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Effects of Random Phase and Amplitude Errors in 
Optical Fiber Bragg Gratings 

Ricardo Feced and Michalis N. Zervas 

AbstractThis paper studies the influence of random phase and 
amplitude fabrication errors on the performance of optical filters 
based on fiber Bragg gratings (FBG’sj. In particular, we analyze 
two effects of particular importance for optical communications: 
the excess crosstalk induced in apodiaed gratings commonly used 
in wavelength-division-multiplexing (WDM) systems, and the 
time-delay fluctuations that appear in chirped gratings employed 
tu compensate the fiber dispersion. A statistical model is presented 
to explain these effects in terms of the coherence length of the 
grating fabricatiun procedure. 

Index Terms-Gratings, noise, optical fiber communication. 

I. INTRODUCTION 

HE performance of optical components is usually T degraded by random fluctuations of their optical or 
geometrical properties. Rayleigh scattering, for instance, is a 
typical example of scattering induced by random fluctuations of 
an optical property of the medium: the refractive index [I], [2]. 
On the other hand, random deviations of the device geometry, 
like roughness of its surfaces or randomness in the periodicity 
of gratings, can also be responsible for enhanced scattering in 
many optical components [3]. In this paper, we investigate the 
effect of random optical m d  geometrical fluctuations on the 
performance of optical fiber gratings (OFG’s) as optical filters. 

The problem of random propagation in one dimension has 
been extensively studied in many different contexts [4]-[6]. The 
moment-propagation method, for example, studies the evolu- 
tion of the second order field statistics along the medium, and 
can be used to predict the amount of backscattered power [4], 
[5]. Sometimes, it is important to analyze not only the scattered 
power, but also the evolution of the optical phase of the propa- 
gating wave. This is specially important for interferometric op- 
tical devices, where fluctuations of the waveguide effective re- 
fractive index can give rise to a random-walk of the optical phase 
that deteriorates their performance [7], [XI. 

In recent years, OFG’s have become key components in high 
speed optical fiber communication systems. The technology of 
UV photoinduced fiber gratings [Y] has reached now high ma- 
turity, enabling the fabrication of complex OFG-based filters to 
perform various functions such as selection of wavelength mul- 
tiplexed channels or compensation of the link dispersion, Sev- 
eral experimental techniques have been demonstrated to fabri- 
cate nonuniform gratings, permitting an accurate control of both 
the local grating period and the apodization profile along the 
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structure [IO],  [ l l ] .  However, the fabrication of increasingly 
longer OFG’s with improved spectral response is limited by 
the need to maintain the coherence of the grating phase along 
the whole structure. Numerical experiments have shown that 
random coupling can have important implications in the perfor- 
mance of practical filters [31, [12]. 

In this paper, we study the effect of small random phase or 
amplitude fluctuations imprinted on the grating during the fab- 
rication process on the spectxal response of the filter. We will 
present a method to calculate the main statistics of the filter 
response, like average reflectivity or average time-delay fluc- 
tuations, in terms of a characteristic coherence length of the 
grating. The method, which relies on a perturbation approach, 
calculates ensemble averages of the spectral response parame- 
ters of gratings perturbed with a random-walk phase. In partic- 
ular, we will focus on two cases of particular importance for op- 
tical communications: the excess crosstalk induced in apodized 
gratings commonly used in wavelength-division-multiplexing 
(WDMj systems, and the time-delay fluctuations that appear in 
chirped gratings employed to compensate the fiber dispersion. 
The paper is organized as follows. Section I1 describes the prop- 
agation in OFG’s subjected to random phase and amplitude er- 
rors. The statistical averages for the main parameters of their 
spectral response is then calculated in Section 111. We finally 
apply the theory developed to the two particular cases previ- 
ously discussed apodized (Section IVj, and chirped (Section 
Vj OFG’s. 

11. PROPAGATION IN FIBER GRATINGS WITH RANDOM PHASE 
AND AMPLITUDE EVOLUTION 

In this section, we describe the optical propagation in OFG’s 
with random phase or amplitude errors along their structure. The 
magnitude of the phase errors will be characterized in terms of 
a “coherence length” for the grating. In the following sections, 
we will present a method to calculate ensemble averages of the 
main parameters of the OFG spectral response, and discuss their 
dependence on the coherence length previously introduced. 

A. Refractive Index Pertnrhation in Fiber Gratings 

Bragg gratings are fabricated in optical fibers by exposing 
their core to a periodic ultraviolet (UVj pattern. Initially, a 
holographic method based on an split-beam interferometer 
[Y] demonstrated the possibility of writing gratings by means 
of transverse UV exposure. A more recent development, that 
greatly simplifies the requirements of the OFG fabrication 
setup, is the use of diffractive optical phase-mask gratings [13], 
[141. A third technique in which the grating is transversely 
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written point by point by accurately controlling the position 
and spot size of the UV beam has also been demonstrated [15]. 
These three basic techniques have been modified and improved 
to fabricate long gratings with accurate control over the 
photo-induced refractive index modulation. The first extension 
is the phase-mask scanning technique in which the laser beam 
is scanned over a long and high-quality phase-mask [lo], [16]. 
An altemative procedure to write long gratings is to accurately 
move and monitor the position of the fiber by means of an 
interferometer while exposing it to a time-modulated short UV 
interference pattem [ l l ] .  This is probably the most versatile 
approach, and complex filters designs have been demonstrated 
with this technique [17], [IS]. 

Independently of the technique used to write OFG, phase 
and amplitude errors are likely to occur due to the stringent re- 
quirements of accuracy and stability necessary in the fabrication 
process. There are a great variety of possible sources for these 
errors. Some of them are associated with the fabrication method, 
like phase-errors of phase masks, uncertainty of the fiber posi- 
tion in interferometrically controlled methods, lack of mechan- 
ical stability of the fabrication setup, or fluctuations in the UV 
fluence. Others are intrinsic to the photosensitive fiber, like ge- 
ometrical or compositional fluctuations. 

The effective refractive index n(z)  along an OFG can be de- 
scribed as 

where no is the average effective refractive index, and KO(= 
%/A), An(.) and S(z) specify the deterministic grating pa- 
rameters: A is a reference period, An(.) accounts for the local 
grating strength (apodization), and S(z) will determine its phase 
variation and local period. The random properties of the grating 
are described by the phase and amplitude stochastic processes 
$ ( z )  and F,(z ) .  The local period A(z) of the grating is deter- 
mined by both the deterministic phase term S(z)  and the random 
phase term $(z)(A-’(z) = A-’ + (01 + U;/)/Zn). 

The phase and the amplitude noise are usually partially corre- 
lated. Fluctuations of the fluence during the fabrication process 
contribute to both sources of noise, giving rise to some corre- 
lation among them. However, in this paper we study the effects 
of the phase and amplitude noises separately, as if they were 
statistically independent. The method presented could easily be 
extended to take into account phase-amplitude correlations. 

1 )  Phase-Noise: We will assume that the random fluc- 
tuations of the local spatial angular frequency (=27r/A(z)) 
along the grating can he modeled by a zero-average, stationary, 
Gaussian process F4(z). Fig. 1 illustrates the evolution of the 
refractivc index pciturbation in a grating subjccted to random 
phase-noise, The phase term U;(zj in ( I )  will be driven by 
F4(a)  according to the expression 

1 1 

0 5 10 15 20 

Distance (in grating periods) 

Illustration of a grating subjected 10 phase errors. - - - :Ideal grating. Fig. 1 .  
~ :Grating with phase-noise. 

The variance for the increments of $ ( z )  can now he calculated 
as [I91 

where RF+(T) is the autocorrelation function for F~o(z).  In 
standard OFG fabrication techniques the correlation length for 
F#(z)  is usually much smaller than the grating length and, 
therefore, its spectrum is broad compared to the grating spectral 
response. Consequently, in most situations we can regard F*b(z) 
as a white Gaussian noise. In this case, the phase $(z)  evolves 
as a Brownian random-walk motion 1191, [20], being driven 
by the delta-correlated Langevin force F+(z) that accounts 
for random fluctuations of the local period along the grating. 
$ ( z )  will also follow Gaussian statistics, with independent 
increments, and zero average. In analogy with a single-mode 
laser, we will define both a “coherence length” Lcoh and a 
“linewidth parameter” y that characterizes the variance U’ of 
the increments of $ ( z )  [21] 

2 2 ($ (z  + A) - d ( z ) )  = -IAl = 4rlAl (4) 

where RF0(7) was taken equal to 26(7)/L,,h in (3), &(T) 
being the Dirac delta. From (4), we see that Ihc srdndard 
deviation of the random phase variation along a grating period 
A is ,/-. The Gaussian nature of the increments of 
4(zj permits the calculation of the autocorrelation P(A)of the 
random phase term in (1) 

LCOh 

( 5 )  

) R(A) = 

= e  -21’ ~ ~ e-1411Lcd~ = e-’Ylnl 

where (.) stands for ensemble average. The “coherence length’ 
L,:,,,, previously defined measures the distance along which 
there is substantial dephasing with respect to the perfect deter- 
ministic grating. It can be regarded as a figure of merit for the 
grating fabrication system, being ideally as large as possible. 

2J Amplitude Noise: Following the same reasoning as in 
the previous section, we will assume that the amplitude noise 
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process F,(zj in (1) is a zero-average, Gaussian white-noise. 
Consequently, its autocolrelation will be 

( K ( Z  + T ) F a ( Z j )  = ?76(T) ( 6 )  

where the factor 7) provides a measure for the magnitude of the 
amplitude noise. If the grating is sampled in small sections of 
length A, then the variance of the relative amplitude fluctuations 
for each sample is given in terms of 7 by 

A can be considered as the inverse of a maximum cutoff spatial 
frequency for the white noise. Its value is primarily determined 
by the writing method and is usually of the order of a few hun- 
dred microns. As typical noise cutoff frequencies correspond to 
optical reflection bandwidths much broader than those of the 
deterministic OFG's, the assumption of delta-correlated noise 
sources is expected to he a good approximation in most physical 
situations. However, the method presented in following sections 
to calculate ensemble averages does not rely on this assumption, 
and can be generalized to take into account different statistics 
for the noise sources. 

B .  Coupled-Mode Equations 
The one-dimensional scattering problem for an OFG is usu. 

ally described in the framework of the coupled-mode formalism 
[22]-[24]. The scattering equations are written in terms of two 
counter-propagating waves, b ~ ( z ,  p), backward propagating, 
and b ~ ( z ,  p), forward propagating 

where /3 is the detuning parameter 

(9) 
2 k 71, ~ KO 

B =  

and k is the vacuum propagation constant (=w/c). q(z j  is re- 
lated to the grating parameters as 

where qo(z )  is the deterministic parr 01. the coupling function. 
The OFG reflection spectral response HR(,8) can be cal- 

culated by solving (8) taking into account the appropriate 
boundary conditions, i.e., b ~ ( 0 ,  p) = I and b B ( L ,  @) = 0, 
where L is the total length of the grating 

f I ~ ( 8 )  = bo(% 0). (11) 

The actual backward and forward electric fields (eo(., p) 
and e y ( z ,  p)) are related to the waves b ~ ( z ,  8) and b ~ ( z ,  0) 
through the exmessions 

The main novelty of the present study is that the coupling 
function q ( z )  is an stochastic process characterized by the co- 
herence length L,,,, of the fabrication system. We could cal- 
culate ensemble averages for the main parameters of the OFG 
spectral response by repetitive solution of the coupled-mode 
equations (S) for different realizations of the stochastic process 
q5(z), and subsequent average of the parameters of interest. This 
would yield information about the average behavior of a batch 
of gratings written with that fabrication system. In this paper 
we develop an alternative method to calculate directly these en- 
semble averages without the need of statistical averages over 
many realizations of the experiment. The study illustrates the 
effects of phase and amplitude errors in the performance of 
OFG and provides insight in the interrelations among the var- 
ious grating and fabrication system parameters. 

C.  Approximate Spectral Response for OFG Perturbed with 
Random Noise 

The main difficulty to calculate ensemble averages for param- 
eters related with the OFG spectral response H R ( / ~ )  is the non- 
linear relation existing between H R ( 0 )  and the coupling func- 
tion q ( z ) .  Simple linear approximations like the first-order Bom 
approximation are inaccurate for the analysis of practical grat- 
ings with reflectivities larger than 50%. In this section we will 
present a novel linearization method that will enable us to calcu- 
late ensemble averages in gratings with random phase and am- 
plitude errors. The method relies on a perturbational analysis 
with respect to the solution of the ideal deterministic grating 
characterized by qo(n) given in (10). 

Our objective is to express the reflection coefficient I€R(R(P) 
(1 1) as a linear function of the stochastic coupling function q(z)  
with a good degree of accuracy. The procedure starts by solving 
exactly the coupled-mode equations for the corresponding de- 
terministic case characterized by the coupling function y<,(z). 
The solution of the deterministic equation yields the evolution 
of the forward and backward deterministic propagation waves 
@ ( z ,  /3) and Og(z, p), and also the spectral response of the 
unperturbed grating H i ( 8 ) .  An approximate expression for the 
spectral response of the perturbed grating Hn(,8) can now he 
obtained by substituting the calculated forward deterministic 
wave b g ( a ,  0) for b F ( z ,  8 )  in the first equation of system (8). 
and integrating then the resulting ordinary linear differential 
equation. The spectral response can be cast in an expression that 
looks very similar to the first-order Born approximation with a 
modified coupling function t(z, 4) 

Equation (14b) defines the deterministic modified coupling 
function $(z, 8). This modified coupling function can be ap- 
proximated by q,(z) in those parts of the @-spectrum where the 

C B ( Z ,  p) = b g ( z ,  [j)e+j(''ez/2) 

e F ( z ,  8 )  = b F ( z ,  / j ' ) e - i ( K o z / 2 ) .  (12) 
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grating reflectivity is low. The spectral response HE(@)  is now 
a stochastic process obtained from a linear transformation of the 
random coupling function q ( z ) .  

The OFG spectral response given in (13) is obviously exact 
in the deterministic case, i.e., when phase and amplitude 
emors are negligible. If the grating has a long coherence 
length Lcoh and a low amplitude-noise factor q, then the 
random terms in (14) can be regarded as a small perturbation 
and (13) gives a good approximation to the grating spectral 
response. The accuracy of this analysis will be corroborated 
in following sections by Monte Carlo-type simulations in 
which the spectral response of a batch of randomly generated 
gratings will be averaged to obtain estimations for ensemble 
averages. 
111. ENSEMBLE AVERAGES FOR GRATING REFLECTIVITY AND 

TIME DELAY FLUCTUATIONS 

The two parameters that fully characterize the spectral 
response of OFG are its reflectivity and time-delay response. 
They are, respectively, related to the modulus IHR(,B)\ and 
phase PE(@) of the spectral response HR(P) .  In this section 
we will derive expressions to calculate ensemble averages for 
these parameters in presence of both phase-noise (Sections 
111-A-111-C) and amplitude-noise (Section 111-D) in the grating 
coupling function. 

A. Ensemble Averages for Random Phase Functions 

Let us assume first that the grating is only subjected to 
random phase errors, i.e., Fa(z )  = 0. All the phase-noise 
ensemble averages that we will need are particular cases 
of the ensemble average of a general stochastic process 
P(p;  j ( z ,  p ) ,  h(z,  p ) )  defined as 

where * stands for complex conjugate, and g ( z ,  8) and h(z ,  0) 
are random phase functions defiFed as the product of the deter- 
ministic functions go(., @) and h,(z, P ) ,  and therandom phase 
term e J Q ( = ) ,  namely 

To calculate the ensemble average (F(P;  y(z, /3), h ( z ,  P) ) )  
we first substitute (16) in (15) and, subsequently, evaluate the 
ensemble average for the random phase terms with the autocor- 
relation (5). Finally, by transforming the independent variables 

we ~ 

obtain the following expression for the sought average 
F(P; .?&, PI ,  h o b ,  P ) ;  7): 

(18) 

where we see that it involves a cross-correlation integral fol- 
lowed by a weighted Fourier transform. 

B.  Average for the Reflectivity in OFG with Phase-Noise 

The ensemble average for the reflectivity can be calculated 
from the approximate spectral response H R ( P )  described in 
(13) together with the method for evaluation of ensemble av- 
erages shown in (18). Defining the ensemble average for the re- 
flectivity as (R(P)) , we find 

which is calculated as the autocorrelation of q0(z,  P )  followed 
by a Fourier transform weighted bya  decaying exponential (18). 

C. Averages for the Time Delay and itsfluctuations in OFG 
with Phase-Noise 

The estimation of the average time-delay and its fluctuations 
is of particular importance for phase-filters like OFG disper- 
sion compensators. Generally, the quality of OFG dispersion 
compensators is evaluated through the standard deviation of its 
time-delay [25]. For this type of filters, the phase of the spec- 
tral response i p ~ ( P )  varies rapidly within the reflection band in 
comparison with its modulus IHR(P)I. This fact will permit us 
to estimate ensemble averages for the time delay of OFG dis- 
persion compensators. 

1 j Average Time Delay: The time-delay t d ( B )  is defined in 
terms of the spectral phase response ~ ~ ( 0 )  as 

In the presence of random phase errors, t@) is a stochastic 
process. To estimate the ensemble average for the time-delay 
( t d ( @ ) ) ,  we start with the related ensemble average 
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where we observe that the imaginary part of this expression is 
equal to the average of the time-delay weighted by the reflec- 
tivity. The ensemble average in (21) is calculated as 

From (20) -(22) we estimate the ensemble average of the 
time-delay as 

where lm stands for imaginary part, and the two ensemble av- 
erages have been calculated in (19) and (22). This result is ap- 
proximate due to the reflectivity weight term that appears in the 
time-delay average. Expression (23) would he exact in the limit 
of very weak correlation between the time delay and reflectivity. 
For small perturbations, the in-band reflectivity of dispersion 
compensators will be essentially constant and (23) provides a 
good approximation for the statistics of the time-delay. 

2) Fluctuations of Time Delay: Our main interest, however, 
is to estimate the standard deviation of the time-delay fluctu- 
ations. To achieve this objective, we need to evaluate the en- 
semble average of the square of the time delay (ti(L9)). We pro- 
ceed as before, starting with the related ensemble average 

(24) 

where we have assumed slow variations for the modulus 
IHn(p)I of the spectral response within the reflection band. 
The ensemble average (24) is again calculated in terms of F 
(1% 

Now we can estimate ( t ; ( [ j ) )  as 

which can he evaluated from (19), (24), and (25). The variance 
of the time-delay u$(B) is finally expressed in terms of (23) 
and (26) as 

The time-delay standard deviation otd(P) will he used in Sec- 
tion V to discuss the effect of random phase errors on dispersion 
compensators. 

D Average for the RefIecfivity in OFG with Both Amplitude 
and Phase-Noise 

Amplitude noise can also contribute to the deterioration of the 
hackground level in the spectral response of apodired gratings. 
In this section, we extend the analysis to calculate the ensemble 
average for the reflectivity of a grating subjected to both ampli- 
tude and phase-noise. The main assumption of the calculation 
is that both noise sources are statistically independent. 

Following an analysis similar to that developed in Section 
111-A and taking into account the autocorrelation (6) for the rel- 
ative amplitude-noise F,(z), we calculate the ensemble average 
of the reflectivity as 

. L  

(W)) = F(P;go(. ,  PI ,  t da ,  S);7)cJ dz I@&> P)I2?1. 
n 

(28) 
It is shown that the average reflectivity in this case has two 

terms. The first one is that corresponding to a grating subjected 
only to phase-noise (19), while the second contribution is the 
excess background reflectivity due to a random amplitude as 
will he discussed in Section IV-B. 

IV. EFFECT OF RANDOM PHASE AND AMPLITUDE ERRORS IN 
APODIZED GRATINGS 

Apodized gratings exhibit reduced sidelobes in their spectral 
response, minimizing crosstalk effects between adjacent optical 
channels [26]. Their use in WDM communication systems re- 
sults in efficient utilization of the optical bandwidth [271. In 
this section, we study the deterioration of apodized OFG per- 
formance due to random phase and amplitude errors incurred 
during the fabrication process. The most important effect is a 
reduced isolation of the filtered channel due to an enhancement 
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Detuning (nm) 

Fig. 2. Reflectivity spectrum of the apodized grating. - - - : Ideal deterministic 
grating. -: Ensemble average calculated with random phase RP model. e: 

Values calculated by averaging over IO00 random experiments. 

of the sidelobes and a decrease in the sharpness of the filter's 
handedge transition. 

A .  Effects of Phase-Noise 

To illustrate the analysis introduced in previous sections, we 
first consider an OFG with a raised cosine apodization profile. 
The grating has a total length of 1 cm and a maximum cou- 
pling constant qFaof 3.5 cm-'. The maximum reflectivity of 
the grating is 90%. Fig. 2 shows the response of the deterministic 
grating IHg(p)I' which exhibits low sidelobes (dashed line). 
Let us suppose now that the grating was fabricated with a system 
that had a coherence length L,,I, of 10 cm. This corresponds 
to a standard deviation for the random phase variation along a 
grating period of 3 mrad. By using the random phase (RP) model 
previously developed (19) we can calculate the ensemble av- 
erage for the reflectivity (solid line). We clearly observe a sub- 
stantial increase in the out-of-hand background level and a re- 
duced sharpness of the reflection bandgap edge. The predictions 
of the RP model were corroborated by statistically averaging the 
spectral response of 1000 gratings with phase errors randomly 
generated (solid points in Fig. 2). The agreement between both 
calculations is very good throughout the reflection spectrum. It 
is important to note that Monte Carlo-type simulations are very 
expensive from a computational point of view compared to cal- 
culations carried out with the proposed RP model. 

In a second numerical experiment we allowed the coherence 
length of the fabrication system Lcoh to vary from 1 to 1000 cm. 
This corresponds to standard deviations for the random phase 
variation along a grating period that vary from 10 to 0.3 mrad. 
The ensemble averages of the reflectivity for the cases consid- 
ered are shown in Fig. 3. We observe that the out-of-band hack- 
ground level increases and the bandedge sharpness decreases as 
the coherence length is reduced. 

The RP model is useful to understand these results and to find 
the relation between the out-of-band background level and the 
coherence length of the fabrication system. From (18) and (19) 
we observe that the ensemble average of the reflectivity is equal 
to the Fourier transform of the product of the autocorrelation 

Detuning (nm) 

Fig. 3. 
for various values of the coherence length. 

Ensemble aversge for the reflectivity spectrum of the apodized grating 

1 10 100 1001 

Coherence Length , L mn (cm) 

Fig. 4. Ensemble average (.) far the out-of-band reflectivity of the apodized 
grating at a detuning of 0.5 nm as a function of the coherence length. The solid 
line (-) is a theoretical fit proportional to L:o:x 

of & ( z ,  /?) with a decaying exponential. This is equivalent to 
the convolution of the deterministic grating reflectivity with a 
Lorentzian function that accounts for the reduced coherence 
of the fabrication system. This spectral response would be 
identical to that obtained if we analyzed the ideal grating 
by scanning in wavelength a laser with a finite Lorentzian 
linewidth. The out-of-hand background level is mainly given by 
the overlap between the reflection band of the grating and the 
decaying Lorentzian function. A simple integration shows that 
this overlap i s  inversely proportional to the coherence length 
Lcoh. Fig. 4 shows the out-of-band reflectivity at a detuning 
of 0.5 nm as a function of the coherence length for the cases 
previously considered. The solid line is a fit given by 

that shows the accuracy of the prediction. It can also be shown 
that the overlap between the reflection band and the Lorentzian 
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- LCOh=lOcm 

-0.5 -0.4 -0.3 4.2 4.4 0.0 0.1 0.2 0.3 0.4 0.5 

Detuning (nm) 

Fig. 5. Inverse of the reflectivity spectrum of the apodized grating as a 
function of wavelength detuning for two different coherence lengths, showing 
an approximate linear relation. 

function is approximately inversely proportional to the distance 
between the detuning 0 and the hand edge ~ E O G E  

Fig, 5 illustrates this relation for two different values of the 
coherence length. 

We have shown that the spectral response of apodized grat- 
ings is given by the convolution of the ideal deterministic spec- 
tral response with a finite linewidth function that accounts for 
the reduced coherence length of the fabrication system. This 
translates into a degradation of the spectral isolation of the filter. 

B. Effects of Amplitude Noise 
We study now the effect of amplitude-noise in the spectral re- 

sponse of apodized gratings. Let us consider again an OFG with 
a raised-cosine apodization profile, a total length of 1 cm and a 
maximum coupling constant q,"" of 3.5 cm-l. We assume that 
the grating is subjected only to an amplitude-noise character- 
ized by an r j  of 3.9 . cm. According to (7), this means that 
the standard deviation of the relative amplitude fluctuation is 
4.4% if we describe the grating by sampling sections of 200 fim 
length. Fig. 6 shows the response of the deterministic grating 
IHg(P)iz and compares it with the ensemble average obtained 
by means of the amplitude-noise (AN) model developed in Sec- 
tion 111. The predictions of this model were again confirmed 
by statistically averaging the spectral response of 1000 grat- 
ings with amplitude-noise randomly generated (solid points in 
Fig. 6). We observe that the main effect of amplitude noise is a 
substantial increase of the flat background level of the spectral 
response. 

In a second numerical experiment we allowed the amplitude- 
noise factor r j  to vary from 3.9 . cm. The 
ensemble averages of the reflectivity for the cases considered 
is shown in Fig. 7. In analogy with the phase-noise case, the 
out-of-band background level increases for higher values of the 
amplitude-noise factor r j .  

to 8 . 

Statintical AYerag 

-0.5 -0.4 4 3  -02 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 

Detuning (nm) 

Fig. 6.  Reflectivity spectrum of the apodized grating. - - -: Ideal deterministic 
grating. -: Ensemble average calculated with amplitude-noise AN model. e: 

Values calculated by averaging over I000 random expen'ments. 
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Fig. 7. Ensemble average for the reflectivity spectrum of the apodized grating 
for variow values of amplitude-noise factor 7 .  

Finally, evaluation of the second term in (28) yields an analyt- 
ical expression for the excess out-of-band background reflection 
level, which for gratings with raised-cosine apodization profile 
is 

.L 

(Rexcoss  (,&-band)) Gz 1 dz l&(z, P)I2 II = 4&x% 

(31) 
The background level scales with the square of the maximum 

coupling function q y .  the length of the grating L, and the 
noise factor r j .  Fig. 8 compares the predictions of this analytical 
formula with the AN model, showing exact agreement for 
high values of r j ,  where the amplitude-noise dominates the 
out-of-band reflection. 

v. EFFECTS OF RANDOM PHASE ERRORS ON CHIRPED 
GRATINGS 

The main application of chirped OFG is its use for com- 
pensation of the second order dispersion in optical communi- 
cation links [281, L291. For this purpose, it is important that 
the time-delay response of the grating exhibits good linearity 
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Fig. 8. Ensemble average (W) for the aut-of-band reflectivity of the apodized 
grating at a detuning of 0.5 nm as a function of the amplitude-noise factor 7. 
The solid line (-) is the theoretical tit (31). 

to minimize the hit error rate. It has been established that the 
time-delay linearity improves in nonuniform apodized chirped 
gratings [251. In this section we are going to study the effect 
that a limited coherence length of the fabrication system has on 
the time-delay linearity of chirped gratings. We will show that 
the standard deviation of the time-delay fluctuations increases 
as the coherence length Lcoh is reduced. 

As in the previous section, we illustrate the effects of random 
phase errors with a practical chirped grating. The grating, de- 
scribed in Fig. 9, has a total length of 15 cm and a raised co- 
sine apodization profile that extends over 2 cm at both ends of 
the grating. The maximum of the coupling function q y  is 1.3 
cm-' and its deterministic phase S(z) was linearly chirped with 
a cbirp-parameter n of 4.92 cm1112 

0.0 
0 2 il 6 8 10 12 14 

Length (em) 

Fig. 9. 
qo(z) for an apodized chirped grating. 
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Fig. 10. Reflectivity and time-delay response for the chirped grating 
represented in Fig. 9. 

U%' 

The deterministic spectral response of the grating is shown 
in Fig. 10. The in-band reflectivity was 90% and the time-delay 
exhibited good linearity. The grating was designed to compen- 
sate a 100-km fiber-link at a wavelength of 1.5 p n  for an optical 
bandwidth of 0.6 nm. 

Let us assume now that the grating is fabricated with a system 
of limited Coherence length. By using the random phase model 
previously developed, we have calculated the standard devia- 
tion of the time-delay ut&') for different coherence lengths 
L,,1, ranging from 10 to 1000 cm. The results predicted by 
the model are shown in Fig. 11 by thick solid lines and clearly 
demonstrate that the time-delay fluctuations increase as the co- 
herence length is reduced. We corroborated these results by sta- 
tistically averaging the time-delay responses of 50 gratings with 
randomly generated phase errors distributions (thin lines). The 
agreement is very good despite the approximations involved in 
the RP model calculations. 

It is also interesting to observe in Fig. 11 that the time-delay 
fluctuations grow for optical wavelengths that are preferentially 
reflected toward the end of the grating (negative detunings). As 

" I  

I 
-03 0 2  - 0 ,  00 0 1  02 0 3  

Detuning (nm) 

Fig. 11. Spectralevolution forthe standarddeviationof the time-delayoCd(?) 
for different coherence lengths Lrah.  The thick lines arc the results predicted 
by the RP nrodel, while the thin lines arc statistical avermges of 50 mdOmly 
generated chirped gratings. 

these wavelengths are able to penetrate further into the grating, 
they are also more exposed to the random medium and, conse- 
quently, the fluctuations of the time-delay are also higher. This 
is also the reason why the RP model underestimates slightly the 
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Fig. 12. Standard deviation for the time-delay vld at the center of the 
reflection band of the chirped grating as a function of the coherence length 
LFah. The chirp-parameter a was fixed to 4.92 cm -'. The solid line is a square 
mot fit (L;,biz) 

fluctuations of the time-delay. The approximation to the spectral 
response given by (1 3)  and (14) considers that the forward prop- 
agating wave is that corresponding to the deterministic case, un- 
derestimating the penetration of the light into the grating when 
this is subjected to random phase errors. 

A .  Coherence Length and Chirp Parameter Dependence 

We would like now to find how the coherence length of the 
fabrication system and the grating parameters relate to the time- 
delay fluctuations. We use again the RP model to understand 
these interrelations. Let us consider a small grating section of 
lengthAlocatedatpointa.From(lO),(13j,and(14)weobserve 
that this section will produce a strong reflection if the following 
phase-matching condition is verified: 

lz+A 2 da + ( 4 ( z  + A) - <,(z)) ~ 2pA = 0. (33)  

From (32), we can write (see Fig. 9) 

so that 

($(a + A)  - 4 ( ~ ) )  = -aA [ z ~ (; + 31. (35) 

We observe that in absence of random phase errors the 
penetration depth for a detuning p is (L /2  + 2p/a). The 
presence of random phase errors can help to achieve the phase 
matching condition at penetration depths that differ from 

0 4- 
0 2 I 6 8 

Chirp Parametera (cm') 

Fig. 13. Standard deviation for the time-delay vLd at the center of the 
reflection band of the chirped grating versus the chirp parameter U .  The 
coherence length Lsah was kept constant to 100 cm. The solid line is the 
fit. 

that corresponding to the deterministic case, reducing the 
probability of phase-matching at this deterministic penetration 
depth. This is the reason why the fluctuations of the time-delay 
increase with random phase errors. The phase increments 
(4 (z  + A) - 4 ( z ) )  follow Gaussian statistics with variance a' 
given by (4). Assuming that the penetration depth z in (35) is a 
random variable and taking into account (4), we can express the 
variance of the penetration depth 02 in terms of the coherence 
length Lco,l. The time-delay variance ~2~ can then be obtained 
from U," by multiplying it with ( 2 ~ 1 , , / c ) ~  

where the symbol cx denotes proportionality. Equation (36) in- 
dicates that the standard deviation of the time-delay u t d  scales 
inversely proportional to the chirpparameter a and also to the 
square root of the coherence length L,,,, 

In order to corroborate these approximate predictions, we 
have represented in Fig. 12 the standard deviation of the 
time-delay u td  at the center of the reflection band as a function 
of the coherence length Lcoh. The chirp-parameter cy was 
fixed to 4.92 cm-'. It can be observed that the square root fit 
(L:,'h/') matches accurately both the points calculated with the 
RP model and those obtained from Monte Carlo simulations. 
Analogously, in Fig. 13 we have represented the standard 
deviation of the time-delay atd at the center of the reflection 
band versus the chirp parameter LY for a fixed coherence length 
of 100 cm. Again, the predicted a-' fit is satisfactory for both 
set of points. 
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Fig. 14. Standard deviation of the time-delay fluctuations vtd(B) for three 
different coupling strzngths 4,""": 0.8, 1.3, and 1.9 cm-I. (a) was calculated 
with the RP model, while (b) shows the average over 50 randomly generated 
chirped gratings. 

B. Coupling Strength Dependence 

Finally, we are interested in determining the influence of the 
grating coupling strength on the time-delay fluctuations. We 
initially considered three cases with maximum coupling func- 
tion 4,"- equal to 0.8, 1.3, and 1.9 cm-', that corresponded to 
in-band reflectivities of 50,90, and 99%. The coherence length 
of the grating was kept constant at a value of 100 cm. In Fig. 14, 
we show the standard deviation of the time-delay fluctuations 
calculated both with the RP model in part (a), and averaging over 
50 randomly generated gratings in part (b). We observe good 
qualitative agreement between both calculations, although the 
Rp model tends to underestimate the standard deviation of the 
time-delay. The fluctuations of the time-delay clearly increase 
as the grating coupling strength is higher. Also, the slope for the 
growth of the fluctuations along the band is larger in this case. 

The reason for this behavior can be explained by the fact that 
strong gratings relax the phase-matching condition in (33) due 
to their broad bandgap 

Coupling constant (cm-') 

Fig. 15. Standard deviation of the time-delay flucolations c t d  at the center 
of the reflection band for several coupling strengths 4,""". Points (.) were 
calculated with the RP model; (H) were calculated averaging over 50 randomly 
generated chirped gratings: the dashed line (- - -) is a linear fit. The coherence 
length L,,,, was kept constant to 100 cm and the chirpparameter a was 4.92 
"2. 

Consequently, light of a particular wavelength (or detuning 
/3) can interact efficiently with a larger section of the grating 
if the coupling strength is high. The size of this region is 
approximately equal to 4 q y / a ,  increasing linearly with the 
coupling strength. However, in an ideal noiseless grating the 
light does not penetrate deep into this region, and is mainly 
reflected from an initial section of length l / q y .  If the 
grating is subjected to random phase errors, the light will 
be allowed to penetrate further into this region of strong 
interaction and the uncertainty of the reflection point will 
also be higher. This translates into larger fluctuations of the 
time-delay, which scale linearly with the size of the interac- 
tion region and, consequently, with Fig. 15 shows the linear 
relationship between q y  and the standard deviation of the 
time-delay utd (at the center of the reflection hand) for a 
constant coherence length of 100 cm. The points in this 
figure were calculated both with the random phase model 
(Rp) and by statistically averaging the time-delay responses 
of 50 gratings with randomly generated phase error distr- 
butions. The dashed line is a linear fit. For low values of 
the coupling constant q,"=, the time-delay fluctuation tends 
to a constant minimum value. Both curves evolve asymp- 
totically toward a linear dependence of u t d  with respect to 
qy" at high values of the coupling constant. The RP model 
provides a good approximation for moderate values of 
(less than 2 cm-', that correspond to gratings of reflectivity 
inferior to 99%), underestimating the time-delay fluctuation 
at high values of the coupling constant. 

As a summary, we have shown that random phase errors 
give rise to enhanced fluctuations in the time-delay of apodized 
chirped gratings, degrading their performance as dispersion 
compensators. We have demonstrated that the standard devia- 
tion of the time-delay ut,j scales inversely proportional to the 
chm-Darameter a and also to the square root of the coherence 

I I  

length Lc,,h. Also, the fluctuations of the time-delay are more 
noticeable for gratings with high reflectivity, scaling linearly 
with the coupling constant of the grating. 5 2 1 q y 1  A. (38) 
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VI. CONCLUSION 

In this paper, we have studied the effects of random phase and 
amplitude errors in the performance of optical filters based on 
fiber Bragg gratings. The amount of random phase errors intro- 
duced in the grating during the writing process can be regarded 
a measure of the quality of the fabrication system. We have 
shown that this amount of random phase errors can be quan- 
tified through the concept of coherence length, which is applied 
for first time in this context. A statistical model was developed to 
calculate the ensemble averages of the main grating spectral pa- 
rameters in terms of this coherence length. Two particular types 
of gratings of particular importance for optical communications 
were analyzed apodized gratings commonly used in WDM sys- 
tems, and chirped gratings employed to compensate the fiber 
dispersion. 

The main effects of random phase errors in apodized grat- 
ings were an increase in the out-of-band background reflectivity 
and a reduction in the sharpness of the bandedge as the coher- 
ence length is decreased. The background reflectivity scaled iu- 
versely proportional to the grating coherence length, and de- 
creased for detunings far away of the handgap edge. Ampli- 
tude errors also gave rise to an increase in the out-of-band back- 
ground reflectivity. In this case, however, the background level 
remained constant as a function of detuning. The method pre- 
sented permits the calculation of the minimum coherence length 
L,,I, and maximum amplitude noise factor 7 that can he allowed 
to achieve a required crosstalk level between different WDM 
channels. 

In the case of apodized chirped gratings, the random phase er- 
rors gave rise to enhanced fluctuations of the time-delay spectral 
response, degrading their performance as dispersion compen- 
sators. The standard deviation of the time-delay scaled inversely 
proportional to the chirpparameter and also to the square root 
of the coherence length. Also, the fluctuations of the time-delay 
were larger for gratings of higher reflectivity. Grating fabrica- 
tion systems with long coherence lengths are necessary to min- 
imize these negative effects. 
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