The University of Southampton
University of Southampton Institutional Repository

Adsorption of Cu(II) to ferrihydrite and ferrihydrite–bacteria composites: Importance of the carboxyl group for Cu mobility in natural environments

Adsorption of Cu(II) to ferrihydrite and ferrihydrite–bacteria composites: Importance of the carboxyl group for Cu mobility in natural environments
Adsorption of Cu(II) to ferrihydrite and ferrihydrite–bacteria composites: Importance of the carboxyl group for Cu mobility in natural environments
Bacterially associated iron (hydr)oxide composites are widespread in natural environments, and by analogy with isolated iron (hydr)oxides and bacteria, are important scavengers of dissolved trace-metals. We precipitated ferrihydrite via rapid Fe(III) hydrolysis in the absence and presence of the non-Fe metabolising, Gram-positive bacterium Bacillus subtilis, commonly found in natural waters, soils and sediments. We combined XRD, SEM, BET and Fe K-edge EXAFS to examine the mineralogy, morphology and crystallinity of the ferrihydrite composites. We find that the mineral fraction of the composites is unaltered in primary mineralogy, morphology and crystallinity compared to pure ferrihydrite. We then measured the adsorption of Cu to ferrihydrite and the ferrihydrite–B. subtilis composites as a function of pH and the ferrihydrite:bacteria mass ratio of the composites, and used EXAFS to determine the molecular mechanisms of Cu adsorption. We determine directly for the first time that Cu uptake by ferrihydrite–B. subtilis composites is the result of adsorption to both the ferrihydrite and B. subtilis fractions. Adsorption of Cu by the B. subtilis fraction results in significant Cu uptake in the low pH regime (pH ?4, ?20% of [Cu]total) and significantly enhanced Cu uptake in the mid pH regime. This composite sorption behaviour is in stark contrast to pure ferrihydrite, where Cu adsorption is negligible at low pH. Overall, for composites dominated by either ferrihydrite or B. subtilis, the bacterial fraction is exclusively responsible for Cu adsorption at low pH while the ferrihydrite fraction is predominantly responsible for adsorption at high pH. Furthermore, with an increased mass ratio of bacteria, the dominance of Cu adsorption to the bacterial fraction persists into the mid pH regime and extends significantly into the upper pH region. As such, the distribution of the total adsorbed Cu between the composite fractions is a function of both pH and the ferrihydrite:bacteria mass ratio of the composite. EXAFS shows that Cu adsorbs to ferrihydrite as an inner-sphere, (CuO4Hn)n ? 6 bidentate edge-sharing complex; and to ferrihydrite composites as an inner-sphere, (CuO5Hn)n ? 8 monodentate complex with carboxyl surface functional groups present on the bacterial fraction plus the bidentate edge-sharing complex on the ferrihydrite fraction. Our new results combined with previous work on Cu sorption to bacteria, humic substances and iron (hydr)oxides coated with humics, demonstrate the universal importance of the carboxyl moiety for Cu sorption and mobility in natural environments. Taken together these results show that Cu-carboxyl binding is the predominant mechanism by which Cu interacts with abiotic and biotic organic matter, and provides a ubiquitous control on Cu fate and mobility in natural waters, soils and sediments. Our results indicate that in environments where a significant proportion of iron (hydr)oxides are intimately intermixed with an organic fraction, we must consider Cu sequestration by these composites in addition to pure mineral phases.
0016-7037
203-219
Moon, Ellen M.
7dbff8e3-2eaf-4e5a-8f46-79ba6db15da4
Peacock, Caroline L.
8a178011-0d4c-4fc3-867e-9883488c271f
Moon, Ellen M.
7dbff8e3-2eaf-4e5a-8f46-79ba6db15da4
Peacock, Caroline L.
8a178011-0d4c-4fc3-867e-9883488c271f

Moon, Ellen M. and Peacock, Caroline L. (2012) Adsorption of Cu(II) to ferrihydrite and ferrihydrite–bacteria composites: Importance of the carboxyl group for Cu mobility in natural environments. Geochimica et Cosmochimica Acta, 92, 203-219. (doi:10.1016/j.gca.2012.06.012).

Record type: Article

Abstract

Bacterially associated iron (hydr)oxide composites are widespread in natural environments, and by analogy with isolated iron (hydr)oxides and bacteria, are important scavengers of dissolved trace-metals. We precipitated ferrihydrite via rapid Fe(III) hydrolysis in the absence and presence of the non-Fe metabolising, Gram-positive bacterium Bacillus subtilis, commonly found in natural waters, soils and sediments. We combined XRD, SEM, BET and Fe K-edge EXAFS to examine the mineralogy, morphology and crystallinity of the ferrihydrite composites. We find that the mineral fraction of the composites is unaltered in primary mineralogy, morphology and crystallinity compared to pure ferrihydrite. We then measured the adsorption of Cu to ferrihydrite and the ferrihydrite–B. subtilis composites as a function of pH and the ferrihydrite:bacteria mass ratio of the composites, and used EXAFS to determine the molecular mechanisms of Cu adsorption. We determine directly for the first time that Cu uptake by ferrihydrite–B. subtilis composites is the result of adsorption to both the ferrihydrite and B. subtilis fractions. Adsorption of Cu by the B. subtilis fraction results in significant Cu uptake in the low pH regime (pH ?4, ?20% of [Cu]total) and significantly enhanced Cu uptake in the mid pH regime. This composite sorption behaviour is in stark contrast to pure ferrihydrite, where Cu adsorption is negligible at low pH. Overall, for composites dominated by either ferrihydrite or B. subtilis, the bacterial fraction is exclusively responsible for Cu adsorption at low pH while the ferrihydrite fraction is predominantly responsible for adsorption at high pH. Furthermore, with an increased mass ratio of bacteria, the dominance of Cu adsorption to the bacterial fraction persists into the mid pH regime and extends significantly into the upper pH region. As such, the distribution of the total adsorbed Cu between the composite fractions is a function of both pH and the ferrihydrite:bacteria mass ratio of the composite. EXAFS shows that Cu adsorbs to ferrihydrite as an inner-sphere, (CuO4Hn)n ? 6 bidentate edge-sharing complex; and to ferrihydrite composites as an inner-sphere, (CuO5Hn)n ? 8 monodentate complex with carboxyl surface functional groups present on the bacterial fraction plus the bidentate edge-sharing complex on the ferrihydrite fraction. Our new results combined with previous work on Cu sorption to bacteria, humic substances and iron (hydr)oxides coated with humics, demonstrate the universal importance of the carboxyl moiety for Cu sorption and mobility in natural environments. Taken together these results show that Cu-carboxyl binding is the predominant mechanism by which Cu interacts with abiotic and biotic organic matter, and provides a ubiquitous control on Cu fate and mobility in natural waters, soils and sediments. Our results indicate that in environments where a significant proportion of iron (hydr)oxides are intimately intermixed with an organic fraction, we must consider Cu sequestration by these composites in addition to pure mineral phases.

This record has no associated files available for download.

More information

Published date: 2012
Organisations: Geochemistry

Identifiers

Local EPrints ID: 343165
URI: http://eprints.soton.ac.uk/id/eprint/343165
ISSN: 0016-7037
PURE UUID: c56e7f73-f3dd-4a9b-83b6-7bd42bd55e46

Catalogue record

Date deposited: 24 Sep 2012 13:48
Last modified: 14 Mar 2024 12:01

Export record

Altmetrics

Contributors

Author: Ellen M. Moon
Author: Caroline L. Peacock

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×