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Abstract 
 

Gross flows are discrete longitudinal data that are defined as transition counts, between a 

finite number of states, from one point in time to another. We discuss the analysis of gross 

flows in the presence of misclassification error via double sampling methods. Traditionally, 

adjusted for misclassification error estimates are obtained using a moment-based estimator. 

We propose a likelihood-based approach that works by simultaneously modeling the true 

transition process and the misclassification error process within the context of a missing data 

problem. Monte-Carlo simulation results indicate that the maximumlikelihood estimator is 

more efficient than the moment-based estimator. 
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Correcting for Misclassification Error in Gross Flows Using Double Sampling: 

Moment-based Inference vs. Likelihood-based Inference  

Nikos Tzavidis1 

Abstract 

Gross flows are discrete panel data that are generally defined as transition counts, between a finite 

number of states, from one point in time to another. Gross flows are typically estimated by linking 

panel data from consecutive waves. This process, however, is affected by the existence of non-

sampling errors such as response errors that cause misclassification error. We discuss alternative 

approaches for correcting for misclassification error in gross flows via double sampling. 

Traditionally, in a double sampling context, adjusted for misclassification error estimates are 

obtained using a moment-based estimator. We propose a likelihood-based approach that works by 

simultaneously modeling the true transition process and the misclassification error process within 

the context of a missing data problem. The model is formulated under alternative double sampling 

designs and maximum likelihood estimates are derived by maximizing the likelihood of the 

augmented data via the EM algorithm. The issue of variance estimation for the adjusted estimates 

is resolved using Taylor series linearization and the Missing Information Principle. Monte-Carlo 

simulation results indicate that the maximum likelihood estimator is more efficient than the 

moment-based estimator while a real data application indicates that the maximum likelihood 

estimator has desirable numerical properties that are appealing to the data analyst.  
 
KEYWORDS: Nonsampling errors; Response bias; Panel surveys; Re-interview surveys; Missing 

data; Labour force gross flows 
 
1. Introduction 

Gross flows are defined as transition counts, between a finite number of states, from one point in 

time to another. Typical examples of gross flows are labour force gross flows that represent 

transition counts of the labour force population between the different labour force states. Gross 

flows estimates are frequently derived from panel surveys by linking panel data from consecutive 
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waves. This process, however, is affected by non-sampling errors such as response errors that 

cause misclassification error (Hogue and Flaim 1986; Kristiansson 1999).  

The existence of misclassification error in data used for statistical analysis can introduce serious 

bias in the derived results. Methods that account for the existence of misclassification error have 

received great attention in the statistical literature. In the presence of misclassification error, such 

methods need to be employed in order to ensure the validity of the inferential process. One of the 

traditional approaches for adjusting for misclassification error in discrete data, such as gross 

flows, is by assuming the existence of validation information derived from a validation survey, 

which is free of error. The use of validation surveys can be placed into the framework of double 

sampling methods (Bross 1954). In a double sampling framework we assume that along with the 

main measurement device, which is affected by misclassification error, we have a secondary 

measurement device (validation survey), which is free of error but more expensive to apply. Due 

to its higher cost, the validation survey is employed only for a subset of sampling units. Inference 

using double sampling is based on combining information from both measurement devices. Other 

approaches to misclassification error correction include latent class models (Van de Pol and De 

Leeuw 1986) and instrumental variables models (Skinner and Humphreys 1997). However, in this 

paper, we will focus on the case that validation data, obtained via double sampling, are available. 

We examine alternative approaches for correcting for misclassification error in gross flows 

when validation information is available. However, while the main measurement device is a panel 

survey, we allow only for cross-sectional validation data. This choice can be justified given the 

costs associated with conducting a validation survey. We propose a maximum likelihood 

estimator as an alternative to the traditional moment-based estimator. We show that in contrast to 

the moment-based estimator, the maximum likelihood estimator provides more efficient adjusted 

estimates and has numerical properties that are appealing to the data analyst. 

The structure of the paper is as follows: In Section 2 we present the estimation framework of 

double sampling methods. We further present different double sampling designs that can be used 
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with panel data along with alternative specifications for quantifying the misclassification error 

mechanism. In Section 3 we describe two alternative approaches for misclassification error 

correction via double sampling. The first approach is an existing one that leads to a moment-based 

estimator. The second approach is what we propose and leads to a maximum likelihood estimator. 

Both approaches are investigated under alternative double sampling designs. In Section 4 we 

discuss variance estimation for the moment-based and the maximum likelihood estimators. In 

Section 5 a series of Monte-Carlo simulation studies are designed for empirically comparing the 

alternative point and variance estimators while in Section 6 the methodology is illustrated in the 

context of the US Current Population Survey (CPS) by estimating labour force gross flows 

adjusted for misclassification error. Finally, in Section 7 we summarize the main findings and 

provide directions for further research. 

2.  Using Double Sampling for Misclassification Error Correction 

Suppose that the standard measurement device is subject to misclassification error. As a result 

we have biased results. Unbiased estimates can be obtained by utilizing more elaborate 

measurement tools usually referred to as preferred procedures (Forsman and Schreiner 1991; 

Kuha and Skinner 1997). An example of a preferred procedure is re-interview surveys (Bailar 

1968). In bio-statistical applications the term “gold standard” is more commonly used (Bauman 

and Koch 1983). Other examples include judgments of experts or checks against administrative 

records (Greenland 1988). The assumption that the preferred procedure is free of error makes 

possible the estimation of the parameters of the misclassification error mechanism. On the other 

hand, the preferred procedures are considered to be fairly expensive and thus unsuitable to be used 

for the entire sample. Therefore, these procedures are normally applied to a smaller sample 

usually referred to as validation sample.  

The validation sample can be either internal or external. Kuha and Skinner (1997) make this 

distinction following literature on misclassification error in medical applications (Greenland 

1988). The characteristic that distinguishes an internal validation sample from an external 
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validation sample is whether the fallible classifications from the validation sample can be 

combined with the fallible classifications from the main sample. A validation sample is defined as 

internal if it is a sub-sample of  units from the main sample of n  units obtained via a 

randomised double sampling design. Alternatively, the validation sample is defined as internal if it 

is selected independently from the main sample and from the same target population. Otherwise, 

the validation sample is characterised as external. The parameters of the misclassification error 

mechanism estimated from an external validation sample are assumed to be representative of the 

misclassification process in the target population but the fallible classifications from this 

validation sample cannot be combined with the fallible classifications from the main sample.  

vn

Initially, double sampling methods were developed to adjust cross-sectional data for 

misclassification error. In this context, Bross (1954) described the general framework of double 

sampling methods. Maximum likelihood adjusted estimates for binomial and multinomial data 

were derived by Tenenbein (1970;1972) respectively. These results were then extended for fitting 

log-linear models in the presence of misclassification error (Espeland and Odoroff 1985). It is 

believed that for cross-sectional data there is no particular tendency for errors to be systematic 

(Skinner 2000). However, for panel data produced by linking information on the same individual 

in different time points, this cancellation may not occur. Work on the adjustment of gross flows 

for misclassification error via the use of double sampling includes Abowd and Zellner (1985), 

Poterba and Summers (1986), Skinner and Torelli (1993), and Singh and Rao (1995).  

2.1 Double Sampling Designs for Panel Data Analysis 

In this section we examine three alternative double sampling designs that can be used with panel 

misclassified data when only cross-sectional validation data are available.  

Double Sampling Design 1 

A simple random sample of n  units is selected from a population of N  units and the 

classifications for these n  units are obtained at time t  and  using a standard measurement 

device, which is affected by misclassification error. At a second time point, between  t  and , 

1+t

1+t
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a sub-sample of  units is selected from the n  units that already belong to the main sample and 

their classifications by the standard measurement device at time t  are validated using more 

elaborate survey techniques.  

vn

Double Sampling Design 2 

A simple random sample of n  units is selected from a population of N  units and the 

classifications for these n  units are obtained at time t  and  using the standard measurement 

device, which is affected by misclassification error. For another simple random sample of  

units, independently selected from the main sample and from the same target population, 

classifications are obtained only at time t  using also the standard measurement device. At a 

second time point, between t  and , the classifications of the  units obtained by the 

standard measurement device are validated using more elaborate survey techniques.  

1+t

vn

1+t vn

Double Sampling Design 3 

A simple random sample of n  units is selected from a population of N  units and the 

classifications for these n  units are obtained at time t  and  using a standard measurement 

device, which is affected by misclassification error. Using an external source of information, we 

then obtain cross-sectional information on the incidence of error. The assumption underpinning 

this design is that the external source of information adequately describes the misclassification 

process in the target population.  

1+t

Traditionally, double sampling methods are associated with double sampling design 1. 

However, when dealing with panel data assuming that only cross-sectional data are available, 

distinguishing between the different designs is important. Although under design 2 the validation 

and the main samples are representative of the same population, information on the fallible 

classifications from the validation sample cannot be combined with information on the fallible 

classifications from the main sample. This is because the validation sample is cross-sectional and 

not panel. Thus, the validation sample can be used only for making inferences about the cross-

sectional incidence of misclassification error. The same is also true for the other two double 
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sampling designs.  The different double sampling designs have also different costs. Under design 

2 we conduct the main survey using n  units and the validation survey using  different units. 

Therefore, under this design we have cross-sectional information on the observed classifications 

for  units. On the other hand, under design 1 we have cross-sectional information on the 

observed classifications only for n  units. This implies that design 2 may be associated with an 

increased cost compared to design 1. In this discussion, however, we need to consider one of the 

main disadvantages associated with design 1. Under this design, the sample units that participate 

in the validation survey participate also in the main, panel, survey. One may argue that this is 

similar to adding an extra wave to the panel survey, which effectively may increase the response 

burden of the respondents and therefore impact on the quality of the collected data.  

vn

+ vn n

2.2 Quantifying the Misclassification Error Mechanism 

Assume that a sample of n  units has been selected via a randomised design from a population 

of units and let ξ  denote a member of this sample. Let us further assume that the variable of 

interest, measured by the survey, is subject to misclassification error and that a validation survey 

is used for identifying the true values for a subset of sample units. Define the random variables 

,  that respectively describe the observed and true classifications for the  sample unit at 

time . One way to quantify the misclassification error mechanism is via the use of 

misclassification probabilities defined as (see for example Tenenbein 

1972). An alternative approach is by using what Carroll (1992) refers to as calibration 

probabilities. The calibration probabilities are defined as .  

N

∗
ξtY ξtY thξ

t

Pr(  |  )∗
ξ ξ= = =ik t tq Y i Y k

i( )Pr | ∗
ξ ξ= = =ki t tc Y k Y

The misclassification probabilities can be used both with internal (designs 1 and 2 in Section 

2.1) and external (design 3 in Section 2.1) validation samples. This is because the 

misclassification probabilities condition on the true classifications. Therefore, the 

misclassification probabilities can be regarded as transportable to the population of interest and 

can be used also in the case of an external validation sample. Unlike misclassification 
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probabilities, calibration probabilities can be used only with internal validation samples. This is 

because calibration probabilities condition on the observed classifications, which can not be 

considered as transportable to the population of interest when only external validation data exist. 

Nevertheless, here we argue that an external validation sample can be transformed into an internal 

validation sample. Since the misclassification process in the external validation sample is assumed 

to be representative of the misclassification process in the target population, we propose to 

calibrate ( )Pr ,∗
ξ ξ= =t tY i Y k  on the marginal information derived from the main sample. In the 

simplest case, this calibration procedure can be performed using an Iterative Proportional Fitting 

(IPF) algorithm (Deming and Stephan 1940). This transformation will be assumed throughout this 

paper when employing double sampling design 3. 

In a cross-sectional context Tenenbein (1970,1972) developed maximum likelihood estimators 

using calibration probabilities. In a recent paper, Tzavidis and Lin (2004) proposed a missing data 

specification that utilises misclassification probabilities for deriving maximum likelihood or 

quasi-likelihood estimates. All previous approaches lead to identical results.  

Unlike in the cross-sectional case, the use of misclassification or calibration probabilities when 

adjusting panel data for misclassification error, assuming that only cross-sectional validation data 

are available, requires careful consideration. This is because the absence of panel validation data 

dictates the use of additional assumptions for identifying the parameters of the panel 

misclassification error mechanism. A widely used assumption is the Independent Classification 

Errors (ICE) assumption. The ICE assumption can be defined either with misclassification or 

calibration probabilities. When using misclassification probabilities, the ICE assumption 

embodies the following two assumptions: (a) The observed classifications are conditionally 

independent given the true classifications and (b) the misclassification error at the current time 

point depends only on the current true state and not on previous or future true states. The ICE with 

calibration probabilities embodies the same assumptions but conditioning now on the observed 

instead of the true classifications. Both assumptions were studied by Meyer (1988). The author 
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argues that the main difference between the use of misclassification or calibration probabilities is 

in assumption (b) and concludes that the use of the ICE assumption with misclassification 

probabilities is more reasonable. Therefore, in this paper we will consider only misclassification 

probabilities. 

3. Two Alternative Specifications for Misclassification Error Correction via Double 

Sampling  

In this section we present two alternative specifications for adjusting for misclassification error 

in gross flows. The first one leads to a moment-based estimator that has been already proposed in 

the literature (Poterba and Summers 1986; Singh and Rao 1995). The second specification is what 

we propose and is based on expressing the misclassification problem as a missing data problem, 

which we solve via the EM algorithm (Dempster; Laird and Rubin 1976). This second approach 

leads to maximum likelihood estimates. 

3.1 Moment-based Inference for Gross Flows under Misclassification Error and Double 

Sampling 

Suppose that we conduct a panel survey where a sample unit ξ  is interviewed at two 

consecutive time points . The variable of interest, i.e. the flows between r  mutually 

exclusive states measured by the panel survey, is subject to misclassification error. Denote by  

the probability that unit  truly belongs in state k  at t  and state l  at  and by  the 

probability that unit  is observed in state i  at t  and state  at . Let P  denote the matrix 

with elements  and Π  the matrix with elements . Corresponding to each element of Π  and 

unit  we define the random variables , , which describe the observed (affected by 

misclassification error) classifications of unit  at t  and . We also define the random 

variables , which describe the true classifications of unit ξ  at t  and . The pairs 

, +t t 1

+

klP

ξ 1+t ijΠ

ξ j 1+t

klP ijΠ

ξ ∗
ξtY 1

∗
ξtY

ξ 1+t

1,ξ ξ +t tY Y 1+t

( )1,∗ ∗
ξ ξ +t tY Y  and ( )1,ξ ξ +t tY Y  are assumed to be iid for different sample units. We further assume that 

we can use a cross-sectional validation procedure through which we can make inference about the 
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misclassification error process. The misclassification probabilities are denoted by 

 and the matrix of misclassification probabilities 

by .  

1Pr(  |  )∗ ∗
ξ ξ + ξ ξ += = = =ijkl t t t tq Y i Y j Y k Y 1 = l

)1 = l

)

.

)

) )

)

)1

( ), 1+Q t t

Generally speaking, the misclassification error model is defined by expressing the joint 

distribution of the observed and true classifications as a product of the misclassification 

probabilities times the true transition probabilities as follows 

 

(3.1) ( ) (1 1 1
1 1

 Pr   Pr(  |  ) Pr  ∗ ∗ ∗ ∗
ξ ξ + ξ ξ + ξ ξ + ξ ξ +

= =

= = = = = = = =∑∑
r r

t t t t t t t t
k l

Y i Y j Y i Y j Y k Y l Y k Y

 
Expressing (3.1) in vector notation, assuming that  is non-singular and solving the 

resulting system of equations with respect to the vector of true flows P  we obtain the following 

expression for the adjusted gross flows 

( , 1+Q t t

                                                (3.2)        ( ) ( )[ ] ( )1, 1 −= + Πvec P Q t t vec

The estimation of the misclassification matrix  is not straightforward. To see this 

note that the number of free parameters when estimating  is equal to . This 

implies that information obtained from a cross-sectional validation sample is not sufficient to 

determine . We therefore need to introduce additional assumptions that will enable us 

to estimate the longitudinal misclassification matrix. The assumption that we utilise is the ICE one 

with misclassification probabilities (Section 2.2), which is more rigorously defined as follows:    

( , 1+Q t t

( , 1+Q t t (2 2 1−r r

( , 1+Q t t

 
       ( ) ( ) (1 1 1Pr , | , Pr | Pr | .∗ ∗ ∗ ∗

ξ ξ + ξ ξ + ξ ξ ξ + ξ += = = = = = = = =t t t t t t t tY i Y j Y k Y l Y i Y k Y j Y l

Restating the ICE assumption we can say that (a) The observed classifications  are 

conditionally independent given the true classifications  and (b) The misclassification at 

 depends only on the current true state and not on the previous or future true states. Denote by 

1,∗ ∗
ξ ξ +t tY Y

1,ξ ξ +t tY Y

t

( )Q t  the cross-sectional matrix of misclassification probabilities at time t  with elements , by 

 the cross-sectional matrix of misclassification probabilities at  with elements 

ikq

( 1+Q t ) 1+t jlq  
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and by  the kronecker product. An implication of ICE is that the longitudinal misclassification 

matrix can now be expressed in matrix notation as follows: 

⊗

            ( ) ( ) ( ), 1 1  + = + ⊗Q t t Q t Q t .

)

                                    

However, since is not known, we further assume that ( 1+Q t ( ) ( )1= +Q t Q t (assumption of 

stationary misclassification error). Assuming now that all quantities involved in the measurement 

error model can be estimated by utilising a double sampling design and the ICE assumption, an 

estimator of (3.2) is given by the following expression 

                  ( ) ( ) ( ) ( )1

.
−∧ ∧ ∧ ∧⎡ ⎤= ⊗⎢ ⎥⎣ ⎦

vec P Q t Q t vec Π                                  (3.3) 

Let us now examine the effect of the choice of double sampling design on the moment-based 

estimator. Since we allow only for cross-sectional validation data, the validation sample is used 

for estimating the parameters of the misclassification error mechanism while the main sample is 

used for estimating gross flows. This is true under all three double sampling designs. Thus, the 

choice of double sampling design has no effect on point estimation performed via the moment-

based estimator. Differences may be encountered in variance estimation due to the extra 

covariance terms introduced under double sampling design 1. This is investigated in Section 4. 

A drawback associated with the use of the moment-based estimator is that under certain 

conditions it can produce estimates that lie outside the parameter space. This can happen due to 

the inversion of the misclassification matrix involved in (3.3). As an alternative to the moment-

based estimator, in the upcoming section we propose a maximum likelihood estimator.  

3.2 Likelihood-based Inference for Gross Flows under Misclassification Error and Double 

Sampling 

As an alternative to the moment-based estimator, in this section we propose a likelihood-based 

approach for adjusting gross flows for misclassification error. A model is specified by 

simultaneously modeling the true transition process and the misclassification error process within 

the context of a missing data problem. The model parameters are estimated by maximizing the 

likelihood of the augmented data via the EM algorithm. Two alternative double sampling designs 
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are considered. In Section 3.2.1 we allow for double sampling design 2 while in Section 3.2.2 we 

allow for double sampling design 1. The case of double sampling design 3 is covered by double 

sampling design 2 using the transformation described in Section 2.2. 

3.2.1 Likelihood-based Inference under Double Sampling Design 2 

Let us assume that the panel survey that is utilized for estimating gross flows is affected by 

misclassification error and that a cross-sectional validation sample of  units is selected via 

double sampling design 2. The main survey provides information about the flows of the sample 

units between  mutually exclusive states at t  and . On the other hand, the validation 

survey provides information about the cross-sectional incidence of misclassification error related 

to these states at t . In what follows we define a category as a pair of states for which there is a 

flow, so there are  such flow categories.  

vn

r 1+t

2r

Consider the cross-classification of the fallible with the true classifications. Denote by  

the number of sample units classified in cell ij  defined by this cross-classification in the main and 

in the validation samples respectively. We formulate a model by combining information from 

both samples. This will eventually lead to a missing data problem. One source of missing data is 

attributed to the different time dimensions of the main and the validation surveys. The other 

source of missing data is due to the fact that individuals participating in the main survey do not 

participate in the validation survey. 

, v
ij ijn n

Denote by  the probability that a respondent truly belongs in category i  and by  the 

probability that a respondent is classified in category  given that he/she truly belongs in category 

. The probability that a sample unit belongs in cell ij  is expressed as a product of the true 

transition probabilities and the misclassification probabilities. Denote further by Θ  the vector of 

parameters, by  the complete (augmented) data and by a superscript (  any missing data. 

Assuming independence between the main and the validation samples, the likelihood function of 

the augmented data is given by  

iP ijq

j

i

CompleteD )∗
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                                                 ( ) ( )
( )

( )
( )

2 2 2 2

1 1 1 1

; .
∗ ∗

= = = =

Θ =∏∏ ∏∏
v

ij ij
r r r rnComplete

i ij i ij
i j i j

L D Pq Pq
n

 
Taking the logarithms on both sides and imposing the constraint 

                                                                          
2

1

1
=

=∑
r

i
i

P

we obtain the following expression for the log-likelihood function of the augmented data 

      ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )
2 2 2 2

2 2

1 1

1 1 1 1

; log log 1 log .     
− −

∗ ∗ ∗ ∗ ∗ ∗

= = = =

⎛ ⎞⎟⎜ ⎟Θ = + + + − + +⎜ ⎟⎜ ⎟⎜⎝ ⎠
∑ ∑ ∑∑i i i i

r r r r
Complete v v v

i i i i ij ij ijr r
i i i j

l D n n P n n P n n q (3.4) 

 
The longitudinal misclassification probabilities, , are unknown and are estimated using the 

cross-sectional misclassification probabilities and the ICE assumption. The log-likelihood 

function given in (3.4) is presented in its generic form i.e. without incorporating the ICE 

assumption. However, after incorporating ICE we need to add the extra constraint that the sum of 

the cross-sectional misclassification probabilities for a given true classification must add up to 

one. This extra constraint implies that we have to estimate  parameters that describe the 

misclassification error process and  gross flows specific parameters.  

ijq

2 −r r

2 1−r

Since the likelihood function involves missing data, one way of using this likelihood to 

maximise the likelihood of the observed data is via the EM algorithm. In the sequel we describe 

the expectation step (E-step) and the maximization step (M-step). Denote by  the observed 

data from the validation sample, by  the observed data from the main sample and by 

vD

mD ( )h  the 

current iteration of the EM algorithm. In order to perform the E-step we need to estimate the 

conditional expectations of the unobserved quantities in the main sample and in the validation 

sample given the observed data. This can be done using the following result. 

Result 3.1  

Denote by i jn  the total number of sample units in the main sample classified by the standard 

measurement device as making transition j . The conditional expectations of the missing data in 

the main sample are estimated using the following expression 
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( ) ( )

( ) ( )2

1

| ,
∧∧

∧ ∗

∧∧

=

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜Θ = ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠∑
i

hh
iijm

ij j r hh
iij

i

q P
E n D n

q P
.          

Proof 

Proof of Result 3.1 is given in Appendix A 
 
Result 3.2 

Denote by  the total number of sample units in the validation sample that belong to the k th cell 

of the misclassification matrix. The conditional expectations of the missing data in the validation 

sample are estimated using the following expression 

v
kn

     ( )( )
( ) ( )

( ) ( )| ,
∧∧

∧
∗

∧∧

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟Θ = ⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
∑∑

hh
iijv v v

ij k hh
iij

i j

q P
E n D n

q P
                                          

Proof 

Proof of Result 3.2 is given in Appendix A 

Having performed the E-step, the missing data in log-likelihood function (3.4) are replaced by 

the estimated conditional expectations. The M-step can then be performed by numerically 

maximising (Dennis and Schnabel 1983) the log-likelihood function of the augmented data. The E 

and M steps are iterated until a convergence criterion, for example the -norm of the vector of 

parameters derived from two successive iterations of the EM algorithm, is satisfied.  

2L

3.2.2 Likelihood-based Inference under Double Sampling Design 1 

In Section 3.2.1 we formulated the model under double sampling design 2. In this section we 

formulate the model under double sampling design 1. Under this design independence between 

the units in the main sample and in the validation sample is not automatically guaranteed. 

However, independence can be imposed by dividing the main sample into units that participate 

only in the main survey and units that participate both in the main survey and in the validation 

survey. Having performed this separation, the information available from these two samples is as 

follows: The main survey is a panel survey and provides information on the observed flows of the 
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− vn n that participate only in the main survey. On the other hand, the validation survey provides 

now information on the cross-sectional incidence of misclassification error related to the 

classifications at time t  and on the observed flows of the  units that participate both in the 

main and in the validation surveys. Under this design, the log-likelihood function of the 

augmented data is also given by (3.4) and is maximized using the EM algorithm. The E-step is 

described below.  

vn

For the main sample the conditional expectations of the missing data can be estimated using 

Result 3.1. However, for the validation sample estimating the conditional expectations of the 

missing data cannot be simply based on Result 3.2. This is because under design 1 we need to 

condition on two sets of observed data (the data from the main sample and the data from the 

validation sample). Therefore, a two-stage E-step is employed. For simplicity, we illustrate this E-

step for the 4-state model that can be schematically described via a  cross-classification of 

the observed with the true classifications.  

4 4×

In the first stage of the E-step we estimate initial conditional expectations using Result 3.2. 

These provisional conditional expectations will therefore respect the cross-sectional validation 

information. However, we also need to respect the information about the observed flows of the 

units in the validation sample. This is achieved at the second stage. Based on the provisional 

conditional expectations, we compute the following quantities 

                                       
( ) ( )

( ) ( )

11 21

13 23

,

,

∗ ∗

∗ ∗

= +

= +

v v

v v

a n n

e n n

( ) ( )

( ) ( )

12 22

14 24

,

,

∗ ∗

∗ ∗

= +

= +

v v

v v

b n n

f n n

( ) ( )

( ) ( )

31 41

33 43

,

,

∗ ∗

∗ ∗

= +

= +

v v

v v

c n n

g n n

( ) ( )

( ) ( )

32 42

34 44 .

∗ ∗

∗

= +

= +

v v

v v

d n n

h n n ∗

}

We then form two 2  tables the margins of which are defined by { }and 

respectively. It can be easily verified that the margins of these two tables summarise the 

information available for the units in the validation sample under double sampling design 1. More 

specifically, the column margins define the observed flows and the row margins define the cross-

sectional validation information. Having formed these  tables, we then use the IPF (Deming 

and Stephan 1940) algorithm to rake the internal cells of these matrices to the data constraints that 

2× , , ,a b c d

{ , , ,e f g h

2 2×
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we need to respect. The newly derived internal cells are denoted by { } and 

. It remains to estimate the final conditional expectations of the unobserved 

quantities in the validation sample. In order to do so we form the 2  vectors that summarise 

and { . For example, the 2  vector defined by  must respect 

the constraint that . For the 4-state model one can form 8 such vectors. Using 

arguments analogous to the ones for Results 3.1 and 3.2, the conditional expectations are then 

estimated within each of these 2  vectors. For example,  

, , ,∗ ∗ ∗ ∗a b c d

{ , , ,∗ ∗ ∗ ∗e f g h }

} ∗

∗

1×

{ }, , ,∗ ∗ ∗ ∗a b c d , , ,∗ ∗ ∗ ∗e f g h 1× ( ) ( )

11 21,∗v vn n

( ) ( )

11 21
∗ ∗= +v va n n

1×

                        ( )( )
( ) ( )

( ) ( )
( )( )

( ) ( )

( ) ( )
1 211 21

11 212 2

1 1
1 1

| , , | ,
∧ ∧∧ ∧

∧ ∧
∗ ∗ ∗ ∗

∧ ∧∧ ∧

= =

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟Θ = Θ =⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠∑ ∑

h hh h
v v v v

h hh h
i ii i

i i

q P q PE n D a E n D a
q P q P

.              

These estimated conditional expectations will respect both the cross-sectional validation 

information and the observed flows of the units in the validation sample. After estimating the 

conditional expectations of the unobserved quantities in the main and in the validation samples, 

the M-step is performed numerically.  

4. Variance Estimation  

Having investigated alternative approaches for point estimation, in this section we develop tools 

for variance estimation. Variance estimation for the moment-based estimator is discussed in 

Section 4.1. Variance estimation for the maximum likelihood estimator is discussed in Section 

4.2. 

4.1 Variance Estimation for the Moment-based Estimator 

Using properties of ve  operators, the moment-based estimator, under ICE, is given by  c

                   ( ) 1 1− −∧ ∧ ∧ ∧⎡ ⎤⎛ ⎞⎟⎢ ⎥⎜= ⎟⎜ ⎟⎜⎢ ⎥⎝ ⎠⎣ ⎦
vec P Q Q

Τ

Π                                (4.1) 

In order to simplify the notation, we drop the parenthesis next to Q  that is time specific. A 

variance estimator for (4.1) can be derived by employing the -method (Bishop, Fienberg and 

Holland 1975). This involves expanding 

δ

( )∧vec P  in a Taylor series around its true value ( )vec P . 
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Let ( ) ( ) ( ) ( )21 2, ,...,
∧ ∧ ∧⎡ ⎤ ⎡=⎢ ⎥ ⎢

⎣ ⎦ ⎣

T

rvec P g g gΘ Θ Θ Θ
∧ ⎤
⎥
⎦

)∧
Π

represent a  vector of non-linear functions of a 

vector . Recall that  denotes the misclassification 

probabilities and  denotes the observed transition probabilities between t  and . Note also 

that now we distinguish between the subscripts . However, both subscripts refer to the 

observed classifications at t .  Expanding 

2 1×r

( 11 21 3111 21 31, , ,..., , , , ,...,
∧ ∧ ∧ ∧∧ ∧ ∧ ∧= rrrrq q q qΘ Π Π Π ikq

ljΠ 1+t

,l i

( )∧vec P  around its true value using Taylor series we 

have that    

                                     ( ) ( )[ ] ( ) ( )[ ]
, | ∧

∧ ∧

=

∂⎡ ⎤ − ≈ ∇ − ∇ =⎢ ⎥ .
⎣ ⎦

vec
vec P Θ Θ Θ Θ

Θ
Θ Θ Θ Θ

Θ∂
P

vec       (4.2)  P

 
Taking the variance operator on both sides of (4.2) we have that 

                    ( ){ } ( )( ) .
∧ ∧⎡ ⎤ ≈ ∇ ∇⎢ ⎥

⎣ ⎦
TVar vec P VarΘΘ Θ Θ         (4.3) 

In order to estimate (4.3), we need to evaluate the Jacobian matrices ∇ , (   and estimate 

the covariance matrix 

Θ )∇ T
Θ

( )∧Var Θ . For the later case, we need to estimate the following components: 

(a) the covariance matrix of the unadjusted estimated probabilities of transition  (b) the 

covariance matrix of the estimated misclassification probabilities  and (c) the covariance of 

.  

∧
ljΠ

∧
ikq

,
∧ ∧

lj ikqΠ

Under simple random sampling, component (a) can be estimated using standard results for the 

variance of binomial random variables. Component (b) requires a second application of the -

method. This is because the estimated misclassification probabilities are defined as ratios of 

random variables. Let . Applying the δ -method to  we 

derive the following  

δ

(
*

11 21 31, , ,...,
∧
= v v v v

rrn n n nΘ )
*∧⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥⎟⎜ ⎟⎜⎢ ⎥⎝ ⎠⎣ ⎦

vec Q Θ
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      ( ) ( )
* *

* *

*
* *

* *
*,   = | .

 

∧

∧ ∧

=

⎡ ⎤∂⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎢ ⎥⎣ ⎦⎡ ⎤⎟ ⎟⎜ ⎜⎢ ⎥ − ≈ ∇ − ∇⎟ ⎟⎜ ⎜⎢ ⎥⎟ ⎟⎜ ⎜⎣ ⎦⎢ ⎥⎝ ⎠ ⎝ ⎠ ∂⎣ ⎦

vec Q
vec Q vec Q

Θ Θ Θ Θ

Θ
Θ Θ Θ Θ

Θ (4.4) 

Taking the variance operator on both sides of (4.4) we obtain the following  

          ( )*

* *

.
∧ ∧⎧ ⎫

*

⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪⎪ ⎪⎟ ⎟⎜ ⎜⎢ ⎥ ≈ ∇ ∇⎨ ⎬⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎢ ⎥⎪ ⎪⎝ ⎠ ⎝ ⎠⎣ ⎦⎪ ⎪⎩ ⎭

T
Var vec Q VarΘΘ Θ Θ                       (4.5) 

In order to estimate (4.5) we need to evaluate the Jacobian matrices , *∇Θ ( )*∇
T

Θ and the 

covariance matrix . Under simple random sampling and taking into account that the 

sample size of the validation survey is fixed, we can treat  as multinomial counts. Therefore 

can be estimated using standard results for the variance of binomial random variables. 

For component (c) i.e. the covariance between the unadjusted estimated probabilities of transition 

and the estimated misclassification probabilities we distinguish two cases. Under double sampling 

design 2 and double sampling design 3 we assume that  Under double sampling 

design 1 we assume that  For the latter case we estimate this covariance term 

using the following result 

*∧⎛ ⎟⎜ ⎟⎜ ⎟⎜⎝
Var Θ

⎞
⎠

⎠

v
ikn

*∧⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜⎝
Var Θ

( ), 0.
∧∧ =ljikCov q Π

( ), 0.
∧∧ ≠ljikCov q Π

Result 4.1 

An estimator for the covariance term of interest is given by  

( ) ( ) ( )

( ) ( ) ( ) ( )

* *
1

1 1

* *
1

1

1, Pr , ,

             Pr , ,

∧ ∧
∧ ∧

ξ ξ + ξ∧

= =

∧ ∧∧
∧

ξ ξ + ξ∧

=

⎛ ⎞⎟⎜ ⎧⎟ ⎪⎜ ⎟ ⎪⎜ ⎟ ⎪⎜ ⎟ ≈ = = = −⎨⎜ ⎟⎜ ⎛ ⎞⎟ ⎪⎜ ⎟ ⎟⎪⎜⎟⎜ ⎟⎪⎩⎜⎟⎜ ⎟⎟⎜⎝ ⎠ ⎝ ⎠

− = = = −⎛ ⎞⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

∑ ∑

∑

vv
ik ljlj vik

r t t t vrv v
ik ik

i i

vv
ik ljik v

t t tr
v
ik

i

E n E nnnCov n Y i Y j Y k
n nn nE n

E n E nE n
n Y i Y j Y k

n
E n

( ) ( )
.

∧ ∧

≠

⎫⎪⎪⎡ ⎤⎪⎪⎢ ⎥⎪−⎢ ⎥⎬⎪⎢ ⎥⎪⎢ ⎥⎪⎣ ⎦⎪⎪⎭

∑
v
ik lj

v v
l i

E n E n
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Proof 

Proof of Result 4.1 is given in Appendix B 
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4.2 Variance Estimation for the Maximum Likelihood Estimator 

In this section we perform variance estimation for the maximum likelihood estimator under 

double sampling design 2. Variance estimation for the maximum likelihood estimator implies the 

use of the inverse of the information matrix. However, due to the formulation of the model in a 

missing data framework, variance estimation must reflect the additional variability introduced by 

the existence of missing data. One way to obtain variance estimates for the parameters of interest 

when using the EM algorithm is by application of the Missing Information Principle (Louis 1982). 

Denote by  the missing data in the main and in the validation samples respectively and 

by  the observed data from the main and the validation samples. The Missing Information 

Principle is defined as follows 

,mZ Zv

v

)∧
… ∼iidv v v v v

mleHZ Z Z Z D Θ

)

,mD D

                    O   bserved  Information = Complete Information Missing Information.−

Following Louis (1982), the complete information matrix can be obtained using the second order 

derivatives of the log-likelihood function evaluated at the last step of the EM algorithm. The 

missing information matrix can be obtained by estimating the variance of the score functions. In 

spite of being able to derive general expressions for the expectation of the complete information 

matrix and the variance of the score functions, it is tedious to evaluate these expressions 

analytically. The main problem arises in evaluating the missing information matrix. An alternative 

solution is offered by means of Monte-Carlo simulation. The simulation algorithm is described in 

Tanner (1996). Having arrived at the maximum likelihood estimates (last step of the EM), we 

generate H complete datasets by drawing  

(1 2, , , Pr | , ,                                                         

                                  (1 2, , , Pr | ,
∧

… ∼iidm m m m m
mleHZ Z Z Z D Θ

where ( )Pr | ,
∧

v v
mleZ D Θ ,  denote the conditional distributions of the missing 

data in the validation and in the main samples respectively given the observed data and the 

maximum likelihood estimates and H  denotes the total number of simulations. This first step can 

(Pr | ,
∧

m m
mleZ D Θ )
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be viewed as the imputation step. Having replaced the missing data with imputed values in 

simulation ( )h , we derive complete data  that are employed for evaluating the complete 

information matrix and the missing information matrix. This is done by using the simulation-

based (empirical) estimators for the complete information matrix and for the variance of the score 

functions defined respectively by 

( )complete hD

                                 
( ) ( )( )22

1

;; 1| ,
  =

,
⎡ ⎤ ∂∂⎢ ⎥− = −⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

∑
complete hcomplete H

m v
T T

h

l Dl D
E D D

H

ΘΘ
Θ Θ Θ Θ

                  

             
( ) ( )( ) ( )( )

2

1

; ;; 1| ,
=

⎧ ⎫
.

⎡ ⎤⎪ ⎪⎡ ⎤ ∂ ∂∂ ⎪ ⎪⎢ ⎥⎪ ⎪⎢ ⎥ = −⎨ ⎬⎢ ⎥⎢ ⎥ ⎪ ⎪∂ ∂ ∂⎢ ⎥⎢ ⎥ ⎪ ⎪⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭
∑

complete h complete hcomplete H
m v

h

l D l Dl D
Var D D E

H

Θ ΘΘ
Θ Θ Θ

 

Having derived the complete information matrix and the missing information matrix, variance 

estimates are derived by inverting the matrix resulting from the difference of these two matrices. 

Variance estimation for the maximum likelihood estimator under double sampling design 1 is 

more complex and is not tackled in this paper. The complexity arises due to the stepwise approach 

we follow for estimating the conditional expectations of the missing data in the validation sample 

(see Section 3.2.2). In order to tackle this problem, one may consider using computer intensive 

methods such as bootstrap or jackknife. In this paper, however, we will solely rely on empirical 

variance estimates derived via Monte-Carlo simulation. 

5. Simulation Study  

In this section we evaluate the performance of the alternative point and variance estimators 

using Monte-Carlo simulation. The simulation algorithm is designed as follows. In the first step 

we generate error free (true) gross flows. This is done by employing the probability distribution 

function of the true flows between two time points say t  and  and by drawing from this 

distribution a with replacement sample of size n . Having generated true flows, in the second step 

we assume the existence of a cross-sectional misclassification error model described by the 

misclassification probabilities. Using these probabilities, we generate the observed status at t  

given the true status at t  for each sample unit . Having generated the observed status at t , in the 

1+t

ξ

 19



third step we generate the observed status at  given the observed status at t , the true status at 

 and the true status at  for each sample unit . This is equivalent to introducing panel 

misclassification error. Since all developments in this paper are based on the ICE assumption that 

uses misclassification probabilities, the panel misclassification error mechanism is simulated 

under ICE. After all three previous steps of the simulation have been completed, the joint 

distribution of the observed and the true classifications is constructed. From this distribution one 

can extract the marginal distribution that refers to the observed gross flows. Using the joint 

distribution, one can also extract the marginal distribution that refers to the cross-sectional 

incidence of misclassification error.  

1+t

t 1+t ξ

In order to simulate the availability of validation information derived from a validation sample 

of  units ( , we distinguish two cases: (a) Double sampling design 1 is simulated by 

selecting a sub-sample of  units from the marginal distribution that describes the cross-sectional 

incidence of misclassification error derived after the first three steps of the simulation and (b) 

double sampling design 2 is simulated independently of the data generated by the first three steps 

of the simulation. The case of double sampling design 3 is covered by double sampling design 2 

using the transformation described in Section 2.2.  

vn )<vn n

vn

We implement the simulation study within the context of estimating labour force gross flows. 

More specifically, the target is to estimate gross flows between the main labour force states i.e. 

Employment (E), Unemployment (U) and Inactivity (N) in the presence of misclassification error. 

We contrast the following three estimators (a) the estimator of the observed (unadjusted) flows 

denoted by P-OBS, (b) the moment-based estimator used to adjust for misclassification error 

(Section 3.1) denoted by P-ST and (c) the maximum likelihood estimator used to adjust for 

misclassification error (Section 3.2) denoted by P-MLE.  

In simulation study I (Tables 1 and 2) we compare the estimator of the observed flows (P-OBS) 

with the moment-based estimator (P-ST) and the maximum likelihood estimator (P-MLE) under 

double sampling design 2. In simulation study II (Tables 3 and 4) we compare the estimator of the 
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observed flows (P-OBS) with the moment-based estimator (P-ST) and the maximum likelihood 

estimator (P-MLE) under double sampling design 1. For easing the computations, this 

comparison is performed only for a reduced model that only allows for flows between 

“Employment” and “Unemployment” or “Inactivity”. In simulation study III (Table 5) we 

evaluate the performance of the variance estimator of the moment-based estimator under double 

sampling design 2, in simulation study IV (Table 6) we evaluate the performance of the variance 

estimator of the moment-based estimator under double sampling design 1 and in Simulation study 

V (Table 7) we evaluate the performance of the variance estimator of the maximum likelihood 

estimator under double sampling design 2. Due to the computer intensive methods required for 

computing this last variance estimator (Section 4.2), we consider its performance also relatively to 

the reduced model that allows for flows between “Employment” and “Unemployment” or 

“Inactivity”.  

The properties of the various point and variance estimators are assessed using the following 

criteria: (a) Relative bias of a point or a variance estimator, (b) standard deviation of a point 

estimator, (c) Root Mean Squared Error (RMSE) of a point estimator, (d) relative efficiency (RE) 

of the moment-based estimator compared to the maximum likelihood estimator defined as the 

ratio between the RMSE’s of these two estimators and (e) coverage rate of a variance estimator.  

 Simulation Study I: , , Double sampling design 2 60000=n 10000=vn
 
 Table 1: True flows and point estimates (Averages over simulations) 

         Flow                   True Flows               P-OBS                      P-ST                     P-MLE 

E→E 0.7316 0.7174 0.7313 0.7318 
U E → 0.0131 0.0160 0.0131 0.0130 
N E → 0.0091 0.0162 0.0092 0.0090 
E→U 0.0047 0.0079 0.0047 0.0046 
U→U 0.0283 0.0268 0.0281 0.0281 
N→U 0.0071 0.0100 0.0069 0.0071 
E→N 0.0093 0.0162 0.0094 0.0092 
U→N 0.0049 0.0080 0.0047 0.0049 
N→N 0.1919 0.1815 0.1926 0.1923 
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   Table 2: Comparing the alternative estimators of the labour force gross flows 

   P-OBS  P-ST  P-MLE      P-OBS  P-ST P-MLE      P-OBS P-ST  P-MLE 
Flow       Relative Bias (%)               Standard Deviation                  RMSE                RE    

                                                           (*103)                                  (*103)      
E→E -1.94 -0.04  0.03 1.98 2.63 2.28 14.29 2.64 2.29 1.15 
U E → 22.14 0.001 -0.76 0.37 0.77 0.66 2.96 0.77 0.66 1.16 
N E → 78.02 1.10 -1.10 0.49 0.88 0.66 7.14 0.89 0.67 1.33 
E→U 68.09 0.001 -2.13 0.52 0.67 0.55 3.30 0.67 0.55 1.22 
U→U -5.30 -0.71 -0.71 0.72 0.87 0.80 1.61 0.88 0.81 1.09 
N→U 40.85 -2.82 0.001 0.35 0.68 0.55 3.01 0.69 0.55 1.25 
E→N 74.19  1.08 -1.08 0.46 0.93 0.71 6.98 0.94 0.71 1.32 
U→N 63.27 -4.08 0.001 0.39 0.72 0.57 3.17 0.73 0.57 1.28 
N→N -5.42  0.36 0.21  1.59 2.20 1.85 10.94 2.23 1.85 1.21 

 
S imulation Study II: , , Double sampling design 1 60000=n 10000=vn

   Table 3: True flows and point estimates (Averages over simulations) 

         Flow                   True Flows                P-OBS                     P-ST                     P-MLE 

E→E 0.7288 0.7161 0.7293 0.7288 
U+N→E 0.0129 0.0319 0.0127 0.0130 
E→U+N 0.0054 0.0249 0.0052 0.0056 

U+N→U+N 0.2529 0.2271 0.2528 0.2526 
   

    Table 4: Comparing the alternative estimators of the labour force gross flows 

Flow P-OBS  P-ST  P-MLE   P-OBS  P-ST P-MLE  P-OBS P-ST P-MLE 
   Relative Bias (%)            Standard Deviation              RMSE                 RE 

                                                     (*103)                             (*103)           
E→E -1.74  0.07 -0.002 2.46 3.23 3.04 12.9 3.27 3.04 1.07 

U+N→E  147 -1.55  0.77 1.04 1.79 1.57 19.0 1.80 1.58 1.14 
E U+N →  361 -3.70  3.70 0.95 1.78 1.48 19.5 1.79 1.49 1.20 

U+N U+N → -10.2 -0.04 -0.12 2.42 3.54 3.13 25.9 3.54 3.14 1.13 
 
S
 

imulation Study III: , , Double sampling design 2 60000=n 2150=vn

Table 5: Performance of the variance estimator of the moment-based estimator  

Flow ( )E V P
∧ ∧⎡ ⎤
⎢ ⎥
⎣ ⎦

 

(*106) 

( )V P
∧

 

(*106) 

Absolute Relative Bias 
(%) 

Coverage Rate 
(95%) 

E→E 32.6 32.7 0.30 0.945 
U→E 3.47 3.48 0.28 0.934 
N→E 8.55 8.44 1.30 0.949 
E→U 3.42 3.44 0.58 0.934 
U→U 2.82 2.80 0.71 0.924 
N→U 2.89 2.87 0.69 0.939 
E→N 8.48 8.36 1.43 0.948 
U→N 2.96 2.88 2.77 0.935 
N→N 27.9 27.6 1.08 0.943 
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S imulation Study IV: , , Double sampling design 1 60000=n 2150=vn

Table 6: Performance of the variance estimator of the moment-based estimator  

Flow ( )E V P
∧ ∧⎡ ⎤
⎢ ⎥
⎣ ⎦

 

(*106) 

( )V P
∧

 

(*106) 

Absolute Relative Bias 
(%) 

Coverage Rate 
(95%) 

E→E 31.4 31.3 0.32 0.944 
U→E 3.23 3.29 1.82 0.931 
N→E 8.21 8.29 0.96 0.942 
E→U 3.38 3.44 1.74 0.930 
U→U 2.72 2.73 0.36 0.920 
N→U 2.87 2.90 1.03 0.933 
E→N 8.20 8.31 1.32 0.943 
U→N 2.79 2.84 1.76 0.933 
N→N 27.0 27.2 0.73 0.942 

 
S
 

imulation Study V: , , Double sampling design 2 60000=n 10000=vn

   Table 7: Performance of the variance estimator of the maximum likelihood estimator 

Flow ( )E V P
∧ ∧⎡ ⎤
⎢ ⎥
⎣ ⎦

 

(*106) 

( )V P
∧

 

(*106) 

Absolute Relative Bias 
(%) 

Coverage Rate 
(95%) 

E E → 5.19 5.00 3.80 0.94 
E U+N → 2.95 2.02 46.0 0.90 
U+N E → 2.95 2.00 47.5 0.92 

U+N U+N → 7.70 6.80 13.2 0.94 
 
5.1 Discussion  

We start by comparing the moment-based estimator with the maximum likelihood estimator 

under alternative double sampling designs. Results from simulation study I (Table 2) indicate that 

using the maximum likelihood estimator instead of the moment-based estimator under double 

sampling design 2 leads to gains in relative efficiency that range between 9% and 33% (see last 

column of Table 2). Double sampling design 2 may be more reasonable with panel data. This is 

because a validation sample that is selected by sub-sampling units from the main (panel) survey 

(i.e. using double sampling design 1) may increase the response burden of these units. However, 

design 2 is also associated with higher costs. This is because when using an independently 

selected validation sample we conduct an additional cross-sectional survey on individuals that do 

not participate in the main survey. The moment-based estimator uses information from the cross-

sectional validation sample only for estimating the misclassification probabilities. On the other 
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hand, the maximum likelihood estimator makes optimal use of the cross-sectional validation 

information leading to an increase of the effective sample size. One could object that in order to 

gain this increased efficiency, we pay the price of conducting an expensive validation survey. For 

this reason, in simulation study II we contrasted the maximum likelihood estimator with the 

moment-based estimator under double sampling design 1. Under this design both estimators use 

the same information. Again our results indicate that the maximum likelihood estimator is more 

efficient with relative efficiency gains now ranging between 7% and 20% (see last column of 

Table 4).  

In simulation studies III and IV we evaluate the performance of the variance estimator of the 

moment-based estimator under alternative double sampling designs. The results in Tables 5 and 6 

indicate that the variance estimators of the moment-based estimator work well with low relative 

bias and coverage rates close to 95%. In simulation study V we assess the variance estimator of 

the maximum likelihood estimator. Results from this simulation (Table 7) indicate that the 

variance estimator of the maximum likelihood estimator is conservative since it overestimates the 

true variance. This overestimation occurs mainly in the off-diagonal elements of the gross flows 

matrix. Despite being conservative, this variance estimator captures the variability due to the 

missing data and results in reasonable coverage rates that range between 90% and 94%.  

6. Application: Adjusting for Misclassification Error in Labour Force Gross Flows 

Estimated from the US Current Population Survey (CPS) 

In this section we employ US CPS labour force gross flows that have been previously analysed 

by Poterba and Summers (1986) using the moment-based estimator. In addition to the Poterba and 

Summers analysis, we further present maximum likelihood estimation but for the reduced model 

that allows for flows only between employment (E) and Unemployment (U) or Inactivity (N).   

Two applications are presented. In the first application we use the misclassification matrix of 

Poterba and Summers (1986 p.1323) assuming double sampling design 2 (Section 2.1). The 

diagonal elements of the matrix of misclassification probabilities are reported in Appendix C 
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(Table C.1, column entitled “original”). Adjustment for misclassification error is performed using 

the moment-based and the maximum likelihood estimators. Variance estimates are also provided. 

More specifically, for the observed (unadjusted) labour force gross flows variance estimates are 

derived using multinomial results whereas for the moment-based and the maximum likelihood 

estimators variance estimates are derived using the results of Section 4. Results from this 

application are reported in Table 8. In the second application we compare the moment-based 

estimator with the maximum likelihood estimator when “intense” misclassification exists. In 

order to perform this comparison, we modify the misclassification matrix used in the first 

application. The diagonal elements of this modified misclassification matrix are also reported in 

Appendix C (Table C.1, column entitled “modified”). Results from this application are given in 

Table 9. For both applications the convergence criterion for the EM algorithm, as this is defined 

by the -norm, is . Identification of the model parameters is checked by initializing the 

EM algorithm using different sets of starting values and examining whether the algorithm 

converges to the same point. For both applications the EM algorithm converges. The sample sizes 

of the main and the validation surveys are  and  respectively. 

2L 810−=ε

163907=n 20000=vn

Table 8: Observed and adjusted, using the moment-based and the maximum likelihood 

estimators, labour force gross flows from the US CPS. Estimated standard deviations in 

parenthesis 

Flow Observed Moment-based 
 

Maximum Likelihood 
 

E→E 0.560 (1.22*103) 0.5814 (2.63*103) 0.5815 (2.16*103) 
E→U+N 0.029 (4.11*104) 0.0107 (1.24*103) 0.0106 (1.21*103) 
U+N→E    0.028 (4.07*104) 0.0097 (1.23*103) 0.0097 (1.21*103) 

U+N→U+N 0.383 (1.19*103) 0.3982 (2.40*103) 0.3982 (1.82*103) 
  
Table 9: Observed and adjusted, using the moment-based and the maximum likelihood 

estimators, labour force gross flows from the US CPS under intense misclassification  

Flow Observed Moment-based 
 

Maximum Likelihood 
 

E→E 0.560 0.581 0.5791 
E→U+N 0.029 -0.0027 0.000097 
U+N→E 0.028 -0.0017 0.000903 

U+N→U+N 0.383  0.4234 0.4199 
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The existence of measurement error when estimating labour force gross flows leads to an 

overestimation of the labour market mobility. The effect of adjusting labour force gross flows for 

measurement error is to increase the diagonal elements and decrease the off-diagonal elements of 

the unadjusted gross flows matrix. This is consistent with the results of previous research (Poterba 

and Summers 1986; Singh and Rao 1995). The higher efficiency of the maximum likelihood 

estimator, compared to the moment-based estimator, is further illustrated in Table 8 by examining 

the estimated standard deviations. However, here we should also account for the fact that the 

variance estimator of the maximum likelihood estimator, using the Missing Information Principle, 

overestimates the true variance of this estimator (see Simulation V in Section 5). Last but not least, 

assuming that the adjusted estimates are unbiased, both the moment-based and the maximum 

likelihood estimators outperform the unadjusted estimator in Mean Squared Error terms. 

In the second application we contrasted the moment-based estimator with the maximum-

likelihood estimator in the presence of “intense” misclassification. Even a relatively small change 

in an entry of the original misclassification matrix is capable of causing the moment-based 

estimator to produce estimates that lie outside the boundaries of the parameter space (Table 9). 

This is partially due to the inversion of the misclassification matrix involved in deriving the 

moment-based estimates (Section 3.1). A further reason, however, is the use of the ICE 

assumption. The effect of the ICE assumption is to overestimate the panel misclassification error 

compared to a case where serial correlation in the misclassification error exists. Unlike the 

moment-based estimator, the maximum likelihood estimator constrains the adjusted estimates to 

lie within the boundaries of the parameter space. 

7. Summary  

In this paper we present alternative approaches for inference when gross flows subject to 

misclassification error and cross-sectional validation information is available. We argue that, 

compared to the traditional moment-based approach, a more efficient solution is offered by 

simultaneously modeling the true transition process and the misclassification error process within 
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the context of a missing data problem. Monte-Carlo simulation results verify that the likelihood-

based approach offers significant gains in efficiency over the moment-based method. This is true 

under alternative double sampling designs. Variance estimation is considered and the proposed 

variance estimators appear to have good coverage properties. Using a real data application we 

illustrate that under certain conditions the moment-based estimator can produce estimates that lie 

outside the boundaries of the parameter space. Unlike the moment-based estimator, the maximum 

likelihood estimator constraints the adjusted estimates to lie within the boundaries of the 

parameter space. Based on the increased efficiency and the desirable numerical properties of the 

maximum likelihood estimator, we propose that this estimator should be preferred over the 

moment-based estimator. 

Currently, we investigate the application of this methodology in other areas of statistical 

research such as in demographic applications for tackling the problem of heaping and in statistical 

disclosure control for protecting sensitive data via the introduction of misclassification error.  
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APPENDIX A: PROOFS OF RESULTS IN SECTION 3 

Proof of Result 3.1 
 
Recalling the notation from Section 3, the expectations of the missing data can be expressed as 

follows: 

                                                           (A.1) ( )( ) ( 1 1,∗ ∗
→ + → += =ij t t t tE n nE Y i Y jξ ξ ).=

)=
Expression (A.1) is re-defined below 

                                                         ( )( ) ( ) (1 1 1| .∗ ∗
→ + → + → += = =ij t t t t t tE n nE Y j Y i E Y iξ ξ ξ

The observed data from the main sample are expressed as follows  
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Given the observed data, the conditional expectations of the missing data are expressed as 

follows 
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           (A.2) 

The expectations of the random variables involved in the expression above are determined using 

results for binomial random variables. More specifically, 

        ( )1 1|∗
→ + → += = =t t t t ijj Y i qξ ξ ( )1  .→ + = =t t iE Y i PξE Y ,                         (A.3) 

Substituting (A.3) in (A.2) we obtain the required result 
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Proof of Result 3.2 

Using the same notation as in Result 3.1, the expectations of the missing data in the validation 

sample are expressed as   

                                                                                (A.4) ( )( ) (v v
ij t t t tE n n E Y i Y j1 1,∗

→ + → += =ξ ξ

Expression (A.4) is re-defined below 

                                                          ( )( ) ( ) (v v
ij t t t t t tE n n E Y j Y i E Y i1 1 1| .∗ ∗

→ + → + → += = =ξ ξ ξ

For the validation sample we have information about the cross-sectional incidence of error 
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Given the observed data, the conditional expectations of the missing data are expressed as 

follows 
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Replacing the conditional expectations in (A.5) using binomial results, we derive the final result 
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APPENDIX B: PROOFS OF RESULTS IN SECTION 4 

 

Lemma B.1 

An approximate expression for the expectation of a function ( ),g X Y  of two random variables 

 using a Taylor’s series expansion around ,X Y ( ),X Yµ µ  is given by 

       
( )[ ] ( ) ( ) ( ) ( ) ( )

( ) ( )

2 2

, ,2 2

2

,

1 1, , , | , |
2 2

              , | , .  

X Y X Y

X Y

X YE g XY g g XY Var Y g XY Var X
y x

g XY Cov XY
x y

µ µ µ µ

µ µ

µ µ ∂ ∂≈ + +
∂ ∂

∂+
∂ ∂

      

 
Proof  
Proof of this Lemma can be found in Mood et al. (1963 p.181). 

 

Result B.1 
 
Let  denote three random variables and n  is fixed. An approximate expression for , ,X Y A

,
⎛ ⎟⎜ ⎟⎜ ⎟⎜⎝
X ACov
Y n

⎞
⎠

 is given by  

       
( )

( ) ( )
( )

( )1, , , .
⎡ ⎤⎛ ⎞⎟ ⎢ ⎥⎜ ≈ −⎟⎜ ⎟⎜ ⎢ ⎥⎝ ⎠ ⎣ ⎦

E XX ACov Cov A X Cov AY
Y n nE Y E Y

              

Proof  

We start by expressing the covariance term of interest using the standard covariance definition   

                      ( )1, .
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎟ ⎟ ⎟ ⎟⎟ ⎟⎜ ⎜ ⎜ ⎜⎜ ⎜⎢ ⎥= − = −⎟ ⎟ ⎟ ⎟⎟ ⎟⎜ ⎜ ⎜ ⎜⎜ ⎜⎟ ⎟⎟ ⎟ ⎜ ⎟ ⎟ ⎜⎜ ⎜ ⎜ ⎜⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

X A X A X A AX XCov E E E E E E A
Y n Y n Y n n Y Y

          (B.1) 

We approximate 
⎛ ⎟⎜ ⎟⎜ ⎟⎜⎝
AXE
Y

⎞
⎠
 and ⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

XE
Y

 via a Taylor series expansion of AX
Y

, X
Y

around 

( ), ,X Y Aµ µ µ  , ( ),X Yµ µ  respectively. The first Taylor series expansion, using Lemma B.1, is 

given below 
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The second Taylor series expansion, using Lemma B.1, is given below  
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It follows that  
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Substituting expressions (B.2) and (B.3) into (B.1), we derive the required result 

Proof of Result 4.1 
 

Let  be three random variables and n  fixed. Result 4.1 can be 

obtained by direct application of Result B.1. We first evaluate the following covariance term 

1

, ,
r
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We also define by  the indicators for the main and the validation samples respectively. It 

follows that  
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Furthermore,  
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Substituting expressions (B.5) and (B.6) into (B.4), we obtain the following result  
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From (B.7) it follows that an estimator of the covariance term is given by         
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In order to complete the proof, we further need to evaluate the following expression  
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This can be done as follows  
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The covariance terms in (B.9) are estimated using the result below   
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Combining (B.8) with (B.9) and (B.10) and using Result B.1 we obtain the required result 

APPENDIX C: DIAGONAL ELEMENTS OF USED IN SECTION 6 Q
Table C.1: Probabilities of correct classification used in applications of Section 6 

Probabilities of Correct Classification* Original Modified  
(“Intense Misclassification”) 

EEq  0.981 0.981 
+ +U NU Nq  0.978 0.95 

* The probabilities of misclassification are defined as 1 P .  ( )r− Correct  Classsification
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