Mead, D.J. (2002) Free vibrations of self-strained assemblies of beams. Journal of Sound and Vibration, 249 (1), 101-127. (doi:10.1006/jsvi.2001.3830).
Abstract
This paper examines the natural frequencies and modes of transverse vibration of two simple redundant systems comprising straight uniform Euler–Bernoulli beams in which there are internal self-balancing axial loads (e.g., loads due to non-uniform thermal strains). The simplest system consists of two parallel beams joined at their ends and the other is a 6-beam rectangular plane frame. Symmetric mode vibration normal to the plane of the frame is studied. Transcendental frequency equations are established for the different systems. Computed frequencies and modes are presented which show the effect of (1) varying the axial loads over a wide range, up to and beyond the values which cause individual members to buckle (2) pinning or fixing the beam joints (3) varying the relative flexural stiffness of the component beams. When the internal axial loads first cause any one of the component beams to buckle, the fundamental frequency of the whole system vanishes. The critical axial loads required for this are determined. A simple criterion has been identified to predict whether a small increase from zero in the axial compressive load in any one member causes the natural frequencies of the whole system to rise or fall. It is shown that this depends on the relative flexural stiffnesses and buckling loads of the different members. Computed modes of vibration show that when the axial modes reach their critical values, the buckled beam(s) distort with large amplitudes while the unbuckled beam(s) move either as rigid bodies or with bending which decays rapidly from the ends to a near-rigid-body movement over the central part of the beam. The modes of the systems with fixed joints change very little (if at all) with changing axial load, except when the load is close to the value which maximizes or minimizes the frequency. In a narrow range around this load the mode changes rapidly. The results provide an explanation for some computed results (as yet unpublished) for the flexural modes and frequencies of flat plates with non-uniform thermal stress distributions.
This record has no associated files available for download.
More information
Identifiers
Catalogue record
Export record
Altmetrics
Contributors
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.