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Abstract

Optical parametric interaction in isotropic third-order nonlinear media with
magneto-optic properties is investigated. It is shown that new phase-matching
conditions with m;;\gneto-optic contribution are possible. In particular we
study four-wave mixing and electric-field induced three-wave parametric pro-
cesses in the presence of a magnétic field applied élong the direction of propa-
gation of the interacting waves. Control of the new phase-matching branches

can be achieved by tuning of the magnetic field.
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In order to achieve efficient nonlinear optical processes it is necessary to ensure that the relative
phase mismatch between interacting fields and corresponding nonlinear driving polarizations is set
to zero (i.e. the interaction is said to be phase-matched). The material (and waveguide) dispersion,
which is responsible for the different phase-velocities of the interacting field and polarization waves
in the medium, would prevent cumulative growth of the fields over the entire interaction length
(1]. It has been shown that phase-matching in second-order nonlinear (x®) media can be obtained
by exploiting the natural [2] or induced [3] circular birefringence. In particular Ref.[3] shows that
phase-matching in some (2 magneto-optic crystals could be in principle achieved by applying a
magnetic field along the direction of propagation of the interacting waves and by using appropriate
right or left circular polarizations. However, due to large values of dispersion, the magnetic fields
required for complete phase-matching are usually too high for practical devices. In this paper we
study optical parametric interactions in third-order nonlinear (x(3)) magneto-optic media where
the magneto-optic contribution to phase matching is used to induce new phase-matching branches
rather than to compensate for the full phase-mismatch (which is compensated intrinsically or
by other means). In particular we focus on Four-Wavé-Mixing (FWM) and Three-Wave-Mixing
(TWM) in the presence of a periodic electrostatic field in isotropic x(3) magneto-optic media.
FWM is the typical interaction in a x@ medium, i.e. the conversion of two pump photons at
frequency w3 and wy into a s-igna,l (w1) and idler {ws) photons: w3 + wy = w; + we. In the small-
signal gain limit, efficient conversion occurs when the wave vectors of interacting waves are phase
matched, ie. k3 + kg = k| + ko [4). Degenerate FWM in isotropic nonlinear gyrotropic media has
been studied, however without particular reference to phase-matching issues (given the fact that
the interaction was degenerate, i.e. Wl = Wy = w3 = wy = w) [5]. Another interesting interaction
which can occur in a x® medium is electric-field induced TWM (EI-TWM), i.e. a FWM where one
of the pump .waves becomes a low frequency or electrostatic field (ws ~ 0) leading to an equivalent
x? nonlinearity. In this case, quasi-phase matching (QPM) techniques have been proven to be
powerful means to make efficient the TWM process w3 = wy + wp. Typical examples are second-
harmonic generation (SHG) and parametric down-conversion (PDC) in optical glass waveguides

where a periodic electric field is applied [6] or stored using poling techniques {7]. In this paper we
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will refer more to PDC rather than SHG although one can apply straightforwardly to the latter
case the same concepts.

To study FWM and EI-TWM interactions in an isotropic x(®) magneto-optic medium, we define
a (z,y,z) Cartesian frame and we consider, without loosing of generality, electromagnetic (e.m.)
waves propagating along the z-direction which are plane and quasi-monocromatic. We also as-
sume that a magnetic field H, is applied along the z-axis. Each e.m. ﬁéld component Ey(z,t)
oscillating at frequency ws can then be represented as Ey{z,t) = Re[Ei(z, ws) exp(—iwst)} where
k = z,y and § = 1,2,3,4; instead of Ex(z,w), we may equivalently write E¢(z). The total
field will excite in the material a polarization P;(z,t) made of two contributions, a linear one
PE(z,t), due to linear material dispersion and magneto-optic effect (Faraday effect), and a non-
linear one PY¥%(z,t) due to x®). If we use for the polarizations a representation similar to that
used for the fields and we omit for simplicity the dependence on z, the components Pl{ws) and
PYL(ws) oscillating at ws are given by: PE(ws) = eoxfﬁe)(wd;wg)Ef" - ieoxgjzm) (ws;ws, 0)E H,
and PME(ws) = €0 Xag X (Wi = wa + ws + wyiwa,wswy) B BSP BS7, where x5 is

the linear electric susceptibility tensor (which reduces to a scalar, x(¢®), for isotropic media),
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Xy, 18 the magneto-optic susceptibility, x is the third-order nonlinear electric susceptibil-
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ity tensor, and g, g, the degeneracy factor due to intrinsic permutation symmetry of x;;. 7.

For isotropic media there are only 21 nonzero components, three of which are indipendent
(Xzzzz = Xzoyy + Xzyzy + Xzyyz, where we have omitted the superscript (¢e¢€) for simplicity}.
In addition, in the case of electronic response, Xzzyy = Xzyzy = Xayyz- In a general FWM process
(w3 + wy = wy + wy), if we assume negligible pump depletion and weak fields at w; and ws. the

nonlinear polarization P! (w;) oscillating at w; is given by:

, 1 | S
PN (w1) = €0gaegx® {E;"‘E;“E;’?‘ + %E:4E;3E;’2* + 5E;4E:3E;2 + 5.E;;*E;S_E;jz (1)

where y(3) = Xzzzz{Wi = w3 +wy —ws; w3, wy, —ws) and Gdeg 15 the degeneracy factor of the process.
For simplicity, in writing Eq.(1) we have neglected pump-induced cross-phase modulation terms,
which would lead merely to a pump-dependent shift of wave numbers of interacting fields. The

expression for PNL(ws) is obtained by the formal substitution w; + wp, whereas the expressions
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for PyY%(w;) and P (w;) are obtained from those of PV%(w,) and PN¥L(w,) by the substitution
z ¢+ y. It is useful to use a circular representation for the field and polarization vectors by setting:
By = (E; £1E,)/ V2 and Py = (P, = 1Py)/ v2. In the circular representation the polarization

PY¥L(w;) becomes:
2
P (w) = geogdegx(:") [EL*EPEY + EXEPES™ + EUEY B2 (2)

The expressions for PYL(ws), PYL(w;) and PNE(w,) are obtained from Eq.(2) by the formal
substitutions w; ¢ w2 and + > —. The propagation equation for the fields oscillating at w; and

wy in the circular polarization basis can be written as:
GBS + ki (w2) BE® = —powi o PY (w1 2) (3)

where k4 are the wave-vectors for right and left-circularly polarised components which account for
both linear dispersion (in general material and waveguide) and magneto-optic effect, i.e. k3 (u}) =
(w/co)?[n?(w) :FX(IZE;H) (w;w, 0)H:] and n?(w) = 1 + x{®)(w) is the refractive index. For simplicity,
besides the material isotropy of the medium, we have also assumed absence of any waveguide
birefringeﬁce.

As example of magneto-optic effects on the phase-matching condition, we study now in more details
two kinds of interactions: FWM with degenerate pumps (w3 = wy) and EI-PDC when a periodic

electrostatic field is applied to the isotropic medium. To this aim, it is worth introducing the

slowly-varying approximation for the signal and idler fields by the ansatz:

w1 oMW 12 w1,2 1
B2 (z) = {L(._L?l] + " (z) exp [ikz (wy 2)2] )

w3
Furthermore, for the sake of definiteness we consider a right circularly polarized pump field as-
suming E%* =0 and E$® = Ié/ % exp [ik+ (w3)z]; similar results would be obtained in case of a left
circularly polarized pump.
FWM process (2w3 = wi+ws): in this case one has ggey = 3/4 and only the right circularly polarized
fields E%' will experience gain. After substituting the expression for the nonlinear polarization
(Eq.(2)) in the propagation equation (Eq.(3)) and using the slowly varying envelope approxima-

tion (Eq.(4)), it is straighforward to show that the coupled equations for the signal and idler field
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envelopesAy"? takes the usual form of parametric processes [4]: 8, A = iTLAV exp(iAk, z),
where I' = x(3)[w1w2/n(w1)n(w2)]1/2/4c0 (co is the speed of light in vacuum), Ak, = Akgisp +
Ho[V(w1) +V (w2) - 2V (w3)] with Akgisp = 2(ws/co)n(ws) - (w2/co)n(wa) — (w1 /co)n(w1) being the
wave-vector mismatch which in general takes account of both material and waveguide dispersion
and V(w) = [wx(®*™ (w)]/[2n(w)cy] the Verdet constant. From the expression of Ak, it is clear
that a magneto-optic contribution in isotropic x{® media is present only when w; and w+ are rela-
tively different from w3 (i-e. off degeneracy), so that one could exploit the dispersion for the Verdet
constant (which can be quite significant for certain materials [8]). Note that the same results apply
for left circularly polarized pump, signal and idler fields. When the pump field has both a left- and
right- circular polarization component (e.g. linearly polarized), coupling between opposite circular
polarizations for signal and idler fields are possible (see Eq.(2), last two terms). However even for
this case the magneto-optic contribution to phase-matching, given by H,[V(w;) — V(wa)], can be
significant only away from degeneracy.

EI-PDC process (w3 = wi+ws, ws ~ 0): in this case we apply a periodic static electric field Ey, ori-
ented along the z-axis; to the isotropic medium. Let us assume a periodic +/0 square modulati;)n
of Ey along the direction of propagation z with period A ~ 27/ Akgisp, which induces a periodic
effective x(2) proportional to x(® Ey. Equation (2) still holds apart from the forﬁal substitutions
gieg = 3 and E§* & Ey/ 2. For a right circularly polarized pump, after substitution of Eqgs.(2)
and (4) into Eq.(3) and assuming first-order QPM, the following evolution equations for signal and

idler fields can be derived using multiple-scale (or averaging) techniques:

BZAT’ = if [A?" exp(iAk;2) + AT exp(iAk;2)] . (5a)
0: A2 = {0A" exp(iAk,2) (5b)
0, A" = —18 [AY exp(—iAk, z) + A2 exp(—idkyz)] (5¢)
0: A¥?" = —10A% exp(~ik;z) (5d)

where § = \/§FEO\/T3/'1T, Ak; = Akgisp — 2n/A = AEMO (i = 1,2,3), and the magneto-
optic contributions AkMP are given by AkMO = H.[V(w) + V(wg) - V(ws)], AkJO =
H,[-V(w1) + V(w2) — V(w3)] and AkMC = H,[V(w)) — V{wa) — V(w3)]. The general so-
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lution to Eqs.(5) is a linear combination of solutions of the form (A‘_‘;‘,AE‘,AT*,A?')T =
(y1 exp(iAk, z), ys exp(iDkyz), y3, ys expli(Aky — Akg)z])Texp(nz), where 7 and (y1,y9,y3,44)7
can be found as eigenvalues and corresponding eigenvectors of a fourth-order matrix. Efficient
pump conversion thus occurs if Re(n) > 0, and the parametric gain ¢ of the process can be defined
as the maximum growth rate Re(77) among the four eigenvalues. A typical behavior of ¢ as a func-
tion of (Akgisp — 2m/A) is shown in Fig.1. In absence of a magnetic field one has Ak = Ak, = Ak,
and efficient PDC occurs near the QPM condition Ak, sp = 27/ \. When a magnetic field is applied,
degeneracy of Ak; (i = 1,2, 3) is left and three parametric instability branches appear correspond-
ing to the three different QPM conditions Ak; = 0 and to the generation of signal and idler fields
with different polarization states. For example when Ak, = 0 efficient PDC occurs for AY' and
AY?, whereas when Ak, = 0 for A*' and A% (see Eqs.(5)). In the case where the three branches
do not overlap, each PDC process can be well described by standard two coupled equations of
parametric processes, for which analytical solution for the parametric gain can be found and reads:
o; = Re [W} (i = 1,2,3) (see dashed lines in Fig.1). Note that, close to degenerate
PDC (i.e. w; ~ wy) one has Ak, ~ Akz and thus only two distinct parametric inétability branches
occur. A continuous tuning of the instability branches can be achieved by a control of the phase-
matching terms entering in Eqs.(5) exploiting the magneto—bptic contribution Akjw 0, Compared
to the FWM case studied above, the magneto—optic; contributions are here more significant, given
the fact that they are made of only three terms (as the number of optical frequencies) which can
also be very different because of the dispersion of the Verdet constant and the significant difference
between the optical freqliencies.

As an example, let us consider a lead-oxide (SF57 Schott glass) based optical fibre. SF37 is a glass
with a relatively high refractive index, hence 3 (about 5-10 times that of silica [9]), and high
V constant and dispersion of V (V ~5rad/Tm and 15 rad/Tm at 1550 and 775 nm respectively
[8]). In addition lead-oxide glasses can be drawn into single-mode optical fibres {9]. Figure 2 shows
the parametric gain as a function of signal wavelength for a typical SF37 fibre in case of near

degenerate PDC around 1550 nm for different values of applied magnetic field. As evident from



Fig. 2 significant tuning and/or shaping of the QPM branches for nonlinear interactions involving
the lowest-order (i.e. combination of degenerate and orthogonal LP,;) circularly polarised mode
fields can be achieved by applying reasonable magnetic fields.

In conclusion new phase-matching conditions can be generated for circularly polarized four- and
three-wave interactions in isotropic x(®) magneto-optic media by applying a magnetic-field. In par-
ticular we have shown that the technique can be practically implemented for broad-band and/or
tuning of pa.rametric gain. New research is in progress, which shoulc.l -:;.lso lead to the first experi-

mental results.

V. Pruneri is the Pirelli Research Fellow of Photonics at Southampton. The authors acknowl-
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Figure Captions.

Fig.1. Parametric gain for EI-PDC as a function of residual phase-mismatch Ak, ., = Akgisp—2m/A
in absence (dotted line) and with applied magnetic field (continuous line). The three instability
branches 1,2 and 3 correspond to the QPM conditions Aky = 0, Aky; = 0 and Ak; = O re-
spectively. The dashed curves, nearly overlapped with the continuous lines, are the parametric
instability branches as predicted by approximate uncoupled parametric processes (see text). Pa-

rameter values are: § = 2m~! | AkMO = _14m-1, ARYO = —26m=1 | ARMO = _34m-1.

Fig.2. Parametric gain for near-degenerate EI-PDC as a function of signal (idler) wavelength
in a SF57 fibre for different values of magnetic field. Dotted line: H, = 0 mT; dashed line: H 2=
-200 mT; continuous line: H,= -400 mT. The fibre has a numerical aperture of 0.2 and a core
radius of 2.5 pm. Parameter values are: pump wavelength A3=775 nm, A=26.752 pum (correspond-
ing to Akgisp, = 0 at degeneracy A; = Ay =1550 nm) and @ = 0.3 m~!. For the calculation of the

wavelength dependent term Aky sp the Sellmeier equation given in Ref.[10] has been used.
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