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Abstract

A novel technique for simultaneous pulse reshaping and repetition-rate mul-
tiplication of mode-locked laser pulse trains using linearly-chirped apodized
fiber Bragg gratings is proposed. Simple analytical expressions for apodiza-
tion and phase profiles of the grating are derived. The practical feasibility of
this technique is discussed in detail for the case of high-repetition-rate square

pulse generation and multiplication.

x\uLde t P\w{’ TQLL ( L,“ .

0¢ |00



The development of all-optical techniques for the manipulation and shaping of optical
pulse trains at high repetition rates is of major importance for the advent of future ultrahigh-
capacity optical communication systems. Although optical pulse processing has been tra-
ditionally achieved using time-space conversion in bulk or arrayed-waveguide gratings (see,
e.g., [1-3]), recent advances in fiber Bragg grating (FBG) technology have demonstrated that
precise pulse manipulation can be achieved using a FBG as a Fourier filter, featuring the
advantagés of an all-fiber low-loss integrable device. Ih particular, FBGs have been demon-
strated to be effective tools for manipulation and processing of picosecond mode-locked pulse
trains at relatively high repetition rates, including the generation of dark soliton pulses [4],
optical square waves [5], and pulse train multiplication using either superstructured sinc-
sampled gratings [6] or linearly-chirped gratings exploiting the temporal Talbot effect [7,8].
For many applications, it would be desirable to achieve simultaneous pulse reshaping and
multiplication of a pulse stream emitted by a mode-locked laser source, still maintaining a
grating design practically realizable using FBG writing technology nowadays available. For
instance, the possibility of generating picosecond optical square pulses from a mode-locked
laser at a repetition rate higher than that typically available from the laser itself (~ 10 GHz)
would be of great interest for optical switching applications in ultra-dense time-division mul-
tiplexing optical systems.

In this Letter we show that linearly-chirped FBGs with relatively simple apodization pro-
files can be used for the simultaneous pulse reshaping and repetition-rate multiplication of
a mode-locked pulse train, and we provide general insights into the design of such fiber
gratings. In particular, we describe in detail the generation and multiplication of optical
square pulses up to tens of gigahertz repetition rates.

Let us consider a periodic optical pulse train emitted by a mode-locked laser source with
repetition rate 1/T and carrier frequency wy, described by the slowly-varying periodic com-
plex field envelope f(t), and a FBG with a spectral field reflectivity r(w — wo) which is used
as a Fourier filter. If S™(w) is the spectrum of the incoming mode-locked signal f(t), the

spectrum of the reflected field is merely given by S°*(w) = S**(w)r(w), so that the time-
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domain reflected field envelope F'(t) may be reconstructed by spectral inversion. As we are
interested in simultaneous pulse reshaping and pulse multiplication, it is worth representing

the spectral reflectivity of the grating by the following factorization:

r(w) = Q) exp(ifw’/2) (1)

where £ is a dispersion parameter. As we will show below, the first factor Q(w) is responsible
for pulse reshaping, whereas the second one exp(ifw?/2) leads to the multiplication of the
pulse repetition-rate by a suitable choice of the dispersion parameter 3. In order to achieve
a multiplication factor M, we choose the dispersion parameter § according to the fractional

Talbot condition [7-9]:
B=£T*/(2n M) (2)

In this case, after spectral inversion, it may be shown that the field envelope F(t) reflected

from the fiber grating is given by:
1 M T T ,
Ft)=—= ) g (t —k— - a—) exp(11x) (3)
0

where 0 = 0 if M is even, 0 = 1 if M is odd, 9 = £[(M — o)7/(4M) — k(k + o)n/M],
and g(t) is the convolution between f(t) and the impulsive response of the grating with
B = 0, ie. g(t) accounts for the reshaping effect provided by the spectral factor Q(w).
From Eq.(3) it follows that the periodicity of the reflected field F(t) is the same as that
of the initial mode-locked signal. In addition, if g(t) is tailored so that the target pulse
duration is shorter than T'/M, the delayed replica of g(t) with different phases, appearing
in Eq.(3), are not overlapped, and their superposition leads to an effective multiplication
of the pulse-train repetition rate. The spectral shape of Q(w) is left at this stage arbitrary
and has to be chosen in order to achieve the desired pulse reshaping; in particular, if Q(w)
is spectrally flat (both in phase and amplitude) over the bandwidth of the mode-locked
pulse train, one has g(t) ~ f(t) and pulse multiplication without pulse reshaping occurs.

Let us now consider, as a significant example, the problem of square pulse generation and
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multiplication of a periodic stream of transform-limited pulses with duration 7, emitted by
a mode-locked laser at a wavelength of 1.5 um. To generate a square pulse of duration
Ts, With 7, < 7, < T, the spectral function Q(w) has to be cho;en to produce a sinc-like
pulse spectrum, i.e. S7(w) ~ sin(wr,/2)/ (Q73/2). Since this spectrum is unbounded, a
truncated sinc function is in practice used, with a sufficiently smooth truncation envelope
to avoid the appearance of ringing in the final square wave [1,5]. In addition, the rise time
and duty cycle of the square wave are subjected solely to the usual limits imposed by the
finite bandwidth of incoming mode-locked laser field. Figure 1 shows an example of target
spectral reflectivity of a nonunifrom grating used for square pulse generation; parameter
values for the mode-locked pulse train are taken from Ref. [9] and correspond to T'=100 ps,
7,=700 fs and wy=1.2137 x 10 rad/s. A multiplication factor M = 8 has been chosen,
leading to generation of square wave pulse trains at 80 GHz repetition rate.

The synthesis of the FBG can be performed starting from coupled-mode equation analysis by
using either approximate methods, such as the first-order Born approximation valid for weak
reflectivity profiles, or more exact methods based, e.g., on inverse scattering techniques [10].
The latter approach permits a precise reconstruction of the index profile, needed for a reliable
FBG design, but it turns out to be inevitably numerical; conversely, the former method
provides analytical approximations useful to get general insights into practical feasibility
of the gratings. We assume a FBG of length L with a refractive index profile n(z) =
no[l 4 2h(2) cos(2kpz + ¢(2))], where ng is the average effective index, kp = nowo/co is the
Bragé reference wavenumber, c; is the speed of light in vacuum, and (¢(z),h(z)) are the
phase and depth of index modulation, respectively, with h(z) = 0 for |z| < L/2. In case of a
weak reflectivity (|r(w|) < 1), from a first-order analysis of coupled-mode equations it can

be easily proven that:

e explio()] = == [ dwQlu) ex (2—%&+§w) (@

We note that, in most cases of practical interest (e.g., for the experimental conditions of Refs.

[8,9]), pulse multiplication requires highly dispersive gratings, with a dispersion parameter
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B such that BAw? >> 1, Aw being the bandwidth of the spectral function Q(w). The
integral in Eq.(4) can be thus calculated in the asymptotic limit 8 — oo using the method

of stationary phase, yielding the simple and general relation:

be) expliole)] = /250 - ) e p(—”;f%;z) )

Equation (5) shows that the required FBG has an almost quadratic phase profile, that pro-

vides pulse multiplication, and a modulation depth h(z) that reproduces the shape of target
spectral function Q(w) and not its Fourier transform, as it occurs in non-dispersive gratings
[5]. From a physical viewpoint, this circumstance can be understood by observing that, for
a highly dispersive grating, different spectral components of the incoming field are reﬂected
at different positions along the FBG with a reflection coefficient proportional to the local
refractive index modulation depth. Notice also that from Egs.(2,5) the grating length can
be estimated as L ~ cpAwT?/(4nnoM). For typical repetition-rates (e.g. 10 GHz) and
pulse duration (e.g. 3 ps) of mode-locked lasers used in optical communications, a grating
length up to a few tens of centimeters is required, which is readily obtainable using recently
developed continuous writing techniques [5,6,11]. In order to show the feasibility of the tech-
nique and to provide practical examples of FBG design, let us focus again our attention to
the problem of square pulse generation and multiplication. The refractive index variations
(h(2), ¢(2)) needed to obtain the reflectivity profile of Fig.1 are numerically computed using
an inverse scattering method based on a differential layer-peeling algorithm [10]; the result is
shown in Fig.2 and compared to the approximate profile as predicted by Eq.(5). In addition,
by direct integration of coupled-mode equations, we checked that the calculated FBG in-
dex profile exactly reproduces the target spectral reflectivity. The corresponding multiplied
square pulse train and pulse shape are shown in Fig.3. In order to assess the robustness
of the proposed technique against imperfections of the FBG or possible spectral drifts that
may occur in an experiment, pulse distortions induced by different detuning conditions have
been simulated, and the main results are shown in Fig.4. The dotted curve in the figure

reproduces the distorted square pulse as obtained by detuning the central frequency of the
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FBG reflectivity spectrum by 130 GHz away from that of the mode-locked pulse spectrum;
the dashed curve in the figure shows the reflected pulse train intensity when the dispersion
parameter (3 differs by 0.2% from its ideal value (see Eq.(2)). )

In conclusion, we have proposed and designed a class of highly-dispersive apodized fiber
Bragg gratings for the simultaneous pulse shaping and repetition-rate multiplication of
mode-locked pulse trains. As example simultaneous square pulse generation and multipli-
cation have been studied, showing the practical feasibility using current FBGs technology.
This work may be important for all-optical switching in TDM (e.g. demultiplexing) and
WDM (e.g. frequency conversion) networks where high repetition rate pulses of suitable

shape are highly desirable.

V. Pruneri is the Pirelli Research Fellow of Photonics at Southampton University.
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Figure Captions.

Fig.1. Spectral reflectivity 7, both in amplitude (a) and phase (b), of a FBG for square

pulse generation. Target and numerically computed spectral reflectivity curves are practi-

cally overlapped.

Fig.2. Refractive index depth (a) and phase (b) profiles of the designed FBG as calcu-
lated by the inverse scattering method (solid curves) and by first-order analysis (Eq.(5),
dashed curves) for ng=1.452. Note that the two curves are almost overlapped, except for

the central lobe in (a).

Fig.3. (a) Multiplied square pulse train reflected by the FBG, designed according to Figs.1-
2, and (b) enlarged view of pulse shape. The dotted curves in the figures correspond to the

incident mode-locked pulse train.

Fig.4. Shape of a distorted square pulse as obtained by 130-GHz spectral detuning of
FBG (dashed-dotted curve) and change of dispersion parameter S by 0.2% (dotted curve).

The solid curve shows the undistorted square pulse shape. Distortions of other pulses in the

train are almost identical.
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