The University of Southampton
University of Southampton Institutional Repository

Free vibrations of self-strained assemblies of beams

Free vibrations of self-strained assemblies of beams
Free vibrations of self-strained assemblies of beams
This paper examines the natural frequencies and modes of transverse vibration of two simple redundant systems comprising straight uniform Euler–Bernoulli beams in which there are internal self-balancing axial loads (e.g., loads due to non-uniform thermal strains). The simplest system consists of two parallel beams joined at their ends and the other is a 6-beam rectangular plane frame. Symmetric mode vibration normal to the plane of the frame is studied. Transcendental frequency equations are established for the different systems. Computed frequencies and modes are presented which show the effect of (1) varying the axial loads over a wide range, up to and beyond the values which cause individual members to buckle (2) pinning or fixing the beam joints (3) varying the relative flexural stiffness of the component beams. When the internal axial loads first cause any one of the component beams to buckle, the fundamental frequency of the whole system vanishes. The critical axial loads required for this are determined. A simple criterion has been identified to predict whether a small increase from zero in the axial compressive load in any one member causes the natural frequencies of the whole system to rise or fall. It is shown that this depends on the relative flexural stiffnesses and buckling loads of the different members. Computed modes of vibration show that when the axial modes reach their critical values, the buckled beam(s) distort with large amplitudes while the unbuckled beam(s) move either as rigid bodies or with bending which decays rapidly from the ends to a near-rigid-body movement over the central part of the beam. The modes of the systems with fixed joints change very little (if at all) with changing axial load, except when the load is close to the value which maximizes or minimizes the frequency. In a narrow range around this load the mode changes rapidly. The results provide an explanation for some computed results (as yet unpublished) for the flexural modes and frequencies of flat plates with non-uniform thermal stress distributions.
0022-460X
101-127
Mead, D.J.
40b88582-f349-4478-b0b2-c562ae425cfd
Mead, D.J.
40b88582-f349-4478-b0b2-c562ae425cfd

Mead, D.J. (2002) Free vibrations of self-strained assemblies of beams. Journal of Sound and Vibration, 249 (1), 101-127. (doi:10.1006/jsvi.2001.3830).

Record type: Article

Abstract

This paper examines the natural frequencies and modes of transverse vibration of two simple redundant systems comprising straight uniform Euler–Bernoulli beams in which there are internal self-balancing axial loads (e.g., loads due to non-uniform thermal strains). The simplest system consists of two parallel beams joined at their ends and the other is a 6-beam rectangular plane frame. Symmetric mode vibration normal to the plane of the frame is studied. Transcendental frequency equations are established for the different systems. Computed frequencies and modes are presented which show the effect of (1) varying the axial loads over a wide range, up to and beyond the values which cause individual members to buckle (2) pinning or fixing the beam joints (3) varying the relative flexural stiffness of the component beams. When the internal axial loads first cause any one of the component beams to buckle, the fundamental frequency of the whole system vanishes. The critical axial loads required for this are determined. A simple criterion has been identified to predict whether a small increase from zero in the axial compressive load in any one member causes the natural frequencies of the whole system to rise or fall. It is shown that this depends on the relative flexural stiffnesses and buckling loads of the different members. Computed modes of vibration show that when the axial modes reach their critical values, the buckled beam(s) distort with large amplitudes while the unbuckled beam(s) move either as rigid bodies or with bending which decays rapidly from the ends to a near-rigid-body movement over the central part of the beam. The modes of the systems with fixed joints change very little (if at all) with changing axial load, except when the load is close to the value which maximizes or minimizes the frequency. In a narrow range around this load the mode changes rapidly. The results provide an explanation for some computed results (as yet unpublished) for the flexural modes and frequencies of flat plates with non-uniform thermal stress distributions.

Full text not available from this repository.

More information

Published date: 2002

Identifiers

Local EPrints ID: 10046
URI: http://eprints.soton.ac.uk/id/eprint/10046
ISSN: 0022-460X
PURE UUID: 456527c5-c370-401b-8088-c6b5d616b49f

Catalogue record

Date deposited: 21 Dec 2004
Last modified: 15 Jul 2019 19:37

Export record

Altmetrics

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×