The University of Southampton
University of Southampton Institutional Repository

Prenatal and childhood influences on osteoporosis

Prenatal and childhood influences on osteoporosis
Prenatal and childhood influences on osteoporosis
Osteoporosis is a major cause of morbidity and mortality through its association with age-related fractures. Although most effort in fracture prevention has been directed at retarding the rate of age-related bone loss, and reducing the frequency and severity of trauma among elderly people, evidence is growing that peak bone mass is an important contributor to bone strength during later life. The normal patterns of skeletal growth have been well characterized in cross-sectional and longitudinal studies. It has been confirmed that boys have higher bone mineral content, but not volumetric bone density, than girls. Furthermore, in both genders there is a dissociation between the peak velocities for height gain and bone mineral accrual. Puberty is the period during which volumetric density appears to increase in both axial and appendicular sites. Many factors influence the accumulation of bone mineral during childhood and adolescence, including heredity, gender, diet, physical activity, endocrine status and sporadic risk factors such as cigarette smoking. Measures for maximizing bone mineral acquisition, particularly through encouraging physical activity and adequate dietary calcium intake, are likely to affect the risk of fracture in later generations. In addition to these modifiable factors during childhood, evidence has also accrued that the risk of fracture might be programmed during intrauterine life. Epidemiological studies have demonstrated a relationship between birthweight, weight in infancy and adult bone mass. This appears to be mediated through modulation of the set-point for basal activity of pituitary-dependent endocrine systems such as the hypothalamic - pitutiary - adrenal (HPA) and growth hormone/insulin-like growth factor I (GH/IGF-I) axes. Maternal smoking, diet and physical activity levels appear to modulate bone mineral acquisition during intrauterine life; furthermore, both low birth size and poor childhood growth are directly linked to the later risk of hip fracture. The optimization of maternal nutrition and intrauterine growth should also be included within preventive strategies against osteoporotic fracture, albeit for future generations.
osteoporosis, epidemiology, growth, programming
349-367
Javaid, M.K.
51d3310b-032e-4c15-83ac-b878bce090f3
Cooper, Cyrus
e05f5612-b493-4273-9b71-9e0ce32bdad6
Javaid, M.K.
51d3310b-032e-4c15-83ac-b878bce090f3
Cooper, Cyrus
e05f5612-b493-4273-9b71-9e0ce32bdad6

Javaid, M.K. and Cooper, Cyrus (2002) Prenatal and childhood influences on osteoporosis. Best Practice & Research Clinical Endocrinology & Metabolism, 16 (2), 349-367. (doi:10.1053/beem.2002.0199).

Record type: Article

Abstract

Osteoporosis is a major cause of morbidity and mortality through its association with age-related fractures. Although most effort in fracture prevention has been directed at retarding the rate of age-related bone loss, and reducing the frequency and severity of trauma among elderly people, evidence is growing that peak bone mass is an important contributor to bone strength during later life. The normal patterns of skeletal growth have been well characterized in cross-sectional and longitudinal studies. It has been confirmed that boys have higher bone mineral content, but not volumetric bone density, than girls. Furthermore, in both genders there is a dissociation between the peak velocities for height gain and bone mineral accrual. Puberty is the period during which volumetric density appears to increase in both axial and appendicular sites. Many factors influence the accumulation of bone mineral during childhood and adolescence, including heredity, gender, diet, physical activity, endocrine status and sporadic risk factors such as cigarette smoking. Measures for maximizing bone mineral acquisition, particularly through encouraging physical activity and adequate dietary calcium intake, are likely to affect the risk of fracture in later generations. In addition to these modifiable factors during childhood, evidence has also accrued that the risk of fracture might be programmed during intrauterine life. Epidemiological studies have demonstrated a relationship between birthweight, weight in infancy and adult bone mass. This appears to be mediated through modulation of the set-point for basal activity of pituitary-dependent endocrine systems such as the hypothalamic - pitutiary - adrenal (HPA) and growth hormone/insulin-like growth factor I (GH/IGF-I) axes. Maternal smoking, diet and physical activity levels appear to modulate bone mineral acquisition during intrauterine life; furthermore, both low birth size and poor childhood growth are directly linked to the later risk of hip fracture. The optimization of maternal nutrition and intrauterine growth should also be included within preventive strategies against osteoporotic fracture, albeit for future generations.

This record has no associated files available for download.

More information

Published date: 2002
Keywords: osteoporosis, epidemiology, growth, programming

Identifiers

Local EPrints ID: 25665
URI: http://eprints.soton.ac.uk/id/eprint/25665
PURE UUID: 64c926f0-c7bd-44d5-9f50-f770161cfed8
ORCID for Cyrus Cooper: ORCID iD orcid.org/0000-0003-3510-0709

Catalogue record

Date deposited: 11 Apr 2006
Last modified: 18 Mar 2024 02:44

Export record

Altmetrics

Contributors

Author: M.K. Javaid
Author: Cyrus Cooper ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×