the risk
function which can be evaluated for different values of the sample size n and the optimum
can be found.

3.1. Results
We investigate the risk function for obtaining analytical solutions. Using a transformation
we re-write the risk function as:

r(x®), 67"

= LyPr (U >a,V <b)+ L1 Pr(U <a,V >b), (5)
where U and V jointly follow the bivariate normal distribution with zero means, unit vari-

ances and correlation
9\ —1/2
o
nT?

A0
azao_ﬂs, b:pk (n) l’l/s-

Ts Ts

and

Note that p is always non-negative. The joint bivariate distribution comes from the joint
probability distribution of X,, and 8 as implied by the hierarchical modelling of the likelihood
and the prior. The quantity a depends on the sampling prior alone while b depends on the
sampling prior, the fitting prior and the sample size n. The correlation between # and X,
is p which also depends on n.

In order to fix ideas, we provide a particular contour plot of the joint distribution of
U and V in Figure 1. The two regions: (1) U > a,V < b and (2) U < a,V > b have
been shaded as well. These two regions intersect at the point (a,b). The location of the
point (a,b) and the shape of the contours of the bivariate normal distribution will change
depending on the values of the sample size, n and the prior parameters. Note, however, that
the correlation will always be non-negative. The probabilities of these two regions under
the bivariate normal distribution must be controlled to bound the risk function. How will
it be possible to make the two probabilities very small? Unfortunately, there is no simple
answer to this as the probabilities will be dependent on the actual prior parameters used
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(U<a,V>b)

7.

(

U>a,V<b)

-

Fig. 1. A particular contour plot.

and the sample size n. However, we provide the following remarks and illustrate the results
numerically.

The two probabilities will be small (even for small n) if a and b are of the same sign,
and both |a| and |b| are large. This happens when the point (a,b) is far away from the
origin in either direction along the major axis of the elliptical contours. When a and b are
of opposite sign and at least one of |a| and |b| is large then one of the probabilities will be
zero and the other will be large for small values of n. Both the probabilities will be large
for small n if the point (a,b) falls inside the high probability region of the contours. To
reduce the high probabilities in the last two cases a large value of n will be required. The
large value of n will make the value of p close to 1 and as a result the contours will shrink
to the major axis and both the probabilities will approach zero.

Suppose that Tf2 is large corresponding to a non-informative fitting prior. Straightfor-

ward calculation yields that
_ _ g0
b= (a Ts \/ﬁ> ‘ ©

With a further assumption that Lo = Ly, (equivalently n = 1/2) we have ¢ = 0; now b
will be a positive multiple of a. Thus a large value of |a| will yield a large value of |b| of
the same sign even for small values of n. As a result, even a very small sample size will be
sufficient to make the two probabilities small. The quantity a will be large if the mean of
the sampling prior ps is quite far away from 6 in units of 75, the standard deviation of the
sampling prior. Thus a smaller sample size can be expected if the prior mean is quite far
away from the boundary value 6y in either direction in units of 7 when Lo = L; and the
variance of the fitting prior is large.

If we assume that both the sampling prior and the fitting prior are non-informative (in
the sense that both 72 and T]% are large) then b will be approximately equal to a and as a
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result the sampling prior alone may dictate the sample size. That is, a smaller sample size
can be expected if the prior mean is quite far away from the boundary value 6y in either
direction in units of 75;. Note that this conclusion does not require the equality assumption
of the losses made in the preceding paragraph, since from (6) we have b — a as 72 — o
even when ¢q # 0.

The two probabilities will be moderately large for small values of n if the point (a,b)
is near the origin. The origin is the worst position of the point (a,b) for making the
probabilities of the two regions small since each of the two regions will intersect heavily
with high probability areas of the bivariate normal distribution. Thus the a = 0 case for
which the mean of the sampling prior is equal to 6y will require a larger sample size than
the a # 0 cases. The actual sample size, however, will depend on the magnitude of the
quantity b and the tightness of the upper bound on the risk function.

We now turn to numerical illustrations. We have used Monte Carlo integration with
5000 replications to estimate the error probabilities. As a result the optimal sample sizes
reported in the tables below are subject to sampling fluctuations. In most cases the sampling
variabilities are small and do not affect the main conclusions we have reported. It is possible
to remove the sampling fluctuations by additional programming to evaluate probabilities of
rectangular regions under bivariate normal distributions.

We make several convenient assumptions; in real applications the auditors must specify
the values of all the unknown constants. We suppose that Ly = Ly, i.e. n = 1/2. We further
let 02 = w3 and subsequently illustrate with w = 1. For simplicity and easy interpretation,
we parameterise the mean and variance of the fitting prior distribution by:

ps = kg, and 7 = k6o,

assuming 6y > 0. Thus the parameter k§f ) is the ratio of the prior mean and the materiality,
6p. The parameter kéf ) does not have any such direct interpretation. We similarly define

k{*) and k$*) for the sampling prior distribution.
The above choices lead to the following values of p, a, and b:

—1/2

_ (9 _

n (kés))z g + 7%55) (ky))2

Note that these three parameters are now free of the value of the per item material error
6y. We now have the following results:

e Suppose that the sampling and the fitting priors are same; that is, k1 = k§f ) = k%s)
and ky = k) = k{*). Then we have

1\ "'/ 1—k 1—k
=(14+ — = b= .
p (*nk%) 4T T p(” nk%)

We report the optimal sample sizes in Table 1. As expected the largest sample size
is required for the k; = 1 case where the prior mean is equal to 6y, the boundary
value between the two hypotheses. Note that in this case a = b = 0; and sample size
decreases as ko increases since p increases. Thus in this case a larger sample size is
required for a tighter prior distribution. The sample sizes are symmetric on either
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side of the k; = 1 column. For very small or large values of k; the sample sizes are
very small.

e Suppose that kif ) = k§3) = 1, the most difficult case for decision making, but kés) and

kgf ) can be different. In this case we have a = b = 0. Hence the optimum sample size

will not depend on the value of kéf ) and it will be decreasing in kés) as we have seen
previously. Optimum sample sizes reported in Table 2 confirm this. Here the variance
of the fitting prior does not affect the sample sizes (the rows are almost the same) but
the sample size decreases as the variance of the sampling prior becomes larger.

e Now suppose that there is a mismatch between the means of the fitting and sampling
prior distributions. To illustrate we assume that kﬁs) =0.5 and kY ) = 1. In this case
kéf ) will not affect the optimum sample size since b is free of kgf ) and kéf ) enters into
the sample size calculation only through b. Now the optimum sample size will depend
on the value of kgs). Note that p increases as kés) increases but a and b decrease as kés)
increases. That is why the optimum sample sizes will first increase and then decrease.
Numerical results in Table 3 confirm this.

Observe that the sample sizes are larger if a tighter bound, M(n), is required for the
risk function. A sample size of oo will require a complete audit.

The above results support the auditors’ intuition that if the prior mean error is very
much less than the material mean error, 6y, then they only need small sample sizes. The
Bayesian approach forces them to make their assumptions more explicit.

4. Exponential error distributions

We now suppose that the errors follow an exponential distribution with mean 6. We thus
assume that

e 5, 2>0,0>0.

| =

f(=]6) =

The conjugate prior distribution for  is the inverse gamma distribution IG(a, A) with the
density:

A1
F(OA) got+l

m(0) = e’ 9> 0. (7)
The sampling prior will be taken as 7(9)(6) = IG(a,, ;) and the fitting prior will be
assumed to be 7()(6) = IG(ays, \s). The posterior distribution has the probability density
function

(Af +nZ,) "t 1

() (n)y —
T (0x\") T(n+ay) @rrertt

e~ (Artnan)/0 g 5 0.

Note that (/) (4]x(™) only depends on &, and henceforth we shall write 7(/)(6|z,). The
Bayes rule chooses action ag if

Lo fg(? 7N (0|z,)ds < I, 090 7D (8|z,,)dO
i.e. Lo(1 —-p) < Lip,
= p > =
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where
Jo? D (8)z,)d8

_ B0 (As+nz,)"T*f —(Aj+nz,)/0
- .fO T'(nt+ay) "+“f+1e do
'n-(-af—l —y

oo
Jrinen Sy

)‘f+"5"

bS]
Il

yn+cxf—1e—y

= 1_f0 o0 T'(n+ajy) dy

Thus p > n implies
Ajptndn

“ y""’af*le*y
I T dy<1-
/0 Tn+a) 057"

which in turn implies
Nk, < k”(f)(n) =fbogs — Ay,

where gy is the (1 — n)th quantile of the gamma distribution with shape parameter n + ay
and rate parameter 1 denoted by G(n + ay,1). Let G (-) be the cdf of G(m,1). Then

Gn}raf (1 —n). Now we have

(D)
PrinX, < k*" (n)[8) = G, (%ﬁ) :

Note that this probability is zero when e (n) is negative. Now the risk function is given
by

o e X )
r(x®,67") = L, /90 Gy (%p) () (0)d6+L, /00 {I—Gn (k 0( )>}7r(s)(9)dt9.

An equivalent expression for this is

)
T (n)y |yt
P I‘(a T(a.) € “vdy

ag—1
+1, f;so/ao {1 — Gn (k As(n)y)} Z{“(as) e_ydy.

We solve the above two integrals using Monte Carlo integration by sampling from G(as,1).
In our numerical investigation below we have used 5000 samples from the G(ay,1) distri-
bution.

00 = Lo 3G

4.1.  Numerical results
In our illustration we choose the parameters in the prior distribution, A and «, by specifying
the mean and the standard deviation. We choose the mean to be a multiple, k; say, of 6
the boundary value of 8. Note that the mean and variance of the prior distribution of 8 in
(7) are given by
E(0) A if @ >1, and 72 = var() ) S if @ >2
— — if o n T7° = var = I o« -
a a1’ ’ (a—1)2(a—2)
We suppose that
= ki6o, T = k2o,
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and choose k; and ko first to specify the prior parameters. These two constraints imply
that

o= % <3+ 1+4k1/(00kg)), A= (@ = 1)kibo. (8)

Thus we can obtain the values of the parameters a and A once we have specified 6y, k1 and
ko.

Now we consider the sampling and fitting prior distributions. The four parameters kf’,
kés), kff ) and kéf ) will determine the prior parameters oy, As, oy and Ay.

e Suppose that the sampling and the fitting priors are same; that is, A, = Ay and
as; = ay. Note that these parameters are obtained from (8) by first assuming a
particular value for each of k¥ = ki) = &, and k¥ = &) = k,. The optimal
sample sizes are reported in Table 4. As expected, we see that the largest sample
sizes are needed when k; is close to 1, but small sample sizes are needed otherwise.
Thus, as intuition suggests, the tighter the concentration of the prior distribution
around 6y, the more samples are required. Note that some sample sizes are oo for the
M (n) = 0.01 case. A complete audit will be required in each of those situations.

e In Table 5 we assume that kf) = kgf ) = 1, but we specify different values of kgs) and
kéf ) for the sampling and fitting prior. The optimum sample sizes are not affected
by the fitting prior distribution; the small variation between the columns is due to
the sampling fluctuations in the simulation. As seen before, higher sample sizes are

needed for tighter sampling prior distributions (see the variations between the rows
of the table).

e Now we suppose that there is a mismatch between the means of the fitting and sam-
pling prior distributions. To illustrate we assume that kgs) = 0.5 and kif )= 1. We
report the optimum sample sizes in Table 6 for different values of kés) and kéf ). The

optimum sample size increases when kgs) increases and those are not affected by the
variance of the fitting prior.

5. A mixture model

Following Cox and Snell (1979) we assume that X; is non-zero with probability ¢. Let
there be m items which resulted in positive errors. Denote these m positive values of X
by Zi1,2s,...,Z,. Further, we assume that the random sample Zy, Z», ..., Z,, follows the
exponential distribution with mean . Now the parameter of interest is given by 8 = ¢u. As
mentioned earlier Cox and Snell assume that it is the taints Z;/B; that have an exponential
distribution.

As in Cox and Snell (1979) we assume that a-priori ¢ ~ G(a,a/v0) and p ~ IG(b, (b —
1)p0) independently for suitable values of a, b, 19 and ug. These prior distributions are
adopted because these are conjugate, and as is well known a simpler analysis ensues under
conjugate prior distributions. The joint prior density of ¥ and p is given by:

a\* 1 a—1_—a 0 {(b_l)/'l’ }b 1 —(b—1)po
77(¢;M) = (%) mlp le v/ F(b) 0 /Jb+1€ (b=1)u /M’ w > 0,/.11 > 0.
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After some calculation, we see that the induced prior distribution of the parameter of
interest 8, (), is given by

w(0) = c{m(8)} Faq,2p where c{n(0)} = {%} 7

where F,, ., is the standard F' random variable with (v1,v2) degrees of freedom.

Note that the prior mean of 8 = 9pu is given by the product tgue; the other hyper-
parameters a and b cancel out in the mean. However, the variance of § depends on all the
hyper-parameters and we shall return to their choices later.

The likelihood is obtained by arguing that m|n, follows the Poisson distribution with
parameter nty and given m > 0, Z1,...,Z,, are i.i.d. exponential random variables with
mean p. The resulting likelihood is given by:

— 1 _1 m .
L(¢7 M5 T, M, Z) x e nd’(n,(p)mu_me # Xin # .
The joint posterior distribution of ¥ and p is proportional to L(v, u;n,m,z) x 7(1, w),
and is given by
1 m o 1
w@wmumm)aem¢mwm;;6f 7 S
for ¢y > 0 and g > 0. If m = 0 then we simply drop the terms involving m from the above
expression to obtain the posterior distribution.
After some integration, we see that the posterior distribution of the quantity 8 = ¥ u is
given by

m(01x™) = e {rOx™)} Fam e am10)

o) - {rmoim) ()

Note that if m = 0 then the posterior distribution is given by

§=c {7r((9|x("))} Fyq,26, where ¢ {W(0|x(n))} - % {%} '

where

Further, when n = 0 it is easy to see that the prior and posterior distributions of 6 coincide,
as expected.
The Bayes rule chooses action ay if

Lo

fo
6|x(™)do > =1,
| wox s > =

as before. This holds if,
o

W > q(m,a,b,n), 9)

where g(m,a, b, n) satisfies

Pr {FZ(m+a),2(m+b) < Q(ma a, b: 77)} =1
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For the inequality (9), two cases arise depending on the value of m. If m > 0, then the
Bayes rule chooses action ag if

“ m+b n+alig
Y <8 — (b= 1)po. 1
P A<ty agq(m,a,b,n) ( o (10)

On the other hand, if m = 0 then the Bayes rule chooses action ag if

b n+a/io

oam > (b —1)po- (11)

Consequently, depending on the value of m the probability Py {g (X(™) < k(n)} will have
two different forms. When m = 0, the probability is 1 if (11) is satisfied and 0 otherwise.
If, however, m is non-zero then the probability is given by

P<Y<9_0m+b n+a/io —(b—l)@>
p m+aq(m,a,b,n) jz

where Y follows the gamma distribution G(m,1). Note that this probability will be zero
when the right hand side of (10) is negative.
We now introduce the fitting and the sampling priors for calculating the risk function (3).

Assume that the forms of the fitting and sampling prior distributions are the same. Let

af, by, (()f ),u(()f ) be the parameters under the fitting prior and as, by, zp(()s),,u((]s) be the

parameters under the sampling prior. Now the probabilities Py {g (X(™) < k(n)} and

Py{g (X™) > k(n)} are to be calculated using the parameter values ay, by, (()f ) ,u((]f ) for

the fitting prior.

The risk function (3) is now calculated using Monte Carlo sampling from the sampling
prior distribution as follows. We first simulate ¢ and p from their sampling prior distribu-
tions which have hyper-parameters as, by, @bés), u(()s). The product 8 = ¥ is taken as a draw
from the sampling prior distribution. Conditional on the draws from the prior distribution
we simulate m for a given sample size n using the fact that m|n,v follows the Poisson
distribution with parameter ni.

The probability of choosing actions ag and a; are evaluated under the fitting prior

distributions which have hyper-parameters ay, by, (()f ), ,u(()f ). That is, we set

b () .
o g (ooﬁ% > (bs = Duéf)) ’ =0
Py {g (X(")) < k" (”)} 6o mib; ntas ol e .
G (fm+a§ amag by~ Or = 1”#) , otherwise,

where I(-) denotes the indicator function. Subsequently the average risk over 2000 simula-

tion replications produces accurate estimates of the risk r (77(5) , (5;{(”).

5.1. Numerical results
The prior mean and variance of 8 are given by:

a+b—1

m(%Mf-

mean = gy, variance =
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We assume 1y = 0.01 and obtain values of yg using the relation youe = k16 for different
values of k;. We now set the prior standard deviation k, times 6y as in the previous example,
i.e.

atb—1\2
(m) Yopo = k2bo.

This only provides one constraint for two undetermined parameters a and b, so many dif-
ferent strategies can be adopted. In order to ensure positivity of both a and b we require

that
2

ki
2+ —.
b>2+ 52

We let 22 _—
b=2+ *+banda= 5——s5—
TRt BOh-2)/k -1
where bg is a non-negative parameter. A small value of by makes the prior distribution very
spiky and as a result the sample sizes become very large. That is why we illustrate with a
moderate value of by = 10, although other values can be adopted.
In our illustration, we assume that ¢(()3) = @b(()f ) = 0.01 to reduce the number of pa-
rameters to be given as input for the method. The remaining parameters in the prior
distributions are obtained by specifying particular values for k; and k. Note that we shall

have four parameters k§f ) kéf ) k%s) and kés) for the fitting and sampling priors.

e Suppose that the sampling and the fitting priors are same. In this case we have
as = ay and b, = by. Note that these parameters are obtained by first assuming a
particular value for each of &{*) = ki) = k; and &{* = k{/) = k,. The optimal sample
sizes are reported in Table 7. Here the sample sizes are not symmetric around the
k1 = 1 column due to skewness of the mixture distribution. The sample sizes decrease
when the prior variance increases as in the previous cases. Also note that there are
some optimal sample sizes which are co. These are due to the corresponding very
small prior variances assumed. The implied prior distribution for each of those cases
resembles a spike (centered very close to 6y) and huge number of samples are required
to discriminate between the two hypotheses. In practical auditing terms these infinite
sample sizes will require a complete audit.

e In Table 8 we assume that k§s) = k§f ) =1, but we specify different values of kés) and
kgf ) for the sampling and fitting prior. As in the normal and exponential distribution
examples the optimum sample sizes are not affected by the fitting prior distribution;
the small variation between the columns is due to sampling fluctuations in the sim-
ulation. Also as seen previously higher sample sizes are needed for tighter sampling
prior distributions (see the variations between the rows of the table).

e Now we suppose that there is a mismatch between the means of the fitting and sam-
pling prior distributions. To illustrate we assume that k%s) = 0.5 and k%f )= 1. We

report the optimum sample sizes in Table 9 for different values of kés) and kéf ). The

)

optimum sample size decreases when kés increases and those are not affected a great

deal by the variance of the fitting prior.

In the above discussion we do not consider the M (n) = 0.01 case since most sample sizes
were either very small or very large.
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6. Discussion

In this article we have developed a Bayesian method to calculate optimal sample sizes
using analytic and numerical simulation methods. Problems in auditing motivated the
development of this method, although the approach is general and can be used for similar
problems in statistical decision making.

We feel that a clear distinction should be made between the sampling and fitting prior
distributions. The sampling prior distribution relates to the data generating mechanism
while the fitting prior drives the inference through the posterior distribution. Intuition
suggests that a non-informative fitting prior distribution should not influence the sample
size and we have demonstrated this here. The sampling prior distribution captures the
auditors’ usually strong prior belief while the fitting prior distribution is a statistician’s
device to implement the method.

A key result in the auditing context is that if the prior mean is far away from the
boundary value, 6y (or the per item material error) then the required sample size is very
small which confirms the auditors’ views about the value of sampling. In this case a min-
imum sample size should be set to satisfy auditing standards and to guarantee some level
of quality assurance due to sampling. If the prior mean is very close to the material error
then as expected, a large sample size is required. This sample size gets even larger for the
tighter prior distributions. Also when the upper bound on the two error probabilities, M (n),
is small the sample sizes become very large. All these results confirm auditors’ intuition
regarding sample sizes.

The optimal sample sizes have been found under three different parametric assumptions
on the error distribution. The assumption of a mixture distribution is appropriate in most
auditing problems, although the key conclusions remained the same across the three models.
The sample sizes are model dependent if the prior mean of 8 is close to the material value
0o. However, if the prior mean is very much smaller than 8y, which is often the case in
auditing, all models give very small sample sizes.
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Table 1. Optimum sample size for different values of £; and
k2 for the normal example when the fitting and sampling prior
are same. Here 6y = 0.01, » = 1/2 and ¢ = 63.

M(n) = 0.10
k1
ko 0.25 0.5 0.75 1.0 1.25 1.5 1.75
0.5 2 12 28 37 31 13 2
1.0 6 8 10 11 11 9 6
1.5 5 5 5 6 6 6 5
2.0 4 4 4 4 4 4 4
2.5 3 3 3 3 3 3 3
M(n) =0.05
k1

k2 025 05 0.75 1.0 1.25 1.5 175
0.5 12 55 106 157 114 57 11
1.0 23 30 38 39 35 31 25
1.5 16 16 18 19 19 19 14
2.0 10 11 11 11 12 11 10

2.5 7 7 8 8 8 8 8
M(n) =0.01
k1

k2 025 05 0.75 1.0 1.25 1.5 175
0.5 296 1149 2186 3005 2300 1118 346
1.0 448 598 709 746 749 618 417
1.5 290 296 374 357 317 330 287
2.0 183 175 206 209 194 202 160
2.5 112 144 134 114 143 129 124
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Table 2. Og)timum sample size for different
values of kgs and kéf) for the normal example
when k@ = k&f) = 1. Here 6o = 0.01, n =
1/2 and o2 = 63.
M(n) =0.10
As

K9 05 1.0 15 20 25
05 40 37 39 40 39
10 11 11 11 11 11

1.5 5 6 5 6 6

2.0 4 4 4 4 4

2.5 3 3 3 3 3
M(n) =0.05

K2 05 1.0 15 20 25
0.5 140 148 152 151 152
1.0 41 43 41 41 41
15 19 19 20 18 18
20 11 12 11 11 12

25 8 8 8 8 8
M () = 0.01
ACY

2
Y 05 1.0 15 20 25
0.5 2804 2698 2966 2578 2877
1.0 746 661 763 698 765
15 341 326 348 307 352
20 168 189 208 183 186
25 134 121 138 125 145

21
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Table 3. Og)timum sample size for different
values of kgs and kéf) for the normal example
when &*) = 0.5 and k) = 1.0. Here 6, =
0.01,7 =1/2 and o = 2.
M(n)=0.10
JAe

K 05 1.0 15 20 25

0.5 12 12 12 12 11

1.0 16 16 16 16 16

1.5 13 12 12 13 13

20 9 9 9 9 8
25 7 7 7 7 7
M(n) = 0.05
e

05 26 27 27 28 28
10 59 60 57 57 60
15 47 46 44 47 48
20 32 33 31 29 30
25 24 24 22 24 23
M(n) = 0.01
P
05 269 220 235 248 282
1.0 1070 1129 1021 1146 1027
15 855 834 87 770 808
20 587 636 596 615 572
25 463 378 441 369 379
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Table 4. Optimum sample size for different values of k; and
k2 for the exponential example when the fitting and sampling
prior are same. Here 6o = 0.01 and n = 1/2.

M(n) = 0.10
k1
ko 0.25 0.5 0.75 1.0 1.25 1.5 1.75
0.5 2 2 2 193 79 2 2
1.0 2 2 18 97 86 2 2
1.5 2 2 17 67 76 30 2
2.0 2 2 14 48 64 37 2
2.5 2 2 14 43 52 38 12
M(n) =0.05
k1
k2 0.25 0.5 0.75 1.0 1.25 1.5 1.75
0.5 2 2 80 739 377 2 2
1.0 2 2 89 371 355 78 2
1.5 2 2 73 259 300 131 2
2.0 2 4 67 182 253 154 36
2.5 2 5 56 162 215 151 68
M(n) =0.01
k1
ko 0.25 0.5 0.75 1.0 1.25 1.5 1.75
0.5 2 2 1822 00 o] 287 2
1.0 2 67 1734 ) 00 1750 118
1.5 2 118 1593 o) o0 2562 598
2.0 2 177 1481 3086 4391 2846 1038
2.5 2 159 1229 3082 3646 2938 1277
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Table 5. Optimum sample size for different
values of kés) and kgf) for the exponential ex-
ample when k) = &) = 1. Here 6, = 0.01
and n = 1/2. All sample sizes are oo for the
M (n) = 0.01 case.
M(n) =0.10
kgf)
EY 05 1.0 15 20 25
0.5 189 184 180 184 183
1.0 100 94 94 98 92
1.5 67 64 64 63 65
2.0 49 50 49 53 51
2.5 43 42 40 42 43
M(n) = 0.05
k;f)
0.5 735 709 732 717 731
1.0 364 364 382 370 369
1.5 256 266 246 249 253
2.0 204 185 202 196 201
2.5 164 155 171 157 166

M(n) = 0.01
k;f)
0.5 00 0o 00 00 00

1.0 4219 4280 4584 3937 4999
1.5 3250 3376 3253 2771 2870
2.0 2116 2672 2432 2366 2521
2.5 2186 2000 2197 1814 1736




Table 6. Optimum sample size for dif-
ferent values of kgs) and kgf) for the ex-

ponential example when kﬁs) = 0.5 and
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k) = 1. Here 6 = 0.01 and n = 1/2.

M(n) = 0.10
e
KY 05 10 15 20 25
05 2 2 2 2 2
10 2 2 2 2 2
15 2 2 2 2 2
20 2 2 2 2 2
25 2 2 2 2 2
M(n) = 0.05
k;f)
K 05 10 15 20 25
05 2 2 2 2 2
10 5 4 5 5 4
15 6 7 7T 6 6
20 7 8 8 7 8
25 8 8 8 7 8
M(n) = 0.01
A
K9 05 1.0 15 20 25
05 23 25 25 27 25
10 8 8 91 93 86
1.5 147 147 148 152 155
20 153 182 156 175 168
25 159 185 179 196 169

Table 7. Optimum Sample size for different values of k1 and
k- for the mixture example when the fitting and sampling prior
are same. Here 8o = 0.01, 5 = 1/2, %$) = 4§ = 0.01 and

(s) (@)
0

Bo = Hg -
M =0.10
k1
k2 0.25 0.5 0.75 1.0 1.25 1.5 1.75
0.5 2 65 1500 0 o0 3341 2
1.0 2 37 275 1011 2285 3153 2809
1.5 2 6 80 307 746 1405 1871
2.0 2 2 27 103 318 701 1017
2.5 2 2 12 43 131 317 589
M =0.05
k1
ko 0.25 0.5 0.75 1.0 1.25 1.5 1.75
0.5 22 962 00 00 9 0o 2
1.0 3 251 1572 4526 o0 00 00
1.5 2 74 451 1457 3403 00 00
2.0 2 18 167 6563 1674 2614 4578
2.5 2 9 69 287 817 1490 2462

25
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Table 8. Optimum Sample size for different
values of k§s> and kgf) for the mixture ex-

ample. Here 8o = 0.01; k{* = k) = 1,
P8 =8 =0.01, 9 =1/2.

M(n) =0.10

e
K2 05 1.0 15 20 25
0.5 o) 0o 00 o'} oo

1.0 1086 1032 1058 1126 1039
1.5 337 334 304 301 325
2.0 128 142 99 129 114
2.5 75 66 64 50 48

M(n) = 0.05

AR
Y 05 1.0 15 20 25
0.5 0o 00 00 [e) o0

1.0 4516 4215 4768 4644 4261
1.5 1555 1497 1424 1560 1537
2.0 633 630 545 639 538
2.5 315 284 274 241 239

Table 9. Optimum Sample size for different
values of kés) and kéf) for the mixture exam-

ple. Here o = 0.01; k%) = 0.5,k = 1,
Ps =i =0.01,n=1/2.
M(n) =0.10
e
K2 05 1.0 15 20 25
05 499 984 1003 991 971

1.0 37 58 63 65 63
15 4 6 5 5 8
20 2 3 2 2 3
25 2 2 2 2 2
M(n) = 0.05
s

Y 05 1.0 15 20 25
0.5 1843 2584 2482 2651 2613
1.0 451 761 871 879 1010
15 74 68 66 66 76
20 24 18 22 16 23
25 9 9 8 10 8




