The University of Southampton
University of Southampton Institutional Repository

Modelling the dynamic mechanisms associated with the principal resonance of the seated human body

Modelling the dynamic mechanisms associated with the principal resonance of the seated human body
Modelling the dynamic mechanisms associated with the principal resonance of the seated human body
Objective. Simple mathematical models have been developed to obtain insights into resonance phenomena observed at about 5 Hz in the dynamic responses of the seated human body exposed to vertical whole-body vibration.
Design. Alternative lumped parameter models with a few degrees-of-freedom have been investigated. Rotational degrees-of-freedom, with eccentricity of the centre of gravity of the mass elements, represented responses in the fore-and-aft and pitch axes caused by vertical vibration.
Background. The causes of body resonance are not fully understood, but this information is required to develop cause-effect relationships between vibration exposures and effects on human health, comfort and performance.
Method. The inertial and geometric parameters for models were based on published anatomical data. Other mechanical parameters were determined by comparing model responses to experimental data.
Results. Two models, with four and five degrees-of-freedom, gave more reasonable representations than other models. Mechanical parameters obtained with median and individual experimental data were consistent for vertical degrees-of-freedom but varied for rotational degrees-of-freedom.
Conclusions. The resonance of the apparent mass at about 5 Hz may be attributed to a vibration mode consisting of vertical motion of the pelvis and legs and a pitch motion of the pelvis, both of which cause vertical motion of the upper-body above the pelvis, a bending motion of the spine, and vertical motion of the viscera.
Relevance. The mathematical models developed in this study may assist understanding of the dynamic mechanisms responsible for resonances in the seated human body. The information is required to represent mechanical responses of the body and assist the development of models for specific effects of vibration.
mathematical models, seated body, vibration, apparent mass, transmissibility, resonance, validation, modal analysis
0268-0033
S31-S44
Matsumoto, Y.
326c6cca-baec-4a2f-996d-6909570397de
Griffin, M.J.
24112494-9774-40cb-91b7-5b4afe3c41b8
Matsumoto, Y.
326c6cca-baec-4a2f-996d-6909570397de
Griffin, M.J.
24112494-9774-40cb-91b7-5b4afe3c41b8

Matsumoto, Y. and Griffin, M.J. (2001) Modelling the dynamic mechanisms associated with the principal resonance of the seated human body. Clinical Biomechanics, 16 (Supplement 1), S31-S44. (doi:10.1016/S0268-0033(00)00099-1).

Record type: Article

Abstract

Objective. Simple mathematical models have been developed to obtain insights into resonance phenomena observed at about 5 Hz in the dynamic responses of the seated human body exposed to vertical whole-body vibration.
Design. Alternative lumped parameter models with a few degrees-of-freedom have been investigated. Rotational degrees-of-freedom, with eccentricity of the centre of gravity of the mass elements, represented responses in the fore-and-aft and pitch axes caused by vertical vibration.
Background. The causes of body resonance are not fully understood, but this information is required to develop cause-effect relationships between vibration exposures and effects on human health, comfort and performance.
Method. The inertial and geometric parameters for models were based on published anatomical data. Other mechanical parameters were determined by comparing model responses to experimental data.
Results. Two models, with four and five degrees-of-freedom, gave more reasonable representations than other models. Mechanical parameters obtained with median and individual experimental data were consistent for vertical degrees-of-freedom but varied for rotational degrees-of-freedom.
Conclusions. The resonance of the apparent mass at about 5 Hz may be attributed to a vibration mode consisting of vertical motion of the pelvis and legs and a pitch motion of the pelvis, both of which cause vertical motion of the upper-body above the pelvis, a bending motion of the spine, and vertical motion of the viscera.
Relevance. The mathematical models developed in this study may assist understanding of the dynamic mechanisms responsible for resonances in the seated human body. The information is required to represent mechanical responses of the body and assist the development of models for specific effects of vibration.

This record has no associated files available for download.

More information

Published date: 2001
Keywords: mathematical models, seated body, vibration, apparent mass, transmissibility, resonance, validation, modal analysis
Organisations: Human Sciences Group

Identifiers

Local EPrints ID: 10539
URI: http://eprints.soton.ac.uk/id/eprint/10539
ISSN: 0268-0033
PURE UUID: 83577cd2-836d-4876-b262-cd7bd145b604
ORCID for M.J. Griffin: ORCID iD orcid.org/0000-0003-0743-9502

Catalogue record

Date deposited: 19 May 2005
Last modified: 15 Mar 2024 05:00

Export record

Altmetrics

Contributors

Author: Y. Matsumoto
Author: M.J. Griffin ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×