

Experiments on the Grid

Comb-e-Chem

The UK National Crystallography Grid Service

Jeremy Frey

CombeChem Project

School of Chemistry

University of Southampton, UK

Comb-e-Chem

Plan

- UK e-Science & The Comb-e-Chem Project
- Security!
- The National Crystallography Grid Service
 - Architecture
 - Demo
 - Data Grid
- The future

March 2004

Comb-e-Chem

UK e-Science programme

Support for collaborative
research

Grid Infra-structure

Computational Grid
- compute on demand

Data Grid
-flow of data

March 2004

People

Comb-e-Chem

Chemistry (Southampton & Bristol)

- Mike Hursthouse, Chris Frampton, Jon Essex, Jeremy Frey, Guy Orpen, Stephan Christensen, Thomas Gelbrich, Sam Peppe, Hongchen Fu, Graham Tizard, Suzanna Ward, Lefteris Danos, Jamie Robinson, Kieron Talyor, Chris Woods, Rob Gledhill

National Crystallography Service (NCS)

- Simon Coles, Mark Light, Ann Bingham, Peter Horton

Electronics and Computer Science (Southampton)

- Dave De Roure, Luck Moreau, Mike Luck, Hugo Mills, Graham Smith, Simon Miles, Nicky Harding, Gareth Hughes, Nick Humphries, monica schraefel, Terry Payne

It-Innovation (Southampton)

- Mike Surridge, Ken Meacham, Steve Taylor, Daren Marvin

Statistics (Southampton)

- Alan Welsh, Sue Lewis, Ralph Manson, Dave Woods

Rutherford Appleton Laboratory, Atlas Data Centre

IBM – Colin Bird, Syd Chapman

March 2004

Comb-e-Chem

Experiments on the Grid

*Are we simply
building a rod
to beat
selves
?*

*Is the user
out there?*

© New Yorker collection. All rights reserved.
from The New Yorker Book of Technology Cartoons

March 2004

Comb-e-Chem

Grid Service – Why?

- The submitter of a sample will have a more detailed knowledge and understanding of it and hence be able to purposefully contribute to the experiment
- The users of the service are distributed across the UK, yet need to collaborate closely with NCS staff
- NCS staff are busy with 'demanding' samples and the ability of a user to manage their routine samples greatly relieves this pressure
- High throughput demands effective sample management and tracking, especially when a user has multiple samples in the system
- A user can monitor 'out of hours' experiments to ensure they complete successfully and that most effective use of 'instrument time' is made

March 2004

Comb-e-Chem

Security
and trust
for
experiments
and data

"On the Internet, nobody knows you're a dog."

© The New Yorker collection. All rights reserved.
From The New Yorker Book of Thinking Cartoons.

March 2004

Comb-e-Chem

Security

- Security is crucial to the successful operation of the NCS Grid Service,
 - authentication of users
 - maintaining the integrity of their data.
- For NCS, we have set up a well-defined trust network, with its own CA and RA.
- All data transfer is encrypted,
 - A user is authorised to access only their own data, or monitor their own experiments.
 - the user's credentials are mapped to the appropriate authorisation or datasets.

March 2004

Comb-e-Chem

Security Overview

- Security risk management
- Security technology development
 - process-based authorisation extensions
 - WS-Security message processing
- Security implementation
 - operating policies and public key infrastructure

March 2004

Comb-e-Chem

Asset-Based Security

Comb-e-Chem

Application to NCS Service

- Assets:
 - campus system and network integrity (M/H)
 - sample tracking data (M)
 - experimental result data (L/M)
 - grid service integrity (L/M)
- Risks:
 - system attacks from outside campus (H)
 - systems attacks from inside campus (H)
 - compromise of remote user credentials (H)
 - internal user error (M)

Public Key Infrastructure

Comb-e-Chem

- Requirements:
 - be able to authenticate “singleton” remote users
 - be easy to operate by Chemists
 - be secure enough for academic users & Industry?
- Analysis of existing NCS authentication:
 - uses personal knowledge of user community
 - uses contextual information (e.g. EPSRC project codes)
 - lightweight for both NCS and their customers
- Public key infrastructure developments:
 - Comb-e-Chem certification policy agreed
 - procedures developed for NCS to certify remote users
 - operational responsibility transferred to Chemistry

March 2004

March 2004

Comb-e-Chem

WS-Security Processor

March 2004

Comb-e-Chem

Process-Based Authorisation

March 2004

Implementation

Comb-e-Chem

ECSES Architecture

Comb-e-Chem

Firewall Management Issues

e-worries

Comb-e-Che

© The New Yorker Magazine. All rights reserved.
From The New Yorker Book of Cartoons.

GTi

WSRF

Must ensure this
is not a problem
for applications

2/2/07

NCS Lab Service

Comb-e

March 2004

NCS Grid Service Architecture

Comb-e-Chem

Comb-e-Chem

NCS - How it works

- The Status Service determines the client's Distinguished Name (DN) from their NCS certificate
 - queries the Sample Database
 - list of all samples submitted by the client
 - they may only see their own samples.
- client's browser, shows the status of each sample.
 - The client may regularly track the progress of their samples within the NCS system.
- Once a sample enters the Running state,
 - a link is made available to the Control Service, whereby the client may monitor the running experiment.

March 2004

Comb-e-Chem

Experiment Control Services

- The Control Service provides the client with a portal to their running X-ray diffraction experiment
 - opportunity to observe the experiment in progress, and to steer it if they wish.
- The display is continuously updated,
 - reflects the current state of the experiment
 - prescans, unit cell determination, full data collection and data processing.
- Scanned images and other raw data are collected by the diffractometer, and published via the portal
 - enabling the client to make informed decisions at each stage whether to continue the experiment, etc.

March 2004

Experimental Steering

Comb-e-Chem

Prescans

Finished collecting prescan images

Accept crystal?	<input type="button" value="Yes"/>	<input type="button" value="No"/>	<input type="button" value="yes"/>	<input type="button" value="Submit"/>	Will submit automatically in	<input type="text" value="23"/>	secs
-----------------	------------------------------------	-----------------------------------	------------------------------------	---------------------------------------	------------------------------	---------------------------------	------

- The client can examine the images returned for the prescan, to determine the quality of the crystal. They may then choose to reject the crystal if they wish. A timeout ensures that the experiment may continue, if the client is not present (or takes too long to decide!).

March 2004

Comb-e-Chem

Once the experiment has completed, a summary of the results is automatically published and linked to the Sample Status page.

One page report - Microsoft Internet Explorer

File Edit View Favorites Tools Help

Back

Address https://interact.xservice.soton.ac.uk/controllservice/getfile.php?sampleId=40690collection_id=001&type=html-direct&src=nreport.html

EPSRC National Crystallography Service

Data Collection Summary

Summary report for Directory: disk/a/04MEL0093/001

Report generated Mar 10, 2004, 10:20:10

Unit cell

3535 reflections with $2.91^\circ < \theta < 36.32^\circ$ (resolution between 7.00 Å and 0.60 Å) were used for unit cell refinement

Symmetry used in scalepack	
p3	
a (Angstrom)	26.7825 +/- 0.0013
b (Angstrom)	26.7825 +/- 0.0013
c (Angstrom)	10.8786 +/- 0.0004
alpha (°)	90.000
beta (°)	90.000
gamma (°)	120.000
Volume (Å ³)	6742.1 +/- 0.5
Mosaicity (°)	0.411 +/- 0.003

March 2004

Comb-e-Chem

NCS Grid Service

March 2004

National
Crystallography
Service: NCS

SYNTHON Project

Voronoi Project

Property Prediction Services

Structure Determination
Services

Single Crystal
Structure Determination

Powder Diffraction

*Single Molecule
Shape
Determination*

March 2004

NCS WORKFLOW

Data Grid

Comb-e-Chem

- Issues of interaction with existing databases
- Graphical front ends currently make for complex query architecture over a grid
- This is being addressed and will employ a workflow system with full provenance

March 2004

- Remote control of equipment
 - Interaction with people & equipment
- Safety Critical Systems
 - External & Internal control of systems can lead to safety conflicts
 - Safety critical software (avoid at this stage)

March 2004

User – Crystallographer Interactions

Video – fun but useful with limited bandwidth

March 2004

User – Crystallographer Interactions

VNC ideal for connecting existing programs – developing Web Service/SOAP VNC but how much control?

March 2004

Very useful inside the service – but not suitable for deployment over the grid

March 2004

In the future will employ Access Grid techniques

March 2004

Comb-e-Chem

Safety!

March 2004

Comb-e-Chem

Future

- Smart Lab front end
 - Transfer URI as well as sample giving access to the materials preparation
 - Capture of crystal selection process with user interaction.
 - More automated data analysis
 - Automatic publication (xtl-prints)

March 2004

Comb-e-Chem

HT-Raman

- Instrument & Data Service
- Long scans – need for remote user control

March 2004

Comb-e-Chem

Web sites?

© The New Yorker collection. All rights reserved.
From *The New Yorker Book of Technology Cartoons*.

Comb-e-Chem

Changing the way we work

March 2004