The University of Southampton
University of Southampton Institutional Repository

Statistical investigation of the free vibration of mistuned blade system

Statistical investigation of the free vibration of mistuned blade system
Statistical investigation of the free vibration of mistuned blade system
A statistical investigation of the effects of uncertainty in root fixity on the free vibration of turbine blades is made. Emphasis is particularly placed on the statistical properties of the random eigenvalues and essentially on their standard deviations. These are evaluated using the direct product technique between matrices [1] and validated by Monte Carlo SImulations (MCS). The studied system is a simplified model of a shrouded blade assembly under the conditions of weak interblade coupling. It essentially consists of a cyclic chain of continuous beams with identical properties, fixed at one end via rotational springs with random stiffnesses representing the uncertain roots stiffnesses and coupled via linear springs at their tips.
Finite Element Method is used as a discretization technique to obtain the equations of motion of the tuned and mistuned systems and the corresponding random eigenvalue problem.
Numerical simulations show that small differences between the rotational springs stiffnesses spoilt the natural frequencies that were in pairs, increase the width of each frequency-cluster and strongly localizes the vibration around one blade. This strong localization has been shown to occur in a chain of single-degree-of-freedom, nearly identical, coupled oscillators if the coupling frequency between the subsystems is of order of, or smaller than the spread in the natural frequencies [2]
However, for the multi-degree-of-freedom and randomly mistuned system considered her, multiple realizations are required to capture the behaviour of the eigenvalues appearing in frequency-clusters. It is found that for each frequency-cluster, when the standard deviations of the eigenvalues are plotted against the mode number, they form a U-shaped curve. For the particular case when the coupling frequency line crosses a curve, this essentially shows that the vibration localization is stronger at the first and last modes than at the mid frequencies, which belong to one passband in the tuned system.
Bah, M.T.
a6d44ed7-e66c-4958-a98f-314860bb00bc
Bhaskar, A.
d4122e7c-5bf3-415f-9846-5b0fed645f3e
Keane, A.J.
26d7fa33-5415-4910-89d8-fb3620413def
Bah, M.T.
a6d44ed7-e66c-4958-a98f-314860bb00bc
Bhaskar, A.
d4122e7c-5bf3-415f-9846-5b0fed645f3e
Keane, A.J.
26d7fa33-5415-4910-89d8-fb3620413def

Bah, M.T., Bhaskar, A. and Keane, A.J. (2001) Statistical investigation of the free vibration of mistuned blade system. Sixth US National Congress on Computational Mechanics, Dearborn, USA. 31 Jul - 03 Aug 2001.

Record type: Conference or Workshop Item (Paper)

Abstract

A statistical investigation of the effects of uncertainty in root fixity on the free vibration of turbine blades is made. Emphasis is particularly placed on the statistical properties of the random eigenvalues and essentially on their standard deviations. These are evaluated using the direct product technique between matrices [1] and validated by Monte Carlo SImulations (MCS). The studied system is a simplified model of a shrouded blade assembly under the conditions of weak interblade coupling. It essentially consists of a cyclic chain of continuous beams with identical properties, fixed at one end via rotational springs with random stiffnesses representing the uncertain roots stiffnesses and coupled via linear springs at their tips.
Finite Element Method is used as a discretization technique to obtain the equations of motion of the tuned and mistuned systems and the corresponding random eigenvalue problem.
Numerical simulations show that small differences between the rotational springs stiffnesses spoilt the natural frequencies that were in pairs, increase the width of each frequency-cluster and strongly localizes the vibration around one blade. This strong localization has been shown to occur in a chain of single-degree-of-freedom, nearly identical, coupled oscillators if the coupling frequency between the subsystems is of order of, or smaller than the spread in the natural frequencies [2]
However, for the multi-degree-of-freedom and randomly mistuned system considered her, multiple realizations are required to capture the behaviour of the eigenvalues appearing in frequency-clusters. It is found that for each frequency-cluster, when the standard deviations of the eigenvalues are plotted against the mode number, they form a U-shaped curve. For the particular case when the coupling frequency line crosses a curve, this essentially shows that the vibration localization is stronger at the first and last modes than at the mid frequencies, which belong to one passband in the tuned system.

This record has no associated files available for download.

More information

Published date: 2001
Venue - Dates: Sixth US National Congress on Computational Mechanics, Dearborn, USA, 2001-07-31 - 2001-08-03

Identifiers

Local EPrints ID: 43645
URI: http://eprints.soton.ac.uk/id/eprint/43645
PURE UUID: ae960a5a-37f9-4720-bb09-b099532e707a
ORCID for A.J. Keane: ORCID iD orcid.org/0000-0001-7993-1569

Catalogue record

Date deposited: 30 Jan 2007
Last modified: 26 Jul 2022 01:35

Export record

Contributors

Author: M.T. Bah
Author: A. Bhaskar
Author: A.J. Keane ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×