The University of Southampton
University of Southampton Institutional Repository

Evaluation of various schemes for quasi-static boundary element analysis of polymers

Evaluation of various schemes for quasi-static boundary element analysis of polymers
Evaluation of various schemes for quasi-static boundary element analysis of polymers
The behaviour of polymers under quasi-static load is analysed by various boundary element schemes. Linear viscoelasticity, for which the correspondence principle applies, is assumed. The problem is first solved in the Laplace transform domain with the time-dependent response determined by numerical inversion. A solution is also obtained directly in the time domain using fundamental solutions for unit step load excitation. Two alternative time-domain schemes, applied until recently only to dynamic problems, are adapted to quasi-static conditions. Both are based on a reciprocity relation involving Riemann convolutions and use fundamental solutions for a Dirac impulse excitation. The second of those schemes, however, uses only the Laplace transforms of these fundamental solutions, which are directly formed from the corresponding elasticity solutions and thus not specific to the viscoelastic model used. Rapid derivation of time-dependent fundamental solutions for general standard linear solids enhances the applicability of time domain methods. Computer codes based on the different algorithms are developed and applied to benchmark problems in order to assess their relative accuracy, versatility and efficiency. The various BEM predictions are generally consistent and reliable. The numerical instability of the last, so called, mixed method is minimised through appropriate choice of modelling parameters.
boundary element methods, polymers, linear viscoelasticity, quasi-static analyses
0955-7997
733-745
Syngellakis, Stavros
1279f4e2-97ec-44dc-b4c2-28f5ac9c2f88
Wu, Jiangwei
9270fdbc-6ea5-4b0e-bc56-5188c5a41a85
Syngellakis, Stavros
1279f4e2-97ec-44dc-b4c2-28f5ac9c2f88
Wu, Jiangwei
9270fdbc-6ea5-4b0e-bc56-5188c5a41a85

Syngellakis, Stavros and Wu, Jiangwei (2004) Evaluation of various schemes for quasi-static boundary element analysis of polymers. Engineering Analysis with Boundary Elements, 28 (7), 733-745. (doi:10.1016/j.enganabound.2004.01.008).

Record type: Article

Abstract

The behaviour of polymers under quasi-static load is analysed by various boundary element schemes. Linear viscoelasticity, for which the correspondence principle applies, is assumed. The problem is first solved in the Laplace transform domain with the time-dependent response determined by numerical inversion. A solution is also obtained directly in the time domain using fundamental solutions for unit step load excitation. Two alternative time-domain schemes, applied until recently only to dynamic problems, are adapted to quasi-static conditions. Both are based on a reciprocity relation involving Riemann convolutions and use fundamental solutions for a Dirac impulse excitation. The second of those schemes, however, uses only the Laplace transforms of these fundamental solutions, which are directly formed from the corresponding elasticity solutions and thus not specific to the viscoelastic model used. Rapid derivation of time-dependent fundamental solutions for general standard linear solids enhances the applicability of time domain methods. Computer codes based on the different algorithms are developed and applied to benchmark problems in order to assess their relative accuracy, versatility and efficiency. The various BEM predictions are generally consistent and reliable. The numerical instability of the last, so called, mixed method is minimised through appropriate choice of modelling parameters.

Text
syng_04.pdf - Accepted Manuscript
Download (2MB)

More information

Published date: 2004
Keywords: boundary element methods, polymers, linear viscoelasticity, quasi-static analyses

Identifiers

Local EPrints ID: 23113
URI: http://eprints.soton.ac.uk/id/eprint/23113
ISSN: 0955-7997
PURE UUID: 298e7ca3-3cf9-4023-ab9b-8cd7af568687

Catalogue record

Date deposited: 23 Mar 2006
Last modified: 15 Mar 2024 06:44

Export record

Altmetrics

Contributors

Author: Stavros Syngellakis
Author: Jiangwei Wu

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×