The University of Southampton
University of Southampton Institutional Repository

Effect of phase on human responses to vertical whole-body vibration and shock-analytical investigation

Effect of phase on human responses to vertical whole-body vibration and shock-analytical investigation
Effect of phase on human responses to vertical whole-body vibration and shock-analytical investigation
The effect of the "phase" on human responses to vertical whole-body vibration and shock has been investigated analytically using alternative methods of predicting subjective responses (using r.m.s., VDV and various frequency weightings). Two types of phase have been investigated: the effect of the relative phase between two frequency components in the input stimulus, and the phase response of the human body. Continuous vibrations and shocks, based on half-sine and one-and-a-half-sine accelerations, each of which had two frequency components, were used as input stimuli. For the continuous vibrations, an effect of relative phase was found for the vibration dose value (VDV) when the ratio between two frequency components was three: about 12% variation in the VDV of the unweighted acceleration was possible by changing the relative phase. The effect of the phase response of the body represented by frequency weightings was most significant when the frequencies of two sinusoidal components were about 3 and 9 Hz. With shocks, the effect of relative phase was observed for all stimuli used. The variation in the r.m.s. acceleration and in the VDV caused by variations in the relative phase varied between 3 and 100%, depending on the nature of stimulus and the frequency weighting. The phase of the frequency weightings had a different effect on the r.m.s. and the VDV.
0022-460X
813-834
Matsumoto, Y.
326c6cca-baec-4a2f-996d-6909570397de
Griffin, M.J.
24112494-9774-40cb-91b7-5b4afe3c41b8
Matsumoto, Y.
326c6cca-baec-4a2f-996d-6909570397de
Griffin, M.J.
24112494-9774-40cb-91b7-5b4afe3c41b8

Matsumoto, Y. and Griffin, M.J. (2002) Effect of phase on human responses to vertical whole-body vibration and shock-analytical investigation. Journal of Sound and Vibration, 250 (5), 813-834. (doi:10.1006/jsvi.2001.3975).

Record type: Article

Abstract

The effect of the "phase" on human responses to vertical whole-body vibration and shock has been investigated analytically using alternative methods of predicting subjective responses (using r.m.s., VDV and various frequency weightings). Two types of phase have been investigated: the effect of the relative phase between two frequency components in the input stimulus, and the phase response of the human body. Continuous vibrations and shocks, based on half-sine and one-and-a-half-sine accelerations, each of which had two frequency components, were used as input stimuli. For the continuous vibrations, an effect of relative phase was found for the vibration dose value (VDV) when the ratio between two frequency components was three: about 12% variation in the VDV of the unweighted acceleration was possible by changing the relative phase. The effect of the phase response of the body represented by frequency weightings was most significant when the frequencies of two sinusoidal components were about 3 and 9 Hz. With shocks, the effect of relative phase was observed for all stimuli used. The variation in the r.m.s. acceleration and in the VDV caused by variations in the relative phase varied between 3 and 100%, depending on the nature of stimulus and the frequency weighting. The phase of the frequency weightings had a different effect on the r.m.s. and the VDV.

This record has no associated files available for download.

More information

Published date: 2002
Organisations: Human Sciences Group

Identifiers

Local EPrints ID: 10605
URI: http://eprints.soton.ac.uk/id/eprint/10605
ISSN: 0022-460X
PURE UUID: d812cca8-3c41-49ba-9850-ee860fbf1f4f
ORCID for M.J. Griffin: ORCID iD orcid.org/0000-0003-0743-9502

Catalogue record

Date deposited: 08 Feb 2006
Last modified: 15 Mar 2024 05:00

Export record

Altmetrics

Contributors

Author: Y. Matsumoto
Author: M.J. Griffin ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×