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Abstract

We analyze theoretically the photorefractive response of periodically poled
lithium niobate (PPLN) taking into account spatial fluctuations of its domain
structure. It is shown that these fluctuations strongly affect the amplitude of
space-charge field in the limit of small photorefractive grating vectors. The
behaviour of the nonlinear response in this limit is controlled by the root-
mean-square of the spatial fluctuations of the domain structure. In the limit
of large grating vectors, the nonlinear response is not sensitive to deviations
from the ideal periodic geometry. The results obtained can be useful for the
interpretation of photorefractive experiments and the formulation of require-

ments for the fabrication of photorefractive PPLN samples.
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I. INTRODUCTION

During the past several years, the fabrication of high-quality ﬂsa\mples of periodically
poled lithium niobate (PPLN) has become possible! ™. The period of such structures ranges
from a few to several tens of micrometers and the number of opposite domains reaches a
few thousand. The technological progress was primarily stimulated by the prospects for
quasi-phase-matched frequency conversion! 4.

Recently it has been shown that PPLN is attractive not only for frequency doubling but
also for photorefractive applications®". The photorefractive response of PPLN is weak for
low spatial frequencies of the exciting light interference patterns and strong for sufficiently
small periods of the space-charge gratings. This distinctive feature allows to avoid large-scale ‘
distortions of light beams (optical damage) and, at the same time, to exploit the standard
schemes of two-wave and four-wave mixing®? using the advantage of strong photorefractive
nonlinearity of lithium niobate. Initial photorefractive experiments have supported these
main theoretical conclusions!®!!.

Previous theory on photorefractive properties of PPLNS7 was based on the assumption
of an ideal periodic domain structure. In practice, the domain structure of PPLN can
be far from ideal'®!3. Moreover, a number of studies have been made to determine the
influence of various deviations from the ideal structure on frequency doubling in PPLN, see
e.g., 115, The purpose of this paper is to investigate the effect of spatial fluctuations of the
domaiil structure on the photorefractive response of PPLN within the whole range of spatial
frequencies relevant to experiments. The problem under study is of practical importance
and solutions are needed to formulate the necessary requirements and restrictions for the
fabrication of photorefractive PPLN samples.

We develop below two basical statistical models for PPLN domain structure and analyze

the photorefractive response of this material for the case of photovoltaic charge transport!®17,

that is typical of photorefractive LiNbOj3 crystals.



II. FORMULATION OF THE PROBLEM

The geometry of the problem is clear from Fig. 1(a). Two reévor\ding light beams with
wave vectors k; and k, are incident symmetrically onto the Y Z-face of a PPLN sample.
The vector of spontaneous polarization c is parallel to the Z-axis but it reverses its direction
on moving to an adjacent domain (along the coordinate z), though without changing its
absolute value. In such a way, we assume a zero width of the domain walls. In average,
the PPLN structure is considered symmetric, i.e., positive and negative domains have the
same average size (). Such a situation is preferable for photorefractive applications’. The
tl}ickness of the sample in the z-direction, L, is supposed to be much larger not only than
(1) but also than the period of the light interference pattern (A = 27/K), where K is the
grating vector equal to the difference of the light wave vectors k; and ks, see Fig. 1.

Two basic statistical models of PPLN domain structure (analogous to those used in'® for
analysis of the frequency doubling) will be considered. In the first model (I), the probability
for a domain to have size [, which we shall denote by 117(l), does not depend on the sizes
of the other domains. Correspondingly, we have [[°Wi(l)dl = 1 and [5~ IWi(})dl = (I).
This model is relevant to PPLN samples used in'®!'. The structure of inverted domains
is expected to be formed during crystal growth and no restrictions are imposed on the
dimensions of the samples. This property is favorable for photorefractive applications.

The second model (II) refers to relatively thin (at least in one dimension) PPLN samples
obtaiﬁ‘ed, for example, using electric-field domain inversion and photolithographic masks'™.
The position of each domain boundary is shifted from the ideal position by a random variable
A(see’®). Let W,(A) be the probability for a domain wall to have a shift A. Correspondingly,
we have [72 W,(A)dA =1 and > AW,(A)dA = 0. Note that Wp(A) = 0 for |A] 2
(1)/2 to 4avoid "negative-size” domains. The sizes of successive domains cannot fluctuate
independently within this model.

The density of electric current, responsible for grating formation, is described as:

j=kIE + pls(z)z, (1)
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where I is the light intensity, E the electric field vector, x the specific photoconductivity,
B the photovoltaic constant, z a unit vector parallel to the Z-axis, and s(z) is a random
alternating function (s? = 1) whose sign is opposite for positive and negative domains, see
Fig. 1(b). In accordance with Fig. 1(a), the light intensity I is a function of z, and is
represented as I = I (1 + mcos Kz), where I is the average intensity and m is the light
modulation.

The first and the second terms on the right-hand side of Eq. (1) correspond to the photo-
conductivity and the photovoltaic effect'®!7, respectively. The direction of the photovoltaic
current coincides with the direction of the polar axis c, i.e., it is opposite in positive and
negative domains. We have omitted the diffusion contribution to the current density in-
Eq. (1). because it is small compared to the photovoltaic current. The ratio E,. = 8/x is a
measurable parameter, the so-called photovoltaic field. This field approaches 102 kV/cm in
LiNbOj, which is much greater than the characteristic diffusion field. Large values of E,,
ensure strong photorefractive nonlinearity in lithium niobate crystals 617,

The random alternating function s(z) defines not only the sign of the photovoltaic current
but also the sign of the electrooptic coefficient. If r is a tabulated electrooptic constant
(equal to ri3 and r3; for ordinary and extraordinary light waves, respectively), then the

field-induced change of refractive index n is én(z) = —n3rE.(z)s(x)/2%°.

III. PHOTOREFRACTIVE GRATING AMPLITUDE

The introduced basic phenomenological relations are sufficient for further description
of the photorefractive response. Our aim is to express the light-induced change dn(z, 2)
through the function s(z) within the standard linear approximation in the light modulation.
In order to find the steady-state distribution of the light-induced space-charge field
E(x,z), we use the Maxwell relation V-j = 0 for the current density and express the

vector E through the scalar electric potential ¢, E = —V¢. Then we represent the potential

¢ =p(z,2) as



o= pg(z)eF* + c. c (2)

Using the introduced definitions and Egs. (1), (2), we obtain for tfle\amplitude vk (z):

d2(pK ] z >
T Képog = 3 m K Ep, s(z) . (3)

From this we can find the relationship between the Fourier components (in z) ¢k,q and sg:

i mKE,,
VK= "5 o3 +22 Sq - (4)
Correspondingly, we have for the z-component of the field amplitude E, g = —iKpx:
m . s, expligz) A
E.x=——K°*E,, | —=———>+dg. 9

By multiplying E, x by the factor n*rs(z)/2, we obtain an expression for the amplitude of
the refractive index dng (z). In the next step, we perform the inverse Fourier transformation

from s, to s(z’). Then, using the identity

“expligp) , W :
| SR = expl-K) )

we finally find to the following important relation for éng(z):
1
bng = 5 mrm*KE,, / 5(2)s(z') exp(~K|z — '|) dz' . (7)

The photorefractive properties of PPLN, such as the diffraction efficiency of the recorded
grating and beam coupling, are characterized by the value (dng), averaged over z. As

follows from Eq. (7), this fundamental characteristic can be presented in a form similar to

that for the single-domain case®?,

1
(dnx)e = ¢ mrn®Epy Kxk (8)
where xx is the Laplace transform of the correlation function of the domain structure x(p),

XK = /0°° x(p)e %0 dp,  x(p) = (s(z) s(z + p))= , (9)



where (...), denotes the average over z. In such a way, we have expressed (éng). through
the statistical characteristic x(p). In the single-domain case, where s(z) = 1, we have
Kxx = 1. In the case of a periodic domain structure one can find from Eq. (13) of Ref. 7

that

2 Kd
Kxyg=1- %d tanh (-—2—) , (10)

where d is the uniform domain size.
Below we express the function Ky in terms of the distribution functions 1¥;(I) and
T115(A) corresponding to the statistical models introduced in Section 2 and analyze the

effect of the spatial fluctuations on the K-dependence of the photorefractive response.

IV. STATISTICAL AVERAGING

As a first step, using Eqgs. (9) we represent xg in the form:

1 L o0
XK:Z/O s(z)er/ s(p) e %P dpdx . (11)

Since s(r) is a step-like function, see Fig. 1(b), we can replace the integral over z by a sum

of integrals over all the domains,

L 2t 2 L
[ e[ -
0 0 3 IN-1

with N ~ L/{l) > 1 being the total number of domains.
Simple calculations lead to the following expression for a particular integral:
/z.-+1 _ T =% 2 (eKmitt — gKa) Li (_1)(j—i)e—Kxj] , (13)
2 K K? bl
urhereOSiSN—j-l,x():Oande=L.
Hence, by adding all the contributions given by Eq. (13) from i =0toi =N — 1, we

may write Eq. (12) as



L 2 )
/ ==+ —-= [—N + e~ Kh + 2¢~ Kz + 9¢~Kls e+ 9¢e~KIn
0

K K?
_ e—Kll e—Klz _ 26—](12 e—Kls _ Qe—Kls e—Kl4 . 2e—\f(ljv_1 e—KlN
+ ................................................... —_—
_ e—Kll e—Klz e-KIN] , (14)

where [; = z; — z;_, is the size of the i** domain. This relation is valid for any statistical

model of PPLN domain structure.

A. Model 1

Let us consider now the case of independently fluctuating domain sizes. The total number
of exponents (like e~%4) in the first line of Eq. (14) is 2.V — 1. If we divide the sum of these

exponents by N, the result is equal, with high accuracy, to
2 / e KWy (1) dl = 2 (K) . (15)

i.e., to the Laplace transform of the distribution function multiplied by a factor 2.

The second line contains products of two exponents, like e~ %% =K%, The total number
of such terms is 2N — 3. Since the probability for a i** domain to have a length { does not
depend on the sizes of other domains, the sum of the terms of the second line divided by N is
—2W2(K) with high accuracy. Analogously, the sum (divided by N) of the terms including
products of three exponents is 2W3(K). The generalization to the sum of products of p
exponents, like e~ K4 e=Kl2...e=Kb  vyields 2 (—1)P*! WP(K) with an error of the order of
~ p/N, which becomes significant for p < N. It is natural to assume, however, that the
number of essential terms in the geometric progression W, (K) — W2(K) + W(K) - ---
is much less than N = L/(l) (we refer to the appendix for further details of the whole
procedure). With this approximation, we obtain from Eqs. (11) and (14) the following

explicit expression for Kxg:

KXK= 1- (16)




B. Model 11

For the case of fluctuating domain wall positions, we represen£ ‘the wall position z; as
z; = i{l) + A;. By substituting this ansatz into Eq. (14), separating the products of
different exponents (like e2¢, 2 e24), and keeping in mind that the deviations A; fluctuate

-

independently, we find the expression

2 2 Wy(K) Wa(~K)
where Wy(K) = [ e KATR(A)dA.

Equations 16) and (17) are the results we were looking for.

V. DISCUSSION

Let us consider first some general properties of expression (16) for Kxx. If we assume
1,(1) = 6(1 — d), which corresponds to the ideal periodic case with all domain sizes d = ()
(4 is the Dirac function), we return immediately to the known result given by Eq (10).

Since the ratio (1—Wi(K))/(1+W;(K)) in Eq. (16) is smaller than 1, the product Kxx
becomes close to 1 for K(I) > 1. In other words, for sufficiently small grating spacings
the photorefractive properties of the random structure are not much different from those of
single-domain crystals or PPLN samples with an ideal periodic structure.

In the opposite case of small grating vectors, K () < 1, we can restrict ourselves to the
first terms of the Taylor expansion of the exponential in the integrand of Eq. (15). Then

Ny (K)=1-K{)+0.5K2{1% -, and one can find from Eq. (16) that

K () -{)°
Kyg >~ — ———. 18
We see that the K-dependence of the photorefractive response is linear in the limit of small
grating vectors, whereas for the ideal periodic structure it is-quadratic (see Eq. (10)). The

slope of the linear function of K given by Eq. (18) is fully defined by the root-mean-square

deviation of the domain size.



Let us now consider the statistical case designated as model II. The general properties
of the photorefractive response given by Eq. (17) are similar to those described above. To
return to the ideal periodic case, we should set Wp(A) = §(A). In the limit of small grating
spacings we have again Kxx =~ 1 and for large grating spacings, K (l) <« 1, we have
2K (Y -
where the mean-square value (A?) = [A2W,(A)d A characterizes the dispersion of the
positions of the domain walls. Note that the slope of the linear dependence (in K) is here
more sensitive to the mean-square value than in the previous model (compare Eq. (19) with
Eq. (18)). On the other hand, the typical values of (A?) are expected to be smaller than
those of (12) — ()2 in agreement with the explanations given in the Introduction.

The increase of photorefractive response in the limit of small grating vectors, caused
by domain-size dispersion, has a simple physical explanation. Because of the dispersion,
relatively large domains (with sizes greater than (l)) are present within each grating period
A = 27/K and these domains increase the response because of its strong spectral depen-
dence’. The larger A, the stronger is this enhancement.

If we consider a particular distribution W, (l) (or W2(A)), we can analyze the dependence
Kxk in the whole range of grating vectors. Let us consider first the model of fluctuating

domain sizes and choose W;(l) in the form

) Q
o W) = LA exp (/) (20

where Q is a variable parameter larger than 1 and I'(Q) is the Gamma function of Q. In this

particular case it is possible a complete analytical study. It is easy to verify that W1(0) = 0,

Jew@yd = 1, [Ziwi)dl = (1), and

(2 - ()?
T (21)

In such a way, Q! is the relative dispersion of the domain sizes. In the limit @ — oo the

Q' =

distribution function W (l) tends to the delta function 6(I—(l)). Figure 2 shows the function
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Wi (l) for several representative values of dispersion. Using Eq. (21), it is not difficult to

calculate the Laplace transform of the distribution function, ”

Wi (K) = (1 + %Q)_Q . \ (22)

In the limit of small K it produces the known result for Ky, see Eq. (18).

Figure 3 shows the normalized dependence of the photorefractive response of PPLN for
several values of @ within a wide interval of K(I). The lower curve corresponds to the
periodic case. One sees that the larger the dispersion Q! the higher is the curve. At
the same time, in the region of sufficiently large grating vectors (K (l) 2 10) the difference
between periodic and random structures is very small even for strong fluctuations (large
dispersion). However, in the limit A'(/) < 1, the response of a random domain structure is
much higher than that of PPLN.

In the case of fluctuating positions of domain boundaries (model II), we use the particular
distribution W,(A) = G(Ag — A?%)/2A,, where ©(z) = 1 for z > 0 and 0 for 2 < 0,
thus Wy(l) = (sinh KAq)/KAy. The parameter A, does not exceed (I)/2 and (A?%) =
Al/3. Figure 4 shows the normalized K-dependence of the photorefractive response for
several values of Ay. Qualitatively, the main features of this dependence are similar to those
presented in Fig. 3. For )¢ < 0.2(l). which is the case of most PPLN samples obtained

with the use of photolithographic masks, the effect of fluctuations is significant only for very

large gratings periods, A 2 (5 — 6)(1).

VI. CONCLUSIONS

Using two representative models for random domain structure of LiNbOj3, we have ex-
pressed the photorefractive response of PPLN through the relevant statistical characteristics
and investigated the effect of spatial fluctuations within a wide range of grating vectors.
We have found that these spatial fluctuations strongly increase the response in the limit
of small grating vectors whereas a negligible effect is produced for sufficiently large grat-

ing vectors. Our results indicate that the requirements for the quality of PPLN samples,
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necessary for photorefractive applications, are considerably less strict than those for the

quasi-phase-matched frequency conversion.
Financial support from INTAS (Grant Number 97 - 31275) is gratefully acknowledged.

APPENDIX A

This appendix is devoted to a more detailed derivation of Eq. (16).
From Egs. (11) and (14) we have

§
. 2 —KI, -KY
AM‘_:H_KL{ N+[e +2Ze

=2
N
- l:e—Kll e~ Kb + 226—1{!"1 e—Kli:|
i=3
+ .4
J N j+i-1
- -1y [H K2 3 ( 1 e—mrﬂ
r=1 i=j+1 r=1
R
N
+ ()" ] e‘K"} : (A1)
r=1

Let us consider the terms inside the first square brackets in Eq. (Al):

N N =]
eKh 423 Kl = —e7Kh 4 2 " oKl —e7Kh 42N / e K Wi(l)dl.  (A2)
i=1 0

i=2
Owing to the fact that NV is very large the sum can be replaced by an integral containing
Wy (l)vwhich is the distribution function of the sizes of domains. This integral, as was
mentioned above, corresponds to the Laplace transform Wi (K).
Let us now take into account the terms inside the second square brackets in Eq. (Al).
Since !; and l;_; are random variables, we can write
3 Kl Kl * % ki -kt @
;e' i-1 g~ z(N—l)/0 /0 e~ e MWL dldl (A3)
where Wl(z) (I,1') is the joint distribution function of ! and . If the continuous random

variables [ and !’ are independent, which is equivalent to say that the probability for a
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certain domain i to have a given length does not depend on the sizes of other domains, then
Wl(z)(l, I') can be expressed as a product of the corresponding distribution functions W, )
and Wi (!') of I and I', respectively. Therefore, the double integral in Eq. (A3) is equal to
W2(K), and

N
gkl gKlz 1 9} 7Kl oKl o =Kl g=Kh L 9(N — 1) WE(K) . (A4)
=3

Combining the first and the second square brackets we have

N N
[C_Kll + 22 e—Kl"] _ [e—Kh e—Klz + 226—1(1.'_1 e—Kl.]

1=2 i=3

~ 2 [NWi(K) = (N = )WE(K)] = (1 — e B)e7®h . (A5)

Extending the above procedure to other pairs of consecutive terms j and j+1 we obtain
J+i— Jj+1 Jj+i
[H Kl 1 9 Z (H e-Kz,)] l:H e~Kir o=Kl2 4 o Z (H e-Kt,)]
i=j+1 r=i i=j+2 \r=t
J

~2[(N=j+)Wh = (N = j)WiTH(K)] - Q=X [ e® . (A6)

r=1

We see from Eq. (A6) that the approximation EfV:J ([EE e i) > (N—j +1)W!(K)
is getting worse as j increases. However, it is obvious that its relative importance decreases
because the number of members in the sum is smaller and, in addition, the approximation
[I5- i e~Klr ~ ¢=7K{) (which tends to be more accurate) becomes much smaller than 1

owing to the exponent j.

Hence, Eq. (A1) can be cast in the form
Kxx :1+—— {—N+2Z 17+ (N - § + 1) Wi (K)] -—A(,?’)} : (A7)

where A(Iév) denotes a small contribution coming from the sum of each of the last terms in

Eq. (A6):
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A%V) — (1 _ e-Klz) e—Kh 4 (1 - e-Kh) e—Kh e-Klz e Kb ... 4
251

r=1
< (1 - e—Klz)e—Kll + (1 —_ e—Kla) —Kh e—Klz

+ (1 - e—Kl4) -Kl e—Klz e—Kl3 + (1 - e—Kls) e—Kll e-—Klz e—Klse—Kl4 + ..

_ e g (e [ e <1, (48)

r=1

Therefore, by neglecting A%v) in Eq. (A7) and calculating the geometric series, we easily

find

s 2 [ 9N 2W,(K)
Kxk=1+g7 { 1+ Wi(K) (1+W1(K))2} ’ (49)

where we have omitted terms NV, (K)" (because Wi(K) < 1). Finally, by using the

equality (I) = L/N we obtain Eq. (16).
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Figure captions

Fig. 1. (a) Geometrical scheme of a photorefractive experiment using PPLN. (b) Schematic

dependence s(z) for a random domain structure.

Fig. 2. W(l) as a function of | for different values of dispersion Q1.

Fig. 3. Spectral dependence of the photorefractive response for the case of fluctuating

domain sizes (model I). The lower curve corresponds to the periodic case, @~! = 0.

Fig. 4. Spectral dependence of the photorefractive response for the case of fluctuating
positions of the domain walls (model II). The lower curve is plotted for the periodic case,

A():O.
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PRBPodivilov et al. Figure 2
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PRBPodivilov et al. Figure 3
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PRBPodivilov et al. Figure 4
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