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SEA and FEA have become established engineering methods for noise and vibration analysis. They are contrasting
approaches targeted at the high and low frequency ends of the analysis spectrum. This paper concerns the use of FE
methods in SEA. Attention is focussed on two areas. The first concerns the use of FE models to predict SEA
parameters, such as coupling loss factors. The second area concerns the coupling of subsystems described by FE
and SEA models. This is an important “mid-frequency” vibration issue, and arises, for example, when stiff, low
mode-count subsystems are connected to flexible, high mode-count subsystems. The different subsystems are suited
to different modelling methods, but coupling the modelsis problematical.

1. INTRODUCTION

Statistical Energy Analysis (SEA) [1] and Finite Element Analysis (FEA) [2] have become
established engineering methods for noise and vibration analysis. They are contrasting
approaches, aimed in principle at high and low frequency applications respectively. In general,
FEA adopts a deterministic analysis to produce “exact” predictions of a structure’s response
assuming structural parameters are known precisely, although methods exist for including
(normally small) uncertainties (e.g. [3]). FEA gives a detailed model and detailed response
predictions, such as frequency response functions (FRFs), with the modes of the structure
typically being found first. SEA, on the other hand, provides a broad, approximate model for the
behaviour of a built-up structure comprising assembled subsystems. The response is described
in terms of time, frequency and space-averaged energy within each subsystem, these averages
implicitly also being averages taken over an ensemble of systems with widely varying properties.
In principle, FEA is a low frequency method which encounters difficulties as frequency
increases due to the increasing size of the FE model and due to the increasing sensitivity of the
response to uncertainties in the properties of the system being analysed. On the other hand, SEA
is a high frequency technique that averages out the detailed properties of the structure and hence
averages out the details of the response.

Although inhabiting opposite ends of the analysis spectrum, both in terms of frequency (and
number of modes) and parametric uncertainty, there are areas of overlap, two of which are
discussed in this paper. The first concerns the use of FE models to predict SEA parameters, such
as coupling loss factors (CLFs), and to develop SEA-like energy models of systems. The second
area concerns the coupling of FEA and SEA models.

2. SEA MODELSFROM FEA
The SEA equations rel ate ensemble average subsystem input powers P and energies E by
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where L isamatrix of damping loss factors 77, and CLFs 77; for subsystemsi and j. FEA of two

subsystems can be used to estimate the SEA parameters (e.g. [4-9]), with results being used in
SEA models of the larger assembled structure, and to explore the validity and accuracy of the
SEA equations [8,9]. (Indeed, FEA of just one subsystem can be used to estimate its modal
density by counting natural frequencies.) Numerical experiments are performed and the power
injection method applied: a modal analysis of the system is performed; the subsystems are
excited one at a time; the forced response calculated; the frequency average input powers and
subsystem energies determined. The SEA equations can then be written in terms of these

frequency averages as
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where the superscripts (1) and (2) identify the subsystem being excited. Therefore
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although more cumbersome formul ations have appeared in the literature.

Many applications of FEA to the estimation of SEA parameters have been reported, and there is
insufficient space to review these here. However, some observations are appropriate. First, SEA
IS not an exact theory, but one that involves a number of assumptions and approximations. The
SEA equations apply to ensemble averages (athough the ensemble is rarely defined in
theoretical studies) but in numerical studies they are applied to the frequency average response
of a single system - an ergodic assumption is made, with ensemble and (broadband) frequency
averages being assumed equal. In the SEA equations the excitation is “rain-on-the-roof” and the
response quantity is subsystem energy. In most FE studies the excitation is applied at only afew
points and the response found at only a few points, and averages are then taken: these will differ
from the true averages. However, this spatial averaging need not be applied: the mass and
stiffness matrices are required to determine the modal properties and can also be used to perform
true spatial averaging [7], but the software available may not alow direct access to these
matrices. Finaly, there is a finite number of modes in a given band: this gives inherent
variability in the responses of individual systems.

3. COUPLING SEA AND FEA MODELS
Structures often comprise subsystems with quite different dynamic characteristics. Some
subsystems may support long wavelength motion, have low moda density, large dynamic
stiffness and be well-defined, while others may have high modal density, short wavelengths,
small dynamic stiffness and be poorly defined. Examples include beam-stiffened plates or
components that support both bending and in-plane vibrations. Modelling the vibrations of such
structures is a mid-frequency problem that poses rea challenges: the short wavelength, high
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mode-count subsystems are amenable to SEA rather than FEA, while the converse is true for the
long wavelength subsystems, and the computational cost of FEA of the whole structure is
prohibitive. A hybrid approach is thus required, typically by coupling an FE model of the
deterministic subsystem to a statistical, SEA-like model of the uncertain subsystem.

This section concerns various approaches to this problem of coupling FE and SEA models.
Reference is made to the case of a beam-stiffened plate, with excitation applied to the beam (the
source structure) and energy flowing to the plate (the receiver). It is natura to describe the
behaviour of the source in terms of FRFs when loaded by the panel and to predict the net power
transmitted to the receiver, which forms the input power for the SEA-like part of the structure.
The approaches differ in the assumptions and approximations made, and whether the
approximate description of the receiver is developed in terms of waves or modes. The detailed
behaviour of the uncertain receiver is of course unknown (e.g. exact natural frequencies and
mode shapes), but some gross features are known (e.g. modal density etc) so that some
approximate or statistical description is necessary.

3.1 FEA, uncertainty and model reduction

Although a full FEA of the structure is generally not feasible, some methods are worth
mentioning in passing. Stochastic FE methods [3] can accommodate small levels of uncertainty,
the uncertain parameters being meshed in a manner similar to the response field. Various
techniques exist to reduce the number of degrees of freedom (DOFs) of a numerical model. The
most well known include Guyan reduction and component mode synthesis (CMS) using free or
fixed interface modes, together with attachment or constraint modes [10]. Dynamic reduction
may be of value, where only those modes in a frequency band are retained, the others being
approximated by stiffness and mass residuals. A further possibility is loaded-interface CMS.
Here, it would be natural to approximate the uncertain receiver as if it were infinite, since it is
known that [11] the infinite structure approximates the finite structure, especialy as its modal
overlap increases or when frequency averages are taken. The receiver then loads the FE model
of the source structure at their interface. Finally, uncertainty can be included in the component
modal properties themselves[12], which substantially reduces size and cost.

3.2 Wave approaches

Wave methods can be used to develop an approximate model of the receiver. The simplest
approach is to approximate the receiver as if it were infinite and to use a FRF-based
substructuring approach. A continuous interface is discretised into a series of point connections.
The input and transfer FRFs of an infinite plate [11] and the uncoupled modes of the beam are
coupled in the frequency domain. One disadvantage is that many coupling DOFs may be
required: the discrete points should typically be at most one quarter of a wavelength apart, and
this wavelength is of course relatively small compared to the length of the beam.

The locally reacting impedance method [13,14] recognises that the uncoupled beam wavenumber

k, =4/ma’/El is usually substantially smaller than the plate wavenumber k, =¢ma’ /D .
Here m,,m,,El andD are the mass per unit length or area and bending stiffnesses of the beam
and plate. Suppose that, when coupled, there is a strongly excited response component in the

beam with a wavenumber kb' . Wave motion in the plate will have this trace wavenumber along
the beam and hence a relatively very large wavenumber component perpendicular to the beam.
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The wavefield in the plate can be approximated as propagating perpendicular to the beam. The
plate then appears to load the beam with alocally reacting impedance given by

z:—.z:plp (1+i):/1‘°—:p(1+i) 4

where A is the plate wavelength. The plate therefore adds mass and damping to the beam, the
mass per unit length being that contained within a strip of width A, /n, and the damping

corresponding to the energy radiated into the plate. Thisloading can then be included in a modal
(FE) model of the source structure. The restrictions of this approach are that the source structure
must be somewhat uniform and that there must be a large enough stiffness and wavenumber
mismatch between source and receiver. The method can capture some detail of the receiver such
as the presence of aboundary relatively close to the source.

A final approach [15] couples a modal model of a straight, uniform source to a wave model of
the recelver using a Fourier transform method with approximations. The results reduce to those
of the locally reacting impedance method as the source/receiver mismatch increases.

3.3 Modal approaches

The short wavelength subsystem can equally be described in terms of its modes, although a
statistical description is required because these modes cannot be calculated deterministically. In

the ‘Resound’ approach [16,17] the DOFs of the structure are partitioned into sets of DOFs g

and q,, which are associated with global and local basis functions respectively. These are

typically the modes of the deterministic and uncertain parts of the structure and correspond to the
long wavelength, global modes and short wavelength, local modes. The equations of motion are
then written in terms of dynamic stiffness matrices D as

O Ou]fa). [ ®
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where f are the corresponding generalised forces. The local DOFs are then in essence mass-
reduced, resulting in the equations

(Dgg _ADgg)qg =f, —Ofy;

o Dya =f, -4, (6)
The first is solved deterministically (to give the response in terms of loaded global modes) and
the second forms an SEA model for the uncertain subsystems. The rationale for the mass
reduction is that the flexible subsystem is mass-controlled for any of the wavenumber
components in the long-wavelength structure that may be strongly excited. The net effect of the
local modes is then to add mass and damping to the global modes.

The perturbations AD and Af in equation @can be written explicitly in terms of the global and
local modal properties. The statistical distribution of the local modes is then assumed to be such
that they are uniformly probable in frequency and uniformly distributed in wavenumber space,
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with the dispersion properties of the equivaent infinite structure determining the wavenumber
domain appropriate to a given frequency band.

In the mode based approach of [18] modal descriptions of each subsystem are coupled by
decomposing the interface forces and displacements into a set of basis functions. These would
usually be the unloaded mode shapes of the beam, found from FE. The modes of the flexible
subsystem are described statistically by a ssimple standing wave model - in principle a similar
description to that used in [16]. For large enough dynamic mismatch of the dynamic properties
the main effect of the flexible receiver is to add damping and mass to the unloaded beam modes,
as seen in [13-15], with the coupling terms between these modes being small.

In the fuzzy structure approach [19-21] a deterministic ‘master’ structure (the beam) is coupled
to aset of ‘fuzzy’ attachments. Each member of the fuzzy set is a single DOF oscillator (a mode
of the plate). The properties of the fuzzy set are described statistically as a continuum of
oscillators whose masses and natural frequencies are distributed over frequency. One can
interpret the system as being the beam attached to a continuum of vibration absorbers, each of
which has an infinitesimal mass. The response of the master is found by averaging the effects of
the fuzzy oscillators. The fuzzy attachments add damping to the master structure. The added

loss factor depends on the mass of the fuzzy attachments and is given by 77, = m.A, / m,77 for a

beam/plate system. The fact that the added damping is independent of the damping of the fuzzy
oscillators is not as surprising as it may seem at first sight. Suppose each member of the fuzzy
set hasalossfactor 7. At any frequency, the responses of the resonant members of the fuzzy set

are proportional to /7™ and thus so, too, are the forces they apply to the master. However, the

number of fuzzy members excited at resonance is proportional to the bandwidth (which is
proportional to 77) and hence the net force from the fuzzy set is independent of 7. The

conclusion is not valid for zero damping, when the steady state behaviour is never reached.
While fuzzy structure theory gives a simple description, there may be difficulties in finding the
properties of the fuzzy set from those of a continuous receiver such as a plate. This is
particularly trueif there is a plate boundary close to the beam, so that the fuzzy mass distribution
with frequency may be difficult to determine.

4. CONCLUDING REMARKS

This paper concerned two areas in which FE and SEA methods can be combined. FEA of two
subsystems can be used to estimate the SEA parameters. The estimates may be biased and
variability arises from frequency averaging, finite mode count effects and from averaging over a
finite number of excitation and response points. Idealy FE should involve ensemble averaging,
but such averaging has rarely been attempted and raises issues of computational cost and how the
ensemble is to be defined. One possibility is the component modal method of [12], which is
computationally very efficient. Another problem is that the system may be strongly coupled, so
that the CLFs will depend on damping and, in the built-up structure, there may be non-zero
indirect CLFs. FEA of just two subsystems will only reveal thisif the CLFs are estimated for a
range of damping loss factors to determine whether they are dependent on damping.

The various methods for coupling FE and SEA subsystems have different accuracy, data
requirements and computational cost. The most general, and most costly, are the mode-based
methods. They require assumptions concerning the modal statistics of the receiver. If the modal
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overlap of the receiver is large enough, the detailed natural frequency distributions are unlikely
to be important. However, under some circumstances one could envisage secular effects
concerning mode shape statistics being important, and a mid-frequency approach should be able
to capture these. One example is where the beam is applied (almost) parallel to, and afew plate
wavelengths from, a plate edge. Fluctuations in the beam/plate interface forces would be
expected on frequency scales inversely proportional to the time it takes waves to travel from
beam to plate edge, and these scales could be very much larger than the mean modal spacing.
Such fluctuations are easily accommodated in the wave approach of [13,14] and in the modal
approaches of [16,18] if suitable mode shape statistics are assumed.
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