The University of Southampton
University of Southampton Institutional Repository

Probabilistic finite element analysis of the uncemented hip replacement-effect of femur characteristics and implant design geometry

Probabilistic finite element analysis of the uncemented hip replacement-effect of femur characteristics and implant design geometry
Probabilistic finite element analysis of the uncemented hip replacement-effect of femur characteristics and implant design geometry
In the present study, a probabilistic finite element tool was assessed using an uncemented total hip replacement model. Fully bonded and frictional interfaces were investigated for combinations of three proximal femurs and two implant designs, the Proxima short stem and the IPS hip stem prostheses. The Monte Carlo method was used with two performance indicators: the percentage of bone volume that exceeded specified strain limits and the maximum nodal micromotion. The six degrees of freedom of bone-implant relative position, magnitude of the hip contact force (L), and spatial direction of L were the random variables. The distal portion of the proximal femurs was completely constrained, and some of the main muscle forces acting in the hip were applied. The coefficients of the linear approximation between the random variables and the output were used as the sensitivity values. In all cases, bone-implant position related parameters were the most sensitive parameters. The results varied depending on the femur, the implant design and the interface conditions. Values of maximum nodal micromotion agreed with results from previous studies, confirming the robustness of the implemented computational tool. It was demonstrated that results from a single model study should not be generalised to the entire population of femurs, and that bone variability is an important factor that should be investigated in such analyses.
total hip replacement, finite element analysis, probability analysis
0021-9290
512-520
Dopico González, Carolina
dfe0b5c7-9362-476b-bb32-2444c7b6492f
New, Andrew M.R.
d2fbaf80-3abd-4bc5-ae36-9c77dfdde0d6
Browne, Martin
6578cc37-7bd6-43b9-ae5c-77ccb7726397
Dopico González, Carolina
dfe0b5c7-9362-476b-bb32-2444c7b6492f
New, Andrew M.R.
d2fbaf80-3abd-4bc5-ae36-9c77dfdde0d6
Browne, Martin
6578cc37-7bd6-43b9-ae5c-77ccb7726397

Dopico González, Carolina, New, Andrew M.R. and Browne, Martin (2010) Probabilistic finite element analysis of the uncemented hip replacement-effect of femur characteristics and implant design geometry. Journal of Biomechanics, 43 (3), 512-520. (doi:10.1016/j.jbiomech.2009.09.039).

Record type: Article

Abstract

In the present study, a probabilistic finite element tool was assessed using an uncemented total hip replacement model. Fully bonded and frictional interfaces were investigated for combinations of three proximal femurs and two implant designs, the Proxima short stem and the IPS hip stem prostheses. The Monte Carlo method was used with two performance indicators: the percentage of bone volume that exceeded specified strain limits and the maximum nodal micromotion. The six degrees of freedom of bone-implant relative position, magnitude of the hip contact force (L), and spatial direction of L were the random variables. The distal portion of the proximal femurs was completely constrained, and some of the main muscle forces acting in the hip were applied. The coefficients of the linear approximation between the random variables and the output were used as the sensitivity values. In all cases, bone-implant position related parameters were the most sensitive parameters. The results varied depending on the femur, the implant design and the interface conditions. Values of maximum nodal micromotion agreed with results from previous studies, confirming the robustness of the implemented computational tool. It was demonstrated that results from a single model study should not be generalised to the entire population of femurs, and that bone variability is an important factor that should be investigated in such analyses.

Text
paper_3_proof.pdf - Other
Download (689kB)

More information

Published date: 10 February 2010
Keywords: total hip replacement, finite element analysis, probability analysis

Identifiers

Local EPrints ID: 143233
URI: http://eprints.soton.ac.uk/id/eprint/143233
ISSN: 0021-9290
PURE UUID: 6108c253-4b0b-4098-b33a-aaf52cbb179e
ORCID for Martin Browne: ORCID iD orcid.org/0000-0001-5184-050X

Catalogue record

Date deposited: 08 Apr 2010 08:38
Last modified: 14 Mar 2024 02:39

Export record

Altmetrics

Contributors

Author: Carolina Dopico González
Author: Andrew M.R. New
Author: Martin Browne ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×