The University of Southampton
University of Southampton Institutional Repository

Reduction of interchannel interference noise in a two-channel grating-based OCDMA system using a nonlinear optical loop mirror

Reduction of interchannel interference noise in a two-channel grating-based OCDMA system using a nonlinear optical loop mirror
Reduction of interchannel interference noise in a two-channel grating-based OCDMA system using a nonlinear optical loop mirror
We show that a nonlinear optical switch can be used to suppress the interchannel noise generated under multiuser operation within a coherent, direct-sequence optical code-division multiple-access (OCDMA) system. By incorporating a simple nonlinear optical loop mirror (NOLM) within the receiver, we demonstrate a 3.6-dB power penalty reduction in a two-channel 1.25-Gb/s 64-chip 160-Gchip/s grating-based direct-sequence OCDMA system. Even greater improvements in system performance were obtained at a data rate of 2.5 Gb/s, where the noise due to the overlap of adjacent decoded data bits also needs to be suppressed. In both instances, the system performance under two-channel operation with nonlinear filtering was shown to be comparable to that achieved under single-channel operation using the conventional matched-filter approach
1041-1135
529-531
Lee, J.H.
3b88784a-02e7-4b63-b112-3fdb4e1abf4e
Teh, P.C.
1e229dd3-3374-4599-b220-be515ac1ed51
Petropoulos, P.
522b02cc-9f3f-468e-bca5-e9f58cc9cad7
Ibsen, M.
22e58138-5ce9-4bed-87e1-735c91f8f3b9
Richardson, D.J.
ebfe1ff9-d0c2-4e52-b7ae-c1b13bccdef3
Lee, J.H.
3b88784a-02e7-4b63-b112-3fdb4e1abf4e
Teh, P.C.
1e229dd3-3374-4599-b220-be515ac1ed51
Petropoulos, P.
522b02cc-9f3f-468e-bca5-e9f58cc9cad7
Ibsen, M.
22e58138-5ce9-4bed-87e1-735c91f8f3b9
Richardson, D.J.
ebfe1ff9-d0c2-4e52-b7ae-c1b13bccdef3

Lee, J.H., Teh, P.C., Petropoulos, P., Ibsen, M. and Richardson, D.J. (2001) Reduction of interchannel interference noise in a two-channel grating-based OCDMA system using a nonlinear optical loop mirror. IEEE Photonics Technology Letters, 13 (5), 529-531. (doi:10.1109/68.920775).

Record type: Article

Abstract

We show that a nonlinear optical switch can be used to suppress the interchannel noise generated under multiuser operation within a coherent, direct-sequence optical code-division multiple-access (OCDMA) system. By incorporating a simple nonlinear optical loop mirror (NOLM) within the receiver, we demonstrate a 3.6-dB power penalty reduction in a two-channel 1.25-Gb/s 64-chip 160-Gchip/s grating-based direct-sequence OCDMA system. Even greater improvements in system performance were obtained at a data rate of 2.5 Gb/s, where the noise due to the overlap of adjacent decoded data bits also needs to be suppressed. In both instances, the system performance under two-channel operation with nonlinear filtering was shown to be comparable to that achieved under single-channel operation using the conventional matched-filter approach

Text
13704.pdf - Version of Record
Download (75kB)

More information

Published date: 2001

Identifiers

Local EPrints ID: 13704
URI: https://eprints.soton.ac.uk/id/eprint/13704
ISSN: 1041-1135
PURE UUID: 53473636-d3c8-4473-9ba8-467d7a59e581
ORCID for P. Petropoulos: ORCID iD orcid.org/0000-0002-1576-8034
ORCID for D.J. Richardson: ORCID iD orcid.org/0000-0002-7751-1058

Catalogue record

Date deposited: 03 Jan 2005
Last modified: 03 Dec 2019 02:05

Export record

Altmetrics

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of https://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×