The University of Southampton
University of Southampton Institutional Repository

Diffusion of strongly sorbed solutes in soil: a dual-porosity model allowing for slow access to sorption sites and time-dependent sorption reactions

Diffusion of strongly sorbed solutes in soil: a dual-porosity model allowing for slow access to sorption sites and time-dependent sorption reactions
Diffusion of strongly sorbed solutes in soil: a dual-porosity model allowing for slow access to sorption sites and time-dependent sorption reactions
We use homogenization techniques to derive a dual (or double) porosity model of solute diffusion and reaction in soil, allowing for slow access to sorption sites within micro-aggregates and time-dependent sorption reactions. We give a means for determining the conditions in which micro-scale concentration gradients affect macro-scale gradients and fluxes. We present equations for a unit volume of soil represented as a series of uniformly-spaced, porous spherical particles, containing and surrounded by solution through which solutes diffuse. The methods we use can, in principle, be applied to more complex geometries. We compare the model's predictions with those of the equivalent single porosity model for commonly used boundary conditions. We show that failure to allow for slow access to reaction sites can lead to seriously erroneous results. Slow access has the effect of decreasing the sorption of solute into soil from a source or desorption from soil to a sink. As a result of slow access, the diffusion coefficients of strongly-sorbed solutes measured at the macro-scale will be time-dependent and will depend on the method of measurement. We also show that slow access is more often likely to limit macro-scale diffusion than rates of slow chemical reactions per se. In principle, the unimportance of slow reactions except at periods longer than several weeks of diffusion simplifies modelling because, if slow access is correctly allowed for, sorption can be described with equilibrium relations with an understanding of speciation and rapid sorption-desorption reactions.
1351-0754
108-109
Ptashnyk, M.
9a4e308b-1975-4772-9429-7135a975428b
Roose, T.
3581ab5b-71e1-4897-8d88-59f13f3bccfe
Kirk, G.J.D.
f7f5cb71-77f7-44f3-842c-ca6a6090b98c
Ptashnyk, M.
9a4e308b-1975-4772-9429-7135a975428b
Roose, T.
3581ab5b-71e1-4897-8d88-59f13f3bccfe
Kirk, G.J.D.
f7f5cb71-77f7-44f3-842c-ca6a6090b98c

Ptashnyk, M., Roose, T. and Kirk, G.J.D. (2010) Diffusion of strongly sorbed solutes in soil: a dual-porosity model allowing for slow access to sorption sites and time-dependent sorption reactions. European Journal of Soil Science, 61 (1), 108-109. (doi:10.1111/j.1365-2389.2009.01207.x).

Record type: Article

Abstract

We use homogenization techniques to derive a dual (or double) porosity model of solute diffusion and reaction in soil, allowing for slow access to sorption sites within micro-aggregates and time-dependent sorption reactions. We give a means for determining the conditions in which micro-scale concentration gradients affect macro-scale gradients and fluxes. We present equations for a unit volume of soil represented as a series of uniformly-spaced, porous spherical particles, containing and surrounded by solution through which solutes diffuse. The methods we use can, in principle, be applied to more complex geometries. We compare the model's predictions with those of the equivalent single porosity model for commonly used boundary conditions. We show that failure to allow for slow access to reaction sites can lead to seriously erroneous results. Slow access has the effect of decreasing the sorption of solute into soil from a source or desorption from soil to a sink. As a result of slow access, the diffusion coefficients of strongly-sorbed solutes measured at the macro-scale will be time-dependent and will depend on the method of measurement. We also show that slow access is more often likely to limit macro-scale diffusion than rates of slow chemical reactions per se. In principle, the unimportance of slow reactions except at periods longer than several weeks of diffusion simplifies modelling because, if slow access is correctly allowed for, sorption can be described with equilibrium relations with an understanding of speciation and rapid sorption-desorption reactions.

This record has no associated files available for download.

More information

Published date: February 2010

Identifiers

Local EPrints ID: 145151
URI: http://eprints.soton.ac.uk/id/eprint/145151
ISSN: 1351-0754
PURE UUID: 0d5184f5-f920-4418-9cc2-73b992ff7990
ORCID for T. Roose: ORCID iD orcid.org/0000-0001-8710-1063

Catalogue record

Date deposited: 16 Apr 2010 08:28
Last modified: 14 Mar 2024 02:54

Export record

Altmetrics

Contributors

Author: M. Ptashnyk
Author: T. Roose ORCID iD
Author: G.J.D. Kirk

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×