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Abstract

We report the results of a series of experiments examining cross-phase modula-
tion effects in apodised fibre Bragg gratings. All-optical switching and the optical
pushbroom are observed depending on the precise wavelength of the probe. The

experimental results are then modelled using the coupled mode equations.
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1. Introduction

Optical fibre Brzigg gratings (FBG) possess many features which make them attractive to
the telecommunication industry. Chief among these is the fact that they combine high
reflectivity with a narrow bandwidth making them ideal for add /drop filters in a WDM sys-
tem. These properties also offer the potential for the development of high quality nonlinear
devices such as 6ptical switches. The narrow bandwidth of a FBG means that only a small
change in the refractive index is necessary to detune light from inside the bandgap (where
the reflection is high) to outside it where complete transmission is possible. The strong
reflectivity ensures that the contrast ratio between the off and on states of the grating is .
large. There are, of course, two Wéys to switch a Bragg grating. The first is to use an optical

pulse, tuned to lie within the bandgap and whose intensity is sufficient to detune itself from



. .

resonance allowing propagation through the structure. Indeed recently we demonstrated a
nonlinear increase in the transmission of a FBG from 2% to 40% using this method. The
second is to use a high intensity pﬁmp beam, tuned far from the Bragg resonahce, to alter
the propagation constant of a weak signal beam whose wavelength is near or within the
graﬁng bandgap. Such cross-phase modulation effects were first seen by LaRochelle et al.2
and more recently ourselves®*.

Although the first approach is perhaps more aesthetically pleasing the second method
offers considerable advantages for a practical device. Firstly, there is no restriction on the
frequency separation between the pump and probe. This allows the pump and grating
wavelengths to be chosen separately. Secondly, as there is no energy exchange between the
pump and probe a single pump can switch multiple channels in a WDM system. Lastly
there are no requirements on the probe intensity.

It is for these reasons that the first nonlinear experiments in FBGs used cross phase

-modulation (XPM) to switch a weak signal. LaRochelle et al. first demonstrated nonlinear

switching in 1990? whereas the first reports of self-switching in a FBG did not appear till
much later'. This time delay was due to the comparative ease of observing XPM effects
over SPM effects in a FBG.

In the previous discussion we have not distinguished between CW and pulse effects
however the differences are important and lead to very different behavior. In a Kerr medium

the refractive index n(z) can be modeled by
n(z) = ng +n?I(z) (1)

where 7y is the background index and I(z) is the local intensity. If we consider the effect of
a strong CW pump beam on a low intensity signal then clearly the dominant effect is that
the signal “sees” a constant refractive index which is slightly different from the background
medium. The slight change in the effective refractive index however can still be sufficient
to detune the signal from the Bragg grating (or any other resonant condition). If however

the pump is a short intense pulse then via Eq. (1) it can be thought of as a moving wall
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of refractive index. The signal beam, upon encountering this moving wall, will be Doppler
shifted and thus its frequency will be altered. More precisely it can be shown that the
probe’s frequency shift is proportional to the gradient of the pump’s intensity profile®. In a
medium with a positive Kerr nonlinearity (n(® > 0) a positive intensity gradient (e.g. the
leading edge of the pump pulse) causes a red shift of the probe’s frequency while a negative
intensity gradient causes a blue shift of the probe’s frequency. If the pulse is asymmetric
then the frequencies shifts from the leading and trailing edges can be very diffe_rent, as
we show below. Also, as demonstrated later, the difference between CW and pulse effects
leads to very different types of behaviour in Bragg gratings. Lastly we note that the effects
we have been describing depend only on the intensity of the pump and not it’s phase. If
however the frequency difference between the pump and probe is sufficiently small then
parametric amplification of the probe can take place®.  For the purposes of this paper we
restrict ourselves to the non-phase matched regime w\here any parametric amplification is
negligible. |

In this paper we present our experimental observations of the effects of cross phase
modulation in FBGs. The outline of the paper is as follows, in Section 2 we present a
theoretical model of our system, while in Section 3 we describe the experimental setup. In
Section 4 and Section 5 we present our results along with a comparison of the results from

our numerical model. Finally we discuss these results in Section 6.

2. Theoretical Model

In a fibre Bragg grating the linear refractive index varies periodically with a period d and

can be approximated as’
n(2) = ng + An(z)cos(2koz) | (2)

where ng is the background refractive index and An(z) is the modulation depth of the

grating. The wave-vector ky = m/d and corresponds to the Bragg frequency wg around



which the grating is highly reflective. We take Eq. (2) to refer to.the effective index of the
fibre mode under consideration.

The effect of the grating is to couple forward and backward propagating light at frequen-
cies w close to wy. Thus in our model we can assume that there are only two frequencies of
interest, the Bragg frequency wg and the pump frequency w,. Also we assume that |w, — wy|
is sufficiently large so that the pump is unaffected by the grating, a condition satisfied in

our experiments. Under these conditions we can write the electric field as
E(z,t) = [fi(z,t)e' kom0t o £ (2, t)e Roztwod)] 4 P(z,t)ei®rs bl L e, (3)

where f,, and f,, are the slowly varying envelopes of the forward and backward propagating
waves at the Bragg frequency. The pump envelope is given by P(z,t) where z is the propa-
gation direction. Note that we have taken the pump and probe to bé orthogonally polarised
which is not necessary but represents the experimental conditions. Making the usual slowly

varying assumptions the coupled mode equations (CME) for f, and f_ can be written as®

i +vg 5 T -+ 4 3TIP( Y fy =0, (4a)
of | oI 2 20 __
i +.vg 5 Tl + 00+ TP f- =0. (4b)

Note that we have assumed that the pump propagates unchanged throughout the fibre, i.e.
P(z,t) = P(z — v,t). For an optical fibre”*:

W — Wy

5= — R(z)z'rrAf\z(z)

4mn '
, T=—7n®, (5)

v, is the group velocity in the absence of a grating, A is the free space Bragg wavelength and
Z the vacuum impedance. The parameter x measures the strength of the coupling between
f+ and f_. In addition to Eq. (4) we assume that no light is incident upon the grating
from the right, i.e backwards direction, and that initially the fields in the grating are in
steady-state.

Egs. (4) for the optical pushbroom are identical to those derived by de Sterke® except

for two minor changes. Firstly, since we have an orthogonally polarised pump and probe
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the nonlinearity is reduced by a factor of three. Secondly, we have assumed a nonuniform
grating so that  is a funiction of position. In deriving Eq. (4) we have made two vimportant
assumptions. Firstly that the wavelength difference between the pump and probe is suffi-
ciently large so that there is no parametric amplification of the probe beam. Secondly we
have assumed that the probe beam is sufﬁciexitly weak so that by itself it does not experience
any nonlinear effects. Both these effects have been included theoretically by others!®™!2 but

as such effects were not present in our experiments we do not include them in our model.

A. Linear Properties of a Fibre Bragg grating

To understand the nonlinear behavior of a FBG first recall the linear properties. In the

absence of a pump and for a CW inbut the coupled-mode equations can be written as

o (1@ _[ # i@ ) (£

(6)
9\ f_(x) —in(z) —i6 | \ f_(z)

For a uniform grating (k(z) = k) we can solve Egs. (6) by exponentiating, yielding the

transfer matrix M:

4 sin Bx + (3 cos Bz ik sin Bz
oLt Bz + Bcos B | o
B —iksin Oz B cos Bx — i sin Bz

where 3% = §2 — k2. Eq. (7) is still valid when $ is complex, which occurs when || < . In

terms of M the solutions to the coupled mode equations are:

f+(z) gy f+(0) ®)
f-(z) f-(0) |

From Eq. (8) it can easily be shown that for a finite structure the reflection coefficient is
given by r = —M;; /M5, and that there are discrete frequencies where the reflectivity drops
to zero'3. These zeros are important for the discussion of the optical pushbroom in Sect. 2 C.

For a uniform grating the bandgap extends from —k < § < & and for frequencies within

this region the intensity decreases exponentially along the length of the grating. Outside
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this region there are plane wave solutions to Eq. (6) which propagate unchanged through

the grating and these can be written as

f+___ K

f- IFVE+A?

ei(qz—&t), (9)

where
g =1vé2 - k2. ' (10)

The dispersion relationship given by Eq. (10) is illustrated in Fig. 1. The group velocity V

is
V=§.= lv&"?—n?. - (11)

Note that V' = 0 at the band edge and asymptotically approaches unity as § — oo indicating

that the dispersion relationship appxjoa,ch% that of the background medium far from the
| grating, as one would expect. In additidn the group velocity dispersion is given by the
curvature of the dispersion relationship. From Fig. 1 it can be seen that this is anomalous
above the bandgap and normal below it. For typical grating parameters the dispersion near
the bandgap can be 6 orders of magnitude greater than the bare fibre dispersion which is

why we have treated the background material as dispersionless in Eq. (4).

B. CW switching of a Fibre Bragg grating

By far the simplest application of the CMEs (Egs. (4)) is the modelling of the switching of
a uniform grating by a strong CW pump beam. In this case both x and P are constants
and the CMEs can then be solved exactly. The only effect the pump has on the solution is
to introduce an additional detuniﬁg of 2/3T|P[2. This has the effect of uniformly shifting
the entire reflection spectrum to lower detunings by 2/3T|P|2. For a uniform grating the
frequency difference between the centre of the bandgap and the position of the first minima

in the reflection spectrum is ~ «. Thus the intensity needed to switch a probe, centred at
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the Bragg frequency from being reflected to being totally transmitted is?

) | |
2 2
P~ . | (12)

This effect was first seen by LaRochelle et al.2 who observed an increase in the average
power transmission from 4% to 6%. The degree of switching they were able to observe was
limited by the temporal resolution of their detector and theoretical estimates suggest that
actually complete switching was occuring in their system?. In LaRochelle’s experiments the
phmp beam was in fact a 100 ps long pulse. However as their grating was only 3.5cm long
the pulse was longer than the grating, justifying the CW nature of the experiment. We shali
return to the question of what constitutes a CW pump later in the papér.

For our experiments we have used a nonuniform grating. In the CW regime this makes
no differences to the physics, however the switching power may be increased or decreased

depending on whether the bandgap is larger or smaller than that of a uniform grating (i.e.

£ in Eq. (12) should be replaced by Kmaz)-

C. The Optical Pushbroom

In the regime that the pump pulse is shorter than the grating then the interaction can no
longer be treated as though it were CW. In this.regime the dominant effect is the frequency
shift of the probe rather than the nonlinearly induced shift in the Bragg resonance. This
frequency shift can result in the compression of the probe — the so called optical pushbroom?®.
This works as follows.

From Eq. (11) it can be seen that the further away a pulse is from the bandgap the greater
its group velocity. Clearly then a FBG could be used to efficiently compress an appropriately
chirped pulse as it propagates through the grating. The basics of the optical pushbroom are
that the intense pump introduces a chirp on the probe pulse which is then compressed by
the FBG. More precisely consider a CW beam centred at the first transmission resonance
of the FBG. The intensity profile of the light inside the grating is shown in Fig. 2. Note

that a significant amount of energy is stored inside the grating at this detuning. When
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the pump enters the grating it first encounters the back of the probe resonance. Through
XPM it lowers the frequency of the back of the probe causing it to speed up. This increase
in velocity allows the back of the probe to sit on the leading edge of the pump where it
experiences still further XPM. This process continues through the grating with more and
more of thg probe’s energy being swept up onto the leading edge of the pump.

In transmission the hallmark of the optical pushbroom is thus a sharp spike (temporally
coincident with the pump) followed by a relatively longer dip in the transmission. The
decrease in transmission is due to the fact that the pump has swept up all the stored
energy in the grating and the transmission resonance needs time to re-establish itself. The
effects of the optical pushbroom can be seen in Fig. 3 which shows a theoretical trace of
the transmitted light obtained by solving Eq. (4) numerically. in the simulation the various
parameters were chosen to correspond to the measured expériniental values.

In its original guise the optical pushbroom was shown to work in a uniform Bragg grating
where it swept out the energy associated with one of the linear resonances®. The same
physical process was soon sho‘wn'to compress optical pulses which were co-propagating with
the pump through the grating®'*. However as Fig. 3 shows the same effect can be seen
in apodised gratings which do not have as strong resonances as uniform Bragg gratings.
The optical pushbroom works in this case since for frequeﬁcies close to the edge of the
bandgap there is still an appreciable amount of energy stored in the grating which can be
swept out via cross-phase modulation (see Fig. 2). In fact the use of an apodised grating
considerably relaxes the experimental requirements to see the optical pushbroom. Because
of the lack of any well-defined resonances in the transmission spectrum the detuning of the
probe does not need to be as critically tuned as it would if the probe had to lie exactly on
a transmission resonance. Thus as we show below for an apodised grating there are a wide
range of frequencies where the optical pushbroom can be observed.

The wide range of possible behaviours that can be observed in a nonuniform Bragg
gratings are shown in Fig. 4 and Fig. 5. These graphs show the transmitted (dashed lines)

and reflected intensities (solid lines) for a CW beam at various detunings. The parameters
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used in these simulations match as cloSely as possible the experimental parameters described
below. In Fig. 4 the detuning is above the centre of the bandgap and simple CW switching
can be seen particularly in Fig. 4(b) and (c). In Fig. 5 the detuning is below the centre of
the bandgap and as expected optical push broom effects can be seen. Note that due to the
length of the pump pulse we can assume that the field in the grating evolves adiabatically
(except for the first 100ps due to the sharp leading edge of the pump) and thus at most
times the reflection and transmission should sum to unity as can be seen in the theoretical

traces.

3. Experimental Setup

Our experiméntal setup is shown in Fig. 6. High power pllmp' pulses at 1550nm are used
to switch a low-power (1mW) , nmrow—lineﬁidth (< 10 MHz) probe that could be temper-
ature tuned right across the gréting’s bandgap. The pump pulses, derived from a directly
modulated DFB laser, were amplified to a high power (> 10 kW) in an erbium doped fi-
bre amplifier cascade based on large mode area erbium doped fiber and had a repetition
frequency of 4KHz. Fig. 8 shows the intensity profile of the pump pulse. It’s shape is asym-
metric due to gain saturation effects within the amplifier chain and has a 30ps rise time and
a 3ns half-width. The spectral hal.f-width of the pulses at the grating input was measured
to be 1.2 GHz, as defined by the chirp on the input seed pulses. |

The pump and probe were polarization coupled into the FBG and were thus orthogonélly
polarised within the FBG. A half-wave plate was included within the system allowing us to
orient the beam along the grating birefringehce axes. Both the reflected and transmitted
probe signals could be measured in our experimental system using a fiberized detection
system based on a tunable, narrow-band (< 1nm) optical filter with >80 dB differential loss
between pump and probe (sufficient to extinguish the high intensity pump signal), a low
noise pre-amplifier, a fast optical detector and sampling scope. The temporal resolution of

our probe beam measurements was ~50ps.



The FBG was centered at 1536 nm and was 8 cm long with an apodised profile resulting
in almost complete suppression of the side-lobes. The grating had a peak reflectivity of 98%
and a measured width of less than 4 GHz. The measured reflection spectrum is shown in
Fig. 7 (solid line), along with a theoretical reflection spectrum for an idealised grating with
identical parameters. In Fig. 7 the wavelengths along the X-axis are given in terms of the
difference from the centre wavelength of 1535.930 nm. The grating was mounted in a section
of capillary tube, angle polished at both ends so as to eliminate reflections from the grating
end faces and was appropriately coated to stﬁp cladding modes.

It should be noted that the pump pulse shape requirements for CW switching and the
optical pushbroom are somewhat incompatible. The pushbroom requires pulses with a large
_intensity gradient while to see CW effects the intensity gradient should be zero. However
with our pulse we are able to have our cake and eat it tdb. The exceedingly rapid rise time
of pulse allows us to see the optical pushbroom yet the fact that the pulse is longer than
the grating allows CW effects to be seen. As we discuss in detail below the frequency of
the probe pulse determines whether we are in a pushbroom or CW regime. In some cases
however we see a combination of both effects. |

We were able to tune the wavelength of our probe beam by changing the temperature
of the laser diode. The following empirical relationship was found between the wavelength

and the resistance of the heating element
MT) = 1538.00 — 0.149639T — 0.00199972T (13)

where T is measured in k2 and A in nanometres. We were able to control the tempera-
ture to within 0.01 k(2 corresponding to a wavelength tuneability of 1pm. The actual centre
wavelength of the grating was constantly shifting due to small temperature changes of the
laboratory making it hard to determine the actual detuning of the probe from the Bragg
wavelength. In this paper we estimated the detuning by measuring the amount of reflected
or transmitted light and comparing it to that measured at large detunings (where the trans-

mission is assumed to be unity).
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We performed a series of measurements looking at both the transmitted and reflected
light as a function of both the probe wavelength and the pump power. These results are split
into the reflected and transmitted outputs for clarity. We will first discuss the transmitted

light case.

4. Forward Propagating Case

As discussed in Section. 2 the transmitted probe‘ shape is expected to be a strong function of
its detuning from the gratings bandgap. This can be seen in Fig. 9 and Fig. 10 which show
the averaged probe’s waveform as we tune across the bandgap from the short wavelength
side to the long wavelength side while keeping the pump power constant. In these graphs the
transmitted intensity has been scaled so that the norm.alised linear intensity at the centre of
the bandgap is 0.04 while the normalised intensity at wévelengths well outside the bandgap
" is unity. This in fact slightly underestimates the true transmission for long wavelengths due
to a slight wavelength dependence of the detection process. In all the traces the‘origin of
the time is set to coincide with the start of the transmitted pump pulse. These experimental
traces should be compared to the theoretical traces in Fig. 4.

Examining the traces in Fig. 9 we see that the common feature is that the transmission
increases in the presence of the pump. This is due to the nonlinear index changé induced
by the pump which shifts the Bragg wavelength to lowér’ frequenéies and thus the probe
is effectively further from the Bragg resonance, hence it’s transmission increases. In this
regime our results are similar to those of La Rochelle et al.2. The most important difference
being that we are able to resolve the temporal shape of the transmitted light. In addition
we have a cleaner source and a better grating giving significantly clearer results. Note that
in cases (a) and (b) the transmission follows very closely the pump profile in Fig; 8 due to
the fact that the grating’s slope is almost linear near the short wavelength edge. However
as we move closer towards the centre of the Bragg grating only the peak of the pulse is

sufficiently intense to switch the probe. Hence instead of seeing the broad switched pulses
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there is only a narrow pulse corresponding in time to the peak of the pump pulse. This can
also be clearly seen in Fig. 4(d).

In Fig. 10 the traces for frequencies below the bandgap are shown where again we see
a strong dependence on the probe’s wavelength. As we are now below the Bragg resonance
the effect of the pump is to move the probe’s wavelength closer to the centre of the-bandgap
thereby decreasing the transmission. This is the cause of the long dips in the transmission
which can be seen in all the traces. In addition to the dips in the transmission it can also be
seen that the transmission initially increases due to the presence of the pump. This is the
optical pushbroom effect described above. As expected it can only be seen for frequencies
close to the long wavelength edge of the grating. However, as discussed in Section 2 C, this
wavelength range is much broader than that of a comparable uniform grating. Again these
features can be seen in the theoretical traces. However in the theoretical case the degree of
-switching is typically larger than that seen in the experiments. This is due largely to the
difference in pulse shapes between the theory and experiments. The theoretical pulse‘ shape
decays more smoothiy than the experimental one. However note that the overall agreement
is excellent with small features such as fhe increase in the transmitted light at £ = 3ns in
Fig. 10(e) also appearing in the corresponding theoretical trace [Fig. 5(e)].

Optimising the wavelength for the optical pushbroom results in the trace shown in
Fig. 11a. In this case the probe was detuned by 0.02nm from the Bragg resonance which is
right on the very edge of the grating resonance where the transmission is near unity in the
absence of the probe. Note that the parameters used in the theoretical trace (Fig. 3) corre-
" spond as closely as possible to the experimental parameters of Fig. 11a. Note that there is
an excellent agreement between the theoretical and experimental trace which is matched by
the agreement at other detunings. This allows us to be confident that we are observing the
optical pushbroom and not some other nonlinear effect. One again the main disagreement
" between the two comes from the difference in pulse shapes between the theoretical model
which assumed a triangular pulse and the actual pump profile which is more éomplicated

(see Fig. 8).
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Lastly we examined the effects of changing the pump power on the transmitted profiles.
These results are shown in Fig. 11b and basically followed the expected trend. Since we are
examining a nonlinear effect it should die away with decreasing pump power as indeed it
does. We now turn to the traces of the reflected light which have not been treated before

either analytically or experimentally in any detail.

5. Backward Propagating Case

In Fig. 12 and Fig. 13 are shown the reflected traces of the probe as a function of eime.
These traces are normalised so that the peak reflection in the linear regime corresponds to
a value of 0.96. This normalisation again underestimates slightly the actual reflectivity for
frequencies near the edge of the bandgap due to the uneven gain from the amplifier before
the detector. We not that due to a thermal shift in the Bragg resonance of the grating the
actual detunings in Fig. 12 and Fig. 13 are different to those in Fig. 9 and Fig. 10 even
though the actual temperature of the diode was the same in each case.

Looking at the traces in Fig. 12 and Fig. 13 a number of features are apparent. Firstly
as expected the reflectivity decreases in the presence of the pump above the bandgap and
increases below the bandgap. This is due to the simple effect of cross-phase modulation as
discussed in Section. 4 whereby the effective frequency of the centre of bandgap decreases
due to the presence of the pump. Compared however to the transmitted cases the effects of
cross-phase modulation are not as apparent [e.g. compare Fig. 9(b) with Fig. 12(b)]. We
are not fully confident of the reason for this but it is most likely due to a drop in the pump
power during the course of the measurements.

The other main feature of interest in the reflected traces can be seen in Fig. 12(a). Note
that initially the reflected intensity increases in a manner similar to the traces of the optical
pushbroom. This is a new effect caused by the apodisation profile of the grating and which
could not have been seen if one used a uniform grating®. Note that this can also be clearly

in Fig. 4(a). The reason behind this peak is very similar to the explanation for the optical
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pushbroom in that a nonlinear shift in frequency is responsible for the appearance of the
peak. In-our situation, due to the apodisation profile light propagates through almost half the
grating before being reflected. This means that compared to a uniform grating significantly
more energy is stored in the grating at frequencies within its bandgap. The pump pulse
acts on this stored energy by lowering its frequency through cross phase modulation. The
apodisation profile then ensures that lower frequencies are reflected earlier in the grating
and thus creates the right amount of dispersion to compress the reflected pulse.

Unlike the forward pushbroom this effect can only be seen in é.podis,eq-gra;tin'gs and it
takes place over a narrower frequency range as can be seen from the experim‘éhﬁé,l traces.
We have performed numerical simulations which show that it is a robust phenomenon which
occurs in a wide variety of nonuniform gratings including linearly chirped gratings. It is also
possible to increase the size of the effect by appropriately designing the grating however it
will always remain a relatively small effect compared to the optical pushbroom as less energy
is stored in the grating at frequencies within the'bandgap compared to frequencies outside

the bandgap.

6. Conclusion

We have presented for the first time to our knowledge a complete investigation of thé effects of
cross-phase modulation showing the Veﬁ'ects of varying the pump power and probe frequency
on both the reflected and transmitted light. These experimental results can be accurately
modelled using the.sta.ndard coupled mode equations indicating that no other effects are
present in our experiments.

The results here clearly show how a number of different pheomena such as the opti-
cal pushbroom and CW-switching of gratings which were previously considered Separately,
need to be considered together to obtain a complete understanding of our measurements.
In addition these results show the advantage of using apodised gratings for such experi-

ments. Apodised gratings are important since they allow light to penetrate further into
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the grating at frequencies within the bandgap in the linear regime making it easier to ob-
serve nonlinear effects!>. Using apodised gratings allows for novel effects to be seen which
were not previously predicted due to the theoretical focus on pulse dynamics in uniform
gratings. These effects clearly show that it is possible to obtain significant switching using
all-fiberised sources and gratings. Finally the agreement between the theoretical modelling
and the experimental results gives us faith in our numerical model and should allow for the

development of improved and functional devices based on fibre Bragg gratings.
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FIGURES

Fig. 1. Dispersion relationship for a uniform grating with the same parameters as the one in
Fig. 7. Note that no solutions exist in the bandgap. The dashed lines indicate the background

dispersion relationship.

Fig. 2. Field profile inside the grating at the first transmission resonance. The solid line gives
the total intensity |f4|? + |f-|* while the short dashed line indicates |f4|> and the long dashed
2.

line gives |f_|*. Note that the field structure is single peaked with the maximum intensity being

significantly higher than the input intensity illustrating the energy storage capability of a FBG.

Fig. 3. Theoretical trace of the optical pushbroom. The solid line is the transmitted probe
intensity, while'the dashed line shows the pump profile. The insert is a blowup qf the front spike

in the transmission. The parameters chosen match those used in the actual experiment.

Fig. 4. Theoretical transmitted (dashed lines) and reflected (solid line) intensity profiles of the
probe beam as a function of the time in nanoseconds. The pump is incident upon the grating at
t = 0. The detunings used were 0.662 cm™?, 0.466 cm™!, 0.049 cm™' and -0.197 cm™ for figures

(a), (b), (c) and (d) respectively.

Fig. 5. Theoretical transmitted (dashed lines) and reflected (solid line) intensity profiles of the
probe beam as a function of the time in nanoseconds. The pump is incident upon the grating at

¢ = 0. The detunings used were -0.444 cm™!, -0.592 cm™?, -0.643 cm~! and -0.891 cm~! for figures

(e), (f), (g) and (h) respectively.

Fig. 6. Schematic of the experimental setup. PBS: polarization beam splitter. BPF: bandpass
filter with a width of < 1nm. LA-EDFA: Large mode area Erbium fibre amplifier. The polarizer

(POL) is set to minimize the pump. See the text for more details.
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Fig. 7. Measured reflection spectrum of the grating used in our experiments (solid line). The
dashed line is a theoretical trace for a grating with the same parameters. The centre of the grating is
at 1535.9290nm and the horizontal scale gives the wavelength difference from the centre wavelength.

The effect of the apodisatid’n can be clearly seen in the lack of sidelobes in the spectrum.

Fig. 8. Measured intensity profile of the pump pulse used in the experiments.

Fig. 9. Measured transmitted intensity profiles of the probe pulses as a function of the time in
nanoseconds. The derived detunings are 0.662 cm™!, 0.466.cm~?, 0.049 cm™! and -0.197 cm™! for
figures (a), (b), (c), (d) respectively. In these traces the probe’s intensity has been normalised to

the peak of the transmission at wavelengths far from the grating.

Fig. 10. More transmitted intensity profiles for frequencies below the centre of the bandgap.
The derived detunings are -0.444 cm™!, -0.592 cm~!, -0.643 cm~! and -0.891 cm™! for figures

(e),(£),(g),(h) respectively.

Fig. 11. Experimental traces of the optical pushbroom. On the left shows the result of optimising
the wavelength for maximum energy storage in the Bragg grating. The figure on the right shows

the effect on increasing the pump power.

Fig. 12. Measured reflected intensity profiles of the probe pulses as a function of the time in
nanoseconds (horizontal axis). The detuning of the probe is 0.588 cm™1, 0.490 cm~1, 0.246 cm™!
and 0.000 cm™! for traces (a), (b), (c) and (d) respectively. In these traces the probe’s intensity

has been normalised so that the peak reflection in the linear regime corresponds to a value of 0.96.

Fig. 13. More reflected intensity profiles for frequencies below the centre of the bandgap. The
detuning of the probe is -0.247 cm™!, -0.494 cm™1, -0.593 cm™! and -0.643 cm™! for traces (e), (f),

(g) and (h) respectively. The graphs are normalised as in Fig. 13.
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