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Two classical problems

• Wagner problem - Airfoil undergoing step 
change in angle of attack

• Sears problem - Airfoil encountering a gust
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Flat-plate airfoil theory
Hierarchy of problems
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1938 - 1952

Incompressible flow over a two-dimensional flat-
plate airfoil.

von Karman (1938) Sears (1939), Kemp (1952)
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Assumptions
• Small perturbations. Boundary condition of zero 

normal velocity applied at the boundary z = 0

• Kutta condition. Pressure jump across the airfoil 
set equal to zero at the trailing edge (TE)

• Vortices shed from the TE because of the 
application of the Kutta condition are assumed to 
lie in the plane z = 0 and move downstream from 
the TE with velocity U.
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Solution and its interpretation
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Quasi-steady
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(harmonic result)

Pressure on the airfoil at x due to upwash at element dx1 may be 
expressed in the form 
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The Sears Problem
Gust moving at free stream velocity
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Assume harmonic gust being convected with the free stream

Substituting for w into the expression for dp(x1) and integrating over x1
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(Incompressible) Sears function
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(Incompressible) Sears function

S(k) S(k)eik
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Comments

• Pressure variation with x, independent 
of k. 2D incompressible linear airfoil theory predicts 
that the pressure on an airfoil passing through any 
form of 2D gust moving with the free stream is 
distributed proportional to

• Contribution of shed vorticity will always give the 
pressure distribution                     whereas the quasi-
steady and inertial contributions will not
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• L(t) reduces to quasi-steady (qs) approximation. Difference 
between general result and qs result is the lift due to lift-
force required to accelerate the surrounding fluid plus the 
lift generated by vorticity generated in the wake acting 
back on the airfoil

• Airfoil relatively unaffected by gusts of high (reduced) 
frequency

Limiting high and low (reduced) 
frequency behaviour
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1968

Two-dimensional incompressible theory
Horizontal gust

In a typical airfoil - gust interaction, both vertical and horizontal 
velocity components are present. 

w
U α
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Horizontal gust
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For                 horizontal gust contribution significant for00 wu ≈ o10>α

The horizontal-gust problem has been studied by Horlock (1968)
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1969 - 1971

Three - dimensional incompressible theories
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Three - dimensional incompressible theories

• Problem solved exactly by Graham (1970) for an airfoil of 
infinite span. Solution in the form of infinite series

• Approximate analytical solution obtained by Filotas (1969)

• Solutions reduce to 2D result for θ = π/2

• Mugridge (1971) derived an approximate muliplicative 
factor for the 2D strip theory approximation
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Approach by Filotas

( ) ( )θθ sincos
0 e, yxik

g wyxw +=

Seek solution of the form                                       . 

Filotas solves for the limiting cases                  . A function is then 
postulated that predicts the correct limiting behaviour, with the 
assumption that it gives reasonable predictions for intermediate k-
values.      
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Solution for large k

• For           the pressure decays exponentially with distance 
from the LE. Loading should behave as a delta function for 
kcos θ >> 1

• Shape of the loading distribution depends on ky but not on kx

• kx affects the amplitude of the distribution but not its shape

• Centre of lift is not fixed at quarter-chord point but approaches 
the LE as frequency increases
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Solution of Mugridge
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Good agreement with the exact solution of Graham for kx < 1, 
but breaks down rapidly at frequencies above this.

Unlike the Filotas solution, the Mugridge results does not have 
the correct                  asymptote.

The Mugridge prediction for the pressure distribution similar to
but Filotas has shown that this behaviour 

breaks down for large ky. 
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1970 - 1971

Two - dimensional compressible theories

Fluid incompressibility implies that disturbances at TE are felt at 
the LE with no time delay. For this to be a good approximation,
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1970 - 1971
Numerical solutions of
Graham and Adamczyk

Graham (1970) and Adamczyk (1971) have obtained numerical 
solutions for the unsteady lift in a two-dimensional compressible 
flow. 

Their analyses differ but their solutions are exact within the 
limitations of small perturbation theory. 

Graham presents Sears-type lift coefficients for

Adamczyk analysis is applicable to any Mach number, reduced 
frequency and gust convection speed

60 ≤≤ k
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Analytic solutions of Sears (1971) and 
Osborne (1973)
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Modified Sears function which 
accounts for the first order effects 
of finite chord/wavelength ratio.
Valid at low k
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Amiet correction to the Osborne-Sears 
formulation (1971)

( ) ( )
( ) ( )

( ) ( ) ( ) ( ) 2ln1lnln1,e
,,

2/ −++−=






=

=
ββββ MMf

tLtL

txptxp
Mikf

OsAm

OsAm

Discrepancy is of O(k)

The Osborne-Sears formulation implies exactness to order ε = Mk/β. This assumes 
that the exact solution may be expressed as a series expansion in ε. The validity of 
this assertion has been questioned by Amiet for two-dimensional problems with an 
infinite wake. By direct expansion of the exact integral equation, the following 
corrections to the Osborne-Sears results are obtained:
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Adamczyk solution for large kM
In general the compressible gust problem must be solved 
numerically. Adamczyk (1971) has obtained an exact solution 
in the limit of high frequency k. 

At sufficiently high k at finite Mach number the gust and 
acoustic wavelength become much smaller than the chord. The 
airfoil may therefore be modelled as a semi-infinite plate. With 
the LE at x = 0

( ) ∞→
+

=






 −

+
−

kM
kxM

Uwp M
Mkxti

,e
1

4/
100

1

πω

π
ρ

m

This solution does not satisfy the Kutta condition at x = 2
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Adamczyk solution cont
Total lift is calculated from
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Note that:

Setting M = 1 in this expression reduces to the lift expression for transonic 
unsteady flow derived by Landahl (1961). In the high reduced frequency 
limit,
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The Landahl (1972) iterative correction 
procedure

The previous solution violates the TE boundary condition. Landhal proposed a 
procedure which corrects the downstream b.c. but violates the upstream b.c. 
Applying this procedure iteratively generates an infinite series in powers of k-1/2

that converges for all k. 

Adamczyk (1972) has calculated the second term in the series that sets  p1 + p2 = 
0 at the TE.
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S2 is a generally small term at practical frequencies and Mach numbers can be 
neglected
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1970 - 1971

Three - dimensional compressible theories
Graham’s Similarity Principle

3D gust in
compressible fluid

2D gust in
compressible fluid

3D gust in
incompressible fluid

V > c

V < c

θsecUV =

V

θ
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Subsonic trace velocity
V < c

Application of the Prandtl-Glauert transform the governing 
equations to an incompressible problem. Graham shows that the 
boundary condition on the airfoil and the wake transform 
properly. The case V < c is therefore equivalent to the 3D 
incompressible problem discussed previously.
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V > c (σ > 1)
The transformation for this case is less well known to convert the
3D problem to an equivalent 2D problem

Supersonic trace velocity
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Note, putting V = c (σ = 1) in either similarity relation recovers
the Osborne result 


