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Estimation of the Distribution of Hourly Pay from Household Survey

Data: The Use of Missing Data Methods to Handle Measurement Error

Gabriele Beissel-Durrant and Chris Skinner

Summary. This paper considers the application of missing data methods to a measurement

error problem arising in the estimation of the distribution of hourly pay in the United

Kingdom, using data from the Labour Force Survey.  Errors in the measurement of hourly

pay lead to bias and the aim is to use auxiliary data, measured accurately for a subsample, to

correct for this bias. Alternative point estimators are considered, based upon a variety of

imputation and weighting approaches, including fractional imputation, nearest neighbour

imputation, predictive mean matching and propensity score weighting. Properties of these

point estimators are then compared both theoretically and by simulation. A fractional

predictive mean matching imputation approach is advocated. It performs similarly to

propensity score weighting, but displays slight advantages of robustness and efficiency.

Key Words: donor imputation; fractional imputation; hot deck imputation; nearest neighbour

imputation; predictive mean matching; propensity score weighting.
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1. Introduction

A national minimum wage was introduced in the United Kingdom (UK) in April 1999 and

there is considerable interest in how the lower end of the distribution of hourly pay has

changed since then, both overall and within subgroups, such as by gender. The UK Labour

Force Survey (LFS) provides an important source of estimates of this distribution (Stuttard

and Jenkins 2001). A major problem with the use of household surveys to produce such

estimates is the difficulty in measuring hourly pay accurately (Rodgers, Brown and Duncan

1993; Moore, Stinson and Welniak 2000). Measurement error may lead to biased estimates of

distribution functions, especially at the extremes (Fuller 1995). For example, the bold line in

Figure 1 represents a standard estimate of the lower end of the distribution function of

hourly pay using LFS data from the June-August 1999 ignoring measurement error. We

suggest that this estimate is seriously biased upwards and that improved estimates, using

methods to be described in this paper, are given by the three lower lines. These results

suggest that the proportion of jobs paid at or below the national minimum wage rate may be

overestimated by four or five times if measurement error is ignored.

[Figure 1 about here]

When a variable is measured with error, it is sometimes possible, as in our application, to

measure the variable more accurately for a subsample. In these circumstances, if we assume

that the variable measured accurately on the subsample is the true variable, inference about

the distribution of this variable becomes a missing data problem. The variable measured

erroneously on the whole sample is treated as an auxiliary variable.  The case when the

subsample is selected using a randomised scheme is well studied and referred to as double

sampling or two phase sampling (e.g. Tenenbein 1970). In this case, unbiased estimates can

be constructed from the subsample alone, but use of data on the correlated proxy variable

for the whole sample may improve efficiency. See, for example, Luo, Stokes and Sager

(1998). In the application in this paper, the selection of the subsample is not randomised and
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we shall just assume that the accurate variable is missing at random (MAR) (Little and Rubin

2002) conditional on variables measured on the whole sample. Because the aim is to estimate

a distribution function, which is unlikely to follow exactly a standard parametric form, we

avoid approaches which make parametric assumptions about the true distribution, as for

example in Buonaccorsi (1990). It is also desirable in our application to avoid strong

assumptions about the measurement error model, for example that it is additive with zero

mean and constant variance as in the SIMEX method of Luo et al. (1998). Instead, the novel

feature of this paper is to consider the application of various imputation and weighting

methods from the missing data literature to this measurement error problem. The aim of the

paper is to investigate how to design these methods to improve point estimation of the

distribution function of hourly pay, in terms of bias, efficiency and robustness to model

assumptions.

The basic measurement error problem considered in this paper was described by Skinner,

Stuttard, Beissel-Durrant and Jenkins (2002), who also proposed the use of one imputation

method. This paper extends that work by considering a wider class of approaches to missing

data and by comparing their properties both theoretically and via simulation. The imputation

approach developed in this paper, which extends that considered by Skinner et al. (2002), has

now been implemented by the Office for National Statistics in the United Kingdom as a new

approach to producing low pay estimates.

The paper is structured as follows. The application and the estimation problem are

introduced in section 2. Imputation and weighting approaches are set out in sections 3 and 4

respectively and their properties are studied and compared theoretically in section 5 and via a

simulation study in section 6. Section 7 discusses the application of the missing data methods

to the Labour Force Survey. Some concluding remarks are given in section 8.
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2. The Estimation Problem

Our aim is to estimate the distribution of hourly pay from LFS data. This inference problem

requires consideration of both (i) sampling and unit nonresponse of employees and (ii)

measurement error and item nonresponse for hourly pay. We outline the basic set-up for

both (i) and (ii) in this section. The main focus of the paper will be the choice of methods to

address (ii). Standard procedures will be used to handle (i).

The LFS is a quarterly survey of households selected from a national file of postal addresses

with equal probabilities by stratified systematic sampling. All adults in selected households

are included in the sample. The resulting sample is clustered by household but not otherwise

by geography. Each selected household is retained in the sample for interview on five

successive quarters and then rotated out and replaced. The questions underlying the hourly

pay variables, described below, are asked in just the first and fifth interviews, giving

information on hourly pay on about 17,000 employees per quarter. Survey weights are

constructed to compensate for differential unit nonresponse (ONS, 1999).

The traditional method of measuring hourly pay in the LFS is (a) to ask employees questions

about their main job to determine earnings over a reference period, (b) to ask questions to

determine hours worked over the reference period and (c) to divide the result of (a) by the

result of (b).  We refer to the result of (c) as the derived hourly pay variable. This is the variable

used to produce the bold line in Figure 1. Skinner et al. (2002) describe and provide

empirical evidence of many sources of measurement error in this variable. A more recent

method of measuring hourly pay is first to ask whether the respondent is paid a fixed hourly

rate and then, if the answer is positive, to ask respondents what this (basic) rate is. We refer

to the resulting measure of hourly pay as the direct variable. Skinner et al. (2002) conclude

from their study that the direct variable measures hourly pay much more accurately than the

derived variable and a key working assumption of this paper is that the direct variable

measures hourly pay without error.
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The problem with the direct variable is that it is missing for respondents who state that they

are not paid at a fixed hourly rate (and for item nonrespondents) and this missingness may

be expected to be positively associated with hourly pay. The proportion of LFS respondents

with a (main) job who provide a response to the direct question is about 43%. This

proportion tends to be higher for lower paid employees, for example the rate is 72% among

those in the bottom decile of the derived variable. The direct variable is not collected for

second (and further) jobs and we therefore restrict attention only to first jobs.

This paper addresses the following missing data problem. We wish to estimate the

distribution of hourly pay defined as:

1( ) ( )i
i U

F y N I y y−

∈
= <∑ (1)

where U is the population of N (first) jobs, iy  is (basic) hourly pay for job i and y may take

any specified value. Our data consist of values *
iy , ix  and ir  for i s∈  and values iy  for

i s∈  when 1ir = , where s is the set of (first) jobs for unit respondents in the sample drawn

from U, *
iy  is the value of the derived variable, iy  is the value of the direct variable

assumed identical to the hourly pay variable of interest, 1ir =  if iy  is measured and 0ir =

if not and ix  is a vector of other variables measured in the survey.

We assume that inference from the sample s to the population U can be made using standard

methods of survey sampling. Our primary concern is with the missingness of iy . We

consider two approaches to handle this missingness:

(i) imputation of iy  for cases where 0ir =  ( i s∈ ), using the values *
iy  and ix  as

auxiliary information;

(ii) weighting of an estimator based upon the subsample { }1 ; 1is i s r= ∈ = , in

particular, the use of propensity score weighting (Little 1986).

These approaches to estimating ( )F y  will be discussed in the following two sections.
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3. Imputation Approaches

We shall construct imputation methods based upon the assumption that the population

values ( *, , ,i i i iy y x r ), i U∈ , are independently and identically (IID) distributed. To allow for

the LFS sampling design and unit nonresponse, we propose to incorporate the survey

weights in the resulting point estimator of ( )F y , in the same way that a pseudo-likelihood

approach (Skinner, 1989) weights estimators based upon an IID assumption. We do not

attempt to take account of the weights or the complex design directly in the imputation

methods.

Under the IID assumption and the assumption that sampling is ignorable (that is that the

distribution of ( *, , ,i i i iy y x r ) is the same whether or not i s∈ ), if it were possible to observe

iy  for i s∈ ,

1

1

ˆ ( ) ( )
n

i
i

F y n I y y−

=
= <∑ (2)

would be an unbiased estimator of ( )F y  (in the sense that − =ˆ[ ( ) ( )] 0E F y F y  for all y),

where we write {1,..., }s n= . We assume that this estimator remains unbiased under the

actual sampling design and unit nonresponse if the mean in (2) is weighted by the survey

weights. The IID assumption used in the remainder of this section may be interpreted as

holding conditional on inclusion in s , with the implicit assumption that survey weighting will

also be required to handle the selection of s from U.

To address the problem that iy  is missing when 0ir = , we first consider a single

imputation approach where iy  is replaced in (2) by a single imputed value I
iy  when 0ir =

(and i s∈ ) and let i iy y=%  if 1ir =  and I
i iy y=%  otherwise. We assume that I

iy  is

determined in a specified way using the data *{[ , , ; ] ,[ ; 1, ]}i i i i iD y x r i s y r i s= ∈ = ∈  and

perhaps a stochastic mechanism. The resulting estimator of ( )F y  is
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1

1

( ) ( )
n

i
i

F y n I y y−

=
= <∑% % . (3)

A sufficient condition for ( )F y%  to be an unbiased estimator of ( )F y  is that the conditional

distribution of I
iy  given 0ir = , denoted [ | 0 ]I

i iy r = , is the same as the conditional

distribution [ | 0]i iy r = . However, since iy  is only observed when 1ir = , the data provide

no direct information about [ | 0]i iy r =  without further assumptions. We consider two

possible assumptions. The first is common in the missing data literature (Little and Rubin

2002).

Assumption (MAR): ir  and iy  are conditionally independent given *
iy  and ix .

The second assumption is that the measurement error model, defined as the conditional

distribution of *
iy  given iy  and ix , is the same for respondents ( 1ir = ) and

nonrespondents ( 0ir = ), which may be expressed as follows.

Assumption (Common Measurement Error Model): ir  and *
iy  are conditionally

independent given iy  and ix .

The first assumption is the standard one made when using imputation or weighting and is

the one which we shall make. We shall use the second assumption in the simulation study in

section 6 to assess robustness of MAR-based procedures. Inference under the second

assumption could be made under strong assumptions on the measurement error model, for

example the additive error assumption in methods in Carroll, Ruppert and Stefanski (1995,

sect. 12.1.2.) and Luo et al. (1998). It does not appear straightforward to make inference

under the second assumption for a measurement error model which is realistic for our

application and we do not pursue this possibility further in this paper. The plausibility of

these assumptions is discussed further in Skinner et al. (2002).

Under the MAR assumption we have *[ | , , 0 ]i i i iy y x r = = *[ | , , 1]i i i iy y x r =  and a sufficient

condition for ( )F Y%  to estimate  ( )F Y  unbiasedly is that
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* *[ | , , 0 ] [ | , , 1]I
i i i i i i i iy y x r y y x r= = = . (4)

We therefore consider an imputation approach where the conditional distribution of y given

*y  and x is ‘fitted’ to the respondent ( 1)ir =  data and then the imputed values I
iy  are

‘drawn from’ this fitted distribution at the values *
iy  and ix  observed for the

nonrespondents. We consider representing the conditional distribution *[ | , , 1]i i i iy y x r =  by

a parametric regression model:

*( ) ( , ; )i i i ig y h y x ß e= + , *( | , ) 0i i iE e y x = (5)

where (.)g  and (.)h  are given functions and ß  is a vector of regression parameters. A simple

point predictor of iy , given an estimator ß̂  of ß  based on respondent data, is

1 * ˆˆ [ ( , ; )]i i iy g h y x ß−= . (6)

Using ˆ iy  for imputation may, however, lead to serious underestimation of ( )F Y  for low

values of y, since such simple regression imputation may be expected to reduce the variation

in ( )F Y  artificially (Little and Rubin 2002, p. 64). This effect might be avoided by taking

1 * ˆ ˆ[ ( , ; ) ]I
i i i iy g h y x ß e−= + , where îe  is a randomly selected empirical residual (Little and

Rubin 2002, p. 65). Our experience is, however, that this approach fails to generate imputed

values which reproduce the ‘spiky’ behaviour of hourly pay distributions, for example

around a minimum wage, and this may lead to bias around these spikes. We prefer therefore

to consider donor imputation methods, which set ( )
I
i d iy y=  ( 0)ir =  for some donor

respondent ( )j d i=  for which 1jr = . The imputed value from a donor will always be a

genuine value, as reported by the donor respondent, and will thus respect the spiky

behaviour these values display. The basic donor imputation method we consider is predictive

mean matching (Little 1988), that is nearest neighbour imputation with respect to ˆ iy , i.e.

( ) : 1
ˆ ˆ ˆ ˆ| | min| |

j
i d i i jj r

y y y y
=

− = − (7)
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where 0ir =  and ( ) 1d ir = .

Corollary 2 of Theorem 1 of Chen and Shao (2000) then provides theoretical justification for

the approximate unbiasedness of the resulting estimator ( )F Y%  for ( )F Y , if certain

conditions hold. The four conditions are that: iy  is missing at random (MAR) conditional

on 1 *z [ ( , ; )]i i ig h y x ß−= , where ˆplim( )ß ß= ;  the conditional expectation of iy  given zi  is

monotonic and continuous in zi ; zi  and ( |z )i iE y  have finite third moments; and the

probability of response given z is bounded above zero. These conditions seem plausible

provide the MAR assumption above holds, the distribution of iy  only depends on *
iy  and

ix  via zi ; *
iy  is a good proxy for iy  and if we restrict attention to the lower part of the pay

distribution. In addition, Chen and Shao’s (2000) result needs to be adapted for the fact that

the nearest neighbour is defined with respect to ß̂  whereas the above conditions are with

respect to ß . This approximation also seems plausible since close neighbours with respect to

1 * ˆˆ [ ( , ; )]i i iy g h y x ß−=  should also be close neighbours with respect to 1 *z [ ( , ; )]i i ig h y x ß−= .

There are thus theoretical grounds that nearest neighbour imputation with respect to ˆ iy  will

lead to an approximately unbiased estimator of ( )F Y , subject to the MAR assumption and

certain additional plausible conditions. It is also of interest to consider the efficiency of

( )F Y% . The variance of ( )F Y%  for nearest neighbour imputation may be inflated if certain

donors may be used much more frequently than others. We consider a number of

approaches to reducing this variance inflation effect.

First, we may smooth the number of times that respondents are used as donors by defining

imputation classes by disjoint intervals of values of ˆ iy  and drawing donors for a recipient by

simple random sampling from the class within which the recipient’s value of ˆ iy  falls. The

smoothing will be greatest if we draw donors without replacement. We denote this hot deck

method HDIWR or HDIWOR, depending on whether sampling is with or without
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replacement. A second approach is to undertake donor selection sequentially and to penalize

the distance function employed for determining the nearest neighbour d i( )  as follows

=
− = − ∗ +( ) : 1

ˆ ˆ| | min{| | (1 )}
j

i d i i j jj r
y y y y µt , (8)

where +∈ ¡µ  is a penalty factor, jt  is the number of times the respondent j has already

been used as a donor, 0ir =  and ( ) 1d ir =  (Kalton 1983). A third approach is to employ

repeated imputed values ( )I m
iy , = 1,...,m M , determined for each recipient i s∈  such that

0ir = . The resulting estimator of ( )F Y  is 1 ( )( )m

m
M F y− ∑ % , the mean of the resulting

estimators ( )( )mF y% , or equivalently is obtained by multiplying the weight for each imputed

value by a factor 1/ M . We refer to the third approach as fractional imputation (Kalton and

Kish 1984; Fay 1996) rather than multiple imputation (Rubin 1996), since we do not require

the imputation method to be ‘proper’, that is to fulfil conditions which ensure that the

multiple imputation variance estimator is consistent. We do not stipulate this requirement

here because our primary objective is point estimation and to achieve consistent variance

estimation would raise further issues such as the effect of cluster sampling of adults within

households. In our use of fractional imputation we aim to select donors ( , )d i m ,

= 1,...,m M , each a close neighbour to i, so that ( )( )mF y%  remains approximately unbiased

for ( )F Y . We consider the following variations of this approach.

(i) The / 2M  nearest neighbours above and below ˆ iy  are taken, for M=2 or 10,

denoted NN2 and NN10 respectively.

(ii) M/2 donors are selected by simple random sampling with replacement from the M

respondents above and from the M respondents below ˆ iy , for M=2 or 10, denoted

NN2(4) and NN10(20) respectively.
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(iii) M=10 donors are selected by simple random sampling with or without replacement

from the imputation classes referred to in the HDIWR and HDIWOR methods

described above. We refer to these as the HDIWR10 and HDIWOR10 methods.

For comparison we also consider the Approximate Bayesian Bootstrap method of multiple

imputation (Rubin and Schenker 1986), denoted ABB10, defined with respect to the

imputation classes referred to in the HDIWR and HDIWOR methods.

4. Weighted Estimation

The estimator ( )F y%  implied by the different imputation approaches considered in the

previous section may be expressed in weighted form as:

1 1

( ) ( )/i i i
i s i s

F y w I y y w
∈ ∈

= <∑ ∑% (9)

where 1 { ; 1}is i s r= ∈ =  is the set of respondents and 1 /i iw d M= + , where id  is the total

number of times that respondent i is used as a donor over the M repeated imputations. Note

that 
1

is
w n=∑ . The weight iw  may be multiplied by the survey weight to allow for unit

nonresponse. Other choices of weight iw  may also be considered. In particular, we may set

iw  equal to the reciprocal of an estimated value of the propensity score, *( 1| , )i i iPr r y x=

(Little 1986). This approach has been proposed for the hourly pay application in this paper

by Dickens and Manning (2002). This propensity score might be estimated, for example,

under a logistic regression model relating ir  to *
iy  and ix . Under the MAR assumption, the

resulting estimator ( )F y%  will be approximately unbiased assuming validity of the model for

the conditional distribution *[ | , ]i i ir y x  and some regularity conditions, such as those

described in section 3 for the imputed estimator. Note that the need to model *[ | , ]i i ir y x

replaces the need to model *[ | , ]i i iy y x  in the imputation approach.
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5. Properties of Imputation and Weighting Approaches

In this section we investigate and compare the theoretical properties of the imputation and

propensity score weighting approaches introduced in the previous two sections under

various simplifying assumptions. We fix y and set ( )i iu I y y= < . Letting N → ∞  we

suppose that the parameter of interest is q = ( )iE u . We consider the imputation approach

first and suppose that iy  depends upon *
iy  and ix  only via 1 *z [ ( , ; ]i i ig h y x b−=  and that

iy  is missing at random given zi . Ignoring the difference between b  and b̂  for large

samples we consider nearest neighbour imputation with respect to zi . As in (9) the imputed

estimator of q  may be expressed as

IMP i i i
i s i s

w u w
1 1

ˆ /
∈ ∈

= ∑ ∑q (10)

where 1 /i iw d M= +  (and 
1

is
w n=∑ ). We write the corresponding expression for

propensity score weighting as q̂PS  with iw  replaced by PSiw . Let zPSi  be the scalar function

of * ,i iy x  upon which ir  depends and write:

*( 1| , ) (z )i i i PSiPr r y x= = p . (11)

Just as we ignored the difference between b  and b̂ , we ignore error in estimating (z )PSip

and write  1(z )PSi PSiw p −= .

The imputation and propensity score weighting approaches may be expected to give similar

estimation results if zi  and zPSi  are similar, that is they are close to deterministic functions

of each other, and M is large. To see this, consider a simple example of the imputation

approach, where the donor is drawn randomly from an imputation class c of close

neighbours with respect to zi , containing cm  respondents and c cn m−  nonrespondents, as

described in section 3, then iw  will approach 1 ( )/ /c c c c cn m m n m+ − =  as M → ∞  and

this is the inverse of the response rate within the class (David, Little, Samuhel and Triest
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1983). More generally, with the other nearest neighbour imputation approaches considered

in section 3, the weight 1 /i iw d M= +  may be interpreted as a local (with repect to zi )

nonparametric estimate of 1Pr( 1|z )i ir −=  and thus may be expected to lead to similar

estimation results to propensity score weighting if zi  and zPSi  are deterministic functions of

each other. In general, however, this will not be the case. Since Pr( 1|z )i ir =  may be

expressed as an average of *Pr( 1| , )ir y x=  across values of *y  and x  for which z zi= ,

we may interpret iw  as a smoothed version of PSiw  and may expect it to show less

dispersion. This suggests that it may be possible to use imputation to improve upon the

efficiency of estimates based upon propensity score weighting, as also discussed by David et

al. (1983) and Rubin (1996, sect. 4.6). To investigate this further, let us now make the MAR

assumption and the other assumptions in sections 3 and 4 upon which the approaches are

based. In this case both imputation and weighting approaches lead to approximately

unbiased estimation of ( )F y  and we may focus our comparison on relative efficiency. It

follows from equation (3.3) of Chen and Shao (2000), under their regularity conditions, that

the variance of IMPq̂  may be approximated for large n by

q y− −≈ +∑
1

2 2 1ˆvar( ) [ ( |z )] [ (z )]IMP i i i is
n E w V u n V (12)

where i(z ) ( |z )i iE uy = . Note that Chen and Shao (2000) consider single imputation with

M=1 but their proof of this result carries through if 1M > . It is convenient to reexpress

this result using

2[ (z )] [ ( |z )]i i iV E V u= −y s , (13)

where 2 ( )iV us =  and a corollary of Chen and Shao’s (2000) Theorem 1 that

− −= +∑
1

1 1/2[ ( |z )] [ ( |z )] ( )i i i i i ps
E n w V u E V u o n . (14)

It follows that to the same order of approximation as in (12)

q s− −≈ + −∑
1

1 2 2 2ˆvar( ) [ ( ) ( |z )]IMP i i i is
n n E w w V u . (15)
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Note that 2 ( / )(1 / ) 0i i i iw w d M d M− = + ≥ . This expression may be interpreted from both

‘missing data’ and ‘measurement error’ perspectives. From a missing data perspective, the

first term in (15) is just the variance of q̂  in the absence of missing data and the second term

represents the inflation of this variance due to imputation error. From a measurement error

perspective, we may consider limiting properties under ‘small measurement error

asymptotics’ (Chesher 1991), that is where *
iy  becomes a better measure of iy  and

( |z )i iV u  approaches zero. In this case, the second term also approaches zero and IMPq̂

becomes ‘fully efficient’, i.e. its variance approaches 2 /ns .

Let us now consider propensity score weighting. We make the corresponding assumption

that iy  is missing at random given zPSi . Linearising the ratio in (9) and using the fact that

=∑
1

( )P S is
E w n  we may write

ˆvar( )PSq
1

2 var[ ( )]PSi is
n w u−≈ −∑ q (16)

  q−= −1 2[ ( ) ]PSi in E w u

which may be expressed alternatively as

      ˆvar( )PSq y q− −≈ + −∑
1

2 2 1 2[ ( |z )] { [ (z ) ] }PSi i PSi PSi P S is
n E w V u n E w . (17)

To compare the efficiency of weighting and imputation it is convenient to use (13) and (14)

(which hold also with P S iw  in place of iw ) to obtain

ˆvar( )PSq s− −≈ + −∑
1

1 2 2 2[ ( ) ( |z )]PSi PSi i P S is
n n E w w V u

                     y q−+ − −∑
1

1 2{ [ 1][ (z ) ] }PSi P S is
n E w . (18)

Note that, in comparison with (15), this involves a third term, which does not necessarily

converge to zero as *
iy  approaches iy  and ( |z ) 0i PSiV u → . Hence propensity score

weighting does not become fully efficient as the measurement error disappears.
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The second term of (18) may also be expected to dominate the second term of (15) when

( |z )i iV u  and ( |z )i PSiV u  are constant and equal, since, recalling that

1 1
( )i PS is s

w E w n= =∑ ∑ , these second terms are primarily determined by the variances of

the weights iw  and P S iw , and, provided M is sufficiently large, we may expect iw  to display

less variation than P S iw , as argued above. In general, however, it does not appear that ÎMPq  is

necessarily more efficient than P̂Sq  and we look to the simulation study in section 6 for

numerical evidence.

Let us finally consider the impact of departures from the MAR assumption. Under small

measurement error asymptotics where ( |z ) 0i iV u →  and I
i iy y→ , the imputation

approach will provide consistent inference about q  even if the MAR assumption fails. This

is not the case for the propensity score weighting approach. This suggests that the

imputation approach may display more robustness to departures from the MAR assumption

if the amount of measurement error is relatively small.

6. Simulation Study

The aim of the study is to generate independent repeated samples ( )hs , 1h ,...,H= , with

realistic values *
i i i iy , y , x , r , ( )hi s∈ , to compute the corresponding estimates ( )( )hF y%  for

alternative approaches to missing data and values of y and to assess the performance of the

estimators ( )F y%  empirically. In order to employ realistic values, the samples ( )hs  of size n

were drawn with replacement (i.e. using the bootstrap) from an actual sample of about

16,000 jobs for the March-May 2000 quarter of the LFS (only main jobs of employees aged

18+ were considered and the very small number of cases with missing values on *
iy  or ix

were omitted). The effective assumption that the population size is infinite seems reasonably

given the small sampling fraction of the LFS. The assumption of (simple) random sampling
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neglects the clustering of the sample into households, although the impact of this

simplification on the relative properties of estimators is expected to be slight. The values of

ix  for each sample ( )hs  were taken directly from the values in the LFS sample. Variables

were chosen for inclusion in ix  if they were either related to hourly pay, measurement error

in *
iy  or response ir  (see Skinner et al. 2002) and included age, gender, household position,

qualifications, occupation, duration of employment, full-time/ part-time, industry and region

(several of these variables were represented by dummy variables). We set n=15,000 and

H=1000 and generated the values of iy , *
iy  and ir  for each sample ( )hs  from models, rather

than directly from the LFS data, for the following reasons.

iy : these values were generated from a model because they were frequently missing in the

LFS. A linear regression model was used, relating ln( )iy  to *ln( )iy  and ix  with a

normal error and with 20 covariates including squared terms in *ln( )iy  and age and

interactions between *ln( )iy  and 5 components of ix . The model was fitted to the

roughly 7000 cases where iy  was observed.

*
iy : these values were generated from a model to avoid duplicate values of ( *

iy , ix ) within

each ( )hs , which it was considered might lead to an unrealistic distribution of distances

between units for the nearest neighbour method. The model was a linear regression

model relating *ln( )iy  to ix  with a normal error and with 12 covariates, including a

squared term in age and one interaction, fitted to the LFS data.

ir : these values were generated from a model to ensure that the missing data mechanism

was known. Several models were fitted. The only one reported here is a logistic

regression relating ir  to *ln( )iy  and ix  with 17 covariates including squared *ln( )iy

and interactions between *ln( )iy  and two covariates. The model was fitted to the LFS
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data. The missing data mechanism is MAR given the *
iy  and ix  for all the results

presented except those in Table 5.

Estimates q( )ˆ h
t  of two parameters ( 1,2)t =  were obtained for each sample ( )hs ,

q1 = proportion with pay below the national minimum wage (=£3.00 per hour age 18-21,

£3.60 per hour aged 22+)

q2 = proportion with pay between minimum wage and £5/hour.

The true values are q1 =0.056 and q2 = 0.185. The bias and standard error were estimated as

q q q= −ˆˆ ( )t t tbias  and q q q−

=
= −∑1 ( ) 2 1/2

1

ˆ ˆˆ. . ( ) [ ( ) ]
H

h
t t t

h

s e H , where q q−= ∑1 ( )h
t th

H .

We first compare results for the alternative imputation approaches. Table 1 presents

estimates of the biases of estimators of q1  and q2  for different imputation methods, for a

MAR missing data mechanism. There is no evidence of significant biases for any of the

nearest neighbour (NN) methods. The bias/standard error ratios are small and may be

expected to be even smaller for estimates within domains e.g. regions or age groups. We

conclude that there is no evidence of important bias for these methods, provided the MAR

mechanism holds and the model is correctly specified.

There is some evidence of statistically significant biases for each of the three methods based

on imputation classes (HDIWR10, HDIWOR10, ABB10) perhaps because of the width of

the classes, although the bias appears to be small relative to the standard error. Given the

additional disadvantage of these methods, that the specification of the boundaries of the

classes is arbitrary, these methods appear to be less attractive than the nearest neighbour

methods. This finding contrasts with the preference sometimes expressed (e.g. Brick and

Kalton, 1996, p. 227) for stochastic methods of imputation, such as the HDI methods,

compared to deterministic methods, such as nearest neighbour imputation, when estimating

distributional parameters.

[Table 1 about here]
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Corresponding estimates of standard errors are given in Table 2. We find as expected that

the greatest standard error occurs for the single NN1 imputation method. The variance is

reduced by around 10% using the penalty function method (NN1P). About 10-20%

reduction arises from using two imputations (NN2 or NN2(4)) and around 20% reduction

from using ten imputations (NN10, NN10(20)), HDIWR10, HDIWOR10, ABB10). For a

given number of imputations (2 or 10) there seem to be no obvious systematic effects of

using a stochastic method (NN2(4) or NN10(20)) versus a deterministic method (NN2 or

NN10). We conclude that NN10 is the most promising approach, avoiding the bias of the

imputation class methods and having appreciable efficiency gains over the methods

generating one or two imputations.

[Table 2 about here]

We next compare the NN10 imputation approach with propensity score weighting. We

consider not only the case when the specification of the model used for imputation or

weighting corresponds to the model used in the simulation, as in Table 1, but also some

cases of misspecification. To ensure a fair comparison of weighting and imputation we use

the same covariates when fitting both the models generating iy  and ir . We first consider the

estimated biases in Table 3. When the model for imputation (NN10) or the propensity

scores is correctly specified neither method demonstrates any significant bias in the

estimation of q1  or q2 . Significant bias does arise, however, in both cases if the model is

misspecified by failing to include covariates used in the simulation. The amount of bias is

noticeably greater for the weighting approach. Corresponding estimated standard errors of

q1̂  and q2̂  are given in Table 4. These also tend to be greater for the weighting approach

with the increase of mean squared error ranging from 20% to 28% for the six values in Table

4. At least under the MAR assumption, the NN10 imputation approach appears to be

preferable to propensity score weighting in terms of bias and variance.

[Table 3 and 4 about here]
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Finally, we compare the properties of imputation (NN10) and propensity score weighting

when the MAR assumption fails. We now simulate missingness according to the Common

Measurement Error model assumption of section 3.  The same logistic model with the same

coefficients as in the previous simulation except that *
iy  is replaced as a covariate by iy .

Simulation estimates of biases and standard errors are presented in Table 5. We observe a

non-negligible significant relative bias of around 5% for the imputation approach and a little

higher for the propensity score weighting approach. The positive direction of the bias of q1̂

is as expected from arguments in Dickens and Manning (2002) and Skinner et al. (2002). The

relative bias of 5% of the NN10 approach does not, however, appear to make the resulting

estimates unusable.

[Table 5 about here]

7. Application to the Labour Force Survey

In this section nearest neighbour imputation, hot deck imputation within classes and

propensity score weighting are applied to LFS data. Figure 1 compares an estimated

distribution, which ignores measurement error (the bold line) with estimates based on three

missing data methods (the three dotted lines). We suggest the latter estimates are more

approximately unbiased than the former estimate. All three missing data adjustments show,

as expected, a strong ‘kink’ in the distribution at the level of the National Minimum Wage

unlike for the derived variable. Corresponding estimates of two low pay proportions of

interest are presented in Table 6. The ‘missing data adjustments’ have a substantial impact in

comparison to estimates based on the derived variable. The differences between the missing

data methods are much smaller. Note that the June-August 1999 quarter is subject to a lower

response rate. It was found that for consecutive quarters, which are subject to about 43%

response rate, weighting and imputation lead to very similar estimates of low pay
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proportions. In addition, different imputation and propensity score models are used to

analyse the effects of various model specifications on estimates of low pay. From Table 6 we

can see that there is an indication that different models can have an effect on the estimates.

With increasing complexity of the model a reduction in the estimates for both point

estimators is observed. This might reflect a departure from the MAR assumption for the

simpler imputation models. The estimates in both Figure 1 and Table 6 employ survey

weights. Note that the estimates presented here might differ slightly from official UK

estimates since, for example, the official estimates are based on different imputation models,

treating outliers differently or imputing differently for certain professions.

[Table 6 about here]

8. Conclusions

In this paper we have considered the application of alternative missing data methods to

correct for bias in the estimation of a distribution function arising from measurement error.

Among imputation methods, nearest neighbour methods have performed most promisingly

in terms of bias. These deterministic methods display no evidence of greater bias than

stochastic imputation methods. Fractional imputation has shown appreciable efficiency gains

compared to single imputation and appears more effective than penalizing the distance

function or sampling without replacement with single imputation. In comparison to a

propensity score weighting approach, the fractional nearest neighbour imputation has

performed similarly, but has demonstrated slight advantages of robustness and efficiency.

Further research is being undertaken to develop and evaluate associated variance estimation

methods, as well as alternative point estimation methods based upon the Common

Measurement Error Model in section 3.
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Figure 1. Alternative Estimates of the Distribution of Hourly Earnings From £2 to

£4 for Age Group 22+, June-August 1999.
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Table 1. Simulation Estimates of Biases of Estimators of θ1  and θ2  for Different

Imputation Methods, Assuming MAR and Correct Covariates.

Imputation
Method

Bias of θ̂1
Rel. Bias

of θ̂1

Bias of θ̂2
Rel. Bias

of θ̂2

NN1 1.2*10 -4

(0.9*10 -4)
0.2 % 0.9*10 -4

(1.7*10 -4)
0.0 %

NN1P1 4.4*10 -4

(2.6*10 -4)
0.8 % 0.3*10 -4

(5.1*10 -4)
0.0 %

NN2 0.6*10 -4

(8.5*10 -4)
0.1 % 1.6*10 -4

(1.5*10 -4)
0.0 %

NN2(4) 1.4*10 -4

(0.9*10 -4)
0.2 % -2.5*10 -4

(1.5*10 -4)
-0.1 %

NN10 0.2*10 -4

(6.5*10 -4)
0.0 % -1.2*10 -4

(1.5*10 -4)
-0.1 %

NN10(20) 0.2*10 -4

(0.8*10 -4)
0.0 % 0.7*10 -4

(1.5*10 -4)
0.0 %

HDIWR10 2.8*10 -4

(0.7*10 -4)
0.5 % 26.2*10-4

(1.5*10 -4)
1.4 %

HDIWOR10 2.5*10 -4

(0.7*10 -4)
0.4 % 28.0*10-4

(1.2*10 -4)
1.5 %

ABB10 4.6*10 -4

(0.8*10 -4)
0.8 % 29.8*10-4

(1.5*10 -4)
1.6 %

Standard errors of bias estimates are below the estimates in parentheses.
1 Note: H=100 iterations were used due to computing time.
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Table 2. Simulation Estimates of Standard Errors of Estimators of θ1  and θ2  for

Different Imputation Methods, Assuming MAR and Correct Covariates.

Imputation
Method

ˆ. .( )s e θ1
ˆ. .( )s e θ 2

ˆ( )
ˆ( )NN

V
V

θ
θ
1

1 1

ˆ( )
ˆ( )NN

V
V

θ
θ
2

1 2

NN1 2.79*10-3 5.43*10-3 1 1

NN1P2 2.60*10-3 5.15*10-3 0.87 0.91

NN2 2.68*10-3 5.05*10-3 0.91 0.86

NN2(4) 2.73*10-3 4.88*10-3 0.94 0.80

NN10 2.56*10-3 4.88*10-3 0.83 0.81

NN10(20) 2.57*10-3 4.79*10-3 0.84 0.77

HDIWR10 2.52*10-3 4.66*10-3 0.82 0.74

HDIWOR10 2.48*10-3 4.72*10-3 0.78 0.76

ABB10 2.63*10-3 4.87*10-3 0.88 0.80
2 Note: H=100 iterations were used due to computing time.
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Table 3. Simulation Estimates of Biases of Estimators of θ1  and θ2  for Nearest

Neighbour Imputation (NN10) and Propensity Score Weighting, Assuming MAR

and Correct and Misspecified Covariates.

Method Assumed
Covariates

Bias of θ̂1
Rel. Bias

of θ̂1

Bias of θ̂2
Rel. Bias

of θ̂2

M1 (correct) -0.18*10-4

(0.64*10-4)
-0.03 % -5.8*10 -4

(1.20*10-4)
-0.31 %

M2 -1.31*10-4

(0.65*10-4)
-0.24 % -4.74*10-4

(1.23*10-4)
-0.25 %

NN10

M3 -1.66*10-4

(0.63*10-4)
-0.30 % -10.6*10-4

(1.23*10-4)
-0.57 %

M1 (correct) 0.15*10-4

(0.72*10-4)
0.03 % -2.62*10-4

(1.35*10-4)
-0.14 %

M2 -8.96*10-4

(0.68*10-4)
-1.64 % 70.2*10-4

(1.40*10-4)
3.80 %

Propensity
Score
Weighting

M3 -5.02*10-4

(0.68*10-4)
-0.92 % 67.8*10-4

(1.41*10-4)
3.66 %

  Note: M1 is the correct model
M2 excludes the interactions and the square terms from the correct model
M3 drops further covariates from model M2.

Table 4. Simulation Estimates of Standard Errors of Estimators of θ1  and θ2  for

Nearest Neighbour Imputation (NN10) and Propensity Score Weighting, Assuming

MAR and Correct and Misspecified Covariates.

Method Assumed
Covariates

ˆ. .( )s e θ1
ˆ. .( )s e θ 2 MSE( θ̂1 ) MSE( θ̂2 )

M1 (correct) 2.02*10-3 3.80*10-3 4.10*10-6 1.49*10-5

M2 2.06*10-3 3.88*10-3 4.29*10-6 1.54*10-5

NN10

M3 2.01*10-3 3.89*10-3 4.10*10-6 1.63*10-5

M1 (correct) 2.27*10-3 4.27*10-3 5.16*10-6 1.83*10-5

M2 2.17*10-3 4.42*10-3 5.51*10-6 6.90*10-5
Propensity
Score
Weighting M3 2.16*10-3 4.46*10-3 4.94*10-6 6.59*10-5
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Table 5. Simulation Estimates of Biases and Standard Errors of Estimators of θ1  and

θ2  for Nearest Neighbour Imputation (NN10) and Propensity Score Weighting.

Under the (non-MAR) Common Measurement Error Model.

Method Bias of θ̂1 Rel. Bias
of θ̂1

Bias of θ̂2 Rel. Bias
of θ̂2

ˆ. .( )s e θ1
ˆ. .( )s e θ 2

NN10 29.0*10-4

(0.8*10 -4)
5.1 % 92.0*10-4

(1.48*10-4)
5.0 % 2.53*10-3 4.70*10-3

Propensity
Score Weighting

32.3*10-4

(0.73*10-4)
5.7 % 100*10 -4

(1.40*10-4)
5.7 % 2.31*10-3 4.42*10-3

Table 6. Estimates of θ1  and θ2  (Weighted) for 18+ Using Different Propensity Score

Models and Imputation Models Applied to LFS, June-August 1999.

Method Propensity Score
Model or

Imputation Model

(Weighted)

θ̂1  (%)

(Weighted)

θ̂2  (%)

Derived
Variable

- 7.13 20.5

M1 0.96 34.5
M2 1.08 38.4

Propensity
Score
Weighting M3 1.08 38.4

M1 1.44 32.1
M2 1.41 32.9

HDIWOR10

M3 1.50 33.2
M1 1.32 32.6
M2 1.44 32.8

NN10

M3 1.50 33.0
  Note: M1 is the most complex model including square terms and interactions

M2 excludes the interactions and the square terms from model M1
M3 drops further covariates from model M2


