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Abstract

This paper considers the application of missing data methods to a measurement error problem
arising in the estimation of the distribution of hourly pay in the United Kingdom, using data
from the Labour Force Survey. Errors in the measurement of hourly pay lead to bias and the
aim is to use auxiliary data, measured accurately for a subsample, to correct for this bias.
Alternative point estimators are considered, based upon a variety of imputation and weighting
approaches, including fractional imputation, nearest neighbour imputation, predictive mean
matching and propensity score weighting. Properties of these point estimators are then
compared both theoretically and by simulation. A fractional predictive mean matching
imputation approach is advocated. It performs similarly to propensity score weighting, but

displays slight advantages of robustness and efficiency..

S°R1 Methodology Working Paper M04/08
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Summary. This paper considers the application of missing data methods to a measurement
error problem arising in the estimation of the distribution of hourly pay in the United
Kingdom, using data from the Labour Force Survey. Errors in the measurement of hourly
pay lead to bias and the aim is to use auxiliary data, measured accurately for a subsample, to
correct for this bias. Alternative point estimators are considered, based upon a variety of
imputation and weighting approaches, including fractional imputation, nearest neighbour
imputation, predictive mean matching and propensity score weighting. Properties of these
point estimators are then compared both theoretically and by simulation. A fractional
predictive mean matching imputation approach is advocated. It performs similarly to
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1. Introduction

A national minimum wage was introduced in the United Kingdom (UK) in April 1999 and
there is considerable interest in how the lower end of the distribution of hourly pay has
changed since then, both overall and within subgroups, such as by gender. The UK Labour
Force Survey (LFS) provides an important source of estimates of this distribution (Stuttard
and Jenkins 2001). A major problem with the use of household surveys to produce such
estimates is the difficulty in measuring hourly pay accurately (Rodgers, Brown and Duncan
1993; Moore, Stinson and Welniak 2000). Measurement error may lead to biased estimates of
distribution functions, especially at the extremes (Fuller 1995). For example, the bold line in
Figure 1 represents a standard estimate of the lower end of the distribution function of
hourly pay using LFS data from the June-August 1999 ignoring measurement error. We
suggest that this estimate is seriously biased upwards and that improved estimates, using
methods to be described in this paper, are given by the three lower lines. These results
suggest that the proportion of jobs paid at or below the national minimum wage rate may be
overestimated by four or five times if measurement error is ignored.
[Figure 1 about here]

When a variable is measured with error, it is sometimes possible, as in our application, to
measure the variable more accurately for a subsample. In these circumstances, if we assume
that the variable measured accurately on the subsample is the true variable, inference about
the distribution of this variable becomes a missing data problem. The variable measured
erroneously on the whole sample is treated as an auxiliary variable. The case when the
subsample is selected using a randomised scheme is well studied and referred to as double
sampling or two phase sampling (e.g. Tenenbein 1970). In this case, unbiased estimates can
be constructed from the subsample alone, but use of data on the correlated proxy variable
for the whole sample may improve efficiency. See, for example, Luo, Stokes and Sager

(1998). In the application in this paper, the selection of the subsample is not randomised and



we shall just assume that the accurate variable is missing at random (MAR) (Little and Rubin
2002) conditional on variables measured on the whole sample. Because the aim is to estimate
a distribution function, which is unlikely to follow exactly a standard parametric form, we
avoid approaches which make parametric assumptions about the true distribution, as for
example in Buonaccorsi (1990). It is also desirable in our application to avoid strong
assumptions about the measurement error model, for example that it is additive with zero
mean and constant variance as in the SIMEX method of Luo et al. (1998). Instead, the novel
feature of this paper is to consider the application of various imputation and weighting
methods from the missing data literature to this measurement error problem. The aim of the
paper is to investigate how to design these methods to improve point estimation of the
distribution function of hourly pay, in terms of bias, efficiency and robustness to model
assumptions.

The basic measurement error problem considered in this paper was described by Skinner,
Stuttard, Beissel-Durrant and Jenkins (2002), who also proposed the use of one imputation
method. This paper extends that work by considering a wider class of approaches to missing
data and by comparing their properties both theoretically and via simulation. The imputation
approach developed in this paper, which extends that considered by Skinner et al. (2002), has
now been implemented by the Office for National Statistics in the United Kingdom as a new
approach to producing low pay estimates.

The paper is structured as follows. The application and the estimation problem are
introduced in section 2. Imputation and weighting approaches are set out in sections 3 and 4
respectively and their properties are studied and compared theoretically in section 5 and via a
simulation study in section 6. Section 7 discusses the application of the missing data methods

to the Labour Force Survey. Some concluding remarks are given in section 8.



2. The Estimation Problem

Our aim is to estimate the distribution of hourly pay from LFS data. This inference problem
requires consideration of both (i) sampling and unit nonresponse of employees and (ii)
measurement error and item nonresponse for hourly pay. We outline the basic set-up for
both (i) and (ii) in this section. The main focus of the paper will be the choice of methods to
address (ii). Standard procedures will be used to handle (i).

The LFS is a quarterly survey of households selected from a national file of postal addresses
with equal probabilities by stratified systematic sampling. All adults in selected households
are included in the sample. The resulting sample is clustered by household but not otherwise
by geography. Each selected household is retained in the sample for interview on five
successive quarters and then rotated out and replaced. The questions underlying the hourly
pay variables, described below, are asked in just the first and fifth interviews, giving
information on hourly pay on about 17,000 employees per quarter. Survey weights are
constructed to compensate for differential unit nonresponse (ONS, 1999).

The traditional method of measuring hourly pay in the LFS is (a) to ask employees questions
about their main job to determine earnings over a reference period, (b) to ask questions to
determine hours worked over the reference period and (c) to divide the result of (a) by the
result of (b). We refer to the result of (c) as the derived hourly pay variable. This is the variable
used to produce the bold line in Figure 1. Skinner et al. (2002) describe and provide
empirical evidence of many sources of measurement error in this variable. A more recent
method of measuring hourly pay is first to ask whether the respondent is paid a fixed hourly
rate and then, if the answer is positive, to ask respondents what this (basic) rate is. We refer
to the resulting measure of hourly pay as the direct variable. Skinner et al. (2002) conclude
from their study that the direct variable measures hourly pay much more accurately than the
derived variable and a key working assumption of this paper is that the direct variable

measures hourly pay without error.



The problem with the direct variable is that it is missing for respondents who state that they
are not paid at a fixed hourly rate (and for item nonrespondents) and this missingness may
be expected to be positively associated with hourly pay. The proportion of LFS respondents
with a (main) job who provide a response to the direct question is about 43%. This
proportion tends to be higher for lower paid employees, for example the rate is 72% among
those in the bottom decile of the derived variable. The direct variable is not collected for
second (and further) jobs and we therefore restrict attention only to first jobs.

This paper addresses the following missing data problem. We wish to estimate the

distribution of hourly pay defined as:

F(y)=N""I(y, <) (1)

ieU
where U is the population of N (first) jobs, y; is (basic) hourly pay for job i and y may take
any specified value. Our data consist of values y,, x, and r. for i €s and values y, for

i €s when r, =1, wheres is the set of (first) jobs for unit respondents in the sample drawn
from U, vy, is the value of the derived variable, vy, is the value of the direct variable

assumed identical to the hourly pay variable of interest, . =1 if y, is measured and r, =0
if not and X, is a vector of other variables measured in the survey.
We assume that inference from the sample s to the population U can be made using standard
methods of survey sampling. Our primary concern is with the missingness of y. . We
consider two approaches to handle this missingness:

(i) imputation of y, for cases where r. =0 (i €s), using the values y, and X, as

auxiliary information;
(ii) weighting of an estimator based upon the subsample s, :{i es;r :1}, in

particular, the use of propensity score weighting (Little 1986).

These approaches to estimating F(y) will be discussed in the following two sections.



3. Imputation Approaches
We shall construct imputation methods based upon the assumption that the population
values (Y, Y, X,,r,), i €U, are independently and identically (11D) distributed. To allow for

the LFS sampling design and unit nonresponse, we propose to incorporate the survey
weights in the resulting point estimator of F(y), in the same way that a pseudo-likelihood
approach (Skinner, 1989) weights estimators based upon an 11D assumption. We do not
attempt to take account of the weights or the complex design directly in the imputation
methods.

Under the 11D assumption and the assumption that sampling is ignorable (that is that the
distribution of (y, ,y;, x;,r;) is the same whether or not i €5 ), if it were possible to observe

y, fories,

n

F(y)=n"> Iy < y) 2)

i=1
would be an unbiased estimator of F(y) (in the sense that E[IE( y)—F(y)]=0 forall y),
where we write s ={1,..,.n}. We assume that this estimator remains unbiased under the

actual sampling design and unit nonresponse if the mean in (2) is weighted by the survey
weights. The 11D assumption used in the remainder of this section may be interpreted as
holding conditional on inclusion in s, with the implicit assumption that survey weighting will
also be required to handle the selection of s from U.

To address the problem that vy, is missing when r, =0, we first consider a single
imputation approach where y, is replaced in (2) by a single imputed value y/ when r, =0
(and ics)and let y, =y, if r=1and y, =y otherwise. We assume that y' is

determined in a specified way using the data D ={[ y;, x,, r; i€s],[y,; r,=1i€s]} and

perhaps a stochastic mechanism. The resulting estimator of F(y) is



n

F(y)=n") 1(y <) (3)

i=1
A sufficient condition for F(y) to be an unbiased estimator of F(y) is that the conditional
distribution of y' given r. =0, denoted [y'|r, =0], is the same as the conditional
distribution [y, |r, = 0]. However, since y, is only observed when r, =1, the data provide

no direct information about [y, |r, =0] without further assumptions. We consider two

possible assumptions. The first is common in the missing data literature (Little and Rubin

2002).

Assumption (MAR): r. and y, are conditionally independent given y; and x;.
The second assumption is that the measurement error model, defined as the conditional
distribution of y, given y, and x;, is the same for respondents (r =1) and
nonrespondents (r, = 0), which may be expressed as follows.

Assumption (Common Measurement Error Model): r, and y; are conditionally

independent given y, and X;.
The first assumption is the standard one made when using imputation or weighting and is
the one which we shall make. We shall use the second assumption in the simulation study in
section 6 to assess robustness of MAR-based procedures. Inference under the second
assumption could be made under strong assumptions on the measurement error model, for
example the additive error assumption in methods in Carroll, Ruppert and Stefanski (1995,
sect. 12.1.2.) and Luo et al. (1998). It does not appear straightforward to make inference
under the second assumption for a measurement error model which is realistic for our

application and we do not pursue this possibility further in this paper. The plausibility of

these assumptions is discussed further in Skinner et al. (2002).
Under the MAR assumption we have [y, | y,,x,,r. =01=1[y, | ¥, ,X,.r. = 1] and a sufficient

condition for F(Y) to estimate F(Y) unbiasedly is that



[y 1y xin =01=0y; 1y % =11, (4)
We therefore consider an imputation approach where the conditional distribution of y given
y_ and x is ‘fitted’ to the respondent (r =1) data and then the imputed values y' are
‘drawn from’ this fitted distribution at the values y, and x, observed for the
nonrespondents. We consider representing the conditional distribution [y, | v, x,,r, = 1] by
a parametric regression model:

g(y)=h( ¥, x;:B)+e, E(gly % )=0 (5)
where ¢(.) and h(.) are given functions and £ is a vector of regression parameters. A simple
point predictor of y, , given an estimator R of & based on respondent data, is

J =0Ty % B)1. (6)

Using §, for imputation may, however, lead to serious underestimation of F(Y) for low
values of y, since such simple regression imputation may be expected to reduce the variation
in F(Y) artificially (Little and Rubin 2002, p. 64). This effect might be avoided by taking
y' =g [h(y,, X,;B)+¢ ], where & is a randomly selected empirical residual (Little and

Rubin 2002, p. 65). Our experience is, however, that this approach fails to generate imputed
values which reproduce the ‘spiky’ behaviour of hourly pay distributions, for example

around a minimum wage, and this may lead to bias around these spikes. We prefer therefore

to consider donor imputation methods, which set y' = Yoy (. =0) for some donor
respondent j =d(i) for which r; =1. The imputed value from a donor will always be a

genuine value, as reported by the donor respondent, and will thus respect the spiky
behaviour these values display. The basic donor imputation method we consider is predictive

mean matching (Little 1988), that is nearest neighbour imputation with respect to , , i.e.

Iyi_’yd(i)lz minlyi_yjl (7)

jiry=1



where 1, =0 and r,;, =1.
Corollary 2 of Theorem 1 of Chen and Shao (2000) then provides theoretical justification for
the approximate unbiasedness of the resulting estimator F(Y) for F(Y), if certain

conditions hold. The four conditions are that: y, is missing at random (MAR) conditional
on z, = g '[h( ¥, x,;R)], where B:plim(@); the conditional expectation of y, given z, is
monotonic and continuous in z,; z, and E(y, ]z ) have finite third moments; and the

probability of response given z is bounded above zero. These conditions seem plausible

provide the MAR assumption above holds, the distribution of y, only depends on vy, and

X; viaz ; y, isagood proxy for y, and if we restrict attention to the lower part of the pay
distribution. In addition, Chen and Shao’s (2000) result needs to be adapted for the fact that

the nearest neighbour is defined with respect to & whereas the above conditions are with

respect tof8 . This approximation also seems plausible since close neighbours with respect to
V.o =g [h( ¥, X; @)] should also be close neighbours with respect to z, = g '[h( ¥, X; R)].
There are thus theoretical grounds that nearest neighbour imputation with respect to ¥, will
lead to an approximately unbiased estimator of F(Y ), subject to the MAR assumption and
certain additional plausible conditions. It is also of interest to consider the efficiency of
F(Y). The variance of F(Y) for nearest neighbour imputation may be inflated if certain

donors may be used much more frequently than others. We consider a number of
approaches to reducing this variance inflation effect.
First, we may smooth the number of times that respondents are used as donors by defining

imputation classes by disjoint intervals of values of y, and drawing donors for a recipient by
simple random sampling from the class within which the recipient’s value of , falls. The

smoothing will be greatest if we draw donors without replacement. We denote this hot deck

method HDIWR or HDIWOR, depending on whether sampling is with or without



replacement. A second approach is to undertake donor selection sequentially and to penalize

the distance function employed for determining the nearest neighbour d(i) as follows

19 — Yag) |_m|n{| Vi — ¥y (14 ut)}, (8)

where pcR" is a penalty factor, t; is the number of times the respondent j has already
been used as a donor, r, =0 and r,;, =1 (Kalton 1983). A third approach is to employ
repeated imputed values y/™, m=1,..,M , determined for each recipient i €s such that

r =0. The resulting estimator of F(Y) is MY F™(y), the mean of the resulting

estimators F™(y), or equivalently is obtained by multiplying the weight for each imputed

value by a factor 1/ M . We refer to the third approach as fractional imputation (Kalton and
Kish 1984; Fay 1996) rather than multiple imputation (Rubin 1996), since we do not require
the imputation method to be ‘proper’, that is to fulfil conditions which ensure that the
multiple imputation variance estimator is consistent. We do not stipulate this requirement
here because our primary objective is point estimation and to achieve consistent variance
estimation would raise further issues such as the effect of cluster sampling of adults within

households. In our use of fractional imputation we aim to select donors d(i,m),

m=1,..,M, each a close neighbour to i, so that F™(y) remains approximately unbiased
for F(Y). We consider the following variations of this approach.
(i) The M/2 nearest neighbours above and below 7, are taken, for M=2 or 10,
denoted NN2 and NIN10 respectively.

(i) M/2 donors are selected by simple random sampling with replacement from the M

respondents above and from the M respondents below ., for M=2 or 10, denoted

NN2(4) and NN10(20) respectively.
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(1)) M=10 donors are selected by simple random sampling with or without replacement
from the imputation classes referred to in the HDIWR and HDIWOR methods
described above. We refer to these as the HDIWR10 and HDIWOR10 methods.

For comparison we also consider the Approximate Bayesian Bootstrap method of multiple
imputation (Rubin and Schenker 1986), denoted ABB10, defined with respect to the

imputation classes referred to in the HDIWR and HDIWOR methods.

4.  Weighted Estimation

The estimator F(y) implied by the different imputation approaches considered in the

previous section may be expressed in weighted form as:

'f( Y): Zwil( ¥i < y)/ZWi (9)

ies; i€s;
where s, ={i €s;r, =1} is the set of respondents and w, =1+-d, /M, where d, is the total
number of times that respondent i is used as a donor over the M repeated imputations. Note

that ZS w, =n. The weight w, may be multiplied by the survey weight to allow for unit
nonresponse. Other choices of weight w, may also be considered. In particular, we may set

w, equal to the reciprocal of an estimated value of the propensity score, Pr(r. =1] y;,X,)

(Little 1986). This approach has been proposed for the hourly pay application in this paper

by Dickens and Manning (2002). This propensity score might be estimated, for example,

under a logistic regression model relating r. to y; and x,. Under the MAR assumption, the
resulting estimator F(y) will be approximately unbiased assuming validity of the model for
the conditional distribution [r, ]y, ,x,] and some regularity conditions, such as those
described in section 3 for the imputed estimator. Note that the need to model [r, |y, ,X; ]

replaces the need to model [ y, | ¥, x. ] in the imputation approach.

11



5. Properties of Imputation and Weighting Approaches

In this section we investigate and compare the theoretical properties of the imputation and
propensity score weighting approaches introduced in the previous two sections under

various simplifying assumptions. We fix y and set u, =1(y, <Y). Letting N — oo we
suppose that the parameter of interest is g = E(u, ). We consider the imputation approach
first and suppose that y, depends upon y, and X, only via z, = g '[h( ¥, X;;b] and that
y; is missing at random given z, . Ignoring the difference between b and b for large
samples we consider nearest neighbour imputation with respect to z, . As in (9) the imputed

estimator of g may be expressed as

‘iuvu: :Zwiuilzwi (10)

ies; i€s;

where w,=1+d,/M (and ZS w, =n). We write the corresponding expression for

propensity score weighting as &PS with w;, replaced by w,; . Let z, be the scalar function
of y’, x, upon which r. depends and write:

Pr(n =11 ¥;,X;) = P(zps:)- (12)
Just as we ignored the difference between b and b , We ignore error in estimating p(z,;)
and write W,g = p(Zpg ).

The imputation and propensity score weighting approaches may be expected to give similar

estimation results if z, and z,; are similar, that is they are close to deterministic functions

of each other, and M is large. To see this, consider a simple example of the imputation
approach, where the donor is drawn randomly from an imputation class ¢ of close

neighbours with respect to z, , containing m, respondents and n. —m, nonrespondents, as
described in section 3, then w, will approach 1+, —m.)/m =n./m, as M — oo and

this is the inverse of the response rate within the class (David, Little, Samuhel and Triest

12



1983). More generally, with the other nearest neighbour imputation approaches considered

in section 3, the weight w, =14d, /M may be interpreted as a local (with repect to z,)

nonparametric estimate of Pr(r, =1]z,)* and thus may be expected to lead to similar
estimation results to propensity score weighting if z, and z,.; are deterministic functions of

each other. In general, however, this will not be the case. Since Pr(r, =1]z;) may be

expressed as an average of Pr(r, =1] y", x) across values of y~ and x for which z=z,
we may interpret w, as a smoothed version of w,, and may expect it to show less

dispersion. This suggests that it may be possible to use imputation to improve upon the
efficiency of estimates based upon propensity score weighting, as also discussed by David et
al. (1983) and Rubin (1996, sect. 4.6). To investigate this further, let us now make the MAR
assumption and the other assumptions in sections 3 and 4 upon which the approaches are
based. In this case both imputation and weighting approaches lead to approximately

unbiased estimation of F(y) and we may focus our comparison on relative efficiency. It
follows from equation (3.3) of Chen and Shao (2000), under their regularity conditions, that

the variance of d,MP may be approximated for large n by

var(dy ) =N ELY wV(u 12140 V()] (12)
where y(z,)=E(u, |z ). Note that Chen and Shao (2000) consider single imputation with

M=1 but their proof of this result carries through if M > 1. It is convenient to reexpress

this result using
VIy(z)l= s’ —E[V(y1z)], (13)
where s*> =V (u,) and a corollary of Chen and Shao’s (2000) Theorem 1 that
E[n‘lzslwi V(U 1z)1=E[V(u 1Z)l+0, 07%). (14)
It follows that to the same order of approximation as in (12)

var(dye ) N 's” +nELY (P WV (uz)]. (15)

13



Note that w” —w, = (d, / M)(1+d./ M) >0 . This expression may be interpreted from both
‘missing data’ and ‘measurement error’ perspectives. From a missing data perspective, the

first term in (15) is just the variance of d in the absence of missing data and the second term
represents the inflation of this variance due to imputation error. From a measurement error

perspective, we may consider limiting properties under ‘small measurement error

asymptotics’ (Chesher 1991), that is where y, becomes a better measure of vy, and
V(u,]z) approaches zero. In this case, the second term also approaches zero and (:],MP

becomes ‘fully efficient’, i.e. its variance approaches s> /n .
Let us now consider propensity score weighting. We make the corresponding assumption

that y, is missing at random given z,; . Linearising the ratio in (9) and using the fact that
E(ZsleSi): n we may write
var(cips) ~n var[zsl Wog, (U, —Q)] (16)
=n"" E[Wpg;(U; —q)°]
which may be expressed alternatively as
Var(Gs ) 20 PELY " WV (U, 1205 )]+ E e [y (255)) — AT} (17)

To compare the efficiency of weighting and imputation it is convenient to use (13) and (14)

(which hold also with w,; in place of w,) to obtain
var(Qes) ~n~'s* ‘HrzE[Zsl(WSSi —Wosi M (Ui 1 Zos;)]

+nilE{Zsl[WPSi - 1][y(ZPSi)_q]2}' (18)
Note that, in comparison with (15), this involves a third term, which does not necessarily

converge to zero as y, approaches y, and V(u,|z.s)— 0. Hence propensity score

weighting does not become fully efficient as the measurement error disappears.

14



The second term of (18) may also be expected to dominate the second term of (15) when

V(ulz) and V(ulz.,) are constant and equal, since, recalling that

W= E(stlwPS .)=n, these second terms are primarily determined by the variances of
the weights w, and w,;, and, provided M is sufficiently large, we may expect w; to display
less variation than w,; , as argued above. In general, however, it does not appear that d,MP is

necessarily more efficient than &PS and we look to the simulation study in section 6 for
numerical evidence.

Let us finally consider the impact of departures from the MAR assumption. Under small
measurement error asymptotics where V(u,]z)—0 and y' — y,, the imputation
approach will provide consistent inference about q even if the MAR assumption fails. This
is not the case for the propensity score weighting approach. This suggests that the

imputation approach may display more robustness to departures from the MAR assumption

if the amount of measurement error is relatively small.

6. Simulation Study

The aim of the study is to generate independent repeated samples s, h=1,...,H, with
realistic values y,, y;,x, ,r,, i €5, to compute the corresponding estimates F™"(y) for
alternative approaches to missing data and values of y and to assess the performance of the
estimators F(y) empirically. In order to employ realistic values, the samples s" of size n

were drawn with replacement (i.e. using the bootstrap) from an actual sample of about

16,000 jobs for the March-May 2000 quarter of the LFS (only main jobs of employees aged
18+ were considered and the very small number of cases with missing values on y; or X,

were omitted). The effective assumption that the population size is infinite seems reasonably

given the small sampling fraction of the LFS. The assumption of (simple) random sampling

15



neglects the clustering of the sample into households, although the impact of this

simplification on the relative properties of estimators is expected to be slight. The values of

x; for each sample s were taken directly from the values in the LFS sample. Variables

were chosen for inclusion in x; if they were either related to hourly pay, measurement error

in y; orresponse r. (see Skinner et al. 2002) and included age, gender, household position,

qualifications, occupation, duration of employment, full-time/ part-time, industry and region

(several of these variables were represented by dummy variables). We set n=15,000 and

H=1000 and generated the values of y,, y and r. for each sample s’ from models, rather

than directly from the LFS data, for the following reasons.

Yi -

Yi -

these values were generated from a model because they were frequently missing in the

LFS. A linear regression model was used, relating In(y,) to In(y’) and x, with a
normal error and with 20 covariates including squared terms in In(y;) and age and
interactions between In(y;) and 5 components of x,. The model was fitted to the
roughly 7000 cases where y, was observed.

these values were generated from a model to avoid duplicate values of (y.,x.) within

each s, which it was considered might lead to an unrealistic distribution of distances
between units for the nearest neighbour method. The model was a linear regression

model relating In(y;) to x, with a normal error and with 12 covariates, including a

squared term in age and one interaction, fitted to the LFS data.

these values were generated from a model to ensure that the missing data mechanism
was known. Several models were fitted. The only one reported here is a logistic

regression relating r. to In(y;) and x, with 17 covariates including squared In(y;)

and interactions between In('y; ) and two covariates. The model was fitted to the LFS

16



data. The missing data mechanism is MAR given the y; and x, for all the results
presented except those in Table 5.
Estimates o of two parameters (t =1,2) were obtained for each sample s,

g,= proportion with pay below the national minimum wage (=£3.00 per hour age 18-21,

£3.60 per hour aged 22+)

g, = proportion with pay between minimum wage and £5/hour.

The true values are g,=0.056 and g, = 0.185. The bias and standard error were estimated as
~ —_ ~ H ~ R f—
bias(qt):qt —G and Se ( ):[Hilz(qt(h) _Qt)z ]1/2’ where 4 = Hiltht(h) :
h=1
We first compare results for the alternative imputation approaches. Table 1 presents

estimates of the biases of estimators of g, and g, for different imputation methods, for a

MAR missing data mechanism. There is no evidence of significant biases for any of the
nearest neighbour (NN) methods. The bias/standard error ratios are small and may be
expected to be even smaller for estimates within domains e.g. regions or age groups. We
conclude that there is no evidence of important bias for these methods, provided the MAR
mechanism holds and the model is correctly specified.

There is some evidence of statistically significant biases for each of the three methods based
on imputation classes (HDIWR10, HDIWOR10, ABB10) perhaps because of the width of
the classes, although the bias appears to be small relative to the standard error. Given the
additional disadvantage of these methods, that the specification of the boundaries of the
classes is arbitrary, these methods appear to be less attractive than the nearest neighbour
methods. This finding contrasts with the preference sometimes expressed (e.g. Brick and
Kalton, 1996, p. 227) for stochastic methods of imputation, such as the HDI methods,
compared to deterministic methods, such as nearest neighbour imputation, when estimating
distributional parameters.

[Table 1 about here]
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Corresponding estimates of standard errors are given in Table 2. We find as expected that
the greatest standard error occurs for the single NN1 imputation method. The variance is
reduced by around 10% using the penalty function method (NN1P). About 10-20%
reduction arises from using two imputations (NN2 or NN2(4)) and around 20% reduction
from using ten imputations (NN10, NN10(20)), HDIWR10, HDIWOR10, ABB10). For a
given number of imputations (2 or 10) there seem to be no obvious systematic effects of
using a stochastic method (NN2(4) or NN10(20)) versus a deterministic method (NN2 or
NN10). We conclude that NN10 is the most promising approach, avoiding the bias of the
imputation class methods and having appreciable efficiency gains over the methods
generating one or two imputations.
[Table 2 about here]

We next compare the NN10 imputation approach with propensity score weighting. We
consider not only the case when the specification of the model used for imputation or
weighting corresponds to the model used in the simulation, as in Table 1, but also some
cases of misspecification. To ensure a fair comparison of weighting and imputation we use
the same covariates when fitting both the models generating y, and r,. We first consider the
estimated biases in Table 3. When the model for imputation (NN10) or the propensity
scores is correctly specified neither method demonstrates any significant bias in the
estimation of g, or g,. Significant bias does arise, however, in both cases if the model is
misspecified by failing to include covariates used in the simulation. The amount of bias is
noticeably greater for the weighting approach. Corresponding estimated standard errors of
cil and ciz are given in Table 4. These also tend to be greater for the weighting approach

with the increase of mean squared error ranging from 20% to 28% for the six values in Table
4. At least under the MAR assumption, the NN10 imputation approach appears to be
preferable to propensity score weighting in terms of bias and variance.

[Table 3 and 4 about here]
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Finally, we compare the properties of imputation (NN10) and propensity score weighting
when the MAR assumption fails. We now simulate missingness according to the Common

Measurement Error model assumption of section 3. The same logistic model with the same
coefficients as in the previous simulation except that y; is replaced as a covariate by vy, .

Simulation estimates of biases and standard errors are presented in Table 5. We observe a

non-negligible significant relative bias of around 5% for the imputation approach and a little

higher for the propensity score weighting approach. The positive direction of the bias of (il

is as expected from arguments in Dickens and Manning (2002) and Skinner et al. (2002). The
relative bias of 5% of the NN10 approach does not, however, appear to make the resulting
estimates unusable.

[Table 5 about here]

7. Application to the Labour Force Survey

In this section nearest neighbour imputation, hot deck imputation within classes and
propensity score weighting are applied to LFS data. Figure 1 compares an estimated
distribution, which ignores measurement error (the bold line) with estimates based on three
missing data methods (the three dotted lines). We suggest the latter estimates are more
approximately unbiased than the former estimate. All three missing data adjustments show,
as expected, a strong ‘kink’ in the distribution at the level of the National Minimum Wage
unlike for the derived variable. Corresponding estimates of two low pay proportions of
interest are presented in Table 6. The ‘missing data adjustments’ have a substantial impact in
comparison to estimates based on the derived variable. The differences between the missing
data methods are much smaller. Note that the June-August 1999 quarter is subject to a lower
response rate. It was found that for consecutive quarters, which are subject to about 43%

response rate, weighting and imputation lead to very similar estimates of low pay
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proportions. In addition, different imputation and propensity score models are used to
analyse the effects of various model specifications on estimates of low pay. From Table 6 we
can see that there is an indication that different models can have an effect on the estimates.
With increasing complexity of the model a reduction in the estimates for both point
estimators is observed. This might reflect a departure from the MAR assumption for the
simpler imputation models. The estimates in both Figure 1 and Table 6 employ survey
weights. Note that the estimates presented here might differ slightly from official UK
estimates since, for example, the official estimates are based on different imputation models,
treating outliers differently or imputing differently for certain professions.

[Table 6 about here]

8. Conclusions

In this paper we have considered the application of alternative missing data methods to
correct for bias in the estimation of a distribution function arising from measurement error.
Among imputation methods, nearest neighbour methods have performed most promisingly
in terms of bias. These deterministic methods display no evidence of greater bias than
stochastic imputation methods. Fractional imputation has shown appreciable efficiency gains
compared to single imputation and appears more effective than penalizing the distance
function or sampling without replacement with single imputation. In comparison to a
propensity score weighting approach, the fractional nearest neighbour imputation has
performed similarly, but has demonstrated slight advantages of robustness and efficiency.

Further research is being undertaken to develop and evaluate associated variance estimation
methods, as well as alternative point estimation methods based upon the Common

Measurement Error Model in section 3.
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Figure 1. Alternative Estimates of the Distribution of Hourly Earnings From £2 to

£4 for Age Group 22+, June-August 1999.
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Table 1. Simulation Estimates of Biases of Estimators of g, and q, for Different

Imputation Methods, Assuming MAR and Correct Covariates.

Imputation Bias of g, Rel. Bias | Bjasof q, | Rel Bias
Method ofq, of q,

NN1 1.2*10* 0.2% 0.9*10" 0.0%
(0.9%10) (1.7%10)

NN1P* 4.4%10™ 0.8% 0.3*10* 0.0%
(2.6%10%) (5.1*10*)

NN2 0.6*10™ 0.1% 1.6*10* 0.0%
(8.5%10%) (1.5%10*)

NN2(4) 1.4*10* 0.2% -2.5%10 -0.1%
(0.9%10%) (1.5%10*)

NN10 0.2*10™ 0.0% -1.2*10™ -0.1%
(6.5%10) (1.5%10*)

NN10(20) 0.2*10™ 0.0% 0.7*10"* 0.0%
(0.8%10%) (1.5%10*)

HDIWR10 2.8*10" 0.5% 26.2*10" 1.4 %
(0.7%10%) (1.5%10*)

HDIWOR10 2.5%10" 0.4 % 28.0%10" 15%
(0.7%10%) (1.2%10*)

ABB10 4.6*10 0.8% 29.8*10" 1.6 %
(0.8%10%) (1.5%10*)

Standard errors of bias estimates are below the estimates in parentheses.
' Note: H=100 iterations were used due to computing time.
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Table 2. Simulation Estimates of Standard Errors of Estimators of g, and g, for

Different Imputation Methods, Assuming MAR and Correct Covariates.

Imputation se '(dl) S-e-(dz) V(@) V (d,)
Method Vini1@31) Vini1@2)

NN1 2.79*10° 5.43*10° 1 1
NN1P 2.60*10° 5.15*10° 0.87 0.91
NN2 2.68*10° 5.05*10° 0.91 0.86
NN2(4) 2.73*10° 4.88*10° 0.94 0.80
NN10 2.56*10° 4.88*10° 0.83 0.81
NN10(20) 2.57*10° 4.79*10° 0.84 0.77
HDIWR10 2.52*10° 4.66*10° 0.82 0.74
HDIWOR10 2.48*10° 4.72*10° 0.78 0.76
ABB10 2.63*10° 4.87*10° 0.88 0.80

? Note: H=100 iterations were used due to computing time.
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Table 3. Simulation Estimates of Biases of Estimators of g, and g, for Nearest

Neighbour Imputation (NN10) and Propensity Score Weighting, Assuming MAR
and Correct and Misspecified Covariates.

Method Assumed Bias of g, Rel. Bias | Bjasof q, | Rel. Bias
Covariates of g of q,
NN10 M1 (correct) -0.18*10" -0.03 % -5.8*10" -0.31 %
(0.64*10%) (1.20%10%)
M2 -1.31*10" -0.24 % -4.74%10" -0.25%
(0.65*10%) (1.23*10)
M3 -1.66*10" -0.30 % -10.6*10" -0.57 %
(0.63*10%) (1.23*10)
Propensity | M1 (correct) | 0.15%10° 003% | -2.62*10° | -0.14%
Score (0.72*10%) (1.35%10%)
Weighting | M2 896*10° | -164% | 702*10° | 3.80%
(0.68*10™) (1.40%10™)
M3 -5.02*10 -0.92 % 67.8*10* 3.66 %
(0.68*10™) (1.41*10%)

Note: M1 is the correct model
M2 excludes the interactions and the square terms from the correct model
M3 drops further covariates from model M2.

Table 4. Simulation Estimates of Standard Errors of Estimators of g, and q, for

Nearest Neighbour Imputation (NN10) and Propensity Score Weighting, Assuming
MAR and Correct and Misspecified Covariates.

Method | Assumed | = se(q) | se.@,) | MSE(q,) | MSE(q,)
Covariates

NN10 M1 (correct) 2.02*10° 3.80*10° 4.10*10° 1.49*10°

M2 2.06%10° 3.88*10° 4.29%10° 1.54*10°

M3 2.01*10° 3.89*10° 4.10*10° 1.63*10°

Propensity | M1 (correct) 2.27%10° 4.27*%10° 5.16*10° 1.83*10°

Score M2 2.17*10° 4.42*10° 5.51*10° 6.90*10°

Weighting M3 2.16*10° 4.46%10° 4.94*10° 6.59%10°
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Table 5. Simulation Estimates of Biases and Standard Errors of Estimators of g, and

g, for Nearest Neighbour Imputation (NN10) and Propensity Score Weighting.

Under the (non-MAR) Common Measurement Error Model.

Method Bias of qu Rel. Bias | Bias of qu Rel. Bias s.e.(qu) s.e.(qAZ)
of g, of q,
NN10 29.0*10™ 51% 92.0*10™ 5.0 % 2.53*10° | 4.70*10°
(0.8%10) (1.48*10%)
Propensity 32.3*10" 5.7 % 100*10* 5.7% 2.31*10° | 4.42*10°
Score Weighting | (0.73*10%) (1.40*10")

Table 6. Estimates of g, and g, (Weighted) for 18+ Using Different Propensity Score

Models and Imputation Models Applied to LFS, June-August 1999.

Method Propensity Score (Weighted) (Weighted)
Model or . .
Imputation Model g, (%) 9. (%)
Derived - 7.13 20.5
Variable
Propensity M1 0.96 34.5
Score M2 1.08 38.4
Weighting M3 1.08 38.4
HDIWOR10 M1 1.44 32.1
M2 1.41 32.9
M3 1.50 33.2
NN10 M1 1.32 32.6
M2 1.44 32.8
M3 1.50 33.0

Note: M1 is the most complex model including square terms and interactions
M2 excludes the interactions and the square terms from model M1
M3 drops further covariates from model M2
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