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[1] New He, Ne, Ar and CO, stepped-crushing data from the Mid-Atlantic Ridge show that contamination
of basalts by atmospheric noble gases involves three or more components: unfractionated air, fractionated
air with high *°Ar/**Ne (>45) and fractionated air with low **Ar/**Ne (<5). In addition, the magmatic
noble gases trapped in these basaltic glasses are variably fractionated such that *He/*’Ar* (where the
asterisk indicates corrected for atmospheric contamination based on all *°Ar being atmospheric in origin) is
in the range 3—12. Single samples have a range in *He/**Ar* with the highest ratios in the final crush steps,
consistent with the most fractionated (highest “He/*’Ar*) volatiles trapped in the smallest vesicles. It is not
possible to distinguish between batch and Rayleigh degassing mechanisms. The complexities of the
contamination and magmatic fractionation processes means that it is not possible to estimate *°Ar/*°Ar of
the mantle source to these basalts other than it must be higher than the highest ratio measured (26,200 +
5200). Noble gas/CO, ratios are also variable. While some CO, adsorption during crushing exaggerates the
variations in He/CO, and Ar/CO,, we show that it is not possible to account for the entire variation as an
analytical artefact: some of the variation is present in the vesicles. Variations in He/CO, cannot be
attributed to solubility controlled degassing because of the broadly similar solubilities of He and CO, in
tholeiitic magmas. The large range in He/CO, in these glasses (factor of 10) is not accompanied by
indications of major changes in melting regime or source region chemistry, therefore is thought to reflect
late-stage (magmatic) fractionation of CO, from the noble gases. It is not possible to identify an explicit
mechanism, although both CO, reduction (e.g., to hydrocarbons or graphite) and kinetic CO,-noble gas
fractionation could account for the variations.
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1. Introduction and Previous Work

[2] Studies of noble gases in oceanic basalts have
the potential to trace the development of chemical
heterogeneities in the mantle. While the He and Ne
isotopic structure of the mantle have been broadly
established [see for example, the review by Farley
and Neroda, 1998], and the mantle Ar isotopic
structure is becoming progressively more clear
[Trieloff et al., 2002; Harrison et al., 1999; Mor-
eira et al., 1998; Trieloff et al., 2000; Valbracht et
al., 1997], the relative abundances of the noble
gases — especially relative abundances of primor-
dial noble gas isotopes — in the mantle are poorly
constrained. This contribution is part of an ongoing
effort using combined noble gas and CO, determi-
nations to characterize relative noble gas abundan-
ces in the mantle. Using noble gas — CO, analyses
of glasses from the Mid-Atlantic Ridge, we dem-
onstrate how mantle compositions can be distin-
guished from atmospheric contamination and
elemental fractionation during transport.

1.1. Noble Gas Fractionation During
Magmatic Processes

[3] Volatiles fractionate when magmas degas, such
that insoluble volatiles are lost more rapidly than
the more soluble species [Burnard, 2001; Jambon
et al., 1986, 1985; Marty and Zimmerman, 1999;
Sarda and Moreira, 2002; Moreira and Sarda,
2000]. Experimental work has established that
noble gas solubility decreases with increasing
atomic mass [Carroll and Stolper, 1993; Jambon
et al., 1986; Lux, 1987]. Helium is more soluble
than Ar, therefore He/Ar in magma should
increase as the volatile concentration of the

magma decreases due to degassing. The He-Ar
system is particularly useful for examining mag-
matic degassing systematics as a) there is a large
(factor of 10) difference in their solubilities and b)
the “He/*°Ar ratio of the mantle is comparatively
well constrained at between 2 and 4 [Allégre et al.,
1986].

[4] Recent work has shown that *He/*°Ar* (**Ar*
is “°Ar corrected for atmospheric contamination) of
oceanic basaltic glasses worldwide increase as the
He content of the basalt increases, the opposite to
that predicted by solubility related degassing mod-
els [Honda and Patterson, 1999; Matsuda and
Marty, 1995]. If degassing was the primary control
on the magmatic *He/*’Ar* ratio, the opposite
trend would be expected, with high *He/*°Ar*
ratios in degassed basalts. While magmatic degass-
ing must affect the He/Ar ratio trapped in basaltic
glasses, this does not seem to be the dominant
control. Variability of He/Ar ratios in MORB
glasses have instead been attributed to high He
diffusivities relative to Ar. In one such model, He
(but not Ar) preferentially diffuses out of mantle
minerals into melt pockets, resulting in high mag-
matic He/Ar ratios associated with high He abun-
dances [Fisher, 1997; Matsuda and Marty, 1995].
In an alternative model, He and Ar are not
fractionated from the mantle source ratio in the
primary mantle melts, but, as the magma crystal-
lizes, Ar is trapped in crystallizing phases,
whereas He diffuses out of crystals back into the
melt. As a consequence, He/Ar ratios and He
contents are expected to increase with magmatic
differentiation [Honda and Patterson, 1999]. The
He/Ar ratios are further modified (in both models)
by solubility controlled fractionation. Extensive
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He loss, either preeruptive, syneruptive, or poster-
uptive, would also result in the trends observed;
He diffusivities in basaltic glasses are high [Kurz
and Jenkins, 1981] and posteruptive He loss from
these samples is possible. In summary, it is not
possible to model the absolute and relative He, Ne
and Ar abundances of MORB glasses as either a
diffusive processes or a solubility-controlled proc-
ess: instead, both kinetic and equilibrium fractio-
nation must occur at some point during transport
of noble gases from their mantle source to the
Earth’s surface.

[s] Volatile compositions in basaltic glasses are
also affected by magmatic degassing; magmatic
degassing must produce an overprint on any frac-
tionation that occurs due to He diffusion during
either melting or crystallization as outlined above.
Partly as a result of this degassing “overprint”
obscuring more deep-seated processes, it is not
possible to determine the primary control on rela-
tive noble gas abundances in basaltic glasses based
on the currently available data. Furthermore, it will
not be possible to determine the process — or
processes — that control noble gas abundances in
the sub-oceanic mantle unless the effects of mag-
matic degassing can be quantified.

1.2. Atmospheric Contamination

[6] Contamination of basaltic glasses by atmos-
pheric noble gases is a well-recognised problem
[Ballentine and Barfod, 2000; Patterson et al.,
1990; Harrison et al., 2002]. Less well established,
however, is the mechanism by which this contam-
ination occurs. The atmospheric component found
in certain gas-rich basaltic glasses (both MORBs
and OIBs) is not associated with the release of
magmatic He [Ballentine and Barfod, 2000; Jam-
bon et al., 1985]: magmatic and atmospheric noble
gases are physically separated in these samples.
Furthermore, relative noble gas abundances of the
contaminant were consistent with contamination by
unfractionated air, in contrast to the fractionated
compositions expected of the seawater or subglacial
ponds into which the basalts were intruded [Mor-
eira et al., 1998]. Ballentine and Barfod [Ballentine
and Barfod, 2000] concluded that the atmospheric
contaminant was added to the glasses after the

glasses had chilled on the seafloor, and possibly
only when the samples were exposed to air.

[7] Conversely, analyses of more typical, less gas-
rich MORB glasses from both the Mid-Atlantic
Ridge (MAR) and East Pacific Rise (EPR) than
those examined by Ballentine and Barfod show
that the amounts of *He and *°Ar released by
crushing are correlated [Fisher, 1997]. Fisher
[1997] concluded that atmospheric and magmatic
noble gases were both sited within vesicles in the
glass. This requires addition of atmospheric noble
gases to the magma itself. Alteration of oceanic
crust by ®Ar-rich hydrothermal fluids results in
high concentrations of *°Ar in altered portions of
the crust. Fisher proposed that assimilation of
altered crust by the ascending magma could result
in atmospheric *°Ar located within vesicles. Marty
and Zimmerman [Marty and Zimmerman, 1999]
developed this into a combined assimilation —
fractional crystallization — degassing model where
simultaneous crystallization and degassing was
accompanied by introduction of *°Ar through
assimilation of crust.

2. Sample Locations and Descriptions

[s] The samples analyzed in this study were col-
lected by dredge and rock chipper from three seg-
ments on the Mid-Atlantic Ridge (MAR). Five
samples collected by dredging and by rock chipper
from segment 8 (AMK3376 AMK3377 AMK3373
AMK3378 AMK3380) cover the entire length of the
segment (25°40'N—25°80'N) with an average sam-
ple spacing of 10 km. Three rock chipper samples
(AMK3410, AMK3412, AMK3413) are from the
center and southern end of Segment 10 (26°10'N—
26°35'N) while three further samples were collected
by submersible and chipper from the center and
southern tip of Segment 17 (AMK3427, AMK3339,
AMK3351). Ridge depths were between 3000 and
4000 m below sea level (mbsl).

[s] All samples were clean, fresh glasses collected
from neovolcanic zones within the MAR. Major
and trace element compositions are available for
samples 3351, 3339 and 3427 (Table 1). These
show that these samples are typical depleted,
relatively undifferentiated MORBs with low SiO2
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& i # (=50%) and high MgO (7.5—-8.2%). Sr isotopes
”% E 7 have been measured on samples 3351 and 3427,
% = 2 and have typical MORB values of 0.7026.
S S
ARk o . :
§ gq g 3. Analytical Technique
Sleag g [10] A new crushing apparatus was constructed in
“alee < order to crush =1 gram samples of basaltic glass,
o) g 'g = yet maintain a low crusher blank. A schematic of
Al eSS S the crusher is given in Figure 1. Coarse glass chips
o § g g (mostly 3—5 mm) were ultrasonically cleaned in
M| SS S dilute HNOs, de-ionized water then ethanol before
ol s _ loading into the crusher buckets. Ten samples were
Z & o 3 loaded onto a rotating carousel that permitted each
olee sample to be crushed in turn without breaking
S ;; g vacuum; the crusher chamber was baked in ultra
- high vacuum for 24 hours at ~150°C then allowed
A R=ES < to pump for one week to ten days before starting
S| o o~ .
analysis.
elas .
> | sS S [11] Each sample was sequentially crushed by an
olgr S external press, which could apply a pressure of up
c|les = to 500 kg cm 2 (10,000 kg on a surface area of
o | oo o - about 20 cm?) (Figure 1), although only the final
?‘:’N ; g ; crushing steps required any appreciable pressure to
be applied. The gases released by crushing were
gl g% 5 trapped on stainless steel sinter held at liquid N,
El<| - temperature. Gases that would not condense on the
% o) g 5 lﬁ steel sinter (essentially He, Ne and H,) were puri-
S B == - fied on SAES NP10 getters (one at 250°C, another
2lglme g at room temperature) before analysis for He and Ne
£la| s 3 3 on a VG5400 magnetic sector mass spectrometer.
(] .
| e The condensed gases were released off the sintered
| 0| B wwowwnwn22 2D ° .
S| steel at 150°C and the amount of total volatiles
< . .
S| e released (assuming the noncondensable fraction to
s @ ODROILNRZ NS be minor) measured as a pressure change within a
B|E| SARERARIAES known volume of extraction system. Previous work
(] o, . .
_‘g a has shown that it is likely that the gas released from
gl o o vesicles in MORB glasses is predominantly (>90%)
v | B he88_Z[_/ILR ; : :
8 :/0 : S g g g 3 8 g % sr'_ g 8 C02 [Javoy a}’ld Plneau, 1991] (technlcal dlfﬁcul—
f;; § R R R R R s ties prevented our usual procedure of checking the
e gas composition by quadrupole mass spectro-
Sle|l B8ReazIneas buti :
2 :Z:, PR - e scopy). Other 90ntr1but10ns to the major gas phase
£ 5 SR G Eee S are either considerably more soluble in basaltic melt
A - o o e than CO, (e.g., H,O) or occur in trace amounts
— N N .
IR R e (SO,, N; etc.) therefore are unlikely to affect the
2| E| MMM MMEMEYYEN manometric CO, analyses at the ~25% level of our
S| A | 222222222222 .
= <<<d<d<d<<<<<< accuracy. Also, at room temperature, water (if there
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quartz glass viewport

sample carousel

Figure 1.

extraction
system

sample

Schematic diagram of crusher. Approximately 1 g samples are loaded into small (25 mm diameter)

stainless steel buckets that are placed in a circular stainless steel carousel (arrowed) that holds ten sample buckets.
Pressure is applied to the sample through the stainless steel pestle. Once a sample has been completely crushed, the
carousel is rotated to the next sample using a “wobble stick” mounted on the top flange (not shown); the carousel is
aligned precisely using the quartz glass viewport. A dial gauge mounted on the pestle allowed the amount of sample
compression that occurred during each step to be monitored precisely. Up to 10, 000 Kg could be applied to the pestle
via an external hydraulic ram (not shown), corresponding to a pressure of up to 500 Kg cm ™2 on the sample.

is any) contributes little to the pressure observed on
the manometer; previous work has shown that the
water condenses on the walls of the vacuum equip-
ment (Manchester unpubl. data). After the gas was
purified (using SAES getters), Xe was condensed
on charcoal held at —110°C. Ar, then Xe (released
off the charcoal at 120°C) were analyzed by the
VG5400; Kr was not analyzed. Procedural blanks
were monitored every day: careful vacuum practice
ensured these were maintained below 0.1 x 10~°
cm® STP *°Ar and 1 x 107'* cm® STP *’Ne; Xe
blanks were below detection (=8 x 10~'° cm® STP
132Xe). “He blanks were variable, usually starting
out below detection (<10 x 10~ '* cm® STP) but as
crushing progressed, the He blank increased up to
5 x 107 cm® STP, although this was still small
(typically <1%) in comparison to the analyses.

[12] The mass spectrometer was calibrated against
an internal standard consisting of air Ne, Ar, Kr
and Xe but with added He such that “He/*°Ar (of
the calibration gas) was 1.29 with *He/*He = 5.9 x
107°. While He and Ne were not cryogenically

separated for these measurements, the manufac-
tured calibration gas ensured that the He/Ne ratio
of the calibrations closely matched those of the
samples. Note that the errors quoted do not rely
purely on the counting statistics of the individual
analysis, but also include the 1o distribution of ten
(or more) calibrations.

[13] The crushers did not completely crush the
samples; after crushing, typically several glass
chips remained <0.5 mm in size. After crushing,
the samples were extracted from their buckets (not
a totally trivial task as the press tended to compact
the samples into a hard “pill” at the base of the
bucket) and sieved through a 100 pm sieve: the
proportion of glass crushed to <100 um is given in
Table 2.

4. Results

[14] Fourteen basalt glasses were step-crushed
between 3 and 9 times per sample, depending on
the gas content of the sample. The results reported

5 of 20



" Geophysics

I ' 'Geocl;‘en)istry
_ . Geosystems [/r

o]
)

BURNARD ET AL.. CONTAMINATION OF NOBLE GASES

10.1029/2002GC000326

Table 2a. Noble Gas Concentrations
Weight >100 pm  *He x 107®  °Ne x 1072 *Ar x 107®  '™Xe x 107"  CO, x 107°
Sample Crush () (2) (ccSTP) (ccSTP) (ccSTP) (ccSTP) (ccSTP)
AMK3376 1 0.33 17 0.053 n.m. n.m.
2 2.34 23 0.310 62 43
3 3.35 46 0.469 119 61
4 4.96 50 0.703 136 89
5 1.44 30 0.127 40 23
6 6.80 862 0.890 353 109
7 2.36 141 0.340 2402 31
8 0.41 23 0.038 b.d. 5
9 0.19 51 0.056 47 9
Total  0.884 n.m. 22.19 1244 2.987 3159 369
AMK3339 1 0.029 0 0.006 20 b.d.
2 0.039 0 0.007 16 b.d.
3 0.35 7 0.061 25 1
4 0.59 10 0.094 42 1
Total 0.75 n.m. 1.01 16 0.168 103 2
AMK3377 1 0.25 3 0.048 13 1
2 0.57 7 0.111 26 2
3 3.35 39 0.693 89 12
Total  0.516 n.m. 4.16 50 0.852 128 15
AMK3351 1 0.95 35 0.144 71 10
2 2.03 31 0.287 124 20
3 1.69 24 0.229 98 12
Total  0.712 0.5528 4.67 90 0.661 294 42
AMK3373 1 0.80 35 0.297 208 13
2 1.41 21 0.457 80 23
3 0.94 0 0.262 55 15
4 0.29 9 0.078 26 1
Total  0.406 0.3011 3.44 65 1.095 370 51
AMK3375 1 0.95 11 0.192 42 13
2 6.02 64 1.039 231 76
3 5.41 63 0.787 189 55
Total  0.851 0.6223 12.38 137 2.018 462 144
AMK3378 1 0.27 2 0.052 b.d. 2
2 1.80 16 0.328 42 14
3 3.11 36 0.568 62 16
Total  0.739 0.5536 5.19 54 0.949 103 32
AMK3380 1 0.56 5 0.097 17 5
2 2.68 22 0.403 83 19
3 0.91 11 0.095 35 2
Total  0.932 0.7104 4.15 39 0.595 136 25
AMK3410 1 1.16 11 0.192 43 15
2 591 57 0.899 205 84
3 2.24 19 0.321 73 24
Total 0.6781  0.5025 9.31 86 1.412 320 123
AMK3412 1 1.02 9 0.182 47 11
2 4.30 46 0.733 169 26
3 2.88 32 0.399 102 23
Total  0.761 0.5715 8.20 86 1.314 319 61
AMK3413 1 2.58 27 0.382 50 b.d.
2 5.90 66 0.828 135 b.d.
3 2.88 54 0.360 84 25
Total  0.846 0.6341 11.36 148 1.570 269 25
AMK3427 1 0.58 5 0.062 b.d. 2
2 n.m. 36 0.203 34 8
3 2.28 32 0.228 43 8
Total  0.623 0.5286 2.86 73 0.493 77 18
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Table 2b. Isotopic Compositions of Measured Gases
TITLE *He/*He Ra  **Ne/*’Ne 2INe/**Ne YOAr/36Ar 29Xe/P?Xe  PXe/"Xe
AMK3376 1 83+04 8.5+0.8 0.036 = 0.009 609 + 6 b.d. b.d.
2 8.7+03 b.d. £ b.d. 13884 + 508 1.19 £ 0.06 70+12
3 8.1+03 11.8 £ 1.1 0.043 £ 0.004 8617 + 388 1.02 = 0.04 6.5+ 0.6
4 7.7 +03 128 £ 1.2 0.060 £+ 0.004 18187 + 3842 1.11 £ 0.06 6.4 +0.7
5 n.m. 114 +£1.1 b.d. 5605 + 135 1.06 £ 0.10 7.7 +£2.1
6 n.m. 106 £ 1.2 0.0280 + 0.0004 1105 + 30 1.02 £ 0.03 62+04
7 n.m. 10.0 £ 1.0 0.028 + 0.001 646 + 2 0.99 + 0.02 6.8+02
8 n.m. 10.0 £ 0.9 0.041 + 0.004 3804 + 309 b.d. b.d.
9 n.m. 9.0+ 09 0.030 = 0.002 2641 + 68 096 +0.14 7.8 +25
Total n.m.
AMK3339 1 n.m. b.d. b.d. 1364 + 39 1.05 £ 0.24 b.d.
2 9.8+ 09 b.d. b.d. 1994 + 58 1.16 £ 0.20 b.d.
3 94+04 b.d. b.d. 5907 + 311 1.14 £ 0.14 40+ 14
4 93+04 b.d. b.d. 6780 + 665 1.03 £0.21 69 +25
Total 92 +04
AMK3377 1 94+ 04 b.d. b.d. 8065 + 733 0.99 + 0.20 b.d.
2 89+03 b.d. b.d. 12736 + 399 0.71 £0.17 b.d.
3 85+03 11.8 1.1 0.047 + 0.002 15471 + 448 1.06 £ 0.06 7.1+03
Total 8.6 £0.3
AMK3351 1 8.7+0.2 89+ 0.8 b.d. 3618 + 82 0.90 £ 0.11 74 +1.7
2 85+0.2 9.1 £0.8 b.d. 5908 + 367 1.00 £ 0.04 73+04
3 83+02 b.d. b.d. 8235 £ 180 1.07 £ 0.05 7.1 +0.8
Total 8.5+0.2 b.d. +
AMK3373 1 8.0+0.2 9.1 £0.9 b.d. 1633 + 14 1.05 £ 0.04 6.2 +02
2 8.1+02 b.d. b.d. 24240 + 696 1.09 £ 0.07 58+04
3 7.7+0.2 b.d. b.d. 19656 + 936 1.03 £ 0.08 75+1.0
4 83+02 b.d. b.d. 6041 + 167 093 £0.12 b.d.
Total 7.9 +£0.2
AMK3375 1 8.1+02 b.d. b.d. 19863 + 1242 1.05 £ 0.15 6.3 +09
2 8.1+0.5 130+1.3 0.062 £+ 0.003 16599 + 349 1.09 £ 0.05 73 +0.5
3 8.1+05 133+ 14 0.050 £+ 0.005 10703 + 234 1.18 £ 0.05 6.1 £03
Total 8.1+0.5
AMK3378 1 8.1+0.7 b.d. b.d. 16117 £ 375 b.d. b.d.
2 8.7+ 0.6 b.d. b.d. 21693 + 543 0.96 +0.14 56+1.3
3 8.4 +0.6 13.0+1.2 0.053 £ 0.005 10269 + 2055 1.15+0.19 47 £0.6
Total 8.5+ 0.6
AMK3380 1 82 +0.6 b.d. b.d. 26219 + 5244 1.32 £ 0.40 b.d.
2 8.5+£0.6 127 +1.3 b.d. 24272 + 2163 1.08 £ 0.08 6.1 £0.7
3 79+05 b.d. b.d. 5375 + 224 1.17 £ 0.18 47 £0.6
Total 8.3+ 0.6
AMK3410 1 7.8 £0.5 b.d. b.d. 23656 + 2151 1.02 £0.14 6.1 £14
2 79 +0.5 11.9+12 0.053 = 0.008 18745 + 2884 1.06 = 0.08 7.0+ 04
3 8.7+0.6 b.d. b.d. 19363 + 1291 097 £ 0.16 82+ 14
Total 8.1+0.5
AMK3412 1 8.7+0.6 b.d. b.d. 17028 + 2349 1.00 £ 0.09 6.0+ 09
2 83 +0.6 13.1+£1.3 0.051 = 0.007 20688 + 4310 1.04 £ 0.06 7.0+0.7
3 7.6 +£0.5 11.3+1.0 b.d. 15040 + 627 1.09 £ 0.08 6.2 +£0.6
Total 8.1+0.5
AMK3413 1 75+£05 b.d. b.d. 14011 + 682 1.19 £ 0.12 b.d.
2 8.0+0.5 133+1.3 0.053 + 0.002 18003 + 391 1.13 £ 0.07 73 +£0.6
3 7.7+0.5 120 £ 1.1 0.050 + 0.007 5285 + 58 098 £ 0.17 72+14
Total 7.8 £0.5 b.d.
AMK3427 1 8.0 = 0.6 b.d. b.d. b.d. b.d. b.d.
2 n.m. 121 £ 1.2 0.046 £+ 0.003 11625 + 564 1.23 +£0.14 b.d.
3 7.7+0.5 114 £ 1.1 0.049 + 0.009 11191 + 405 1.08 = 0.17 44 4+0.8
Total 7.7+ 0.5

n.m., not measured; b.d., below detection. >100 pm refers to the fraction of the sample that would not fit thorugh a 100 um seive after crushing.
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here are not blank corrected; the analyses are
considered to lie on a mixing line between an air-
derived component and a mantle component. With
the exception of He, blanks were isotopically
indistinguishable from air, therefore blank correct-
ing the data simply shifts the analyses along the
air-mantle mixing line. The uncertainty added by
blank correcting the data is not warranted by the
minor shift along a well-established correlation.

[15] The results are given in Table 2. Total gas
contents ranged from 5 to 25 pcc “He g '. There is
no relation between noble gas composition (either
isotopic or relative abundances) and the amount of
gas preserved in that sample. With the exception of
the He isotopic composition (which clustered
around the MORB average of 8.5), there was a
broad range in elemental and isotopic compositions
in the released gases. ’Ne/**Ne, “°Ar/*°Ar and
129X ¢/"**Xe ranged from compositions close to the
atmospheric ratio to significantly higher values
(13.3 + 1.3, 26, 000 = 6000 and 8.3 + 0.6
respectively). The highest (least air-like) ratios
are most common in the latter crushing steps.
Radiogenic isotope ratios such as *He/*’Ar* and
2'Ne*/*He are also variable (2.7—11.4 and (0.7—
3.5) x 107® respectively), with variation within
multiple crushes of individual samples and from
sample to sample. (The asterisk indicates corrected
for atmospheric contamination assuming “°Ar is
atmospheric in origin and the °Ne/**Ne ratio of
the mantle is 13.8 with a primordial *'Ne/**Ne of
0.0032 using the formula given by Honda et al.
[1993].).

[16] The narrow sampling interval on Segment 8
allows variations in noble gas concentrations and
isotopic compositions within a single segment to
be examined. Although AMK3376 (the most
gas-rich sample in the suite) is from the center
of Segment 8, there is no other evidence that
higher magmatic productivity in the center of the
ridge segment leads to higher volatile concen-
trations. Samples adjacent to AMK3376 — and
still close to the center of the segment — do not
have high volatile concentrations. Isotopic com-
positions (*°Ar/*°Ar, *He/*He) also appear to be
independent of sample location with respect to
ridge segmentation.

5. Discussion

[17] The variations in noble gas isotope composi-
tions (e.g., 2’Ne/**Ne, “°Ar/*°Ar and '**Xe/'**Xe)
and in relative noble gas abundances (e.g.,
2INe*/*He, “°Ar*/*He) are not likely to represent
variations in the MORB mantle, which is thought
to be relatively well mixed and homogeneous with
respect to the noble gases [Allegre et al., 1986].
Rather, these variations reflect shallow level pro-
cesses that have modified the compositions of the
mantle-derived volatiles. Principle among these are
air-contamination and noble gas fractionation dur-
ing magmatic degassing, although the order that
these processes operated is not known.

5.1. Air Contamination

[18] There are good correlations between “*Ne/**Ne
and 2'Ne/**Ne, *°Ar/*°Ar, CO,/*®Arand '*°Xe/**Xe
(Figures 2a—2d) and '**Xe/"*°Xe and '*?Xe/"*Xe
(not shown), all of which are consistent with con-
tamination of mantle-derived volatiles that have high
20Ne/*?Ne, 2'Ne/**Ne, “°Ar/%Ar, 12Xe/'*%Xe and
132Xe/"3%Ke ratios with an air derived contaminant
(ADC) with atmospheric, or near-atmospheric, com-
positions of the above isotope ratios. However, the
relative noble gas abundances of the ADC (Ne/Ar,
Xe/Ar etc.) are not necessarily atmospheric: if the
contaminating agent was seawater rather than air
(for example), then the ADC would have atmos-
pheric 20Ne/”2Ne, “°Ar%Ar and '*?Xe/'*%Xe, but
higher Ar/Ne and Xe/Ne than air due to the greater
solubility of Ar and Xe than Ne in water [Ballentine
and Barfod, 2000; Harrison et al., 2002; Patterson
etal., 1990]. Harrison et al. [2002] have shown that
Icelandic basalts were contaminated by an ADC
with Xe/Ne > air in addition to unfractionated air,
demonstrating the complexities of atmospheric
noble gas contamination.

[19] The effects of the air-derived contaminant can
be deconvolved using Ne isotopes. Neon has three
isotopes, *°Ne, 2'Ne and **Ne: *'Ne is the only one
produced in significant quantities in the mantle,
primarily by a-particle reactions with oxygen. The
2ONe/**Ne ratio of the mantle (>12.5) is signifi-
cantly higher than that of the atmosphere
(**Ne/**Ne = 9.8) [Moreira et al., 1998; Sarda et
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Figure 2. 20Ne/**Ne versus air affected isotopes such as 2INe/”?Ne, Y°Ar/*°Ar, C02/36Ar, 129%e/132Xe, 3 Ar/**Ne.
2Ne/**Ne versus *°Ar/*’Ne, AMK data (AMK3376, filled circle; AMK3339, filled square; AMK3377, filled
diamond; AMK3351, filled triangle; AMK3373, open circle; AMK3375, open up triangle; AMK3378, open square;
AMK3380, open diamond; AMK3410, open down triangle; AMK3412, cross; AMK3427, X square; AMK3413, star)
and popping rock (small solid squares, data of Moreira). Both data sets are consistent with mixing between magmatic
gases with *°Ne/**Ne > 12.5 and an air-derived contaminant (ADC) with 2°Ne/**Ne indistinguishable from air (=
9.8). In the case of popping rock, *°*Ar/**Ne of the ADC appears to be near16y constant and is compatible with that of
air (= 18) whereas the ADC in the AMK glasses is highly variable, with *°Ar/>*Ne ratios both lower than air (e.g.,
AMK3427) and higher than air (e.g., AMK3373). '**Xe/"*?Xe is plotted in preference to '**Xe/'**Xe as the low
abundances of '*°Xe results in large errors.
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Figure 3. “Turnery” diagram (3D “°Ne/**Ne - *°Ar/**Ne - “°Ar/**Ne discrimination plots). All AMK samples, this
study (individual crush steps not distinguished for clarity). The data lie on a plane as opposed to a line, indicating that
the noble gases present in these samples are mixtures of three or more distinct components. The mantle “°Ar/*®Ar
cannot be constrained without first constraining the mantle *°Ar/**Ne ratio [Harrison et al., 2001]. Mixing lines for
binary mixing between air and mantle noble gases with “’Ar/*®Ar = 40, 000 (dashed line) and *°Ar/*°Ar = 80, 000
(solid line) are shown for reference (*°Ar/**Ne = 11.8 and 5.9, respectively). The AMK data define a plane that is
more steeply dipping than that of the popping rock data with higher Ar/Ne for a given *°Ne/**Ne ratio (see also Figure
2d). The high Ar/Ne ratios of the AMK suite are likely due to volatile fractionation during gas loss from the magma.

al., 1988; Trieloff et al., 2000]. The *°Ne/**Ne ratio
is essentially unaffected by nuclear processes and
therefore the slope of a line in a 2’Ne/*Ne —
*'Ne/**Ne plot is independent of atmospheric con-
tamination and characteristic of the sample
2'Ne/**Ne ratio. The slope of the *°Ne/**Ne —
*'Ne/*Ne correlation is consistent with previous
analyses that show that the MORB *'Ne/**Ne ratio
extrapolated to a *°Ne/**Ne ratio of 13.8 is ~0.07
[Moreira et al., 1998; Sarda et al., 1988].

[20] On a local scale, 2°Ne/**Ne and other air-
affected isotope ratios (such as “°Ar/*°Ar or
129X e/"3%Xe) also correlate, because both ratios
are a function of the same process, the addition of

air-derived to mantle-derived noble gases [Farley
and Poreda, 1993; Moreira et al., 1998]. However,
plotting two independently varying isotope ratios
on two axes results in a series of hyperbolae, each
of which represents a range in end-member compo-
sitions. It is preferable to use a four-isotope system
using 3-D “Turnery” diagrams (see Harrison et al.
[2002] for a more detailed discussion).

[21] The AMK glass compositions define a plane
in a 2°Ne/**Ne-*°Ar/**Ne-*’Ar/**Ne “Turnery dia-
gram” (Figure 3), therefore these compositions
must result from a mixture of at least three com-
ponents. Contamination of magmatic gases by
either air alone or air saturated water (ASW) alone
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would result in a linear data array, as opposed to
the plane observed. The AMK glasses have been
contaminated by air-derived noble gases with a
range in *°Ar/**Ne. Unlike the glasses examined
by Ballentine and Barfod (see section 1 and Bal-
lentine and Barfod [2000]), the dominant contam-
inant for the AMK glasses is not unfractionated air;
plotting the data on the same discrimination dia-
gram as Ballentine and Barfod [2000] (Figure 2d),
it is clear that the Ar/Ne in the ADC end-member is
considerably more variable in the AMK samples
than in gas rich basaltic glasses such as “popping
rock™ or DICE glass [Ballentine and Barfod,
2000].

[22] Most aqueous fluids have *®Ar/**Ne > air; also
air adsorbed onto the sample surface will have
3Ar/*Ne > air. Therefore, atmospheric contami-
nants will likely have *°Ar/**Ne between that of air
(18) and ASW (=65). From Figures 2d and 3, it
appears that >*Ar/*’Ne of the ADC ranges between
values greater than air (*°Ar/**Ne,;, = 18) but also
values less than air (as low as 5). It is not
immediately obvious how these basalts preferen-
tially entrained air Ne relative to air Ar. Some
tektites [Matsubara and Matsuda, 1991] and Ice-
landic glasses (P. Burnard, unpublished data, 1996)
have Ar/Ne ratios < air, attributed to preferential
diffusion of atmospheric Ne (without Ar) into the
glasses after impact melting (tektites) or eruption
(glasses). It seems plausible that diffusion-in of
atmospheric Ne may have resulted in the low Ne/
Ar ratios in the ADC in these samples.

[23] The plane fitted to the Ne-Ar data from the
AMK glasses is steeper than that of the “popping
rock” data (Figure 3); these glasses have higher
Ne/Ar ratios than the “popping rock™ (for a given
*"Ne/**Ne). This is likely due to fractionation of
Ne from Ar during degassing of the parent AMK
magmas (see section 5.3). It is not possible to
determine if atmospheric contamination predated
volatile fractionation or vice versa: the predicted
“Turnery” diagram trajectories for fractionation
followed by contamination are the same as for
contamination then fractionation.

[24] The “He/*°Ar* ratios of these glasses is ~3
times the production ratio; considering that Sy./Sa,

~ 0.5*Sy/Sar [Carroll and Webster, 1994], the
Ne/Ar ratio of the basalts will be a maximum of 1.5
times higher than the undegassed magma. Assum-
ing *°Ar/**Ne of the AMK magmas prior to
degassing was ~10 (i.e., the same as popping rock
[Moreira et al., 1998]), then the predicted
*°Ar/**Ne ratio of the fractionated AMK magma
would be ~7, which is broadly consistent with the
observed ratios.

[25] From Figure 2d, it is clear that there is a range
in *®Ar/**Ne at any given *°Ne/**Ne, especially at
low 2°Ne/**Ne ratios. In order that this occurs,
contamination by atmospheric Ar without a con-
stant addition of atmospheric Ne must occur in
these samples. Estimating the mantle *°Ar/**Ne
ratio by extrapolating to a given mantle-like
2Ne/**Ne ratio in Figure 2d will not adequately
correct for addition of atmospheric Ar. Similarly,
although there are well-defined relationships
between 2’Ne/**Ne and “°Ar/*°Ar or '*Xe/'**Xe
(Figure 2), it is not possible to constrain the source
region “°Ar/°Ar or '*°Xe/'*?Xe without prior
knowledge of the mantle **Ar/**Ne or '**Xe/**Ne
ratios [Harrison et al., 2002].

[26] In summary, it appears likely that four or more
components have contributed to the noble gas
inventory trapped in these samples: (1) a magmatic
component with Ar/Ne ratios higher than that of
the mantle; (2) atmospheric Ne that has diffused
into the samples without accompanying atmos-
pheric Ar; (3) air; (4) an air saturated fluid with
Ar/Ne > (Ar/Ne),;. The complexities of mixing
between these end-members means that little infor-
mation on the mantle noble gas isotope ratios can
be gleaned from these data other than they broadly
support the conclusions of Moreira et al. [1998]
and interpretation of their data by Harrison et al.
[2002].

5.2. Contamination Mechanisms

[27] Assimilation of *®Ar-bearing altered oceanic
crust was proposed by Fisher [1997] (see section
1) based on correlations between *He/*°Ar* and
S Ar/*Ar* for multiple analyses (step crushing) of
individual samples. However, in contrast to the
observations of Fisher [1997], there is no clear
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relation between *He/*’Ar* and °Ar/*°Ar* in
multiple crush steps of individual glasses in this
study (not shown); assimilation of *°Ar bearing
crust does not appear to have occurred in these
basalts.

[2s] The correlation between *He/*°Ar* and
3Ar/*°Ar* observed in stepped crush data of
several basaltic glasses (reported by Fisher
[1997]) could be an artifact of the crushing techni-
que: (1) The “slug” type of crushers (used in the
study by [Fisher, 1997]) are likely to release air-
derived *®Ar during crushing due to the action of
the iron “slug” on the vacuum chamber walls
(extraction blanks with no sample are unlikely to
mimic the abrasive action of glass powder on the
crusher walls); and (2) *He/*°Ar* increases in
small vesicles (see below and Burnard [1999a]),
and therefore “He/*’Ar* will likely increase as
crushing progressively fractures smaller and
smaller vesicles [Burnard, 2001].

[0] Thus, the increase in *°Ar produced by the
crushing equipment used by Fisher [1997] with
crushing duration, coupled with the change in He/
Ar with vesicle size, can result in a fortuitous
correlation between *°Ar/**Ar* and *He/*°Ar*, as
reported by [Fisher, 1997]. It seems unlikely,
therefore, that crustal assimilation is a significant
source of *°Ar in oceanic basalts.

[30] Some of the AMK samples (but not all) have
increasing “’Ar/*°Ar with progressive crushing
(Table 2). The high *°Ar/*°Ar of later crushes of
some samples is likely to be due to removal of a
persistent contaminant, possibly adsorbed on the
sample surface or located in microcracks, by the
earlier crushing steps.

5.3. Volatile Fractionation During
Degassing

[31] With the exception of sample AMK3373, all
measured *He/*°Ar* ratios are higher than rea-
sonable production/accumulation values for the
MORB mantle (i.e., between 2 and 4; see section
1). There also is a range of volatile compositions
for each glass; ‘He/*°Ar* and 4He/C02 system-
atically increase with progressive crushing (Figure
4). *Ar*/CO, generally decreases during crush-

ing. These patterns are expected for solubility —
determined magmatic degassing. The range in
composition found in each sample likely results
from rupturing progressively smaller vesicles as
crushing progresses; the smallest vesicles in a
basaltic glass sample nucleated last and preserve
the most fractionated volatiles [Burnard, 2001,
1999a]. It should be noted that “He/**Ar* of the
AMK samples are at the low — undegassed — end
of the spectrum of compositions found in MORBs
globally: *He/*’Ar* values as high as 50 are
commonly found in MORBs erupted at compara-
ble depths to these samples [Jambon et al., 1985;
Marty and Zimmerman, 1999; Sarda et al.,
2000].

[32] The lack of a correlation between eruption
depth and a degassing index (such as *He/**Ar*)
demonstrates that comparatively small variations
in eruption pressure (<50 bars) do not affect the
amount of magmatic degassing. This is perhaps
unsurprising considering that CO, bubbles nucle-
ate at considerable depth in the crust [Pan et al.,
1991]. The narrow range in “He/*’Ar* in these
samples suggests that magmas from this section of
the MAR all degassed to more-or-less the same
extent. Experimentally determined He and Ar
solubilities suggest that, during distillation, loss
of only 10-20% of the original volatiles would
result in *He/*°’Ar* ~ 6-8 (assuming an initial
“He/*°Ar* of 3), as observed in these samples.
Alternatively, batch degassing (as opposed to dis-
tillation) may have produced the volatile fractio-
nation seen in these samples. Two episodes of
vesiculation would be required to account for the
compositions in these samples, one of which was
lost (resulting in a high He/Ar magma) while the
second produced the vesicles that are analyzed in
the glass. It is not possible to distinguish between
batch and distillation degassing mechanisms with
these data.

[33] Segments 8 and 10 have noticeably higher
volatile concentrations and higher *°Ar/*®Ar ratios
than Segment 17, with a good relationship
between eruption depth and *°Ar/°Ar (Figure
5). For example, the maximum “CAr* of any
Segment 17 sample is 0.6 pcc STP g ', while
the minimum “*°Ar* of all of the remaining
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Figure 4. Variations within multiple crush steps of the same sample. *“He/*°Ar (top) and *He/CO, (bottom) against
crush number for two representative AMK glasses. AMK3339, circles; AMK3380, squares. He/CO, increases as
crushing progresses, particularly for the last crush of each sample. He/Ar increases also, although less rapidly than for
He/CO,. Given that the greatest differences in solubility are between He and Ar, the He-CO, fractionation is likely
due to preferential CO, removal from the final crush steps, whereas He-Ar fractionation is due to fractional degassing.

samples is also 0.6 pcc STP g '; the average
4OAr* concentration of Segment 17 samples is a
factor of three lower than the average of Seg-
ments 10 and 8. The low *°Ar/°Ar ratios are to
be expected of samples that have low concentra-
tions of magmatic gases, but it is not immediately
obvious why the Segment 17 samples should have
lower noble gas concentrations. At 3200 mbsl,
Segment 17 is the most shallow of the segments
sampled. Differences in internal vesicle pressure
arising from the variation in eruption depths
cannot account for the noble gas concentration
variability, as the pressure differences are only
20%. However, the lower eruption pressure of

Segment 17 glasses may determine the ability of
the glasses to preserve their vesicles, as discussed
in the following section.

5.4. Preservation of Volatiles in Basaltic
Glasses

[34] The vast majority of magmatic volatiles are
not preserved in basaltic glasses. For example, 1
gram of basalt glass (density ~2.8 gem ) has a
typical vesicularity of 0.5—1%. [Dixon et al., 1988;
Kurz and Jenkins, 1981]; a nonquantitative inspec-
tion of thin sections of these glasses show that
these vesicularities are within this range and occa-
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Figure 5. “OAr/*°Ar as a function of ridge depth. The maximum “OAr/*®Ar ratio measured on each sample is plotted
against ridge depth at the sampling site (solid circles, Segment 8; open circles, Segment 10; solid squares, Segment
17). Despite a relatively small change in ridge depth, there is a clear relationship between *“’Ar/*°Ar and eruption
depth, with high “OAr/°Ar ratios (>15,000) limited to samples erupted at high pressure (i.e., under a greater column of

seawater).

sionally higher. This vesicularity corresponds to
14-28 x 10> cm ™ of vesicle volume per gram of
glass. If all the vesicles were filled with magmatic
volatiles (predominantly CO,) at the eruption pres-
sure (~300 bars), then MORB glasses would have
CO, concentrations of 4—8 cm® STP CO, per gram
of basaltic glass. Examination of Table 2 shows
that 90% or more of the vesicles in the AMK
samples are empty. Either the vesicles leaked
(ruptured) after eruption, or they never trapped
volatiles in the first place (e.g., they may be
shrinkage features). Small variations in the amount
of vesicles preserved will therefore have a dramatic
effect on the amount of gas extracted from the
sample during analysis. As a result, variations in
noble gas content in different ridge sections may
reflect vesicle preservation rather than magmatic or
degassing phenomena.

[35] *He/**Ar* ratios are essentially indistinguish-
able in all segments, implying an approximately
constant degree of magmatic degassing. At first
glance, this is inconsistent with the low *°Ar*
concentrations in Segment 17 samples. These
observations can be reconciled if the depth of the

ridge determines the amount of gas trapped or
preserved in the glass but not the extent of gas lost
from the magma. It seems most likely that degass-
ing is essentially a magma chamber (as opposed to
eruption) phenomenon, as concluded by Marty and
Zimmerman [1999] and Burnard et al. [2002],
whereas vesicle preservation is determined by
eruption pressure.

[36] A trend of decreasing *°’Ar/*®Ar with increas-
ing °°Pb/*°*Pb in Mid-Atlantic MORBs led
Sarda et al. [1999] to conclude that atmospheric
Ar was recycled to the mantle along with crustal
(radiogenic) Pb. However, Burnard [1999b] sug-
gested that the trend may be co-incidental: ridge
segments with radiogenic Pb are more shallow
than “normal” ridges, and therefore likely to be
more degassed. Degassed samples will be more
susceptible to atmospheric contamination and
consequently have lower *°Ar/*°Ar ratios, result-
ing in a relationship between Pb and Ar isotopes
that is not due to the composition of the mantle
source to the basalts. Although the change in
ridge depth in this study is small (<1000 m in
comparison to >3000 m in the Sarda et al. study),
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Figure 6. “He and “°Ar concentrations in the volatile phase. AMK samples with data from more than one crush.
Circles, AMK3376; Diamonds, remaining samples (individual samples not distinguished for clarity). The final crush
steps of each sample are highlighted (solid symbols). Previous estimates of the “initial” (i.e., prior to any degassing)
volatile compositions for MORB mantle melts is given by “M” [Marty and Zimmerman, 1999]; the line extending
from “M” to lower *°Ar*/CO, at near constant “He/CO, is the predicted compositions resulting from equilibrium
degassing of these volatiles. “D” is the composition predicted for a MORB magma that has lost 30% of its original
volatiles (solubilities are from Carroll and Webster [1994]). It is clear that the range in noble gas concentrations in the
volatile phase in these samples is much greater than the range in He/Ar that would result from equilibrium degassing.
With the exception of AMK3376, the highest *“He/CO, and *°Ar*/CO, values for each particular sample are from the
last crush of that sample. The overall correlation results from variations between samples: multiple crushes of
indivdual samples (with the exception of the last crush steps) are usually parallel to the degassing trend marked by the

line M — D.

there is a clear relationship between *°Ar/*°Ar and
ridge depth (Figure 5), demonstrating that the
primary control on the *°Ar/*°Ar ratio of a basalt
is not its’ mantle source. However, in contrast to
the Azores [Moreira and Allegre, 2002] and the
Amsterdam-St Paul plateau [Burnard et al.,
2002], magmatic degassing cannot be the control
on the *°Ar/*®Ar ratio because all samples essen-
tially have the same *He/*’Ar* (with the excep-
tion of AMK3339). Instead, it is likely that
vesicle preservation determines the concentration
of magmatic Ar — and consequently the *°Ar/*®Ar
ratio — in these samples. Variable vesicle preser-
vation with or without magmatic degassing could
result in the relation between *°Ar/*°Ar and
206pp29%Pb reported by Sarda et al. [1999].
Irrespective of the cause, the fact that there are
strong correlations between *°Ar/°Ar and erup-
tion depth throws significant doubt on the plausi-

bility of recycling atmospheric Ar to the MORB
mantle source.

5.5. Noble Gas Concentrations in the
Volatile Phase

[37] The noble gas:CO, ratio is equivalent to the
concentration of noble gases in the volatile phase:
while this assumes that the volatile phase (i.e., that
trapped in the vesicles) is composed entirely of
CO,, major variations in the composition of the
volatile phase (i.e., CO, fraction of the volatile
phase < 50%) would be required to affect the
following discussion. Variations in noble gas con-
centration in the volatile phase (= noble gas/CO,)
are not subject to the same vesicle preservation
problems as noble gas concentrations in a rock.
There is a positive correlation between *He/CO,
and *’Ar*/CO, for the dataset as a whole (Figure 6).
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Figure 7. *°Ar*/CO, and *“He/CO, as a function 1/[CO,]. Total data (i.c., sum of all crush steps) shown. AMK3376,
filled circle; AMK3339, filled square; AMK3377, filled diamond; AMK3351, filled triangle; AMK3373, open circle;
AMK3375, open up triangle; AMK3378, open square; AMK3380, open diamond; AMK3410, open down triangle;
AMK3412, cross. There is a general inverse correlation between CO, concentration in the sample and noble gas/CO,

ratio.

Also, the *He and *°Ar concentrations in the volatile
phase increase as the amount of volatiles trapped in
the glass — i.e., the CO, concentration — decreases
(Figure 7). The large range in He/CO, and Ar/CO»,
and the correlation between them, cannot be pro-
duced by solubility-controlled fractionation; solu-
bility-controlled fractionation would result in a
negative correlation between *He/CO, and *°Ar*/
CO, ([Burnard, 2001] and Figure 6). The range in
noble gas/CO, relative to the range in *He/**Ar* is
considerably greater in these analyses than would
be predicted by solubility-determined degassing of
a single initial volatile composition. Some process

or processes other than solubility-determined
degassing appear to control noble gas concentra-
tions in the volatile phase.

[38] Two separate effects need to be examined: (1)
variation in He/Ar and He/CO, of individual crush
steps of each sample and (2) range in, and corre-
lation between, He/CO, and Ar/CO, of the entire
dataset.

5.5.1. Variations Within Each Sample

[39] Most noble gas/CO, variation occurs in the
last crush step of each sample (Figures 4 and 6). As
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crushing progresses, “He/CO, is approximately
constant while *°Ar*/CO, decreases (Figure 4),
until the very last crush steps. These usually have
high *He/CO, and *°Ar*/CO, (relative to the
previous analyses). Either noble gas-CO, fractio-
nation is most significant in the smallest vesicles
(as sampled by the final crush steps) or else it is the
crushing process itself that fractionates noble gases
from CO,.

[40] As sample grain size is reduced during crush-
ing, CO, will be adsorbed on the fresh glass
surfaces. Experiments by Barker and Torkelson
[1975] have shown that the amount of CO,
adsorbed by crushing quartz and basalt in vacuo
was between 10 and 50% of the amount of CO, that
could be adsorbed by coating each new grain with a
monolayer of CO,. Each adsorbed CO, molecule
occupies an area between 22 (monolayer) and 100
(observed) A2, Assuming Barker and Torkelson’s
data using crystalline basalts and quartz can be
extended to basaltic glasses, 2—7 pmol CO, can
be adsorbed per mm? of freshly created glass sur-
face. In the worst-case scenario, where a CO,
monolayer is adsorbed on all freshly crushed surfa-
ces, 750 mg of 100 pm diameter spherical grains are
required to adsorb a significant fraction (25%) of the
0.5 pmol CO, that is typically released from each
crush step. Considering that <200 mg of any sample
is crushed to less than 100 pm (Table 2), it seems
unlikely that CO, adsorption can account for the
large differences in noble gas/CO, ratio observed
from sample to sample. However, CO, adsorption
may be significant for the final crush steps or for
gas-poor samples that yielded less CO,. For exam-
ple, crush steps that yielded only 0.05 umol of CO,
(e.g., sample AMK3339, the final step of AMK3373
and the first step of AMK3377) require only 75 mg
of <100 micron powder to adsorb 25% or more of
the released gas. In these instances, it is plausible
that noble gas:CO, measurements systematically
overestimate the true ratios.

[41] While some of the variations in noble gas/CO,
can be attributed to CO, adsorption during analy-
sis, there is a smaller range in “He/CO, compared
to “°Ar*/CO, and most samples have a range in
“He/*°Ar*. These cannot result from CO, adsorp-
tion; therefore there are real variations in noble gas/

CO, in the vesicles (Figure 6). The variations are
consistent with solubility controlled degassing
which would fractionate 4He/C02 less than
O Ar*/CO,.

5.5.2. The Dataset as a Whole

[42] Although some CO, adsorption occurs during
analysis, the **Ar*/CO, variation in the dataset as a
whole is considerably greater than the variation in
“0Ar*/CO, within multiple crushes of a single
sample. If CO, adsorption was the dominant con-
trol on noble gas-CO, fractionation, then the var-
iation within a single sample should be similar to
that of the dataset as a whole: clearly this is not so.
Furthermore, most of the variation within individ-
ual samples results from high *°Ar*/CO, in the
final crush steps; if CO, adsorption during analysis
was the major noble gas-CO, fractionation mech-
anism, excluding the final crush steps should
reduce or eliminate the overall *°Ar*/CO, varia-
tion. Again, this is not so (Figure 6). While CO,
adsorption does affect the analyses — particularly
the last crush of each sample — it seems likely some
other mechanism must fractionate CO, from the
noble gases in order to generate the range in *’Ar*/
CO, and *He/CO, observed within the dataset as a
whole. Solubility-determined fractionation cannot
account for these variations as there is a restricted
range in *He/*’Ar* but large range in He/CO,;
while volatile solubilities in melts are dependent
on melt composition (and pressure), Ar is always
less soluble than either He or CO, [Carroll and
Webster, 1994; Dixon et al., 1995; Jendrzewski et
al, 1997; Mattey, 1991], consequently He and Ar
should fractionate more than He and CO,.

[43] The reason behind these large variations in “He
or “°Ar*/CO, is not obvious. Plausible mechanisms
include the following: (1) there are large variations
in the volatile chemistry of the basalt source regions;
(2) the mantle source has relatively constant noble
gas/CO, but variations in mantle melting conditions
(fraction melted or Fo, during melting) result in
primary melts with different noble gas/CO, ratios;
and (3) the mantle and the primary melts have
constant noble gas/CO, but late stage fractionation
of C species from noble gases results in the highly
variable noble gas/CO, ratios observed.
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[44] Variations in the mantle *He/CO, (#1) or in
the melting regime (#2) should be accompanied by
variations in other geochemical tracers (either solid
or volatile). A decrease in noble gas/CO, of
approximately 10-fold is not reflected in *He/*He,
major element composition or Sr isotopic compo-
sition, as might be expected of melting in the
presence of CO, [Hirschmann, 2000], or if (for
example) recycling introduced C to the mantle
source. This suggests a more shallow origin of
the noble gas-CO, fractionation.

[45] It is possible that solid C can be stabilized in a
magma, which would result in high noble gas/CO,
ratios in the volatile phase, as observed in these
samples. For example, solid (at room temperature),
reduced C species have been observed in basaltic
glasses, although their origin, reduced magmatic C
or a posteruption contaminant, remain controversial
[e.g., Mattey, 1991; Pineau and Javoy, 1994]. If C
reduction does occur within the magma (as pro-
posed by Mathez and Delany [1981] and Pineau
and Javoy [1994]) or during cooling of the glass,
then decoupled noble gas — CO, behavior would
result, possibly creating the large range in noble
gas/CO, observed in this sample set. Other mech-
anisms for fractionating noble gases from CO,
cannot be ruled out, for example, it is conceivable
that this is a kinetic effect where noble gases diffuse
rapidly and therefore attain melt — vapor equilibra-
tion, while comparatively slow CO, diffusion pre-
vents CO, equilibration. This is consistent with
measurements of CO, contents in EPR basalts
[Dixon et al., 1988] that show CO, is overpressured
in the glass relative to the vesicles. The overall trend
for high noble gas/CO, ratios at low CO, concen-
trations (Figure 7) is broadly consistent with pref-
erential CO, removal from the vesicles but does not
discriminate between these mechanisms.

6. Conclusions

[46] Complex processes determine the noble gas
abundances and isotope ratios measured in basaltic
glasses. There are at least four sources of noble
gases in these samples, only one of which origi-
nated in the mantle. The remaining three noble gas
sources are all atmospheric noble gases that have

been fractionated relative to each other. These most
likely were added to the mantle-derived noble
gases after eruption: there is no evidence for
significant contamination of the magma itself.
The most shallow ridge segment sampled has the
highest fraction of atmospheric-derived gases.

[47] The noble gases in the mantle-derived contri-
bution to the noble gas budget have also fractio-
nated from each other. Fractionation during
solubility-determined gas loss from the magma
resulted in high *He/*’Ar* in small vesicles (as
sampled by later crushes). Although the lowest
concentrations of volatiles are found in samples
from the shallowest ridges, there is no relation with
amount of degassing (as traced by *He/*°Ar*) with
either ridge depth or location of eruption on the
segment. Degassing is thought to be dominated by
deeper, mid-crustal processes.

[48] As a result of the complex contamination
processes, it is difficult to constrain the mantle
“OAr/*®Ar ratio other than the mantle source of Ar
in these samples are not distinguishable from that
of the “popping rock” (*°’Ar/°Ar = 40,000—
80,000; [Harrison et al., 2002]).

[49] Noble gas:CO, ratios are highly variable.
While the extreme ratios (typically of very low
gas releases) may result from analytical artifacts,
the range observed in these measurements likely
reflect the range actually present in the vesicles.
The large variations in noble gas: CO, cannot
result from solubility-determined gas loss from
the magma, but may result from CO, disproportio-
nation and condensation of reduced C species
within the vesicles during cooling.
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