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ABSTRACT

The performance of current virtual acoustic systems is highly sensitive to the geometry of individual ear at high
frequencies. The objective of this paper is to study a virtual acoustic system which may not be sensitive to
individual ear shape. The incident sound field around ear is reproduced by using a multi-channel headphone. The
results of computer simulations show that the desired sound pressure at the eardrum can be successfully replicated in
a virtual acoustic environment by using a multi-channel headphone.

1. INTRODUCTION

In everyday life, we can easily locate and interact
with auditory events in three-dimensional (3-D)
space. 3-D sound systems or virtual acoustic systems
try to control and manipulate spatial auditory
perception of a listener. There are many applications
related to virtual acoustic systems. For example,
interactive virtual reality systems combine 3-D audio
technology with 3-D video technology [1].
Teleconferencing systems also use virtual reality
systems with a limited bandwidth of signals for the
transmission of human voices [2]. Architectural
acousticians often use auralization systems to hear
the acoustics of designed rooms or auditoria. Virtual
acoustics can be useful for home theatre systems,
HDTYV (High Definition Television), and 3-D games.

The goal of virtual acoustic systems is to improve the
ability of audio systems to produce virtual acoustic

environments such that listeners cannot tell the
difference between real sound images and the virtual
sound images that are produced by such systems.
The major cues for human sound localisation are
provided by the interaural time difference (ITD) cue,
the interaural level difference (ILD) cue, and the
spectral cue. The ITD cue is dominant at low
frequencies below about 1.5kHz [3]. The spectral
cue is dominant at high frequencies. The spectral cue
depends on the size and geometrical shape of the
listener’s pinna at high frequencies [4]. However,
the performance of the current virtual acoustic
systems is highly sensitive to geometry of individual
pinnae at high frequencies. Therefore, an
individualized Head-Related-Transfer-Function
(HRTF) should be used to produce a virtual acoustic
environment. However, each person has such
different individualized HRTF and the calculation of
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the individualized HRTF is a very time-consuming
and expensive process. This is one of the most
critical problems associated with virtual acoustic
systems. The objective of this study is to investigate
virtual ~ acoustic  systems with  multi-channel
headphones, which are not sensitive to the geometry
of individual ear, even at high frequencies.

2. BOUNDARY SURFACE CONTROL

If there is no source in a given volume V bounded by
a surface S, the solution of the inhomogeneous wave
equation in a single frequency sound field reduces to
the Kirchhoff-Helmholtz integral equation that is
given by [5]

on n

C(X)p(x)=L(g(x'x'v)m_P(xl‘)@JdS )

where x is a position vector, X, is a position vector on
the boundary surface S, n is the unit outward normal
vector on S, p is the complex acoustic pressure,

g(x|x,) is the free space Green function, and C(x) is

equal to one if x is within V, zero if x is outside V,
and 0.5 if x is on a smooth boundary S. This integral
equation can be solved if the boundary conditions on
the boundary surface S are given.

The Kirchhoff-Helmholtz integral equation can be
interpreted in terms of the following boundary
surface control principle [6]: the pressure field within
the volume V can be controlled by controlling the
pressure and its gradient on the surface S. In this
case, the Green function and its gradient can be
regarded as constants determined by the boundary
shape. A sound field reproduction system based on
the boundary surface control principle tries to
reproduce the sound pressure and its gradient on the
boundary surface S enclosing the controlled volume
V in the secondary field so that these variables are
identical to those in the primary field. In practice, the
control surface S is divided into N control points x;
(i=1...N). The pressure gradient at x; can be
approximately calculated from the two point
pressures at x; and x; + cn; where n; is the
corresponding normal vector and c¢ is coefficient that
is small compared to the wavelength, which can be
given by

on G

ap(x,.)_p(x,»“ni)—l’(xf). 2

Therefore, the sound pressures at the 2N control
points are recorded in the primary field and
reproduced in the secondary field. This method can
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also solve the nonuniqueness problem of the
Kirchhoff-Helmholtz integral equation [7].

Now assume that the sound source generates single
frequency sound for simplicity. In the primary field,
the sound pressures on the boundary surface control
points can be given by

P,=84, ©)

where g is the acoustic transfer impedance vector
relating the complex sound pressure vector p, on the
boundary surface control points to the strength g, of
the real source in the primary field. The number of
elements of both vectors g and p, equals the number
of control points on the boundary surface. The vector
p, can be recorded with a given g, in the primary
field.

In the secondary field, the sound pressures on the
boundary surface control points can be written as

p,=Gq, “)

where G is the acoustic transfer impedance matrix
relating the complex sound pressure vector ps on the
boundary surface control points to the strength vector
q, of secondary sources. If the number of control
points is L and the number of secondary sources is M,
then G is an L X M matrix. The mth column of the
matrix G can be calculated by recording the vector
Ps» When only one secondary source produces sound
with a given mth element g, of the vector g in the
secondary field. Then the matrix G is thus given by:

G= [p.\'l/q.\'l p.\'2/qs2 Py /qu ] : (5)

To replicate the primary sound field in the secondary
sound field, p, must be equal to p,. If L equals M, we
can find the exact q, to match p, with p, by inverting
the matrix G. However, in practice, if we try to
reduce the number of sources, M is smaller than L
and the matrix G is not invertible. In this case, we
can find the optimal q, to minimize the following
cost function:

‘=(p,-Gq,)" (p,-Cq,) ©

i
J =Z|pp,i —Ps;

i=1

where the subscript ¢ denotes the ith element of
pressure vector and the superscript H means the
Hermittian transpose. The optimal strength q, of the
secondary sources that minimize J is given by [5]
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q,=(GC) Ctp, %)

and the minimum value of J corresponding qy, is
given by

L=p (I—G(GHG)“ Gﬂ)pl,- ®)

Ise [6] suggested the development of a virtual
acoustic system based on the boundary surface
control principle, which controls the pressure and its
gradient on the boundary surface in the secondary
field so that they are identical to those in the primary
field. The secondary field can be reproduced by
multiple secondary sources located at arbitrary
positions outside the controlled volume. The
performance of this system is independent of a
listener inside the controlled volume. However, a
great number of loudspeakers are needed if we want
to control a sound field at high frequencies. Virtual
acoustic systems based on the boundary surface
confrol principle may be a robust system for which
performance is not dependent upon the listener.
However, the number of sources is a critical problem
in practice. To reduce the required number of
sources, the control region of the system should be as
small as possible. If we confine the controlled
volume of such a virtual acoustic system to sound
fields around the ear, the number of control points on
the boundary surface are reduced and then the
number of loudspeakers can be reduced.  If just a
few loudspeakers were enough to control the sound
field around ear using the boundary surface control
principle, the virtual sound field could be reproduced
by using a multi-channel headphone.

When we hear sounds, incoming sound waves are
modified by the listener’s head, torso and pinna. The
closer the control point is located to the listener’s ear,
the more sensitive is the individual difference of the
ear to the sound field. However, if the incident sound
field on the ear is reproduced, which is independent
of the geometry of the ear, a performance of the
virtual acoustic system may be independent of the
listener’s ear. The incident sound field on the ear
consists of the direct waves from the source, the
waves scattered by objects and walls in a room, and
the waves scattered by the listener’s head and torso.
When the incident sound field on the ear is
reproduced, the listener hears virtual sound through
the listener’s own pinna filter. This critical problem
of the virtual acoustic systems based on HRTF
technology may therefore be solved by reproducing
the incident sound field using a multi-channel
headphone.

VIRTUAL ACOUSTIC SYSTEM

| Model |  Primary field | Secondary field

Find q,,

head
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head
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Figure 1: Incident sound field reproduction
method

Figure 1 shows the concept of the incident sound
field reproduction method based on the boundary
surface control principle. First assume that a listener
perceives an auditory event in a free-field
environment and that his head is in a fixed position.
In the primary field, a double layer boundary control
surface is put on a head model without the ear. Then
the sound pressures p, on the boundary surface
control points, which is caused by the source, are
recorded. In the secondary field, the same double
layer boundary control surface is put on a headphone
model without the ear. Then the acoustic transfer
impedance matrix G relating the sound pressures p
on the boundary surface control points to the
headphone source strengths g is measured. Then the
optimal headphone source strengths q, can be
calculated using the least square method explained
above. The same headphone source strength can be
applied to the headphone model with the ear.

The objective of this system is to reproduce the same
sound pressure at a listener’s eardrum in the
secondary field as the sound pressure at the eardrum
in the primary field. If the sound pressures at the
control points are recorded in the primary field and
accurately reproduced in the secondary field, the
sound pressure at the eardrum can be exactly
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replicated. This hypothesis will be verified in this
paper. The detailed theory of the incident sound field
reproduction method is explained in the next section.

3. THEORY OF THE INCIDENT SOUND
FIELD REPRODUCTION METHOD

3.1. Determination of the required

secondary source distribution

To study the theory of the incident sound field
reproduction method, simplified head models are
used. The case of the human head is similar to the
case of the two scattering bodies and acoustic sources
in a free field. In this case, the surface of the human
head is divided into two surfaces, an ear surface and a
head surface excluding the ears. Each surface acts as
a scattering body.

O

source

Figure 2: Primary sound field o in the case of a
human head without ears

Figure 2 shows the primary field produced by a
sound source or sources and a human head without
the ears in a free field, which simulates the real
acoustic environment. This is called the sound field &
for simplicity in this paper. The acoustic source
strength distribution Oy, in an unbounded acoustic
domain V outside the scattering bodies is assumed to
be known. The bounding surface of the head denotes
S and S,. The surface S, is the surface of the head
with the ear excluded. The surface S, is the flat
surface of the dummy head, which simulates the ear.
All surfaces throughout this paper are assumed to be
locally reacting surfaces [8]. The specific acoustic
impedance z; of the surface S; and z, of the surface S,
are also assumed to be known.

Now consider the control volume V; bounded by the
surface S, and the surface S,. The surface S, is a
transparent imaginary surface as depicted in Fig. 2.

VIRTUAL ACOUSTIC SYSTEM

The primary sound sources are assumed to be located
outside the volume V;. When the vector x is in the
volume V), p, denotes the sound pressure in the
sound field a. Since the volume V; is inside the
volume V, the sound pressure p,, inside the volume V;
at a single frequency can be written as one of the
following equations:

C(x in H X\ ds
(%) P (x)= P ()= [ Hi( s o
- J; H2 X X X‘) das
or _
C(X) pm 'L H XA ) as (10)
_LHZ x|x vm(xs)a’s
where
Pu(x)= [ O (x,)g(xx,)av.  AD
_jopye(x|x,)  og(xx,) (@(x)£0), (12)
H] (Xlxs)— ZI(X_‘_) ct o 1 &y
f 9 (X|X-f) (13)
H!(xlx ) Jjwp,8 (XI )+z[ )—n
(Zl(x.\' )<°°)’

the vector x is in the volume Vj, the vector x; is on
the surface S; or S5, the vector x,, is in the volume V,
the pressure p;, is the sound pressure on the surface
S1, @is the angular frequency, p, is the mean density
of the fluid, the velocity v,;, is the normal particle
velocity on the surface S;, the impedance z; is the
specific acoustic impedance z; of the surface S;, and
Dao» Vazes 22 Hy , H'y are the corresponding values of
these variables on the surface S,. The sound field
pin(x) denotes the incident sound field that can be
interpreted as the sound field in the absence of the
scattering body. That is, the incident sound field
emitted from the source is not changed by the
presence of scatterers and other sources. The second
and third term on the right hand side of Eq. (9) or
(10) is the a scattered sound field that is produced by
the interaction of the incident sound field with the
scatterers. Equation (9) can be used when the
specific impedance is not equal to zero, that is, the

scattering surface is not a soft boundary. Equation

(10) can be used when the specific impedance is
finite, that is, the scattering surface is not a rigid
boundary. Throughout this paper, the type of transfer
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function H such as those appearing in Eq. (12) will be
used, since all surfaces are assumed not to be of the
soft boundary type.

————
e e

Figure 3: Secondary sound field #in the case of a
human head without ears

Figure 3 shows the secondary field produced by
different sound sources, which simulates the virtual
acoustic environment assuming the same scattering
surface S, as that in the sound field . This is called
the sound field £ in this paper. When the vector x is
in the volume Vi, ps. denotes the sound pressure in
the sound field S If the continuous transparent
monopole and dipole source layers are placed on the
surface S;, the sound pressure psin the volume V; in
a single frequency sound field can be written

C(x)ps(x) =—Lz H, (x|x,)p,5(x,)dS

X-")+p£'ﬂ(x-\') an

(14)

T _Lr ja)p()vntﬂ (Xv) g (X

where the pressure p.s and the velocity v,. are on
the surface S.. The distribution of the monopole
source strength on the surface S; is given by g.
(X)=—Vnp (%) and the distribution of the dipole
source strength on the surface S; is given by f.
(x,)=p.s (x)n. The sound pressure p s (X,) and the
normal velocity vz (X,) on the surface S. should be
obtained to reproduce the same sound field as the
sound field « inside the control volume Vj. If the
sound field f is the same as the sound field & in the
volume V, that is, p(x)=ps(x) where the vector x is
in Vj and pyo(x,)=p24(%,) where the vector X, is on the

VIRTUAL ACOUSTIC SYSTEM

surface S,, then the following equation results from
subtracting Eq. (14) from Eq. (9):

Pin (X) TP (X)

3 ) (15)
S (R S
where p,.1(x) is given by
Pse1 (X) :_—L, H (XIX,.)pl,, (xx) ds. (16)

This equation shows that the strengths of the
continuous monopole and dipole source layers on the
surface S, can be obtained in order to reproduces both
the incident sound field p;,(x) produced by the source
in the sound field a and the scattered sound field
Psc1(x) produced by the head surface excluding the
ear surface in the sound field o If this scattered
sound field p; (%) is regarded as another incident
sound field in the volume V;, the secondary sources
reproduce only the total incident sound field. This
means that the scattered sound field from the ear
surfaces does not need to be reproduced because it is

.determined by only the total incident sound field

including the head scattered sound field and it is
produced by the ear surface itself.

Vl

source

Figure 4: Primary sound field yin the case of a
human head with an ear

3.2. Conditions for production of the
virtual sound field

Figure 4 shows another primary field produced by the
same sound source distribution and the same human
head surface as that in the sound field & but with a
different ear surface. In this case, a realistic human
ear surface S is used. This is called the sound field ¥
in this paper. The specific acoustic impedance z3 of
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the surface S; is assumed to be known. Now consider
the control volume V, bounded by the surface S, and
the surface S;. When the vector x is in the volume
V2, py denotes the sound pressure in the sound field %
The sound pressure p, in the volume V, in a single
frequency sound field can be written as

J-H x[x)plr )dS

—LH xl p37

€7, (x)= piy (x .

where p,, is the sound pressure on the surface S, D3y
is the sound pressure on the surface Ss, p 7,(x) is the
same as Eq. (11) except for the integral over V, and
Hi(x|x,) is given by

The incident sound field is again the sound field in

the absence of the scattering body and so is not

influenced by the scattered sound field or the
scattering body. That means the incident sound field
in the sound field ¢ is same as that in the sound field
y even though the scattered sound field in the sound
field « is different from that in the sound field y
Therefore, the incident sound field p%,(x) and pj,(x)
can be extended to the domain in which the scattering
body is located. Then the incident sound field p 7,(x)
is equal to pi,(X) where the vector x is in the union V;
U V,. Equation (17) can be rewritten as

C(X) Py (X) = Pin (X) T Dyer (X)

(19
_J.H Xl )p?y )dS :

where

Pir (X fH (xx,) p,, (x,)dsS (20)

The scattered sound field p,.(x) is produced by the
head surface excluding the ear surface in the primary

sound field ¥

Figure 5 shows another secondary field produced by
different sound sources and the same scattering
surface Sz as that in the sound field y This is called
the sound field Jin this paper. When the vector x is
in the volume V;, psdenotes the sound pressure in the
sound field 6.

VIRTUAL ACOUSTIC SYSTEM

\\
o
<
3
S

)

S —— L
(9]

_——— i ———

Figure 5: Secondary sound field Jin the case of a
human head with an ear

If the continuous transparent monopole and dipole
source layers are placed on the surface S, the sound
pressure ps in the volume V; in a single frequency
sound field can be written

C( )p(; LH X'X )pw )dS

2D
_J;( [ja)p()vnr:§ (X.v) 8 (XIX.\- ) + ch (X.\') a”l

where the position vector x is in the volume V,. If
the same monopole and dipole source strengths
obtained in the sound field /3 are applied to the sound
field 6’ that is, Des (%)= Pep (x,) and Vnes (X)= Vacp (xy)
where the vector x, on the surface S, the following
equation results from Eq. (15).

momte it 2L

9 . (22)
LL{””"’“’”(‘f)g(xlxs)w(xx> g(a’jX’)JdS

= P () + P (%)

where the vector x is in the intersection Vi m V.
This shows that the sound field reproduced by the
secondary surface sources in the sound field & is the
same total incident sound field in the sound field /3 as
that in the case of the flat surface S, in place of the
ear surface S;. Equation (21) can be rewritten as

AES 115TH CONVENTION, NEW YORK, NEW YORK, 2003 OCTOBER 10-13
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C(x)pg(X)=:Pm(X)+lﬂd(X)

_J. P35( X, )dsS

By subtracting Eq. (23) from Eq. (19) , the following
equation results

C(x){p, (x)=ps(x)}
__I H XI {p37 X

+ Py (X) — b

(23)

= pis(x,)} S @24

where the vector x is in the intersection Vi N V5.
Strictly speaking, p,.(x) is different from p,(x), that
is, the sound field scattered from the surface S; in the
sound field e is different from that in the sound field
7 This occurs since the geometry and boundary
condition of the other scatterer, in this case ear
surface, in the sound field « is different from that in
the sound field ¥ That is, S, # S5 and z, # z3. This is
because the sound field produced by the one scatterer
can be influenced by the sound field produced by the
other scatterer. However, pyo(X) — py1(X) can be
assumed to be zero if one of the following
requirements is met.

First, the geometry and boundary condition of the ear
surface in the sound field e is similar to that in the
sound field y That is, S, = S3 and 2, = z3. At low
frequencies, the detailed shape of the ear is not
significant so this requirement can be fulfilled.
However, at high frequencies, individual differences
of the ear shape are significant so this requirement
cannot be fulfilled.

Second, the pressure p;(x) is similar to the pressure
pi1y (%) on the head surface S;. If the scattered sound
pressure produced on the head surface by different
ear surfaces are similar, this requirement can be
fulfilled. On the other hand, if the scattered sound
pressure produced on the head surface by the ear
surface is sufficiently weak compared to the pressure
on the head surface, this requirement can also be
fulfilled. At strong resonances of ear, the scattered
sound field from the ear surface may be influential to
the surface pressure on the head surface near the ear.

Third, the both py.(x) and py.(x) are much less than
the other terms in Eq. (19) and Eq. (23). That is, the
scattered sound field from the head surface S; is
much weaker than the incident sound field from the
sources or much weaker than the scattered sound
field from the ear surface in the control volume. This

VIRTUAL ACOUSTIC SYSTEM

requirement can be fulfilled when the source in the
primary field is placed on the same side of the ear for
example.

Thus it may reasonably be assumed that p,(x) is
same as py(X), that is:

[} B (x(x) pia (x,)

)ds= [ Hi(x|x,)p,, (x,) a5 @)

where the vector x is in the intersection V; N V5, and
the vector x, is on the surface S;. This is the
important assumption. This means that the head
scattered sound field is not influenced by the ear
scattered sound field. Because these head scattered
sound fields can be regarded as other “incident”
sound fields which are not influenced by the
scattering body, pe1(X) and p.(x) can be therefore
extended to the domain in which the scattering body
is located. Then the sound field pg(x) is equal to
Psc2(x) where the vector x is in the union V; U V.
Equation (24) is valid where the x is in the union V;
U V, under this assumption. When the vector x is on
the surface S3, equation (24) can be rewritten as

— P35 \X ( )}

(x[x.){7

—-{p37

=_L,H3

This can be the sound field d when p s(X)=Vnes(%,)=0.
Therefore, pss(X,)=ps,(X,) Where the vector x; on the
surface S;. Then, equation (24) is equal to zero and
thus

(26)
(x,)=Pss (%)} dS

27)

pr(x) =Ps (X)

where the position vector x is in the volume V5.
When the same source strengths are applied, which
are those obtained in the case of sound field S, the
secondary sound field 6 turns out to be the same as
the primary sound field yinside the control volume
even though the geometry and boundary condition of
the scattering body inside the control volume is
different.

This theory demonstrates that if any sound field
inside the control volume produced in the primary
field is exactly reproduced in the secondary field, and
all the conditions outside the control volume in both
the primary and secondary fields remain the same,
the secondary sound field is always same as the
primary sound field. This is regardless of the
geometry and boundary condition of the scattering
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body inside the control volume and relies on the
reasonable assumption that the sound field outside
the control region is not changed irrespective of the
scattering body within the control volume.

4. NUMERICAL MODELLING

The human head with or without the ear and
headphones were modelled numerically to simulate
an incident sound field reproduction system.
Numerical meshes of the following models were
generated by using the ANSYS software package [9].
The numerical human head was modelled as a sphere
having a radius of 87.5 mm that is the average head
radius for a number of individuals [10]. Although the
head size and shape vary substantially within the
population, the radius of a spherical head model is
fixed throughout the numerical simulations for
simplicity and consistency. The DB65 pinna was
modelled, which is the artificial ear of the KEMAR
dummy head. The numerical meshes of the DB65
pinna model were generated by using a laser
scanning technique [11]. The numerical model of the

ear canal was made by using the data of Johansen -

[12]. The canal length is 26 mm and the eardrum
occupies a portion at the innermost 4 mm of the canal
length. Figure 6 shows the numerical mesh of the
DB65 pinna model with the ear canal model.

Figure 6: The DB65 pinna model with the ear
canal model

The spherical head without the ear was modelled.
Flat surfaces were placed at the locations where ears
were supposed to be placed. Figure 7 shows the
spherical head model with the flat surfaces. In this
model, the flat surface having a radius of 30.5 mm is
placed at the height of 82 mm from the center of the
sphere. Then the spherical head with the ear was
modelled. The DB65 ear is placed at a height of 82
mm from the center of the sphere. Figure 8 shows
the spherical head model with the DB65 ear model.

VIRTUAL ACOUSTIC SYSTEM
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Figure 7: The spherical head model with the flat
surfaces
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Figure 8: The spherical head model with the DB65
ear model

The headphone without the ear was also modelled.
The headphone was modelled as a hemisphere having
a radius of 60 mm and a cylinder with 10 mm width
and the same radius attached to the hemisphere. The
bottom of the headphone should contain the head
model where the headphone is supposed to be
located, so the flat surface is placed on the bottom of
the headphone. Figure 9 shows the headphone model
with the flat surface for the small control field. This
model contains part of the spherical head model
between the height of 77 mm and 82 mm from the
center of the sphere. The headphone sources are
modelled as piston-like vibrating surfaces having a
radius of 5Smm. Figure 10 shows 45 headphone
sources that are distributed evenly, so two adjacent
headphone sources spread at an angle of about 22.5°.
Then the headphone with the ear was modelled. Part
of the spherical head model with the DB65 ear model
where the headphone was supposed to be located was
attached to the bottom of the headphone model.
Figure 11 shows the headphone model with the DB65
ear model with the same 45 headphone sources.
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Figure 9: The headphone model with the flat
surface
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Figure 11: The headphone model with the DB65
ear model

The control field where the sound pressures were
recorded and reproduced was modelled as double
layers to measure sound pressure and its normal
gradient. The distance between the inner and outer
layer is 3.4 mm which is one-tenth of the wavelength
at 10kHz. The control field is modelled as a
hemisphere and the radius of outer layer is 30 mm.
The number of points of the control field is 84.

The boundary of the models is discretized into a
number of three-node triangular linear elements. The
number of elements per wavelength depends on the

VIRTUAL ACOUSTIC SYSTEM

required accuracy, the frequency range of interest and
the calculation time. When the mesh resolution
increases, both the accuracy of the numerical model
and calculation time increase. At least six linear
elements per wavelength are usually required to
model acoustic wave propagation phenomena
accurately by using the boundary element methods,
and thus to identify the locations of peaks and
troughs of sound pressure with reasonable accuracy
[13]. The frequency range of interest is set to be 0 ~
10kHz. Since the wavelength of a 10kHz sinewave
is 34 mm when the speed of sound is 340 meter per
second, the mesh resolution is set to be about 5 mm
for the headphones and the spherical heads without
the ear. Since the shape of ear is complicated and the
measurement point is located at the eardrum, the
mesh resolution around the eardrum is set to be 0.5
mm and that for the ear canal and pinna is set to be 2
mm.

5. NUMERICAL SIMULATION

To produce the virtual acoustic fields, the procedure
used in the numerical calculations is as follows.
First, the sound pressure on the control field is
measured in the primary sound field when a sound
source and the spherical head model without the ear
are placed in a free field. ~Then the transfer
impedance matrix between headphone sources and
control points is calculated in the secondary sound
field when the headphone model without the ear is
placed in the free field. The optimal strengths of the
headphone sources are calculated by multiplying the
inverse transfer impedance matrix by the matrix of
the desired sound pressure on the control field, which
is measured in the primary sound field. The sound
pressure at the eardrum is measured in the primary
sound field when the same sound source as that in the
first step and the spherical head model with the ear
are placed in a free field. The sound pressure at the
eardrum is measured in the secondary sound field
when the headphone model with the ear is placed in
the free field, and the same strengths of the
headphone sources are applied. These are calculated
in the third step. If the sound pressure at the eardrum
measured in the fifth step is same as that in the fourth
step, the virtual acoustic field is successfully
produced. Sound pressures around numerical models
are calculated by using the SYSNOISE software
package that uses the boundary element method [13].
The optimal strengths of the headphone sources are
calculated by using the MATLAB software package
[14].

Human skin is nearly rigid but hair is absorbent
material [15]. To design the head model properly,
the boundary condition of head model should be
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considered. However, the boundary surface of the
spherical head model both with and without the ear is
assumed to be rigid for simplicity. The ideal
monopole sound source is used in the primary sound
field, which is placed 1 meter away from the center
of the head and its pressure amplitude is 90.97 dB ref
2% 107 Pa at all frequencies. The sound pressures are
calculated from 200Hz to 10kHz with constant
frequency increments of 200Hz by using the direct
boundary element method. In this simulation, the
boundary condition of the headphone including the
surface of the headphone sources is set to be perfectly
absorbent, that is, of which the specific acoustic
impedance is 416.5 Pa s m'. Note that the flat
surface or the ear on the bottom of the headphone is
still rigid. The monopole sound source in the primary
sound field is put on the horizontal plane with
constant increments of 15 degrees azimuth angle. The
number of the overdetermination points is 50 up to
4kHz and 130 from 4kHz to 10kHz.

Because the number of the headphone sources is less

than the number of control points, there will be some’

control error when the optimal strengths of the
headphone sources are calculated. To assess this
control error, the following average sound pressure
level difference at the control points between the
desired pressure and the reproduced pressure can be
used:

1 S |pl’li
EAD:ZZ 201ong— [dB]. (28)

i=1 I S0

i

In this expression, q, is the optimal headphone
source strength in the secondary field, G is the
acoustic transfer impedance matrix, p, is the complex
sound pressure at the control point measured in the
primary field and L is the number of control points.
Figure 12 shows the average sound pressure level
difference in this case. This figure shows the control
error is not significant in this case, for example, the
average sound pressure level difference is below 0.3
dB up to 10kHz.

Figure 13 shows the sound pressure level measured at
the eardrum of the DB65 ear when the primary
source is at 60° azimuth, and Figure 14 shows that of
the DB65 ear when the primary source is at 240°
azimuth. The solid line represents desired sound
pressure level measured in the primary sound field,
and the dashed line represents reproduced sound
pressure level measured in the secondary sound field.

VIRTUAL ACOUSTIC SYSTEM
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Some measure is needed to assess the effectiveness
of the virtual acoustic system. Measures of eardrum
sound pressure level difference to evaluate
reproduction accuracy are suggested by

Eardrum sound pressure level difference

(29)

p ep

g"q,,|

=120log,,

[dB]

where p,, is the complex sound pressure measured at
the eardrum in the primary field and g is the acoustic
transfer impedance matrix between headphone source
strengths and sound pressure at the eardrum in the
secondary field. This is the difference of sound
pressure levels measured at eardrum between desired
sound pressure level in the primary field and
reproduced sound pressure level in the secondary
field. Zero means a perfect reproduction. Figure 15
shows this eardrum sound pressure level difference
when the source for every 15° azimuth is on the
horizontal plane in the primary field. Figure 16 shows
the eardrum sound pressure level difference averaged
over frequencies. Those figures show the eardrum
sound pressure level difference throughout most
horizontal angles up to 10kHz is below 1dB, which
can be regarded as successful reproduction, except
when the source is between 180° azimuth and 270°
azimuth from 9kHz.

If a different ear model is used, a different frequency
response will be obtained. However, this simulation
shows the incident sound reproduction system can
reproduce the sound field with any ear successfully
because the optimal strengths of the headphone
sources are obtained without the ear.
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Figure 15: The eardrum sound pressure level
differences
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6. DISCUSSION

Two things can be required to assess virtual acoustic
systems; The difference between the eardrum sound
pressure in the real environment and the eardrum
sound pressure in the virtual environment, that is,
reproductive accuracy should be small. When the ear
is changed, the eardrum pressure difference should be
still small. That means the system is robust. If the
incident sound reproduction system for one arbitrary
ear shows good reproductive accuracy, the system is
robust because the optimal source strengths are
obtained from the system without the ear.

There are the following three main sources of error
and they are interdependent. Control errors are
caused by inverting a non-square matrix. Numerical
errors are caused by numerical calculation. Physical
errors are caused for acoustical reasons.

Control errors mainly depend on the number and
position of headphone sources and the size and shape
of the control surfaces. If we put as many transducers
on the headphone as there are control points, we can
make nearly perfect reproduction. However, in
practice, we can put just a few transducers on the
headphone. Because perfect reproduction is not
possible in practice, the optimal model of the
headphone should be investigated. To reduce control
errors, the number of headphone sources should be as
many as possible and the number of control points
should be as few as possible. The complexity of the
incident sound field can raise the control error.

Numerical errors also arise from false numerical
modelling of real geometry. This depends on mesh
resolution, boundary condition and the shape of the
model. It also depends on the numerical modelling
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method used. If the mesh resolution is increased, the
numerical error can be reduced but calculation time is
increased. Numerical errors are increased as
frequency is increased due to the decreased number
of elements per wavelength and the non-uniqueness
problem. To compare the various results of the
numerical simulation, the modelling method is
unified as the direct boundary element method and
same numerical models are used consistently.

Even though control errors and numerical errors are
not significant, reproductive accuracy can be poor. If
the boundary condition of headphone surface is not
perfectly absorbent, the scattered sound field from
the headphone surface can make errors. If the angle
of the incident sound wave matches the angle of the
headphone source, the physical error can be reduced.
As we discussed, if the assumptions are not valid, the
reproduction accuracy can be degraded.

There are some parameters that can influence the
performance of the incident sound field reproduction

system. The number of headphone sources is critical. -

The more the headphone sources, the better the
performance of the system, but the more difficult it
becomes to make a practical system. The position of
headphone sources determines range of good
performance of the system. As the angle of the
incident sound wave approaches the angle of the
headphone source, the performance of the system
improves. To cover all angles of an incident sound
wave, the headphone sources should be distributed
evenly. But, for example, if we focus on only the
horizontal plane, the headphone sources should be
placed on the horizontal plane. The boundary
condition of headphone surface should be considered.
The inner surface of the ideal headphone model
should be perfectly absorbent to remove room modes
inside the headphone and absorb the scattered sound
field from the ear. However, practical headphones
cannot have a perfectly absorbent boundary. The size
and shape of the control field can be influential in the
system performance. The bigger the control field is,
the greater is the system robustness for various size
of pinna and placements of the headphone on the
head. However, the bigger the control field is, the
worse the performance of the system is when the
number of headphone sources is fixed. The size and
shape of the headphone can also be influential. The
size and shape of the headphone depends on the size
and shape of the control field. If the headphone is
too big, it is impractical to use. If the headphone is
too small, that is, the distance from the headphone
sources to the control points is too close, the
performance of the system can be degraded when the
headphone surface is not perfectly absorbent. Those

VIRTUAL ACOUSTIC SYSTEM

parameters are interdependent, so optimisation of
those parameters is needed to make an effective
headphone system using as small a number of
transducers as possible.

7. CONCLUSION

The most critical problem of the virtual acoustic
imaging system is the high sensitivity of the
performance of the system for the individual
differences of the frequency response of the pinna.
To solve this problem, a new virtual acoustic imaging
system has been proposed, which uses a multi-
channel headphone. This system is based on the
boundary surface control principle derived from the
Kirchhoff-Helmholtz integral equation. If all the
sound field outside the control region is assumed to
be the incident sound in the primary field, which is
not changed regardless of the scattering body within
the control volume, the secondary sound field is
always the same as the primary sound field. This is
regardless of the geometry and boundary condition of
the scattering body within the control volume and is
achieved by reproducing exactly the primary sound
field with any scattering body in the control volume.
Therefore, this analysis implies that the virtual sound
field can be created inside the headphone regardless
of the geometry and boundary condition of the ear by
reproducing the sound field that is recorded using a
dummy head without ears.

To minimize the difference between the desired
sound field and the reproduced sound field, the least
squares solution is used. The résults of the numerical
simulation using the boundary element method imply
that we can make the robust virtual acoustic system
with multi-channel headphone by using the incident
sound field reproduction method. The design of the
optimal multi-channel headphone will focus on the
investigation of the optimal number of transducers
and the optimal boundary condition of the
headphone.
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